Sample records for future doe missions

  1. Photovoltaic cell and array technology development for future unique NASA missions

    NASA Technical Reports Server (NTRS)

    Bailey, S.; Curtis, H.; Piszczor, M.; Surampudi, R.; Hamilton, T.; Rapp, D.; Stella, P.; Mardesich, N.; Mondt, J.; Bunker, R.; hide

    2002-01-01

    A technology review committee from NASA, the U.S. Department of Energy (DOE), and the Air Force Research Lab, was formed to assess solar cell and array technologies required for future NASA science missions.

  2. Development of a New Generation of High-Temperature Thermoelectric Unicouples for Space Applications

    NASA Technical Reports Server (NTRS)

    Caillat, Thierry; Gogna, P.; Sakamoto, J.; Jewell, A.; Cheng, J.; Blair, R.; Fleurial, J. -P.; Ewell, R.

    2006-01-01

    RTG's have enabled surface and deep space missions since 1961: a) 26 flight missions without any RTG failures; and b) Mission durations in excess of 25 years. Future NASA missions require RTG s with high specific power and high efficiency, while retaining long life (> 14 years) and high reliability, (i.e. 6-8 W/kg, 10-15% efficiency). JPL in partnership with NASA-GRC, NASA-MSFC, DOE, Universities and Industry is developing advanced thermoelectric materials and converters to meet future NASA needs.

  3. Radioisotope Power Systems Program: A Program Overview

    NASA Technical Reports Server (NTRS)

    Hamley, John A.

    2016-01-01

    NASA's Radioisotope Power Systems (RPS) Program continues to plan, mature research in energy conversion, and partners with the Department of Energy (DOE) to make RPS ready and available to support the exploration of the solar system in environments where the use of conventional solar or chemical power generation is impractical or impossible to meet potential future mission needs. Recent programs responsibilities include providing investment recommendations to NASA stakeholders on emerging thermoelectric and Stirling energy conversion technologies and insight on NASA investments at DOE in readying a generator for the Mars 2020 mission. This presentation provides an overview of the RPS Program content and status and the approach used to maintain the readiness of RPS to support potential future NASA missions.

  4. 2013 SRNL LDRD Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McWhorter, S.

    2014-03-07

    This report demonstrates the execution of our LDRD program within the objectives and guidelines outlined by the Department of Energy (DOE) through the DOE Order 413.2b. The projects described within the report align purposefully with SRNL’s strategic vision and provide great value to the DOE. The diversity exhibited in the research and development projects underscores the DOE Office of Environmental Management (DOE-EM) mission and enhances that mission by developing the technical capabilities and human capital necessary to support future DOE-EM national needs. As a multiprogram national laboratory, SRNL is applying those capabilities to achieve tangible results for the nation inmore » National Security, Environmental Stewardship, Clean Energy and Nuclear Materials Management.« less

  5. Kilowatt-Class Fission Power Systems for Science and Human Precursor Missions

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.; Gibson, Marc Andrew; Poston, Dave

    2013-01-01

    Nuclear power provides an enabling capability for NASA missions that might otherwise be constrained by power availability, mission duration, or operational robustness. NASA and the Department of Energy (DOE) are developing fission power technology to serve a wide range of future space uses. Advantages include lower mass, longer life, and greater mission flexibility than competing power system options. Kilowatt-class fission systems, designated "Kilopower," were conceived to address the need for systems to fill the gap above the current 100-W-class radioisotope power systems being developed for science missions and below the typical 100-k We-class reactor power systems being developed for human exploration missions. This paper reviews the current fission technology project and examines some Kilopower concepts that could be used to support future science missions or human precursors.

  6. Kilowatt-Class Fission Power Systems for Science and Human Precursor Missions

    NASA Technical Reports Server (NTRS)

    Mason, Lee; Gibson, Marc; Poston, Dave

    2013-01-01

    Nuclear power provides an enabling capability for NASA missions that might otherwise be constrained by power availability, mission duration, or operational robustness. NASA and the Department of Energy (DOE) are developing fission power technology to serve a wide range of future space uses. Advantages include lower mass, longer life, and greater mission flexibility than competing power system options. Kilowatt-class fission systems, designated "Kilopower," were conceived to address the need for systems to fill the gap above the current 100-Wclass radioisotope power systems being developed for science missions and below the typical 100-kWe-class reactor power systems being developed for human exploration missions. This paper reviews the current fission technology project and examines some Kilopower concepts that could be used to support future science missions or human precursors.

  7. Brookhaven National Laboratory Institutional Plan FY2001--FY2005

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, S.

    Brookhaven National Laboratory is a multidisciplinary laboratory in the Department of Energy National Laboratory system and plays a lead role in the DOE Science and Technology mission. The Laboratory also contributes to the DOE missions in Energy Resources, Environmental Quality, and National Security. Brookhaven strives for excellence in its science research and in facility operations and manages its activities with particular sensitivity to environmental and community issues. The Laboratory's programs are aligned continuously with the goals and objectives of the DOE through an Integrated Planning Process. This Institutional Plan summarizes the portfolio of research and capabilities that will assure successmore » in the Laboratory's mission in the future. It also sets forth BNL strategies for our programs and for management of the Laboratory. The Department of Energy national laboratory system provides extensive capabilities in both world class research expertise and unique facilities that cannot exist without federal support. Through these national resources, which are available to researchers from industry, universities, other government agencies and other nations, the Department advances the energy, environmental, economic and national security well being of the US, provides for the international advancement of science, and educates future scientists and engineers.« less

  8. From Idea to Innovation: The Role of LDRD Investments in Sandia's Recent Successful B61 Experiments.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arrowsmith, Marie Danielle

    The Laboratory Directed Research and Development (LDRD) program, authorized by U.S. Congress in 1991, enables Department of Energy (DOE) laboratories to devote a small portion of their research funding to high-risk and potentially high-payoff research. Because it is high-risk, LDRD-supported research may not lead to immediate mission impacts; however, many successes at DOE labs can be traced back to investments in LDRD. LDRD investments have a history of enabling significant payoffs for long-running DOE and NNSA missions and for providing anticipatory new technologies that ultimately become critical to future missions. Many of Sandia National Laboratories’ successes can be traced backmore » to investments in LDRD. Capabilities from three LDRDs were critical to recent tests of the B61-12 gravity bomb—tests that would previously have only been performed experimentally.« less

  9. Background and applications of astrodynamics for space missions of the johns hopkins applied physics laboratory.

    PubMed

    Dunham, David W; Farquhar, Robert W

    2004-05-01

    This paper describes astrodynamic techniques applied to develop special orbital designs for past and future space missions of the Applied Physics Laboratory (APL) of Johns Hopkins University, and background about those techniques. The paper does not describe the long history of low Earth-orbiting missions at APL, but rather concentrates on the astrodynamically more interesting high-altitude and interplanetary missions that APL has undertaken in recent years. The authors developed many of their techniques in preparation for, and during, the Third International Sun-Earth Explorer (ISEE-3) halo orbit mission while they worked for the Goddard Space Flight Center (GSFC) of NASA during the 1970s and 1980s. Later missions owed much to the ground breaking work of the trajectory designs for ISEE-3 (later known as the International Cometary Explorer, or ICE). This experience, and other new ideas, were applied to the APL near Earth asteroid rendezvous (NEAR) and comet nucleus tour (CONTOUR) discovery missions, as well as to APL's future MESSENGER, STEREO, and New Horizons missions. These will be described in the paper.

  10. Space mechanisms needs for future NASA long duration space missions

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.

    1991-01-01

    Future NASA long duration missions will require high performance, reliable, long lived mechanical moving systems. In order to develop these systems, high technology components, such as bearings, gears, seals, lubricants, etc., will need to be utilized. There has been concern in the NASA community that the current technology level in these mechanical component/tribology areas may not be adequate to meet the goals of long duration NASA mission such as Space Exploration Initiative (SEI). To resolve this concern, NASA-Lewis sent a questionnaire to government and industry workers (who have been involved in space mechanism research, design, and implementation) to ask their opinion if the current space mechanisms technology (mechanical components/tribology) is adequate to meet future NASA Mission needs and goals. In addition, a working group consisting of members from each NASA Center, DoD, and DOE was established to study the technology status. The results of the survey and conclusions of the working group are summarized.

  11. The Ongoing Evolution of the WFIRST Mission and Implications for Future Flagship Missions

    NASA Astrophysics Data System (ADS)

    Bregman, Joel N.

    2018-01-01

    What is the community’s reaction when a decadal priority is modified? How does community buy-in of nascent programs in turn affect Congressional or Administration buy-in? What is the role of the AAS in engaging stakeholders in such circumstances? In this panel discussion, AAS CAPP will facilitate a conversation about how astronomers -- individually and collectively -- can effectively advocate for community-derived priorities.

  12. Future Directions for Fusion Propulsion Research at NASA

    NASA Technical Reports Server (NTRS)

    Adams, Robert B.; Cassibry, Jason T.

    2005-01-01

    Fusion propulsion is inevitable if the human race remains dedicated to exploration of the solar system. There are fundamental reasons why fusion surpasses more traditional approaches to routine crewed missions to Mars, crewed missions to the outer planets, and deep space high speed robotic missions, assuming that reduced trip times, increased payloads, and higher available power are desired. A recent series of informal discussions were held among members from government, academia, and industry concerning fusion propulsion. We compiled a sufficient set of arguments for utilizing fusion in space. .If the U.S. is to lead the effort and produce a working system in a reasonable amount of time, NASA must take the initiative, relying on, but not waiting for, DOE guidance. Arguments for fusion propulsion are presented, along with fusion enabled mission examples, fusion technology trade space, and a proposed outline for future efforts.

  13. How Does The Universe Work? The Physics Of The Cosmos Program (PCOS)

    NASA Astrophysics Data System (ADS)

    Sambruna, Rita M.

    2011-09-01

    The Physics of the Cosmos (PCOS) program incorporates cosmology, high-energy astrophysics, and fundamental physics projects aimed at addressing central questions about the nature of complex astrophysical phenomena such as black holes, neutron stars, dark energy, and gravitational waves. Its overarching theme is, How does the Universe work? PCOS includes a suite of operating (Chandra, Fermi, Planck, XMM-Newton, INTEGRAL) and future missions across the electromagnetic spectrum and beyond, which are in concept development and/or formulation. The PCOS program directly supports development of intermediate TRL (4-6) technology relevant to future missions through the Strategic Astrophysics Technology (SAT) program, as well as data analysis, theory, and experimental astrophysics via other R&A avenues (e.g., ADAP, ATP). The Einstein Fellowship is a vital and vibrant PCOS component funded by the program. PCOS receives community input via its Program Analysis Group, the PhysPAG (www.pcos.gsfc.nasa.gov/physpag.php), whose membership and meetings are open to the community at large. In this poster, we describe the detailed science questions addressed within PCOS, with special emphasis on future opportunities. Details about the PhysPAG operations and functions will be provided, as well as an update on future meetings.

  14. The JIIM Domain: Examination of U.S. Military Sustainment Assistance Following North Korean Regime Collapse

    DTIC Science & Technology

    2014-06-13

    for the Possibility of a North Korean Collapse, 68. 44U.S. Office of the Secretary of Defense , Military and Security Developments Involving...A sustainment brigade’s mission is to “provide mission command for all subordinate units of the sustainment brigade, synchronize current and future ... the State Department’s Office of the Coordinator for Reconstruction and Stabilization. Because the Department of Defense does not

  15. Training and Mentoring the Next Generation of Scientists and Engineers to Secure Continuity and Successes of the US DOE's Environmental Remediation Efforts - 13387

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lagos, L.

    The DOE Office of Environmental Management (DOE-EM) oversees one of the largest and most technically challenging cleanup programs in the world. The mission of DOE-EM is to complete the safe cleanup of the environmental legacy from five decades of nuclear weapons development and government-sponsored nuclear energy research. Since 1995, Florida International University's Applied Research Center (FIU-ARC) has supported the DOE-EM mission and provided unique research capabilities to address some of these highly technical and difficult challenges. This partnership has allowed FIU-ARC to create a unique infrastructure that is critical for the training and mentoring of science, technology, engineering, and mathmore » (STEM) students and has exposed many STEM students to 'hands-on' DOE-EM applied research, supervised by the scientists and engineers at ARC. As a result of this successful partnership between DOE and FIU, DOE requested FIU-ARC to create the DOE-FIU Science and Technology Workforce Development Initiative in 2007. This innovative program was established to create a 'pipeline' of minority STEM students trained and mentored to enter DOE's environmental cleanup workforce. The program was designed to help address DOE's future workforce needs by partnering with academic, government and private companies (DOE contractors) to mentor future minority scientists and engineers in the research, development, and deployment of new technologies and processes addressing DOE's environmental cleanup challenges. Since its inception in 2007, the program has trained and mentored 78 FIU STEM minority students. Although, the program has been in existence for only five years, a total of 75 internships have been conducted at DOE National Laboratories, DOE sites, DOE Headquarters and field offices, and DOE contractors. Over 85 DOE Fellows have participated in the Waste Management Symposia since 2008 with a total of 68 student posters and 7 oral presentations given at WM. The DOE Fellows participation at WM has resulted in three Best Student Poster Awards (WM09, WM10, and WM11) and one Best Professional Poster Award (WM09). DOE Fellows have also presented their research at ANS DD and R and ANS Robotics Topical meetings. Moreover, several of our DOE Fellows have already obtained employment with DOE-EM, other federal agencies, DOE contractors. This paper will discuss how DOE Fellows program is training and mentoring FIU STEM students in Department of Energy's Office of Environmental Management technical challenges and research. This training and mentoring has resulted in the development of well trained and polished young scientists and engineers that will become the future workforce in charge of carrying on DOE-EM's environmental cleanup mission. The paper will showcase FIU's DOE Fellows model and highlight some of the applied research the DOE Fellows have conducted at FIU's Applied Research Center and across the Complex by participating in summer internship assignments. This paper will also present and highlight other Fellowships and internships programs sponsored by National Nuclear Security Agency (NNSA), DOE-EM, NRC, Energy (NE), and other federal agencies targeting workforce development. (authors)« less

  16. Vibration Testing of Stirling Power Convertors

    NASA Technical Reports Server (NTRS)

    Hughes, Bill; Goodnight, Thomas; McNelis, Mark E.; Suarez, Vicente J.; Schreiber, Jeff; Samorezov, Sergey

    2003-01-01

    The NASA John H. Glenn Research Center (GRC) and the U.S. Department of Energy (DOE) are currently developing a high efficient, long life, free piston Stirling convertor for use as an advanced spacecraft power system for future NASA missions. As part of this development, a Stirling Technology Demonstrator Convertor (TDC), developed by Stirling Technology Company (STC) for DOE, was vibration tested at GRC s Structural Dynamics Laboratory (SDU7735) in November- December 1999. This testing demonstrated that the Stirling TDC is able to withstand the harsh random vibration (20 to 2000 Hertz) seen during a typical spacecraft launch and survive with no structural damage or functional power performance degradation, thereby enabling its usage in future spacecraft power systems. The Stirling Vibration Test Team at NASA GRC and STC personnel conducted tests on a single 55 electric watt TDC. The purpose was to characterize the TDC s structural response to vibration and determine if the TDC could survive the vibration criteria established by the Jet Propulsion Laboratory (JPL) for launch environments. The TDC was operated at full-stroke and full power conditions during the vibration testing. The TDC was tested in two orientations, with the direction of vibration parallel and perpendicular to the TDC s moving components (displacer and piston). The TDC successfully passed a series of sine and random vibration tests. The most severe test was a 12.3 Grms random vibration test (peak vibration level of 0.2 g2/Hz from 50 to 250 Hertz) with test durations of 3 minutes per axis. The random vibration test levels were chosen to simulate, with margin, the maximum anticipated launch vibration conditions. As a result of this very successful vibration testing and successful evaluations in other key technical readiness areas, the Stirling power system is now considered a viable technology for future application for NASA spacecraft missions. Possible usage of the Stirling power system would be to supply on- board electric spacecraft power for future NASA Deep-Space Missions, performing as an attractive alternative to Radioisotope Thermoelectric Generators (RTG). Usage of the Stirling technology is also being considered as the electric power source for future Mars rovers, whose mission profiles may exclude the use of photovoltaic power systems (such as exploring at high Martian latitudes or for missions of lengthy durations). GRC s Thermo-Mechanical Systems Branch (5490) provides Stirling technology expertise under a Space Act Agreement with the DOE. Additional vibration testing, by GRC s Structural Systems Dynamics Branch (7733, is planned to continue to demonstrate the Stirling power system s vibration capability as its technology and flight system designs progress.

  17. The DOE fellows program-a workforce development initiative for the US department of energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lagos, Leonel E.

    The US Department of Energy Office of Environmental Management (DOE-EM) oversees one of the largest and most technically challenging cleanup programs in the world. The mission of DOE-EM is to complete the safe cleanup of the environmental legacy from five decades of nuclear weapons development and government-sponsored nuclear energy research. Since 1995, Florida International University's Applied Research Center (FIU-ARC) has supported the DOE-EM mission and provided unique research capabilities to address some of these highly technical and difficult challenges. This partnership has allowed FIU-ARC to create a unique infrastructure that is critical for the training and mentoring of science, technology,more » engineering, and math (STEM) students and has exposed many STEM students to 'hands-on' DOE-EM applied research, supervised by the scientists and engineers at ARC. As a result of this successful partnership between DOE and FIU, DOE requested FIU-ARC to create the DOE-FIU Science and Technology Workforce Development Initiative in 2007. This innovative program was established to create a 'pipeline' of minority STEM students trained and mentored to enter DOE's environmental cleanup workforce. The program was designed to help address DOE's future workforce needs by partnering with academic, government and private companies (DOE contractors) to mentor future minority scientists and engineers in the research, development, and deployment of new technologies and processes addressing DOE's environmental cleanup challenges. Since its inception in 2007, the program has trained and mentored 78 FIU STEM minority students. Although, the program has been in existence for only six years, a total of 75 internships have been conducted at DOE National Laboratories, DOE sites, DOE Headquarters and field offices, and DOE contractors. Over 100 DOE Fellows have participated in the Waste Management (WM) Symposia since 2008 with a total of 84 student posters and 7 oral presentations given at WM. The DOE Fellows participation at WM has resulted in three Best Student Poster Awards (WM09, WM10, and WM11) and one Best Professional Poster Award (WM09). DOE Fellows have also presented their research at ANS DD and R and ANS Robotics Topical meetings and this year two Fellows will present at the International Conference on Environmental Remediation and Radioactive Waste Management (ICEM13) in Brussels, Belgium. Moreover, several of our DOE Fellows have already obtained employment with DOE-EM, other federal agencies, DOE contractors, commercial nuclear power companies, and other STEM industry (GE, Boeing, Lockheed Martin, Johnson and Johnson, Beckman-Coulter, and other top companies). This paper will discuss how DOE Fellows program is training and mentoring FIU STEM students in Department of Energy's Office of Environmental Management technical challenges and research. This training and mentoring has resulted in the development of well-trained and polished young scientists and engineers that will become the future workforce in charge of carrying on DOE-EM's environmental cleanup mission. The paper will showcase FIU's DOE Fellows model and highlight some of the applied research the DOE Fellows have conducted at FIU's Applied Research Center and across the DOE Complex by participating in summer internship assignments. (authors)« less

  18. Technology Thrust for Future Earth Science Applications

    NASA Technical Reports Server (NTRS)

    Habib, Shahid

    2000-01-01

    This paper presents NASA's recent direction to invest in the critical science instrument and platform technologies in order to realize more reliable, frequent and versatile missions for future Earth Science measurements. Traditionally, NASA's Earth Science Enterprise has developed and flown science missions that have been large in size, weight and volume. These missions have taken much longer implementation due to technology development time and have carried a large suite of instruments on a large-size spacecraft. NASA is also facing an era where the budget for the future years is more or less flat and the possibility for any major new start does not vividly appear on the horizon. Unfortunately, the scientific goals have not shrunk to commensurate with the budget constraints. In fact, the challenges and scientific appetite in search of answers to a score of outstanding questions have been gradually expanding. With these factors in mind, for the last three years NASA has been changing its focus to concentrate on how to take advantage of smaller missions by relying on industry, and minimizing the overall life cycle by infusing technologies that are being developed independently of any planned mission's implementation cycle. The major redirection of early investment in the critical technologies should have its rewards and significantly reduce the mission development period. Needless to say, in the long run this approach should save money, minimize risk, promote or encourage partnering, and allow for more frequent missions or earth science measurements to occur. This paper gives an overview of some of the identified crucial technologies and their intended applications for meeting the future Earth Science challenges.

  19. Technology thrusts for future Earth science applications

    NASA Astrophysics Data System (ADS)

    Habib, Shahid

    2001-02-01

    This paper presents NASA's recent direction to invest in the critical science instrument and platform technologies in order to realize more reliable, frequent and versatile missions for future Earth Science measurements. Historically, NASA's Earth Science Enterprise has developed and flown science missions that have been large in size, mass and volume. These missions have taken much longer to implement due to technology development time, and have carried a large suite of instruments on a large spacecraft. NASA is now facing an era where the budget for the future years is more or less flat and the possibility for any major new start does not vividly appear on the horizon. Unfortunately, the scientific measurement needs for remote sensing have not shrunk to commensurate with the budget constraints. In fact, the challenges and scientific appetite in search of answers to a score of outstanding questions have been gradually expanding. With these factors in mind, for the last three years NASA has been changing its focus to concentrate on how to take advantage of smaller missions by relying on industry, and minimizing the overall mission life cycle by developing technologies that are independent of the mission implementation cycle. The major redirection of early investment in the critical technologies should eventually have its rewards and significantly reduce the mission development period. Needless to say, in the long run this approach should save money, minimize risk, promote or encourage partnering, allow for a rapid response to measurement needs, and enable frequent missions making a wider variety of earth science measurements. This paper gives an overview of some of the identified crucial technologies and their intended applications for meeting the future Earth Science challenges.

  20. Technology Thrusts for Future Earth Science Applications

    NASA Technical Reports Server (NTRS)

    Habib, Shahid

    2001-01-01

    This paper presents NASA's recent direction to invest in the critical science instrument and platform technologies in order to realize more reliable, frequent and versatile missions for future Earth Science measurements. Historically, NASA's Earth Science Enterprise has developed and flown science missions that have been large in size, mass and volume. These missions have taken much longer to implement due to technology development time, and have carried a large suite of instruments on a large spacecraft. NASA is now facing an era where the budget for the future years is more or less flat and the possibility for any major new start does not vividly appear on the horizon. Unfortunately, the scientific measurement needs for remote sensing have not shrunk to commensurate with the budget constraints. In fact, the challenges and scientific appetite in search of answers to a score of outstanding questions have been gradually expanding. With these factors in mind, for the last three years NASA has been changing its focus to concentrate on how to take advantage of smaller missions by relying on industry, and minimizing the overall mission life cycle by developing technologies that are independent of the mission implementation cycle. The major redirection of early investment in the critical technologies should eventually have its rewards and significantly reduce the mission development period. Needless to say, in the long run this approach should save money, minimize risk, promote or encourage partnering, allow for a rapid response to measurement needs, and enable frequent missions making a wider variety of earth science measurements. This paper gives an overview of some of the identified crucial technologies and their intended applications for meeting the future Earth Science challenges.

  1. Insights: Future of the national laboratories. National Renewable Energy Laboratory. [The future of the National Renewable Energy (Sources) Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunderman, D.

    Psychologists tell us that people are born with certain personality traits, such as shyness or boldness, which their environment can encourage, subdue, or even alter. National labs have somewhat similar characteristics. They were created for particular missions and staffed by people who built organizations in which those missions could be fulfilled. As a result, the Department of Energy's (DOE) national labs are among the world's finest repositories of technology and scientific talent, especially in the fields of defense, nuclear weapons, nuclear power, and basic energy. Sunderman, director of the National Renewable Energy Laboratory, discusses the history of the laboratory andmore » its place in the future, both in terms of technologies and nurturing.« less

  2. Idaho National Laboratory LDRD Annual Report FY 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dena Tomchak

    This report provides a glimpse into our diverse research and development portfolio, wwhich encompasses both advanced nuclear science and technology and underlying technologies. IN keeping with the mission, INL's LDRD program fosters technical capabilities necessary to support current and future DOE-Office of Nuclear Energy research and development needs.

  3. Working Group on Virtual Data Integration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Dean N.

    2016-03-07

    This report is the outcome of a workshop commissioned by the U.S. Department of Energy’s (DOE) Climate and Environmental Sciences Division (CESD) to examine current and future data infrastructure requirements foundational for achieving CESD scientific mission goals in advancing a robust, predictive understanding of Earth’s climate and environmental systems.

  4. Small planetary missions for the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Staehle, R. L.

    1979-01-01

    The paper deals with the concept of a small planetary mission that might be described as one which: (1) focuses on a narrow set of discovery-oriented objectives, (2) utilizes largely existing and proven subsystem capabilities, (3) does not tax future launch vehicle capabilities, and (4) is flexible in terms of mission timing such that it can be easily integrated with launch vehicle schedules. Three small planetary mission concepts are presented: a tour of earth-sun Lagrange regions in search of asteroids which might be gravitationally trapped, a network of spacecraft to search beyond Pluto for a tenth planet; and a probe which could be targeted for infrequent long period 'comets of opportunity' or for a multitude of shorter period comets.

  5. Complications Associated with Long-Term Disposition of Newly-Generated Transuranic Waste: A National Laboratory Perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    B.J. Orchard; L.A. Harvego; T.L. Carlson

    The Idaho National Laboratory (INL) is a multipurpose national laboratory delivering specialized science and engineering solutions for the U.S. Department of Energy (DOE). Sponsorship of INL was formally transferred to the DOE Office of Nuclear Energy, Science and Technology (NE) by Secretary Spencer Abraham in July 2002. The move to NE, and designation as the DOE lead nuclear energy laboratory for reactor technology, supports the nation’s expanding nuclear energy initiatives, placing INL at the center of work to develop advanced Generation IV nuclear energy systems; nuclear energy/hydrogen coproduction technology; advanced nuclear energy fuel cycle technologies; and providing national security answersmore » to national infrastructure needs. As a result of the Laboratory’s NE mission, INL generates both contact-handled and remote-handled transuranic (TRU) waste from ongoing operations. Generation rates are relatively small and fluctuate based on specific programs and project activities being conducted; however, the Laboratory will continue to generate TRU waste well into the future in association with the NE mission. Currently, plans and capabilities are being established to transfer INL’s contact-handled TRU waste to the Advanced Mixed Waste Treatment Plant (AMWTP) for certification and disposal to the Waste Isolation Pilot Plant (WIPP). Remote-handled TRU waste is currently placed in storage at the Materials and Fuels Complex (MFC). In an effort to minimize future liabilities associated with the INL NE mission, INL is evaluating and assessing options for the management and disposition of all its TRU waste on a real-time basis at time of generation. This paper summarizes near-term activities to minimize future re handling of INL’s TRU waste, as well as, potential complications associated with the long-term disposition of newly-generated TRU waste. Potential complications impacting the disposition of INL newly-generated TRU waste include, but are not limited to: 1) required remote-handled TRU packaging configuration(s) vs. current facility capabilities, 2) long-term NE mission activities, 3) WIPP certification requirements, and 4) budget considerations.« less

  6. Department of Energy: Fundamental Reassessment Needed to Address Major Mission, Structure, and Accountability Problems

    DTIC Science & Technology

    2001-12-01

    addition, the Defense Nuclear Facilities Safety Board warned in 1997 that, given likely future reductions in DOE’s budget, the department needed to...future leaders of the acquisition workforce. The Defense Nuclear Facilities Safety Board’s 2000 report credited DOE with taking steps to improve the...technical capabilities of personnel at its defense nuclear facilities , but pointed out the need for DOE’s leadership to pay increased attention to this

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    French, T

    I am pleased to present the fiscal year 2007 Laboratory Directed Research and Development (LDRD) annual report. This represents the first year that SRNL has been eligible for LDRD participation and our results to date demonstrate we are off to an excellent start. SRNL became a National Laboratory in 2004, and was designated the 'Corporate Laboratory' for the DOE Office of Environmental Management (EM) in 2006. As you will see, we have made great progress since these designations. The LDRD program is one of the tools SRNL is using to enable achievement of our strategic goals for the DOE. Themore » LDRD program allows the laboratory to blend a strong basic science component into our applied technical portfolio. This blending of science with applied technology provides opportunities for our scientists to strengthen our capabilities and delivery. The LDRD program is vital to help SRNL attract and retain leading scientists and engineers who will help build SRNL's future and achieve DOE mission objectives. This program has stimulated our research staff creativity, while realizing benefits from their participation. This investment will yield long term dividends to the DOE in its Environmental Management, Energy, and National Security missions.« less

  8. Environmental Management

    ScienceCinema

    None

    2018-01-16

    Another key aspect of the NNSS mission is Environmental Management program, which addresses the environmental legacy from historic nuclear weapons related activities while also ensuring the health and safety of present day workers, the public, and the environment as current and future missions are completed. The Area 5 Radioactive Waste Management site receives low-level and mixed low-level waste from some 28 different generators from across the DOE complex in support of the legacy clean-up DOE Environmental Management project. Without this capability, the DOE would not be able to complete the clean up and proper disposition of these wastes. The program includes environmental protection, compliance, and monitoring of the air, water, plants, animals, and cultural resources at the NNSS. Investigation and implementation of appropriate corrective actions to address the contaminated ground water facilities and soils resulting from historic nuclear testing activities, the demolition of abandoned nuclear facilities, as well as installation of ground water wells to identify and monitor the extent of ground water contamination.

  9. LDRD Highlights at the National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alayat, R. A.

    2016-10-10

    To meet the nation’s critical challenges, the Department of Energy (DOE) national laboratories have always pushed the boundaries of science, technology, and engineering. The Atomic Energy Act of 1954 provided the basis for these laboratories to engage in the cutting edge of science and technology and respond to technological surprises, while retaining the best scientific and technological minds. To help re-energize this commitment, in 1991 the U.S. Congress authorized the national laboratories to devote a relatively small percentage of their budget to creative and innovative work that serves to maintain their vitality in disciplines relevant to DOE missions. Since then,more » this effort has been formally called the Laboratory Directed Research and Development (LDRD) Program. LDRD has been an essential mechanism to enable the laboratories to address DOE’s current and future missions with leading-edge research proposed independently by laboratory technical staff, evaluated through expert peer-review committees, and funded by the individual laboratories consistent with the authorizing legislation and the DOE LDRD Order 413.2C.« less

  10. Nuclear materials stewardship: Our enduring mission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isaacs, T.H.

    1998-12-31

    The US Department of Energy (DOE) and its predecessors have handled a remarkably wide variety of nuclear materials over the past 50 yr. Two fundamental changes have occurred that shape the current landscape regarding nuclear materials. If one recognizes the implications and opportunities, one sees that the stewardship of nuclear materials will be a fundamental and important job of the DOE for the foreseeable future. The first change--the breakup of the Soviet Union and the resulting end to the nuclear arms race--altered US objectives. Previously, the focus was on materials production, weapon design, nuclear testing, and stockpile enhancements. Now themore » attention is on dismantlement of weapons, excess special nuclear material inventories, accompanying increased concern over the protection afforded to such materials; new arms control measures; and importantly, maintenance of the safety and reliability of the remaining arsenal without testing. The second change was the raised consciousness and sense of responsibility for dealing with the environmental legacies of past nuclear arms programs. Recognition of the need to clean up radioactive contamination, manage the wastes, conduct current operations responsibly, and restore the environment have led to the establishment of what is now the largest program in the DOE. Two additional features add to the challenge and drive the need for recognition of nuclear materials stewardship as a fundamental, enduring, and compelling mission of the DOE. The first is the extraordinary time frames. No matter what the future of nuclear weapons and no matter what the future of nuclear power, the DOE will be responsible for most of the country`s nuclear materials and wastes for generations. Even if the Yucca Mountain program is successful and on schedule, it will last more than 100 yr. Second, the use, management, and disposition of nuclear materials and wastes affect a variety of nationally important and diverse objectives, from national security to the future of nuclear power in this country and abroad, to the care of the environment. Sometimes these objectives are in concert, but often they are seen as competing or being in conflict. By recognizing the corporate responsibility for these materials and the accompanying programs, national decision making will be improved.« less

  11. Preliminary Analysis of ISS Maintenance History and Implications for Supportability of Future Missions

    NASA Technical Reports Server (NTRS)

    Watson, Kevin J.; Robbins, William W.

    2004-01-01

    The International Space Station (ISS) enables the study of supportability issues associated with long-duration human spaceflight. The ISS is a large, complex spacecraft that must be maintained by its crew. In contrast to the Space Shuttle Orbiter vehicle, but similar to spacecraft that will be component elements of future missions beyond low-Earth orbit, ISS does not return to the ground for servicing and provisioning of spares is severely constrained by transportation limits. Although significant technical support is provided by ground personnel, all hands-on maintenance tasks are performed by the crew. It is expected that future missions to distant destinations will be further limited by lack of resupply opportunities and will, eventually, become largely independent of ground support. ISS provides an opportunity to begin learning lessons that will enable future missions to be successful. Data accumulated over the first several years of ISS operations have been analyzed to gain a better understanding of maintenance-related workload. This analysis addresses both preventive and corrective maintenance and includes all U.S segment core systems. Systems and tasks that are major contributors to workload are identified. As further experience accrues, lessons will be learned that will influence future system designs so that they require less maintenance and, when maintenance is required, it can be performed more efficiently. By heeding the lessons of ISS it will be possible to identify system designs that should be more robust and point towards advances in both technology and design that will offer the greatest return on investment.

  12. NASA/Goddard Thermal Technology Overview 2014

    NASA Technical Reports Server (NTRS)

    Butler, Daniel; Swanson, Theodore D.

    2014-01-01

    This presentation summarizes the current plans and efforts at NASA Goddard to develop new thermal control technology for anticipated future missions. It will also address some of the programmatic developments currently underway at NASA, especially with respect to the Technology Development Program at NASA. While funding for basic technology development is still scarce, significant efforts are being made in direct support of flight programs. New technology development continues to be driven by the needs of future missions, and applications of these technologies to current Goddard programs will be addressed. Many of these technologies also have broad applicability to DOD, DOE, and commercial programs. Partnerships have been developed with the Air Force, Navy, and various universities to promote technology development. In addition, technology development activities supported by internal research and development (IRAD) program, the Small Business Innovative Research (SBIR) program, and the NASA Engineering and Safety Center (NESC), are reviewed in this presentation. Specific technologies addressed include; two-phase systems applications and issues on NASA missions, latest developments of electro-hydrodynamically pumped systems, development of high electrical conductivity coatings, and various other research activities. New Technology program underway at NASA, although funding is limited center dot NASA/GSFC's primary mission of science satellite development is healthy and vibrant, although new missions are scarce - now have people on overhead working new missions and proposals center dot Future mission applications promise to be thermally challenging center dot Direct technology funding is still very restricted - Projects are the best source for direct application of technology - SBIR thermal subtopic resurrected in FY 14 - Limited Technology development underway via IRAD, NESC, other sources - Administrator pushing to revive technology and educational programs at NASA - new HQ directorate established

  13. DOE Advanced Scientific Advisory Committee (ASCAC): Workforce Subcommittee Letter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapman, Barbara; Calandra, Henri; Crivelli, Silvia

    2014-07-23

    Simulation and computing are essential to much of the research conducted at the DOE national laboratories. Experts in the ASCR ¬relevant Computing Sciences, which encompass a range of disciplines including Computer Science, Applied Mathematics, Statistics and domain Computational Sciences, are an essential element of the workforce in nearly all of the DOE national laboratories. This report seeks to identify the gaps and challenges facing DOE with respect to this workforce. This letter is ASCAC’s response to the charge of February 19, 2014 to identify disciplines in which significantly greater emphasis in workforce training at the graduate or postdoctoral levels ismore » necessary to address workforce gaps in current and future Office of Science mission needs.« less

  14. CCS Activities Being Performed by the U.S. DOE

    PubMed Central

    Dressel, Brian; Deel, Dawn; Rodosta, Traci; Plasynski, Sean; Litynski, John; Myer, Larry

    2011-01-01

    The United States Department of Energy (DOE) is the lead federal agency for the development and deployment of carbon sequestration technologies. Its mission includes promoting scientific and technological innovations and transfer of knowledge for safe and permanent storage of CO2 in the subsurface. To accomplish its mission, DOE is characterizing and classifying potential geologic storage reservoirs in basins throughout the U.S. and Canada, and developing best practices for project developers, to help ensure the safety of future geologic storage projects. DOE’s Carbon Sequestration Program, Regional Carbon Sequestration Partnership (RCSP) Initiative, administered by the National Energy Technology Laboratory (NETL), is identifying, characterizing, and testing potential injection formations. The RCSP Initiative consists of collaborations among government, industry, universities, and international organizations. Through this collaborative effort, a series of integrated knowledge-based tools have been developed to help potential sequestration project developers. They are the Carbon Sequestration Atlas of the United States and Canada, National Carbon Sequestration Database and Geographic System (NATCARB), and best practice manuals for CCS including Depositional Reservoir Classification for CO2; Public Outreach and Education for Carbon Storage Projects; Monitoring, Verification, and Accounting of CO2 Stored in Deep Geologic Formation; Site Screening, Site Selection, and Initial Characterization of CO2 Storage in Deep Geologic Formations. DOE’s future research will help with refinement of these tools and additional best practice manuals (BPM) which focus on other technical aspects of project development. PMID:21556188

  15. Spacecraft Complexity Subfactors and Implications on Future Cost Growth

    NASA Technical Reports Server (NTRS)

    Leising, Charles J.; Wessen, Randii; Ellyin, Ray; Rosenberg, Leigh; Leising, Adam

    2013-01-01

    During the last ten years the Jet Propulsion Laboratory has used a set of cost-risk subfactors to independently estimate the magnitude of development risks that may not be covered in the high level cost models employed during early concept development. Within the last several years the Laboratory has also developed a scale of Concept Maturity Levels with associated criteria to quantitatively assess a concept's maturity. This latter effort has been helpful in determining whether a concept is mature enough for accurate costing but it does not provide any quantitative estimate of cost risk. Unfortunately today's missions are significantly more complex than when the original cost-risk subfactors were first formulated. Risks associated with complex missions are not being adequately evaluated and future cost growth is being underestimated. The risk subfactor process needed to be updated.

  16. NASA strategic plan

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The NASA Strategic Plan is a living document. It provides far-reaching goals and objectives to create stability for NASA's efforts. The Plan presents NASA's top-level strategy: it articulates what NASA does and for whom; it differentiates between ends and means; it states where NASA is going and what NASA intends to do to get there. This Plan is not a budget document, nor does it present priorities for current or future programs. Rather, it establishes a framework for shaping NASA's activities and developing a balanced set of priorities across the Agency. Such priorities will then be reflected in the NASA budget. The document includes vision, mission, and goals; external environment; conceptual framework; strategic enterprises (Mission to Planet Earth, aeronautics, human exploration and development of space, scientific research, space technology, and synergy); strategic functions (transportation to space, space communications, human resources, and physical resources); values and operating principles; implementing strategy; and senior management team concurrence.

  17. Stirling convertor performance mapping test results

    NASA Astrophysics Data System (ADS)

    Qiu, Songgang; Peterson, Allen A.; White, Maurice A.; Faultersack, Franklyn; Redinger, Darin L.; Petersen, Stephen L.

    2002-01-01

    The Department of Energy (DOE) has selected Free-Piston Stirling Convertors as a technology for future advanced radioisotope space power systems. In August 2000, DOE awarded competitive Phase I, Stirling Radioisotope Generator (SRG) power system integration contracts to three major aerospace contractors, resulting in SRG conceptual designs in February 2001. All three contractors based their designs on the Technology Demonstration Convertor (TDC) developed by Stirling Technology Company (STC) for DOE. The contract award to a single system integration contractor for Phases II and III of the SRG program is anticipated in late 2001. The first potential SRG mission is targeted for a Mars rover. Recent TDC performance data are provided in this paper, together with predictions from Stirling simulation models. .

  18. Multi-Year Program Plan FY'09-FY'15 Solid-State Lighting Research and Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2009-03-01

    President Obama's energy and environment agenda calls for deployment of 'the Cheapest, Cleanest, Fastest Energy Source - Energy Efficiency.' The Department of Energy's (DOE) Office of Energy Efficiency and Renewable Energy (EERE) plays a critical role in advancing the President's agenda by helping the United States advance toward an energy-efficient future. Lighting in the United States is projected to consume nearly 10 quads of primary energy by 2012.3 A nation-wide move toward solid-state lighting (SSL) for general illumination could save a total of 32.5 quads of primary energy between 2012 and 2027. No other lighting technology offers the DOE andmore » our nation so much potential to save energy and enhance the quality of our built environment. The DOE has set forth the following mission statement for the SSL R&D Portfolio: Guided by a Government-industry partnership, the mission is to create a new, U.S.-led market for high-efficiency, general illumination products through the advancement of semiconductor technologies, to save energy, reduce costs and enhance the quality of the lighted environment.« less

  19. Calf Strength Loss During Mechanical Unloading: Does It Matter?

    NASA Technical Reports Server (NTRS)

    English, K. L.; Mulavara, A.; Bloomberg, J.; Ploutz-Snyder, LL

    2016-01-01

    During the mechanical unloading of spaceflight and its ground-based analogs, muscle mass and muscle strength of the calf are difficult to preserve despite exercise countermeasures that effectively protect these parameters in the thigh. It is unclear what effects these local losses have on balance and whole body function which will be essential for successful performance of demanding tasks during future exploration missions.

  20. A13K-0336: Airborne Multi-Wavelength High Spectral Resolution Lidar for Process Studies and Assessment of Future Satellite Remote Sensing Concepts

    NASA Technical Reports Server (NTRS)

    Hostetler, Chris A.; Ferrare, Rich A.; Hair, Johnathan W.; Cook, Anthony L.; Harper, David B.; Mack, Terry L.; Hare, Richard J.; Cleckner, Craig S.; Rogers, Raymond R.; Muller, Detlef; hide

    2012-01-01

    NASA Langley recently developed the world's first airborne multi-wavelength high spectral resolution lidar (HSRL). This lidar employs the HSRL technique at 355 and 532 nm to make independent, unambiguous retrievals of aerosol extinction and backscatter. It also employs the standard backscatter technique at 1064 nm and is polarization-sensitive at all three wavelengths. This instrument, dubbed HSRL-2 (the secondgeneration HSRL developed by NASA Langley), is a prototype for the lidar on NASA's planned Aerosols- Clouds-Ecosystems (ACE) mission. HSRL-2 completed its first science mission in July 2012, the Two-Column Aerosol Project (TCAP) conducted by the Department of Energy (DOE) in Hyannis, MA. TCAP presents an excellent opportunity to assess some of the remote sensing concepts planned for ACE: HSRL-2 was deployed on the Langley King Air aircraft with another ACE-relevant instrument, the NASA GISS Research Scanning Polarimeter (RSP), and flights were closely coordinated with the DOE's Gulfstream-1 aircraft, which deployed a variety of in situ aerosol and trace gas instruments and the new Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR). The DOE also deployed their Atmospheric Radiation Measurement Mobile Facility and their Mobile Aerosol Observing System at a ground site located on the northeastern coast of Cape Cod for this mission. In this presentation we focus on the capabilities, data products, and applications of the new HSRL-2 instrument. Data products include aerosol extinction, backscatter, depolarization, and optical depth; aerosol type identification; mixed layer depth; and rangeresolved aerosol microphysical parameters (e.g., effective radius, index of refraction, single scatter albedo, and concentration). Applications include radiative closure studies, studies of aerosol direct and indirect effects, investigations of aerosol-cloud interactions, assessment of chemical transport models, air quality studies, present (e.g., CALIPSO) and future (e.g., EarthCARE) satellite calibration/validation, and development/assessment of advanced retrieval techniques for future satellite applications (e.g., lidar+polarimeter retrievals of aerosol and cloud properties). We will also discuss the relevance of HSRL-2 measurement capabilities to the ACE remote sensing concept.

  1. Development of Charge to Mass Ratio Microdetector for Future Mars Mission

    NASA Technical Reports Server (NTRS)

    Chen, Yuan-Lian Albert

    2003-01-01

    The Mars environment comprises a dry, cold and low air pressure atmosphere with low gravity (0.38g) and high resistivity soil. The global dust storms that cover a large portion of Mars are observed often from Earth. This environment provides an ideal condition for turboelectric charging. The extremely dry conditions on the Martian surface have raised concerns that electrostatic charge buildup will not be dissipated easily. If turboelectrically generated charge cannot be dissipated or avoided, then dust will accumulate on charged surfaces and electrostatic discharge may cause hazards for future exploration missions. The low surface on Mars helps to prolong the charge decay on the dust particles and soil. To better understanding the physics of Martian charged dust particles is essential to future Mars missions. We research and design two sensors, velocity/charge sensor and PZT momentum sensors, to measure the velocity distribution, charge distribution and mass distribution of Martian wed dust particles. These sensors are fabricated at NASA Kenney Space Center, Electrostatic and Surface Physics Laboratory. The sensors are calibrated. The momentum sensor is capable to measure 45 pan size particles. The designed detector is very simple, robust, without moving parts, and does not require a high voltage power supply. Two sensors are combined to form the Dust Microdetector - CHAL.

  2. Maturing Technologies for Stirling Space Power Generation

    NASA Technical Reports Server (NTRS)

    Wilson, Scott D.; Nowlin, Brentley C.; Dobbs, Michael W.; Schmitz, Paul C.; Huth, James

    2016-01-01

    Stirling Radioisotope Power Systems (RPS) are being developed as an option to provide power on future space science missions where robotic spacecraft will orbit, flyby, land or rove. A Stirling Radioisotope Generator (SRG) could offer space missions a more efficient power system that uses one fourth of the nuclear fuel and decreases the thermal footprint of the current state of the art. The RPS Program Office, working in collaboration with the U.S. Department of Energy (DOE), manages projects to develop thermoelectric and dynamic power systems, including Stirling Radioisotope Generators (SRGs). The Stirling Cycle Technology Development (SCTD) Project, located at Glenn Research Center (GRC), is developing Stirling-based subsystems, including convertors and controllers. The SCTD Project also performs research that focuses on a wide variety of objectives, including increasing convertor temperature capability to enable new environments, improving system reliability or fault tolerance, reducing mass or size, and developing advanced concepts that are mission enabling. Research activity includes maturing subsystems, assemblies, and components to prepare them for infusion into future convertor and generator designs. The status of several technology development efforts are described here. As part of the maturation process, technologies are assessed for readiness in higher-level subsystems. To assess the readiness level of the Dual Convertor Controller (DCC), a Technology Readiness Assessment (TRA) was performed and the process and results are shown. Stirling technology research is being performed by the SCTD Project for NASA's RPS Program Office, where tasks focus on maturation of Stirling-based systems and subsystems for future space science missions.

  3. Risk perception, future land use and stewardship: comparison of attitudes about Hanford Site and Idaho National Engineering and Environmental Laboratory.

    PubMed

    Burger, J; Sanchez, J; Roush, D; Gochfeld, M

    2001-04-01

    With the ending of the Cold War, the Department of Energy (DOE) is evaluating mission, future land use and stewardship of departmental facilities. This paper compares the environmental concerns and future use preferences of 351 people interviewed at Lewiston, Idaho, about the Hanford Site and Idaho National Engineering and Environmental Laboratory (INEEL), two of DOE's largest sites. Although most subjects lived closer to Hanford than INEEL, most resided in the same state as INEEL. Therefore their economic interests might be more closely allied with INEEL, while their health concerns might be more related to Hanford. Few lived close enough to either site to be directly affected economically. We test the null hypotheses that there are no differences in environmental concerns and future land-use preferences as a function of DOE site, sex, age and education. When asked to list their major concerns about the sites, more people listed human health and safety, and environmental concerns about Hanford compared to INEEL. When asked to list their preferred future land uses, 49% of subjects did not have any for INEEL, whereas only 35% did not know for Hanford. The highest preferred land uses for both sites were as a National Environmental Research Park (NERP), and for camping, hunting, hiking, and fishing. Except for returning the land to the tribes and increased nuclear storage, subjects rated all future uses as more preferred at INEEL than Hanford. Taken together, these data suggest that the people interviewed know more about Hanford, are more concerned about Hanford, rate recreational uses and NERP as their highest preferred land use, and feel that INEEL is more suited for most land uses than Handford. Overall rankings for future land uses were remarkably similar between the sites, indicating that for these stakeholders, DOE lands should be preserved for research and recreation. These preferences should be taken into account when planning for long-term stewardship at these two DOE sites.

  4. Enterprise SRS: Leveraging Ongoing Operations to Advance National Programs - 13108

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marra, J.E.; Murray, A.M.; McGuire, P.W.

    2013-07-01

    The SRS is re-purposing its vast array of assets to solve future national issues regarding environmental stewardship, national security, and clean energy. The vehicle for this transformation is Enterprise SRS which presents a new, strategic view of SRS as a united endeavor for 'all things nuclear' as opposed to a group of distinct and separate entities with individual missions and organizations. Key among the Enterprise SRS strategic initiatives is the integration of research into facilities in conjunction with ongoing missions to provide researchers from other national laboratories, academic institutions, and commercial entities the opportunity to demonstrate their technologies in amore » relevant environment and scale prior to deployment. To manage that integration of research demonstrations into site facilities, The DOE Savannah River Operations Office, Savannah River Nuclear Solutions, and the Savannah River National Laboratory (SRNL) have established the Center for Applied Nuclear Materials Processing and Engineering Research (CANMPER). The key objective of this initiative is to bridge the gap between promising transformational nuclear materials management advancements and large-scale deployment of the technology by leveraging SRS assets (e.g. facilities, staff, and property) for those critical engineering-scale demonstrations necessary to assure the successful deployment of new technologies. CANMPER will coordinate the demonstration of R and D technologies and serve as the interface between the engineering-scale demonstration and the R and D programs, essentially providing cradle-to-grave support to the R and D team during the demonstration. While the initial focus of CANMPER will be on the effective use of SRS assets for these demonstrations, CANMPER also will work with research teams to identify opportunities to perform R and D demonstrations at other facilities. Unique to this approach is the fact that these SRS assets will continue to accomplish DOE's critical nuclear material missions (e.g., processing in H-Canyon and plutonium storage in K-Area). The demonstration can be accomplished in a more cost-effective manner through the use of existing facilities in conjunction with ongoing missions. Essentially, the R and D program would not need to pay the full operational cost of a facility, just the incremental cost of performing the demonstration. Current CANMPER activities have been focused on integrating advanced safeguards monitoring technology demonstrations into the SRS H-Canyon and advanced location technology demonstrations into K-Area Materials Storage. These demonstrations are providing valuable information to researchers and program owners. In addition these demonstrations are providing CANMPER with an improved protocol for demonstration management that can be exercised across the entire SRS (and to offsite venues) to ensure that future demonstrations are done efficiently and provide an opportunity to use these unique assets for multiple purposes involving national laboratories, academia, and commercial entities. Key among the envisioned future demonstrations is the use of H-Canyon to demonstrate new nuclear materials separations technologies critical for advancing the mission needs of three major program offices: DOE-EM, DOE-Nuclear Energy (DOE-NE), and the NNSA. Given the modular design of H-Canyon, the demonstrations would be accomplished using a process frame. The demonstration equipment would be installed on the process frame and that frame would then be positioned into an H Canyon cell so that the demonstration is performed in a radiological environment involving prototypic nuclear materials. (authors)« less

  5. Advances in Architectural Elements For Future Missions to Titan

    NASA Astrophysics Data System (ADS)

    Reh, Kim; Coustenis, Athena; Lunine, Jonathan; Matson, Dennis; Lebreton, Jean-Pierre; Vargas, Andre; Beauchamp, Pat; Spilker, Tom; Strange, Nathan; Elliott, John

    2010-05-01

    The future exploration of Titan is of high priority for the solar system exploration community as recommended by the 2003 National Research Council (NRC) Decadal Survey [1] and ESA's Cosmic Vision Program themes. Recent Cassini-Huygens discoveries continue to emphasize that Titan is a complex world with very many Earth-like features. Titan has a dense, nitrogen atmosphere, an active climate and meteorological cycles where conditions are such that the working fluid, methane, plays the role that water does on Earth. Titan's surface, with lakes and seas, broad river valleys, sand dunes and mountains was formed by processes like those that have shaped the Earth. Supporting this panoply of Earth-like processes is an ice crust that floats atop what might be a liquid water ocean. Furthermore, Titan is rich in very many different organic compounds—more so than any place in the solar system, except Earth. The Titan Saturn System Mission (TSSM) concept that followed the 2007 TandEM ESA CV proposal [2] and the 2007 Titan Explorer NASA Flagship study [3], was examined [4,5] and prioritized by NASA and ESA in February 2009 as a mission to follow the Europa Jupiter System Mission. The TSSM study, like others before it, again concluded that an orbiter, a montgolfiere hot-air balloon and a surface package (e.g. lake lander, Geosaucer (instrumented heat shield), …) are very high priority elements for any future mission to Titan. Such missions could be conceived as Flagship/Cosmic Vision L-Class or as individual smaller missions that could possibly fit into NASA New Frontiers or ESA Cosmic Vision M-Class budgets. As a result of a multitude of Titan mission studies, a clear blueprint has been laid out for the work needed to reduce the risks inherent in such missions and the areas where advances would be beneficial for elements critical to future Titan missions have been identified. The purpose of this paper is to provide a brief overview of the flagship mission architecture and to describe recent advances and ongoing planning for a Titan balloon and surface elements. References [1] NRC Space Studies Board (2003), New Frontiers in the Solar System: An Integrated Exploration Strategy (first Decadal Survey Report), National Academic Press, Washington, DC. [2] Coustenis et al. (2008). Experimental Astronomy, DOI: 10.1007/s10686-008-9103-z. [3] J. Leary, R. Strain, R. Lorenz, J. H. Waite, 2008. Titan Explorer Flagship Mission Study, http://www.lpi.usra.edu/opag/Titan_Explorer_Public_Report.pdf. [4] TSSM Final Report, 3 November 2008, NASA Task Order NMO710851 [5] TSSM NASA/ESA Joint Summary Report, 15 November 2008, NASA Task Order NMO710851

  6. Mission design concepts for repeat groundtrack orbits and application to the ICESat mission

    NASA Astrophysics Data System (ADS)

    Pie, Nadege

    The primary objective of the NASA sponsored ICESat mission is to study the short and long term changes in the ice mass in the Greenland and Antarctica regions. The satellite was therefore placed into a frozen near-polar near-circular repeat groundtrack to ensure an adequate coverage of the polar regions while keeping the groundtrack periodic and reducing the variations in the orbital elements, and more specifically the semi-major axis of the ICESat orbit. After launch, a contingency plan had to be devised to compensate for a laser that dangerously compromised the lifetime of the ICESat mission. This new plan makes an intensive use of the ICESat subcycles, a characteristic of the repeat groundtrack orbits often over-looked. The subcycle of a repeat groundtrack orbit provide global coverage within a time shorter than the groundtrack repetition period. For a satellite with an off-nadir pointing capacity, the subcycles provide near-repeat tracks which represents added opportunity for altimetry measurement over a specific track. The ICESat subcycles were also used in a very innovative fashion to reposition the satellite within its repeat cycle via orbital maneuvers called phasing maneuver. The necessary theoretical framework is provided for the subcycle analysis and the implementation of phasing maneuvers for any future repeat orbit mission. In the perspective of performing cross-validation of missions like CryoSat using the ICESat off-nadir capacity, a study was conducted to determine the geolocations of crossovers between two different repeat groundtrack Keplerian orbits. The general analytical solution was applied to ICESat vs. several other repeat groundtrack orbit mission, including the future ICESat-II mission. ICESat's repeat groundtrack orbit was designed using a disturbing force model that includes only the Earth geopotential. Though the third body effect from the Sun and the Moon was neglected in the orbit design, it does in fact disrupt the repeatability condition of the groundtrack and consequently implies orbit correction maneuvers. The perturbations on ICESat orbit due to the third body effect are studied as a preliminary work towards including these forces in the design of the future ICESat-II repeat groundtrack orbit.

  7. Design of small Stirling dynamic isotope power system for robotic space missions

    NASA Technical Reports Server (NTRS)

    Bents, D. J.; Schreiber, J. G.; Withrow, C. A.; Mckissock, B. I.; Schmitz, P. C.

    1992-01-01

    Design of a multihundred-watt Dynamic Isotope Power System (DIPS) based on the U.S. Department of Energy (DOE) General Purpose Heat Source (GPHS) and small (multihundred-watt) free-piston Stirling engine (FPSE) technology is being pursued as a potential lower cost alternative to radioisotope thermoelectric generators (RTG's). The design is targeted at the power needs of future unmanned deep space and planetary surface exploration missions ranging from scientific probes to Space Exploration Initiative precursor missions. Power level for these missions is less than a kilowatt. Unlike previous DIPS designs which were based on turbomachinery conversion (e.g. Brayton), this small Stirling DIPS can be advantageously scaled down to multihundred-watt unit size while preserving size and mass competitiveness with RTG's. Preliminary characterization of units in the output power ranges 200-600 We indicate that on an electrical watt basis the GPHS/small Stirling DIPS will be roughly equivalent to an advanced RTG in size and mass but require less than a third of the isotope inventory.

  8. Woven Thermal Protection System Based Heat-shield for Extreme Entry Environments Technology (HEEET)

    NASA Technical Reports Server (NTRS)

    Ellerby, Donald; Venkatapathy, Ethiraj; Stackpoole, Margaret; Chinnapongse, Ronald; Munk, Michelle; Dillman, Robert; Feldman, Jay; Prabhu, Dinesh; Beerman, Adam

    2013-01-01

    NASA's future robotic missions utilizing an entry system into Venus and the outer planets, namely, Saturn, Uranus, Neptune, result in extremely high entry conditions that exceed the capabilities of state of the art low to mid density ablators such as PICA or Avcoat. Therefore mission planners typically assume the use of a fully dense carbon phenolic heat shield similar to what was flown on Pioneer Venus and Galileo. Carbon phenolic is a robust TPS material however its high density and relatively high thermal conductivity constrain mission planners to steep entries, with high heat fluxes and pressures and short entry durations, in order for CP to be feasible from a mass perspective. The high entry conditions pose challenges for certification in existing ground based test facilities and the longer-term sustainability of CP will continue to pose challenges. In 2012 the Game Changing Development Program (GCDP) in NASA's Space Technology Mission Directorate funded NASA ARC to investigate the feasibility of a Woven Thermal Protection System (WTPS) to meet the needs of NASA's most challenging entry missions. This project was highly successful demonstrating that a Woven TPS solution compares favorably to CP in performance in simulated reentry environments and provides the opportunity to manufacture graded materials that should result in overall reduced mass solutions and enable a much broader set of missions than does CP. Building off the success of the WTPS project GCDP has funded a follow on project to further mature and scale up the WTPS concept for insertion into future NASA robotic missions. The matured WTPS will address the CP concerns associated with ground based test limitations and sustainability. This presentation will briefly discuss results from the WTPS Project and the plans for WTPS maturation into a heat-shield for extreme entry environment.

  9. Woven Thermal Protection System Based Heat-shield for Extreme Entry Environments Technology (HEEET)

    NASA Technical Reports Server (NTRS)

    Chinnapongse, Ronald; Ellerbe, Donald; Stackpoole, Maragaret; Venkatapathy, Ethiraj; Beerman, Adam; Feldman, Jay; Peterson Keith; Prabhu, Dinesh; Dillman, Robert; Munk, Michelle

    2013-01-01

    NASA's future robotic missions utilizing an entry system into Venus and the outer planets, namely, Saturn, Uranus, Neptune, result in extremely severe entry conditions that exceed the capabilities of state of the art low to mid density ablators such as PICA or Avcoat. Therefore mission planners typically assume the use of a fully dense carbon phenolic heat shield similar to what was flown on Pioneer Venus and Galileo. Carbon phenolic (CP) is a robust TPS material however its high density and relatively high thermal conductivity constrain mission planners to steep entries, with high heat fluxes and pressures and short entry durations, in order for CP to be feasible from a mass perspective. The high entry conditions pose challenges for certification in existing ground based test facilities and the longer-­-term sustainability of CP will continue to pose challenges. In 2012 the Game Changing Development Program (GCDP) in NASA's Space Technology Mission Directorate funded NASA ARC to investigate the feasibility of a Woven Thermal Protection System (WTPS) to meet the needs of NASA's most challenging entry missions. This project was highly successful demonstrating that a Woven TPS solution compares favorably to CP in performance in simulated reentry environments and provides the opportunity to manufacture graded materials that should result in overall reduced mass solutions and enable a much broader set of missions than does CP. Building off the success of the WTPS project GCDP has funded a follow on project to further mature and scale up the WTPS concept for insertion into future NASA robotic missions. The matured WTPS will address the CP concerns associated with ground based test limitations and sustainability. This presentation will briefly discuss results from the WTPS Project and the plans for WTPS maturation into a heat-­-shield for extreme entry environment.

  10. Electronics for Extreme Environments

    NASA Astrophysics Data System (ADS)

    Patel, J. U.; Cressler, J.; Li, Y.; Niu, G.

    2001-01-01

    Most of the NASA missions involve extreme environments comprising radiation and low or high temperatures. Current practice of providing friendly ambient operating environment to electronics costs considerable power and mass (for shielding). Immediate missions such as the Europa orbiter and lander and Mars landers require the electronics to perform reliably in extreme conditions during the most critical part of the mission. Some other missions planned in the future also involve substantial surface activity in terms of measurements, sample collection, penetration through ice and crust and the analysis of samples. Thus it is extremely critical to develop electronics that could reliably operate under extreme space environments. Silicon On Insulator (SOI) technology is an extremely attractive candidate for NASA's future low power and high speed electronic systems because it offers increased transconductance, decreased sub-threshold slope, reduced short channel effects, elimination of kink effect, enhanced low field mobility, and immunity from radiation induced latch-up. A common belief that semiconductor devices function better at low temperatures is generally true for bulk devices but it does not hold true for deep sub-micron SOI CMOS devices with microscopic device features of 0.25 micrometers and smaller. Various temperature sensitive device parameters and device characteristics have recently been reported in the literature. Behavior of state of the art technology devices under such conditions needs to be evaluated in order to determine possible modifications in the device design for better performance and survivability under extreme environments. Here, we present a unique approach of developing electronics for extreme environments to benefit future NASA missions as described above. This will also benefit other long transit/life time missions such as the solar sail and planetary outposts in which electronics is out open in the unshielded space at the ambient space temperatures and always exposed to radiation. Additional information is contained in the original extended abstract.

  11. UNIVERSITY RESEARCH PROGRAM IN ROBOTICS, Final Technical Annual Report, Project Period: 9/1/04 - 8/31/05

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James S. Tulenko; Carl D. Crane III

    The University Research Program in Robotics (URPR) Implementation Plan is an integrated group of universities performing fundamental research that addresses broad-based robotics and automation needs of the NNSA Directed Stockpile Work (DSW) and Campaigns. The URPR mission is to provide improved capabilities of robotics science and engineering to meet the future needs of all weapon systems and other associated NNSA/DOE activities.

  12. Advanced Radioisotope Power Conversion Technology Research and Development

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.

    2004-01-01

    NASA's Radioisotope Power Conversion Technology program is developing next generation power conversion technologies that will enable future missions that have requirements that cannot be met by either the ubiquitous photovoltaic systems or by current Radioisotope Power System (RPS) technology. Performance goals of advanced radioisotope power systems include improvement over the state-of-practice General Purpose Heat Source/Radioisotope Thermoelectric Generator by providing significantly higher efficiency to reduce the number of radioisotope fuel modules, and increase specific power (watts/kilogram). Other Advanced RPS goals include safety, long-life, reliability, scalability, multi-mission capability, resistance to radiation, and minimal interference with the scientific payload. NASA has awarded ten contracts in the technology areas of Brayton, Stirling, Thermoelectric, and Thermophotovoltaic power conversion including five development contracts that deal with more mature technologies and five research contracts. The Advanced RPS Systems Assessment Team includes members from NASA GRC, JPL, DOE and Orbital Sciences whose function is to review the technologies being developed under the ten Radioisotope Power Conversion Technology contracts and assess their relevance to NASA's future missions. Presented is an overview of the ten radioisotope power conversion technology contracts and NASA's Advanced RPS Systems Assessment Team.

  13. eXascale PRogramming Environment and System Software (XPRESS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapman, Barbara; Gabriel, Edgar

    Exascale systems, with a thousand times the compute capacity of today’s leading edge petascale computers, are expected to emerge during the next decade. Their software systems will need to facilitate the exploitation of exceptional amounts of concurrency in applications, and ensure that jobs continue to run despite the occurrence of system failures and other kinds of hard and soft errors. Adapting computations at runtime to cope with changes in the execution environment, as well as to improve power and performance characteristics, is likely to become the norm. As a result, considerable innovation is required to develop system support to meetmore » the needs of future computing platforms. The XPRESS project aims to develop and prototype a revolutionary software system for extreme-­scale computing for both exascale and strong­scaled problems. The XPRESS collaborative research project will advance the state-­of-­the-­art in high performance computing and enable exascale computing for current and future DOE mission-­critical applications and supporting systems. The goals of the XPRESS research project are to: A. enable exascale performance capability for DOE applications, both current and future, B. develop and deliver a practical computing system software X-­stack, OpenX, for future practical DOE exascale computing systems, and C. provide programming methods and environments for effective means of expressing application and system software for portable exascale system execution.« less

  14. Laboratory Directed Research and Development Program FY 2006

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen

    2007-03-08

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operatemore » unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness.« less

  15. The future of scientific workflows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deelman, Ewa; Peterka, Tom; Altintas, Ilkay

    Today’s computational, experimental, and observational sciences rely on computations that involve many related tasks. The success of a scientific mission often hinges on the computer automation of these workflows. In April 2015, the US Department of Energy (DOE) invited a diverse group of domain and computer scientists from national laboratories supported by the Office of Science, the National Nuclear Security Administration, from industry, and from academia to review the workflow requirements of DOE’s science and national security missions, to assess the current state of the art in science workflows, to understand the impact of emerging extreme-scale computing systems on thosemore » workflows, and to develop requirements for automated workflow management in future and existing environments. This article is a summary of the opinions of over 50 leading researchers attending this workshop. We highlight use cases, computing systems, workflow needs and conclude by summarizing the remaining challenges this community sees that inhibit large-scale scientific workflows from becoming a mainstream tool for extreme-scale science.« less

  16. Numerical and experimental capabilities for studying rocket plume-regolith interactions

    NASA Astrophysics Data System (ADS)

    White, C.; Scanlon, T. J.; Merrifield, J. A.; Kontis, K.; Langener, T.; Alves, J.

    2016-11-01

    Soft landings on extra-terrestrial airless bodies will be required for future sample return missions, such as the Phobos Sample Return (PhSR). PhSR is a candidate mission of ESA's Mars Robotic Exploration Preparation (MREP-2) Programme. Its main objective is to acquire and return a sample from the Martian moon Phobos, after a scientific characterisation phase of the moon and of the landing site. If a rocket is used to slow down the spacecraft to a vertical descent velocity that it will be able to free-fall from, care has to be taken to ensure that the rocket exhaust does not contaminate the surface regolith that is to be collected, and that the rocket does not cause unacceptable levels of erosion to the surface, which could jeopardise the mission. In addition to the work being done in the scope of PhSR, the European Space Agency is funding an experimental facility for investigating these nozzle expansion problems; the current progress of this is described. To support this work, an uncoupled hybrid computational fluid dynamics-direct simulation Monte Carlo method is developed and used to simulate the exhaust of a mono-propellant rocket above the surface of an airless body. The pressure, shear stress, and heat flux at the surface are compared to an analytical free-molecul solution to determine the altitude above which the free-molecular solution is suffcient for predicting these properties. The pressures match well as low as 15 m above the surface, but the heat flux and shear stress are not in agreement until an altitude of 40 m. A new adsorption/desorption boundary condition for the direct simulation Monte Carlo code has also been developed for future use in in-depth contamination studies.

  17. An Update on the Status of the Supply of Plutonium-238 for Future NASA Missions

    NASA Astrophysics Data System (ADS)

    Wham, R. M.

    2016-12-01

    For more than five decades, Radioisotope Power Systems (RPSs) have enabled space missions to operate in locations where the Sun's intensity is too weak, obscured, or otherwise inadequate for solar power or other conventional power‒generation technologies. The natural decay heat (0.57 W/g) from the radioisotope, plutonium-238 (238Pu), provides the thermal energy source used by an RPS to generate electricity for operation of instrumentation, as well as heat to keep key subsystems warm for missions such as Voyagers 1 and 2, the Cassini mission to Saturn, the New Horizons flyby of Pluto, and the Mars Curiosity rover which were sponsored by the National Aeronautics and Space Administration (NASA). Plutonium-238 is produced by irradiation of neptunium-237 in a nuclear reactor a relatively high neutron flux. The United States has not produced new quantities of 238Pu since the early 1990s. RPS‒powered missions have continued since then using existing 238Pu inventory managed by the U.S. Department of Energy (DOE), including material purchased from Russia. A new domestic supply is needed to ensure the continued availability of RPSs for future NASA missions. NASA and DOE are currently executing a project to reestablish a 238Pu supply capability using its existing facilities and reactors, which are much smaller than the large-scale production reactors and processing canyon equipment used previously. The project is led by the Oak Ridge National Laboratory (ORNL). Target rods, containing NpO2, will be fabricated at ORNL and irradiated in the ORNL High Flux Isotope Reactor and the Advanced Test Reactor at Idaho National Laboratory. Irradiated targets will be processed in chemical separations at the ORNL Radiochemical Engineering Center to recover the plutonium product and unconverted neptunium for recycle. The 238PuO2 product will be shipped to Los Alamos National Laboratory for fabrication of heat source pellets. Key activities, such as transport of the neptunium to ORNL, irradiation of neptunium, and chemical processing to recover the newly generated 238Pu, have begun and have been demonstrated with the initial amounts (50-100 g) produced. Product samples have been shipped to LANL for evaluation, including chemical impurity analysis. This paper will provide an overview of the approach to the project and its progress to date.

  18. Mission: Impossible; It’s Time to Pull the Military Out of Drug Interdiction

    DTIC Science & Technology

    1997-01-01

    greatly complicated the mmjuana law enforcement problem Domestlc production has reduced prices and de&ntrahzed Qstnbutlon, while indoor agronomic...techmques have greatly increased potency Annual seizures of marijuana now total less than 50,000 pounds - an amount we were seizing every five to SIX days...relative bulkiness, a constramt that does not apply to cocame, heroin, or any of the other drugs likely to be smuggled m the future I As marijuana

  19. The Display of Visual Information in Mission Command Systems: Implications for Cognitive Performance in the Command Post of the Future

    DTIC Science & Technology

    2013-08-01

    position unless so designated by other authorized documents. Citation of manufacturer’s or trade names does not constitute an official endorsement or...the presence of large volumes of time critical information. CPOF was designed to support the Army transformation to network-enabled operations. The...Cognitive Performance The visual display of information is vital to cognitive performance. For example, the poor visual design of the radar display

  20. Future Mission Trends and their Implications for the Deep Space Network

    NASA Technical Reports Server (NTRS)

    Abraham, Douglas S.

    2006-01-01

    This viewgraph presentation discusses the direction of future missions and it's significance to the Deep Space Network. The topics include: 1) The Deep Space Network (DSN); 2) Past Missions Driving DSN Evolution; 3) The Changing Mission Paradigm; 4) Assessing Future Mission Needs; 5) Link Support Trends; 6) Downlink Rate Trends; 7) Uplink Rate Trends; 8) End-to-End Link Difficulty Trends; 9) Summary: Future Mission Trend Drivers; and 10) Conclusion: Implications for the DSN.

  1. Using Left Overs to Make Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steuterman, Sally; Czarnecki, Alicia; Hurley, Paul

    Representing the Material Science Antinides (MSA), this document is one of the entries in the Ten Hundred and One Word Challenge. As part of the challenge, the 46 Energy Frontier Research Centers were invited to represent their science in images, cartoons, photos, words and original paintings, but any descriptions or words could only use the 1000 most commonly used words in the English language, with the addition of one word important to each of the EFRCs and the mission of DOE energy. The mission of MSA is to conduct transformative research in the actinide sciences with full integration of experimentalmore » and computational approaches, and an emphasis on research questions that are important to the energy future of the nation.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pestovich, Kimberly Shay

    Harnessing the power of the nuclear sciences for national security and to benefit others is one of Los Alamos National Laboratory’s missions. MST-8 focuses on manipulating and studying how the structure, processing, properties, and performance of materials interact at the atomic level under nuclear conditions. Within this group, single crystal scintillators contribute to the safety and reliability of weapons, provide global security safeguards, and build on scientific principles that carry over to medical fields for cancer detection. Improved cladding materials made of ferritic-martensitic alloys support the mission of DOE-NE’s Fuel Cycle Research and Development program to close the nuclear fuelmore » cycle, aiming to solve nuclear waste management challenges and thereby increase the performance and safety of current and future reactors.« less

  3. Target selection and mass estimation for manned NEO exploration using a baseline mission design

    NASA Astrophysics Data System (ADS)

    Boden, Ralf C.; Hein, Andreas M.; Kawaguchi, Junichiro

    2015-06-01

    In recent years Near-Earth Objects (NEOs) have received an increased amount of interest as a target for human exploration. NEOs offer scientifically interesting targets, and at the same time function as a stepping stone for achieving future Mars missions. The aim of this research is to identify promising targets from the large number of known NEOs that qualify for a manned sample-return mission with a maximum duration of one year. By developing a baseline mission design and a mass estimation model, mission opportunities are evaluated based on on-orbit mass requirements, safety considerations, and the properties of the potential targets. A selection of promising NEOs is presented and the effects of mission requirements and restrictions are discussed. Regarding safety aspects, the use of free-return trajectories provides the lowest on-orbit mass, when compared to an alternative design that uses system redundancies to ensure return of the spacecraft to Earth. It is discovered that, although a number of targets are accessible within the analysed time frame, no NEO offers both easy access and high incentive for its exploration. Under the discussed aspects a first human exploration mission going beyond the vicinity of Earth will require a trade off between targets that provide easy access and those that are of scientific interest. This lack of optimal mission opportunities can be seen in the small number of only 4 NEOs that meet all requirements for a sample-return mission and remain below an on-orbit mass of 500 metric Tons (mT). All of them require a mass between 315 and 492 mT. Even less ideal, smaller asteroids that are better accessible require an on-orbit mass that exceeds the launch capability of future heavy lift vehicles (HLV) such as SLS by at least 30 mT. These mass requirements show that additional efforts are necessary to increase the number of available targets and reduce on-orbit mass requirements through advanced mission architectures. The need for on-orbit assembly also becomes apparent, as availability of a HLV alone does not provide sufficient payload capabilities for any manned mission targeting NEOs.

  4. Be/X-ray Binary Science for Future X-ray Timing Missions

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.

    2011-01-01

    For future missions, the Be/X-ray binary community needs to clearly define our science priorities for the future to advocate for their inclusion in future missions. In this talk, I will describe current designs for two potential future missions and Be X-ray binary science enabled by these designs. The Large Observatory For X-ray Timing (LOFT) is an X-ray timing mission selected in February 2011 for the assessment phase from the 2010 ESA M3 call for proposals. The Advanced X-ray Timing ARray (AXTAR) is a NASA explorer concept X-ray timing mission. This talk is intended to initiate discussions of our science priorities for the future.

  5. Advanced Stirling Convertor (ASC) - From Technology Development to Future Flight Product

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.; Wood, J. Gary; Wilson, Kyle

    2008-01-01

    The Advanced Stirling Convertor (ASC) is being developed by Sunpower, Inc. under contract to NASA s Glenn Research Center (GRC) with critical technology support tasks lead by GRC. The ASC development, funded by NASA s Science Mission Directorate, started in 2003 as one of 10 competitively awarded contracts that were to address future Radioisotope Power System (RPS) advanced power conversion needs. The ASC technology has since evolved through progressive convertor builds and successful testing to demonstrate high conversion efficiency (38 %), low mass (1.3 kg), hermetic sealing, launch vibration simulation, EMI characterization, and is undergoing extended operation. The GRC and Sunpower team recently delivered three ASC-E machines to the Department of Energy (DOE) and Lockheed Martin Space Systems Company, two units for integration onto the Advanced Stirling Radioisotope Generator Engineering Unit (ASRG EU) plus one spare. The design has recently been initiated for the ASC-E2, an evolution from the ASC-E that substitutes higher temperature materials enabling improved performance and higher reliability margins. This paper summarizes the history and status of the ASC project and discusses plans for this technology which enables RPS specific power of 8 W/kg for future NASA missions.

  6. Radioisotope thermophotovoltaic system design and its application to an illustrative space mission

    NASA Astrophysics Data System (ADS)

    Schock, A.; Kumar, V.

    1995-01-01

    The paper describes the results of a DOE-sponsored design study of a radioisotope thermophotovoltaic generator (RTPV), to complement similar studies of Radioisotope Thermoelectric Generators (RTGs) and Stirling Generators (RSGs) previously published by the author. Instead of conducting a generic study, it was decided to focus the design effort by directing it at a specific illustrative space mission, Pluto Fast Flyby (PFF). That mission, under study by JPL, envisages a direct eight-year flight to Pluto (the only unexplored planet in the solar system), followed by comprehensive mapping, surface composition, and atmospheric structure measurements during a brief flyby of the planet and its moon Charon, and transmission of the recorded science data to Earth during a post-encounter cruise lasting up to one year. Because of Pluto's long distance from the sun (30-50 A.U.) and the mission's large energy demand, JPL has baselined the use of a radioisotope power system for the PFF spacecraft. TRGs have been tentatively selected, because they have been successfully flown on many space missions, and have demonstrated exceptional reliability and durability. The only reason for exploring the applicability of the far less mature RTPV systems is their potential for much higher conversion efficiencies, which would greatly reduce the mass and cost of the required radioisotope heat source. Those attributes are particularly important for the PFF mission, which—like all NASA missions under current consideration—is severely mass- and cost-limited. The paper describes the design of the radioisotope heat source, the thermophotovoltaic converter, and the heat rejection system; and depicts its integration with the PFF spacecraft. A companion paper presented at this conference presents the results of the thermal, electrical, and structural analysis and the design optimization of the integrated RTPV system. It also discusses the programmatic implications of the analytical results, which suggest that the RTPV generator, when developed by DOE and/or NASA, would be quite valuable not only for the PFF mission but also for other future missions requiring small, long-lived, low-mass generators.

  7. Mission Techniques for Exploring Saturn's icy moons Titan and Enceladus

    NASA Astrophysics Data System (ADS)

    Reh, Kim; Coustenis, Athena; Lunine, Jonathan; Matson, Dennis; Lebreton, Jean-Pierre; Vargas, Andre; Beauchamp, Pat; Spilker, Tom; Strange, Nathan; Elliott, John

    2010-05-01

    The future exploration of Titan is of high priority for the solar system exploration community as recommended by the 2003 National Research Council (NRC) Decadal Survey [1] and ESA's Cosmic Vision Program themes. Cassini-Huygens discoveries continue to emphasize that Titan is a complex world with very many Earth-like features. Titan has a dense, nitrogen atmosphere, an active climate and meteorological cycles where conditions are such that the working fluid, methane, plays the role that water does on Earth. Titan's surface, with lakes and seas, broad river valleys, sand dunes and mountains was formed by processes like those that have shaped the Earth. Supporting this panoply of Earth-like processes is an ice crust that floats atop what might be a liquid water ocean. Furthermore, Titan is rich in very many different organic compounds—more so than any place in the solar system, except Earth. The Titan Saturn System Mission (TSSM) concept that followed the 2007 TandEM ESA CV proposal [2] and the 2007 Titan Explorer NASA Flagship study [3], was examined [4,5] and prioritized by NASA and ESA in February 2009 as a mission to follow the Europa Jupiter System Mission. The TSSM study, like others before it, again concluded that an orbiter, a montgolfiѐre hot-air balloon and a surface package (e.g. lake lander, Geosaucer (instrumented heat shield), …) are very high priority elements for any future mission to Titan. Such missions could be conceived as Flagship/Cosmic Vision L-Class or as individual smaller missions that could possibly fit within NASA's New Frontiers or ESA's Cosmic Vision M-Class budgets. As a result of a multitude of Titan mission studies, several mission concepts have been developed that potentially fit within various cost classes. Also, a clear blueprint has been laid out for early efforts critical toward reducing the risks inherent in such missions. The purpose of this paper is to provide a brief overview of potential Titan (and Enceladus) mission techniques and to describe risk reduction efforts and recent advances toward enabling such future missions. References [1] NRC Space Studies Board (2003), New Frontiers in the Solar System: An Integrated Exploration Strategy (first Decadal Survey Report), National Academic Press, Washington, DC. [2] Coustenis et al. (2008). Experimental Astronomy, DOI: 10.1007/s10686-008-9103-z. [3] J. Leary, R. Strain, R. Lorenz, J. H. Waite, 2008. Titan Explorer Flagship Mission Study, http://www.lpi.usra.edu/opag/Titan_Explorer_Public_Report.pdf. [4] TSSM Final Report, 3 November 2008, NASA Task Order NMO710851 [5] TSSM NASA/ESA Joint Summary Report, 15 November 2008, NASA Task Order NMO710851

  8. Engineering Feasibility and Trade Studies for the NASA/VSGC MicroMaps Space Mission

    NASA Technical Reports Server (NTRS)

    Abdelkhalik, Ossama O.; Nairouz, Bassem; Weaver, Timothy; Newman, Brett

    2003-01-01

    Knowledge of airborne CO concentrations is critical for accurate scientific prediction of global scale atmospheric behavior. MicroMaps is an existing NASA owned gas filter radiometer instrument designed for space-based measurement of atmospheric CO vertical profiles. Due to programmatic changes, the instrument does not have access to the space environment and is in storage. MicroMaps hardware has significant potential for filling a critical scientific need, thus motivating concept studies for new and innovative scientific spaceflight missions that would leverage the MicroMaps heritage and investment, and contribute to new CO distribution data. This report describes engineering feasibility and trade studies for the NASA/VSGC MicroMaps Space Mission. Conceptual studies encompass: 1) overall mission analysis and synthesis methodology, 2) major subsystem studies and detailed requirements development for an orbital platform option consisting of a small, single purpose spacecraft, 3) assessment of orbital platform option consisting of the International Space Station, and 4) survey of potential launch opportunities for gaining assess to orbit. Investigations are of a preliminary first-order nature. Results and recommendations from these activities are envisioned to support future MicroMaps Mission design decisions regarding program down select options leading to more advanced and mature phases.

  9. Identification of new orbits to enable future mission opportunities for the human exploration of the Martian moon Phobos

    NASA Astrophysics Data System (ADS)

    Zamaro, Mattia; Biggs, James D.

    2016-02-01

    One of the paramount stepping stones towards NASA's long-term goal of undertaking human missions to Mars is the exploration of the Martian moons. Since a precursor mission to Phobos would be easier than landing on Mars itself, NASA is targeting this moon for future exploration, and ESA has also announced Phootprint as a candidate Phobos sample-and-return mission. Orbital dynamics around small planetary satellites are particularly complex because many strong perturbations are involved, and the classical circular restricted three-body problem (R3BP) does not provide an accurate approximation to describe the system's dynamics. Phobos is a special case, since the combination of a small mass-ratio and length-scale means that the sphere-of-influence of the moon moves very close to its surface. Thus, an accurate nonlinear model of a spacecraft's motion in the vicinity of this moon must consider the additional perturbations due to the orbital eccentricity and the complete gravity field of Phobos, which is far from a spherical-shaped body, and it is incorporated into an elliptic R3BP using the gravity harmonics series-expansion (ER3BP-GH). In this paper, a showcase of various classes of non-keplerian orbits is identified and a number of potential mission applications in the Mars-Phobos system are proposed: these results could be exploited in upcoming unmanned missions targeting the exploration of this Martian moon. These applications include: low-thrust hovering and orbits around Phobos for close-range observations; the dynamical substitutes of periodic and quasi-periodic Libration Point Orbits in the ER3BP-GH to enable unique low-cost operations for space missions in the proximity of Phobos; their manifold structure for high-performance landing/take-off maneuvers to and from Phobos' surface and for transfers from and to Martian orbits; Quasi-Satellite Orbits for long-period station-keeping and maintenance. In particular, these orbits could exploit Phobos' occulting bulk and shadowing wake as a passive radiation shield during future manned flights to Mars to reduce human exposure to radiation, and the latter orbits can be used as an orbital garage, requiring no orbital maintenance, where a spacecraft could make planned pit-stops during a round-trip mission to Mars.

  10. Logistical concepts associated with international shipments using the USA/9904/B(U)F RTG Transportation System (RTGTS)

    NASA Astrophysics Data System (ADS)

    Barklay, Chadwick D.; Miller, Roger G.; Pugh, Barry K.; Howell, Edwin I.

    1997-01-01

    Over the last 30 years, radioisotopes have provided heat from which electrical power is generated. For space missions, the isotope of choice has generally been 238PuO2, its long half-life making it ideal for supplying power to remote satellites and spacecraft like the Voyager, Pioneer, and Viking missions, as well as the recently launched Galileo and Ulysses missions, and the presently planned Cassini mission. Electric power for future space missions will be provided by either radioisotopic thermoelectric generators (RTG), radioisotope thermophotovoltaic systems (RTPV), alkali metal thermal to electrical conversion (AMTEC) systems, radioisotope Stirling systems, or a combination of these. The type of electrical power system has yet to be specified for the ``Pluto Express'' mission. However, the current plan does incorporate the use of Russian launch platforms for the spacecraft. The implied tasks associated with this plan require obtaining international certification for the transport of the radioisotopic power system, and resolving any logistical issues associated with the actual shipment of the selected radioisotopic power system. This paper presents a conceptual summary of the logistical considerations associated with shipping the selected radioisotopic power system using the USA/9904/B(U)F-85, Radioisotope Thermoelectric Generator Transportation System (RTGTS).

  11. Advanced life systems hardware development for future missions

    NASA Technical Reports Server (NTRS)

    1975-01-01

    An examination of the pulse formation in an externalized vessel suggests that the vessel does not behave as a simple visco-elastic tube. Pressure-pulse waveform transducers are sensitive either to the pressure present at the vessel wall or to the volume of blood filling a region of tissue. Results of comparisons between intra-and extra-vascular pressure recordings suggest that changes in vasomotor tone and transducer-vessel pressures may be the greatest contributors to the divergence of extra-vascular waveforms from intra-vascular waveforms.

  12. FY 2014 LDRD Annual Report Project Summaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomchak, Dena

    The FY 2014 Laboratory Directed Research and Development (LDRD) Annual Report is a compendium of the diverse research performed to develop and ensure the INL's technical capabilities can support future DOE missions and national research priorities. LDRD is essential to INL - it provides a means for the laboratory to pursue novel scientific and engineering research in areas that are deemed too basic or risky for programmatic investments. This research enahnces technical capabilities at the laboratory, providing scientific and engineering staff with opportunities for skill building and partnership development.

  13. Mobile Electric Power Technologies for the Army of the Future: Engines, Power Source, and Electrical Aspects

    DTIC Science & Technology

    1988-01-01

    therefore should be developed. Hence, the committee reached the following conclusions: o The supply of electric power for the needs of Army 21 is of...critical importance to the mission of the Army. o Based on the committee’s observations, it appears that the Army does not recognize that high...require military research and development. The committee recommends: o The Army should integrate the needs for mobile electric power supDly. as dictated

  14. University Research Program in Robotics - "Technologies for Micro-Electrical-Mechanical Systems in directed Stockpile Work (DSW) Radiation and Campaigns", Final Technical Annual Report, Project Period 9/1/06 - 8/31/07

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James S. Tulenko; Carl D. Crane

    The University Research Program in Robotics (URPR) is an integrated group of universities performing fundamental research that addresses broad-based robotics and automation needs of the NNSA Directed Stockpile Work (DSW) and Campaigns. The URPR mission is to provide improved capabilities in robotics science and engineering to meet the future needs of all weapon systems and other associated NNSA/DOE activities.

  15. Planning For Multiple NASA Missions With Use Of Enabling Radioisotope Power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S.G. Johnson; K.L. Lively; C.C. Dwight

    Since the early 1960’s the Department of Energy (DOE) and its predecessor agencies have provided radioisotope power systems (RPS) to NASA as an enabling technology for deep space and various planetary missions. They provide reliable power in situations where solar and/or battery power sources are either untenable or would place an undue mass burden on the mission. In the modern era of the past twenty years there has been no time that multiple missions have been considered for launching from Kennedy Space Center (KSC) during the same year. The closest proximity of missions that involved radioisotope power systems would bemore » that of Galileo (October 1989) and Ulysses (October 1990). The closest that involved radioisotope heater units would be the small rovers Spirit and Opportunity (May and July 2003) used in the Mars Exploration Rovers (MER) mission. It can be argued that the rovers sent to Mars in 2003 were essentially a special case since they staged in the same facility and used a pair of small launch vehicles (Delta II). This paper examines constraints on the frequency of use of radioisotope power systems with regard to launching them from Kennedy Space Center using currently available launch vehicles. This knowledge may be useful as NASA plans for its future deep space or planetary missions where radioisotope power systems are used as an enabling technology. Previous descriptions have focused on single mission chronologies and not analyzed the timelines with an emphasis on multiple missions.« less

  16. Estimation Of Organ Doses From Solar Particle Events For Future Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee; Cucinotta, Francis A.

    2006-01-01

    Radiation protection practices define the effective dose as a weighted sum of equivalent dose over major organ sites for radiation cancer risks. Since a crew personnel dosimeter does not make direct measurement of the effective dose, it has been estimated with skin-dose measurements and radiation transport codes for ISS and STS missions. If sufficient protection is not provided near solar maximum, the radiation risk can be significant due to exposure to sporadic solar particle events (SPEs) as well as to the continuous galactic cosmic radiation (GCR) on future exploratory-class and long-duration missions. For accurate estimates of overall fatal cancer risks from SPEs, the specific doses at various blood forming organs (BFOs) were considered, because proton fluences and doses vary considerably across marrow regions. Previous estimates of BFO doses from SPEs have used an average body-shielding distribution for the bone marrow based on the computerized anatomical man model (CAM). With the development of an 82-point body-shielding distribution at BFOs, the mean and variance of SPE doses in the major active marrow regions (head and neck, chest, abdomen, pelvis and thighs) will be presented. Consideration of the detailed distribution of bone marrow sites is one of many requirements to improve the estimation of effective doses for radiation cancer risks.

  17. Assessment of Various Low Temperature Electrolytes in Prototype Li-Ion Cells Developed for ESMD Applications

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Ratnakumar, B. V.; Whitcanack, L. D.

    2008-01-01

    Due to their attractive properties and proven success, Li-ion batteries have become identified as the battery chemistry of choice for a number of future NASA missions. A number of these applications would be greatly benefited by improved performance of Li-ion technology over a wider operating temperature range, especially at low temperatures, such as future ESMD missions. In many cases, these technology improvements may be mission enabling, and at the very least mission enhancing. In addition to aerospace applications, the DoE has interest in developing advanced Li-ion batteries that can operate over a wide temperature range to enable terrestrial HEV applications. Thus, our focus at JPL in recent years has been to extend the operating temperature range of Li-ion batteries, especially at low temperatures. To accomplish this, the main focus of the research has been devoted to developing improved lithium-ion conducting electrolytes. In the present paper, we would like to present some of the results we have obtained with six different ethylene carbonate-based electrolytes optimized for low temperature. In addition to investigating the behavior in experimental cells initially, the performance of these promising low temperature electrolytes was demonstrated in large capacity, aerospace quality Li-ion prototype cells, manufactured by Yardney Technical Products and Saft America, Inc. These cells were subjected to a number of performance tests, including discharge rate characterization, charge rate characterization, cycle life performance at various temperatures, and power characterization tests.

  18. JPL future missions and energy storage technology implications

    NASA Technical Reports Server (NTRS)

    Pawlik, Eugene V.

    1987-01-01

    The mission model for JPL future programs is presented. This model identifies mission areas where JPL is expected to have a major role and/or participate in a significant manner. These missions are focused on space science and applications missions, but they also include some participation in space station activities. The mission model is described in detail followed by a discussion on the needs for energy storage technology required to support these future activities.

  19. Increasing Small Satellite Reliability- A Public-Private Initiative

    NASA Technical Reports Server (NTRS)

    Johnson, Michael A.; Beauchamp, Patricia; Schone, Harald; Sheldon, Doug; Fuhrman, Linda; Sullivan, Erica; Fairbanks, Tom; Moe, Miquel; Leitner, Jesse

    2017-01-01

    At present, CubeSat components and buses are generally not appropriate for missions where significant risk of failure, or the inability to quantify risk or confidence, is acceptable. However, in the future we anticipate that CubeSats will be used for missions requiring reliability of 1-3 years for Earth-observing missions and even longer for Planetary, Heliophysics, and Astrophysics missions. Their growing potential utility is driving an interagency effort to improve and quantify CubeSat reliability, and more generally, small satellite mission risk. The Small Satellite Reliability Initiative (SSRI)—an ongoing activity with broad collaborative participation from civil, DoD, and commercial space systems providers and stakeholders—targets this challenge. The Initiative seeks to define implementable and broadly-accepted approaches to achieve reliability and acceptable risk postures associated with several SmallSat mission risk classes—from “do no harm” missions, to those associated with missions whose failure would result in loss or delay of key national objectives. These approaches will maintain, to the extent practical, cost efficiencies associated with small satellite missions and consider constraints associated with supply chain elements, as appropriate. The SSRI addresses this challenge from two architectural levels—the mission- or system-level, and the component- or subsystem-level. The mission- or system-level scope targets assessment approaches that are efficient and effective, with mitigation strategies that facilitate resiliency to mission or system anomalies while the component- or subsystem-level scope addresses the challenge at lower architectural levels. The initiative does not limit strategies and approaches to proven and traditional methodologies, but is focused on fomenting thought on novel and innovative solutions. This paper discusses the genesis of and drivers for this initiative, how the public-private collaboration is being executed, findings and recommendations derived to date, and next steps towards broadening small satellite mission potential.

  20. MECA Workshop on Dust on Mars 3

    NASA Technical Reports Server (NTRS)

    Lee, Steven (Editor)

    1989-01-01

    Articles and abstracts of articles presented at this workshop are given. It was the goal of the workshop to stimulate cooperative research on, and discussion of, dust related processes on Mars, and to provide background information and help in planning of the Mars Observer mission. These topics are considered: How is dust ejected from the Martian surface into the atmosphere; How does the global atmospheric circulation affect the redistribution of dust on Mars; Are there sources and sinks of dust on Mars, if so, where are they and how do they vary in time; and How many components of dust are there on Mars, and what are their properties. There were four primary discussion sessions: (1) Dust in the atmosphere; (2) Dust on the surface; (3) Dust properties; and (4) Dust observations from future spacecraft missions.

  1. Sun-to-power cells layer by layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moseke, Dawn; Richards, Robin; Moseke, Daniel

    Representing the Center for Interface Science: Solar Electric Materials (CISSEM), this document is one of the entries in the Ten Hundred and One Word Challenge. As part of the challenge, the 46 Energy Frontier Research Centers were invited to represent their science in images, cartoons, photos, words and original paintings, but any descriptions or words could only use the 1000 most commonly used words in the English language, with the addition of one word important to each of the EFRCs and the mission of DOE: energy. The mission of the CISSEM is to advance the understanding of interface science underlyingmore » solar energy conversion technologies based on organic and organic-inorganic hybrid materials; and to inspire, recruit and train future scientists and leaders in basic science of solar electric conversion.« less

  2. Stirling Radioisotope Power System as an Alternative for NASAs Deep Space Missions

    NASA Astrophysics Data System (ADS)

    Shaltens, R. K.; Mason, L. S.; Schreiber, J. G.

    2001-01-01

    The NASA Glenn Research Center (GRC) and the Department of Energy (DOE) are developing a free-piston Stirling convertor for a Stirling Radioisotope Power System (SRPS) to provide on-board electric power for future NASA deep space missions. The SRPS currently being developed provides about 100 watts and reduces the amount of radioisotope fuel by a factor of four over conventional Radioisotope Thermoelectric Generators (RTG). The present SRPS design has a specific power of approximately 4 W/kg which is comparable to an RTG. GRC estimates for advanced versions of the SRPS with improved heat source integration, lightweight Stirling convertors, composite radiators, and chip-packaged controllers improves the specific mass to about 8 W/kg. Additional information is contained in the original extended abstract.

  3. Common In-Situ Consumable Production Plant for Robotic Mars Exploration

    NASA Technical Reports Server (NTRS)

    Sanders, G. B.; Trevathan, J. R.; Peters, T. A.; Baird, R. S.

    2000-01-01

    Utilization of extraterrestrial resources, or In-Situ Resource Utilization (ISRU), is viewed by the Human Exploration and Development of Space (HEDS) Enterprise as an enabling technology for the exploration and commercial development of space. A key subset of ISRU which has significant cost, mass, and risk reduction benefits for robotic and human exploration, and which requires a minimum of infrastructure, is In-Situ Consumable Production (ISCP). ISCP involves acquiring, manufacturing, and storing mission consumables from in situ resources, such as propellants, fuel cell reagents, and gases for crew and life support, inflation, science and pneumatic equipment. One of the four long-term goals for the Space Science Enterprise (SSE) is to 'pursue space science programs that enable and are enabled by future human exploration beyond low-Earth orbit - a goal exploiting the synergy with the human exploration of space'. Adequate power and propulsion capabilities are critical for both robotic and human exploration missions. Minimizing the mass and volume of these systems can reduce mission cost or enhance the mission by enabling the incorporation of new science or mission-relevant equipment. Studies have shown that in-situ production of oxygen and methane propellants can enhance sample return missions by enabling larger samples to be returned to Earth or by performing Direct Earth Return (DER) sample return missions instead of requiring a Mars Orbit Rendezvous (MOR). Recent NASA and Department of Energy (DOE) work on oxygen and hydrocarbon-based fuel cell power systems shows the potential of using fuel cell power systems instead of solar arrays and batteries for future rovers and science equipment. The development and use of a common oxygen/methane ISCP plant for propulsion and power generation can extend and enhance the scientific exploration of Mars while supporting the development and demonstration of critical technologies and systems for the human exploration of Mars.

  4. Common In-Situ Consumable Production Plant for Robotic Mars Exploration

    NASA Astrophysics Data System (ADS)

    Sanders, G. B.; Trevathan, J. R.; Peters, T. A.; Baird, R. S.

    2000-07-01

    Utilization of extraterrestrial resources, or In-Situ Resource Utilization (ISRU), is viewed by the Human Exploration and Development of Space (HEDS) Enterprise as an enabling technology for the exploration and commercial development of space. A key subset of ISRU which has significant cost, mass, and risk reduction benefits for robotic and human exploration, and which requires a minimum of infrastructure, is In-Situ Consumable Production (ISCP). ISCP involves acquiring, manufacturing, and storing mission consumables from in situ resources, such as propellants, fuel cell reagents, and gases for crew and life support, inflation, science and pneumatic equipment. One of the four long-term goals for the Space Science Enterprise (SSE) is to 'pursue space science programs that enable and are enabled by future human exploration beyond low-Earth orbit - a goal exploiting the synergy with the human exploration of space'. Adequate power and propulsion capabilities are critical for both robotic and human exploration missions. Minimizing the mass and volume of these systems can reduce mission cost or enhance the mission by enabling the incorporation of new science or mission-relevant equipment. Studies have shown that in-situ production of oxygen and methane propellants can enhance sample return missions by enabling larger samples to be returned to Earth or by performing Direct Earth Return (DER) sample return missions instead of requiring a Mars Orbit Rendezvous (MOR). Recent NASA and Department of Energy (DOE) work on oxygen and hydrocarbon-based fuel cell power systems shows the potential of using fuel cell power systems instead of solar arrays and batteries for future rovers and science equipment. The development and use of a common oxygen/methane ISCP plant for propulsion and power generation can extend and enhance the scientific exploration of Mars while supporting the development and demonstration of critical technologies and systems for the human exploration of Mars.

  5. Impact Testing of a Stirling Converter's Linear Alternator

    NASA Technical Reports Server (NTRS)

    Suarez, Vicente J.; Goodnight, Thomas W.; Hughes, William O.; Samorezov, Sergey

    2002-01-01

    The U.S. Department of Energy (DOE), in conjunction with the NASA John H. Glenn Research Center and Stirling Technology Company, are currently developing a Stirling convertor for a Stirling Radioisotope Generator (SRG). NASA Headquarters and DOE have identified the SRG for potential use as an advanced spacecraft power system for future NASA deep-space and Mars surface missions. Low-level dynamic impact tests were conducted at NASA Glenn Research Center's Structural Dynamics Laboratory as part of the development of this technology. The purpose of this test was to identify dynamic structural characteristics of the Stirling Technology Demonstration Convertor (TDC). This paper addresses the test setup, procedure, and results of the impact testing conducted on the Stirling TDC in May 2001.

  6. Impact testing of a Stirling convertor's linear alternator

    NASA Astrophysics Data System (ADS)

    Suárez, Vicente J.; Goodnight, Thomas W.; Hughes, William O.; Samorezov, Sergey

    2002-01-01

    The U.S. Department of Energy (DOE), in conjunction with NASA John H. Glenn Research Center and Stirling Technology Company, are currently developing a Stirling convertor for a Stirling Radioisotope Generator (SRG). NASA Headquarters and DOE have identified the SRG for potential use as an advanced spacecraft power system for future NASA deep-space and Mars surface missions. Low-level dynamic impact tests were conducted at NASA Glenn Research Center's Structural Dynamics Laboratory as part of the development of this technology. The purpose of this test was to identify dynamic structural characteristics of the Stirling Technology Demonstration Convertor (TDC). This paper addresses the test setup, procedure and results of the impact testing conducted on the Stirling TDC in May 2001. .

  7. Estimating the Deep Space Network modification costs to prepare for future space missions by using major cost drivers

    NASA Technical Reports Server (NTRS)

    Remer, Donald S.; Sherif, Josef; Buchanan, Harry R.

    1993-01-01

    This paper develops a cost model to do long range planning cost estimates for Deep Space Network (DSN) support of future space missions. The paper focuses on the costs required to modify and/or enhance the DSN to prepare for future space missions. The model is a function of eight major mission cost drivers and estimates both the total cost and the annual costs of a similar future space mission. The model is derived from actual cost data from three space missions: Voyager (Uranus), Voyager (Neptune), and Magellan. Estimates derived from the model are tested against actual cost data for two independent missions, Viking and Mariner Jupiter/Saturn (MJS).

  8. Laboratory directed research and development program FY 1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Todd; Levy, Karin

    2000-03-08

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operatemore » unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY99.« less

  9. An Imagineering Approach to the Future of Space Situational Awareness

    NASA Astrophysics Data System (ADS)

    Luce, R.

    It is widely accepted that space is becoming a more congested, contested, and competitive domain. This drives a need not only to track space objects but also to have a clear and constant picture of what the objects are and how they are being operated. Space situational awareness, like most mission areas, suffers from the need to maintain aging, increasingly fragile legacy infrastructure and at the same time acquire increasingly complex materiel solutions that often fall behind schedule and over budget. Imagineering, the name for both the process by which Disney creates new theme park experiences and the corporate division that does the work, offers some new ways of thinking about balancing these needs and providing better bang-for-the-buck. Through a series of personal anecdotes that illustrate key concepts of Imagineering, this paper supports a conclusion that a new way of thinking about the space situational awareness mission area will be needed to ensure mission success moving forward.

  10. Fission Power System Technology for NASA Exploration Missions

    NASA Technical Reports Server (NTRS)

    Mason, Lee; Houts, Michael

    2011-01-01

    Under the NASA Exploration Technology Development Program, and in partnership with the Department of Energy (DOE), NASA is conducting a project to mature Fission Power System (FPS) technology. A primary project goal is to develop viable system options to support future NASA mission needs for nuclear power. The main FPS project objectives are as follows: 1) Develop FPS concepts that meet expected NASA mission power requirements at reasonable cost with added benefits over other options. 2) Establish a hardware-based technical foundation for FPS design concepts and reduce overall development risk. 3) Reduce the cost uncertainties for FPS and establish greater credibility for flight system cost estimates. 4) Generate the key products to allow NASA decisionmakers to consider FPS as a preferred option for flight development. In order to achieve these goals, the FPS project has two main thrusts: concept definition and risk reduction. Under concept definition, NASA and DOE are performing trade studies, defining requirements, developing analytical tools, and formulating system concepts. A typical FPS consists of the reactor, shield, power conversion, heat rejection, and power management and distribution (PMAD). Studies are performed to identify the desired design parameters for each subsystem that allow the system to meet the requirements with reasonable cost and development risk. Risk reduction provides the means to evaluate technologies in a laboratory test environment. Non-nuclear hardware prototypes are built and tested to verify performance expectations, gain operating experience, and resolve design uncertainties.

  11. Batelle Energy Alliance, LLC (BEA) 2014 Annual report for Idaho National Laboratory (INL)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alvarez, Juan; Allen, Todd

    2014-10-01

    This Fiscal Year (FY) 2014 annual report provides the Department of Energy (DOE) with BEA’s self-assessment of performance managing and operating the INL for the period ending September 30, 2014. After considering all of the information related to INL performance during the rating period against the Goals, Objectives and Notable Outcomes in the FY 2014 Performance Evaluation and Measurement Plan (PEMP), BEA believes it earned an overall grade closest to an A. The paragraphs below highlight how INL excelled in delivering innovative and impactful research across the three mission areas; how INL has successfully positioned itself for future growth andmore » sustainment; and how, through strong leadership, INL has set and implemented a strategic direction to ensure we meet and exceed the expectations of DOE and other customers. Attachments 1 through 5 provide additional detail on FY 2014 mission accomplishments, outline corporate contributions for success, highlight national and international awards and recognitions at the organization and individual levels, and describe the performance issues and challenges faced in FY 2014. • Attachment 1, “Self-Assessed PEMP Ratings” • Attachment 2, “INL Mission Accomplishments” • Attachment 3, “Battelle Energy Alliance, LLC Contributions to INL Success” • Attachment 4, “FY 2014 Awards, Recognition, Professional Roles and Certifications” • Attachment 5, “Performance Issues and Challenges.”« less

  12. Becoming Earth Independent: Human-Automation-Robotics Integration Challenges for Future Space Exploration

    NASA Technical Reports Server (NTRS)

    Marquez, Jessica J.

    2016-01-01

    Future exploration missions will require NASA to integrate more automation and robotics in order to accomplish mission objectives. This presentation will describe on the future challenges facing the human operator (astronaut, ground controllers) as we increase the amount of automation and robotics in spaceflight operations. It will describe how future exploration missions will have to adapt and evolve in order to deal with more complex missions and communication latencies. This presentation will outline future human-automation-robotic integration challenges.

  13. Estimating the Reliability of a Soyuz Spacecraft Mission

    NASA Technical Reports Server (NTRS)

    Lutomski, Michael G.; Farnham, Steven J., II; Grant, Warren C.

    2010-01-01

    Once the US Space Shuttle retires in 2010, the Russian Soyuz Launcher and Soyuz Spacecraft will comprise the only means for crew transportation to and from the International Space Station (ISS). The U.S. Government and NASA have contracted for crew transportation services to the ISS with Russia. The resulting implications for the US space program including issues such as astronaut safety must be carefully considered. Are the astronauts and cosmonauts safer on the Soyuz than the Space Shuttle system? Is the Soyuz launch system more robust than the Space Shuttle? Is it safer to continue to fly the 30 year old Shuttle fleet for crew transportation and cargo resupply than the Soyuz? Should we extend the life of the Shuttle Program? How does the development of the Orion/Ares crew transportation system affect these decisions? The Soyuz launcher has been in operation for over 40 years. There have been only two loss of life incidents and two loss of mission incidents. Given that the most recent incident took place in 1983, how do we determine current reliability of the system? Do failures of unmanned Soyuz rockets impact the reliability of the currently operational man-rated launcher? Does the Soyuz exhibit characteristics that demonstrate reliability growth and how would that be reflected in future estimates of success? NASA s next manned rocket and spacecraft development project is currently underway. Though the projects ultimate goal is to return to the Moon and then to Mars, the launch vehicle and spacecraft s first mission will be for crew transportation to and from the ISS. The reliability targets are currently several times higher than the Shuttle and possibly even the Soyuz. Can these targets be compared to the reliability of the Soyuz to determine whether they are realistic and achievable? To help answer these questions this paper will explore how to estimate the reliability of the Soyuz Launcher/Spacecraft system, compare it to the Space Shuttle, and its potential impacts for the future of manned spaceflight. Specifically it will look at estimating the Loss of Mission (LOM) probability using historical data, reliability growth, and Probabilistic Risk Assessment techniques

  14. SAVANNAH RIVER SITE ENVIRONMENTAL REPORT FOR 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mamatey, A.; Dunaway-Ackerman, J.

    2011-08-16

    This report was prepared in accordance with U.S. Department of Energy (DOE) Order 231.1A, 'Environment, Safety and Health Reporting,' to present summary environmental data for the purpose of: (a) characterizing site's environmental management performance; (b) summarizing environmental occurrences and responses reported during the calendar year; (c) describing compliance status with respect to environmental standards and requirements; and (d) highlighting significant site programs and efforts. This report is the principal document that demonstrates compliance with the requirements of DOE Order 5400.5, 'Radiation Protection of the Public and the Environment,' and is a key component of DOE's effort to keep the publicmore » informed of environmental conditions at Savannah River Site (SRS). SRS has four primary missions: (1) Environmental Management - Cleaning up the legacy of the Cold War efforts and preparing decommissioned facilities and areas for long-term stewardship; (2) Nuclear Weapons Stockpile Support - Meeting the needs of the U.S. nuclear weapons stockpile through the tritium programs of the National Nuclear Security Administration (NNSA); (3) Nuclear Nonproliferation Support - Meeting the needs of the NNSA's nuclear nonproliferation programs by safely storing and dispositioning excess special nuclear materials; and (4) Research and Development - Supporting the application of science by the Savannah River National Laboratory (SRNL) to meet the needs of SRS, the DOE complex, and other federal agencies During 2010, SRS worked to fulfill these missions and position the site for future operations. SRS continued to work with the South Carolina Department of Health and Environmental Control (SCDHEC), the Environmental Protection Agency (EPA), and the Nuclear Regulatory Commission to find and implement solutions and schedules for waste management and disposition. As part of its mission to clean up the Cold War legacy, SRS will continue to address the highest-risk waste management issues by safely storing and preparing liquid waste and nuclear materials for disposition, and by safely stabilizing any tank waste residues that remain on site.« less

  15. The Integrated Mission Design Center (IMDC) at NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Karpati, Gabriel; Martin, John; Steiner, Mark; Reinhardt, K.

    2002-01-01

    NASA Goddard has used its Integrated Mission Design Center (IMDC) to perform more than 150 mission concept studies. The IMDC performs rapid development of high-level, end-to-end mission concepts, typically in just 4 days. The approach to the studies varies, depending on whether the proposed mission is near-future using existing technology, mid-future using new technology being actively developed, or far-future using technology which may not yet be clearly defined. The emphasis and level of detail developed during any particular study depends on which timeframe (near-, mid-, or far-future) is involved and the specific needs of the study client. The most effective mission studies are those where mission capabilities required and emerging technology developments can synergistically work together; thus both enhancing mission capabilities and providing impetus for ongoing technology development.

  16. Sample Return: What Happens to the Samples on Earth?

    NASA Technical Reports Server (NTRS)

    McNamara, Karen

    2010-01-01

    As space agencies throughout the world turn their attention toward human exploration of the Moon, Mars, and the solar system beyond, there has been an increase in the number of robotic sample return missions proposed as precursors to these human endeavors. In reality, however, we, as a global community, have very little experience with robotic sample return missions: 3 of the Russian Luna Missions successfully returned lunar material in the 1970s; 28 years later, in 2004, NASA s Genesis Mission returned material from the solar wind; and in 2006, NASA s Stardust Mission returned material from the Comet Wild2. [Note: The Japanese Hyabusa mission continues in space with the hope of returning material from the asteroid 25143 Itokawa.] We launch many spacecraft to LEO and return them to Earth. We also launch spacecraft beyond LEO to explore the planets, our solar system, and beyond. Some even land on these bodies. But these do not return. So as we begin to contemplate the sample return missions of the future, some common questions arise: "What really happens when the capsule returns?" "Where does it land?" "Who retrieves it and just how do they do that?" "Where does it go after that?" "How do the scientists get the samples?" "Do they keep them?" "Who is in charge?" The questions are nearly endless. The goal of this paper/presentation is to uncover many of the mysteries of the post-return phase of a mission - from the time the return body enters the atmosphere until the mission ends and the samples become part of a long term collection. The discussion will be based largely on the author s own experience with both the Genesis and Stardust missions. Of course, these two missions have a great deal in common, being funded by the same NASA Program (Discovery) and having similar team composition. The intent, however, is to use these missions as examples in order to highlight the general requirements and the challenges in defining and meeting those requirements for the final phase of sample return missions. The choices made by the Genesis and Stardust teams regarding recovery and sample handling will be discussed. These will be compared with the handling of returned lunar samples and the proposed handling of the Hyabusa samples as well. Finally, though none of these recent missions have been restricted within NASA s Planetary Protection Protocol, this is likely to change as missions venture farther from Earth. The implementation of Planetary Protection requirements will vary significantly based on mission scenario, however some of the potential implications of restricted Earth return will be considered.

  17. Power systems for future missions

    NASA Technical Reports Server (NTRS)

    Gill, S. P.; Frye, P. E.; Littman, Franklin D.; Meisl, C. J.

    1994-01-01

    A comprehensive scenario of future missions was developed and applicability of different power technologies to these missions was assessed. Detailed technology development roadmaps for selected power technologies were generated. A simple methodology to evaluate economic benefits of current and future power system technologies by comparing Life Cycle Costs of potential missions was developed. The methodology was demonstrated by comparing Life Cycle Costs for different implementation strategies of DIPS/CBC technology to a selected set of missions.

  18. The NASA Education Enterprise: Inspiring the Next Generation of Explorers

    NASA Technical Reports Server (NTRS)

    2003-01-01

    On April 12, 2002, NASA Administrator Sean O Keefe opened a new window to the future of space exploration with these words in his Pioneering the Future address. Thus began the conceptual framework for structuring the new Education Enterprise. The Agency s mission is to understand and protect our home planet; to explore the universe in search for life; and to inspire the next generation of explorers as only NASA can. In adopting this mission, education became a core element and is now a vital part of every major NASA research and development mission. NASA s call to inspire the next generation of explorers is now resounding throughout the NASA community and schools of all levels all around the country. The goal is to capture student interest, nurture their natural curiosities, and intrigue their minds with new and exciting scientific research; as well as to provide educators with the creative tools they need to improve America s scientific literacy. The future of NASA begins with America s youngest scholars. According to Administrator O Keefe s address, if NASA does not motivate the youngest generation now, there is little prospect this generation will choose to pursue scientific disciplines later. Since embracing Administrator O Keefe s educational mandate over a year ago, NASA has been fully devoted to broadening its roadmap to motivation. The efforts have generated a whole new showcase of thoughtprovoking and fun learning opportunities, through printed material, Web sites and Webcasts, robotics, rocketry, aerospace design contests, and various other resources as only NASA can.

  19. Lubrication of space systems

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.

    1994-01-01

    NASA has many high-technology programs plannned for the future, such as the space station, Mission to Planet Earth (a series of Earth-observing satellites), space telescopes, and planetary orbiters. These missions will involve advanced mechanical moving components, space mechanisms that will need wear protection and lubrication. The tribology practices used in space today are primarily based on a technology that is more than 20 years old. The question is the following: Is this technology base good enough to meet the needs of these future long-duration NASA missions? This paper examines NASA's future space missions, how mechanisms are currently lubricated, some of the mechanism and tribology challenges that may be encountered in future missions, and some potential solutions to these future challenges.

  20. Exobiology and Future Mars Missions

    NASA Technical Reports Server (NTRS)

    Mckay, Christopher P. (Editor); Davis, Wanda, L. (Editor)

    1989-01-01

    Scientific questions associated with exobiology on Mars were considered and how these questions should be addressed on future Mars missions was determined. The mission that provided a focus for discussions was the Mars Rover/Sample Return Mission.

  1. Laboratory Directed Research and Development FY2001 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Ayat, R

    2002-06-20

    Established by Congress in 1991, the Laboratory Directed Research and Development (LDRD) Program provides the Department of Energy (DOE)/National Nuclear Security Administration (NNSA) laboratories, like Lawrence Livermore National Laboratory (LLNL or the Laboratory), with the flexibility to invest up to 6% of their budget in long-term, high-risk, and potentially high payoff research and development (R&D) activities to support the DOE/NNSA's national security missions. By funding innovative R&D, the LDRD Program at LLNL develops and extends the Laboratory's intellectual foundations and maintains its vitality as a premier research institution. As proof of the Program's success, many of the research thrusts thatmore » started many years ago under LDRD sponsorship are at the core of today's programs. The LDRD Program, which serves as a proving ground for innovative ideas, is the Laboratory's most important single resource for fostering excellent science and technology for today's needs and tomorrow's challenges. Basic and applied research activities funded by LDRD enhance the Laboratory's core strengths, driving its technical vitality to create new capabilities that enable LLNL to meet DOE/NNSA's national security missions. The Program also plays a key role in building a world-class multidisciplinary workforce by engaging the Laboratory's best researchers, recruiting its future scientists and engineers, and promoting collaborations with all sectors of the larger scientific community.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ratel, K.; Lee, R; Remien, J

    Brookhaven National Laboratory (BNL) prepares an annual Site Environmental Report (SER) in accordance with DOE Order 231.1A, Environment, Safety and Health Reporting of the U.S. Department of Energy. The report is written to inform the public, regulators, employees, and other stakeholders of the Laboratory's environmental performance during the calendar year in review. Volume I of the SER summarizes environmental data; environmental management performance; compliance with applicable DOE, federal, state, and local regulations; and performance in restoration and surveillance monitoring programs. BNL has prepared annual SERs since 1971 and has documented nearly all of its environmental history since the Laboratory's inceptionmore » in 1947. Volume II of the SER, the Groundwater Status Report, also is prepared annually to report on the status of and evaluate the performance of groundwater treatment systems at the Laboratory. Volume II includes detailed technical summaries of groundwater data and its interpretation, and is intended for internal BNL users, regulators, and other technically oriented stakeholders. A brief summary of the information contained in Volume II is included in Chapter 7, Groundwater Protection, of this volume. Both reports are available in print and as downloadable files on the BNL web page at http://www.bnl.gov/ewms/ser/. An electronic version on compact disc is distributed with each printed report. In addition, a summary of Volume I is prepared each year to provide a general overview of the report, and is distributed with a compact disc containing the full report. BNL is operated and managed for DOE's Office of Science by Brookhaven Science Associates (BSA), a partnership formed by Stony Brook University and Battelle Memorial Institute. For more than 60 years, the Laboratory has played a lead role in the DOE Science and Technology mission and continues to contribute to the DOE missions in energy resources, environmental quality, and national security. BNL manages its world-class scientific research with particular sensitivity to environmental issues and community concerns. The Laboratory's motto, 'Exploring Life's Mysteries...Protecting its Future,' and its Environmental, Safety, Security and Health Policy reflect the commitment of BNL's management to fully integrate environmental stewardship into all facets of its mission and operations.« less

  3. Solar Power for Future NASA Missions

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Landis, Geoffrey A.

    2014-01-01

    An overview of NASA missions and technology development efforts are discussed. Future spacecraft will need higher power, higher voltage, and much lower cost solar arrays to enable a variety of missions. One application driving development of these future arrays is solar electric propulsion.

  4. Laboratory Directed Research and Development FY-10 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dena Tomchak

    2011-03-01

    The FY 2010 Laboratory Directed Research and Development (LDRD) Annual Report is a compendium of the diverse research performed to develop and ensure the INL's technical capabilities can support the future DOE missions and national research priorities. LDRD is essential to the INL -- it provides a means for the laboratory to pursue novel scientific and engineering research in areas that are deemed too basic or risky for programmatic investments. This research enhances technical capabilities at the laboratory, providing scientific and engineering staff with opportunities for skill building and partnership development.

  5. DOE Advanced Scientific Computing Advisory Committee (ASCAC) Subcommittee Report on Scientific and Technical Information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hey, Tony; Agarwal, Deborah; Borgman, Christine

    The Advanced Scientific Computing Advisory Committee (ASCAC) was charged to form a standing subcommittee to review the Department of Energy’s Office of Scientific and Technical Information (OSTI) and to begin by assessing the quality and effectiveness of OSTI’s recent and current products and services and to comment on its mission and future directions in the rapidly changing environment for scientific publication and data. The Committee met with OSTI staff and reviewed available products, services and other materials. This report summaries their initial findings and recommendations.

  6. NASA's future plans for space astronomy and astrophysics

    NASA Technical Reports Server (NTRS)

    Kaplan, Mike

    1992-01-01

    A summary is presented of plans for the future NASA astrophysics missions called SIRTF (Space Infrared Telescope Facility), SOFIA (Stratospheric Observatory for Infrared Astronomy), SMIM (Submillimeter Intermdiate Mission), and AIM (Astrometric Interferometry Mission), the Greater Observatories, and MFPE (Mission From Planet Earth). Technology needs for these missions are briefly described.

  7. Critical soft landing technology issues for future US space missions

    NASA Technical Reports Server (NTRS)

    Macha, J. M.; Johnson, D. W.; Mcbride, D. D.

    1992-01-01

    A programmatic need for research and development to support parachute-based landing systems has not existed since the end of the Apollo missions in the mid-1970s. Now, a number of planned space programs require advanced landing capabilities for which the experience and technology base does not currently exist. New requirements for landing on land with controllable, gliding decelerators and for more effective impact attenuation devices justify a renewal of the landing technology development effort that existed during the Mercury, Gemini, and Apollo programs. A study was performed to evaluate the current and projected national capability in landing systems and to identify critical deficiencies in the technology base required to support the Assured Crew Return Vehicle and the Two-Way Manned Transportation System. A technology development program covering eight landing system performance issues is recommended.

  8. Advanced Stirling Radioisotope Generator Life Certification Plan

    NASA Technical Reports Server (NTRS)

    Rusick, Jeffrey J.; Zampino, Edward J.

    2013-01-01

    An Advanced Stirling Radioisotope Generator (ASRG) power supply is being developed by the Department of Energy (DOE) in partnership with NASA for potential future deep space science missions. Unlike previous radioisotope power supplies for space exploration, such as the passive MMRTG used recently on the Mars Curiosity rover, the ASRG is an active dynamic power supply with moving Stirling engine mechanical components. Due to the long life requirement of 17 years and the dynamic nature of the Stirling engine, the ASRG project faced some unique challenges trying to establish full confidence that the power supply will function reliably over the mission life. These unique challenges resulted in the development of an overall life certification plan that emphasizes long-term Stirling engine test and inspection when analysis is not practical. The ASRG life certification plan developed is described.

  9. "It Can Bust at Any Seam": Lessons for Deep Space Flight from Mawson's 1911-1914 Australasian Antarctic Expedition

    NASA Astrophysics Data System (ADS)

    Wallace, Phillip Scott

    2010-09-01

    Lessons useful for manned space flight can be gained by looking at exploring expeditions of the past. An aviation-accident style investigation was conducted on two fatalities that occurred on an Antarctic expedition in 1912-13. The causal factors of the accidents were determined; and lessons for future missions beyond LEO gleaned from both the causal factors and from looking at the expedition as a whole. The investigation highlighted, among other things, that probabilistic hazards can eventually take a life and that factors of terrain can and will damage equipment and kill men; that consumables should be segregated such that one mishap does not reduce margins to below those needed for survival, and that manned missions need to be able to jury-rig equipment in the field.

  10. Smallsats, Cubesats and Scientific Exploration

    NASA Astrophysics Data System (ADS)

    Stofan, E. R.

    2015-12-01

    Smallsats (including Cubesats) have taken off in the aerospace research community - moving beyond simple tools for undergraduate and graduate students and into the mainstream of science research. Cubesats started the "smallsat" trend back in the late 1990's early 2000's, with the first Cubesats launching in 2003. NASA anticipates a number of future benefits from small satellite missions, including lower costs, more rapid development, higher risk tolerance, and lower barriers to entry for universities and small businesses. The Agency's Space Technology Mission Directorate is currently addressing technology gaps in small satellite platforms, while the Science Mission Directorate pursues miniaturization of science instruments. Launch opportunities are managed through the Cubesat Launch Initiative, and the Agency manages these projects as sub-orbital payloads with little program overhead. In this session we bring together scientists and technologists to discuss the current state of the smallsat field. We explore ideas for new investments, new instruments, or new applications that NASA should be investing in to expand the utility of smallsats. We discuss the status of a NASA-directed NRC study on the utility of small satellites. Looking to the future, what does NASA need to invest in now, to enable high impact ("decadal survey" level) science with smallsats? How do we push the envelope? We anticipate smallsats will contribute significantly to a more robust exploration and science program for NASA and the country.

  11. EDOS Evolution to Support NASA Future Earth Sciences Missions

    NASA Technical Reports Server (NTRS)

    Cordier, Guy R.; McLemore, Bruce; Wood, Terri; Wilkinson, Chris

    2010-01-01

    This paper presents a ground system architecture to service future NASA decadal missions and in particular, the high rate science data downlinks, by evolving EDOS current infrastructure and upgrading high rate network lines. The paper will also cover EDOS participation to date in formulation and operations concepts for the respective missions to understand the particular mission needs and derived requirements such as data volumes, downlink rates, data encoding, and data latencies. Future decadal requirements such as onboard data recorder management and file protocols drive the need to emulate these requirements within the ground system. The EDOS open system modular architecture is scalable to accommodate additional missions using the current sites antennas and future sites as well and meet the data security requirements and fulfill mission's objectives

  12. Mission Driven Scene Understanding: Dynamic Environments

    DTIC Science & Technology

    2016-06-01

    the Army mission. Then, for example, helpful image cues that relate to mission activities may include time of day, current and future weather...mission.10 In other words, visual saliency also can be used to highlight key image cues that relate to Army mission activities.10 For example, an...to the Army mission. Then, for example, helpful image cues that relate to mission activities may include time of day, current and future weather

  13. Human Mars Mission Performance Crew Taxi Profile

    NASA Technical Reports Server (NTRS)

    Duaro, Vince A.

    1999-01-01

    Using the results from Integrated Mission Program (IMP), a simulation language and code used to model present and future Earth Moon, or Mars missions, this report presents six different case studies of a manned Mars mission. The mission profiles, timelines, propellant requirements, feasibility and perturbation analysis is presented for two aborted, two delayed rendezvous, and two normal rendezvous cases for a future Mars mission.

  14. Vision for Micro Technology Space Missions. Chapter 2

    NASA Technical Reports Server (NTRS)

    Dennehy, Neil

    2005-01-01

    It is exciting to contemplate the various space mission applications that Micro Electro Mechanical Systems (MEMS) technology could enable in the next 10-20 years. The primary objective of this chapter is to both stimulate ideas for MEMS technology infusion on future NASA space missions and to spur adoption of the MEMS technology in the minds of mission designers. This chapter is also intended to inform non-space oriented MEMS technologists, researchers and decision makers about the rich potential application set that future NASA Science and Exploration missions will provide. The motivation for this chapter is therefore to lead the reader down a path to identify and it is exciting to contemplate the various space mission applications that Micro Electro Mechanical Systems (MEMS) technology could enable in the next 10-20 years. The primary objective of this chapter is to both stimulate ideas for MEMS technology infusion on future NASA space missions and to spur adoption of the MEMS technology in the minds of mission designers. This chapter is also intended to inform non-space oriented MEMS technologists, researchers and decision makers about the rich potential application set that future NASA Science and Exploration missions will provide. The motivation for this chapter is therefore to lead the reader down a path to identify and consider potential long-term, perhaps disruptive or revolutionary, impacts that MEMS technology may have for future civilian space applications. A general discussion of the potential for MEMS in space applications is followed by a brief showcasing of a few selected examples of recent MEMS technology developments for future space missions. Using these recent developments as a point of departure, a vision is then presented of several areas where MEMS technology might eventually be exploited in future Science and Exploration mission applications. Lastly, as a stimulus for future research and development, this chapter summarizes a set of barriers to progress, design challenges and key issues that must be overcome in order for the community to move on, from the current nascent phase of developing and infusing MEMS technology into space missions, in order to achieve its full future potential.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sjoreen, Terrence P

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries for all ORNL LDRD research activities supported during FY 2007. The associated FY 2007 ORNL LDRD Self-Assessment (ORNL/PPA-2008/2) provides financial data andmore » an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching mission to advance the national, economic, and energy security of the United States and promote scientific and technological innovation in support of that mission. As a national resource, the Laboratory also applies its capabilities and skills to specific needs of other federal agencies and customers through the DOE Work for Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at http://www.ornl.gov/. LDRD is a relatively small but vital DOE program that allows ORNL, as well as other DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing the Laboratory's ability to address future DOE missions; (3) fostering creativity and stimulating exploration of forefront science and technology; (4) serving as a proving ground for new research; and (5) supporting high-risk, potentially high-value R&D. Through LDRD the Laboratory is able to improve its distinctive capabilities and enhance its ability to conduct cutting-edge R&D for its DOE and WFO sponsors. To meet the LDRD objectives and fulfill the particular needs of the Laboratory, ORNL has established a program with two components: the Director's R&D Fund and the Seed Money Fund. As outlined in Table 1, these two funds are complementary. The Director's R&D Fund develops new capabilities in support of the Laboratory initiatives, while the Seed Money Fund is open to all innovative ideas that have the potential for enhancing the Laboratory's core scientific and technical competencies. Provision for multiple routes of access to ORNL LDRD funds maximizes the likelihood that novel ideas with scientific and technological merit will be recognized and supported.« less

  16. Savannah River Site Eastern Transportation Hub: A Concept For a DOE Eastern Packaging, Staging and Maintenance Center - 13143

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    England, Jeffery L.; Adams, Karen; Maxted, Maxcine

    2013-07-01

    The Department of Energy (DOE) is working to de-inventory sites and consolidate hazardous materials for processing and disposal. The DOE administers a wide range of certified shipping packages for the transport of hazardous materials to include Special Nuclear Material (SNM), radioactive materials, sealed sources and radioactive wastes. A critical element to successful and safe transportation of these materials is the availability of certified shipping packages. There are over seven thousand certified packagings (i.e., Type B/Type AF) utilized within the DOE for current missions. The synergistic effects of consolidated maintenance, refurbishment, testing, certification, and costing of these services would allow formore » efficient management of the packagings inventory and to support anticipated future in-commerce shipping needs. The Savannah River Site (SRS) receives and ships radioactive materials (including SNM) and waste on a regular basis for critical missions such as consolidated storage, stabilization, purification, or disposition using H-Canyon and HB-Line. The Savannah River National Laboratory (SRNL) has the technical capability and equipment for all aspects of packaging management. SRS has the only active material processing facility in the DOE complex and is one of the sites of choice for nuclear material consolidation. SRS is a logical location to perform maintenance and periodic testing of the DOE fleet of certified packagings. This initiative envisions a DOE Eastern Packaging Staging and Maintenance Center (PSMC) at the SRS and a western hub at the Nevada National Security Site (NNSS), an active DOE Regional Disposal Site. The PSMC's would be the first place DOE would go to meet their radioactive packaging needs and the primary locations projects would go to disposition excess packaging for beneficial reuse. These two hubs would provide the centralized management of a packaging fleet rather than the current approach to design, procure, maintain and dispose of packagings on a project-by-project basis. This initiative provides significant savings in packaging costs and acceleration of project schedules. In addition to certified packaging, the PSMC would be well suited for select designs of 7A Type A packaging and Industrial Packaging. (authors)« less

  17. Guidance, Navigation, and Control Technology Assessment for Future Planetary Science Missions

    NASA Technical Reports Server (NTRS)

    Beauchamp, Pat; Cutts, James; Quadrelli, Marco B.; Wood, Lincoln J.; Riedel, Joseph E.; McHenry, Mike; Aung, MiMi; Cangahuala, Laureano A.; Volpe, Rich

    2013-01-01

    Future planetary explorations envisioned by the National Research Council's (NRC's) report titled Vision and Voyages for Planetary Science in the Decade 2013-2022, developed for NASA Science Mission Directorate (SMD) Planetary Science Division (PSD), seek to reach targets of broad scientific interest across the solar system. This goal requires new capabilities such as innovative interplanetary trajectories, precision landing, operation in close proximity to targets, precision pointing, multiple collaborating spacecraft, multiple target tours, and advanced robotic surface exploration. Advancements in Guidance, Navigation, and Control (GN&C) and Mission Design in the areas of software, algorithm development and sensors will be necessary to accomplish these future missions. This paper summarizes the key GN&C and mission design capabilities and technologies needed for future missions pursuing SMD PSD's scientific goals.

  18. NGNP Project 2011 Status and Path Forward

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    L.E. Demick

    2011-12-01

    High Temperature Gas Reactor (HTGR) technology can play an important role in the United States’ energy future by extending the use of nuclear energy for non-electricity energy production missions as well as continuing to provide a considerable base load electric power generation capability. Extending nuclear energy into the industrial and transportation sectors through the co-production of process heat and electricity provides safe and reliable energy for these sectors in an environmentally responsible manner. The safety case for the modular HTGR provides a substantial improvement in nuclear plant safety for the protection of the public and the environment, and supports collocationmore » of the HTGR with major industrial facilities. The NGNP Project at the Idaho National Laboratory has been working toward an objective of commercializing the HTGR technology under DOE direction since 2006. The Project is undergoing a quantum shift in direction and scope as a result of recent DOE decisions. This paper summarizes where the Project has been, where it is at the time of this writing and what is needed in future activities to commercialize HTGR technology.« less

  19. The Future of Human Exploration

    NASA Technical Reports Server (NTRS)

    Cooke, Doug

    2001-01-01

    This slide presentation reviews the near term future of human space exploration in terms of possible mission scenarios, propulsion technologies, orbital dynamics that lead to Low-Energy Transfer from Earth-Moon LI to Solar Libration Points and Return Potential Staging Point for Human Mars Missions. It also examines the required evolution of mission architecture, solar electric propulsion concept, vehicle concepts for future Mars missions, and an overview of a Mars Mission, Also in this presentation are pictures of several historic personages and occasions, and a view of a Mars Meteorite (i.e., ALH84001.0)

  20. Progress and future direction for the interim safe storage and disposal of Hanford high-level waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinzer, J.E.; Wodrich, D.D.; Bacon, R.F.

    This paper describes the progress made at the largest environmental cleanup program in the United States. Substantial advances in methods to start interim safe storage of Hanford Site high-level wastes, waste characterization to support both safety- and disposal-related information needs, and proceeding with cost-effective disposal by the U.S. Department of Energy (DOE) and its Hanford Site contractors, have been realized. Challenges facing the Tank Waste Remediation System (TWRS) Program, which is charged with the dual and parallel missions of interim safe storage and disposal of the high-level tank waste stored at the Hanford Site, are described. In these times ofmore » budget austerity, implementing an ongoing program that combines technical excellence and cost effectiveness is the near-term challenge. The technical initiatives and progress described in this paper are made more cost effective by DOE`s focus on work force productivity improvement, reduction of overhead costs, and reduction, integration and simplification of DOE regulations and operations requirements to more closely model those used in the private sector.« less

  1. Enterprise SRS: leveraging ongoing operations to advance radioactive waste management technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, Alice M.; Wilmarth, William; Marra, John E.

    2013-07-01

    The Savannah River Site (SRS) is re-purposing its vast array of assets to solve future national issues regarding environmental stewardship, national security, and clean energy. The vehicle for this transformation is Enterprise SRS which presents a new, strategic view of SRS as a united endeavor for 'all things nuclear' as opposed to a group of distinct and separate entities with individual missions and organizations. Key among the Enterprise SRS strategic initiatives is the integration of research into facilities in conjunction with ongoing missions to provide researchers from other national laboratories, academic institutions, and commercial entities the opportunity to demonstrate theirmore » technologies in a relevant environment and scale prior to deployment. To manage that integration of research demonstrations into site facilities, The DOE Savannah River Operations Office, Savannah River Nuclear Solutions, and the Savannah River National Laboratory (SRNL) have established a center for applied nuclear materials processing and engineering research (hereafter referred to as the Center). The key objective of this initiative is to bridge the gap between promising transformational nuclear materials management advancements and large-scale deployment of the technology by using SRS assets (e.g. facilities, staff, and property) for those critical engineering-scale demonstrations necessary to assure the successful deployment of new technologies. The Center will coordinate the demonstration of R and D technologies and serve as the interface between the engineering-scale demonstration and the R and D programs, essentially providing cradle-to-grave support to the R and D team during the demonstration. While the initial focus of the Center will be on the effective use of SRS assets for these demonstrations, the Center also will work with research teams to identify opportunities to perform R and D demonstrations at other facilities. Unique to this approach is the fact that these SRS assets will continue to accomplish DOE's critical nuclear material missions (e.g., processing in H-Canyon and plutonium storage in K-Area). These demonstrations can be accomplished in a more cost-effective manner through the use of existing facilities in conjunction with ongoing missions. Essentially, the R and D program would not need to pay the full operational cost of a facility, just the incremental cost of performing the demonstration. Current Center activities have been focused on integrating advanced safeguards monitoring technology demonstrations into the SRS H-Canyon and advanced location technology demonstrations into K-Area Materials Storage. These demonstrations are providing valuable information to researchers and program owners. In addition these demonstrations are providing the Center with an improved protocol for demonstration management that can be exercised across the entire SRS (and to offsite venues) to ensure that future demonstrations are done efficiently and provide an opportunity to use these unique assets for multiple purposes involving national laboratories, academia, and commercial entities. Key among the envisioned future use of SRS assets is the demonstration of new radioactive waste management technologies critical for advancing the mission needs of the DOE-EM program offices in their efforts to cleanup 107 sites across the United States. Of particular interest is the demonstration of separations technologies in H-Canyon. Given the modular design of H-Canyon, those demonstrations would be accomplished using a process frame. The demonstration equipment would be installed on the process frame and that frame would then be positioned into an H-Canyon cell so that the demonstration is performed in a radiological environment involving prototypic nuclear materials. (authors)« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    W. Wester

    Fermilab is executing Laboratory Directed Research and Development (LDRD) as outlined by order DOE O 413.2B in order to enhance and realize the mission of the laboratory in a manner that also supports the laboratory’s strategic objectives and the mission of the Department of Energy. LDRD funds enable scientific creativity, allow for exploration of “high risk, high payoff” research, and allow for the demonstration of new ideas, technical concepts, and devices. LDRD also has an objective of maintaining and enhancing the scientific and technical vitality of Fermilab. LDRD is able to fund employee-initiated proposals that address the current strategic objectivesmore » and better position Fermilab for future mission needs. The request for such funds is made in consideration of the investment needs, affordability, and directives from DOE and Congress. Review procedures of the proposals will insure that those proposals which most address the strategic goals of the DOE and the Laboratory or which best position Fermilab for the future will be recommended to the Laboratory Director who has responsibility for approval. The execution of each approved project will be the responsibility of the Principal Investigator, PI, who will follow existing Laboratory guidelines to ensure compliance with safety, environmental, and quality assurance practices. A Laboratory Director-appointed LDRD Coordinator will work with Committees, Laboratory Management, other Fermilab Staff, and the PI’s to oversee the implementation of policies and procedures of LDRD and provide the management and execution of this Annual Program Plan. FY16 represents third fiscal year in which LDRD has existed at Fermilab. The number of preliminary proposals (117) submitted in response to the LDRD Call for Proposals indicates very strong interest of the program within the Fermilab community. The first two Calls have resulted in thirteen active LDRD projects – and it is expected that between five and seven new projects will be approved in response to the FY16 Call for Proposals. The implementation of the program compared with FY15 is mostly unchanged except that the program is on the expected normal fiscal year calendar cycle with new projects starting at the beginning of the fiscal year. Because of this, there is some expanded discussion that the Laboratory Director may decide to initiate mid-year Late Start or Strategic- Hire LDRD projects.« less

  3. International Space Station as Analog of Interplanetary Transit Vehicle For Biomedical Research

    NASA Technical Reports Server (NTRS)

    Charles, John B.

    2012-01-01

    Astronaut missions lasting up to six months aboard the International Space Station (ISS) have much in common with interplanetary flights, especially the outbound, Earth-to-Mars transit portion of a Mars mission. Utilization of ISS and other appropriate platforms to prepare for crewed expeditions to planetary destinations including Mars has been the work of NASA's Human Research Program (HRP) since 2005. HRP is charged specifically to understand and reduced the risks to astronaut health and performance in space exploration missions: everything HRP does and has done is directly related to that responsibility. Two major categories of human research have capitalized on ISS capabilities. The first category centers on the biomedical aspects of long-duration exposure to spaceflight factors, including prolonged weightlessness, radiation exposure, isolation and confinement, and actual risk to life and limb. These studies contribute to astronaut safety, health and efficiency on any long-duration missions, whether in low Earth orbit (LEO) or beyond. Qualitatively, weightlessness is weightlessness, whether in LEO or en route to Mars. The HRP sponsors investigations into losses in muscle and bone integrity, cardiovascular function, sensory-motor capability, immune capacity and psychosocial health, and development and demonstration of appropriate treatments and preventative measures. The second category includes studies that are focused on planetary expeditions beyond LEO. For these, ISS offers a high fidelity analog to investigate the combined effects of spaceflight factors (described above) plus the isolation and autonomy associated with simulated increasing distance from Earth. Investigations address crew cohesion, performance and workload, and mission control performance. The behavioral health and performance and space human factors aspects of planetary missions dominate this category. Work has already begun on a new investigation in this category which will examine the effects of a simulated lag in communications (mimicking that expected in transit to Mars) on astronaut performance aboard ISS. Extension of the current ISS increment duration from six months to nine or even twelve months would provide opportunities for expanded research relevant to long duration missions, albeit at the cost of fewer astronauts as subjects for those investigations. Given the possible limited access to ISS after 2020, if ISS is intended to facilitate future exploration missions, then the in-flight human investigations should focus on those that clearly enable future exploration missions.

  4. Extraordinary Tools for Extraordinary Science: The Impact ofSciDAC on Accelerator Science&Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryne, Robert D.

    2006-08-10

    Particle accelerators are among the most complex and versatile instruments of scientific exploration. They have enabled remarkable scientific discoveries and important technological advances that span all programs within the DOE Office of Science (DOE/SC). The importance of accelerators to the DOE/SC mission is evident from an examination of the DOE document, ''Facilities for the Future of Science: A Twenty-Year Outlook''. Of the 28 facilities listed, 13 involve accelerators. Thanks to SciDAC, a powerful suite of parallel simulation tools has been developed that represent a paradigm shift in computational accelerator science. Simulations that used to take weeks or more now takemore » hours, and simulations that were once thought impossible are now performed routinely. These codes have been applied to many important projects of DOE/SC including existing facilities (the Tevatron complex, the Relativistic Heavy Ion Collider), facilities under construction (the Large Hadron Collider, the Spallation Neutron Source, the Linac Coherent Light Source), and to future facilities (the International Linear Collider, the Rare Isotope Accelerator). The new codes have also been used to explore innovative approaches to charged particle acceleration. These approaches, based on the extremely intense fields that can be present in lasers and plasmas, may one day provide a path to the outermost reaches of the energy frontier. Furthermore, they could lead to compact, high-gradient accelerators that would have huge consequences for US science and technology, industry, and medicine. In this talk I will describe the new accelerator modeling capabilities developed under SciDAC, the essential role of multi-disciplinary collaboration with applied mathematicians, computer scientists, and other IT experts in developing these capabilities, and provide examples of how the codes have been used to support DOE/SC accelerator projects.« less

  5. Extraordinary tools for extraordinary science: the impact of SciDAC on accelerator science and technology

    NASA Astrophysics Data System (ADS)

    Ryne, Robert D.

    2006-09-01

    Particle accelerators are among the most complex and versatile instruments of scientific exploration. They have enabled remarkable scientific discoveries and important technological advances that span all programs within the DOE Office of Science (DOE/SC). The importance of accelerators to the DOE/SC mission is evident from an examination of the DOE document, ''Facilities for the Future of Science: A Twenty-Year Outlook.'' Of the 28 facilities listed, 13 involve accelerators. Thanks to SciDAC, a powerful suite of parallel simulation tools has been developed that represent a paradigm shift in computational accelerator science. Simulations that used to take weeks or more now take hours, and simulations that were once thought impossible are now performed routinely. These codes have been applied to many important projects of DOE/SC including existing facilities (the Tevatron complex, the Relativistic Heavy Ion Collider), facilities under construction (the Large Hadron Collider, the Spallation Neutron Source, the Linac Coherent Light Source), and to future facilities (the International Linear Collider, the Rare Isotope Accelerator). The new codes have also been used to explore innovative approaches to charged particle acceleration. These approaches, based on the extremely intense fields that can be present in lasers and plasmas, may one day provide a path to the outermost reaches of the energy frontier. Furthermore, they could lead to compact, high-gradient accelerators that would have huge consequences for US science and technology, industry, and medicine. In this talk I will describe the new accelerator modeling capabilities developed under SciDAC, the essential role of multi-disciplinary collaboration with applied mathematicians, computer scientists, and other IT experts in developing these capabilities, and provide examples of how the codes have been used to support DOE/SC accelerator projects.

  6. Development of fluxgate magnetometers and applications to the space science missions

    NASA Astrophysics Data System (ADS)

    Matsuoka, A.; Shinohara, M.; Tanaka, Y.-M.; Fujimoto, A.; Iguchi, K.

    2013-11-01

    Magnetic field is one of the essential physical parameters to study the space physics and evolution of the solar system. There are several methods to measure the magnetic field in the space by spacecraft and rockets. Fluxgate magnetometer has been most generally used out of them because it measures the vector field accurately and does not need much weight and power budgets. When we try more difficult missions such as multi-satellite observation, landing on the celestial body and exploration in the area of severe environment, we have to modify the magnetometer or develop new techniques to make the instrument adequate for those projects. For example, we developed a 20-bit delta-sigma analogue-to-digital converter for MGF-I on the BepiColombo MMO satellite, to achieve the wide-range (±2000 nT) measurement with good resolution in the high radiation environment. For further future missions, we have examined the digitalizing of the circuit, which has much potential to drastically reduce the instrument weight, power consumption and performance dependence on the temperature.

  7. Pre- to Post- CubeSats

    NASA Astrophysics Data System (ADS)

    Cutler, J.

    2015-12-01

    CubeSats sprung from a formative picosatellite effort at a university in the heart of Silicon Valley, took root in a university-led university environment, and have grown into complex-shaped explorers in both near and soon-to-be deep space. Private citizens, businesses, government are building and launching a variety of science, technology demonstration, and service missions. A new generation of space explorers is gaining first hand experience in space missions at all educational levels. There is new life and new energy in the space program. However, space is still difficult. The environment is harsh. Funding is sparse. This talk explores this history and the future of CubeSats from the context of a university-centric laboratory that emphasizes teaching, research, and entrepreneurial impact. It will explore the following questions: What sparked the CubeSat innovation? What are longer lasting lessons of this community? Where are places we can go next? What does it take to get there? The talk will draw on lessons learned from building over six on-orbit CubeSat missions and training hundreds of space engineers.

  8. Off-plane x-ray reflection grating fabrication

    NASA Astrophysics Data System (ADS)

    Peterson, Thomas J.; DeRoo, Casey T.; Marlowe, Hannah; McEntaffer, Randall L.; Miles, Drew M.; Tutt, James H.; Schultz, Ted B.

    2015-09-01

    Off-plane X-ray diffraction gratings with precision groove profiles at the submicron scale will be used in next generation X-ray spectrometers. Such gratings will be used on a current NASA suborbital rocket mission, the Off-plane Grating Rocket Experiment (OGRE), and have application for future grating missions. The fabrication of these gratings does not come without challenges. High performance off-plane gratings must be fabricated with precise radial grating patterns, optically at surfaces, and specific facet angles. Such gratings can be made using a series of common micro-fabrication techniques. The resulting process is highly customizable, making it useful for a variety of different mission architectures. In this paper, we detail the fabrication method used to produce high performance off-plane gratings and report the results of a preliminary qualification test of a grating fabricated in this manner. The grating was tested in the off-plane `Littrow' configuration, for which the grating is most efficient for a given diffraction order, and found to achieve 42% relative efficiency in the blaze order with respect to all diffracted light.

  9. Autonomous Aerobraking Development Software: Phase 2 Summary

    NASA Technical Reports Server (NTRS)

    Cianciolo, Alicia D.; Maddock, Robert W.; Prince, Jill L.; Bowes, Angela; Powell, Richard W.; White, Joseph P.; Tolson, Robert; O'Shaughnessy, Daniel; Carrelli, David

    2013-01-01

    NASA has used aerobraking at Mars and Venus to reduce the fuel required to deliver a spacecraft into a desired orbit compared to an all-propulsive solution. Although aerobraking reduces the propellant, it does so at the expense of mission duration, large staff, and DSN coverage. These factors make aerobraking a significant cost element in the mission design. By moving on-board the current ground-based tasks of ephemeris determination, atmospheric density estimation, and maneuver sizing and execution, a flight project would realize significant cost savings. The NASA Engineering and Safety Center (NESC) sponsored Phase 1 and 2 of the Autonomous Aerobraking Development Software (AADS) study, which demonstrated the initial feasibility of moving these current ground-based functions to the spacecraft. This paper highlights key state-of-the-art advancements made in the Phase 2 effort to verify that the AADS algorithms are accurate, robust and ready to be considered for application on future missions that utilize aerobraking. The advancements discussed herein include both model updates and simulation and benchmark testing. Rigorous testing using observed flight atmospheres, operational environments and statistical analysis characterized the AADS operability in a perturbed environment.

  10. NASA Goddard Thermal Technology Overview 2018

    NASA Technical Reports Server (NTRS)

    Butler, Dan; Swanson, Ted

    2018-01-01

    This presentation summarizes the current plans and efforts at NASA/Goddard to develop new thermal control technology for anticipated future missions. It will also address some of the programmatic developments currently underway at NASA, especially with respect to the NASA Technology Development Program. The effects of the recently submitted NASA budget will also be addressed. While funding for basic technology development is still tight, significant efforts are being made in direct support of flight programs. Thermal technology Implementation on current flight programs will be reviewed, and the recent push for Cube-sat mission development will also be addressed. Many of these technologies also have broad applicability to DOD, DOE, and commercial programs. Partnerships have been developed with the Air Force, Navy, and various universities to promote technology development. In addition, technology development activities supported by internal research and development (IRAD) program and the Small Business Innovative Research (SBIR) program are reviewed in this presentation. Specific technologies addressed include; two-phase systems applications and issues on NASA missions, latest developments of thermal control coatings, Atomic Layer Deposition (ALD), Micro-scale Heat Transfer, and various other research activities.

  11. How autonomy and the web are taking the people out of TacSat-2

    NASA Astrophysics Data System (ADS)

    Finley, Charles J.

    2006-05-01

    One of the most costly components of the on-orbit operation of a spacecraft is the people that execute the mission. Historically, for Air Force Research Laboratory (AFRL) and the Department of Defense Space Test Program (STP) research and development, test and evaluation (RDT&E) space missions, a team of fifteen personnel maintains 24-hour coverage for the three-week Launch and Early Operations (L/EO) phase of the mission and four one-week L/EO rehearsals. During the Nominal Operations phase of the mission, 2.5 "man-days" of support are necessary each day that the spacecraft remains on-orbit, as well as during the two, week-long, nominal operations rehearsals. Therefore, the mission-dedicated personnel contribution to the cost of a one-year mission is more than eleven man-years, and this does not include the personnel that actually operate the antennas at the various remote ground facilities or develop and maintain the mission-specific or shared-use ground network, hardware, and software. In the low-budget RDT&E world, hardware, software, or Concept of Operations (CONOPS) developments that significantly reduce the necessary Operations personnel investment can mean the difference between a mission that does or does not survive. This paper explores the CONOPS and suite of tools that the TacSat-2 program has put together to achieve maximum mission effectiveness at minimum manpower cost.

  12. Future Missions to Study Signposts of Planets

    NASA Technical Reports Server (NTRS)

    Traub, Wesley A.

    2011-01-01

    This talk will focus on debris disks, will compare ground and space and will discuss 2 proposed missions, Exoplanetary Circumstellar Environments And Disk Explorer (EXCEDE) and Zodiac II. At least 2 missions have been proposed for disk imaging. The technology is largely in hand today. A small mission would do excellent disk science, and would test technology for a future large mission for planets.

  13. EMSL Outlook Review 2005

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, Allison A.

    2005-04-01

    The William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) is a national user facility that contains state-of-the-art instrumentation and expert resources available for use by researchers from academia, industry, and the national laboratory system. The facility is supported by the U.S. Department of Energy’s (DOE) Biological and Environmental Research Program, but the research conducted within the facility benefits many funding agencies, including other branches of DOE, the National Institutes of Health, the National Science Foundation, and the Department of Defense. EMSL requires the continued funding and support of its stakeholders and clients to continue to grow its mission, build itsmore » reputation as a sought-after national user facility with cutting-edge capabilities, and attract high-profile users who will work to solve the most critical scientific challenges that affect DOE and the nation. In this vein, this document has been compiled to provide these stakeholders and clients with a review document that provides an abundance of information on EMSL’s history, current research activities, and proposed future direction.« less

  14. The Importance of Simulation Workflow and Data Management in the Accelerated Climate Modeling for Energy Project

    NASA Astrophysics Data System (ADS)

    Bader, D. C.

    2015-12-01

    The Accelerated Climate Modeling for Energy (ACME) Project is concluding its first year. Supported by the Office of Science in the U.S. Department of Energy (DOE), its vision is to be "an ongoing, state-of-the-science Earth system modeling, modeling simulation and prediction project that optimizes the use of DOE laboratory resources to meet the science needs of the nation and the mission needs of DOE." Included in the "laboratory resources," is a large investment in computational, network and information technologies that will be utilized to both build better and more accurate climate models and broadly disseminate the data they generate. Current model diagnostic analysis and data dissemination technologies will not scale to the size of the simulations and the complexity of the models envisioned by ACME and other top tier international modeling centers. In this talk, the ACME Workflow component plans to meet these future needs will be described and early implementation examples will be highlighted.

  15. Developing a Free-Piston Stirling Convertor for advanced radioisotope space power systems

    NASA Astrophysics Data System (ADS)

    Qiu, Songgang; Augenblick, John E.; White, Maurice A.; Peterson, Allen A.; Redinger, Darin L.; Petersen, Stephen L.

    2002-01-01

    The Department of Energy (DOE) has selected Free-Piston Stirling Convertors as a technology for future advanced radioisotope space power systems. In August 2000, DOE awarded competitive Phase I, Stirling Radioisotope Generator (SRG) power system integration contracts to three major aerospace contractors, resulting in SRG conceptual designs in February 2001. All three contractors based their designs on the Technology Demonstration Convertor (TDC) developed by Stirling Technology Company (STC) for DOE. The contract award to a single system integration contractor for Phases II and III of the SRG program is anticipated in late 2001. The first potential SRG mission is targeted for a Mars rover. This paper provides a description of the Flight Prototype (FP) Stirling convertor design as compared to the previous TDC design. The initial flight prototype units are already undergoing performance tuning at STC. The new design will be hermetically scaled and will provide a weight reduction from approximately 4.8 kg to approximately 3.9 kg. .

  16. The role of automatic control in future interplanetary spaceflight

    NASA Technical Reports Server (NTRS)

    Scull, J. R.; Moore, J. W.

    1976-01-01

    The paper reviews the guidance and automatic control techniques used in previous U.S. and Soviet lunar and planetary exploration spacecraft, and examines the objectives and requirements of potential future interplanetary missions from the viewpoint of their further demands on automatic control technology. These missions include the Venus orbital imaging radar mission, the Pioneer Mars penetrator mission, the Mars surface sample return mission, Pioneer Saturn/Uranus/Titan probe missions, the Mariner Jupiter orbiter with daughter satellite, and comet and asteroid missions.

  17. Solid Waste Management Requirements Definition for Advanced Life Support Missions: Results

    NASA Technical Reports Server (NTRS)

    Alazraki, Michael P.; Hogan, John; Levri, Julie; Fisher, John; Drysdale, Alan

    2002-01-01

    Prior to determining what Solid Waste Management (SWM) technologies should be researched and developed by the Advanced Life Support (ALS) Project for future missions, there is a need to define SWM requirements. Because future waste streams will be highly mission-dependent, missions need to be defined prior to developing SWM requirements. The SWM Working Group has used the mission architecture outlined in the System Integration, Modeling and Analysis (SIMA) Element Reference Missions Document (RMD) as a starting point in the requirement development process. The missions examined include the International Space Station (ISS), a Mars Dual Lander mission, and a Mars Base. The SWM Element has also identified common SWM functionalities needed for future missions. These functionalities include: acceptance, transport, processing, storage, monitoring and control, and disposal. Requirements in each of these six areas are currently being developed for the selected missions. This paper reviews the results of this ongoing effort and identifies mission-dependent resource recovery requirements.

  18. Annual Sustainability Report FY 2014. Incorporates NREL Site Sustainability Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rukavina, Frank

    NREL's Sustainability Program is responsible for upholding all executive orders, federal regulations, U.S. Department of Energy (DOE) orders, and goals related to sustainable and resilient facility operations. But NREL continues to expand sustainable practices above and beyond the laboratory's regulations and requirements to ensure that the laboratory fulfills its mission into the future, leaves the smallest possible legacy footprint, and models sustainable operations and behaviors on national, regional, and local levels. The report, per the GRI reporting format, elaborates on multi-year goals relative to executive orders, achievements, and challenges; and success stories provide specific examples. A section called 'Sustaining NREL'smore » Future Through Integration' provides insight into how NREL is successfully expanding the adoption of renewable energy technologies through integration.« less

  19. Aerial Observation Needs Workshop, May 13-14, 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nasiri, Shaima; Serbin, Shawn; Lesmes, David

    2015-10-01

    The mission of the Climate and Environmental Sciences Division (CESD) of the Office of Biological and Environmental Research (BER) within the U.S. Department of Energy's (DOE) Office of Science is "to advance a robust, predictive understanding of Earth's climate and environmental systems and to inform the development of sustainable solutions to the nation's energy and environmental challenges." Accomplishing this mission requires aerial observations of the atmospheric and terrestrial components of the climate system. CESD is assessing its current and future aerial observation needs to develop a strategy and roadmap of capability requirements for the next decade. To facilitate this process,more » a workshop was convened that consisted of invited experts in the atmospheric and terrestrial sciences, airborne observations, and modeling. This workshop report summarizes the community input prior to and during the workshop on research challenges and opportunities, as well as specific science questions and observational needs that require aerial observations to address.« less

  20. A Small Fission Power System for NASA Planetary Science Missions

    NASA Technical Reports Server (NTRS)

    Mason, Lee; Casani, John; Elliott, John; Fleurial, Jean-Pierre; MacPherson, Duncan; Nesmith, William; Houts, Michael; Bechtel, Ryan; Werner, James; Kapernick, Rick; hide

    2011-01-01

    In March 2010, the Decadal Survey Giant Planets Panel (GPP) requested a short-turnaround study to evaluate the feasibility of a small Fission Power System (FPS) for future unspecified National Aeronautics and Space Administration (NASA) science missions. FPS technology was considered a potential option for power levels that might not be achievable with radioisotope power systems. A study plan was generated and a joint NASA and Department of Energy (DOE) study team was formed. The team developed a set of notional requirements that included 1-kW electrical output, 15-year design life, and 2020 launch availability. After completing a short round of concept screening studies, the team selected a single concept for concentrated study and analysis. The selected concept is a solid block uranium-molybdenum reactor core with heat pipe cooling and distributed thermoelectric power converters directly coupled to aluminum radiator fins. This paper presents the preliminary configuration, mass summary, and proposed development program.

  1. Environmental Monitoring as Part of Life Support for the Crew Habitat for Lunar and Mars Missions

    NASA Technical Reports Server (NTRS)

    Jan, Darrell L.

    2010-01-01

    Like other crewed space missions, future missions to the moon and Mars will have requirements for monitoring the chemical and microbial status of the crew habitat. Monitoring the crew habitat becomes more critical in such long term missions. This paper will describe the state of technology development for environmental monitoring of lunar lander and lunar outpost missions, and the state of plans for future missions.

  2. The Viking biology results

    NASA Technical Reports Server (NTRS)

    Klein, Harold P.

    1989-01-01

    A brief review of the purposes and the results from the Viking Biology experiments is presented, in the expectation that the lessons learned from this mission will be useful in planning future approaches to the biological exploration of Mars. Since so little was then known about potential micro-environments on Mars, three different experiments were included in the Viking mission, each one based on different assumptions about what Martian organisms might be like. In addition to the Viking Biology Instrument (VBI), important corollary information was obtained from the Viking lander imaging system and from the molecular analysis experiments that were conducted using the gas chromatograph-mass spectrometer (GCMS) instrument. No biological objects were noted by the lander imaging instrument. The GCMS did not detect any organic compounds. A description of the tests conducted by the Gas Exchange Experiment, the Labeled Release experiment, and the Pyrolytic Release experiment is given. Results are discussed. Taken as a whole, the Viking data yielded no unequivocal evidence for a Martian biota at either landing site. The results also revealed the presence of one or more reactive oxidants in the surface material and these need to be further characterized, as does the range of micro-environments, before embarking upon future searches for extant life on Mars.

  3. Laboratory Directed Research and Development Annual Report FY 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, Kelly O.

    A national laboratory must establish and maintain an environment in which creativity and innovation are encouraged and supported in order to fulfill its missions and remain viable in the long term. As such, multiprogram laboratories are given discretion to allocate a percentage of their operating budgets to support research and development projects that align to PNNL’s and DOE’s missions and support the missions of other federal agencies, including DHS, DOD, and others. DOE Order 413.2C sets forth DOE’s Laboratory Directed Research and Development (LDRD) policy and guidelines for DOE multiprogram laboratories, and it authorizes the national laboratories to allocate upmore » to 6 percent of their operating budgets to fund the program. LDRD is innovative research and development, selected by the Laboratory Director or his/her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory. The projects supported by LDRD funding all have demonstrable ties to DOE/DHS missions and may also be relevant to the missions of other federal agencies that sponsor work at the Laboratory. The program plays a key role in attracting the best and brightest scientific staff, which is needed to serve the highest priority DOE mission objectives. Individual project reports comprise the bulk of this LDRD report. The Laboratory focuses its LDRD research on scientific assets that often address more than one scientific discipline.« less

  4. Laboratory Directed Research and Development Annual Report FY 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, Kelly O.

    A national laboratory must establish and maintain an environment in which creativity and innovation are encouraged and supported in order to fulfill its missions and remain viable in the long term. As such, multiprogram laboratories are given discretion to allocate a percentage of their operating budgets to support research and development projects that align to PNNL’s and DOE’s missions and support the missions of other federal agencies, including DHS, DOD, and others. DOE Order 413.2C sets forth DOE’s Laboratory Directed Research and Development (LDRD) policy and guidelines for DOE multiprogram laboratories, and it authorizes the national laboratories to allocate upmore » to 6 percent of their operating budgets to fund the program. LDRD is innovative research and development, selected by the Laboratory Director or his/her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory. The projects supported by LDRD funding all have demonstrable ties to DOE/DHS missions and may also be relevant to the missions of other federal agencies that sponsor work at the Laboratory. The program plays a key role in attracting the best and brightest scientific staff, which is needed to serve the highest priority DOE mission objectives. Individual project reports comprise the bulk of this LDRD report. The Laboratory focuses its LDRD research on scientific assets that often address more than one scientific discipline.« less

  5. A Selection Methodology for the RTOS Market

    NASA Astrophysics Data System (ADS)

    Melanson, P.; Tafazoli, S.

    In past years, the market of Operating Systems (OS) has been quite active. One of those key markets is to support embedded real-time applications in which the OS must guarantee the timeliness as well as the correctness of the processing. Many OS claim to be Real-Time Operating Systems (RTOS), but often, it is only by reviewing the OS specifications or detailed information that one can truly identify the OS that enables real- time applications. Designers are faced with and impressive task when selecting an RTOS for their space mission. Whether for historical reasons or due to the rapid evolution of the RTOS market, it appears that RTOS are not evaluated for each mission but rather imposed. Although reasons for imposing this choice can be well justified, other times one is left to wonder if the lack of evaluation to mission requirements can lead to increased risks down the road. How does one select the proper RTOS for space missions, which will a) meet the requirements, b) correspond with the knowledge and expertise of the staff and c) continue to be a strategic choice for the future? The purpose of this paper is to compare commercially available RTOS that are suitable for space missions requiring hard real-time capabilities. It is our belief that this research identifies the important products for space missions and presents a methodology to select the appropriate RTOS that will meet design requirements and other relevant criteria. Lastly, the paper will present the volatility of the market in the past two years and determine the implications for embedded systems used in space missions. 1

  6. DOE and its Labs -- Evolution of the Relationship from the 1970s to Now

    NASA Astrophysics Data System (ADS)

    Richter, Burton

    2012-03-01

    The Department of Energy is a mash-up that occurred in two steps during the 1970s, transforming the post World War II Atomic Energy Commission with its system of laboratories into the Cabinet level department that exists today. The driver was the energy crises of the 1970s and the result created a system that brought together most of the federal governments energy programs under the single DOE roof. With the expansion of the mission came administrative complexity and the evolution of what has been described as a partnership between the Department and it labs into the vendor -- purchaser relation that is becoming the model of today. I will review what I think were the drivers of the change and comment on how things might be improved in the future.

  7. Recommended Priorities for NASA'S Gamma Ray Astronomy Program 1996 - 2010

    NASA Technical Reports Server (NTRS)

    1997-01-01

    It has assessed the state of the field including current missions and approved future missions, the critical scientific problems open today, the promising technologies for the future, the mission priorities for the future, and the needs for data analysis and theory. This report presents a summary of the GRAPWG findings and gives detailed recommendations.

  8. Scientific Computing Strategic Plan for the Idaho National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whiting, Eric Todd

    Scientific computing is a critical foundation of modern science. Without innovations in the field of computational science, the essential missions of the Department of Energy (DOE) would go unrealized. Taking a leadership role in such innovations is Idaho National Laboratory’s (INL’s) challenge and charge, and is central to INL’s ongoing success. Computing is an essential part of INL’s future. DOE science and technology missions rely firmly on computing capabilities in various forms. Modeling and simulation, fueled by innovations in computational science and validated through experiment, are a critical foundation of science and engineering. Big data analytics from an increasing numbermore » of widely varied sources is opening new windows of insight and discovery. Computing is a critical tool in education, science, engineering, and experiments. Advanced computing capabilities in the form of people, tools, computers, and facilities, will position INL competitively to deliver results and solutions on important national science and engineering challenges. A computing strategy must include much more than simply computers. The foundational enabling component of computing at many DOE national laboratories is the combination of a showcase like data center facility coupled with a very capable supercomputer. In addition, network connectivity, disk storage systems, and visualization hardware are critical and generally tightly coupled to the computer system and co located in the same facility. The existence of these resources in a single data center facility opens the doors to many opportunities that would not otherwise be possible.« less

  9. Performance of Low Temperature Electrolytes in Experimental and Prototype Li-Ion Cells

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Ratnakumar, B. V.; Whitcanack, L. D.

    2007-01-01

    Due to their attractive properties and proven success, Li-ion batteries have become identified as the battery chemistry of choice for a number of future NASA missions. A number of these applications would be greatly benefited by improved performance of Li-ion technology over a wider operating temperature range, especially at low temperatures, such as future ESMD missions. In many cases, these technology improvements may be mission enabling, and at the very least mission enhancing. In addition to aerospace applications, the DoE has interest in developing advanced Li-ion batteries that can operate over a wide temperature range to enable terrestrial HEV applications. Thus, our focus at JPL in recent years has been to extend the operating temperature range of Li-ion batteries, especially at low temperatures. To accomplish this, the main focus of the research has been devoted to developing improved lithium-ion conducting electrolytes. In the present paper, we would like to present some of the results we have obtained with ethylene carbonate-based electrolytes optimized for low temperature in experimental MCMB-LiNixCo1_x0 2 cells. In addition to obtaining discharge and charge rate performance data at various temperatures, electrochemical measurements were performed on individual electrodes (made possible by the incorporation of Li reference electrodes), including EIS, linear polarization and Tafel polarization measurements. The combination of techniques enables the elucidation of various trends associated with electrolyte composition. In addition to investigating the behavior in experimental cells, the performance of many promising low temperature electrolytes was demonstrated in large capacity, aerospace quality Li-ion prototype cells. These cells were subjected to a number of performance tests, including discharge rate characterization, charge rate characterization, cycle life performance at various temperatures, and power characterization tests.

  10. Searching for Exoplanets using Artificial Intelligence

    NASA Astrophysics Data System (ADS)

    Pearson, Kyle Alexander; Palafox, Leon; Griffith, Caitlin Ann

    2017-10-01

    In the last decade, over a million stars were monitored to detect transiting planets. The large volume of data obtained from current and future missions (e.g. Kepler, K2, TESS and LSST) requires automated methods to detect the signature of a planet. Manual interpretation of potential exoplanet candidates is labor intensive and subject to human error, the results of which are difficult to quantify. Here we present a new method of detecting exoplanet candidates in large planetary search projects which, unlike current methods uses a neural network. Neural networks, also called ``deep learning'' or ``deep nets'', are a state of the art machine learning technique designed to give a computer perception into a specific problem by training it to recognize patterns. Unlike past transit detection algorithms, the deep net learns to characterize the data instead of relying on hand-coded metrics that humans perceive as the most representative. Exoplanet transits have different shapes, as a result of, e.g. the planet's and stellar atmosphere and transit geometry. Thus, a simple template does not suffice to capture the subtle details, especially if the signal is below the noise or strong systematics are present. Current false-positive rates from the Kepler data are estimated around 12.3% for Earth-like planets and there has been no study of the false negative rates. It is therefore important to ask how the properties of current algorithms exactly affect the results of the Kepler mission and, future missions such as TESS, which flies next year. These uncertainties affect the fundamental research derived from missions, such as the discovery of habitable planets, estimates of their occurrence rates and our understanding about the nature and evolution of planetary systems.

  11. Redeployment as an alternative to decommissioning. Conversion of a US Department of Energy facility to fish rearing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, B.N.; Herborn, D.I.

    1994-03-01

    The Hanford Site and the Tri-Cities community have before them an unprecedented opportunity to create an economic renaissance based on the unparalleled environmental cleanup mission. The nation and the world await the emergence of the post-Cold War economy and conversion of the national defense complex into new national economic thrusts. The legacy of the Hanford Site national defense mission must not end up simply with the Site being cleaned up and land being restored to near-original conditions. There also needs to be a future economic legacy of a dynamic Tri-Cities community resulting from the cumulative current activities that will havemore » a positive impact for years to come. In anticipation of the eventual completion of the Hanford Site cleanup mission, the US Department of Energy (DOE) has established the Office of Economic Transition to identify and implement policies and actions that will support the cleanup mission of the Site and the long-term economic development of the Tri-Cities area. In the future, it is envisioned that one phase of a vibrant regional economy with a diversified economic job base will be the capability to compete in national and international environmental services markets. Recently, it was realized that the K Area water treatments facilities might be suitable for the rearing of fish. A `marketing` effort was undertaken to match the facility with potential users. At this time, four fish-rearing projects have either been conducted or are in various stages of progress or implementation. These will be described to explain the participants, the purposes, and the scope of each project.« less

  12. 50 Years of Exobiology and Astrobiology at NASA

    NASA Image and Video Library

    2010-10-13

    James L. Green, Director for Planetary Science in NASA's Science Mission Directorate, helps kick off the "Seeking Signs of Life" Symposium, celebrating 50 Years of Exobiology and Astrobiology at NASA, Thursday, Oct. 14, 2010, at the Lockheed Martin Global Vision Center in Arlington, Va. NASA has been researching life in the universe since 1959, asking three fundamental questions: "How does life begin and evolve?"‚ "Is there life beyond Earth and, if so, how can we detect it?" and "What is the future of life on Earth and in the universe?" Photo Credit: (NASA/Bill Ingalls)

  13. Hyperbolic Rendezvous at Mars: Risk Assessments and Mitigation Strategies

    NASA Technical Reports Server (NTRS)

    Jedrey, Ricky; Landau, Damon; Whitley, Ryan

    2015-01-01

    Given the current interest in the use of flyby trajectories for human Mars exploration, a key requirement is the capability to execute hyperbolic rendezvous. Hyperbolic rendezvous is used to transport crew from a Mars centered orbit, to a transiting Earth bound habitat that does a flyby. Representative cases are taken from future potential missions of this type, and a thorough sensitivity analysis of the hyperbolic rendezvous phase is performed. This includes early engine cutoff, missed burn times, and burn misalignment. A finite burn engine model is applied that assumes the hyperbolic rendezvous phase is done with at least two burns.

  14. A Review of State-of-the-Art Separator Materials for Advanced Lithium-Based Batteries for Future Aerospace Missions

    NASA Technical Reports Server (NTRS)

    Bladwin, Richard S.

    2009-01-01

    As NASA embarks on a renewed human presence in space, safe, human-rated, electrical energy storage and power generation technologies, which will be capable of demonstrating reliable performance in a variety of unique mission environments, will be required. To address the future performance and safety requirements for the energy storage technologies that will enhance and enable future NASA Constellation Program elements and other future aerospace missions, advanced rechargeable, lithium-ion battery technology development is being pursued with an emphasis on addressing performance technology gaps between state-of-the-art capabilities and critical future mission requirements. The material attributes and related performance of a lithium-ion cell's internal separator component are critical for achieving overall optimal performance, safety and reliability. This review provides an overview of the general types, material properties and the performance and safety characteristics of current separator materials employed in lithium-ion batteries, such as those materials that are being assessed and developed for future aerospace missions.

  15. Reducing the Risk of Human Space Missions with INTEGRITY

    NASA Technical Reports Server (NTRS)

    Jones, Harry W.; Dillon-Merill, Robin L.; Tri, Terry O.; Henninger, Donald L.

    2003-01-01

    The INTEGRITY Program will design and operate a test bed facility to help prepare for future beyond-LEO missions. The purpose of INTEGRITY is to enable future missions by developing, testing, and demonstrating advanced human space systems. INTEGRITY will also implement and validate advanced management techniques including risk analysis and mitigation. One important way INTEGRITY will help enable future missions is by reducing their risk. A risk analysis of human space missions is important in defining the steps that INTEGRITY should take to mitigate risk. This paper describes how a Probabilistic Risk Assessment (PRA) of human space missions will help support the planning and development of INTEGRITY to maximize its benefits to future missions. PRA is a systematic methodology to decompose the system into subsystems and components, to quantify the failure risk as a function of the design elements and their corresponding probability of failure. PRA provides a quantitative estimate of the probability of failure of the system, including an assessment and display of the degree of uncertainty surrounding the probability. PRA provides a basis for understanding the impacts of decisions that affect safety, reliability, performance, and cost. Risks with both high probability and high impact are identified as top priority. The PRA of human missions beyond Earth orbit will help indicate how the risk of future human space missions can be reduced by integrating and testing systems in INTEGRITY.

  16. The ODINUS Mission Concept: a Mission to the Ice Giant Planets

    NASA Astrophysics Data System (ADS)

    Turrini, Diego; Politi, Romolo; Peron, Roberto; Grassi, Davide; Plainaki, Christina; Barbieri, Mauro; Massimo Lucchesi, David; Magni, Gianfranco; Altieri, Francesca; Cottini, Valeria; Gorius, Nicolas; Gaulme, Patrick; Schmider, François-Xavier; Adriani, Alberto; Piccioni, Giuseppe

    2014-05-01

    We present the scientific case and the mission concept for the comparative exploration of the ice giant planets Uranus and Neptune and their satellites with a pair of twin spacecraft: ODINUS (Origins, Dynamics and Interiors of Neptunian and Uranian Systems). The ODINUS proposal was submitted in response to the call for white papers for the definition of the themes of the L2 and L3 mission in the framework of the ESA Cosmic Vision 2015-2025 program. The goal of ODINUS is the advancement of our understanding of the ancient past of the Solar System and, more generally, of how planetary systems form and evolve. The mission concept is focused on providing elements to answer to the scientific themes of the Cosmic Vision 2015-2025 program: What are the conditions for planetary formation and the emergency of life? How does the Solar System work? What are the fundamental physical laws of the Universe? In order to achieve its goals, the ODINUS mission concept proposed the use of two twin spacecraft to be put in orbit around Uranus and Neptune respectively, with selected flybys of their satellites. The proposed measurements aim to study the atmospheres and magnetospheres of the planets, the surfaces of the satellites, and the interior structure and composition of both satellites and planets. An important possibility for performing fundamental physics studies (among them tests of general relativity theory) is offered by the cruise phase. After the extremely positive evaluation of ESA Senior Survey Committee, who stated that 'the exploration of the icy giants appears to be a timely milestone, fully appropriate for an L class mission', we discuss strategies to comparatively study Uranus and Neptune with future international missions.

  17. Nuclear thermal propulsion transportation systems for lunar/Mars exploration

    NASA Technical Reports Server (NTRS)

    Clark, John S.; Borowski, Stanley K.; Mcilwain, Melvin C.; Pellaccio, Dennis G.

    1992-01-01

    Nuclear thermal propulsion technology development is underway at NASA and DoE for Space Exploration Initiative (SEI) missions to Mars, with initial near-earth flights to validate flight readiness. Several reactor concepts are being considered for these missions, and important selection criteria will be evaluated before final selection of a system. These criteria include: safety and reliability, technical risk, cost, and performance, in that order. Of the concepts evaluated to date, the Nuclear Engine for Rocket Vehicle Applications (NERVA) derivative (NDR) is the only concept that has demonstrated full power, life, and performance in actual reactor tests. Other concepts will require significant design work and must demonstrate proof-of-concept. Technical risk, and hence, development cost should therefore be lowest for the concept, and the NDR concept is currently being considered for the initial SEI missions. As lighter weight, higher performance systems are developed and validated, including appropriate safety and astronaut-rating requirements, they will be considered to support future SEI application. A space transportation system using a modular nuclear thermal rocket (NTR) system for lunar and Mars missions is expected to result in significant life cycle cost savings. Finally, several key issues remain for NTR's, including public acceptance and operational issues. Nonetheless, NTR's are believed to be the 'next generation' of space propulsion systems - the key to space exploration.

  18. Does the Constellation Program Offer Opportunities to Achieve Space Science Goals in Space?

    NASA Technical Reports Server (NTRS)

    Thronson, Harley A.; Lester, Daniel F.; Dissel, Adam F.; Folta, David C.; Stevens, John; Budinoff, Jason G.

    2008-01-01

    Future space science missions developed to achieve the most ambitious goals are likely to be complex, large, publicly and professionally very important, and at the limit of affordability. Consequently, it may be valuable if such missions can be upgraded, repaired, and/or deployed in space, either with robots or with astronauts. In response to a Request for Information from the US National Research Council panel on Science Opportunities Enabled by NASA's Constellation System, we developed a concept for astronaut-based in-space servicing at the Earth-Moon L1,2 locations that may be implemented by using elements of NASA's Constellation architecture. This libration point jobsite could be of great value for major heliospheric and astronomy missions operating at Earth-Sun Lagrange points. We explored five alternative servicing options that plausibly would be available within about a decade. We highlight one that we believe is both the least costly and most efficiently uses Constellation hardware that appears to be available by mid-next decade: the Ares I launch vehicle, Orion/Crew Exploration Vehicle, Centaur vehicle, and an airlock/servicing node developed for lunar surface operations. Our concept may be considered similar to the Apollo 8 mission: a valuable exercise before descent by astronauts to the lunar surface.

  19. New Millenium Program Serving Earth and Space Sciences

    NASA Technical Reports Server (NTRS)

    Li, Fuk

    1999-01-01

    A cross-Enterprise program is to identify and validate flight breakthrough technologies that will significantly benefit future space science and earth science missions. The breakthrough technologies are: enable new capabilities to meet earth and space science needs and reducing costs of future missions. The flight validation are: mitigates risks to first users and enables rapid technology infusion into future missions.

  20. Enterprise SRS: Leveraging Ongoing Operations To Advance Nuclear Fuel Cycles Research And Development Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, Alice M.; Marra, John E.; Wilmarth, William R.

    2013-07-03

    The Savannah River Site (SRS) is repurposing its vast array of assets to solve future national issues regarding environmental stewardship, national security, and clean energy. The vehicle for this transformation is Enterprise SRS which presents a new, radical view of SRS as a united endeavor for ''all things nuclear'' as opposed to a group of distinct and separate entities with individual missions and organizations. Key among the Enterprise SRS strategic initiatives is the integration of research into facilities in conjunction with on-going missions to provide researchers from other national laboratories, academic institutions, and commercial entities the opportunity to demonstrate theirmore » technologies in a relevant environment and scale prior to deployment. To manage that integration of research demonstrations into site facilities, The Department of Energy, Savannah River Operations Office, Savannah River Nuclear Solutions, the Savannah River National Laboratory (SRNL) have established a center for applied nuclear materials processing and engineering research (hereafter referred to as the Center). The key proposition of this initiative is to bridge the gap between promising transformational nuclear fuel cycle processing discoveries and large commercial-scale-technology deployment by leveraging SRS assets as facilities for those critical engineering-scale demonstrations necessary to assure the successful deployment of new technologies. The Center will coordinate the demonstration of R&D technologies and serve as the interface between the engineering-scale demonstration and the R&D programs, essentially providing cradle-to-grave support to the research team during the demonstration. While the initial focus of the Center will be on the effective use of SRS assets for these demonstrations, the Center also will work with research teams to identify opportunities to perform research demonstrations at other facilities. Unique to this approach is the fact that these SRS assets will continue to accomplish DOE's critical nuclear material missions (e.g., processing in H-Canyon and plutonium storage in K-Area). Thus, the demonstration can be accomplished by leveraging the incremental cost of performing demonstrations without needing to cover the full operational cost of the facility. Current Center activities have been focused on integrating advanced safeguards monitoring technologies demonstrations into the SRS H-Canyon and advanced location technologies demonstrations into K-Area Materials Storage. These demonstrations are providing valuable information to researchers and customers as well as providing the Center with an improved protocol for demonstration management that can be exercised across the entire SRS (as well as to offsite venues) so that future demonstrations can be done more efficiently and provide an opportunity to utilize these unique assets for multiple purposes involving national laboratories, academia, and commercial entities. Key among the envisioned future demonstrations is the use of H-Canyon to demonstrate new nuclear materials separations technologies critical for advancing the mission needs DOE-Nuclear Energy (DOE-NE) to advance the research for next generation fuel cycle technologies. The concept is to install processing equipment on frames. The frames are then positioned into an H-Canyon cell and testing in a relevant radiological environment involving prototypic radioactive materials can be performed.« less

  1. The Lunar Orbiter Laser Altimeter (LOLA) on NASA's Lunar Reconnaissance Orbiter (LRO) mission

    NASA Astrophysics Data System (ADS)

    Riris, H.; Cavanaugh, J.; Sun, X.; Liiva, P.; Rodriguez, M.; Neuman, G.

    2017-11-01

    The Lunar Orbiter Laser Altimeter (LOLA) instrument [1-3] on NASA's Lunar Reconnaissance Orbiter (LRO) mission, launched on June 18th, 2009, from Kennedy Space Center, Florida, will provide a precise global lunar topographic map using laser altimetry. LOLA will assist in the selection of landing sites on the Moon for future robotic and human exploration missions and will attempt to detect the presence of water ice on or near the surface, which is one of the objectives of NASA's Exploration Program. Our present knowledge of the topography of the Moon is inadequate for determining safe landing areas for NASA's future lunar exploration missions. Only those locations, surveyed by the Apollo missions, are known with enough detail. Knowledge of the position and characteristics of the topographic features on the scale of a lunar lander are crucial for selecting safe landing sites. Our present knowledge of the rest of the lunar surface is at approximately 1 km kilometer level and in many areas, such as the lunar far side, is on the order of many kilometers. LOLA aims to rectify that and provide a precise map of the lunar surface on both the far and near side of the moon. LOLA uses short (6 ns) pulses from a single laser through a Diffractive Optical Element (DOE) to produce a five-beam pattern that illuminates the lunar surface. For each beam, LOLA measures the time of flight (range), pulse spreading (surface roughness), and transmit/return energy (surface reflectance). LOLA will produce a high-resolution global topographic model and global geodetic framework that enables precise targeting, safe landing, and surface mobility to carry out exploratory activities. In addition, it will characterize the polar illumination environment, and image permanently shadowed regions of the lunar surface to identify possible locations of surface ice crystals in shadowed polar craters.

  2. Autonomous and Autonomic Systems: A Paradigm for Future Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Truszkowski, Walter F.; Hinchey, Michael G.; Rash, James L.; Rouff, Christopher A.

    2004-01-01

    NASA increasingly will rely on autonomous systems concepts, not only in the mission control centers on the ground, but also on spacecraft and on rovers and other assets on extraterrestrial bodies. Automomy enables not only reduced operations costs, But also adaptable goal-driven functionality of mission systems. Space missions lacking autonomy will be unable to achieve the full range of advanced mission objectives, given that human control under dynamic environmental conditions will not be feasible due, in part, to the unavoidably high signal propagation latency and constrained data rates of mission communications links. While autonomy cost-effectively supports accomplishment of mission goals, autonomicity supports survivability of remote mission assets, especially when human tending is not feasible. Autonomic system properties (which ensure self-configuring, self-optimizing self-healing, and self-protecting behavior) conceptually may enable space missions of a higher order into any previously flown. Analysis of two NASA agent-based systems previously prototyped, and of a proposed future mission involving numerous cooperating spacecraft, illustrates how autonomous and autonomic system concepts may be brought to bear on future space missions.

  3. Flight Dynamics and GN&C for Spacecraft Servicing Missions

    NASA Technical Reports Server (NTRS)

    Naasz, Bo; Zimpfer, Doug; Barrington, Ray; Mulder, Tom

    2010-01-01

    Future human exploration missions and commercial opportunities will be enabled through In-space assembly and satellite servicing. Several recent efforts have developed technologies and capabilities to support these exciting future missions, including advances in flight dynamics and Guidance, Navigation and Control. The Space Shuttle has demonstrated significant capabilities for crewed servicing of the Hubble Space Telescope (HST) and assembly of the International Space Station (ISS). Following the Columbia disaster NASA made significant progress in developing a robotic mission to service the HST. The DARPA Orbital Express mission demonstrated automated rendezvous and capture, In-space propellant transfer, and commodity replacement. This paper will provide a summary of the recent technology developments and lessons learned, and provide a focus for potential future missions.

  4. Pointing and control system enabling technology for future automated space missions

    NASA Technical Reports Server (NTRS)

    Dahlgren, J. B.

    1978-01-01

    Future automated space missions present challenging opportunities in the pointing-and-control technology disciplines. The enabling pointing-and-control system technologies for missions from 1985 to the year 2000 were identified and assessed. A generic mission set including Earth orbiter, planetary, and other missions which predominantly drive the pointing-and-control requirements was selected for detailed evaluation. Technology candidates identified were prioritized as planning options for future NASA-OAST advanced development programs. The primary technology thrusts in each candidate program were cited, and advanced development programs in pointing-and-control were recommended for the FY 80 to FY 87 period, based on these technology thrusts.

  5. Planetary exploration with optical imaging systems review: what is the best sensor for future missions

    NASA Astrophysics Data System (ADS)

    Michaelis, H.; Behnke, T.; Bredthauer, R.; Holland, A.; Janesick, J.; Jaumann, R.; Keller, H. U.; Magrin, D.; Greggio, D.; Mottola, Stefano; Thomas, N.; Smith, P.

    2017-11-01

    When we talk about planetary exploration missions most people think spontaneously about fascinating images from other planets or close-up pictures of small planetary bodies such as asteroids and comets. Such images come in most cases from VIS/NIR- imaging- systems, simply called `cameras', which were typically built by institutes in collaboration with industry. Until now, they have nearly all been based on silicon CCD sensors, they have filter wheels and have often high power-consuming electronics. The question is, what are the challenges for future missions and what can be done to improve performance and scientific output. The exploration of Mars is ongoing. NASA and ESA are planning future missions to the outer planets like to the icy Jovian moons. Exploration of asteroids and comets are in focus of several recent and future missions. Furthermore, the detection and characterization of exo-planets will keep us busy for next generations. The paper is discussing the challenges and visions of imaging sensors for future planetary exploration missions. The focus of the talk is monolithic VIS/NIR- detectors.

  6. A 3-D Magnetic Analysis of a Stirling Convertor Linear Alternator Under Load

    NASA Technical Reports Server (NTRS)

    Geng, Steven M.; Schwarze, Gene E.; Niedra, Janis M.; Regan, Timothy F.

    2001-01-01

    The NASA Glenn Research Center (GRC), the Department of Energy (DOE), and the Stirling Technology Company (STC) are developing Stirling convertors for Stirling Radioisotope Power Systems (SRPS) to provide electrical power for future NASA deep space missions. STC is developing the 55-We Technology Demonstration Convertor (TDC) under contract to DOE. Of critical importance to the successful development of the Stirling convertor for space power applications is the development of a lightweight and highly efficient linear alternator. This paper presents a 3-dimensional finite element method (FEM) approach for evaluating Stirling convertor linear alternators. The model extends a magnetostatic analysis previously reported at the 35th Intersociety Energy Conversion Engineering Conference (IECEC) to include the effects of the load current. STC's 55-We linear alternator design was selected to validate the model. Spatial plots of magnetic field strength (H) are presented in the region of the exciting permanent magnets. The margin for permanent magnet demagnetization is calculated at the expected magnet operating temperature for the near earth environment and for various average magnet temperatures. These thermal conditions were selected to represent a worst-case condition for the planned deep space missions. This paper presents plots that identify regions of high H where the potential to alter the magnetic moment of the magnets exists.

  7. ICF quarterly report January - March 1997 volume 7, number 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, J

    The National Ignition Facility Project The mission of the National Ignition Facility (NIF) is to produce ignition and modest energy gain in inertial confinement fusion (ICF) targets. Achieving these goals will maintain U.S. world leadership in ICF and will directly benefit the U.S. Department of Energy (DOE) missions in national security, science and technology, energy resources, and industrial competitiveness. Development and operation of the NIF are consistent with DOE goals for environmental quality, openness to the community, and nuclear nonproliferation and arms control. Although the primary mission of inertial fusion is for defense applications, inertial fusion research will provide criticalmore » information for the development of inertial fusion energy. The NIF, under construction at Lawrence Livermore National Laboratory (LLNL), is a cornerstone of the DOE's science-based Stockpile Stewardship Program for addressing high-energy-density physics issues in the absence of nuclear weapons testing. In pursuit of this mission, the DOE's Defense Programs has developed a state-of-the-art capability with the NIF to investigate high-energy-density physics in the laboratory with a microfusion capability for defense and energy applications. As a Strategic System Acquisition, the NIF Project has a separate and disciplined reporting chain to DOE as shown below.« less

  8. A mission planning concept and mission planning system for future manned space missions

    NASA Technical Reports Server (NTRS)

    Wickler, Martin

    1994-01-01

    The international character of future manned space missions will compel the involvement of several international space agencies in mission planning tasks. Additionally, the community of users requires a higher degree of freedom for experiment planning. Both of these problems can be solved by a decentralized mission planning concept using the so-called 'envelope method,' by which resources are allocated to users by distributing resource profiles ('envelopes') which define resource availabilities at specified times. The users are essentially free to plan their activities independently of each other, provided that they stay within their envelopes. The new developments were aimed at refining the existing vague envelope concept into a practical method for decentralized planning. Selected critical functions were exercised by planning an example, founded on experience acquired by the MSCC during the Spacelab missions D-1 and D-2. The main activity regarding future mission planning tasks was to improve the existing MSCC mission planning system, using new techniques. An electronic interface was developed to collect all formalized user inputs more effectively, along with an 'envelope generator' for generation and manipulation of the resource envelopes. The existing scheduler and its data base were successfully replaced by an artificial intelligence scheduler. This scheduler is not only capable of handling resource envelopes, but also uses a new technology based on neuronal networks. Therefore, it is very well suited to solve the future scheduling problems more efficiently. This prototype mission planning system was used to gain new practical experience with decentralized mission planning, using the envelope method. In future steps, software tools will be optimized, and all data management planning activities will be embedded into the scheduler.

  9. SCOSII: ESA's new generation of mission control systems: The user's perspective

    NASA Technical Reports Server (NTRS)

    Kaufeler, P.; Pecchioli, M.; Shurmer, I.

    1994-01-01

    In 1974 ESOC decided to develop a reusable Mission Control System infrastructure for ESA's missions operated under its responsibility. This triggered a long and successful product development line, which started with the Multi Mission Support System (MSSS) which entered in service in 1977 and is still being used today by the MARECS and ECS missions; it was followed in 1989 by a second generation of systems known as SCOS-I, which was/is used by the Hipparcos, ERS-1 and EURECA missions and will continue to support all future ESCO controlled missions until approximately 1995. In the meantime the increasing complexity of future missions together with the emergence of new hardware and software technologies have led ESOC to go for the development of a third generation of control systems, SCOSII, which will support their future missions up to at least the middle of the next decade. The objective of the paper is to present the characteristics of the SCOSII system from the perspective of the mission control team; i.e. it will concentrate on the improvements and advances in the performance, functionality and work efficiency of the system.

  10. SIMNET: an insider's perspective

    NASA Astrophysics Data System (ADS)

    Cosby, L. Neale

    1995-04-01

    Simulator Networking (SIMNET) began with a young scientist's idea but has ended up changing an entire industry and the way the military does business. And the story isn't over yet. SIMNET began as an advanced research project aimed at developing a core technology for networking hundreds of affordable simulators worldwide in real time to practice joint collective warfighting skills and to develop better acquisition practices. It was a daring project that proved the Advanced Research Projects Agency (ARPA) mission of doing "what cannot be done." It was a serious threat to the existing simulation industry. As it turned out, the government got what it wanted—a low-cost, high-performance virtual simulation capability that could be proliferated like consumer electronics. This paper provides an insider's view of the program history, identifies some possible lessons for future developers, and opines future growth for SIMNET technology.

  11. The Solar Dynamics Observatory Education and Public Outreach Program: The First Years

    NASA Astrophysics Data System (ADS)

    Wawro, M.; Drobnes, E.; van Doren, A.; Scherrer, D. K.

    2010-12-01

    The Solar Dynamics Observatory (SDO) Education and Public Outreach (E/PO) program began as a series of discrete programs implemented by each of the instrument teams and has evolved into a well-rounded program with a full suite of national and international programs: student, teacher, and journalist workshops, international research programs, family programs, etc. In this presentation, we provide an overview of our philosophy and approach and of some of the programs developed and implemented prior to launch. In conclusion we will summarize our successes, our failures, our lessons learned, and present guiding principles in the hope that future missions will use our platform as a guide to build upon for future programs, incorporating their own content to enhance the public's appreciation of the science that NASA does and its benefit to society.

  12. Active optics as enabling technology for future large missions: current developments for astronomy and Earth observation at ESA

    NASA Astrophysics Data System (ADS)

    Hallibert, Pascal

    2017-09-01

    In recent years, a trend for higher resolution has increased the entrance apertures of future optical payloads for both Astronomy and Earth Observation most demanding applications, resulting in new opto-mechanical challenges for future systems based on either monolithic or segmented large primary mirrors. Whether easing feasibility and schedule impact of tight manufacturing and integration constraints or correcting mission-critical in-orbit and commissioning effects, Active Optics constitutes an enabling technology for future large optical space instruments at ESA and needs to reach the necessary maturity in time for future mission selection and implementation. We present here a complete updated overview of our current R and D activities in this field, ranging from deformable space-compatible components to full correction chains including wavefront sensing as well as control and correction algorithms. We share as well our perspectives on the way-forward to technological maturity and implementation within future missions.

  13. [Issues of biomedical support of explorations missions].

    PubMed

    Potapov, A N; Sinyak, Yu E; Petrov, V M

    2013-01-01

    Sine qua non for piloted exploration missions is a system of biomedical support. The future system will be considerably different from the analogous systems applied in current orbital missions. The reason is the challenging conditions in expeditions to remote space. In a mission to Mars, specifically, these are high levels of radiation, hypomagnetic environment, alternation of micro- and hypogravity, very long mission duration and autonomy. The paper scrutinizes the major issues of medical support to future explorers of space.

  14. IMPaCT - Integration of Missions, Programs, and Core Technologies

    NASA Technical Reports Server (NTRS)

    Balacuit, Carlos P.; Cutts, James A.; Peterson, Craig E.; Beauchamp, Patricia M.; Jones, Susan K.; Hang, Winnie N.; Dastur, Shahin D.

    2013-01-01

    IMPaCT enables comprehensive information on current NASA missions, prospective future missions, and the technologies that NASA is investing in, or considering investing in, to be accessed from a common Web-based interface. It allows dependencies to be established between missions and technology, and from this, the benefits of investing in individual technologies can be determined. The software also allows various scenarios for future missions to be explored against resource constraints, and the nominal cost and schedule of each mission to be modified in an effort to fit within a prescribed budget.

  15. Evaluation of Human and AutomationRobotics Integration Needs for Future Human Exploration Missions

    NASA Technical Reports Server (NTRS)

    Marquez, Jessica J.; Adelstein, Bernard D.; Ellis, Stephen; Chang, Mai Lee; Howard, Robert

    2016-01-01

    NASA employs Design Reference Missions (DRMs) to define potential architectures for future human exploration missions to deep space, the Moon, and Mars. While DRMs to these destinations share some components, each mission has different needs. This paper focuses on the human and automation/robotic integration needs for these future missions, evaluating them with respect to NASA research gaps in the area of space human factors engineering. The outcomes of our assessment is a human and automation/robotic (HAR) task list for each of the four DRMs that we reviewed (i.e., Deep Space Sortie, Lunar Visit/Habitation, Deep Space Habitation, and Planetary), a list of common critical HAR factors that drive HAR design.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    BROOKHAVEN NATIONAL LABORATORY

    The 2002 Site Environmental Report (SER) is prepared in accordance with DOE Order 231.1, ''Environment, Safety and Health Reporting'', and summarizes the status of Brookhaven National Laboratory's (BNL) environmental programs and performance and restoration efforts, as well as any impacts, both past and present, that Laboratory operations have had on the environment. The document is intended to be technical in nature. A summary of the report is also prepared as a separate document to provide a general overview and includes a CD version of the full report. Operated by Brookhaven Science Associates (BSA) for the Department of Energy (DOE), BNLmore » manages its world-class scientific research with particular sensitivity to environmental and community issues. BNL's motto, ''Exploring Life's Mysteries...Protecting its Future'', reflects BNL's management philosophy to fully integrate environmental stewardship into all facets of its missions, with a health balance between science and the environment.« less

  17. Effect of structural mount dynamics on a pair of operating Stirling Convertors

    NASA Astrophysics Data System (ADS)

    Goodnight, Thomas W.; Suárez, Vicente J.; Hughes, William O.; Samorezov, Sergey

    2002-01-01

    The U.S. Department of Energy (DOE), in conjunction with NASA John H. Glenn Research Center and Stirling Technology Company, are currently developing a Stirling convertor for a Stirling Radioisotope Generator (SRG). NASA Headquarters and DOE have identified the SRG for potential use as an advanced spacecraft power system for future NASA deep-space and Mars surface missions. Low-level dynamic base-shake tests were conducted on a dynamic simulation of the structural mount for a pair of Operating Stirling Convertors. These tests were conducted at NASA Glenn Research Center's Structural Dynamics Laboratory as part of the development of this technology. The purpose of these tests was to identify the changes in transmissibility and the effect on structural dynamic response on a pair of operating Stirling Technology Demonstration Convertors (TDCs). This paper addresses the base-shake test, setup, procedure and results conducted on the Stirling TDC mount simulator in April 2001. .

  18. Compaction of Space Mission Wastes

    NASA Technical Reports Server (NTRS)

    Fisher, John; Pisharody, Suresh; Wignarajah, K.

    2004-01-01

    The current solid waste management system employed on the International Space Station (ISS) consists of compaction, storage, and disposal. Wastes such plastic food packaging and trash are compacted manually and wrapped in duct tape footballs by the astronauts. Much of the waste is simply loaded either into the empty Russian Progress vehicle for destruction on reentry or into Shuttle for return to Earth. This manual method is wasteful of crew time and does not transition well to far term missions. Different wastes onboard spacecraft vary considerably in their characteristics and in the appropriate method of management. In advanced life support systems for far term missions, recovery of resources such as water from the wastes becomes important. However waste such as plastic food packaging, which constitutes a large fraction of solid waste (roughly 21% on ISS, more on long duration missions), contains minimal recoverable resource. The appropriate management of plastic waste is waste stabilization and volume minimization rather than resource recovery. This paper describes work that has begun at Ames Research Center on development of a heat melt compactor that can be used on near term and future missions, that can minimize crew interaction, and that can handle wastes with a significant plastic composition. The heat melt compactor takes advantage of the low melting point of plastics to compact plastic materials using a combination of heat and pressure. The US Navy has demonstrated successful development of a similar unit for shipboard application. Ames is building upon the basic approach demonstrated by the Navy to develop an advanced heat melt type compactor for space mission type wastes.

  19. Intelligent Systems Technologies for Ops

    NASA Technical Reports Server (NTRS)

    Smith, Ernest E.; Korsmeyer, David J.

    2012-01-01

    As NASA supports International Space Station assembly complete operations through 2020 (or later) and prepares for future human exploration programs, there is additional emphasis in the manned spaceflight program to find more efficient and effective ways of providing the ground-based mission support. Since 2006 this search for improvement has led to a significant cross-fertilization between the NASA advanced software development community and the manned spaceflight operations community. A variety of mission operations systems and tools have been developed over the past decades as NASA has operated the Mars robotic missions, the Space Shuttle, and the International Space Station. NASA Ames Research Center has been developing and applying its advanced intelligent systems research to mission operations tools for both unmanned Mars missions operations since 2001 and to manned operations with NASA Johnson Space Center since 2006. In particular, the fundamental advanced software development work under the Exploration Technology Program, and the experience and capabilities developed for mission operations systems for the Mars surface missions, (Spirit/Opportunity, Phoenix Lander, and MSL) have enhanced the development and application of advanced mission operation systems for the International Space Station and future spacecraft. This paper provides an update on the status of the development and deployment of a variety of intelligent systems technologies adopted for manned mission operations, and some discussion of the planned work for Autonomous Mission Operations in future human exploration. We discuss several specific projects between the Ames Research Center and the Johnson Space Centers Mission Operations Directorate, and how these technologies and projects are enhancing the mission operations support for the International Space Station, and supporting the current Autonomous Mission Operations Project for the mission operation support of the future human exploration programs.

  20. Aircraft conceptual design - an adaptable parametric sizing methodology

    NASA Astrophysics Data System (ADS)

    Coleman, Gary John, Jr.

    Aerospace is a maturing industry with successful and refined baselines which work well for traditional baseline missions, markets and technologies. However, when new markets (space tourism) or new constrains (environmental) or new technologies (composite, natural laminar flow) emerge, the conventional solution is not necessarily best for the new situation. Which begs the question "how does a design team quickly screen and compare novel solutions to conventional solutions for new aerospace challenges?" The answer is rapid and flexible conceptual design Parametric Sizing. In the product design life-cycle, parametric sizing is the first step in screening the total vehicle in terms of mission, configuration and technology to quickly assess first order design and mission sensitivities. During this phase, various missions and technologies are assessed. During this phase, the designer is identifying design solutions of concepts and configurations to meet combinations of mission and technology. This research undertaking contributes the state-of-the-art in aircraft parametric sizing through (1) development of a dedicated conceptual design process and disciplinary methods library, (2) development of a novel and robust parametric sizing process based on 'best-practice' approaches found in the process and disciplinary methods library, and (3) application of the parametric sizing process to a variety of design missions (transonic, supersonic and hypersonic transports), different configurations (tail-aft, blended wing body, strut-braced wing, hypersonic blended bodies, etc.), and different technologies (composite, natural laminar flow, thrust vectored control, etc.), in order to demonstrate the robustness of the methodology and unearth first-order design sensitivities to current and future aerospace design problems. This research undertaking demonstrates the importance of this early design step in selecting the correct combination of mission, technologies and configuration to meet current aerospace challenges. Overarching goal is to avoid the reoccurring situation of optimizing an already ill-fated solution.

  1. Analysis, optimization, and assessment of radioisotope thermophotovoltaic system design for an illustrative space mission

    NASA Astrophysics Data System (ADS)

    Schock, A.; Mukunda, M.; Or, C.; Summers, G.

    1995-01-01

    A companion paper presented at this conference described the design of a Radioisotope Thermophotovoltaic (RTPV) Generator for an illustrative space mission (Pluto Fast Flyby). It presented a detailed design of an integrated system consisting of a radioisotope heat source, a thermophotovoltaic converter, and an optimized heat rejection system. The present paper describes the thermal, electrical, and structural analyses which led to that optimized design, and compares the computed RTPV performance to that of a Radioisotope Thermoelectric Generator (RTG) designed for the same mission. RTPVs are of course much less mature than RTGs, but our results indicate that—when fully developed—they could result in a 60% reduction of the heat source's mass, cost, and fuel loading, a 50% reduction of generator mass, a tripling of the power system's specific power, and a quadrupling of its efficiency. The paper concludes by briefly summarizing the RTPV's current technology status and assessing its potential applicability for the PFF mission. For other power systems (e.g., RTGs), demonstrating their flight readiness for a long mission is a very time-consuming process to determine the long-term effect of temperature-induced degradation mechanisms. But for the case of the described RTPV design, the paper lists a number of factors, primarily its cold (0 to 10 °C) converter temperature, that may greatly reduce the need for long-term tests to demonstrate generator lifetime. In any event, our analytical results suggest that the RTPV generator, when developed by DOE and/or NASA, would be quite valuable not only for the Pluto mission but also for other future missions requiring small, long-lived, low-mass generators.

  2. The ODINUS Mission Concept: a Mission for the exploration the Ice Giant Planets

    NASA Astrophysics Data System (ADS)

    Peron, Roberto

    We present the scientific case and the mission concept of a proposal for the the comparative exploration of the ice giant planets Uranus and Neptune and their satellites with a pair of twin spacecraft: ODINUS (Origins, Dynamics and Interiors of Neptunian and Uranian Systems). The ODINUS proposal was submitted in response to the call for white papers for the definition of the themes of the L2 and L3 mission in the framework of ESA Cosmic Vision 2015-2025 program. The goal of ODINUS is the advancement of our understanding of the ancient past of the Solar System and, more generally, of how planetary systems form and evolve. The mission concept is focused on providing elements to answer to the scientific themes of the Cosmic Vision 2015-2025 program: What are the conditions for planetary formation and the emergency of life? How does the Solar System work? What are the fundamental physical laws of the Universe? In order to achieve its goals, ODINUS foresees the use of two twin spacecraft to be placed in orbit around Uranus and Neptune respectively, with selected flybys of their satellites. The proposed measurements aim to study the atmospheres and magnetospheres of the planets, the surfaces of the satellites, and the interior structure and composition of both satellites and planets. An important possibility for performing fundamental physics studies (among them tests of general relativity theory) is offered by the cruise phase. After the extremely positive evaluation of ESA Senior Survey Committee, who stated that ``the exploration of the icy giants appears to be a timely milestone, fully appropriate for an L class mission'', we discuss strategies to comparatively study Uranus and Neptune with future international missions.

  3. Astrobiology: A Roadmap for Charting Life in the Universe

    NASA Technical Reports Server (NTRS)

    DesMarais, David J.; DeVincezi, D. (Technical Monitor)

    2002-01-01

    Astrobiology is the study of the origin, evolution and distribution of life in the universe. It provides a biological perspective to many areas of NASA research. It links such endeavors as the search for habitable planets, exploration missions to Mars and the outer Solar System, efforts to understand the origins and early evolution of life, and charting the potential of life to adapt to future challenges, both on Earth and in space. Astrobiology addresses the following three basic questions, which have been asked in some form for generations. How does life begin and evolve? Does life exist elsewhere in the universe? What is future of life on Earth and beyond? The NASA Astrobiology Roadmap provides guidance for research and technology development across several NASA Enterprises: Space Science, Earth Science, and the Human Exploration and Development of Space. The Roadmap is formulated in terms of eight Science Goals that outline key domains of investigation that might require perhaps decades of effort to consolidate. For each of these goals, Science Objectives outline more specific high priority near-term efforts for the next three to five years. These twenty objectives will be integrated with NASA strategic planning.

  4. Flight Software Implementation of the Beacon Monitor Expreiment On the NASA New Millennium Deep Space 1 (DS-1) Mission

    NASA Technical Reports Server (NTRS)

    Foster, R.; Schlutsmeyer, A.

    1997-01-01

    A new technology that can lower the cost of mission operations on future spacecraft will be tested on the NASA New Millennium Deep Space 1 (DS-1) Mission. This technology, the Beacon Monitor Experiment (BMOX), can be used to reduce the Deep Space Network (DSN) tracking time and its associated costs on future missions.

  5. SMART-1 technology, scientific results and heritage for future space missions

    NASA Astrophysics Data System (ADS)

    Foing, B. H.; Racca, G.; Marini, A.; Koschny, D.; Frew, D.; Grieger, B.; Camino-Ramos, O.; Josset, J. L.; Grande, M.; Smart-1 Science; Technology Working Team

    2018-02-01

    ESA's SMART-1 mission to the Moon achieved record firsts such as: 1) first Small Mission for Advanced Research and Technology; with spacecraft built and integrated in 2.5 years and launched 3.5 years after mission approval; 2) first mission leaving the Earth orbit using solar power alone; 3) most fuel effective mission (60 L of Xenon) and longest travel (13 months) to the Moon!; 4) first ESA mission reaching the Moon and first European views of lunar poles; 5) first European demonstration of a wide range of new technologies: Li-Ion modular battery, deep-space communications in X- and Ka-bands, and autonomous positioning for navigation; 6) first lunar demonstration of an infrared spectrometer and of a Swept Charge Detector Lunar X-ray fluorescence spectrometer; 7) first ESA mission with opportunity for lunar science, elemental geochemistry, surface mineralogy mapping, surface geology and precursor studies for exploration; 8) first controlled impact landing on the Moon with real time observations campaign; 9) first mission supporting goals of the International Lunar Exploration Working Group (ILEWG) in technical and scientific exchange, international collaboration, public and youth engagement; 10) first mission preparing the ground for ESA collaboration in Chandrayaan-1, Chang' E1 and future international lunar exploration. We review SMART-1 highlights and new results that are relevant to the preparation for future lunar exploration. The technology and methods had impact on space research and applications. Recent SMART-1 results are relevant to topics on: 1) the study of properties of the lunar dust, 2) impact craters and ejecta, 3) the study of illumination, 4) radio observations and science from the Moon, 5) support to future missions, 6) identifying and characterising sites for exploration and exploitation. On these respective topics, we discuss recent SMART-1 results and challenges. We also discuss the use of SMART-1 publications library. The SMART-1 archive observations have been used to support the goals of ILEWG. SMART-1 has been useful to prepare for Kaguya, Chandrayaan-1, Chang'E 1, the US Lunar Reconnaissance Orbiter, the LCROSS impact, future lunar landers and upcoming missions, and to contribute towards objectives of the Moon Village and future exploration.

  6. TWRS Retrieval and Storage Mission and Immobilized Low Activity Waste (ILAW) Disposal Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BURBANK, D.A.

    This project plan has a twofold purpose. First, it provides a waste stream project plan specific to the River Protection Project (RPP) (formerly the Tank Waste Remediation System [TWRS] Project) Immobilized Low-Activity Waste (LAW) Disposal Subproject for the Washington State Department of Ecology (Ecology) that meets the requirements of Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-90-01 (Ecology et al. 1994) and is consistent with the project plan content guidelines found in Section 11.5 of the Tri-Party Agreement action plan (Ecology et al. 1998). Second, it provides an upper tier document that can be used as themore » basis for future subproject line-item construction management plans. The planning elements for the construction management plans are derived from applicable U.S. Department of Energy (DOE) planning guidance documents (DOE Orders 4700.1 [DOE 1992] and 430.1 [DOE 1995a]). The format and content of this project plan are designed to accommodate the requirements mentioned by the Tri-Party Agreement and the DOE orders. A cross-check matrix is provided in Appendix A to explain where in the plan project planning elements required by Section 11.5 of the Tri-Party Agreement are addressed.« less

  7. Playing Around in the Solar System: Mini-games for Many Missions

    NASA Astrophysics Data System (ADS)

    Fisher, D. K.; Leon, N.; Fitzpatrick, A. J.; Wessen, A.

    2010-12-01

    Several NASA solar system missions will have major milestones during 2011, the Year of the Solar System. These events include launches, encounters, and orbit insertions. Other missions will continue the explorations already underway. The “Year of the Solar System Game” on The Space Place website (http://spaceplace.nasa.gov/en/kids/solar-system) brings all these efforts together in the context of the whole solar system. The game helps to build awareness of the characteristics of our solar system and some of the missions that are continuing to advance our knowledge and understanding. It is one of many educational tools being developed and deployed for the Year of the Solar System. The game is a “super-game” that encompasses a number of mission-related “mini-games.” The mini-games can be played individually, and they all contribute toward achievements in the super-game. The enveloping interface for all the games is an animated solar system. The player clicks on a planet or a moon, sees a close-up image, and reads a short paragraph about the object. If the object has been endowed with a mission mini-game, player can click on the tiny spacecraft, read about the mission, then play the game—or, if impatient, just immediately play the game (and read about the mission later, we hope). A score “page” keeps track of the player’s achievements and scores. Players earn achievements by reading about the planets, moons, asteroids, comets, and missions and by playing the mission mini-games. The game targets upper elementary age children, as does the entire Space Place website. Each mini-game, although simple, incorporates elements of the spacecrafts’ missions and their target objects. For example, in Cassini Commander, the player must navigate the Cassini spacecraft through gaps in Saturn’s rings and around Saturn’s moons. The super-game is designed to accommodate any number of mission mini-games, so we are hoping to continue to add missions and increase the fun factor and educational value of the Year of the Solar System game well into future years.

  8. Planetary Cartography and Mapping: where we are Today, and where we are Heading For?

    NASA Astrophysics Data System (ADS)

    Naß, A.; Di, K.; Elgner, S.; van Gasselt, S.; Hare, T.; Hargitai, H.; Karachevtseva, I.; Kersten, E.; Manaud, N.; Roatsch, T.; Rossi, A. P.; Skinner, J., Jr.; Wählisch, M.

    2017-07-01

    Planetary Cartography does not only provides the basis to support planning (e.g., landing-site selection, orbital observations, traverse planning) and to facilitate mission conduct during the lifetime of a mission (e.g., observation tracking and hazard avoidance). It also provides the means to create science products after successful termination of a planetary mission by distilling data into maps. After a mission's lifetime, data and higher level products like mosaics and digital terrain models (DTMs) are stored in archives - and eventually into maps and higher-level data products - to form a basis for research and for new scientific and engineering studies. The complexity of such tasks increases with every new dataset that has been put on this stack of information, and in the same way as the complexity of autonomous probes increases, also tools that support these challenges require new levels of sophistication. In planetary science, cartography and mapping have a history dating back to the roots of telescopic space exploration and are now facing new technological and organizational challenges with the rise of new missions, new global initiatives, organizations and opening research markets. The focus of this contribution is to summarize recent activities in Planetary Cartography, highlighting current issues the community is facing to derive the future opportunities in this field. By this we would like to invite cartographers/researchers to join this community and to start thinking about how we can jointly solve some of these challenges.

  9. Technology advancements for future astronomical missions

    NASA Astrophysics Data System (ADS)

    Barnes, Arnold A.; Knight, J. Scott; Lightsey, Paul A.; Harwit, Alex; Coyle, Laura

    2017-09-01

    Future astronomical telescopes in space will have architectures with complex and demanding requirements in order to meet their science goals. The missions currently being studied by NASA for consideration in the next Decadal Survey range in wavelength from the X-ray to Far infrared; examining phenomenon from imaging exoplanets and characterizing their atmospheres to detecting gravitational waves. These missions have technical challenges that are near or beyond the state of the art from the telescope to the detectors. This paper describes some of these challenges and possible solutions. Promising measurements and future demonstrations are discussed that can enhance or enable these missions.

  10. Performance Testing of Yardney Li-Ion Cells and Batteries in Support of Future NASA Missions

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Ratnakumar, B. V.; Whitcanack, L. D.; Puglia, F. J.; Santee, S.; Gitzendanner, R.

    2009-01-01

    NASA requires lightweight rechargeable batteries for future missions to Mars and the outer planets that are capable of operating over a wide range of temperatures, with high specific energy and energy densities. Due to the attractive performance characteristics, Li-ion batteries have been identified as the battery chemistry of choice for a number of future applications. For example, JPL is planning to launch another unmanned rover mission to the planet Mars. This mission, referred to as the Mars Science Laboratory (MSL), will involve the use of a rover that is much larger than the previously developed Spirit and Opportunity Rovers for the 2003 Mars Exploration Rover (MER) mission, that are currently still in operation on the surface of the planet after more than five years. Part of the reason that the MER rovers have operated so successfully, far exceeding the required mission duration of 90 sols, is that they possess robust Li-ion batteries, manufactured by Yardney Technical Products, which have demonstrated excellent life characteristics. Given the excellent performance characteristics displayed, similar Li-ion batteries have been projected to successfully meet the mission requirements of the up-coming MSL mission. In addition to future missions to Mars, Li-ion technology is attractive for a number of other future NASA applications which require high specific energy, rechargeable batteries. To ascertain the viability of using Li-ion batteries for these applications, a number of performance validation tests have been performed on both Yardney cells and batteries of various sizes. These tests include mission simulation tests, charge and discharge rate characterization testing, cycle life testing under various conditions, and storage testing.

  11. New Brunswick Laboratory progress report for the period October 1988--September 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The mission of the New Brunswick Laboratory (NBL) of the US Department of Energy (DOE) is to provide and maintain a nuclear material measurements and standards laboratory as a technical response to DOE's statutory responsibility to assure the safeguarding of nuclear materials. This report summarizes the mission-fulfilling activities of NBL for the period October 1988 through September 1989.

  12. The NASA In-Space Propulsion Technology Project's Current Products and Future Directions

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Dankanich, John; Munk, Michelle M.; Pencil, Eric; Liou, Larry

    2010-01-01

    Since its inception in 2001, the objective of the In-Space Propulsion Technology (ISPT) project has been developing and delivering in-space propulsion technologies that enable or enhance NASA robotic science missions. These in-space propulsion technologies are applicable, and potentially enabling for future NASA flagship and sample return missions currently under consideration, as well as having broad applicability to future Discovery and New Frontiers mission solicitations. This paper provides status of the technology development, applicability, and availability of in-space propulsion technologies that recently completed, or will be completing within the next year, their technology development and are ready for infusion into missions. The paper also describes the ISPT project s future focus on propulsion for sample return missions. The ISPT technologies completing their development are: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost; 2) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) aerocapture technologies which include thermal protection system (TPS) materials and structures, guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; and atmospheric and aerothermal effect models. The future technology development areas for ISPT are: 1) Planetary Ascent Vehicles (PAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) needed for sample return missions from many different destinations; 3) propulsion for Earth Return Vehicles (ERV) and transfer stages, and electric propulsion for sample return and low cost missions; 4) advanced propulsion technologies for sample return; and 5) Systems/Mission Analysis focused on sample return propulsion.

  13. NASA Goddard Thermal Technology Overview 2017

    NASA Technical Reports Server (NTRS)

    Butler, Dan; Swanson, Ted

    2017-01-01

    This presentation summarizes the current plans and efforts at NASA Goddard to develop new thermal control technology for anticipated future missions. It will also address some of the programmatic developments currently underway at NASA, especially with respect to the NASA Technology Development Program. The effects of the recently enacted FY 17 NASA budget, which includes a sizeable increase, will also be addressed. While funding for basic technology development is still tight, significant efforts are being made in direct support of flight programs. Thermal technology Implementation on current flight programs will be reviewed, and the recent push for CubeSat mission development will also be addressed. Many of these technologies also have broad applicability to DOD (Dept. of Defense), DOE (Dept. of the Environment), and commercial programs. Partnerships have been developed with the Air Force, Navy, and various universities to promote technology development. In addition, technology development activities supported by internal research and development (IRAD) program and the Small Business Innovative Research (SBIR) program are reviewed in this presentation. Specific technologies addressed include; two-phase systems applications and issues on NASA missions, latest developments of electro-hydrodynamically pumped systems, Atomic Layer Deposition (ALD), Micro-scale Heat Transfer, and various other research activities.

  14. NASA Goddard Thermal Technology Overview 2016

    NASA Technical Reports Server (NTRS)

    Butler, Dan; Swanson, Ted

    2016-01-01

    This presentation summarizes the current plans and efforts at NASA Goddard to develop new thermal control technology for anticipated future missions. It will also address some of the programmatic developments currently underway at NASA, especially with respect to the NASA Technology Development Program. The effects of the recently enacted FY 16 NASA budget, which includes a sizeable increase, will also be addressed. While funding for basic technology development is still tight, significant efforts are being made in direct support of flight programs. Thermal technology implementation on current flight programs will be reviewed, and the recent push for Cube-sat mission development will also be addressed. Many of these technologies also have broad applicability to DOD, DOE, and commercial programs. Partnerships have been developed with the Air Force, Navy, and various universities to promote technology development. In addition, technology development activities supported by internal research and development (IRAD) program and the Small Business Innovative Research (SBIR) program are reviewed in this presentation. Specific technologies addressed include; two-phase systems applications and issues on NASA missions, latest developments of electro-hydrodynamically pumped systems, Atomic Layer Deposition (ALD), Micro-scale Heat Transfer, and various other research activities.

  15. Spent Nuclear Fuel (SNF) project Integrated Safety Management System phase I and II Verification Review Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CARTER, R.P.

    1999-11-19

    The U.S. Department of Energy (DOE) commits to accomplishing its mission safely. To ensure this objective is met, DOE issued DOE P 450.4, Safety Management System Policy, and incorporated safety management into the DOE Acquisition Regulations ([DEAR] 48 CFR 970.5204-2 and 90.5204-78). Integrated Safety Management (ISM) requires contractors to integrate safety into management and work practices at all levels so that missions are achieved while protecting the public, the worker, and the environment. The contractor is required to describe the Integrated Safety Management System (ISMS) to be used to implement the safety performance objective.

  16. The importance of scientific literacy to OCRWM's mission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, G.P.

    1990-01-01

    The US Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (CRWM) has the unique mission of finding a permanent solution to the nation's high-level radioactive waste management problems. This paper explores a vital question: will OCRWM have sufficient scientific and technical resources as well as a sufficient level of public support to carry out its mission An affirmative answer to this question will require that adequate numbers of science and engineering students enter the field of radioactive waste management and that overall scientific literacy also be enhanced. This paper outlines current activities and programs within DOE and OCRWMmore » to increase scientific literacy and to recruit and develop scientists and engineers. While this paper offers only a summary inspection of the issues surrounding the solution of developing and maintaining the human technical capabilities to carry forth OCRWM's mission, it is meant to initiate a continuing examination by the American Nuclear Society, DOE, and professional and technical societies of fundamental scientific education issues.« less

  17. FY2014 LBNL LDRD Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Darren

    2015-06-01

    Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE’s National Laboratory System, Berkeley Lab supports DOE’s missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation. The LDRD program supports Berkeley Lab’s mission in many ways. First, because LDRD funds can be allocated within a relatively short time frame, Berkeley Lab researchers can support the mission of the Department of Energy (DOE) and serve the needs of the nationmore » by quickly responding to forefront scientific problems. Second, LDRD enables Berkeley Lab to attract and retain highly qualified scientists and to support their efforts to carry out worldleading research. In addition, the LDRD program also supports new projects that involve graduate students and postdoctoral fellows, thus contributing to the education mission of Berkeley Lab.« less

  18. Idaho National Laboratory Mission Accomplishments, Fiscal Year 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, Todd Randall; Wright, Virginia Latta

    A summary of mission accomplishments for the research organizations at the Idaho National Laboratory for FY 2015. Areas include Nuclear Energy, National and Homeland Security, Science and Technology Addressing Broad DOE Missions; Collaborations; and Stewardship and Operation of Research Facilities.

  19. The use of interleaving for reducing radio loss in convolutionally coded systems

    NASA Technical Reports Server (NTRS)

    Divsalar, D.; Simon, M. K.; Yuen, J. H.

    1989-01-01

    The use of interleaving after convolutional coding and deinterleaving before Viterbi decoding is proposed. This effectively reduces radio loss at low-loop Signal to Noise Ratios (SNRs) by several decibels and at high-loop SNRs by a few tenths of a decibel. Performance of the coded system can further be enhanced if the modulation index is optimized for this system. This will correspond to a reduction of bit SNR at a certain bit error rate for the overall system. The introduction of interleaving/deinterleaving into communication systems designed for future deep space missions does not substantially complicate their hardware design or increase their system cost.

  20. Atmospheric tides on Venus. III - The planetary boundary layer

    NASA Technical Reports Server (NTRS)

    Dobrovolskis, A. R.

    1983-01-01

    Diurnal solar heating of Venus' surface produces variable temperatures, winds, and pressure gradients within a shallow layer at the bottom of the atmosphere. The corresponding asymmetric mass distribution experiences a tidal torque tending to maintain Venus' slow retrograde rotation. It is shown that including viscosity in the boundary layer does not materially affect the balance of torques. On the other hand, friction between the air and ground can reduce the predicted wind speeds from about 5 to about 1 m/sec in the lower atmosphere, more consistent with the observations from Venus landers and descent probes. Implications for aeolian activity on Venus' surface and for future missions are discussed.

  1. 2013 Geothermal Technologies Office Peer Review Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geothermal Technologies Office

    Geothermal Technologies Office conducted its annual program peer review in April of 2013. The review provided an independent, expert evaluation of the technical progress and merit of GTO-funded projects. Further, the review was a forum for feedback and recommendations on future GTO strategic planning. During the course of the peer review, DOE-funded projects were evaluated for 1) their contribution to the mission and goals of the GTO and 2) their progress against stated project objectives. Principal Investigators (PIs) came together in sessions organized by topic “tracks” to disseminate information, progress, and results to a panel of independent experts as wellmore » as attendees.« less

  2. Future exploration of Venus (post-Pioneer Venus 1978)

    NASA Technical Reports Server (NTRS)

    Colin, L.; Evans, L. C.; Greeley, R.; Quaide, W. L.; Schaupp, R. W.; Seiff, A.; Young, R. E.

    1976-01-01

    A comprehensive study was performed to determine the major scientific unknowns about the planet Venus to be expected in the post-Pioneer Venus 1978 time frame. Based on those results the desirability of future orbiters, atmospheric entry probes, balloons, and landers as vehicles to address the remaining scientific questions were studied. The recommended mission scenario includes a high resolution surface mapping radar orbiter mission for the 1981 launch opportunity, a multiple-lander mission for 1985 and either an atmospheric entry probe or balloon mission in 1988. All the proposed missions can be performed using proposed space shuttle upper stage boosters. Significant amounts of long-lead time supporting research and technology developments are required to be initiated in the near future to permit the recommended launch dates.

  3. Laboratory Directed Research and Development 1998 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pam Hughes; Sheila Bennett eds.

    1999-07-14

    The Laboratory's Directed Research and Development (LDRD) program encourages the advancement of science and the development of major new technical capabilities from which future research and development will grow. Through LDRD funding, Pacific Northwest continually replenishes its inventory of ideas that have the potential to address major national needs. The LDRD program has enabled the Laboratory to bring to bear its scientific and technical capabilities on all of DOE's missions, particularly in the arena of environmental problems. Many of the concepts related to environmental cleanup originally developed with LDRD funds are now receiving programmatic support from DOE, LDRD-funded work inmore » atmospheric sciences is now being applied to DOE's Atmospheric Radiation Measurement Program. We also have used concepts initially explored through LDRD to develop several winning proposals in the Environmental Management Science Program. The success of our LDRD program is founded on good management practices that ensure funding is allocated and projects are conducted in compliance with DOE requirements. We thoroughly evaluate the LDRD proposals based on their scientific and technical merit, as well as their relevance to DOE's programmatic needs. After a proposal is funded, we assess progress annually using external peer reviews. This year, as in years past, the LDRD program has once again proven to be the major enabling vehicle for our staff to formulate new ideas, advance scientific capability, and develop potential applications for DOE's most significant challenges.« less

  4. Planning for future X-ray astronomy missions .

    NASA Astrophysics Data System (ADS)

    Urry, C. M.

    Space science has become an international business. Cutting-edge missions are too expensive and too complex for any one country to have the means and expertise to construct. The next big X-ray mission, Astro-H, led by Japan, has significant participation by Europe and the U.S. The two premier missions currently operating, Chandra and XMM-Newton, led by NASA and ESA, respectively, are thoroughly international. The science teams are international and the user community is International. It makes sense that planning for future X-ray astronomy missions -- and the eventual missions themselves -- be fully integrated on an international level.

  5. Proposed modification to the specification for dry heat microbial reduction of spacecraft hardware for future US missions

    NASA Astrophysics Data System (ADS)

    James; Spry, A.; Beaudet, Robert; Schubert, Wayne

    Dry heat microbial reduction (DHMR) is the primary technique used to reduce the microbial load of spacecraft and component parts to comply with planetary protection requirements. Often, manufacturing processes involve heating flight hardware to high temperatures for purposes other than planetary protection DHMR. At present, the existing specification in NASA document NPR8020.12C, describing the process lethality on B. atrophaeus (ATCC 9372) bacterial spores, does not allow for additional planetary protection bioburden reduction credit for processing outside a narrow temperature, time and humidity window. However, recent studies (Schubert et al., COSPAR 2008) from a comprehensive multi-year laboratory research effort have generated enhanced data sets on four aspects of the current specification: time and temperature combination effects, the effect that humidity has on spore lethality, the lethality for spores with exceptionally high thermal resistance (so called "hardies"), and the extended exposure requirement for encapsulated microorganisms. This paper describes proposed modifications to the specification, based on the data set generated in the referenced study. The proposed modifications are intended to broaden the scope of the current specification while still maintaining a confident conservative interpretation of the lethality of the DHMR process on microorganisms. Potential cost and schedule benefits to future missions utilizing the revised specification will be highlighted.

  6. Strategy for the Identification of an INL Comprehensive Utility Corridor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John Reisenauer

    2011-05-01

    This report documents the strategy developed to identify a comprehensive utility corridor (CUC) on the Idaho National Laboratory (INL) Site. The strategy established the process for which the Campus Development Office will evaluate land management issues. It is a process that uses geographical information system geospatial technology to layer critical INL mission information in a way that thorough evaluations can be conducted and strategies developed. The objective of the CUC Project was to develop a process that could be implemented to identify potential utility corridor options for consideration. The process had to take into account all the missions occurring onmore » the INL and other land-related issues. The process for developing a CUC strategy consists of the following four basic elements using geographical information system capabilities: 1. Development of an INL base layer map; this base layer map geospatially references all stationary geographical features on INL and sitewide information. 2. Development of current and future mission land-use need maps; this involved working with each directorate to identify current mission land use needs and future land use needs that project 30 years into the future. 3. Development of restricted and potential constraint maps; this included geospatially mapping areas such as wells, contaminated areas, firing ranges, cultural areas, ecological areas, hunting areas, easement, and grazing areas. 4. Development of state highway and power line rights of way map; this included geospatially mapping rights-of-way along existing state highways and power lines running through the INL that support INL operations. It was determined after completing and evaluating the geospatial information that the area with the least impact to INL missions was around the perimeter of the INL Site. Option 1, in this document, identifies this perimeter; however, it does not mean the entire perimeter is viable. Many places along the perimeter corridor cannot be used or are not economically viable. Specific detailed studies will need to be conducted on a case-by-case basis to clearly identify which sections along the perimeter can and cannot be used. Option 2, in this document, identifies areas along existing highways that could be a viable option. However, discussions would have to take place with the State of Idaho to use their easement as part of the corridor and mission impact would need to be evaluated if a specific request was made to the Department of Energy, Idaho Operations Office. Option 3, in this document, is a combination of Options 1 and 2. This option provides the most flexibility to minimize impacts to INL missions. As with the other two options, discussions and agreements with the State of Idaho would be needed and any specific route would need to be thoroughly evaluated for impact, implementation, and operability beyond just a strategy.« less

  7. End State Condition Report for Materials and Fuels Complex Facilities MFC-799, 799A, and 770C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gary Mecham

    2010-10-01

    The Materials and Fuels Complex (MFC) facilities MFC-799, “Sodium Processing Facility” (a single building consisting of two areas: the Sodium Process Area and the Carbonate Process Area); MFC-799A, “Caustic Storage Area;” and MFC-770C, “Nuclear Calibration Laboratory,” have been declared excess to future Department of Energy (DOE) Office of Nuclear Energy(NE) mission requirements. Transfer of these facilities from NE to the DOE Office of Environmental Management (EM), and an associated schedule for doing so, have been agreed upon by the two offices. This report documents the completion of pre-transfer stabilization actions, as identified in DOE Guide 430.1-5, “Transition Implementation Guide,” formore » buildings MFC-799/799A and 770C, and indicates that these facilities are ready for transfer from NE to EM. The facilities are in a known, safe condition and information is provided to support efficient decommissioning and demolition (D&D) planning while minimizing the possibility of encountering unforeseen circumstances during the D&D activities.« less

  8. Semi-annual technical report, September 30, 1999 - March 31, 2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schumacher, Dorin

    2000-04-01

    The Consortium for Plant Biotechnology Research, Inc. (CPBR) continues to operate according to objectives outlined in the proposal funded through the cooperative agreement. The italicized objectives below are addressed in this report, which covers the period September 30,1999 through March 31, 2000. (1) Update the research agenda using information obtained from member companies. (2) Identify and implement research projects that are deemed by industrial, scientific, and sponsoring agency evaluation to address significantly the problems and future of U.S. energy resources and that are relevant to the Department of Energy's mission. Specifically: (1) Announce research grants competition through a Request formore » Preproposals. (2) Conduct a dual-stage review process: Stage one--industrial and DOE review of preproposals; and Stage two--peer review, scientific consultants' review, DOE review of full proposals and Project Recommendation Committee evaluation and recommendation for funding. (3) Board of Directors approval of recommended awards. (4) Conduct ongoing project management. (5) Obtain semiannual, annual and final reports for evaluation of research goals and technology transfer. (6) Present reports to DOE.« less

  9. Can We Power Future Mars Missions?

    NASA Technical Reports Server (NTRS)

    Balint, Tibor S.; Sturm, Erick J., II; Woolley, Ryan C.; Jordan, James F.

    2006-01-01

    The Vision for Space Exploration identified the exploration of Mars as one of the key pathways. In response, NASAs Mars Program Office is developing a detailed mission lineup for the next decade that would lead to future explorations. Mission architectures for the next decade include both orbiters and landers. Existing power technologies, which could include solar panels, batteries, radioisotope power systems, and in the future fission power, could support these missions. Second and third decade explorations could target human precursor and human in-situ missions, building on increasingly complex architectures. Some of these could use potential feed forward from earlier Constellation missions to the Moon, discussed in the ESAS study. From a potential Mars Sample Return mission to human missions the complexity of the architectures increases, and with it the delivered mass and power requirements also amplify. The delivered mass at Mars mostly depends on the launch vehicle, while the landed mass might be further limited by EDL technologies, including the aeroshell, parachutes, landing platform, and pinpoint landing. The resulting in-situ mass could be further divided into payload elements and suitable supporting power systems. These power systems can range from tens of watts to multi-kilowatts, influenced by mission type, mission configuration, landing location, mission duration, and season. Regardless, the power system design should match the power needs of these surface assets within a given architecture. Consequently, in this paper we will identify potential needs and bounds of delivered mass and architecture dependent power requirements to surface assets that would enable future in-situ exploration of Mars.

  10. Autonomous RPOD Technology Challenges for the Coming Decade

    NASA Technical Reports Server (NTRS)

    Naasz, Bo J.; Moreau, Michael C.

    2012-01-01

    Rendezvous Proximity Operations and Docking (RPOD) technologies are important to a wide range of future space endeavors. This paper will review some of the recent and ongoing activities related to autonomous RPOD capabilities and summarize the current state of the art. Gaps are identified where future investments are necessary to successfully execute some of the missions likely to be conducted within the next ten years. A proposed RPOD technology roadmap that meets the broad needs of NASA's future missions will be outlined, and ongoing activities at OSFC in support of a future satellite servicing mission are presented. The case presented shows that an evolutionary, stair-step technology development program. including a robust campaign of coordinated ground tests and space-based system-level technology demonstration missions, will ultimately yield a multi-use main-stream autonomous RPOD capability suite with cross-cutting benefits across a wide range of future applications.

  11. Life Cycle of a Mission

    NASA Technical Reports Server (NTRS)

    Bothwell, Mary

    2004-01-01

    A viewgraph presentation describing the the six phases of a space mission is shown. The contents include: 1) What Does Planning Involve?; 2) Designing the Flight System; 3) Building the Flight System; 4) Testing the Flight System; 5) Flying the Mission; and 6) Analyzing the Data.

  12. 14 CFR 1214.504 - Screening requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 1214.504 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Mission... persons who are certified under the PRP will have unescorted access to mission critical space systems... regulation provides for unescorted access to mission critical space systems areas, it does not preclude the...

  13. 14 CFR 1214.504 - Screening requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 1214.504 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Mission... persons who are certified under the PRP will have unescorted access to mission critical space systems... regulation provides for unescorted access to mission critical space systems areas, it does not preclude the...

  14. 14 CFR 1214.504 - Screening requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 1214.504 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Mission... persons who are certified under the PRP will have unescorted access to mission critical space systems... regulation provides for unescorted access to mission critical space systems areas, it does not preclude the...

  15. Using New Technologies in Support of Future Space Missions

    NASA Technical Reports Server (NTRS)

    Hooke, Adrian J.; Welch, David C.

    1997-01-01

    This paper forms a perspective of how new technologies such as onboard autonomy and internet-like protocols will change the look and feel of operations. It analyzes the concept of a lights-out mission operations control center and it's role in future mission support and it describes likely scenarios for evolving from current concepts.

  16. The Status of Ka-Band Communications for Future Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Edwards, C.; Deutsch, L.; Gatti, M.; Layland, J.; Perret, J.; Stelzried, C.

    1997-01-01

    Over the past decade, the Jet Propulsion Laboratory's Telecommunications and Mission Operations Directorate has invested in a variety of technologies, targeted at both the flight and ground sides of the communications link, with the goal of developing a Ka-band (32 GHz) communications capability for future deep space missions.

  17. Manned Orbital Transfer Vehicle (MOTV). Volume 2: Mission handbook

    NASA Technical Reports Server (NTRS)

    Boyland, R. E.; Sherman, S. W.; Morfin, H. W.

    1979-01-01

    The use of the manned orbit transfer vehicle (MOTV) for support of future space missions is defined. Some 20 generic missions are defined each representative of the types of missions expected to be flown in the future. These include the service and update of communications satellites, emergency repair of surveillance satellites, and passenger transport of a six man crew rotation/resupply service to a deep space command post. The propulsive and functional capabilities required of the MOTV to support a particular mission are described and data to enable the user to determine the number of STS flights needed to support the mission, mission peculiar equipment requirements, parametrics on mission phasing and requirements, ground and flight support requirements, recovery considerations, and IVA/EVA trade analysis are presented.

  18. Space technology to meet future needs

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Key technologies were identified where contemporary investments might have large payoffs in technological options for the future. The future needs were considered for space transportation, space science, national security, and manned missions. Eight areas were selected as being vital for the national future in space. Findings regarding representative mission and the recommendations concerning high priority technologies are summarized.

  19. Managing Space Radiation Risk in the New Era of Space Exploration

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Space exploration is a risky enterprise. Rockets launch astronauts at enormous speeds into a harsh, unforgiving environment. Spacecraft must withstand the bitter cold of space and the blistering heat of reentry. Their skin must be strong enough to keep the inside comfortably pressurized and tough enough to resist damage from micrometeoroids. Spacecraft meant for lunar or planetary landings must survive the jar of landing, tolerate dust, and be able to take off again. For astronauts, however, there is one danger in space that does not end when they step out of their spacecraft. The radiation that permeates space -- unattenuated by Earth s atmosphere and magnetosphere -- may damage or kill cells within astronauts bodies, resulting in cancer or other health consequences years after a mission ends. The National Aeronautics and Space Administration (NASA) has recently embarked on Project Constellation to implement the Vision for Space Exploration -- a program announced by President George W. Bush in 2004 with the goal of returning humans to the Moon and eventually transporting them to Mars. To adequately prepare for the safety of these future space explorers, NASA s Exploration Systems Mission Directorate requested that the Aeronautics and Space Engineering Board of the National Research Council establish a committee to evaluate the radiation shielding requirements for lunar missions and to recommend a strategic plan for developing the radiation mitigation capabilities needed to enable the planned lunar mission architecture

  20. Selenide isotope generator (SIG) for the Galileo Mission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-09-01

    This agreement establishes the procedures and defines the responsibilities that are a part of the DOE/TES/3M interface for the duration of the SIG/Galileo Mission Program. The agreement is intended to expand upon the Interface Document which is Attachment IV to both the 3M and TES Contract Statement of Work. The agreement is effective upon approval by DOE, TES and 3M Company.

  1. An Adjunct Galilean Satellite Orbiter Using a Small Radioisotope Power Source

    NASA Technical Reports Server (NTRS)

    Abelson, Robert Dean; Randolph, J.; Alkalai, L.; Collins, D.; Moore, W.

    2005-01-01

    This is a conceptual mission study intended to demonstrate the range of possible missions and applications that could be enabled were a new generation of Small Radioisotope Power Systems to be developed by NASA and DOE. While such systems are currently being considered by NASA and DOE, they do not currently exist. This study is one of several small RPS-enabled mission concepts that were studied and presented in the NASA/JPL document "Enabling Exploration with Small Radioisotope Power Systems" available at: http://solarsystem.nasa.gov/multimedia/download-detail.cfm?DL_ID=82

  2. Ares V an Enabling Capability for Future Space Astrophysics Missions

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2007-01-01

    The potential capability offered by an Ares V launch vehicle completely changes the paradigm for future space astrophysics missions. This presentation examines some details of this capability and its impact on potential missions. A specific case study is presented: implementing a 6 to 8 meter class monolithic UV/Visible telescope at an L2 orbit. Additionally discussed is how to extend the mission life of such a telescope to 30 years or longer.

  3. Mission applications for advanced photovoltaic solar arrays

    NASA Technical Reports Server (NTRS)

    Stella, Paul M.; West, John L.; Chave, Robert G.; Mcgee, David P.; Yen, Albert S.

    1990-01-01

    The suitability of the Advanced Photovoltaic Solar Array (APSA) for future space missions was examined by considering the impact on the spacecraft system in general. The lightweight flexible blanket array system was compared to rigid arrays and a radio-isotope thermoelectric generator (RTG) static power source for a wide range of assumed future earth orbiting and interplanetary mission applications. The study approach was to establish assessment criteria and a rating scheme, identify a reference mission set, perform the power system assessment for each mission, and develop conclusions and recommendations to guide future APSA technology development. The authors discuss the three selected power sources, the assessment criteria and rating definitions, and the reference missions. They present the assessment results in a convenient tabular format. It is concluded that the three power sources examined, APSA, conventional solar arrays, and RTGs, can be considered to complement each other. Each power technology has its own range of preferred applications.

  4. Multidisciplinary Analysis of the NEXUS Precursor Space Telescope

    NASA Astrophysics Data System (ADS)

    de Weck, Olivier L.; Miller, David W.; Mosier, Gary E.

    2002-12-01

    A multidisciplinary analysis is demonstrated for the NEXUS space telescope precursor mission. This mission was originally designed as an in-space technology testbed for the Next Generation Space Telescope (NGST). One of the main challenges is to achieve a very tight pointing accuracy with a sub-pixel line-of-sight (LOS) jitter budget and a root-mean-square (RMS) wavefront error smaller than λ/50 despite the presence of electronic and mechanical disturbances sources. The analysis starts with the assessment of the performance for an initial design, which turns out not to meet the requirements. Twentyfive design parameters from structures, optics, dynamics and controls are then computed in a sensitivity and isoperformance analysis, in search of better designs. Isoperformance allows finding an acceptable design that is well "balanced" and does not place undue burden on a single subsystem. An error budget analysis shows the contributions of individual disturbance sources. This paper might be helpful in analyzing similar, innovative space telescope systems in the future.

  5. A Small Fission Power System with Stirling Power Conversion for NASA Science Missions

    NASA Technical Reports Server (NTRS)

    Mason, Lee; Carmichael, Chad

    2011-01-01

    In early 2010, a joint National Aeronautics and Space Administration (NASA) and Department of Energy (DOE) study team developed a concept for a 1 kWe Fission Power System with a 15-year design life that could be available for a 2020 launch to support future NASA science missions. The baseline concept included a solid block uranium-molybdenum reactor core with embedded heat pipes and distributed thermoelectric converters directly coupled to aluminum radiator fins. A short follow-on study was conducted at NASA Glenn Research Center (GRC) to evaluate an alternative power conversion approach. The GRC study considered the use of free-piston Stirling power conversion as a substitution to the thermoelectric converters. The resulting concept enables a power increase to 3 kWe with the same reactor design and scalability to 10 kW without changing the reactor technology. This paper presents the configuration layout, system performance, mass summary, and heat transfer analysis resulting from the study.

  6. Multi-mission space science data processing systems - Past, present, and future

    NASA Technical Reports Server (NTRS)

    Stallings, William H.

    1990-01-01

    Packetized telemetry that is consistent with the international Consultative Committee for Space Data Systems (CCSDS) has been baselined for future NASA missions such as Space Station Freedom. Some experiences from past and present multimission systems are examined, including current experiences in implementing a CCSDS standard packetized data processing system, relative to the effectiveness of the multimission approach in lowering life cycle cost and the complexity of meeting new mission needs. It is shown that the continued effort toward standardization of telemetry and processing support will permit the development of multimission systems needed to meet the increased requirements of future NASA missions.

  7. NASA's ultraviolet astrophysics branch - The next decade

    NASA Technical Reports Server (NTRS)

    Welsh, Barry Y.; Kaplan, Michael

    1992-01-01

    We review some of the mission concepts currently being considered by NASA's Astrophysics Division to carry out future observations in the 100-3000 Angstrom region. Examples of possible future missions include UV and visible interferometric experiments, a next generation Space Telescope and lunar-based UV instrumentation. In order to match the science objectives of these future missions with new observational techniques, critical technology needs in the ultraviolet regime have been identified. Here we describe how NASA's Astrophysics Division Advanced Programs Branch is attempting to formulate an integrated technology plan called the 'Astrotech 21' program in order to provide the technology base for these astrophysics missions of the 21st century.

  8. Design of human missions to Mars and robotic missions to Jupiter

    NASA Astrophysics Data System (ADS)

    Okutsu, Masataka

    We consider human missions to Mars and robotic missions to Jupiter for launch dates in the near- and far-future. For the near-future, we design trajectories for currently proposed space missions that have well-defined spacecraft and mission requirements. For example, for early human missions to Mars we assume that the constraints used in NASA's design reference missions are indicative of current and near-future technologies, which of course limit our capabilities to explore Mars--and these limits make the problem challenging. Similarly, in the case of robotic exploration of Jupiter, we consider that the technology levels assumed for the proposed Europa Orbiter mission represent reasonable limits. For the far-future (two to three decades from now), we take the best estimates from current literature about the capabilities that may be available in nuclear-powered electric propulsion. We consider hardware capabilities (in terms of specific mass, specific impulse, thrust, power, etc.) for low-thrust trajectories, which range froth near-term to far-future technologies. In designing such missions, several techniques are found useful. For example, the Tisserand Graph, which tracks the changes in orbital shapes and energies, provides insight in designing Jovian tours for the Europa Orbiter mission. The graph is also useful in analyzing abort trajectories for human missions to Mars. Furthermore, a patched-conic propagator, which can generate thousands of potential trajectories, plays a vital role in three of four chapters of this thesis. For launches in the next three decades, we discovered a class of Earth- Mars-Venus-Earth free returns (which appear only four times in the 100-year period), Jovian tours involving ten to twenty flybys of the Galilean satellites, and low-thrust trajectories to Jupiter via gravity assists from Venus, Earth, and Mars. In addition, our continuation method, in which a solution for a conic trajectory is gradually converted into that for a low- thrust trajectory, is found effective in design of some families of low-thrust trajectories. The method is applied, for example, in the design of a "one- vehicle cycler," an architecture requiring only one interplanetary vehicle for sustained human missions to Mars.

  9. Kepler Mission: A Search for Habitable Planets

    NASA Technical Reports Server (NTRS)

    Koch, David; Fonda, Mark (Technical Monitor)

    2002-01-01

    The Kepler Mission was selected by NASA as one of the next two Discovery Missions. The mission design is based on the search for Earth-size planets in the habitable zone of solar-like stars, but does not preclude the discovery of larger or smaller planets in other orbits of non-solar-like stars. An overview of the mission, the scientific goals and the anticipated results will be presented.

  10. 77 FR 5770 - Energy Efficiency Trade Mission to Russia

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-06

    ... energy prices. Road Infrastructure: Due to the rapid increase in the number of private vehicles in Russia... DEPARTMENT OF COMMERCE International Trade Administration Energy Efficiency Trade Mission to.... Commercial Service (CS) and Department of Energy (DOE) are organizing an Energy Efficiency Trade Mission to...

  11. Cost Comparison in 2015 Dollars for Radioisotope Power Systems -- Cassini and Mars Science Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Werner, James Elmer; Johnson, Stephen Guy; Dwight, Carla Chelan

    Radioisotope power systems (RPSs) have enabled missions requiring reliable, long-lasting power in remote, harsh environments such as space since the early 1960s. Costs for RPSs are high, but are often misrepresented due to the complexity of space missions and inconsistent charging practices among the many and changing participant organizations over the years. This paper examines historical documentation associated with two past successful flight missions, each with a different RPS design, to provide a realistic cost basis for RPS production and deployment. The missions and their respective RPSs are Cassini, launched in 1997, that uses the general purpose heat source (GPHS)more » radioisotope thermoelectric generator (RTG), and Mars Science Laboratory (MSL), launched in 2011, that uses the multi-mission RTG (MMRTG). Actual costs in their respective years are discussed for each of the two RTG designs and the missions they enabled, and then present day values to 2015 are computed to compare the costs. Costs for this analysis were categorized into two areas: development of the specific RTG technology, and production and deployment of an RTG. This latter category includes material costs for the flight components (including Pu-238 and fine weave pierced fabric (FWPF)); manufacturing of flight components; assembly, testing, and transport of the flight RTG(s); ground operations involving the RTG(s) through launch; nuclear safety analyses for the launch and for the facilities housing the RTG(s) during all phases of ground operations; DOE’s support for NEPA analyses; and radiological contingency planning. This analysis results in a fairly similar 2015 normalized cost for the production and deployment of an RTG—approximately $118M for the GPHS-RTG and $109M for the MMRTG. In addition to these two successful flight missions, the costs for development of the MMRTG are included to serve as a future reference. Note that development costs included herein for the MMRTG do not include costs from NASA staff or facilities for their development efforts—they only include the amounts costed by DOE and DOE contractors. The 2015 value for MMRTG development is $83M. Both of the RPS types analyzed herein use the general purpose heat source (GPHS) module as the “heart of the RPS.” The estimates presented herein do not include development costs for the GPHS. These estimates also do not include the RPS infrastructure cost to maintain the facilities, equipment, and personnel necessary to enable the production of RPSs, except to the extent that the infrastructure is utilized during the production campaigns to provide RPSs for missions. It was not until after the Cassini mission that an RPS infrastructure funding structure was defined and funded separately from mission-specific elements. The information presented herein could allow for more accurate budget planning estimates for space missions being considered over the next decade and beyond.« less

  12. Planning and managing future space facility projects. [management by objectives and group dynamics

    NASA Technical Reports Server (NTRS)

    Sieber, J. E.; Wilhelm, J. A.; Tanner, T. A.; Helmreich, R. L.; Burgenbauch, S. F.

    1979-01-01

    To learn how ground-based personnel of a space project plan and organize their work and how such planning and organizing relate to work outcomes, longitudinal study of the management and execution of the Space Lab Mission Development Test 3 (SMD 3) was performed at NASA Ames Research Center. A view of the problems likely to arise in organizations and some methods of coping with these problems are presented as well as the conclusions and recommendations that pertain strictly to SMD 3 management. Emphasis is placed on the broader context of future space facility projects and additional problems that may be anticipated. A model of management that may be used to facilitate problem solving and communication - management by objectives (MBO) is presented. Some problems of communication and emotion management that MBO does not address directly are considered. Models for promoting mature, constructive and satisfying emotional relationships among group members are discussed.

  13. Advances in Autonomous Systems for Missions of Space Exploration

    NASA Astrophysics Data System (ADS)

    Gross, A. R.; Smith, B. D.; Briggs, G. A.; Hieronymus, J.; Clancy, D. J.

    New missions of space exploration will require unprecedented levels of autonomy to successfully accomplish their objectives. Both inherent complexity and communication distances will preclude levels of human involvement common to current and previous space flight missions. With exponentially increasing capabilities of computer hardware and software, including networks and communication systems, a new balance of work is being developed between humans and machines. This new balance holds the promise of meeting the greatly increased space exploration requirements, along with dramatically reduced design, development, test, and operating costs. New information technologies, which take advantage of knowledge-based software, model-based reasoning, and high performance computer systems, will enable the development of a new generation of design and development tools, schedulers, and vehicle and system health monitoring and maintenance capabilities. Such tools will provide a degree of machine intelligence and associated autonomy that has previously been unavailable. These capabilities are critical to the future of space exploration, since the science and operational requirements specified by such missions, as well as the budgetary constraints that limit the ability to monitor and control these missions by a standing army of ground- based controllers. System autonomy capabilities have made great strides in recent years, for both ground and space flight applications. Autonomous systems have flown on advanced spacecraft, providing new levels of spacecraft capability and mission safety. Such systems operate by utilizing model-based reasoning that provides the capability to work from high-level mission goals, while deriving the detailed system commands internally, rather than having to have such commands transmitted from Earth. This enables missions of such complexity and communications distance as are not otherwise possible, as well as many more efficient and low cost applications. One notable example of such missions are those to explore for the existence of water on planets such as Mars and the moons of Jupiter. It is clear that water does not exist on the surfaces of such bodies, but may well be located at some considerable depth below the surface, thus requiring a subsurface drilling capability. Subsurface drilling on planetary surfaces will require a robust autonomous control and analysis system, currently a major challenge, but within conceivable reach of planned technology developments. This paper will focus on new and innovative software for remote, autonomous, space systems flight operations, including flight test results, lessons learned, and implications for the future. An additional focus will be on technologies for planetary exploration using autonomous systems and astronaut-assistance systems that employ new spoken language technology. Topics to be presented will include a description of key autonomous control concepts, illustrated by the Remote Agent program that commanded the Deep Space 1 spacecraft to new levels of system autonomy, recent advances in distributed autonomous system capabilities, and concepts for autonomous vehicle health management systems. A brief description of teaming spacecraft and rovers for complex exploration missions will also be provided. New software for autonomous science data acquisition for planetary exploration will also be described, as well as advanced systems for safe planetary landings. Current results of autonomous planetary drilling system research will be presented. A key thrust within NASA is to develop technologies that will leverage the capabilities of human astronauts during planetary surface explorations. One such technology is spoken dialogue interfaces, which would allow collaboration with semi-autonomous agents that are engaged in activities that are normally accomplished using language, e.g., astronauts in space suits interacting with groups of semi-autonomous rovers and other astronauts. This technology will be described and discussed in the context of future exploration missions and the major new capabilities enabled by such systems. Finally, plans and directions for the future of autonomous systems will be presented.

  14. The German joint research project "concepts for future gravity satellite missions"

    NASA Astrophysics Data System (ADS)

    Reubelt, Tilo; Sneeuw, Nico; Fichter, Walter; Müller, Jürgen

    2010-05-01

    Within the German joint research project "concepts for future gravity satellite missions", funded by the Geotechnologies programme of the German Federal Ministry of Education and Research, options and concepts for future satellite missions for precise (time-variable) gravity field recovery are investigated. The project team is composed of members from science and industry, bringing together experts in geodesy, satellite systems, metrology, sensor technology and control systems. The majority of team members already contributed to former gravity missions. The composition of the team guarantees that not only geodetic aspects and objectives are investigated, but also technological and financial constraints are considered. Conversely, satellite, sensor and system concepts are developed and improved in a direct exchange with geodetic and scientific claims. The project aims to develop concepts for both near and mid-term future satellite missions, taking into account e.g. advanced satellite formations and constellations, improved orbit design, innovative metrology and sensor systems and advances in satellite systems.

  15. Space Internet-Embedded Web Technologies Demonstration

    NASA Technical Reports Server (NTRS)

    Foltz, David A.

    2001-01-01

    The NASA Glenn Research Center recently demonstrated the ability to securely command and control space-based assets by using the Internet and standard Internet Protocols (IP). This is a significant accomplishment because future NASA missions will benefit by using Internet standards-based protocols. The benefits include reduced mission costs and increased mission efficiency. The Internet-Based Space Command and Control System Architecture demonstrated at the NASA Inspection 2000 event proved that this communications architecture is viable for future NASA missions.

  16. The Asteroid Impact and Deflection Assessment Mission and its Potential Contributions to Human Exploration of Asteroids

    NASA Technical Reports Server (NTRS)

    Abell, Paul A.; Rivkin, Andy S.

    2014-01-01

    The joint ESA and NASA Asteroid Impact and Deflection Assessment (AIDA) mission will directly address aspects of NASA's Asteroid Initiative and will contribute to future human exploration. The NASA Asteroid Initiative is comprised of two major components: the Grand Challenge and the Asteroid Mission. The first component, the Grand Challenge, focuses on protecting Earth's population from asteroid impacts by detecting potentially hazardous objects with enough warning time to either prevent them from impacting the planet, or to implement civil defense procedures. The Asteroid Mission, involves sending astronauts to study and sample a near-Earth asteroid (NEA) prior to conducting exploration missions of the Martian system, which includes Phobos and Deimos. AIDA's primary objective is to demonstrate a kinetic impact deflection and characterize the binary NEA Didymos. The science and technical data obtained from AIDA will aid in the planning of future human exploration missions to NEAs and other small bodies. The dual robotic missions of AIDA, ESA's Asteroid Impact Monitor (AIM) and NASA's Double Asteroid Redirection Test (DART), will provide a great deal of technical and engineering data on spacecraft operations for future human space exploration while conducting in-depth scientific examinations of the binary target Didymos both prior to and after the kinetic impact demonstration. The knowledge gained from this mission will help identify asteroidal physical properties in order to maximize operational efficiency and reduce mission risk for future small body missions. The AIDA data will help fill crucial strategic knowledge gaps concerning asteroid physical characteristics that are relevant for human exploration considerations at similar small body destinations.

  17. Asteroid Crewed Segment Mission Lean Development

    NASA Technical Reports Server (NTRS)

    Gard, Joe; McDonald, Mark; Jermstad, Wayne

    2014-01-01

    The next generation of human spaceflight missions presents numerous challenges to designers that must be addressed to produce a feasible concept. The specific challenges of designing an exploration mission utilizing the Space Launch System and the Orion spacecraft to carry astronauts beyond earth orbit to explore an asteroid stored in a distant retrograde orbit around the moon will be addressed. Mission designers must carefully balance competing constraints including cost, schedule, risk, and numerous spacecraft performance metrics including launch mass, nominal landed mass, abort landed mass, mission duration, consumable limits and many others. The Asteroid Redirect Crewed Mission will be described along with results from the concurrent mission design trades that led to its formulation. While the trades presented are specific to this mission, the integrated process is applicable to any potential future mission. The following trades were critical in the mission formulation and will be described in detail: 1) crew size, 2) mission duration, 3) trajectory design, 4) docking vs grapple, 5) extravehicular activity tasks, 6) launch mass and integrated vehicle performance, 7) contingency performance, 8) crew consumables including food, clothing, oxygen, nitrogen and water, and 9) mission risk. The additional Orion functionality required to perform the Asteroid Redirect Crewed Mission and how it is incorporated while minimizing cost, schedule and mass impacts will be identified. Existing investments in the NASA technology portfolio were leveraged to provide the added functionality that will be beneficial to future exploration missions. Mission kits are utilized to augment Orion with the necessary functionality without introducing costly new requirements to the mature Orion spacecraft design effort. The Asteroid Redirect Crewed Mission provides an exciting early mission for the Orion and SLS while providing a stepping stone to even more ambitious missions in the future.

  18. A Proposed Strategy for the U.S. to Develop and Maintain a Mainstream Capability Suite ("Warehouse") for Automated/Autonomous Rendezvous and Docking in Low Earth Orbit and Beyond

    NASA Technical Reports Server (NTRS)

    Krishnakumar, Kalmanje S.; Stillwater, Ryan A.; Babula, Maria; Moreau, Michael C.; Riedel, J. Ed; Mrozinski, Richard B.; Bradley, Arthur; Bryan, Thomas C.

    2012-01-01

    The ability of space assets to rendezvous and dock/capture/berth is a fundamental enabler for numerous classes of NASA fs missions, and is therefore an essential capability for the future of NASA. Mission classes include: ISS crew rotation, crewed exploration beyond low-Earth-orbit (LEO), on-orbit assembly, ISS cargo supply, crewed satellite servicing, robotic satellite servicing / debris mitigation, robotic sample return, and robotic small body (e.g. near-Earth object, NEO) proximity operations. For a variety of reasons to be described, NASA programs requiring Automated/Autonomous Rendezvous and Docking/Capture/Berthing (AR&D) capabilities are currently spending an order-of-magnitude more than necessary and taking twice as long as necessary to achieve their AR&D capability, "reinventing the wheel" for each program, and have fallen behind all of our foreign counterparts in AR&D technology (especially autonomy) in the process. To ensure future missions' reliability and crew safety (when applicable), to achieve the noted cost and schedule savings by eliminate costs of continually "reinventing the wheel ", the NASA AR&D Community of Practice (CoP) recommends NASA develop an AR&D Warehouse, detailed herein, which does not exist today. The term "warehouse" is used herein to refer to a toolbox or capability suite that has pre-integrated selectable supply-chain hardware and reusable software components that are considered ready-to-fly, low-risk, reliable, versatile, scalable, cost-effective, architecture and destination independent, that can be confidently utilized operationally on human spaceflight and robotic vehicles over a variety of mission classes and design reference missions, especially beyond LEO. The CoP also believes that it is imperative that NASA coordinate and integrate all current and proposed technology development activities into a cohesive cross-Agency strategy to produce and utilize this AR&D warehouse. An initial estimate indicates that if NASA strategically coordinates the development of a robust AR&D capability across the Agency, the cost of implementing AR&D on a spacecraft could be reduced from roughly $70M per mission to as low as $7M per mission, and the associated development time could be reduced from 4 years to 2 years, after the warehouse is completely developed. Table 1 shows the clear long-term benefits to the Agency in term of costs and schedules for various missions. (The methods used to arrive at the Table 1 numbers is presented in Appendices A and B.)

  19. 14 CFR § 1214.504 - Screening requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... § 1214.504 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Mission... persons who are certified under the PRP will have unescorted access to mission critical space systems... regulation provides for unescorted access to mission critical space systems areas, it does not preclude the...

  20. Science Opportunities Enabled by NASA's Constellation System: Interim Report

    NASA Technical Reports Server (NTRS)

    2008-01-01

    In 2004 NASA initiated studies of advanced science mission concepts known as the Vision Missions and inspired by a series of NASA roadmap activities conducted in 2003. Also in 2004 NASA began implementation of the first phases of a new space exploration policy, the Vision for Space Exploration. This implementation effort included development of a new human-carrying spacecraft, known as Orion, and two new launch vehicles, the Ares I and Ares V rockets.collectively called the Constellation System. NASA asked the National Research Council (NRC) to evaluate the science opportunities enabled by the Constellation System (see Preface) and to produce an interim report on a short time schedule and a final report by November 2008. The committee notes, however, that the Constellation System and its Orion and Ares vehicles have been justified by NASA and selected in order to enable human exploration beyond low Earth orbit, and not to enable science missions. This interim report of the Committee on Science Opportunities Enabled by NASA s Constellation System evaluates the 11 Vision Mission studies presented to it and groups them into two categories: those more deserving of future study, and those less deserving of future study. Although its statement of task also refers to Earth science missions, the committee points out that the Vision Missions effort was focused on future astronomy, heliophysics, and planetary exploration and did not include any Earth science studies because, at the time, the NRC was conducting the first Earth science decadal survey, and funding Earth science studies as part of the Vision Missions effort would have interfered with that process. Consequently, no Earth science missions are evaluated in this interim report. However, the committee will evaluate any Earth science mission proposal submitted in response to its request for information issued in March 2008 (see Appendix A). The committee based its evaluation of the preexisting Vision Missions studies on two criteria: whether the concepts offered the potential for a significant scientific advance, and whether or not the concepts would benefit from the Constellation System. The committee determined that all of the concepts offered the possibility of a significant scientific advance, but it cautions that such an evaluation ultimately must be made by the decadal survey process, and it emphasizes that this interim report s evaluation should not be considered to be an endorsement of the scientific merit of these proposals, which must of course be evaluated relative to other proposals. The committee determined that seven of these concepts would benefit from the Constellation System, whereas four would not, but it stresses that this conclusion does not reflect an evaluation of the scientific merit of the projects, but rather an assessment of whether or not new capabilities provided by the Constellation System could significantly affect them. Some of the mission concepts, such as the Advanced Compton Telescope, already offer a significant scientific advance and fit easily within the mass and volume constraints of existing launch vehicles. Other mission concepts, such as the Palmer Quest proposal to drill through the Mars polar cap, are not constrained by the launch vehicle, but rather by other technology limitations. The committee evaluated the mission concepts as presented to it, aware nevertheless that proposing a far larger and more ambitious mission with the same science goals might be possible given the capabilities of the Ares V launch vehicle. (Such proposals can be submitted in response to the committee s request for information to be evaluated in its final report.) See Table S.1 for a summary of the Vision Missions, including their cost estimates, technical maturity, and reasons that they might benefit from the Constellation System. The committee developed several findings and recommendations.

  1. The NASA/MSFC Coherent Lidar Technology Advisory Team

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.

    1999-01-01

    The SPAce Readiness Coherent Lidar Experiment (SPARCLE) mission was proposed as a low cost technology demonstration mission, using a 2-micron, 100-mJ, 6-Hz, 25-cm, coherent lidar system based on demonstrated technology. SPARCLE was selected in late October 1997 to be NASA's New Millennium Program (NMP) second earth-observing (EO-2) mission. To maximize the success probability of SPARCLE, NASA/MSFC desired expert guidance in the areas of coherent laser radar (CLR) theory, CLR wind measurement, fielding of CLR systems, CLR alignment validation, and space lidar experience. This led to the formation of the NASA/MSFC Coherent Lidar Technology Advisory Team (CLTAT) in December 1997. A threefold purpose for the advisory team was identified as: 1) guidance to the SPARCLE mission, 2) advice regarding the roadmap of post-SPARCLE coherent Doppler wind lidar (CDWL) space missions and the desired matching technology development plan 3, and 3) general coherent lidar theory, simulation, hardware, and experiment information exchange. The current membership of the CLTAT is shown. Membership does not result in any NASA or other funding at this time. We envision the business of the CLTAT to be conducted mostly by email, teleconference, and occasional meetings. The three meetings of the CLTAT to date, in Jan. 1998, July 1998, and Jan. 1999, have all been collocated with previously scheduled meetings of the Working Group on Space-Based Lidar Winds. The meetings have been very productive. Topics discussed include the SPARCLE technology validation plan including pre-launch end-to-end testing, the space-based wind mission roadmap beyond SPARCLE and its implications on the resultant technology development, the current values and proposed future advancement in lidar system efficiency, and the difference between using single-mode fiber optical mixing vs. the traditional free space optical mixing.

  2. The upper atmosphere and ionosphere of Mars

    NASA Technical Reports Server (NTRS)

    Brace, Larry H.

    1992-01-01

    The topics discussed include the following: the dynamic atmosphere of Mars; possible similarities with Earth and Venus; the atmosphere and ionosphere of Mars; solar wind interactions; future approved missions; and possible future mission.

  3. Teamwork Training Needs Analysis for Long-Duration Exploration Missions

    NASA Technical Reports Server (NTRS)

    Smith-Jentsch, Kimberly A.; Sierra, Mary Jane

    2016-01-01

    The success of future long-duration exploration missions (LDEMs) will be determined largely by the extent to which mission-critical personnel possess and effectively exercise essential teamwork competencies throughout the entire mission lifecycle (e.g., Galarza & Holland, 1999; Hysong, Galarza, & Holland, 2007; Noe, Dachner, Saxton, & Keeton, 2011). To ensure that such personnel develop and exercise these necessary teamwork competencies prior to and over the full course of future LDEMs, it is essential that a teamwork training curriculum be developed and put into place at NASA that is both 1) comprehensive, in that it targets all teamwork competencies critical for mission success and 2) structured around empirically-based best practices for enhancing teamwork training effectiveness. In response to this demand, the current teamwork-oriented training needs analysis (TNA) was initiated to 1) identify the teamwork training needs (i.e., essential teamwork-related competencies) of future LDEM crews, 2) identify critical gaps within NASA’s current and future teamwork training curriculum (i.e., gaps in the competencies targeted and in the training practices utilized) that threaten to impact the success of future LDEMs, and to 3) identify a broad set of practical nonprescriptive recommendations for enhancing the effectiveness of NASA’s teamwork training curriculum in order to increase the probability of future LDEM success.

  4. Planning, Implementation and Optimization of Future space Missions using an Immersive Visualization Environement (IVE) Machine

    NASA Astrophysics Data System (ADS)

    Harris, E.

    Planning, Implementation and Optimization of Future Space Missions using an Immersive Visualization Environment (IVE) Machine E. N. Harris, Lockheed Martin Space Systems, Denver, CO and George.W. Morgenthaler, U. of Colorado at Boulder History: A team of 3-D engineering visualization experts at the Lockheed Martin Space Systems Company have developed innovative virtual prototyping simulation solutions for ground processing and real-time visualization of design and planning of aerospace missions over the past 6 years. At the University of Colorado, a team of 3-D visualization experts are developing the science of 3-D visualization and immersive visualization at the newly founded BP Center for Visualization, which began operations in October, 2001. (See IAF/IAA-01-13.2.09, "The Use of 3-D Immersive Visualization Environments (IVEs) to Plan Space Missions," G. A. Dorn and G. W. Morgenthaler.) Progressing from Today's 3-D Engineering Simulations to Tomorrow's 3-D IVE Mission Planning, Simulation and Optimization Techniques: 3-D (IVEs) and visualization simulation tools can be combined for efficient planning and design engineering of future aerospace exploration and commercial missions. This technology is currently being developed and will be demonstrated by Lockheed Martin in the (IVE) at the BP Center using virtual simulation for clearance checks, collision detection, ergonomics and reach-ability analyses to develop fabrication and processing flows for spacecraft and launch vehicle ground support operations and to optimize mission architecture and vehicle design subject to realistic constraints. Demonstrations: Immediate aerospace applications to be demonstrated include developing streamlined processing flows for Reusable Space Transportation Systems and Atlas Launch Vehicle operations and Mars Polar Lander visual work instructions. Long-range goals include future international human and robotic space exploration missions such as the development of a Mars Reconnaissance Orbiter and Lunar Base construction scenarios. Innovative solutions utilizing Immersive Visualization provide the key to streamlining the mission planning and optimizing engineering design phases of future aerospace missions.

  5. 2012 U.S. Department of Energy: Joint Genome Institute: Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert, David

    2013-01-01

    The mission of the U.S. Department of Energy Joint Genome Institute (DOE JGI) is to serve the diverse scientific community as a user facility, enabling the application of large-scale genomics and analysis of plants, microbes, and communities of microbes to address the DOE mission goals in bioenergy and the environment. The DOE JGI's sequencing efforts fall under the Eukaryote Super Program, which includes the Plant and Fungal Genomics Programs; and the Prokaryote Super Program, which includes the Microbial Genomics and Metagenomics Programs. In 2012, several projects made news for their contributions to energy and environment research.

  6. Comprehensive integrated planning: A process for the Oak Ridge Reservation, Oak Ridge, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-05-01

    The Oak Ridge Comprehensive Integrated Plan is intended to assist the US Department of Energy (DOE) and contractor personnel in implementing a comprehensive integrated planning process consistent with DOE Order 430.1, Life Cycle Asset Management and Oak Ridge Operations Order 430. DOE contractors are charged with developing and producing the Comprehensive Integrated Plan, which serves as a summary document, providing information from other planning efforts regarding vision statements, missions, contextual conditions, resources and facilities, decision processes, and stakeholder involvement. The Comprehensive Integrated Plan is a planning reference that identifies primary issues regarding major changes in land and facility use andmore » serves all programs and functions on-site as well as the Oak Ridge Operations Office and DOE Headquarters. The Oak Ridge Reservation is a valuable national resource and is managed on the basis of the principles of ecosystem management and sustainable development and how mission, economic, ecological, social, and cultural factors are used to guide land- and facility-use decisions. The long-term goals of the comprehensive integrated planning process, in priority order, are to support DOE critical missions and to stimulate the economy while maintaining a quality environment.« less

  7. The Hubble Space Telescope servicing missions: Past, present, and future operational challenges

    NASA Technical Reports Server (NTRS)

    Ochs, William R.; Barbehenn, George M.; Crabb, William G.

    1996-01-01

    The Hubble Space Telescope was designed to be serviced by the Space Shuttle to upgrade systems, replace failed components and boost the telescope into higher orbits. There exists many operational challenges that must be addressed in preparation for the execution of a servicing mission, including technical and managerial issues. The operational challenges faced by the Hubble operations and ground system project for the support of the first servicing mission and future servicing missions, are considered. The emphasis is on those areas that helped ensure the success of the mission, including training, testing and contingency planning.

  8. Human Health/Human Factors Considerations in Trans-Lunar Space

    NASA Technical Reports Server (NTRS)

    Moore, E. Cherice; Howard, Robert; Mendeck, Gavin

    2014-01-01

    The human factors insights of how they are incorporated into the vehicle are crucial towards designing and planning the internal designs necessary for future spacecraft and missions. The adjusted mission concept of supporting the Asteroid Redirect Crewed Mission will drive some human factors changes on how the Orion will be used and will be reassessed so as to best contribute to missions success. Recognizing what the human factors and health functional needs are early in the design process and how to integrate them will improve this and future generations of space vehicles to achieve mission success and continue to minimize risks.

  9. Status and Mission Applicability of NASA's In-Space Propulsion Technology Project

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Munk, Michelle M.; Dankanich, John; Pencil, Eric; Liou, Larry

    2009-01-01

    The In-Space Propulsion Technology (ISPT) project develops propulsion technologies that will enable or enhance NASA robotic science missions. Since 2001, the ISPT project developed and delivered products to assist technology infusion and quantify mission applicability and benefits through mission analysis and tools. These in-space propulsion technologies are applicable, and potentially enabling for flagship destinations currently under evaluation, as well as having broad applicability to future Discovery and New Frontiers mission solicitations. This paper provides status of the technology development, near-term mission benefits, applicability, and availability of in-space propulsion technologies in the areas of advanced chemical thrusters, electric propulsion, aerocapture, and systems analysis tools. The current chemical propulsion investment is on the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost. Investments in electric propulsion technologies focused on completing NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system, and the High Voltage Hall Accelerator (HiVHAC) thruster, which is a mid-term product specifically designed for a low-cost electric propulsion option. Aerocapture investments developed a family of thermal protections system materials and structures; guidance, navigation, and control models of blunt-body rigid aeroshells; atmospheric models for Earth, Titan, Mars and Venus; and models for aerothermal effects. In 2009 ISPT started the development of propulsion technologies that would enable future sample return missions. The paper describes the ISPT project's future focus on propulsion for sample return missions. The future technology development areas for ISPT is: Planetary Ascent Vehicles (PAV), with a Mars Ascent Vehicle (MAV) being the initial development focus; multi-mission technologies for Earth Entry Vehicles (MMEEV) needed for sample return missions from many different destinations; propulsion for Earth Return Vehicles (ERV), transfer stages to the destination, and Electric Propulsion for sample return and low cost missions; and Systems/Mission Analysis focused on sample return propulsion. The ISPT project is funded by NASA's Science Mission Directorate (SMD).

  10. Space Mechanisms Technology Workshop Proceedings

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L. (Editor)

    1999-01-01

    Over the years, NASA has experienced a number of troublesome mechanism anomalies. Because of this, the NASA Office of Safety and Mission Assurance initiated a workshop to evaluate the current space mechanism state-of-the-art and to determine the obstacles that will have to be met in order to achieve NASA's future missions goals. Seventy experts in the field attended the workshop. The experts identified current and perceived future space mechanisms obstacles. For each obstacle, the participants identified technology deficiencies, the current state-of-the-art, and applicable NASA, DOD, and industry missions. In addition, the participants at the workshop looked at technology needs for current missions, technology needs for future missions, what new technology is needed to improve the reliability of mechanisms, what can be done to improve technology development and the dissemination of information, and what do we do next.

  11. SCOS 2: An object oriented software development approach

    NASA Technical Reports Server (NTRS)

    Symonds, Martin; Lynenskjold, Steen; Mueller, Christian

    1994-01-01

    The Spacecraft Control and Operations System 2 (SCOS 2), is intended to provide the generic mission control system infrastructure for future ESA missions. It represents a bold step forward in order to take advantage of state-of-the-art technology and current practices in the area of software engineering. Key features include: (1) use of object oriented analysis and design techniques; (2) use of UNIX, C++ and a distributed architecture as the enabling implementation technology; (3) goal of re-use for development, maintenance and mission specific software implementation; and (4) introduction of the concept of a spacecraft control model. This paper touches upon some of the traditional beliefs surrounding Object Oriented development and describes their relevance to SCOS 2. It gives rationale for why particular approaches were adopted and others not, and describes the impact of these decisions. The development approach followed is discussed, highlighting the evolutionary nature of the overall process and the iterative nature of the various tasks carried out. The emphasis of this paper is on the process of the development with the following being covered: (1) the three phases of the SCOS 2 project - prototyping & analysis, design & implementation and configuration / delivery of mission specific systems; (2) the close cooperation and continual interaction with the users during the development; (3) the management approach - the split between client staff, industry and some of the required project management activities; (4) the lifecycle adopted being an enhancement of the ESA PSS-05 standard with SCOS 2 specific activities and approaches defined; and (5) an examination of some of the difficulties encountered and the solutions adopted. Finally, the lessons learned from the SCOS 2 experience are highlighted, identifying those issues to be used as feedback into future developments of this nature. This paper does not intend to describe the finished product and its operation, but focusing on the journey to arrive there, concentrating therefore on the process and not the products of the SCOS 2 software development.

  12. Report of the solar physics panel

    NASA Technical Reports Server (NTRS)

    Withbroe, George L.; Fisher, Richard R.; Antiochos, Spiro; Brueckner, Guenter; Hoeksema, J. Todd; Hudson, Hugh; Moore, Ronald; Radick, Richard R.; Rottman, Gary; Scherrer, Philip

    1991-01-01

    Recent accomplishments in solar physics can be grouped by the three regions of the Sun: the solar interior, the surface, and the exterior. The future scientific problems and areas of interest involve: generation of magnetic activity cycle, energy storage and release, solar activity, solar wind and solar interaction. Finally, the report discusses a number of future space mission concepts including: High Energy Solar Physics Mission, Global Solar Mission, Space Exploration Initiative, Solar Probe Mission, Solar Variability Explorer, Janus, as well as solar physics on Space Station Freedom.

  13. Small Next-Generation Atmospheric Probe (SNAP) Concept

    NASA Technical Reports Server (NTRS)

    Sayanagi, K. M.; Dillman, R. A.; Simon, A. A.; Atkinson, D. H.; Wong, M. H.; Spilker, T. R.; Saikia, S.; Li, J.; Hope, D.

    2017-01-01

    We present the Small Next-Generation Atmospheric Probe (SNAP) as a secondary payload concept for future missions to giant planets. As a case study, we examine the advantages, cost and risk of adding SNAP to the future Uranus Orbiter and Probe flag-ship mission; in combination with the missions main probe, SNAP would perform atmospheric in-situ measurements at a second location.

  14. Development of NASA's Small Fission Power System for Science and Human Exploration

    NASA Technical Reports Server (NTRS)

    Gibson, Marc A.; Mason, Lee; Bowman, Cheryl; Poston, David I.; McClure, Patrick R.; Creasy, John; Robinson, Chris

    2014-01-01

    Exploration of our solar system has brought great knowledge to our nation's scientific and engineering community over the past several decades. As we expand our visions to explore new, more challenging destinations, we must also expand our technology base to support these new missions. NASA's Space Technology Mission Directorate is tasked with developing these technologies for future mission infusion and continues to seek answers to many existing technology gaps. One such technology gap is related to compact power systems (greater than 1 kWe) that provide abundant power for several years where solar energy is unavailable or inadequate. Below 1 kWe, Radioisotope Power Systems have been the workhorse for NASA and will continue, assuming its availability, to be used for lower power applications similar to the successful missions of Voyager, Ulysses, New Horizons, Cassini, and Curiosity. Above 1 kWe, fission power systems become an attractive technology offering a scalable modular design of the reactor, shield, power conversion, and heat transport subsystems. Near term emphasis has been placed in the 1-10kWe range that lies outside realistic radioisotope power levels and fills a promising technology gap capable of enabling both science and human exploration missions. History has shown that development of space reactors is technically, politically, and financially challenging and requires a new approach to their design and development. A small team of NASA and DOE experts are providing a solution to these enabling FPS technologies starting with the lowest power and most cost effective reactor series named "Kilopower" that is scalable from approximately 1-10 kWe.

  15. Development of NASA's Small Fission Power System for Science and Human Exploration

    NASA Technical Reports Server (NTRS)

    Gibson, Marc A.; Mason, Lee S.; Bowman, Cheryl L.; Poston, David I.; McClure, Patrick R.; Creasy, John; Robinson, Chris

    2015-01-01

    Exploration of our solar system has brought many exciting challenges to our nations scientific and engineering community over the past several decades. As we expand our visions to explore new, more challenging destinations, we must also expand our technology base to support these new missions. NASAs Space Technology Mission Directorate is tasked with developing these technologies for future mission infusion and continues to seek answers to many existing technology gaps. One such technology gap is related to compact power systems (1 kWe) that provide abundant power for several years where solar energy is unavailable or inadequate. Below 1 kWe, Radioisotope Power Systems have been the workhorse for NASA and will continue to be used for lower power applications similar to the successful missions of Voyager, Ulysses, New Horizons, Cassini, and Curiosity. Above 1 kWe, fission power systems become an attractive technology offering a scalable modular design of the reactor, shield, power conversion, and heat transport subsystems. Near term emphasis has been placed in the 1-10kWe range that lies outside realistic radioisotope power levels and fills a promising technology gap capable of enabling both science and human exploration missions. History has shown that development of space reactors is technically, politically, and financially challenging and requires a new approach to their design and development. A small team of NASA and DOE experts are providing a solution to these enabling FPS technologies starting with the lowest power and most cost effective reactor series named Kilopower that is scalable from approximately 1-10 kWe.

  16. Strategic plan for Hanford site information management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The Hanford Site missions are to clean up the Site, to provide scientific knowledge and technology to meet global needs, and to partner in the economic diversification of the region. To achieve these long-term missions and increase confidence in the quality of the Site`s decision making process, a dramatically different information management culture is required, consistent with US Department of Energy (DOE) mandates on increased safety, productivity, and openness at its sites. This plan presents a vision and six strategies that will move the Site toward an information management culture that will support the Site missions and address the mandatesmore » of DOE.« less

  17. Toward lowering the cost of mission operations

    NASA Technical Reports Server (NTRS)

    Wall, S. D.; Ledbetter, K. W.

    1993-01-01

    The mission operations system is one of the more significant drivers of the cost of the mission operations and data analysis segment of missions. In large or long-lived projects, the MOS can also be a driver in total mission cost. Larger numbers of missions, together with an increasingly cost-conscious environment, dictate that future missions must more strictly control costs as they perform to their requirements. It is therefore prudent to examine the conduct of past missions for ways to conserve resources. In this paper we review inputs made to past projects' 'lessons-learned' activities, in which personnel from past projects (among other things) identified major cost drivers of MOS's and considered how economies were or might have been realized in both design and performance of their MOS. Common themes among four such reviews are summarized in an attempt to provide suggestions for cost reduction in future missions.

  18. A review of Spacelab mission management approach

    NASA Technical Reports Server (NTRS)

    Craft, H. G., Jr.

    1979-01-01

    The Spacelab development program is a joint undertaking of the NASA and ESA. The paper addresses the initial concept of Spacelab payload mission management, the lessons learned, and modifications made as a result of the actual implementation of Spacelab Mission 1. The discussion covers mission management responsibilities, program control, science management, payload definition and interfaces, integrated payload mission planning, integration requirements, payload specialist training, payload and launch site integration, payload flight/mission operations, and postmission activities. After 3.5 years the outlined overall mission manager approach has proven to be most successful. The approach does allow the mission manager to maintain the lowest overall mission cost.

  19. Technology Development for NASA Mars Missions

    NASA Technical Reports Server (NTRS)

    Hayati, Samad

    2005-01-01

    A viewgraph presentation on technology development for NASA Mars Missions is shown. The topics include: 1) Mars mission roadmaps; 2) Focus and Base Technology programs; 3) Technology Infusion; and 4) Feed Forward to Future Missions.

  20. Status of NASA In-Space Propulsion Technologies and Their Infusion Potential

    NASA Technical Reports Server (NTRS)

    Anderson, David; Pencil, Eric; Vento, Dan; Peterson, Todd; Dankanich, John; Hahne, David; Munk, Michelle

    2011-01-01

    Since 2001, the In-Space Propulsion Technology (ISPT) program has been developing in-space propulsion technologies that will enable or enhance NASA robotic science missions. These in-space propulsion technologies have broad applicability to future competed Discovery and New Frontiers mission solicitations, and are potentially enabling for future NASA flagship and sample return missions currently being considered. This paper provides status of the technology development of several in-space propulsion technologies that are ready for infusion into future missions. The technologies that are ready for flight infusion are: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance; 2) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; and aerothermal effect models. Two component technologies that will be ready for flight infusion in FY12/13 are 1) Advanced Xenon Flow Control System, and 2) ultra-lightweight propellant tank technology advancements and their infusion potential will be also discussed. The paper will also describe the ISPT project s future focus on propulsion for sample return missions: 1) Mars Ascent Vehicles (MAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) needed for sample return missions from many different destinations; and 3) electric propulsion for sample return and low cost missions. These technologies are more vehicle-focused, and present a different set of technology infusion challenges. Systems/Mission Analysis focused on developing tools and assessing the application of propulsion technologies to a wide variety of mission concepts.

  1. Accomplishments in free-piston stirling tests at NASA GRC

    NASA Astrophysics Data System (ADS)

    Schreiber, Jeffrey G.; Skupinski, Robert C.

    2002-01-01

    A power system based on the Stirling Radioisotope Generator (SRG) has been identified for potential use on deep space missions, as well as for Mars rovers that may benefit from extended operation. The Department of Energy (DOE) has responsibility for developing the generator and the NASA Glenn Research Center (GRC) is supporting DOE in this effort. The generator is based on a free-piston Stirling power convertor that has been developed by the Stirling Technology Company (STC) under contract to DOE. The generator would be used as a high-efficiency alternative to the Radioisotope Thermoelectric Generators (RTGs) that have been used on many previous missions. The increased efficiency leads to a factor of 3 to 4 reduction in the inventory of plutonium required to heat the generator. GRC has been involved in the development of Stirling power conversion technology for over 25 years. The support provided to this project by GRC has many facets and draws upon the lab's scientists and engineers that have gained experience in applying their skills to the previous Stirling projects. This has created a staff with an understanding of the subtleties involved in applying their expertise to Stirling systems. Areas include materials, structures, tribology, controls, electromagnetic interference, permanent magnets, alternator analysis, structural dynamics, and cycle performance. One of the key areas of support to the project is in the performance testing of the free-piston Stirling convertors. Since these power convertors are the smallest, lowest power Stirling machines that have been tested at GRC, a new laboratory was equipped for this project. Procedures and test plans have been created, instrumentation and data systems developed, and Stirling convertors have been tested. This paper will describe the GRC test facility, the test procedures that are used, present some of the test results and outline plans for the future. .

  2. Pulsed laser illumination of photovoltaic cells

    NASA Technical Reports Server (NTRS)

    Yater, Jane A.; Lowe, Roland A.; Jenkins, Phillip P.; Landis, Geoffrey A.

    1995-01-01

    In future space missions, free electron lasers (FEL) may be used to illuminate photovoltaic receivers to provide remote power. Both the radio-frequency (RF) and induction FEL produce pulsed rather than continuous output. In this work we investigate cell response to pulsed laser light which simulates the RF FEL format. The results indicate that if the pulse repetition is high, cell efficiencies are only slightly reduced compared to constant illumination at the same wavelength. The frequency response of the cells is weak, with both voltage and current outputs essentially dc in nature. Comparison with previous experiments indicates that the RF FEL pulse format yields more efficient photovoltaic conversion than does an induction FEL format.

  3. Pulsed laser illumination of photovoltaic cells

    NASA Technical Reports Server (NTRS)

    Yater, Jane A.; Lowe, Roland A.; Jenkins, Phillip P.; Landis, Geoffrey A.

    1994-01-01

    In future space missions, free electron lasers (FEL) may be used to illuminate photovoltaic array receivers to provide remote power. Both the radio-frequency (RF) and induction FEL provide FEL produce pulsed rather than continuous output. In this work we investigate cell response to pulsed laser light which simulates the RF FEL format. The results indicate that if the pulse repetition is high, cell efficiencies are only slightly reduced compared to constant illumination at the same wavelength. The frequency response of the cells is weak, with both voltage and current outputs essentially dc in nature. Comparison with previous experiments indicates that the RF FEL pulse format yields more efficient photovoltaic conversion than does an induction FEL pulse format.

  4. Alliance for NanoHealth (ANH) Training Program for the development of future generations of interdisciplinary scientists and collaborative research focused upon the advancement of nanomedicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorenstein, David

    The objectives of this program are to promote the mission of the Department of Energy (DOE) Science, Technology, Engineering, Math (STEM) Program by recruiting students to science and engineering disciplines with the intent of mentoring and supporting the next generation of scientists; to foster interdisciplinary and collaborative research under the sponsorship of ANH for the discovery and design of nano-based materials and devices with novel structures, functions, and properties; and to prepare a diverse work force of scientists, engineers, and clinicians by utilizing the unique intellectual and physical resources to develop novel nanotechnology paradigms for clinical application.

  5. Geothermal Technologies Office 2012 Peer Review Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    2013-04-01

    On May 7-10, 2012, the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Geothermal Technologies Office conducted its annual program peer review in Westminster, CO. In accordance with the EERE Peer Review Guide, the review provides an independent, expert evaluation of the strategic goals and direction of the office and is a forum for feedback and recommendations on future office planning. The purpose of the review was to evaluate DOE-funded projects for their contribution to the mission and goals of the office and to assess progress made against stated objectives. Project scoring results, expert reviewer comments, andmore » key findings and recommendations are included in this report.« less

  6. A Perspective on the Use of Storable Propellants for Future Space Vehicle Propulsion

    NASA Technical Reports Server (NTRS)

    Boyd, William C.; Brasher, Warren L.

    1989-01-01

    Propulsion system configurations for future NASA and DOD space initiatives are driven by the continually emerging new mission requirements. These initiatives cover an extremely wide range of mission scenarios, from unmanned planetary programs, to manned lunar and planetary programs, to earth-oriented (Mission to Planet Earth) programs, and they are in addition to existing and future requirements for near-earth missions such as to geosynchronous earth orbit (GEO). Increasing space transportation costs, and anticipated high costs associated with space-basing of future vehicles, necessitate consideration of cost-effective and easily maintainable configurations which maximize the use of existing technologies and assets, and use budgetary resources effectively. System design considerations associated with the use of storable propellants to fill these needs are presented. Comparisons in areas such as complexity, performance, flexibility, maintainability, and technology status are made for earth and space storable propellants, including nitrogen tetroxide/monomethylhydrazine and LOX/monomethylhydrazine.

  7. Advances in Distributed Operations and Mission Activity Planning for Mars Surface Exploration

    NASA Technical Reports Server (NTRS)

    Fox, Jason M.; Norris, Jeffrey S.; Powell, Mark W.; Rabe, Kenneth J.; Shams, Khawaja

    2006-01-01

    A centralized mission activity planning system for any long-term mission, such as the Mars Exploration Rover Mission (MER), is completely infeasible due to budget and geographic constraints. A distributed operations system is key to addressing these constraints; therefore, future system and software engineers must focus on the problem of how to provide a secure, reliable, and distributed mission activity planning system. We will explain how Maestro, the next generation mission activity planning system, with its heavy emphasis on portability and distributed operations has been able to meet these design challenges. MER has been an excellent proving ground for Maestro's new approach to distributed operations. The backend that has been developed for Maestro could benefit many future missions by reducing the cost of centralized operations system architecture.

  8. Marshall Space Flight Center's role in EASE/ACCESS mission management

    NASA Technical Reports Server (NTRS)

    Hawkins, Gerald W.

    1987-01-01

    The Marshall Space Flight Center (MSFC) Spacelab Payload Project Office was responsible for the mission management and development of several successful payloads. Two recent space construction experiments, the Experimental Assembly of Structures in Extravehicular Activity (EASE) and the Assembly Concept for Construction of Erectable Space Structures (ACCESS), were combined into a payload managed by the center. The Ease/ACCESS was flown aboard the Space Shuttle Mission 61-B. The EASE/ACCESS experiments were the first structures assembled in space, and the method used to manage this successful effort will be useful for future space construction missions. The MSFC mission management responsibilities for the EASE/ACCESS mission are addressed and how the lessons learned from the mission can be applied to future space construction projects are discussed.

  9. Mars 2001 Cruise Phase Radiation Measurments

    NASA Technical Reports Server (NTRS)

    Turner, R. E.; Badhwar, G. D.

    1999-01-01

    Mars 2001 presents an exciting opportunity for advances in radiation risk management of a future human mission to Mars. The mission timing is particularly fortuitous, coming just after solar maxinuun, when there will be a high probability to observe significant solar particle events (SPEs). A major objective of this mission is to characterize the Martian radiation environment to support future human missions to Mars. In addition, the MARIE instruments on the Lander and Orbiter, designed to measure the energetic particle flux at Mars, can be used during the cruise phase to provide multipoint observations of SPEs in the critical region of the heliosphere (1 to 1.5 AU) needed to reduce the in-flight radiation risk to a future Mars-bound crew.

  10. Recent Advances in Nuclear Powered Electric Propulsion for Space Exploration

    NASA Technical Reports Server (NTRS)

    Cassady, R. Joseph; Frisbee, Robert H.; Gilland, James H.; Houts, Michael G.; LaPointe, Michael R.; Maresse-Reading, Colleen M.; Oleson, Steven R.; Polk, James E.; Russell, Derrek; Sengupta, Anita

    2007-01-01

    Nuclear and radioisotope powered electric thrusters are being developed as primary in-space propulsion systems for potential future robotic and piloted space missions. Possible applications for high power nuclear electric propulsion include orbit raising and maneuvering of large space platforms, lunar and Mars cargo transport, asteroid rendezvous and sample return, and robotic and piloted planetary missions, while lower power radioisotope electric propulsion could significantly enhance or enable some future robotic deep space science missions. This paper provides an overview of recent U.S. high power electric thruster research programs, describing the operating principles, challenges, and status of each technology. Mission analysis is presented that compares the benefits and performance of each thruster type for high priority NASA missions. The status of space nuclear power systems for high power electric propulsion is presented. The paper concludes with a discussion of power and thruster development strategies for future radioisotope electric propulsion systems,

  11. Future space transportation systems analysis study. Phase 1: Technical report, appendices. [a discussion of orbit transfer vehicles, lunar transport vehicles, space shuttles, and reusable spacecraft

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The transportation mass requirements developed for each mission and transportation mode were based on vehicle systems sized to fit the exact needs of each mission (i.e. rubber vehicles). The parametric data used to derive the mass requirements for each mission and transportation mode are presented to enable accommodation of possible changes in mode options or payload definitions. The vehicle sizing and functional requirements used to derive the parametric data will form the basis for conceptual configurations of the transportation elements in a later phase of study. An investigation of the weight growth approach to future space transportation systems analysis is presented. Parameters which affect weight growth, past weight histories, and the current state of future space-mission design are discussed. Weight growth factors of from 10 percent to 41 percent were derived for various missions or vehicles.

  12. NASA's Agency-Wide Strategy for Environmental Regulatory Risk Analysis and Communication

    NASA Technical Reports Server (NTRS)

    Duda, Kristen; Scroggins, Sharon

    2008-01-01

    NASA's mission is to pioneer the future in space exploration, scientific discovery, and aeronautics research. To help enable existing and future programs to pursue this mission, NASA has established the Principal Center for Regulatory Risk Analysis and Communication (RRAC PC) to proactively identify, analyze, and communicate environmental regulatory risks to the NASA community. The RRAC PC is chartered to evaluate the risks posed to NASA Programs and facilities by environmentally related drivers. The RRAC PC focuses on emerging environmental regulations, as well as risks related to operational changes that can trigger existing environmental requirements. Changing regulations have the potential to directly affect program activities. For example, regulatory changes can restrict certain activities or operations by mandating changes in how operations may be done or limiting where or how certain operations can take place. Regulatory changes also can directly affect the ability to use certain materials by mandating a production phase-out or restricting usage applications of certain materials. Such changes can result in NASA undertaking material replacement efforts. Even if a regulation does not directly affect NASA operations, U.S. and international regulations can pose program risks indirectly through requirements levied on manufacturers and vendors of components and materials. For example, manufacturers can change their formulations to comply with new regulatory requirements. Such changes can require time-consuming and costly requalification certification for use in human spaceflight programs. The RRAC PC has implemented several strategies for proactively managing regulatory change to minimize potential adverse impacts to NASA Programs and facilities. This presentation highlights the lessons learned through establishing the RRAC PC, the process by which the RRAC PC monitors and distributes information about emerging regulatory requirements, and the cross-Agency cooperation that is vital to supporting NASA's mission.

  13. Completing the CCT mission: The challenge of change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monk, J.R.

    1997-12-31

    In order to complete the clean coal technology mission it will be necessary to determine CCT`s role in the restructured electricity industry and develop a strategy to promote that role. First, one must understand where the industry is headed and how clean coal technology fits into that future. Then, one needs to develop a strategy for getting from here to there, from where CCT is today to where it must be in five, ten or twenty years to be a viable option for decision-makers. Coal makes sense for the United States for several important reasons, not the least of whichmore » is its abundance here. It also makes sense in terms of its economic impact on large areas of the nation. And if coal makes sense, especially economically, then clean coal technology makes even more sense because of its potential to capitalize on this abundant resource in an environmentally friendly manner. But after nearly thirty years of involvement in the political world at all levels from Washington, D.C. to Washington, Indiana, the author has learned the hard way that ``common sense`` does not always, or even often, carry the day in the policymaking process. He believes that the future of clean coal technology hinges on the ability in the next few months and years to mobilize all those who favor that technology to move forward in a cohesive and coordinated effort to affect the policymaking and political process and thereby promote and accelerate CCT development. If this can be done, then the nation will be well on the way to completing the clean coal technology mission and meeting the challenge of change.« less

  14. Does the NASA Constellation Architecture Offer Opportunities to Achieve Multiple Additional Goals in Space?

    NASA Technical Reports Server (NTRS)

    Thronson, Harley; Lester, Daniel

    2008-01-01

    Every major NASA human spaceflight program in the last four decades has been modified to achieve goals in space not incorporated within the original design goals: the Apollo Applications Program, Skylab, Space Shuttle, and International Space Station. Several groups in the U.S. have been identifying major future science goals, the science facilities necessary to investigate them, as well as possible roles for augmented versions of elements of NASA's Constellation program. Specifically, teams in the astronomy community have been developing concepts for very capable missions to follow the James Webb Space Telescope that could take advantage of - or require - free-space operations by astronauts and/or robots. Taking as one example, the Single-Aperture Far-InfraRed (SAFIR) telescope with a 10+ m aperture proposed for operation in the 2020 timeframe. According to current NASA plans, the Ares V launch vehicle (or a variant) will be available about the same time, as will the capability to transport astronauts to the vicinity of the Moon via the Orion Crew Exploration Vehicle and associated systems. [As the lunar surface offers no advantages - and major disadvantages - for most major optical systems, the expensive system for landing and operating on the lunar surface is not required.] Although as currently conceived, SAFIR and other astronomical missions will operate at the Sun-Earth L2 location, it appears trivial to travel for servicing to the more accessible Earth-Moon L1,2 locations. Moreover, as the recent Orbital Express and Automated Transfer Vehicle Missions have demonstrated, future robotic capabilities should offer capabilities that would (remotely) extend human presence far beyond the vicinity of the Earth.

  15. NASA's Agency-wide Strategy for Environmental Regulatory Risk Analysis and Communication

    NASA Technical Reports Server (NTRS)

    Duda, Kristen; Scroggins. Sharon

    2008-01-01

    NASA's mission is to pioneer the future in space exploration, scientific discovery, and aeronautics research. To help enable existing and future programs to pursue this mission, NASA has established the Principal Center for Regulatory Risk Analysis and Communication (RRAC PC) to proactively identify, analyze, and communicate environmental regulatory risks to the NASA community. The RRAC PC is chartered to evaluate the risks posed to NASA Programs and facilities by environmentally related drivers. The RRAC PC focuses on emerging environmental regulations, as well as risks related to operational changes that can trigger existing environmental requirements. Changing regulations have the potential to directly affect program activities. For example, regulatory changes can restrict certain activities or operations by mandating changes in how operations may be done or limiting where or how certain operations can take place. Regulatory changes also can directly affect the ability to use certain materials by mandating a production phase-out or restricting usage aPi'iications of certain materials. Such changes can result in NASA undertaking material replacement efforts. Even if a regulation does not directly affect NASA operations, U.S. and international regulations can pose program risks indirectly through requirements levied on manufacturers and vendors of components and materials. For example, manufacturers can change their formulations to comply with new regulatory requirements. Such changes can require time-consuming and costly requalification certification for use in human spaceflight programs. The RRAC PC has implemented several strategies for proactively managing regulatory change to minimize potential adverse impacts to NASA Programs and facilities. This presentation highlights the lessons learned through establishing the RRAC PC, the process by which the RRAC PC monitors and distributes information about emerging regulatory requirements, and the cross-Agency cooperation that is vital to supporting NASA's mission.

  16. Overview of NASA Technology Development for In-Situ Resource Utilization (ISRU)

    NASA Technical Reports Server (NTRS)

    Linne, Diane L.; Sanders, Gerald B.; Starr, Stanley O.; Eisenman, David J.; Suzuki, Nantel H.; Anderson, Molly S.; O'Malley, Terrence F.; Araghi, Koorosh R.

    2017-01-01

    In-Situ Resource Utilization (ISRU) encompasses a broad range of systems that enable the production and use of extraterrestrial resources in support of future exploration missions. It has the potential to greatly reduce the dependency on resources transported from Earth (e.g., propellants, life support consumables), thereby significantly improving the ability to conduct future missions. Recognizing the critical importance of ISRU for the future, NASA is currently conducting technology development projects in two of its four mission directorates. The Advanced Exploration Systems Division in the Agency's Human Exploration and Operations Mission Directorate has initiated a new project for ISRU Technology focused on component, subsystem, and system maturation in the areas of water volatiles resource acquisition, and water volatiles and atmospheric processing into propellants and other consumable products. The Space Technology Mission Directorate is supporting development of ISRU component technologies in the areas of Mars atmosphere acquisition, including dust management, and oxygen production from Mars atmosphere for propellant and life support consumables. Together, these two coordinated projects are working towards a common goal of demonstrating ISRU technology and systems in preparation for future flight applications.

  17. Short-Term Missions at the Master's College: An Experiential Education

    ERIC Educational Resources Information Center

    La George, Lisa

    2009-01-01

    Foreign Missions Preparation (FMP) has been in operation at The Master's College (TMC) since 1989, employing experiential education to train and facilitate cross-cultural summer Short-Term Mission (STM) trips for over a thousand undergraduate students. The question driving the case study was: "What influence does an analysis of the experiences of…

  18. Studies of Short Time Response Options for Potentially Hazardous Objects: Current and Forthcoming Results

    NASA Technical Reports Server (NTRS)

    Barbee, Brent W.; Greenaugh, Kevin C.; Seery, Bernard D.; Bambacus, Myra; Leung, Ronald Y.; Finewood, Lee; Dearborn, David S. P.; Miller, Paul L.; Weaver, Robert P.; Plesko, Catherine; hide

    2017-01-01

    NASA's Goddard Space Flight Center (GSFC) and the National Nuclear Security Administration (NNSA), Department of Energy (DOE) National Laboratories, Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory(LANL), and Sandia National Laboratory (SNL) are collaborating on Planetary Defense Research. The research program is organized around three case studies: 1. Deflection of the Potentially Hazardous Asteroid (PHA) 101955 Bennu (1999 RQ36)[OSIRIS-REx mission target], 2. Deflection of the secondary member of the PHA 65803 Didymos (1996 GT) [DART mission target], 3. Deflection of a scaled-down version of the comet 67PChuryumov-Gerasimenko [Rosetta mission target]. NASAGSFC is providing astrodynamics and spacecraft mission design expertise, while NNSA, DOE, LLNL, LANL and SNL are providing expertise in modeling the effects of kinetic impactor spacecraft and nuclear explosive devices on the target objects.

  19. Missions to Near-Earth Asteroids: Implications for Exploration, Science, Resource Utilization, and Planetary Defense

    NASA Astrophysics Data System (ADS)

    Abell, P. A.; Sanders, G. B.; Mazanek, D. D.; Barbee, B. W.; Mink, R. G.; Landis, R. R.; Adamo, D. R.; Johnson, L. N.; Yeomans, D. K.; Reeves, D. M.; Drake, B. G.; Friedensen, V. P.

    2012-12-01

    Introduction: In 2009 the Augustine Commission identified near-Earth asteroids (NEAs) as high profile destinations for human exploration missions beyond the Earth-Moon system as part of the Flexible Path. More recently the U.S. presidential administration directed NASA to include NEAs as destinations for future human exploration with the goal of sending astronauts to a NEA in the mid to late 2020s. This directive became part of the official National Space Policy of the United States of America as of June 28, 2010. NEA Space-Based Survey and Robotic Precursor Missions: The most suitable targets for human missions are NEAs in Earth-like orbits with long synodic periods. However, these mission candidates are often not observable from Earth until the timeframe of their most favorable human mission opportunities, which does not provide an appropriate amount of time for mission development. A space-based survey telescope could more efficiently find these targets in a timely, affordable manner. Such a system is not only able to discover new objects, but also track and characterize objects of interest for human space flight consideration. Those objects with characteristic signatures representative of volatile-rich or metallic materials will be considered as top candidates for further investigation due to their potential for resource utilization and scientific discovery. Once suitable candidates have been identified, precursor spacecraft are required to perform basic reconnaissance of a few NEAs under consideration for the human-led mission. Robotic spacecraft will assess targets for potential hazards that may pose a risk to the deep space transportation vehicle, its deployable assets, and the crew. Additionally, the information obtained about the NEA's basic physical characteristics will be crucial for planning operational activities, designing in-depth scientific/engineering investigations, and identifying sites on the NEA for sample collection. Human Exploration Considerations: These missions would be the first human expeditions to interplanetary bodies beyond the Earth-Moon system and would prove useful for testing technologies required for human missions to Mars, Phobos and Deimos, and other Solar System destinations. Current analyses of operational concepts suggest that stay times of 15 to 30 days may be possible at a NEA with total mission duration limits of 180 days or less. Hence, these missions would undoubtedly provide a great deal of technical and engineering data on spacecraft operations for future human space exploration while simultaneously conducting detailed investigations of these primitive objects with instruments and equipment that exceed the mass and power capabilities delivered by robotic spacecraft. All of these activities will be vital for refinement of resource characterization/identification and development of extraction/utilization technologies to be used on airless bodies under low- or micro-gravity conditions. In addition, gaining enhanced understanding of a NEA's geotechnical properties and its gross internal structure will assist the development of hazard mitigation techniques for planetary defense. Conclusions: The scientific, resource utilization, and hazard mitigation benefits, along with the programmatic and operational benefits of a human venture beyond the Earth-Moon system, make a piloted sample return mission to a NEA using NASA's proposed human exploration systems a compelling endeavor.

  20. Missions to Near-Earth Asteroids: Implications for Exploration, Science, Resource Utilization, and Planetary Defense

    NASA Technical Reports Server (NTRS)

    Abell, P. A.; Sanders, G. B.; Mazanek, D. D.; Barbee, B. W.; Mink, R. G.; Landis, R. R.; Adamo, D. R.; Johnson, L. N.; Yeomans, D. K.; Reeves, D. M.; hide

    2012-01-01

    Introduction: In 2009 the Augustine Commission identified near-Earth asteroids (NEAs) as high profile destinations for human exploration missions beyond the Earth-Moon system as part of the Flexible Path. More recently the U.S. presidential administration directed NASA to include NEAs as destinations for future human exploration with the goal of sending astronauts to a NEA in the mid to late 2020s. This directive became part of the official National Space Policy of the United States of America as of June 28, 2010. NEA Space-Based Survey and Robotic Precursor Missions: The most suitable targets for human missions are NEAs in Earth-like orbits with long synodic periods. However, these mission candidates are often not observable from Earth until the timeframe of their most favorable human mission opportunities, which does not provide an appropriate amount of time for mission development. A space-based survey telescope could more efficiently find these targets in a timely, affordable manner. Such a system is not only able to discover new objects, but also track and characterize objects of interest for human space flight consideration. Those objects with characteristic signatures representative of volatile-rich or metallic materials will be considered as top candidates for further investigation due to their potential for resource utilization and scientific discovery. Once suitable candidates have been identified, precursor spacecraft are required to perform basic reconnaissance of a few NEAs under consideration for the human-led mission. Robotic spacecraft will assess targets for potential hazards that may pose a risk to the deep space transportation vehicle, its deployable assets, and the crew. Additionally, the information obtained about the NEA's basic physical characteristics will be crucial for planning operational activities, designing in-depth scientific/engineering investigations, and identifying sites on the NEA for sample collection. Human Exploration Considerations: These missions would be the first human expeditions to interplanetary bodies beyond the Earth-Moon system and would prove useful for testing technologies required for human missions to Mars, Phobos and Deimos, and other Solar System destinations. Current analyses of operational concepts suggest that stay times of 15 to 30 days may be possible at a NEA with total mission duration limits of 180 days or less. Hence, these missions would undoubtedly provide a great deal of technical and engineering data on spacecraft operations for future human space exploration while simultaneously conducting detailed investigations of these primitive objects with instruments and equipment that exceed the mass and power capabilities delivered by robotic spacecraft. All of these activities will be vital for refinement of resource characterization/identification and development of extraction/utilization technologies to be used on airless bodies under low- or micro-gravity conditions. In addition, gaining enhanced understanding of a NEA s geotechnical properties and its gross internal structure will assist the development of hazard mitigation techniques for planetary defense. Conclusions: The scientific, resource utilization, and hazard mitigation benefits, along with the programmatic and operational benefits of a human venture beyond the Earth-Moon system, make a piloted sample return mission to a NEA using NASA s proposed human exploration systems a compelling endeavor.

  1. The EO-1 autonomous sciencecraft and prospects for future autonomous space exploration

    NASA Technical Reports Server (NTRS)

    Chien, Steve A.

    2005-01-01

    This paper describes the revolutionary new science enabled by onboard autonomy as well as impact on extended missions such as the Mars Exploration Rovers and Mars Odyssey as well as future missions in development.

  2. Extending NASA's SPICE ancillary information system to meet future mission needs

    NASA Technical Reports Server (NTRS)

    Acton, C.; Bachman, N.; Elson, L.; Semenov, B.; Turner, F.; Wright, E.

    2002-01-01

    This paper summarizes the architecture, capabilities, characteristics and uses of the current SPICE ancillary information system, and then outlines plans and ideas for how this system can be extended to meet future space mission requirements.

  3. The Tropical Rainfall Measuring (TRMM) - What Have We Learned and What Does the Future Hold?

    NASA Technical Reports Server (NTRS)

    Kummerow, C.; Hong, Y.; Olsen, W. S.

    2000-01-01

    Rainfall is important in the hydrological cycle and to the lives and welfare of humans. In addition to being a life-giving resource, rainfall processes also plays a crucial role in the dynamics of the global atmospheric circulation. Three-fourths of the energy that drives the atmospheric wind circulation comes from the latent heat released by tropical precipitation. It varies greatly in space and time. The rain-producing cloud systems may last several hours or days. Their dimensions range from 10 km to several hundred km. This makes it difficult to incorporate rainfall directly large-scale weather and climate models. Until the end of 1997, precipitation in the global tropics was not known to within a factor of two. Regarding "global warming", the various large-scale models differed among themselves in the predicted magnitude of the warming and in the expected regional effects of these temperature and moisture changes. The Tropical Rainfall Measuring Mission (TRMM) satellite has yielded important interim results related to rainfall observations, data assimilation and model forecast skills when rainfall data is assimilated. This talk will summarize where the TRMM science team is with regards to answering some of these important scientific challenges, as well as discuss the future Global Precipitation Mission which will provide 3 hourly rainfall coverage and offers some unique collaborative potential for NOAA and NASA.

  4. Thermal Protection and Control

    NASA Technical Reports Server (NTRS)

    Greene, Effie E.

    2013-01-01

    During all phases of a spacecraft's mission, a Thermal Protection System (TPS) is needed to protect the vehicle and structure from extreme temperatures and heating. When designing TPS, low weight and cost while ensuring the protection of the vehicle is highly desired. There are two main types of TPS, ablative and reusable. The Apollo missions needed ablators due to the high heat loads from lunar reentry. However, when the desire for a reusable space vehicle emerged, the resultant_ Space Shuttle program propelled a push for the development of reusable TPS. With the growth of reqsable TPS, the need for ablators declined, triggering a drop off of the ablator industry. As a result, the expertise was not heavily maintained within NASA or the industry. When the Orion Program initiated a few years back, a need. for an ablator reemerged. Yet, due to of the lack of industry capability, redeveloping the ablator material took several years and came at a high cost. As NASA looks towards the future with both the Orion and Commercial Crew Programs, a need to preserve reusable, ablative, and other TPS technologies is essential. Research of the different TPS materials alongside their properties, capabilities, and manufacturing process was performed, and the benefits of the materials were analyzed alongside the future of TPS. Knowledge of the different technologies has the ability to help us know what expertise to maintain and ensure a lack in the industry does not occur again.

  5. Verification of NASA Emergent Systems

    NASA Technical Reports Server (NTRS)

    Rouff, Christopher; Vanderbilt, Amy K. C. S.; Truszkowski, Walt; Rash, James; Hinchey, Mike

    2004-01-01

    NASA is studying advanced technologies for a future robotic exploration mission to the asteroid belt. This mission, the prospective ANTS (Autonomous Nano Technology Swarm) mission, will comprise of 1,000 autonomous robotic agents designed to cooperate in asteroid exploration. The emergent properties of swarm type missions make them powerful, but at the same time are more difficult to design and assure that the proper behaviors will emerge. We are currently investigating formal methods and techniques for verification and validation of future swarm-based missions. The advantage of using formal methods is their ability to mathematically assure the behavior of a swarm, emergent or otherwise. The ANT mission is being used as an example and case study for swarm-based missions for which to experiment and test current formal methods with intelligent swam. Using the ANTS mission, we have evaluated multiple formal methods to determine their effectiveness in modeling and assuring swarm behavior.

  6. Determining medical staffing requirements for humanitarian assistance missions.

    PubMed

    Negus, Tracy L; Brown, Carrie J; Konoske, Paula

    2010-01-01

    The primary mission of hospital ships is to provide acute medical and surgical services to U.S. forces during military operations. Hospital ships also provide a hospital asset in support of disaster relief and humanitarian assistance (HA) operations. HA missions afford medical care to populations with vastly different sets of medical conditions from combat casualty care, which affects staffing requirements. Information from a variety of sources was reviewed to better understand hospital ship HA missions. Factors such as time on-site and location shape the mission and underlying goals. Patient encounter data from previous HA missions were used to determine expected patient conditions encountered in various HA operations. These data points were used to project the medical staffing required for future missions. Further data collection, along with goal setting, must be performed to accomplish successful future HA missions. Refining staffing requirements allows deployments to accomplish needed HA and effectively reach underserved areas.

  7. An Overview of Solar Sail Propulsion within NASA

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Swartzlander, Grover A.; Artusio-Glimpse, Alexandra

    2013-01-01

    Solar Sail Propulsion (SSP) is a high-priority new technology within The National Aeronautics and Space Administration (NASA), and several potential future space missions have been identified that will require SSP. Small and mid-sized technology demonstration missions using solar sails have flown or will soon fly in space. Multiple mission concept studies have been performed to determine the system level SSP requirements for their implementation and, subsequently, to drive the content of relevant technology programs. The status of SSP technology and potential future mission implementation within the United States (US) will be described.

  8. Lasers, penguins, and polar bears: Novel outreach and education approaches for NASA's ICESat-2 mission

    NASA Astrophysics Data System (ADS)

    Casasanto, Valerie A.; Campbell, Brian; Manrique, Adriana; Ramsayer, Kate; Markus, Thorsten; Neumann, Thomas

    2018-07-01

    NASA's Ice, Cloud, and land Elevation Satellite (ICESat-2), to be launched in 2018, will measure the height of Earth from space using lasers, collecting the most precise and detailed account yet of our planet's elevation. The mission will allow scientists to investigate how global warming is changing the planet's icy polar regions and to take stock of Earth's vegetation. ICESat-2's emphasis on polar ice, as well as its unique measurement approach, will provide an intriguing and accessible focus for the mission's education and outreach programs. Sea ice and land ice are areas that have experienced significant change in recent years. It is key to communicate why we are measuring these areas and their importance. ICESat-2 science data will provide much-needed answers to climate change questions such as, "Is the ice really melting in the polar regions?" and "What does studying Earth's frozen regions tell us about our changing climate?" In this paper, lessons-learned and novel techniques for engaging and educating all audiences in the mission will be discussed, such as including results of a unique collaboration with art design school the Savannah College of Art Design (SCAD) to create fun and exciting products such as animated characters and interactive stories. Future collaborations with wildlife researchers, a new citizen science program in collaboration with GLOBE, and evidence from other STEAM (Science, Technology, Engineering, Arts, Math) education approaches will also be detailed in this paper.

  9. ESASky: All the sky you need

    NASA Astrophysics Data System (ADS)

    De Marchi, Guido; ESASky Team

    2018-06-01

    ESASky is a discovery portal giving to all astronomers, professional and amateur alike, an easy way to access high-quality scientific data from their computer, tablet, or mobile device. It includes over half a million images, 300,000 spectra, and more than a billion catalogue sources. From gamma rays to radio wavelengths, it allows users to explore the cosmos with data from a dozen space missions from the astronomical archives of ESA, NASA, and JAXA and does not require prior knowledge of any particular mission. ESASky features an all-sky exploration interface, letting users easily zoom in for stars as single targets or as part of a whole galaxy, visualise them and retrieve the relevant data taken in an area of the sky with just a few clicks. Users can easily compare observations of the same source obtained by different space missions at different times and wavelengths. They can also use ESASky to plan future observations with the James Webb Space Telescope, comparing the relevant portion of the sky as observed by Hubble and other missions. We will illustrate the many options to visualise and access astronomical data: interactive footprints for each instrument, tree-maps, filters, and solar-system object trajectories can all be combined and displayed. The most recent version of ESASky, released in February, also includes access to scientific publications, allowing users to visualise on the sky all astronomical objects with associated scientific publications and to link directly back to the papers in the NASA Astrophysics Data System.

  10. HaloSat- A CubeSat to Study the Hot Galactic Halo

    NASA Astrophysics Data System (ADS)

    Kaaret, Philip

    We propose to develop, build, and fly HaloSat, a CubeSat capable of measuring the oxygen line emission from the hot Galactic halo. A dedicated CubeSat enables an instrument design and observing strategy to maximize the halo signal while minimizing foregrounds from solar wind charge exchange interactions within the solar system. We will use HaloSat to map the distribution of hot gas in the Milky Way and determine whether it fills an extended, and thus massive halo, or whether the halo is compact, and thus does not contribute significantly to the total mass of the Milky Way. HaloSat can be accomplished at modest cost using a CubeSat, a novel platform for space astrophysics missions. We will use a commercially available CubeSat bus and commercially available X-ray detectors to reduce development risk and minimize overall mission cost. HaloSat builds on the initiatives of GSFC/Wallops Flight Facility (WFF) in the development of CubeSats for low cost access to space and relies on the technical expertise of WFF personnel for spacecraft and mission design and operations. The team, from University of Iowa (UI), GSFC, Johns Hopkins, and CNRS (France), contains experts in X-ray detector development and data analysis and the astrophysics of hot plasmas and Galactic structure. The UI team will include a number of junior researchers (undergraduates, graduate students, and a postdoc) and help train them for future leadership roles on NASA space flight missions.

  11. Exploring the Hot and Energetic Universe: The first scientific conference dedicated to the Athena X-ray observatory

    NASA Astrophysics Data System (ADS)

    Ehle, Matthias

    2015-09-01

    The Advanced Telescope for High Energy Astrophysics (Athena) is a large-class mission of the European Space Agency (ESA). It is currently entering an assessment study phase, with launch planned for 2028. Athena has been designed to address the science theme "The Hot and Energetic Universe", which poses two key questions: - How does ordinary matter assemble into the large-scale structures we see today? - How do black holes grow and influence the Universe? The mission will employ a variety of techniques to address these topics in a comprehensive matter, including spatially-resolved high resolution spectroscopy, sensitive wide field imaging, high throughput spectral-timing, and fast follow-up of transient phenomena. The purpose of this conference is to gather together all members of the astronomical community worldwide who have an interest in Athena. The main focus of the meeting is to discuss the key science questions which will be addressed by the mission. A significant portion of the programme is devoted to presenting the status of the project and discussing the synergies with other future large multi-wavelength facilities and missions. Scientific topics include: - Formation, evolution and physical properties of clusters of galaxies - Cosmic feedback - The missing baryons and the WHIM - Supermassive black hole evolution - Accretion physics and strong gravity - High energy transient phenomena - Solar system and exoplanets - Star formation and evolution - The physics of compact object - Supernovae, supernova remnants and the ISM - Multiwavelength synergies

  12. Technical area status report for waste destruction and stabilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalton, J.D.; Harris, T.L.; DeWitt, L.M.

    1993-08-01

    The Office of Environmental Restoration and Waste Management (EM) was established by the Department of Energy (DOE) to direct and coordinate waste management and site remediation programs/activities throughout the DOE complex. In order to successfully achieve the goal of properly managing waste and the cleanup of the DOE sites, the EM was divided into five organizations: the Office of Planning and Resource Management (EM-10); the Office of Environmental Quality Assurance and Resource Management (EM-20); the Office of Waste Operations (EM-30); the Office of Environmental Restoration (EM-40); and the Office of Technology and Development (EM-50). The mission of the Office ofmore » Technology Development (OTD) is to develop treatment technologies for DOE`s operational and environmental restoration wastes where current treatment technologies are inadequate or not available. The Mixed Waste Integrated Program (MWIP) was created by OTD to assist in the development of treatment technologies for the DOE mixed low-level wastes (MLLW). The MWIP has established five Technical Support Groups (TSGs) whose purpose is to identify, evaluate, and develop treatment technologies within five general technical areas representing waste treatment functions from initial waste handling through generation of final waste forms. These TSGs are: (1) Front-End Waste Handling, (2) Physical/Chemical Treatment, (3) Waste Destruction and Stabilization, (4) Second-Stage Destruction and Offgas Treatment, and (5) Final Waste Forms. This report describes the functions of the Waste Destruction and Stabilization (WDS) group. Specifically, the following items are discussed: DOE waste stream identification; summary of previous efforts; summary of WDS treatment technologies; currently funded WDS activities; and recommendations for future activities.« less

  13. Power Subsystem for Extravehicular Activities for Exploration Missions

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle

    2005-01-01

    The NASA Glenn Research Center has the responsibility to develop the next generation space suit power subsystem to support the Vision for Space Exploration. Various technology challenges exist in achieving extended duration missions as envisioned for future lunar and Mars mission scenarios. This paper presents an overview of ongoing development efforts undertaken at the Glenn Research Center in support of power subsystem development for future extravehicular activity systems.

  14. The Implementation of Advanced Solar Array Technology in Future NASA Missions

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael F.; Kerslake, Thomas W.; Hoffman, David J.; White, Steve; Douglas, Mark; Spence, Brian; Jones, P. Alan

    2003-01-01

    Advanced solar array technology is expected to be critical in achieving the mission goals on many future NASA space flight programs. Current PV cell development programs offer significant potential and performance improvements. However, in order to achieve the performance improvements promised by these devices, new solar array structures must be designed and developed to accommodate these new PV cell technologies. This paper will address the use of advanced solar array technology in future NASA space missions and specifically look at how newer solar cell technologies impact solar array designs and overall power system performance.

  15. A temporal forecast of radiation environments for future space exploration missions.

    PubMed

    Kim, Myung-Hee Y; Cucinotta, Francis A; Wilson, John W

    2007-06-01

    The understanding of future space radiation environments is an important goal for space mission operations, design, and risk assessment. We have developed a solar cycle statistical model in which sunspot number is coupled to space-related quantities, such as the galactic cosmic radiation (GCR) deceleration potential (phi) and the mean occurrence frequency of solar particle events (SPEs). Future GCR fluxes were derived from a predictive model, in which the temporal dependence represented by phi was derived from GCR flux and ground-based Climax neutron monitor rate measurements over the last four decades. These results showed that the point dose equivalent inside a typical spacecraft in interplanetary space was influenced by solar modulation by up to a factor of three. It also has been shown that a strong relationship exists between large SPE occurrences and phi. For future space exploration missions, cumulative probabilities of SPEs at various integral fluence levels during short-period missions were defined using a database of proton fluences of past SPEs. Analytic energy spectra of SPEs at different ranks of the integral fluences for energies greater than 30 MeV were constructed over broad energy ranges extending out to GeV for the analysis of representative exposure levels at those fluences. Results will guide the design of protection systems for astronauts during future space exploration missions.

  16. JPSS Common Ground System Multimission Support

    NASA Astrophysics Data System (ADS)

    Jamilkowski, M. L.; Miller, S. W.; Grant, K. D.

    2013-12-01

    NOAA & NASA jointly acquire the next-generation civilian operational weather satellite: Joint Polar Satellite System (JPSS). JPSS contributes the afternoon orbit & restructured NPOESS ground system (GS) to replace the current Polar-orbiting Operational Environmental Satellite (POES) system run by NOAA. JPSS sensors will collect meteorological, oceanographic, climatological & solar-geophysical observations of the earth, atmosphere & space. The JPSS GS is the Common Ground System (CGS), consisting of Command, Control, & Communications (C3S) and Interface Data Processing (IDPS) segments, both developed by Raytheon Intelligence, Information & Services (IIS). CGS now flies the Suomi National Polar-orbiting Partnership (S-NPP) satellite, transfers its mission data between ground facilities and processes its data into Environmental Data Records for NOAA & Defense (DoD) weather centers. CGS will expand to support JPSS-1 in 2017. The JPSS CGS currently does data processing (DP) for S-NPP, creating multiple TBs/day across over two dozen environmental data products (EDPs). The workload doubles after JPSS-1 launch. But CGS goes well beyond S-NPP & JPSS mission management & DP by providing data routing support to operational centers & missions worldwide. The CGS supports several other missions: It also provides raw data acquisition, routing & some DP for GCOM-W1. The CGS does data routing for numerous other missions & systems, including USN's Coriolis/Windsat, NASA's SCaN network (including EOS), NSF's McMurdo Station communications, Defense Meteorological Satellite Program (DMSP), and NOAA's POES & EUMETSAT's MetOp satellites. Each of these satellite systems orbits the Earth 14 times/day, downlinking data once or twice/orbit at up to 100s of MBs/second, to support the creation of 10s of TBs of data/day across 100s of EDPs. Raytheon and the US government invested much in Raytheon's mission-management, command & control and data-processing products & capabilities. CGS's flexible, multimission capabilities offer major chances for cost reduction & improved information integration across missions. Raytheon has a unique ability to provide complex, highly-secure, multi-mission GSs. As disaggregation, hosted CGS multimission payloads, and other space-architecture trades are implemented and new sensors come on line that collect orders of magnitude more data, the importance of a flexible, expandable and virtualized modern GS architecture increases. The CGS offers that solution support. JPSS CGS supports 5 global ground stations that can receive S-NPP & JPSS-1 mission data. These, linked with high-bandwidth commercial fiber, quickly transport data to the IDPS for EDP creation & delivery. CGS will process & deliver JPSS-1 data to US operational users in < 80 minutes from time of collection. And CGS leverages this fiber network to provide added data routing for a wide array of global missions. The JPSS CGS is a mature, tested solution for support to operational weather forecasting for civil, military and international partners and climate research. It features a flexible design handling order-of-magnitude increases in data over legacy satellite GSs and meets demanding science accuracy needs. The Raytheon-built JPSS CGS gives the full GS capability, from design & development through operations & sustainment. This lays the foundation for CGS future evolution to support additional missions like Polar Free Flyers.

  17. General Mission Analysis Tool (GMAT) Mathematical Specifications

    NASA Technical Reports Server (NTRS)

    Hughes, Steve

    2007-01-01

    The General Mission Analysis Tool (GMAT) is a space trajectory optimization and mission analysis system developed by NASA and private industry in the spirit of the NASA Mission. GMAT contains new technology and is a testbed for future technology development.

  18. Propulsion Technology Development for Sample Return Missions Under NASA's ISPT Program

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Pencil, Eric J.; Vento, Daniel; Dankanich, John W.; Munk, Michelle M.; Hahne, David

    2011-01-01

    The In-Space Propulsion Technology (ISPT) Program was tasked in 2009 to start development of propulsion technologies that would enable future sample return missions. Sample return missions could be quite varied, from collecting and bringing back samples of comets or asteroids, to soil, rocks, or atmosphere from planets or moons. The paper will describe the ISPT Program s propulsion technology development activities relevant to future sample return missions. The sample return propulsion technology development areas for ISPT are: 1) Sample Return Propulsion (SRP), 2) Planetary Ascent Vehicles (PAV), 3) Entry Vehicle Technologies (EVT), and 4) Systems/mission analysis and tools that focuses on sample return propulsion. The Sample Return Propulsion area is subdivided into: a) Electric propulsion for sample return and low cost Discovery-class missions, b) Propulsion systems for Earth Return Vehicles (ERV) including transfer stages to the destination, and c) Low TRL advanced propulsion technologies. The SRP effort will continue work on HIVHAC thruster development in FY2011 and then transitions into developing a HIVHAC system under future Electric Propulsion for sample return (ERV and transfer stages) and low-cost missions. Previous work on the lightweight propellant-tanks will continue under advanced propulsion technologies for sample return with direct applicability to a Mars Sample Return (MSR) mission and with general applicability to all future planetary spacecraft. A major effort under the EVT area is multi-mission technologies for Earth Entry Vehicles (MMEEV), which will leverage and build upon previous work related to Earth Entry Vehicles (EEV). The major effort under the PAV area is the Mars Ascent Vehicle (MAV). The MAV is a new development area to ISPT, and builds upon and leverages the past MAV analysis and technology developments from the Mars Technology Program (MTP) and previous MSR studies.

  19. Abortions: Does It Affect Subsequent Pregnancies?

    MedlinePlus

    ... of Privacy Practices Notice of Nondiscrimination Manage Cookies Advertising Mayo Clinic is a not-for-profit organization and proceeds from Web advertising help support our mission. Mayo Clinic does not ...

  20. Alcohol: Does It Affect Blood Pressure?

    MedlinePlus

    ... of Privacy Practices Notice of Nondiscrimination Manage Cookies Advertising Mayo Clinic is a not-for-profit organization and proceeds from Web advertising help support our mission. Mayo Clinic does not ...

  1. Moving NASA Beyond Low Earth Orbit: Future Human-Automation-Robotic Integration Challenges

    NASA Technical Reports Server (NTRS)

    Marquez, Jessica

    2016-01-01

    This presentation will provide an overview of current human spaceflight operations. It will also describe how future exploration missions will have to adapt and evolve in order to deal with more complex missions and communication latencies. Additionally, there are many implications regarding advanced automation and robotics, and this presentation will outline future human-automation-robotic integration challenges.

  2. Lunar Surface Mission Operations Scenario and Considerations

    NASA Technical Reports Server (NTRS)

    Arnold, Larissa S.; Torney, Susan E.; Rask, John Doug; Bleisath, Scott A.

    2006-01-01

    Planetary surface operations have been studied since the last visit of humans to the Moon, including conducting analog missions. Mission Operations lessons from these activities are summarized. Characteristics of forecasted surface operations are compared to current human mission operations approaches. Considerations for future designs of mission operations are assessed.

  3. Reference Mission Version 3.0 Addendum to the Human Exploration of Mars: The Reference Mission of the NASA Mars Exploration Study Team. Addendum; 3.0

    NASA Technical Reports Server (NTRS)

    Drake, Bret G. (Editor)

    1998-01-01

    This Addendum to the Mars Reference Mission was developed as a companion document to the NASA Special Publication 6107, "Human Exploration of Mars: The Reference Mission of the NASA Mars Exploration Study Team." It summarizes changes and updates to the Mars Reference Missions that were developed by the Exploration Office since the final draft of SP 6107 was printed in early 1999. The Reference Mission is a tool used by the exploration community to compare and evaluate approaches to mission and system concepts that could be used for human missions to Mars. It is intended to identify and clarify system drivers, significant sources of cost, performance, risk, and schedule variation. Several alternative scenarios, employing different technical approaches to solving mission and technology challenges, are discussed in this Addendum. Comparing alternative approaches provides the basis for continual improvement to technology investment plan and a general understanding of future human missions to Mars. The Addendum represents a snapshot of work in progress in support of planning for future human exploration missions through May 1998.

  4. ENTERPRISE SRS: LEVERAGING ONGOING OPERATIONS TO ADVANCE RADIOACTIVE WASTE MANAGEMENT TECHNOLOGIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, A.; Wilmarth, W.; Marra, J.

    2013-05-16

    The Savannah River Site (SRS) is repurposing its vast array of assets to solve future national issues regarding environmental stewardship, national security, and clean energy. The vehicle for this transformation is Enterprise SRS which presents a new, strategic view of SRS as a united endeavor for “all things nuclear” as opposed to a group of distinct and separate entities with individual missions and organizations. Key among the Enterprise SRS strategic initiatives is the integration of research into facilities in conjunction with ongoing missions to provide researchers from other national laboratories, academic institutions, and commercial entities the opportunity to demonstrate theirmore » technologies in a relevant environment and scale prior to deployment. To manage that integration of research demonstrations into site facilities, The DOE Savannah River Operations Office, Savannah River Nuclear Solutions, and the Savannah River National Laboratory (SRNL) have established a center for applied nuclear materials processing and engineering research (hereafter referred to as the Center). The key objective of this initiative is to bridge the gap between promising transformational nuclear materials management advancements and large-scale deployment of the technology by using SRS assets (e.g. facilities, staff, and property) for those critical engineering-scale demonstrations necessary to assure the successful deployment of new technologies. The Center will coordinate the demonstration of R&D technologies and serve as the interface between the engineering-scale demonstration and the R&D programs, essentially providing cradle-to-grave support to the R&D team during the demonstration. While the initial focus of the Center will be on the effective use of SRS assets for these demonstrations, the Center also will work with research teams to identify opportunities to perform R&D demonstrations at other facilities. Unique to this approach is the fact that these SRS assets will continue to accomplish DOE’s critical nuclear material missions (e.g., processing in H-Canyon and plutonium storage in K-Area). These demonstrations can be accomplished in a more cost-effective manner through the use of existing facilities in conjunction with ongoing missions. Essentially, the R&D program would not need to pay the full operational cost of a facility, just the incremental cost of performing the demonstration. Current Center activities have been focused on integrating advanced safeguards monitoring technology demonstrations into the SRS H-Canyon and advanced location technology demonstrations into K-Area Materials Storage. These demonstrations are providing valuable information to researchers and program owners. In addition these demonstrations are providing the Center with an improved protocol for demonstration management that can be exercised across the entire SRS (and to offsite venues) to ensure that future demonstrations are done efficiently and provide an opportunity to use these unique assets for multiple purposes involving national laboratories, academia, and commercial entities. Key among the envisioned future use of SRS assets is the demonstration of new radioactive waste management technologies critical for advancing the mission needs of the DOE-EM program offices in their efforts to cleanup 107 sites across the United States. Of particular interest is the demonstration of separations technologies in H-Canyon. Given the modular design of H-Canyon, those demonstrations would be accomplished using a process frame. The demonstration equipment would be installed on the process frame and that frame would then be positioned into an H-Canyon cell so that the demonstration is performed in a radiological environment involving prototypic nuclear materials.« less

  5. Exploration-Related Research on ISS: Connecting Science Results to Future Missions

    NASA Technical Reports Server (NTRS)

    Rhatigan, Jennifer L.; Robinson, Julie A.; Sawin, Charles F.

    2005-01-01

    In January, 2004, the U.S. President announced The Vision for Space Exploration, and charged the National Aeronautics and Space Administration (NASA) with using the International Space Station (ISS) for research and technology targeted at supporting U.S. space exploration goals. This paper describes: What we have learned from the first four years of research on ISS relative to the exploration mission; The on-going research being conducted in this regard; and Our current understanding of the major exploration mission risks that the ISS can be used to address. Specifically, we discuss research carried out on the ISS to determine the mechanisms by which human health is affected on long-duration missions, and to develop countermeasures to protect humans from the space environment. These bioastronautics experiments are key enablers of future long duration human exploration missions. We also discuss how targeted technological developments can enable mission design trade studies. We discuss the relationship between the ultimate number of human test subjects available on the ISS to the quality and quantity of scientific insight that can be used to reduce health risks to future explorers. We discuss the results of NASA's efforts over the past year to realign the ISS research programs to support a product-driven portfolio that is directed towards reducing the major risks of exploration missions. The fundamental challenge to science on ISS is completing experiments that answer key questions in time to shape design decisions for future exploration. In this context, exploration relevant research must do more than be conceptually connected to design decisions - it must become a part of the mission design process.

  6. ISS Training Best Practices and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Dempsey, Donna L.; Barshi, Immanuel

    2018-01-01

    Training our crew members for long-duration Deep Space Transport (DST) missions will have to be qualitatively and quantitatively different from current training practices. However, there is much to be learned from the extensive experience NASA has gained in training crew members for missions on board the International Space Station (ISS). Furthermore, the operational experience on board the ISS provides valuable feedback concerning training effectiveness. Keeping in mind the vast differences between current ISS crew training and training for DST missions, the needs of future crew members, and the demands of future missions, this ongoing study seeks to document current training practices and lessons learned. The goal of the study is to provide input to the design of future crew training that takes as much advantage as possible of what has already been learned and avoids as much as possible past inefficiencies. Results from this study will be presented upon its completion. By researching established training principles, examining future needs, and by using current practices in spaceflight training as test beds, this research project is mitigating program risks and generating templates and requirements to meet future training needs.

  7. The Case for Deep Space Telecommunications Relay Stations

    NASA Technical Reports Server (NTRS)

    Chandler, Charles W.; Miranda, Felix A. (Technical Monitor)

    2004-01-01

    Each future mission to Jupiter and beyond must carry the traditional suite of telecommunications systems for command and control and for mission data transmission to earth. The telecommunications hardware includes the large antenna and the high-power transmitters that enable the communications link. Yet future spacecraft will be scaled down from the hallmark missions of Galileo and Cassini to Jupiter and Saturn, respectively. This implies that a higher percentage of the spacecraft weight and power must be dedicated to telecommunications system. The following analysis quantifies this impact to future missions and then explores the merits of an alternative approach using deep space relay stations for the link back to earth. It will be demonstrated that a telecommunications relay satellite would reduce S/C telecommunications weight and power sufficiently to add one to two more instruments.

  8. Deep Space 1: Testing New Technologies for Future Small Bodies Missions

    NASA Technical Reports Server (NTRS)

    Rayman, Marc D.

    2001-01-01

    Launched on October 24, 1998, Deep Space 1 (DS1) was the first mission of NASA's New Millennium Program, chartered to validate in space high-risk, new technologies important for future space science programs. The advanced technology payload that was tested on DS1 comprises solar electric propulsion, solar concentrator arrays, autonomous on-board navigation and other autonomous systems, several telecommunications and microelectronics devices, and two low-mass integrated science instrument packages. The mission met or exceeded all of its success criteria. The 12 technologies were rigorously exercised so that subsequent flight projects would not have to incur the cost and risk of being the fist users of these new capabilities. Examples of the benefits to future small body missions from DS1's technologies will be described.

  9. The Parlous State of Academia: When Politics, Prestige and Proxies Overtake Higher Education's Teaching Mission

    ERIC Educational Resources Information Center

    Callier, Viviane; Singiser, Richard H.; Vanderford, Nathan L.

    2015-01-01

    Original and significant research benefits the careers of those running universities and brings prestige to their institution. World class teaching, by and large, does not, and this has important consequences for higher education's tripartite mission. Most notably, emphasis on the research mission of major higher education institutions dwarfs that…

  10. The U.S. Department of Energy advanced radioisotope power system program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrera, L.

    1998-07-01

    Radioisotope power systems for spacecraft are and will continue to be an enabling power technology for deep space exploration. The US Department of Energy (DOE) is responsible for the Nation's development of Advanced Radioisotope Power Systems (ARPS) to meet harsh environments and long life requirements. The DOE has provided radioisotope power systems for space missions since 1961. The radioisotope power system used for the recent Cassini mission included three Radioisotope Thermoelectric Generators (RTGs) which provided a total of 888 Watts electric at 6.7% conversion efficiency. The DOE's goal is to develop a higher efficiency and lower mass ARPS for futuremore » deep space missions. The ARPS program involves the design, development, fabrication, and qualification, and safety analysis of the ARPS units. Organizations that support the development, fabrication and testing of the ARPS include the Lockheed Martin Astronautics (LMA), Advanced Modular Power Systems (AMPS), Mound, Oak Ridge National Laboratory (ORNL), and Los Alamos National Laboratory (LANL). The Europa Orbiter and Pluto/Kuiper Express missions represent the near term programs targeted for the application of ARPS in addressing the issues and questions existing for deep space exploration.« less

  11. Percent Daily Value: What Does It Mean?

    MedlinePlus

    ... of Privacy Practices Notice of Nondiscrimination Manage Cookies Advertising Mayo Clinic is a not-for-profit organization and proceeds from Web advertising help support our mission. Mayo Clinic does not ...

  12. From Present Surveying to Future Prospecting of the Asteroid Belt

    NASA Astrophysics Data System (ADS)

    Clark, P. E.; Curtis, S. A.; Rilee, M.; Cheung, C.

    2004-03-01

    Requirements are analyzed for application of future mission architecture, the Autonomous Nano-Technology Swarm (ANTS), to proposed in situ prospecting, of the asteroid belt, the Prospecting Asteroid Mission (PAM) as part of a NASA 2003 Revolutionary Aerospace Concept (RASC) study.

  13. Plume induced environments on future lunar mission vehicles

    NASA Technical Reports Server (NTRS)

    Rochelle, Bill; Hughes, Ruston; Fitzgerald, Steve

    1992-01-01

    The objective of this presentation is to identify potential plume heating/impingement problem areas on vehicles used for future lunar missions. This is accomplished by comparison with lunar module plume investigations performed during 1968-1971. All material is presented in viewgraph format.

  14. Supporting Increased Autonomy for a Mars Rover

    NASA Technical Reports Server (NTRS)

    Estlin, Tara; Castano, Rebecca; Gaines, Dan; Bornstein, Ben; Judd, Michele; Anderson, Robert C.; Nesnas, Issa

    2008-01-01

    This paper presents an architecture and a set of technology for performing autonomous science and commanding for a planetary rover. The MER rovers have outperformed all expectations by lasting over 1100 sols (or Martian days), which is an order of magnitude longer than their original mission goal. The longevity of these vehicles will have significant effects on future mission goals, such as objectives for the Mars Science Laboratory rover mission (scheduled to fly in 2009) and the Astrobiology Field Lab rover mission (scheduled to potentially fly in 2016). Common objectives for future rover missions to Mars include the handling of opportunistic science, long-range or multi-sol driving, and onboard fault diagnosis and recovery. To handle these goals, a number of new technologies have been developed and integrated as part of the CLARAty architecture. CLARAty is a unified and reusable robotic architecture that was designed to simplify the integration, testing and maturation of robotic technologies for future missions. This paper focuses on technology comprising the CLARAty Decision Layer, which was designed to support and validate high-level autonomy technologies, such as automated planning and scheduling and onboard data analysis.

  15. NASA/DOE/DOD nuclear propulsion technology planning: Summary of FY 1991 interagency panel results

    NASA Technical Reports Server (NTRS)

    Clark, John S.; Wickenheiser, Timothy J.; Doherty, Michael P.; Marshall, Albert; Bhattacharryya, Samit K.; Warren, John

    1992-01-01

    Interagency (NASA/DOE/DOD) technical panels worked in 1991 to evaluate critical nuclear propulsion issues, compare nuclear propulsion concepts for a manned Mars mission on a consistent basis, and to continue planning a technology development project for the Space Exploration Initiative (SEI). Panels were formed to address mission analysis, nuclear facilities, safety policy, nuclear fuels and materials, nuclear electric propulsion technology, and nuclear thermal propulsion technology. A summary of the results and recommendations of the panels is presented.

  16. Human Exploration of Mars Design Reference Architecture 5.0

    NASA Technical Reports Server (NTRS)

    Drake, Bret G.

    2010-01-01

    This paper provides a summary of the Mars Design Reference Architecture 5.0 (DRA 5.0), which is the latest in a series of NASA Mars reference missions. It provides a vision of one potential approach to human Mars exploration. The reference architecture provides a common framework for future planning of systems concepts, technology development, and operational testing as well as Mars robotic missions, research that is conducted on the International Space Station, and future lunar exploration missions. This summary the Mars DRA 5.0 provides an overview of the overall mission approach, surface strategy and exploration goals, as well as the key systems and challenges for the first three human missions to Mars.

  17. Supportability Challenges, Metrics, and Key Decisions for Future Human Spaceflight

    NASA Technical Reports Server (NTRS)

    Owens, Andrew C.; de Weck, Olivier L.; Stromgren, Chel; Cirillo, William; Goodliff, Kandyce

    2017-01-01

    Future crewed missions beyond Low Earth Orbit (LEO) represent a logistical challenge that is unprecedented in human space flight. Astronauts will travel farther and stay in space for longer than any previous mission, far from timely abort or resupply from Earth. Under these conditions, supportability { defined as the set of system characteristics that influence the logistics and support required to enable safe and effective operations of systems { will be a much more significant driver of space system lifecycle properties than it has been in the past. This paper presents an overview of supportability for future human space flight. The particular challenges of future missions are discussed, with the differences between past, present, and future missions highlighted. The relationship between supportability metrics and mission cost, performance, schedule, and risk is also discussed. A set of pro- posed strategies for managing supportability is presented (including reliability growth, uncertainty reduction, level of repair, commonality, redundancy, In-Space Manufacturing (ISM) (including the use of material recycling and In-Situ Resource Utilization (ISRU) for spares and maintenance items), reduced complexity, and spares inventory decisions such as the use of predeployed or cached spares - along with a discussion of the potential impacts of each of those strategies. References are provided to various sources that describe these supportability metrics and strategies, as well as associated modeling and optimization techniques, in greater detail. Overall, supportability is an emergent system characteristic and a holistic challenge for future system development. System designers and mission planners must carefully consider and balance the supportability metrics and decisions described in this paper in order to enable safe and effective beyond-LEO human space flight.

  18. Psychological aspects of living in space - architectural challenges

    NASA Astrophysics Data System (ADS)

    Häuplik, Sandra; Lorenz, Susanne

    2002-10-01

    Space missions have generally involved crews, drawn from a highly homogeneous pool (such as white, educated, young adult males) and functioned for limited periods of time. Future missions may involve crews drawn from a more heterogeneous pool and missions could eventually last years. 3 to 5-person groups are considered appropriate for the Space Shuttle and the first interplanetry missions. In addition to the above mentioned topics the success of a mission will no longer be dependent only on safety issues due to technological progress, but sociological and psychological aspects will become important determinants off the success or failure of future space missions. To create and ensure the social and psychological balance an adequate spatial planning is essential. In the following essay notions for a conception basis of designing a space station will be described.

  19. ESA SMART-1 mission: results and lessons for future lunar exploration

    NASA Astrophysics Data System (ADS)

    Foing, Bernard H.

    We review ESA’s SMART-1 highlights and legacy 10 years after launch. We discuss lessons for future lunar exploration and upcoming missions. The SMART-1 mission to the Moon achieved record firsts such as: 1) first Small Mission for Advanced Research and Technology; with spacecraft built and integrated in 2.5 years and launched 3.5 years after mission approval; 2) first mission leaving the Earth orbit using solar power alone with demonstration for future deep space missions such as BepiColombo; 3) most fuel effective mission (60 litres of Xenon) and longest travel (13 month) to the Moon!; 4) first ESA mission reaching the Moon and first European views of lunar poles; 5) first European demonstration of a wide range of new technologies: Li-Ion modular battery, deep-space communications in X- and Ka-bands, and autonomous positioning for navigation; 6) first lunar demonstration of an infrared spectrometer and of a Swept Charge Detector Lunar X-ray fluorescence spectrometer ; 7) first ESA mission with opportunity for lunar science, elemental geochemistry, surface mineralogy mapping, surface geology and precursor studies for exploration; 8) first controlled impact landing on the Moon with real time observations campaign; 9) first mission supporting goals of the ILEWG/COSPAR International Lunar Exploration Working Group in technical and scientific exchange, international collaboration, public and youth engagement; 10) first mission preparing the ground for ESA collaboration in Chandrayaan-1, Chang’ E1-2-3 and near-future landers, sample return and human lunar missions. The SMART-1 technology legacy is applicable to application geostationary missions and deep space missions using solar electric propulsion. The SMART-1 archive observations have been used to support scientific research and prepare subsequent lunar missions. Most recent SMART-1 results are relevant to topics on: 1) the study of properties of the lunar dust, 2) impact craters and ejecta, 3) the study of illumination, 4) observations and science from the Moon, 5) support to future missions, 6) identifying and characterising sites for exploration and exploitation. These results and legacy are relevant to the preparation for future missions, in particular in the frame of collaboration between Russia and ESA on upcoming landers and on a polar sample return. Also the results contribute to the preparation for a global robotic village and international lunar bases (consistent with ILEWG, COSPAR and Global Space Exploration roadmaps). Link: http://sci.esa.int/smart-1/ References and citations: http://scholar.google.nl/scholar?&q=smart-1+moon *We acknowledge ESA, member states, industry and institutes for their contribution, and the members of SMART-1 Teams: G.Racca and SMART-1 Project Team, O. Camino and SMART-1 Operations Team, D. Frew and SMART-1 STOC, B.H. Foing and STWT, B. Grieger, D. Koschny, J.-L. Josset, S. Beauvivre, M. Ellouzi, S. Peters, A. Borst, E. Martellato, M. Almeida, J.Volp, D. Heather, M. Grande, J. Huovelin, H.U. Keller, U. Mall, A. Nathues, A. Malkki, W. Schmidt, G. Noci, Z. Sodnik, B. Kellett, P. Pinet, S. Chevrel, P. Cerroni, M.C. de Sanctis, M.A. Barucci, S. Erard, D. Despan, K. Muinonen, V. Shevchenko, Y. Shkuratov, P. McMannamon, P. Ehrenfreund, C. Veillet, M. Burchell, other Co-Investigators, associated scientists, collaborators, students and colleagues

  20. Sustainable and Autonomic Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Hinchey, Michael G.; Sterritt, Roy; Rouff, Christopher; Rash, James L.; Truszkowski, Walter

    2006-01-01

    Visions for future space exploration have long term science missions in sight, resulting in the need for sustainable missions. Survivability is a critical property of sustainable systems and may be addressed through autonomicity, an emerging paradigm for self-management of future computer-based systems based on inspiration from the human autonomic nervous system. This paper examines some of the ongoing research efforts to realize these survivable systems visions, with specific emphasis on developments in Autonomic Policies.

  1. Shuttle free-flying teleoperator system experiment definition. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The applicability and utility of a free-flying teleoperator system were evaluated to support future earth orbital missions, specific emphasis on the early missions of the space shuttle. In-flight experiments and tests were specified, which will provide sufficient experience and data applicable to the development of future operational systems. The difinition of a useful early experimental system is presented, which will be checked out and used with early shuttle missions.

  2. Nail Biting: Does It Cause Long-Term Damage?

    MedlinePlus

    ... of Privacy Practices Notice of Nondiscrimination Manage Cookies Advertising Mayo Clinic is a not-for-profit organization and proceeds from Web advertising help support our mission. Mayo Clinic does not ...

  3. NASA Glenn Research Center Support of the Advanced Stirling Radioisotope Generator Project

    NASA Technical Reports Server (NTRS)

    Wilson, Scott D.; Wong, Wayne A.

    2015-01-01

    A high-efficiency radioisotope power system was being developed for long-duration NASA space science missions. The U.S. Department of Energy (DOE) managed a flight contract with Lockheed Martin Space Systems Company to build Advanced Stirling Radioisotope Generators (ASRGs), with support from NASA Glenn Research Center. DOE initiated termination of that contract in late 2013, primarily due to budget constraints. Sunpower, Inc., held two parallel contracts to produce Advanced Stirling Convertors (ASCs), one with Lockheed Martin to produce ASC-F flight units, and one with Glenn for the production of ASC-E3 engineering unit "pathfinders" that are built to the flight design. In support of those contracts, Glenn provided testing, materials expertise, Government-furnished equipment, inspection capabilities, and related data products to Lockheed Martin and Sunpower. The technical support included material evaluations, component tests, convertor characterization, and technology transfer. Material evaluations and component tests were performed on various ASC components in order to assess potential life-limiting mechanisms and provide data for reliability models. Convertor level tests were conducted to characterize performance under operating conditions that are representative of various mission conditions. Despite termination of the ASRG flight development contract, NASA continues to recognize the importance of high-efficiency ASC power conversion for Radioisotope Power Systems (RPS) and continues investment in the technology, including the continuation of the ASC-E3 contract. This paper describes key Government support for the ASRG project and future tests to be used to provide data for ongoing reliability assessments.

  4. Bridging the Engineering and Medicine Gap

    NASA Technical Reports Server (NTRS)

    Walton, M.; Antonsen, E.

    2018-01-01

    A primary challenge NASA faces is communication between the disparate entities of engineers and human system experts in life sciences. Clear communication is critical for exploration mission success from the perspective of both risk analysis and data handling. The engineering community uses probabilistic risk assessment (PRA) models to inform their own risk analysis and has extensive experience managing mission data, but does not always fully consider human systems integration (HSI). The medical community, as a part of HSI, has been working 1) to develop a suite of tools to express medical risk in quantitative terms that are relatable to the engineering approaches commonly in use, and 2) to manage and integrate HSI data with engineering data. This talk will review the development of the Integrated Medical Model as an early attempt to bridge the communication gap between the medical and engineering communities in the language of PRA. This will also address data communication between the two entities in the context of data management considerations of the Medical Data Architecture. Lessons learned from these processes will help identify important elements to consider in future communication and integration of these two groups.

  5. JPSS-1 Data and the EOSDIS System: It's seamless

    NASA Astrophysics Data System (ADS)

    Hall, A.; Behnke, J.; Ho, E.

    2017-12-01

    The continuity of climate and environmental data is the key to the NASA Earth science program to develop a scientific understanding of Earth's system and its response to changes. NASA has made a long-term investment in processing, archiving and distributing Earth science data through the Earth Observing System (EOS) Data and Information System (EOSDIS). The use of the EOSDIS infrastructure and services provides seamless integration of Suomi National Polar-Orbiting Partnership (SNPP) and future Joint Polar Satellite System (JPSS-1) products as it does for the entire NASA Earth Science data collection. This continuity of measurements from all the missions is supported by the use of common data structures and standards in the generation of products and the subsequent services, tools and access to those products. Similar to EOS missions, 5 Science Investigator-led Processing Systems (SIPS) were established for SNPP: Land, Ocean, Atmosphere, Ozone, and Sounder along with NASA's Clouds and the Earth's Radiant Energy System and Ozone Mapper/Profiler Suite Limb systems now produce the NASA SNPP standard Level 1, Level 2, and Level 3 products developed by the NASA science teams.

  6. Summary Report for the Evaluation of Current QA Processes Within the FRMAC FAL and EPA MERL.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shanks, Sonoya T.; Redding, Ted; Jaussi, Lynn

    The Federal Radiological Monitoring and Assessment Center (FRMAC) relies on accurate and defensible analytical laboratory data to support its mission. Therefore, FRMAC must ensure that the environmental analytical laboratories providing analytical services maintain an ongoing capability to provide accurate analytical results to DOE. It is undeniable that the more Quality Assurance (QA) and Quality Control (QC) measures required of the laboratory, the less resources that are available for analysis of response samples. Being that QA and QC measures in general are understood to comprise a major effort related to a laboratory’s operations, requirements should only be considered if they aremore » deemed “value-added” for the FRMAC mission. This report provides observations of areas for improvement and potential interoperability opportunities in the areas of Batch Quality Control Requirements, Written Communications, Data Review Processes, Data Reporting Processes, along with the lessons learned as they apply to items in the early phase of a response that will be critical for developing a more efficient, integrated response for future interactions between the FRMAC and EPA assets.« less

  7. Engineering Ultimate Self-Protection in Autonomic Agents for Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Sterritt, Roy; Hinchey, Mike

    2005-01-01

    NASA's Exploration Initiative (EI) will push space exploration missions to the limit. Future missions will be required to be self-managing as well as self-directed, in order to meet the challenges of human and robotic space exploration. We discuss security and self protection in autonomic agent based-systems, and propose the ultimate self-protection mechanism for such systems-self-destruction. Like other metaphors in Autonomic Computing, this is inspired by biological systems, and is the analog of biological apoptosis. Finally, we discus the role it might play in future NASA space exploration missions.

  8. 2016 Science Mission Directorate Technology Highlights

    NASA Technical Reports Server (NTRS)

    Seablom, Michael S.

    2017-01-01

    The role of the Science Mission Directorate (SMD) is to enable NASA to achieve its science goals in the context of the nation's science agenda. SMD's strategic decisions regarding future missions and scientific pursuits are guided by agency goals, input from the science community including the recommendations set forth in the National Research Council (NRC) decadal surveys and a commitment to preserve a balanced program across the major science disciplines. Toward this end, each of the four SMD science divisions -- Heliophysics, Earth Science, Planetary Science, and Astrophysics -- develops fundamental science questions upon which to base future research and mission programs.

  9. A decision support tool for synchronizing technology advances with strategic mission objectives

    NASA Technical Reports Server (NTRS)

    Hornstein, Rhoda S.; Willoughby, John K.

    1992-01-01

    Successful accomplishment of the objectives of many long-range future missions in areas such as space systems, land-use planning, and natural resource management requires significant technology developments. This paper describes the development of a decision-support data-derived tool called MisTec for helping strategic planners to determine technology development alternatives and to synchronize the technology development schedules with the performance schedules of future long-term missions. Special attention is given to the operations, concept, design, and functional capabilities of the MisTec. The MisTec was initially designed for manned Mars mission, but can be adapted to support other high-technology long-range strategic planning situations, making it possible for a mission analyst, planner, or manager to describe a mission scenario, determine the technology alternatives for making the mission achievable, and to plan the R&D activity necessary to achieve the required technology advances.

  10. The Next Generation of Space Cells for Diverse Environments

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila; Landis, Geoffrey; Raffaelle, Ryne

    2002-01-01

    Future science, military and commercial space missions are incredibly diverse. Military and commercial missions range from large arrays of hundreds of kilowatt to small arrays of ten watts in various Earth orbits. While science missions also have small to very large power needs there are additional unique requirements to provide power for near-sun missions and planetary exploration including orbiters, landers and rovers both to the inner planets and the outer planets with a major emphasis in the near term on Mars. These mission requirements demand cells for low intensity, low temperature applications, high intensity, high temperature applications, dusty environments and often high radiation environments. This paper discusses mission requirements, the current state of the art of space solar cells, and a variety of both evolving thin-film cells as well as new technologies that may impact the future choice of space solar cells for a specific mission application.

  11. Space physics missions handbook

    NASA Technical Reports Server (NTRS)

    Cooper, Robert A. (Compiler); Burks, David H. (Compiler); Hayne, Julie A. (Editor)

    1991-01-01

    The purpose of this handbook is to provide background data on current, approved, and planned missions, including a summary of the recommended candidate future missions. Topics include the space physics mission plan, operational spacecraft, and details of such approved missions as the Tethered Satellite System, the Solar and Heliospheric Observatory, and the Atmospheric Laboratory for Applications and Science.

  12. Trends in College Spending 1999-2009. Where Does the Money Come from? Where Does It Go? What Does It Buy? A Report of the Delta Cost Project

    ERIC Educational Resources Information Center

    Desrochers, Donna M.; Wellman, Jane V.

    2011-01-01

    "Trends in College Spending, 1999-2009: Where does the money come from? Where does it go? What does it buy?" is the fourth in a series of reports on college and university spending from the Delta Cost Project on Postsecondary Education Costs, Productivity, and Accountability. The mission of the Delta Cost Project is to improve public…

  13. The Lunar Reconnaissance Orbiter, a Planning Tool for Missions to the Moon

    NASA Astrophysics Data System (ADS)

    Keller, J. W.; Petro, N. E.

    2017-12-01

    The Lunar Reconnaissance Orbiter Mission was conceived as a one year exploration mission to pave the way for a return to the lunar surface, both robotically and by humans. After a year in orbit LRO transitioned to a science mission but has operated in a duel role of science and exploration ever since. Over the years LRO has compiled a wealth of data that can and is being used for planning future missions to the Moon by NASA, other national agencies and by private enterprises. While collecting this unique and unprecedented data set, LRO's science investigations have uncovered new questions that motivate new missions and targets. Examples include: when did volcanism on the Moon cease, motivating a sample return mission from an irregular mare patch such as Ina-D; or, is there significant water ice sequestered near the poles outside of the permanently shaded regions? In this presentation we will review the data products, tools and maps that are available for mission planning, discuss how the operating LRO mission can further enhance future missions, and suggest new targets motivated by LRO's scientific investigations.

  14. Selection of a Brine Processor Technology for NASA Manned Missions

    NASA Technical Reports Server (NTRS)

    Carter, Donald L.; Gleich, Andrew F.

    2016-01-01

    The current ISS Water Recovery System (WRS) reclaims water from crew urine, humidity condensate, and Sabatier product water. Urine is initially processed by the Urine Processor Assembly (UPA) which recovers 75% of the urine as distillate. The remainder of the water is present in the waste brine which is currently disposed of as trash on ISS. For future missions this additional water must be reclaimed due to the significant resupply penalty for missions beyond Low Earth Orbit (LEO). NASA has pursued various technology development programs for a brine processor in the past several years. This effort has culminated in a technology down-select to identify the optimum technology for future manned missions. The technology selection is based on various criteria, including mass, power, reliability, maintainability, and safety. Beginning in 2016 the selected technology will be transitioned to a flight hardware program for demonstration on ISS. This paper summarizes the technology selection process, the competing technologies, and the rationale for the technology selected for future manned missions.

  15. Noncausal telemetry data recovery techniques

    NASA Technical Reports Server (NTRS)

    Tsou, H.; Lee, R.; Mileant, A.; Hinedi, S.

    1995-01-01

    Cost efficiency is becoming a major driver in future space missions. Because of the constraints on total cost, including design, implementation, and operation, future spacecraft are limited in terms of their size power and complexity. Consequently, it is expected that future missions will operate on marginal space-to-ground communication links that, in turn, can pose an additional risk on the successful scientific data return of these missions. For low data-rate and low downlink-margin missions, the buffering of the telemetry signal for further signal processing to improve data return is a possible strategy; it has been adopted for the Galileo S-band mission. This article describes techniques used for postprocessing of buffered telemetry signal segments (called gaps) to recover data lost during acquisition and resynchronization. Two methods, one for a closed-loop and the other one for an open-loop configuration, are discussed in this article. Both of them can be used in either forward or backward processing of signal segments, depending on where a gap is specifically situated in a pass.

  16. Planetary protection implementation on future Mars lander missions

    NASA Astrophysics Data System (ADS)

    Howell, Robert; Devincenzi, Donald L.

    1993-06-01

    A workshop was convened to discuss the subject of planetary protection implementation for Mars lander missions. It was sponsored and organized by the Exobiology Implementation Team of the U.S./Russian Joint Working Group on Space Biomedical and Life Support Systems. The objective of the workshop was to discuss planetary protection issues for the Russian Mars '94 mission, which is currently under development, as well as for additional future Mars lander missions including the planned Mars '96 and U.S. MESUR Pathfinder and Network missions. A series of invited presentations was made to ensure that workshop participants had access to information relevant to the planned discussions. The topics summarized in this report include exobiology science objectives for Mars exploration, current international policy on planetary protection, planetary protection requirements developed for earlier missions, mission plans and designs for future U.S. and Russian Mars landers, biological contamination of spacecraft components, and techniques for spacecraft bioload reduction. In addition, the recent recommendations of the U.S. Space Studies Board (SSB) on this subject were also summarized. Much of the discussion focused on the recommendations of the SSB. The SSB proposed relaxing the planetary protection requirements for those Mars lander missions that do not contain life detection experiments, but maintaining Viking-like requirements for those missions that do contain life detection experiments. The SSB recommendations were found to be acceptable as a guide for future missions, although many questions and concerns about interpretation were raised and are summarized. Significant among the concerns was the need for more quantitative guidelines to prevent misinterpretation by project offices and better access to and use of the Viking data base of bio-assays to specify microbial burden targets. Among the questions raised were how will the SSB recommendations be integrated with existing Committee on Space Research (COSPAR) policy and how will they apply to and affect Mars '94, Mars '96, MESUR Pathfinder, and MESUR Network missions? One additional topic briefly considered at the workshop was the identification of some issues related to planetary protection considerations for Mars sample return missions. These issues will form the basis for a follow-on joint U.S./Russian workshop on that subject.

  17. Planetary protection implementation on future Mars lander missions

    NASA Technical Reports Server (NTRS)

    Howell, Robert; Devincenzi, Donald L.

    1993-01-01

    A workshop was convened to discuss the subject of planetary protection implementation for Mars lander missions. It was sponsored and organized by the Exobiology Implementation Team of the U.S./Russian Joint Working Group on Space Biomedical and Life Support Systems. The objective of the workshop was to discuss planetary protection issues for the Russian Mars '94 mission, which is currently under development, as well as for additional future Mars lander missions including the planned Mars '96 and U.S. MESUR Pathfinder and Network missions. A series of invited presentations was made to ensure that workshop participants had access to information relevant to the planned discussions. The topics summarized in this report include exobiology science objectives for Mars exploration, current international policy on planetary protection, planetary protection requirements developed for earlier missions, mission plans and designs for future U.S. and Russian Mars landers, biological contamination of spacecraft components, and techniques for spacecraft bioload reduction. In addition, the recent recommendations of the U.S. Space Studies Board (SSB) on this subject were also summarized. Much of the discussion focused on the recommendations of the SSB. The SSB proposed relaxing the planetary protection requirements for those Mars lander missions that do not contain life detection experiments, but maintaining Viking-like requirements for those missions that do contain life detection experiments. The SSB recommendations were found to be acceptable as a guide for future missions, although many questions and concerns about interpretation were raised and are summarized. Significant among the concerns was the need for more quantitative guidelines to prevent misinterpretation by project offices and better access to and use of the Viking data base of bioassays to specify microbial burden targets. Among the questions raised were how will the SSB recommendations be integrated with existing Committee on Space Research (COSPAR) policy and how will they apply to and affect Mars '94, Mars '96, MESUR Pathfinder, and MESUR Network missions? One additional topic briefly considered at the workshop was the identification of some issues related to planetary protection considerations for Mars sample return missions. These issues will form the basis for a follow-on joint U.S./Russian workshop on that subject.

  18. RTG-History, the Curiosity, Voyager, and New Horizons

    Science.gov Websites

    solar system for many years. Prior to New Horizons, the Apollo missions to the Moon, the Viking missions Report, January 11, 1991--April 30, 1998, DOE Technical Report Download Adobe PDF Reader , August 1998

  19. Ice Cold Sunrise on Mars

    NASA Technical Reports Server (NTRS)

    2008-01-01

    From the location of NASA's Phoenix Mars Lander, above the Martian arctic circle, the sun does not set during the peak of the Martian summer.

    This period of maximum solar energy is past on Sol 86, the 86th Martian day after the Phoenix landing, the sun fully set behind a slight rise to the north for about half an hour.

    This red-filter image taken by the lander's Surface Stereo Imager, shows the sun rising on the morning of sol 90, Aug. 25, 2008, the last day of the Phoenix nominal mission.

    The image was taken at 51 minutes past midnight local solar time during the slow sunrise that followed a 75 minute 'night.' The skylight in the image is light scattered off atmospheric dust particles and ice crystals.

    The setting sun does not mean the end of the mission. In late July, the Phoenix Mission was extended through September, rather than the 90-sol duration originally planned as the prime mission.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  20. Development of advanced entry, descent, and landing technologies for future Mars Missions

    NASA Technical Reports Server (NTRS)

    Chu, Cheng-Chih (Chester)

    2006-01-01

    Future Mars missions may need the capability to land much closer to a desired target and/or advanced methods of detecting, avoiding, or tolerating landing hazards. Therefore, technologies that enable 'pinpoint landing' (within tens of meters to 1 km of a target site) will be crucial to meet future mission requirements. As part of NASA Research Announcement, NRA 03-OSS-01, NASA solicited proposals for technology development needs of missions to be launched to Mars during or after the 2009 launch opportunity. Six technology areas were identified as of high priority including advanced entry, descent, and landing (EDL) technologies. In May 2004, 11 proposals with PIs from universities, industries, and NASA centers, were awarded in the area of advanced EDL by NASA for further study and development. This paper presents an overview of these developing technologies.

  1. Lessons from the GP-B Experience for Future Fundamental Physics Missions in Space

    NASA Technical Reports Server (NTRS)

    Kolodziejczak, Jeffery

    2006-01-01

    Gravity Probe B launched in April 2004 and completed its science data collection in September 2005, with the objective of sub-milliarcsec measurement of two General Relativistic effects on the spin axis orientation of orbiting gyroscopes. Much of the technology required by GP-B has potential application in future missions intended to make precision measurements. The philosophical approach and experiment design principles developed for GP-B are equally adaptable to these mission concepts. This talk will discuss GP-B's experimental approach and the technological and philosophical lessons learned that apply to future experiments in fundamental physics. Measurement of fundamental constants to high precision, probes of short-range forces, searches for equivalence principle violations, and detection of gravitational waves are examples of concepts and missions that will benefit kern GP-B's experience.

  2. Key Gaps for Enabling Plant Growth in Future Missions

    NASA Technical Reports Server (NTRS)

    Anderson, Molly S.; Barta, Daniel; Douglas, Grace; Fritsche, Ralph; Massa, Gioia; Wheeler, Ray; Quincy, Charles; Romeyn, Matthew; Motil, Brian; Hanford, Anthony

    2017-01-01

    Growing plants to provide food or psychological benefits to crewmembers is a common vision for the future of human spaceflight, often represented both in media and in serious concept studies. The complexity of controlled environment agriculture and of plant growth in microgravity have and continue to be the subject of dedicated scientific research. However, actually implementing these systems in a way that will be cost effective, efficient, and sustainable for future space missions is a complex, multi-disciplinary problem. Key questions exist in many areas: human research in nutrition and psychology, horticulture, plant physiology and microbiology, multi-phase microgravity fluid physics, hardware design and technology development, and system design, operations and mission planning. The criticality of the research, and the ideal solution, will vary depending on the mission and type of system implementation being considered.

  3. Extreme Underwater Mission on This Week @NASA – July 29, 2016

    NASA Image and Video Library

    2016-07-29

    The 21st NASA Extreme Environment Mission Operations got underway July 21 in the Florida Keys. NASA astronauts Reid Wiseman and Megan McArthur are part of the international crew of NEEMO-21 aquanauts performing research during the 16-day mission, which takes place about 60 feet below the surface of the Atlantic Ocean, in the Aquarius habitat – the world's only undersea science station. Simulated spacewalks are designed to evaluate tools and mission operation techniques that could be used on future space missions. NEEMO-21’s objectives include testing a mini DNA sequencer similar to the one NASA astronaut Kate Rubins also will test aboard the International Space Station, and a telemedicine device that will be used for future space applications. The mission also will simulate communications delays like those that would be encountered on a mission to Mars. Also, Space Launch System Work Platforms, All-Electric X-Plane Arrives, Asteroid Mission Technology, and NASA @Comic-Con International.

  4. The Role of Cis-Lunar Space in Future Global Space Exploration

    NASA Technical Reports Server (NTRS)

    Bobskill, Marianne R.; Lupisella, Mark L.

    2012-01-01

    Cis-lunar space offers affordable near-term opportunities to help pave the way for future global human exploration of deep space, acting as a bridge between present missions and future deep space missions. While missions in cis-lunar space have value unto themselves, they can also play an important role in enabling and reducing risk for future human missions to the Moon, Near-Earth Asteroids (NEAs), Mars, and other deep space destinations. The Cis-Lunar Destination Team of NASA's Human Spaceflight Architecture Team (HAT) has been analyzing cis-lunar destination activities and developing notional missions (or "destination Design Reference Missions" [DRMs]) for cis-lunar locations to inform roadmap and architecture development, transportation and destination elements definition, operations, and strategic knowledge gaps. The cis-lunar domain is defined as that area of deep space under the gravitational influence of the earth-moon system. This includes a set of earth-centered orbital locations in low earth orbit (LEO), geosynchronous earth orbit (GEO), highly elliptical and high earth orbits (HEO), earth-moon libration or "Lagrange" points (E-ML1 through E-ML5, and in particular, E-ML1 and E-ML2), and low lunar orbit (LLO). To help explore this large possibility space, we developed a set of high level cis-lunar mission concepts in the form of a large mission tree, defined primarily by mission duration, pre-deployment, type of mission, and location. The mission tree has provided an overall analytical context and has helped in developing more detailed design reference missions that are then intended to inform capabilities, operations, and architectures. With the mission tree as context, we will describe two destination DRMs to LEO and GEO, based on present human space exploration architectural considerations, as well as our recent work on defining mission activities that could be conducted with an EML1 or EML2 facility, the latter of which will be an emphasis of this paper, motivated in part by recent interest expressed at the Global Exploration Roadmap Stakeholder meeting. This paper will also explore the links between this HAT Cis-Lunar Destination Team analysis and the recently released ISECG Global Exploration Roadmap and other potential international considerations, such as preventing harmful interference to radio astronomy observations in the shielded zone of the moon.

  5. Fourier transform spectroscopy for future planetary missions

    NASA Astrophysics Data System (ADS)

    Brasunas, John; Kolasinski, John; Kostiuk, Ted; Hewagama, Tilak

    2017-01-01

    Thermal-emission infrared spectroscopy is a powerful tool for exploring the composition, temperature structure, and dynamics of planetary atmospheres; and the temperature of solid surfaces. A host of Fourier transform spectrometers (FTS) such as Mariner IRIS, Voyager IRIS, and Cassini CIRS from NASA Goddard have made and continue to make important new discoveries throughout the solar system. Future FTS instruments will have to be more sensitive (when we concentrate on the colder, outer reaches of the solar system), and less massive and less power-hungry as we cope with decreasing resource allotments for future planetary science instruments. With this in mind, we have developed CIRS-lite, a smaller version of the CIRS FTS for future planetary missions. We discuss the roadmap for making CIRS-lite a viable candidate for future planetary missions, including the recent increased emphasis on ocean worlds (Europa, Encelatus, Titan) and also on smaller payloads such as CubeSats and SmallSats.

  6. Space missions to comets

    NASA Technical Reports Server (NTRS)

    Neugebauer, M. (Editor); Yeomans, D. K. (Editor); Brandt, J. C. (Editor); Hobbs, R. W. (Editor)

    1979-01-01

    The broad impact of a cometary mission is assessed with particular emphasis on scientific interest in a fly-by mission to Halley's comet and a rendezvous with Tempel 2. Scientific results, speculations, and future plans are discussed.

  7. United States Department of Energy Environmental Restoration and Waste Management: Comment Response Document. Five-Year Plan, Fiscal Years 1993--1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    IN 1989, Secretary of Energy James Watkins called for a fundamental change in the way US Department of Energy (DOE) meets its environmental responsibilities. Whereas DOE had long subordinated environmental concerns to the higher priority of weapons production, the Department`s mission was restructured to place less emphasis on defense-related production and much greater emphasis on sound environmental management and restoration of its weapons complex. To carry out this new mission, the Office of Environmental Restoration and Waste Management (EM) was created. Secretary Watkins further stressed that DOE`s new commitment to environmental values will be carried out under a new DOEmore » culture-one of openness, responsiveness, and accountability. The Environmental Restoration and Waste Management Five-Year Plan is the key planning document that embodies both the new DOE emphasis on environmental management and the Department`s commitment to involving the public in its planning process. Updated annually, the Five-Year Plan guides EM`s efforts to clean up DOE facilities and manage its waste -- its accomplishments, goals, and planned activities -- and reinforces DOE`s commitment to the culture change by involving the general public in its development.« less

  8. Enviromnental Control and Life Support Systems for Mars Missions - Issues and Concerns for Planetary Protection

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.; Anderson, Molly S.; Lange, Kevin

    2015-01-01

    Planetary protection represents an additional set of requirements that generally have not been considered by developers of technologies for Environmental Control and Life Support Systems (ECLSS). Planetary protection guidelines will affect the kind of operations, processes, and functions that can take place during future human planetary exploration missions. Ultimately, there will be an effect on mission costs, including the mission trade space when planetary protection requirements begin to drive vehicle deisgn in a concrete way. Planetary protection requirements need to be considered early in technology development and mission programs in order to estimate these impacts and push back on requirements or find efficient ways to perform necessary functions. It is expected that planetary protection will be a significant factor during technology selection and system architecture design for future missions.

  9. Human Exploration of Mars Design Reference Architecture 5.0

    NASA Technical Reports Server (NTRS)

    Drake, Bret G.; Hoffman, Stephen J.; Beaty, David W.

    2009-01-01

    This paper provides a summary of the 2007 Mars Design Reference Architecture 5.0 (DRA 5.0), which is the latest in a series of NASA Mars reference missions. It provides a vision of one potential approach to human Mars exploration including how Constellation systems can be used. The reference architecture provides a common framework for future planning of systems concepts, technology development, and operational testing as well as Mars robotic missions, research that is conducted on the International Space Station, and future lunar exploration missions. This summary the Mars DRA 5.0 provides an overview of the overall mission approach, surface strategy and exploration goals, as well as the key systems and challenges for the first three human missions to Mars.

  10. Experimental Methods to Evaluate Science Utility Relative to the Decadal Survey

    NASA Technical Reports Server (NTRS)

    Widergren, Cynthia

    2012-01-01

    The driving factor for competed missions is the science that it plans on performing once it has reached its target body. These science goals are derived from the science recommended by the most current Decadal Survey. This work focuses on science goals in previous Venus mission proposals with respect to the 2013 Decadal Survey. By looking at how the goals compare to the survey and how much confidence NASA has in the mission's ability to accomplish these goals, a method was created to assess the science return utility of each mission. This method can be used as a tool for future Venus mission formulation and serves as a starting point for future development of create science utility assessment tools.

  11. Oak Ridge National Laboratory Waste Management Plan, fiscal year 1994. Revision 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, J.W.

    1993-12-01

    US Department of Energy (DOE) Order 5820.2A was promulgated in final form on September 26, 1988. The order requires heads of field organizations to prepare and to submit updates on the waste management plans for all operations under their purview according to the format in Chap. 6, {open_quotes}Waste Management Plan Outline.{close_quotes} These plans are to be submitted by the DOE Oak Ridge Operations Office (DOE-ORO) in December of each year and distributed to the DP-12, ES&H-1, and other appropriate DOE Headquarters (DOE-HQ) organizations for review and comment. This document was prepared in response to this requirement for fiscal year (FY)more » 1994. The Oak Ridge National Laboratory (ORNL) waste management mission is reduction, collection, storage, treatment, and disposal of DOE wastes, generated primarily in pursuit of ORNL missions, in order to protect human health and safety and the environment. In carrying out this mission, waste management staff in the Waste Management and Remedial Action Division (WMRAD) will (1) guide ORNL in optimizing waste reduction and waste management capabilities and (2) conduct waste management operations in a compliant, publicly acceptable, technically sound, and cost-efficient manner. Waste management requirements for DOE radioactive wastes are detailed in DOE Order 5820.2A, and the ORNL Waste Management Program encompasses all elements of this order. The requirements of this DOE order and other appropriate DOE orders, along with applicable Tennessee Department of Environment and Conservation and US Environmental Protection Agency (EPA) rules and regulations, provide the principal source of regulatory guidance for waste management operations at ORNL. The objective of this document is compilation and consolidation of information on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what activities are planned for FY 1994, and how all of the activities are documented.« less

  12. 50 Years of Mars Exploration

    NASA Image and Video Library

    2015-08-20

    2015 marks 50 years of successful NASA missions to Mars starting with Mariner 4 in 1965. Since then, a total of 15 robotic missions led by various NASA centers have laid the groundwork for future human missions to the Red Planet. The journey to Mars continues with additional robotic missions planned for 2016 and 2020, and human missions in the 2030s.

  13. Mariner Venus-Mercury 1973 project. Volume 2: Extended mission-Mercury 2 and 3 encounters

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The Mariner Venus/Mercury 1973 mission operations Extended Mission is described. The activities are summarized from shortly after Mercury I through the end of mission. The operational activities are reported by Mission Operations Systems functions providing a brief summary from each discipline. Based on these experiences recommendations for future projects are made.

  14. Extra-Vehicular Activity (EVA) and Mission Support Center (MSC) Design Elements for Future Human Scientific Exploration of Our Solar System

    NASA Astrophysics Data System (ADS)

    Miller, M. J.; Abercromby, A. F. J.; Chappell, S.; Beaton, K.; Kobs Nawotniak, S.; Brady, A. L.; Garry, W. B.; Lim, D. S. S.

    2017-02-01

    For future missions, there is a need to better understand how we can merge EVA operations concepts with the established purpose of performing scientific exploration and examine how human spaceflight could be successful under communication latency.

  15. Review of chemical-kinetic problems of future NASA missions, II: Mars entries

    NASA Technical Reports Server (NTRS)

    Park, Chul; Howe, John T.; Jaffe, Richard L.; Candler, Graham V.

    1994-01-01

    The present work aims to derive a set of thermomechanical relaxation rate parameters and chemical reaction rate coefficients relevant to future interplanetary missions. It also attempts to assess the impact of thermochemical nonequilibrium phenomena on radiative heating rates for the stagnation point of the Martian entry vehicle.

  16. Savannah River Ecology Laboratory annual technical progress report of ecological research for the year ending July 31, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, M.H.

    1995-07-01

    The Savannah River Ecology Laboratory (SREL) is a research unit of the University of Georgia (UGA). The overall mission of the Laboratory is to acquire and communicate knowledge of ecological processes and principles. SREL conducts basic and applied ecological research, as well as education and outreach programs, under a contract with the US Department of Energy (DOE) at the Savannah River Site near Aiken, South Carolina. Significant accomplishments were made during the past year in the areas of research, education and service. Major additions to SREL Facilities were completed that will enhance the Laboratory`s work in the future. Following severalmore » years of planning, opening ceremonies were held for the 5000 ft{sup 2} multi-purpose conference center that was funded by the University of Georgia Research Foundation (UGARF). The center is located on 68 acres of land that was provided by the US Department of Energy. This joint effort between DOE and UGARF supports DOE`s new initiative to develop partnerships with the private sector and universities. The facility is being used for scientific meetings and environmental education programs for students, teachers and the general public. A 6000 ft{sup 2} office and library addition to S@s main building officially opened this year, and construction plans are underway on a new animal care facility, laboratory addition, and receiving building.« less

  17. NASA's future plans for space astronomy and astrophysics

    NASA Technical Reports Server (NTRS)

    Kaplan, Michael S.

    1992-01-01

    NASA's plans in the field of space astronomy and astrophysics through the first decade of the next century are reviewed with reference to specific missions and mission concepts. The missions discussed include the Space Infrared Telescope Facility, the Stratospheric Observatory for Infrared Astronomy, the Submillimeter Intermediate Mission, the Astrometric Interferometry Mission, the Greater Observatories program, and Mission from Planet Earth. Plans to develop optics and sensors technology to enable these missions are also discussed.

  18. Mission Architecture Comparison for Human Lunar Exploration

    NASA Technical Reports Server (NTRS)

    Geffre, Jim; Robertson, Ed; Lenius, Jon

    2006-01-01

    The Vision for Space Exploration outlines a bold new national space exploration policy that holds as one of its primary objectives the extension of human presence outward into the Solar System, starting with a return to the Moon in preparation for the future exploration of Mars and beyond. The National Aeronautics and Space Administration is currently engaged in several preliminary analysis efforts in order to develop the requirements necessary for implementing this objective in a manner that is both sustainable and affordable. Such analyses investigate various operational concepts, or mission architectures , by which humans can best travel to the lunar surface, live and work there for increasing lengths of time, and then return to Earth. This paper reports on a trade study conducted in support of NASA s Exploration Systems Mission Directorate investigating the relative merits of three alternative lunar mission architecture strategies. The three architectures use for reference a lunar exploration campaign consisting of multiple 90-day expeditions to the Moon s polar regions, a strategy which was selected for its high perceived scientific and operational value. The first architecture discussed incorporates the lunar orbit rendezvous approach employed by the Apollo lunar exploration program. This concept has been adapted from Apollo to meet the particular demands of a long-stay polar exploration campaign while assuring the safe return of crew to Earth. Lunar orbit rendezvous is also used as the baseline against which the other alternate concepts are measured. The first such alternative, libration point rendezvous, utilizes the unique characteristics of the cislunar libration point instead of a low altitude lunar parking orbit as a rendezvous and staging node. Finally, a mission strategy which does not incorporate rendezvous after the crew ascends from the Moon is also studied. In this mission strategy, the crew returns directly to Earth from the lunar surface, and is thus referred to as direct return. Figures of merit in the areas of safety and mission success, mission effectiveness, extensibility, and affordability are used to evaluate and compare the lunar orbit rendezvous, libration point rendezvous, and direct return architectures, and this paper summarizes the results of those assessments.

  19. Heat Transfer by Thermo-Capillary Convection. Sounding Rocket COMPERE Experiment SOURCE

    NASA Astrophysics Data System (ADS)

    Fuhrmann, Eckart; Dreyer, Michael

    2009-08-01

    This paper describes the results of a sounding rocket experiment which was partly dedicated to study the heat transfer from a hot wall to a cold liquid with a free surface. Natural or buoyancy-driven convection does not occur in the compensated gravity environment of a ballistic phase. Thermo-capillary convection driven by a temperature gradient along the free surface always occurs if a non-condensable gas is present. This convection increases the heat transfer compared to a pure conductive case. Heat transfer correlations are needed to predict temperature distributions in the tanks of cryogenic upper stages. Future upper stages of the European Ariane V rocket have mission scenarios with multiple ballistic phases. The aims of this paper and of the COMPERE group (French-German research group on propellant behavior in rocket tanks) in general are to provide basic knowledge, correlations and computer models to predict the thermo-fluid behavior of cryogenic propellants for future mission scenarios. Temperature and surface location data from the flight have been compared with numerical calculations to get the heat flux from the wall to the liquid. Since the heat flux measurements along the walls of the transparent test cell were not possible, the analysis of the heat transfer coefficient relies therefore on the numerical modeling which was validated with the flight data. The coincidence between experiment and simulation is fairly good and allows presenting the data in form of a Nusselt number which depends on a characteristic Reynolds number and the Prandtl number. The results are useful for further benchmarking of Computational Fluid Dynamics (CFD) codes such as FLOW-3D and FLUENT, and for the design of future upper stage propellant tanks.

  20. Medical System Concept of Operations for Mars Exploration Missions

    NASA Technical Reports Server (NTRS)

    Urbina, Michelle; Rubin, D.; Hailey, M.; Reyes, D.; Antonsen, Eric

    2017-01-01

    Future exploration missions will be the first time humanity travels beyond Low Earth Orbit (LEO) since the Apollo program, taking us to cis-lunar space, interplanetary space, and Mars. These long-duration missions will cover vast distances, severely constraining opportunities for emergency evacuation to Earth and cargo resupply opportunities. Communication delays and blackouts between the crew and Mission Control will eliminate reliable, real-time telemedicine consultations. As a result, compared to current LEO operations onboard the International Space Station, exploration mission medical care requires an integrated medical system that provides additional in-situ capabilities and a significant increase in crew autonomy. The Medical System Concept of Operations for Mars Exploration Missions illustrates how a future NASA Mars program could ensure appropriate medical care for the crew of this highly autonomous mission. This Concept of Operations document, when complete, will document all mission phases through a series of mission use case scenarios that illustrate required medical capabilities, enabling the NASA Human Research Program (HRP) Exploration Medical Capability (ExMC) Element to plan, design, and prototype an integrated medical system to support human exploration to Mars.

  1. PERCIVAL mission to Mars

    NASA Astrophysics Data System (ADS)

    Reed, David W.; Lilley, Stewart; Sirman, Melinda; Bolton, Paul; Elliott, Susan; Hamilton, Doug; Nickelson, James; Shelton, Artemus

    1992-12-01

    With the downturn of the world economy, the priority of unmanned exploration of the solar system has been lowered. Instead of foregoing all missions to our neighbors in the solar system, a new philosophy of exploration mission design has evolved to insure the continued exploration of the solar system. The 'Discovery-class' design philosophy uses a low cost, limited mission, available technology spacecraft instead of the previous 'Voyager-class' design philosophy that uses a 'do-everything at any cost' spacecraft. The Percival Mission to Mars was proposed by Ares Industries as one of the new 'Discovery-class' of exploration missions. The spacecraft will be christened Percival in honor of American astronomer Percival Lowell who proposed the existence of life on Mars in the early twentieth century. The main purpose of the Percival mission to Mars is to collect and relay scientific data to Earth suitable for designing future manned and unmanned missions to Mars. The measurements and observations made by Percival will help future mission designers to choose among landing sites based on the feasibility and scientific interest of the sites. The primary measurements conducted by the Percival mission include gravity field determination, surface and atmospheric composition, sub-surface soil composition, sub-surface seismic activity, surface weather patterns, and surface imaging. These measurements will be taken from the orbiting Percival spacecraft and from surface penetrators deployed from Mars orbit. The design work for the Percival Mission to Mars was divided among four technical areas: Orbits and Propulsion System, Surface Penetrators, Gravity and Science Instruments, and Spacecraft Structure and Systems. The results for each of the technical areas is summarized and followed by a design cost analysis and recommendations for future analyses.

  2. PERCIVAL mission to Mars

    NASA Technical Reports Server (NTRS)

    Reed, David W.; Lilley, Stewart; Sirman, Melinda; Bolton, Paul; Elliott, Susan; Hamilton, Doug; Nickelson, James; Shelton, Artemus

    1992-01-01

    With the downturn of the world economy, the priority of unmanned exploration of the solar system has been lowered. Instead of foregoing all missions to our neighbors in the solar system, a new philosophy of exploration mission design has evolved to insure the continued exploration of the solar system. The 'Discovery-class' design philosophy uses a low cost, limited mission, available technology spacecraft instead of the previous 'Voyager-class' design philosophy that uses a 'do-everything at any cost' spacecraft. The Percival Mission to Mars was proposed by Ares Industries as one of the new 'Discovery-class' of exploration missions. The spacecraft will be christened Percival in honor of American astronomer Percival Lowell who proposed the existence of life on Mars in the early twentieth century. The main purpose of the Percival mission to Mars is to collect and relay scientific data to Earth suitable for designing future manned and unmanned missions to Mars. The measurements and observations made by Percival will help future mission designers to choose among landing sites based on the feasibility and scientific interest of the sites. The primary measurements conducted by the Percival mission include gravity field determination, surface and atmospheric composition, sub-surface soil composition, sub-surface seismic activity, surface weather patterns, and surface imaging. These measurements will be taken from the orbiting Percival spacecraft and from surface penetrators deployed from Mars orbit. The design work for the Percival Mission to Mars was divided among four technical areas: Orbits and Propulsion System, Surface Penetrators, Gravity and Science Instruments, and Spacecraft Structure and Systems. The results for each of the technical areas is summarized and followed by a design cost analysis and recommendations for future analyses.

  3. Technology perspectives in the future exploration of extreme environments

    NASA Astrophysics Data System (ADS)

    Cutts, J.; Balint, T.; Kolawa, El.; Peterson, C.

    2007-08-01

    Solar System exploration is driven by high priority science goals and objectives at diverse destinations, as described in the NRC Decadal Survey and in NASA's 2006 Solar System Exploration (SSE) Roadmap. Proposed missions to these targets encounter extreme environments, including high or low temperatures, high pressure, corrosion, high heat flux, radiation and thermal cycling. These conditions are often coupled, such as low temperature and high radiation at Europa; and high temperature and high pressure near the surface of Venus. Mitigation of these environmental conditions frequently reaches beyond technologies developed for terrestrial applications, for example, by the automotive and oil industries. Therefore, space agencies require dedicated technology developments to enable these future missions. Within NASA, proposed missions are divided into three categories. Competed small (Discovery class) and medium (New Frontiers class) missions are cost capped, thus limiting significant technology developments. Therefore, large (Flagship class) missions are required not only to tackle key science questions which can't be addressed by smaller missions, but also to develop mission enabling technologies that can feed forward to smaller missions as well. In a newly completed extreme environment technology assessment at NASA, we evaluated technologies from the current State of Practice (SoP) to advanced concepts for proposed missions over the next decades. Highlights of this report are discussed here, including systems architectures, such as hybrid systems; protection systems; high temperature electronics; power generation and storage; mobility technologies; sample acquisition and mechanisms; and the need to test these technologies in relevant environments. It is expected that the findings - documented in detail in NASA's Extreme Environments Technologies report - would help identifying future technology investment areas, and in turn enable or enhance planned SSE missions, while reducing mission cost and risk.

  4. NASA Flight Planning Branch Space Shuttle Lessons Learned

    NASA Technical Reports Server (NTRS)

    Clevenger, Jennifer D.; Bristol, Douglas J.; Whitney, Gregory R.; Blanton, Mark R.; Reynolds, F. Fisher, III

    2011-01-01

    Planning products and procedures that allowed the mission Flight Control Teams and the Astronaut crews to plan, train and fly every Space Shuttle mission were developed by the Flight Planning Branch at the NASA Johnson Space Center in Houston, Texas. As the Space Shuttle Program came to a close, lessons learned were collected from each phase of the successful execution of these Space Shuttle missions. Specific examples of how roles and responsibilities of console positions that develop the crew and vehicle attitude timelines have been analyzed and will be discussed. Additionally, the relationships and procedural hurdles experienced through international collaboration have molded operations. These facets will be explored and related to current and future operations with the International Space Station and future vehicles. Along with these important aspects, the evolution of technology and continual improvement of data transfer tools between the Space Shuttle and ground team has also defined specific lessons used in improving the control team s effectiveness. Methodologies to communicate and transmit messages, images, and files from the Mission Control Center to the Orbiter evolved over several years. These lessons were vital in shaping the effectiveness of safe and successful mission planning and have been applied to current mission planning work in addition to being incorporated into future space flight planning. The critical lessons from all aspects of previous plan, train, and fly phases of Space Shuttle flight missions are not only documented in this paper, but are also discussed regarding how they pertain to changes in process and consideration for future space flight planning.

  5. Flight Planning Branch Space Shuttle Lessons Learned

    NASA Technical Reports Server (NTRS)

    Price, Jennifer B.; Scott, Tracy A.; Hyde, Crystal M.

    2011-01-01

    Planning products and procedures that allow the mission flight control teams and the astronaut crews to plan, train and fly every Space Shuttle mission have been developed by the Flight Planning Branch at the NASA Johnson Space Center. As the Space Shuttle Program ends, lessons learned have been collected from each phase of the successful execution of these Shuttle missions. Specific examples of how roles and responsibilities of console positions that develop the crew and vehicle attitude timelines will be discussed, as well as techniques and methods used to solve complex spacecraft and instrument orientation problems. Additionally, the relationships and procedural hurdles experienced through international collaboration have molded operations. These facets will be explored and related to current and future operations with the International Space Station and future vehicles. Along with these important aspects, the evolution of technology and continual improvement of data transfer tools between the shuttle and ground team has also defined specific lessons used in the improving the control teams effectiveness. Methodologies to communicate and transmit messages, images, and files from Mission Control to the Orbiter evolved over several years. These lessons have been vital in shaping the effectiveness of safe and successful mission planning that have been applied to current mission planning work in addition to being incorporated into future space flight planning. The critical lessons from all aspects of previous plan, train, and fly phases of shuttle flight missions are not only documented in this paper, but are also discussed as how they pertain to changes in process and consideration for future space flight planning.

  6. NASA Crew Exploration Vehicle, Thermal Protection System, Lessons Learned

    NASA Technical Reports Server (NTRS)

    Venkatapathy, Ethiraj; Reuther, James

    2008-01-01

    The Orion (CEV) thermal protection system (TPS) advanced development project (ADP) was initiated in late 2006 to reduce developmental risk by significant investment in multiple heat shield architectural solutions that can meet the needs both the Low Earth orbit (LEO) and Lunar return missions. At the same time, the CEV TPS ADP was also charged with developing a preliminary design for the heat shield to meet the PDR requirement and at the time of the PDR, transfer the design to Lockheed- Martin, the prime contractor. We reported on the developmental activities of the first 18 months at the IPPW5 in Bordeaux, France, last summer. In June 08, at the time of the IPPW6, the CEV TPS ADP would have nearly completed the preparation for the Orion PDR and would be close to the original three-year mark. We plan to report on the progress at the Atlanta workshop. In the past year, Orion TPS ADP investment in TPS Technology, especially in PICA ablative Heat-shield design, development, testing and engineering (DDTE) has paid off in enabling MSL mission to switch from SLA 561 V heat shield to PICA heat shield. CEV TPS ADP considered SLA 561 V as a candidate for LEO missions and our testing identified failure modes in SLA and as a result, we dropped SLA for further evaluation. This close synergy between two projects is a highly visible example of how investment in technology areas can and does benefit multiple missions. In addition, CEV TPS ADP has been able to revive the Apollo ablative system namely AVCOAT honeycomb architecture as an alternate to the baseline PICA architecture and we plan to report the progress we have made in AVCOAT. CEV TPS ADP has invested considerable resources in developing analytical models for PICA and AVCOAT, material property measurements that is essential to the design of the heat-shield, in arcjet testing, in understanding the differences between different arc jet facilities, namely NASA Ames, NASA JSC and Air Force's AEDC, and in Non-Destructive Evaluation (NDE), and in integration of and manufacturing heat shield as a system. The capabilities of the two heat shield systems including failure modes via testing and analysis, once established, can serve the Probe Community and future mission designers to inner and outer planetary exploration very well. For example, missions to Venus, Mars and Titan can use either one of the system by selecting the mission design parameters that utilizes the full characteristics of these system to make use of system efficiency that will result in reduced heat shield mass, system robustness that will enhance mission success and cost. We plan to present significant progresses of the past three years and highlight the significant contributions CEV TPS ADP Project has made to advance the state of the art in Thermal Protection System technology that has and will continue to benefit future entry probe missions.

  7. Titan Saturn System Mission Instrumentation

    NASA Astrophysics Data System (ADS)

    Coustenis, A.; Lunine, J.; Reh, K.; Lebreton, J.-P.; Erd, C.; Beauchamp, P.; Matson, D.

    2012-10-01

    The Titan Saturn System Mission (TSSM), another future mission proposed for Titan's exploration, includes an orbiter and two in situ elements: a hot-air balloon and a lake lander. The instrumentation of those two elements will be presented.

  8. Technology requirements for future Earth-to-geosynchronous orbit transportation systems. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Caluori, V. A.; Conrad, R. T.; Jenkins, J. C.

    1980-01-01

    Technologies including accelerated technology that are critical to performance and/or provide cost advantages for future space transportation systems are identified. Mission models are scoped and include priority missions, and cargo missions. Summary data, providing primary design concepts and features, are given for the SSTO, HLLV, POTV, and LCOTV vehicles. Significant system costs and total system costs in terms of life cycle costs in both discounted and undiscounted dollars are summarized for each of the vehicles.

  9. Next-Generation X-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    White, Nicholas E.

    2011-01-01

    The future timing capabilities in X-ray astronomy will be reviewed. This will include reviewing the missions in implementation: Astro-H, GEMS, SRG, and ASTROSAT; those under study: currently ATHENA and LOFT; and new technologies that may enable future missions e.g. Lobster eye optics. These missions and technologies will bring exciting new capabilities across the entire time spectrum from micro-seconds to years that e.g. will allow us to probe close to the event horizon of black holes and constrain the equation of state of neutron stars.

  10. A critical review of the life sciences project management at Ames Research Center for the Spacelab Mission development test 3

    NASA Technical Reports Server (NTRS)

    Helmreich, R. L.; Wilhelm, J. M.; Tanner, T. A.; Sieber, J. E.; Burgenbauch, S. F.

    1979-01-01

    A management study was initiated by ARC (Ames Research Center) to specify Spacelab Mission Development Test 3 activities and problems. This report documents the problems encountered and provides conclusions and recommendations to project management for current and future ARC life sciences projects. An executive summary of the conclusions and recommendations is provided. The report also addresses broader issues relevant to the conduct of future scientific missions under the constraints imposed by the space environment.

  11. Space Technology 5 - A Successful Micro-Satellite Constellation Mission

    NASA Technical Reports Server (NTRS)

    Carlisle, Candace; Webb, Evan H.

    2007-01-01

    The Space Technology 5 (ST5) constellation of three micro-satellites was launched March 22, 2006. During the three-month flight demonstration phase, the ST5 team validated key technologies that will make future low-cost micro-sat constellations possible, demonstrated operability concepts for future micro-sat science constellation missions, and demonstrated the utility of a micro-satellite constellation to perform research-quality science. The ST5 mission was successfully completed in June 2006, demonstrating high-quality science and technology validation results.

  12. Science Operations on the Lunar Surface - Understanding the Past, Testing in the Present, Considering the Future

    NASA Technical Reports Server (NTRS)

    Eppler, Dean B.

    2013-01-01

    The scientific success of any future human lunar exploration mission will be strongly dependent on design of both the systems and operations practices that underpin crew operations on the lunar surface. Inept surface mission preparation and design will either ensure poor science return, or will make achieving quality science operation unacceptably difficult for the crew and the mission operations and science teams. In particular, ensuring a robust system for managing real-time science information flow during surface operations, and ensuring the crews receive extensive field training in geological sciences, are as critical to mission success as reliable spacecraft and a competent operations team.

  13. Control-Structure-Interaction (CSI) technologies and trends to future NASA missions

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Control-structure-interaction (CSI) issues which are relevant for future NASA missions are reviewed. This goal was achieved by: (1) reviewing large space structures (LSS) technologies to provide a background and survey of the current state of the art (SOA); (2) analytically studying a focus mission to identify opportunities where CSI technology may be applied to enhance or enable future NASA spacecraft; and (3) expanding a portion of the focus mission, the large antenna, to provide in-depth trade studies, scaling laws, and methodologies which may be applied to other NASA missions. Several sections are presented. Section 1 defines CSI issues and presents an overview of the relevant modeling and control issues for LLS. Section 2 presents the results of the three phases of the CSI study. Section 2.1 gives the results of a CSI study conducted with the Geostationary Platform (Geoplat) as the focus mission. Section 2.2 contains an overview of the CSI control design methodology available in the technical community. Included is a survey of the CSI ground-based experiments which were conducted to verify theoretical performance predictions. Section 2.3 presents and demonstrates a new CSI scaling law methodology for assessing potential CSI with large antenna systems.

  14. In-Space Propulsion Technology Products for NASA's Future Science and Exploration Missions

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Pencil, Eric; Peterson, Todd; Dankanich, John; Munk, Michelle M.

    2011-01-01

    Since 2001, the In-Space Propulsion Technology (ISPT) project has been developing and delivering in-space propulsion technologies that will enable or enhance NASA robotic science missions. These in-space propulsion technologies are applicable, and potentially enabling, for future NASA flagship and sample return missions currently being considered, as well as having broad applicability to future competed mission solicitations. The high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost was completed in 2009. Two other ISPT technologies are nearing completion of their technology development phase: 1) NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 2) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; aerothermal effect models: and atmospheric models for Earth, Titan, Mars and Venus. This paper provides status of the technology development, applicability, and availability of in-space propulsion technologies that have recently completed their technology development and will be ready for infusion into NASA s Discovery, New Frontiers, Science Mission Directorate (SMD) Flagship, and Exploration technology demonstration missions

  15. Human Mars Mission Overview and Dust Storm Impacts on Site Selection

    NASA Technical Reports Server (NTRS)

    Hoffman, S. J.

    2017-01-01

    NASA has begun a process to identify and discuss candidate locations where humans could land, live and work on the martian surface. This process is being carried out as a cooperative effort by NASA's Human Exploration and Operations Mission Directorate (HEOMD), responsible for future human mission preparations, and the Science Mission Directorate (SMD), responsible for the on-going Mars Exploration Program of robotic vehicles in orbit and on the surface of Mars. Both of these Directorates have a significant interest in this process, as these candidate locations will be used by NASA as part of a multi-year effort to determine where and how humans could explore Mars. In the near term this process includes: (a) identifying locations that would maximize the potential science return from future human exploration missions, (b) identifying locations with the potential for resources required to support humans, (c) developing concepts and engineering systems needed by future human crews to conduct operations within a candidate location, and (d) identifying key characteristics of the proposed candidate locations that cannot be evaluated using existing data sets, thus helping to define precursor measurements needed in advance of human missions.

  16. Modular Stirling Radioisotope Generator

    NASA Technical Reports Server (NTRS)

    Schmitz, Paul C.; Mason, Lee S.; Schifer, Nicholas A.

    2016-01-01

    High-efficiency radioisotope power generators will play an important role in future NASA space exploration missions. Stirling Radioisotope Generators (SRGs) have been identified as a candidate generator technology capable of providing mission designers with an efficient, high-specific-power electrical generator. SRGs high conversion efficiency has the potential to extend the limited Pu-238 supply when compared with current Radioisotope Thermoelectric Generators (RTGs). Due to budgetary constraints, the Advanced Stirling Radioisotope Generator (ASRG) was canceled in the fall of 2013. Over the past year a joint study by NASA and the Department of Energy (DOE) called the Nuclear Power Assessment Study (NPAS) recommended that Stirling technologies continue to be explored. During the mission studies of the NPAS, spare SRGs were sometimes required to meet mission power system reliability requirements. This led to an additional mass penalty and increased isotope consumption levied on certain SRG-based missions. In an attempt to remove the spare power system, a new generator architecture is considered, which could increase the reliability of a Stirling generator and provide a more fault-tolerant power system. This new generator called the Modular Stirling Radioisotope Generator (MSRG) employs multiple parallel Stirling convertor/controller strings, all of which share the heat from the General Purpose Heat Source (GPHS) modules. For this design, generators utilizing one to eight GPHS modules were analyzed, which provided about 50 to 450 W of direct current (DC) to the spacecraft, respectively. Four Stirling convertors are arranged around each GPHS module resulting in from 4 to 32 Stirling/controller strings. The convertors are balanced either individually or in pairs, and are radiatively coupled to the GPHS modules. Heat is rejected through the housing/radiator, which is similar in construction to the ASRG. Mass and power analysis for these systems indicate that specific power may be slightly lower than the ASRG and similar to the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG). However, the reliability should be significantly increased compared to ASRG.

  17. 48 CFR 927.300 - General.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 927.300 Federal Acquisition Regulations System DEPARTMENT OF ENERGY GENERAL CONTRACTING REQUIREMENTS... primary missions of the Department of Energy is the use of its procurement process to ensure the conduct... sources of energy. To accomplish its mission, DOE must work in cooperation with industry in the...

  18. 48 CFR 927.300 - General.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 927.300 Federal Acquisition Regulations System DEPARTMENT OF ENERGY GENERAL CONTRACTING REQUIREMENTS... primary missions of the Department of Energy is the use of its procurement process to ensure the conduct... sources of energy. To accomplish its mission, DOE must work in cooperation with industry in the...

  19. 48 CFR 927.300 - General.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 927.300 Federal Acquisition Regulations System DEPARTMENT OF ENERGY GENERAL CONTRACTING REQUIREMENTS... primary missions of the Department of Energy is the use of its procurement process to ensure the conduct... sources of energy. To accomplish its mission, DOE must work in cooperation with industry in the...

  20. 48 CFR 927.300 - General.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 927.300 Federal Acquisition Regulations System DEPARTMENT OF ENERGY GENERAL CONTRACTING REQUIREMENTS... primary missions of the Department of Energy is the use of its procurement process to ensure the conduct... sources of energy. To accomplish its mission, DOE must work in cooperation with industry in the...

  1. Bringing life to space exploration.

    PubMed

    Noor, A K; Doyle, R J; Venneri, S L

    1999-11-01

    Characteristics of 21st century space exploration are examined. Characteristics discussed include autonomy, evolvability, robotic outposts, and an overview of future missions. Sidebar articles examine the application of lessons from biological systems to engineered systems and mission concepts taking shape at NASA. Those mission concepts include plans for Mars missions, sample return missions for Venus and a comet nucleus, Europa orbiter and lander missions, a Titan organics explorer, and a terrestrial planet finder.

  2. Small Stirling dynamic isotope power system for robotic space missions

    NASA Technical Reports Server (NTRS)

    Bents, D. J.

    1992-01-01

    The design of a multihundred-watt Dynamic Isotope Power System (DIPS), based on the U.S. Department of Energy (DOE) General Purpose Heat Source (GPHS) and small (multihundred-watt) free-piston Stirling engine (FPSE), is being pursued as a potential lower cost alternative to radioisotope thermoelectric generators (RTG's). The design is targeted at the power needs of future unmanned deep space and planetary surface exploration missions ranging from scientific probes to Space Exploration Initiative precursor missions. Power level for these missions is less than a kilowatt. The incentive for any dynamic system is that it can save fuel and reduce costs and radiological hazard. Unlike DIPS based on turbomachinery conversion (e.g. Brayton), this small Stirling DIPS can be advantageously scaled to multihundred-watt unit size while preserving size and mass competitiveness with RTG's. Stirling conversion extends the competitive range for dynamic systems down to a few hundred watts--a power level not previously considered for dynamic systems. The challenge for Stirling conversion will be to demonstrate reliability and life similar to RTG experience. Since the competitive potential of FPSE as an isotope converter was first identified, work has focused on feasibility of directly integrating GPHS with the Stirling heater head. Thermal modeling of various radiatively coupled heat source/heater head geometries has been performed using data furnished by the developers of FPSE and GPHS. The analysis indicates that, for the 1050 K heater head configurations considered, GPHS fuel clad temperatures remain within acceptable operating limits. Based on these results, preliminary characterizations of multihundred-watt units have been established.

  3. Scotty, I Need More Power - The Fission System Gateway to Abundant Power for Exploration

    NASA Technical Reports Server (NTRS)

    Palac, Donald T.

    2011-01-01

    In planning and in crisis, electrical power has been a key consideration when humans venture into space. Since the 1950's, nuclear fission (splitting of atoms) power has been a logical alternative in both fact and fiction, due to its ability to provide abundant power with high energy density, reliability, and immunity to severe environments. Bringing space fission power to a state of readiness for exploration has depended on clearing the hurdle of technology readiness demonstration. Due to the happy coincidence of heritage from prior space fission development efforts such as the Prometheus program, foresight from NASA's Exploration Mission Systems Directorate in the mid-2000's, and relative budget stability through the late 2000's, National Aeronautics and Space Administration (NASA) and Department of Energy (DOE), with their industry partners, are poised to push through to this objective. Hardware for a 12 kWe non-nuclear Fission Power System Technology Demonstration Unit is being fabricated now on a schedule that will enable a low-cost demonstration of technology readiness in the mid-2010s, with testing beginning as early as 2012. With space fission power system technology demonstrated, exploration mission planners will have the flexibility to respond to a broad variety of missions and will be able to provide abundant power so that future explorers will, in planning or crisis, have the power they need when they most need it.

  4. The Nuclear Energy Knowledge and Validation Center Summary of Activities Conducted in FY16

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gougar, Hans David

    The Nuclear Energy Knowledge and Validation Center (NEKVaC) is a new initiative by the Department of Energy (DOE) and Idaho National Laboratory (INL) to coordinate and focus the resources and expertise that exist with the DOE toward solving issues in modern nuclear code validation and knowledge management. In time, code owners, users, and developers will view the NEKVaC as a partner and essential resource for acquiring the best practices and latest techniques for validating codes, providing guidance in planning and executing experiments, facilitating access to and maximizing the usefulness of existing data, and preserving knowledge for continual use by nuclearmore » professionals and organizations for their own validation needs. The scope of the NEKVaC covers many interrelated activities that will need to be cultivated carefully in the near term and managed properly once the NEKVaC is fully functional. Three areas comprise the principal mission: (1) identify and prioritize projects that extend the field of validation science and its application to modern codes, (2) develop and disseminate best practices and guidelines for high-fidelity multiphysics/multiscale analysis code development and associated experiment design, and (3) define protocols for data acquisition and knowledge preservation and provide a portal for access to databases currently scattered among numerous organizations. These mission areas, while each having a unique focus, are interdependent and complementary. Likewise, all activities supported by the NEKVaC, both near term and long term, must possess elements supporting all three areas. This cross cutting nature is essential to ensuring that activities and supporting personnel do not become “stove piped” (i.e., focused a specific function that the activity itself becomes the objective rather than achieving the larger vision). This report begins with a description of the mission areas; specifically, the role played by each major committee and the types of activities for which they are responsible. It then lists and describes the proposed near term tasks upon which future efforts can build.« less

  5. 48 CFR 970.2703-2 - Patent rights clause provisions for management and operating contractors.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-exempted areas of technology or in operation of DOE facilities primarily dedicated to naval nuclear... for-profit, large business firm and the contract does not have a technology transfer mission or if... dedicated to naval nuclear propulsion or weapons related programs. That clause provides for DOE's statutory...

  6. 48 CFR 970.2703-2 - Patent rights clause provisions for management and operating contractors.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...-exempted areas of technology or in operation of DOE facilities primarily dedicated to naval nuclear... for-profit, large business firm and the contract does not have a technology transfer mission or if... dedicated to naval nuclear propulsion or weapons related programs. That clause provides for DOE's statutory...

  7. Information Systems Education: What's Missing?

    ERIC Educational Resources Information Center

    Rosenthal, Paul H.

    2010-01-01

    We are doing a good job of teaching IS technology and project management but are omitting implementation planning. We need to teach our users and professionals how to answer the following critical questions for our mission-critical transaction processing applications (TPS). (1) Why does it cost so much? (2) How long does it take-Why does it take…

  8. 48 CFR 931.205-18 - Independent research and development (IR&D) and bid and proposal (B&P) costs.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... development (IR&D) and bid and proposal (B&P) costs. 931.205-18 Section 931.205-18 Federal Acquisition... bid and proposal (B&P) costs. (c)(2) IR&D costs are recoverable under DOE contracts to the extent they... the DOE program. The term “DOE program” encompasses the DOE total mission and its objectives. B&P...

  9. 48 CFR 931.205-18 - Independent research and development (IR&D) and bid and proposal (B&P) costs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... development (IR&D) and bid and proposal (B&P) costs. 931.205-18 Section 931.205-18 Federal Acquisition... bid and proposal (B&P) costs. (c)(2) IR&D costs are recoverable under DOE contracts to the extent they... the DOE program. The term “DOE program” encompasses the DOE total mission and its objectives. B&P...

  10. 48 CFR 931.205-18 - Independent research and development (IR&D) and bid and proposal (B&P) costs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... development (IR&D) and bid and proposal (B&P) costs. 931.205-18 Section 931.205-18 Federal Acquisition... bid and proposal (B&P) costs. (c)(2) IR&D costs are recoverable under DOE contracts to the extent they... the DOE program. The term “DOE program” encompasses the DOE total mission and its objectives. B&P...

  11. 48 CFR 931.205-18 - Independent research and development (IR&D) and bid and proposal (B&P) costs.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... development (IR&D) and bid and proposal (B&P) costs. 931.205-18 Section 931.205-18 Federal Acquisition... bid and proposal (B&P) costs. (c)(2) IR&D costs are recoverable under DOE contracts to the extent they... the DOE program. The term “DOE program” encompasses the DOE total mission and its objectives. B&P...

  12. 48 CFR 931.205-18 - Independent research and development (IR&D) and bid and proposal (B&P) costs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... development (IR&D) and bid and proposal (B&P) costs. 931.205-18 Section 931.205-18 Federal Acquisition... bid and proposal (B&P) costs. (c)(2) IR&D costs are recoverable under DOE contracts to the extent they... the DOE program. The term “DOE program” encompasses the DOE total mission and its objectives. B&P...

  13. Implementation of microchip electrophoresis instrumentation for future spaceflight missions.

    PubMed

    Willis, Peter A; Creamer, Jessica S; Mora, Maria F

    2015-09-01

    We present a comprehensive discussion of the role that microchip electrophoresis (ME) instrumentation could play in future NASA missions of exploration, as well as the current barriers that must be overcome to make this type of chemical investigation possible. We describe how ME would be able to fill fundamental gaps in our knowledge of the potential for past, present, or future life beyond Earth. Despite the great promise of ME for ultrasensitive portable chemical analysis, to date, it has never been used on a robotic mission of exploration to another world. We provide a current snapshot of the technology readiness level (TRL) of ME instrumentation, where the TRL is the NASA systems engineering metric used to evaluate the maturity of technology, and its fitness for implementation on missions. We explain how the NASA flight implementation process would apply specifically to ME instrumentation, and outline the scientific and technology development issues that must be addressed for ME analyses to be performed successfully on another world. We also outline research demonstrations that could be accomplished by independent researchers to help advance the TRL of ME instrumentation for future exploration missions. The overall approach described here for system development could be readily applied to a wide range of other instrumentation development efforts having broad societal and commercial impact.

  14. SPICE for ESA Planetary Missions

    NASA Astrophysics Data System (ADS)

    Costa, M.

    2018-04-01

    The ESA SPICE Service leads the SPICE operations for ESA missions and is responsible for the generation of the SPICE Kernel Dataset for ESA missions. This contribution will describe the status of these datasets and outline the future developments.

  15. Returning to the Moon: Building the Systems Engineering Base for Successful Science Missions

    NASA Astrophysics Data System (ADS)

    Eppler, D.; Young, K.; Bleacher, J.; Klaus, K.; Barker, D.; Evans, C.; Tewksbury, B.; Schmitt, H.; Hurtado, J.; Deans, M.; Yingst, A.; Spudis, P.; Bell, E.; Skinner, J.; Cohen, B.; Head, J.

    2018-04-01

    Enabling science return on future lunar missions will require coordination between the science community, design engineers, and mission operators. Our chapter is based on developing science-based systems engineering and operations requirements.

  16. NASA/Goddard Thermal Technology Overview 2012

    NASA Technical Reports Server (NTRS)

    Butler, Dan; Swanson, Ted

    2012-01-01

    New Technology program is underway at NASA NASA/GSFC's primary mission of science satellite development is healthy and vibrant, although new missions are scarce Future mission applications promise to be thermally challenging Direct technology funding is still very restricted

  17. Economics of ion propulsion for large space systems

    NASA Technical Reports Server (NTRS)

    Masek, T. D.; Ward, J. W.; Rawlin, V. K.

    1978-01-01

    This study of advanced electrostatic ion thrusters for space propulsion was initiated to determine the suitability of the baseline 30-cm thruster for future missions and to identify other thruster concepts that would better satisfy mission requirements. The general scope of the study was to review mission requirements, select thruster designs to meet these requirements, assess the associated thruster technology requirements, and recommend short- and long-term technology directions that would support future thruster needs. Preliminary design concepts for several advanced thrusters were developed to assess the potential practical difficulties of a new design. This study produced useful general methodologies for assessing both planetary and earth orbit missions. For planetary missions, the assessment is in terms of payload performance as a function of propulsion system technology level. For earth orbit missions, the assessment is made on the basis of cost (cost sensitivity to propulsion system technology level).

  18. Usage of Multi-Mission Radioisotope Thermoelectric Generators (MMRTGs) for Future Potential Missions

    NASA Technical Reports Server (NTRS)

    Zakrajsek, June F.; Cairns-Gallimore, Dirk; Otting, Bill; Johnson, Steve; Woerner, Dave

    2016-01-01

    The goal of NASAs Radioisotope Power Systems (RPS) Program is to make RPS ready and available to support the exploration of the solar system in environments where the use of conventional solar or chemical power generation is impractical or impossible to meet the needs of the missions. To meet this goal, the RPS Program, working closely with the Department of Energy, performs mission and system studies (such as the recently released Nuclear Power Assessment Study), evaluates the readiness of promising technologies to infuse in future generators, assesses the sustainment of key RPS capabilities and knowledge, forecasts and tracks the Programs budgetary needs, and disseminates current information about RPS to the community of potential users. This presentation focuses on the needs of the mission community and provides users a better understanding of how to integrate the MMRTG (Multi-Mission Radioisotope Thermoelectric Generator).

  19. Space Nuclear Power Public and Stakeholder Risk Communication

    NASA Technical Reports Server (NTRS)

    Dawson, Sandra M.; Sklar, Maria

    2005-01-01

    The 1986 Challenger accident coupled with the Chernobyl nuclear reactor accident increased public concern about the safety of spacecraft using nuclear technology. While three nuclear powered spacecraft had been launched before 1986 with little public interest, future nuclear powered missions would see significantly more public concern and require NASA to increase its efforts to communicate mission risks to the public. In 1987 a separate risk communication area within the Launch Approval Planning Group of the Jet Propulsion Laboratory was created to address public concern about the health, environmental, and safety risks of NASA missions. The lessons learned from the risk communication strategies developed for the nuclear powered Galileo, Ulysses, and Cassini missions are reviewed in this paper and recommendations are given as to how these lessons can be applied to future NASA missions that may use nuclear power systems and other potentially controversial NASA missions.

  20. Comm for Small Sats: The Lunar Atmosphere and Dust Environment Explorer (LADEE) Communications Subsystem

    NASA Technical Reports Server (NTRS)

    Kuroda, Vanessa M.; Allard, Mark R.; Lewis, Brian; Lindsay, Michael

    2014-01-01

    September 6, 2013 through April 21, 2014 marked the mission lifecycle of the highly successful LADEE (Lunar Atmosphere and Dust Environment Explorer) mission that orbited the moon to gather detailed information about the thin lunar atmosphere. This paper will address the development, risks, and lessons learned regarding the specification, selection, and deployment of LADEE's unique Radio Frequency based communications subsystem and supporting tools. This includes the Electronic Ground Support Equipment (EGSE), test regimes, and RF dynamic link analysis environment developed to meet mission requirements for small, flexible, low cost, high performance, fast turnaround, and reusable spacecraft communication capabilities with easy and reliable application to future similar low cost small satellite missions over widely varying needs for communications and communications system complexity. LADEE communication subsystem key components, architecture, and mission performance will be reviewed toward applicability for future mission planning, design, and utilization.

  1. Bioenergy Feedstock Development Program Status Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kszos, L.A.

    2001-02-09

    The U.S. Department of Energy's (DOE's) Bioenergy Feedstock Development Program (BFDP) at Oak Ridge National Laboratory (ORNL) is a mission-oriented program of research and analysis whose goal is to develop and demonstrate cropping systems for producing large quantities of low-cost, high-quality biomass feedstocks for use as liquid biofuels, biomass electric power, and/or bioproducts. The program specifically supports the missions and goals of DOE's Office of Fuels Development and DOE's Office of Power Technologies. ORNL has provided technical leadership and field management for the BFDP since DOE began energy crop research in 1978. The major components of the BFDP include energymore » crop selection and breeding; crop management research; environmental assessment and monitoring; crop production and supply logistics operational research; integrated resource analysis and assessment; and communications and outreach. Research into feedstock supply logistics has recently been added and will become an integral component of the program.« less

  2. The chemical reactivity of the Martian soil and implications for future missions

    NASA Technical Reports Server (NTRS)

    Zent, Aaron P.; Mckay, Christopher P.

    1994-01-01

    Possible interpretations of the results of the Viking Biology Experiments suggest that greater than 1 ppm of a thermally labile oxidant, perhaps H2O2, and about 10 ppm of a thermally stable oxidant are present in the martian soil. We reexamine these results and discuss implications for future missions, the search for organics on Mars, and the possible health and engineering effects for human exploration. We conclude that further characterization of the reactivity of the martian regolith materials is warrented-although if our present understanding is correct the oxidant does not pose a hazard to humans. There are difficulties in explaining the reactivity of the Martian soil by oxidants. Most bulk phase compounds that are capable of oxidizing H2O to O2 per the Gas Exchange Experiment (GEx) are thermally labile or unstable against reduction by atmospheric CO2. Models invoking trapped O2 or peroxynitrates (NOO2(-)) require an unlikely geologic history for the Viking Lander 2 site. Most suggested oxidants, including H2O2, are expected to decompose rapidly under martian UV. Nonetheless, we conclude that the best model for the martian soil contains oxidants produced by heterogeneous chemical reactions with a photochemically produced atmospheric oxidant. The GEx results may be due to catalytic decomposition of an unstable oxidizing material by H2O. We show that interfacial reaction sites covering less than 1% of the available soil surfaces could explain the Viking Biology Experiments results.

  3. Space station needs, attributes, and architectural options: Technology development

    NASA Technical Reports Server (NTRS)

    Robert, A. C.

    1983-01-01

    The technology development of the space station is examined as it relates to space station growth and equipment requirements for future missions. Future mission topics are refined and used to establish a systems data base. Technology for human factors engineering, space maintenance, satellite design, and laser communications and tracking is discussed.

  4. Franchising the Future

    ERIC Educational Resources Information Center

    Colomb, Gregory G.

    2010-01-01

    Central to the future of rhetoric and composition (or writing studies or whatever label we use) is the service mission of composition: to teach students to write. But that term "service" has not and will not serve us well. This essay examines the limitations and dangers of a service mission and explores a different model, that of a franchise, a…

  5. Space Technology To Meet Future Needs.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Aeronautics and Space Engineering Board.

    The thrust of this book is to indicate relative priorities of technology and the rationale for investment in United States space technology to meet future needs as assessed by the Committee on Advanced Space Technology. In part one, a discussion of potential mission sets is given, including: (1) "Mission Requirements for Space Transportation;…

  6. PROTECTING HUMAN HEALTH AND SAFEGUARDING THE NATURAL ENVIRONMENT: EPA'S ROLE NOW AND IN THE FUTURE

    EPA Science Inventory

    The USEPA has a dual mission to protect human health and the natural environment. This invited lecture will describe the various roles played by EPA in achieving its mission. A primary focus will be on current and future Agency research conducted to inform environmental decisio...

  7. Parametric Cost Modeling of Space Missions Using the Develop New Projects (DMP) Implementation Process

    NASA Technical Reports Server (NTRS)

    Rosenberg, Leigh; Hihn, Jairus; Roust, Kevin; Warfield, Keith

    2000-01-01

    This paper presents an overview of a parametric cost model that has been built at JPL to estimate costs of future, deep space, robotic science missions. Due to the recent dramatic changes in JPL business practices brought about by an internal reengineering effort known as develop new products (DNP), high-level historic cost data is no longer considered analogous to future missions. Therefore, the historic data is of little value in forecasting costs for projects developed using the DNP process. This has lead to the development of an approach for obtaining expert opinion and also for combining actual data with expert opinion to provide a cost database for future missions. In addition, the DNP cost model has a maximum of objective cost drivers which reduces the likelihood of model input error. Version 2 is now under development which expands the model capabilities, links it more tightly with key design technical parameters, and is grounded in more rigorous statistical techniques. The challenges faced in building this model will be discussed, as well as it's background, development approach, status, validation, and future plans.

  8. A Study of Learning Curve Impact on Three Identical Small Spacecraft

    NASA Technical Reports Server (NTRS)

    Chen, Guangming; McLennan, Douglas D.

    2003-01-01

    With an eye to the future strategic needs of NASA, the New Millennium Program is funding the Space Technology 5 (ST-5) project to address the future needs in the area of small satellites in constellation missions. The ST-5 project, being developed at Goddard Space Flight Center, involves the development and simultaneous launch of three small, 20-kilogram-class spacecraft. ST-5 is only a test drive and future NASA science missions may call for fleets of spacecraft containing tens of smart and capable satellites in an intelligent constellation. The objective of ST-5 project is to develop three such pioneering small spacecraft for flight validation of several critical new technologies. The ST-5 project team at Goddard Space Flight Center has completed the spacecraft design, is now building and testing the three flight units. The launch readiness date (LRD) is in December 2005. A critical part of ST-5 mission is to prove that it is possible to build these small but capable spacecraft with recurring cost low enough to make future NASA s multi- spacecraft constellation missions viable from a cost standpoint.

  9. Parametric Analysis of Life Support Systems for Future Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Swickrath, Michael J.; Anderson, Molly S.; Bagdigian, Bob M.

    2011-01-01

    The National Aeronautics and Space Administration is in a process of evaluating future targets for space exploration. In order to maintain the welfare of a crew during future missions, a suite of life support technology is responsible for oxygen and water generation, carbon dioxide control, the removal of trace concentrations of organic contaminants, processing and recovery of water, and the storage and reclamation of solid waste. For each particular life support subsystem, a variety competing technologies either exist or are under aggressive development efforts. Each individual technology has strengths and weaknesses with regard to launch mass, power and cooling requirements, volume of hardware and consumables, and crew time requirements for operation. However, from a system level perspective, the favorability of each life support architecture is better assessed when the sub-system technologies are analyzed in aggregate. In order to evaluate each specific life support system architecture, the measure of equivalent system mass (ESM) was employed to benchmark system favorability. Moreover, the results discussed herein will be from the context of loop-closure with respect to the air, water, and waste sub-systems. Specifically, closure relates to the amount of consumables mass that crosses the boundary of the vehicle over the lifetime of a mission. As will be demonstrated in this manuscript, the optimal level of loop closure is heavily dependent upon mission requirements such as duration and the level of extra-vehicular activity (EVA) performed. Sub-system level trades were also considered as a function of mission duration to assess when increased loop closure is practical. Although many additional factors will likely merit consideration in designing life support systems for future missions, the ESM results described herein provide a context for future architecture design decisions toward a flexible path program.

  10. Aerocapture Benefits to Future Science Missions

    NASA Technical Reports Server (NTRS)

    Artis, Gwen; James, Bonnie

    2006-01-01

    NASA's In-Space Propulsion Technology (ISPT) Program is investing in technologies to revolutionize the robotic exploration of deep space. One of these technologies is Aerocapture, the most promising of the "aeroassist" techniques used to maneuver a space vehicle within an atmosphere, using aerodynamic forces in lieu of propellant. (Other aeroassist techniques include aeroentry and aerobraking.) Aerocapture relies on drag atmospheric drag to decelerate an incoming spacecraft and capture it into orbit. This technique is very attractive since it permits spacecraft to be launched from Earth at higher velocities, providing shorter trip times and saving mass and overall cost on future missions. Recent aerocapture systems analysis studies quantify the benefits of aerocapture to future exploration. The 2002 Titan aerocapture study showed that using aerocapture at Titan instead of conventional propulsive capture results in over twice as much payload delivered to Titan. Aerocapture at Venus results in almost twice the payload delivered to Venus as with aerobraking, and over six times more mass delivered into orbit than all-propulsive capture. Aerocapture at Mars shows significant benefits as the payload sizes increase and as missions become more complex. Recent Neptune aerocapture studies show that aerocapture opens up entirely new classes of missions at Neptune. Current aerocapture technology development is advancing the maturity of each subsystem technology needed for successful implementation of aerocapture on future missions. Recent development has focused on both rigid aeroshell and inflatable aerocapture systems. Rigid aeroshell systems development includes new ablative and non-ablative thermal protection systems, advanced aeroshell performance sensors, lightweight structures and higher temperature adhesives. Inflatable systems such as trailing tethered and clamped "ballutes" and inflatable aeroshells are also under development. Computational tools required to support future aerocapture missions are an integral part of aerocapture development. Tools include engineering reference atmosphere models, guidance and navigation algorithms, aerothermodynamic modeling, and flight simulation.

  11. Health Physics Innovations Developed During Cassini for Future Space Applications

    NASA Technical Reports Server (NTRS)

    Nickell, Rodney E.; Rutherford, Theresa M.; Marmaro, George M.

    1999-01-01

    The long history of space flight includes missions that used Space Nuclear Auxiliary Power devices, starting with the Transit 4A Spacecraft (1961), continuing through the Apollo, Pioneer, Viking, Voyager, Galileo, Ulysses, Mars Pathfinder, and most recently, Cassini (1997). All Major Radiological Source (MRS) missions were processed at Kennedy Space Center/Cape Canaveral Air Station (KSC/CCAS) Launch Site in full compliance with program and regulatory requirements. The cumulative experience gained supporting these past missions has led to significant innovations which will be useful for benchmarking future MRS mission ground processing. Innovations developed during ground support for the Cassini mission include official declaration of sealed-source classifications, utilization of a mobile analytical laboratory, employment of a computerized dosimetry record management system, and cross-utilization of personnel from related disciplines.

  12. Mars Atmosphere Resource Verification INsitu (MARVIN) - In Situ Resource Demonstration for the Mars 2020 Mission

    NASA Technical Reports Server (NTRS)

    Sanders, Gerald B.; Araghi, Koorosh; Ess, Kim M.; Valencia, Lisa M.; Muscatello, Anthony C.; Calle, Carlos I.; Clark, Larry; Iacomini, Christie

    2014-01-01

    The making of oxygen from resources in the Martian atmosphere, known as In Situ Resource Utilization (ISRU), has the potential to provide substantial benefits for future robotic and human exploration. In particular, the ability to produce oxygen on Mars for use in propulsion, life support, and power systems can provide significant mission benefits such as a reducing launch mass, lander size, and mission and crew risk. To advance ISRU for possible incorporation into future human missions to Mars, NASA proposed including an ISRU instrument on the Mars 2020 rover mission, through an announcement of opportunity (AO). The purpose of the the Mars Atmosphere Resource Verification INsitu or (MARVIN) instrument is to provide the first demonstration on Mars of oxygen production from acquired and stored Martian atmospheric carbon dioxide, as well as take measurements of atmospheric pressure and temperature, and of suspended dust particle sizes and amounts entrained in collected atmosphere gases at different times of the Mars day and year. The hardware performance and environmental data obtained will be critical for future ISRU systems that will reduce the mass of propellants and other consumables launched from Earth for robotic and human exploration, for better understanding of Mars dust and mitigation techniques to improve crew safety, and to help further define Mars global circulation models and better understand the regional atmospheric dynamics on Mars. The technologies selected for MARVIN are also scalable for future robotic sample return and human missions to Mars using ISRU.

  13. A Multi-Function Guidance, Navigation and Control System for Future Earth and Space Missions

    NASA Technical Reports Server (NTRS)

    Gambino, Joel; Dennehy, Neil; Bauer, Frank H. (Technical Monitor)

    2002-01-01

    Over the past several years the Guidance, Navigation and Control Center (GNCC) at NASA's Goddard Space Flight Center (GSFC) has actively engaged in the development of advanced GN&C technology to enable future Earth and Space science missions. The Multi-Function GN&C System (MFGS) design presented in this paper represents the successful coalescence of several discrete GNCC hardware and software technology innovations into one single highly integrated, compact, low power and low cost unit that simultaneously provides autonomous real time on-board attitude determination solutions and navigation solutions with accuracies that satisfy many future GSFC mission requirements. The MFGS is intended to operate as a single self-contained multifunction unit combining the functions now typically performed by a number of hardware units on a spacecraft. However, recognizing the need to satisfy a variety of future mission requirements, design provisions have been included to permit the unit to interface with a number of external remotely mounted sensors and actuators such as magnetometers, sun sensors, star cameras, reaction wheels and thrusters. The result is a highly versatile MFGS that can be configured in multiple ways to suit a realm of mission-specific GN&C requirements. It is envisioned that the MFGS will perform a mission enabling role by filling the microsat GN&C technology gap. In addition, GSFC believes that the MFGS could be employed to significantly reduce volume, power and mass requirements on conventional satellites.

  14. In Situ Biological Contamination Studies of the Moon: Implications for Future Planetary Protection and Life Detection Missions

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Dworkin, Jason P.; Lupisella, Mark; Kminek, Gerhard; Rummel, John D.

    2010-01-01

    NASA and ESA have outlined visions for solar system exploration that will include a series of lunar robotic precursor missions to prepare for, and support a human return to the Moon, and future human exploration of Mars and other destinations. One of the guiding principles for exploration is to pursue compelling scientific questions about the origin and evolution of life. The search for life on objects such as Mars will require that all spacecraft and instrumentation be sufficiently cleaned and sterilized prior to launch to ensure that the scientific integrity of extraterrestrial samples is not jeopardized by terrestrial organic contamination. Under the Committee on Space Research's (COSPAR's) current planetary protection policy for the Moon, no sterilization procedures are required for outbound lunar spacecraft, nor is there yet a planetary protection category for human missions. Future in situ investigations of a variety of locations on the Moon by highly sensitive instruments designed to search for biologically derived organic compounds would help assess the contamination of the Moon by lunar spacecraft. These studies could also provide valuable "ground truth" data for Mars sample return missions and help define planetary protection requirements for future Mars bound spacecraft carrying life detection experiments. In addition, studies of the impact of terrestrial contamination of the lunar surface by the Apollo astronauts could provide valuable data to help refine future Mars surface exploration plans for a human mission to Mars.

  15. The Application of LENR to Synergistic Mission Capabilities

    NASA Technical Reports Server (NTRS)

    Wells, Douglas P.; Mavris, Dimitri N.

    2014-01-01

    This paper presents an overview of several missions that exploit the capabilities of a Low Energy Nuclear Reaction (LENR) aircraft propulsion system. LENR is a form of nuclear energy and potentially has over 4,000 times the energy density of chemical energy sources. It does not have any harmful emissions or radiation which makes it extremely appealing. The global reliance on crude oil for aircraft energy creates the opportunity for a revolutionary change with LENR. LENR will impact aircraft performance capabilities, military capabilities, the environment, the economy, and society. Although there is a lot of interest in LENR, there is no proven theory that explains it. Some of the technical challenges are thermal runaway and start-up time. This paper does not explore the feasibility of LENR and assumes that a system is available. A non-dimensional aircraft mass (NAM) ratio diagram is used to explore the aircraft system design space. The NAM ratio diagram shows that LENR can enable long range and high speed missions. The design space exploration led to the conclusion that LENR aircraft would be well suited for high altitude long endurance (HALE) missions, including communications relay and scientific missions for hurricane tracking and other weather phenomena, military intelligence, surveillance, and reconnaissance (ISR) and airspace denial missions, supersonic passenger transport aircraft, and international cargo transport. This paper describes six of those missions.

  16. Resource Conservation and Recovery Act, Part B Permit Application [for the Waste Isolation Pilot Plant (WIPP)]. Volume 5, Chapter D, Appendix D1 (conclusion), Revision 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, Neville G.W.; Heuze, Francois E.; Miller, Hamish D.S.

    1993-03-01

    The reference design for the underground facilities at the Waste Isolation Pilot Plant was developed using the best criteria available at initiation of the detailed design effort. These design criteria are contained in the US Department of Energy document titled Design Criteria, Waste Isolation Pilot Plant (WIPP). Revised Mission Concept-IIA (RMC-IIA), Rev. 4, dated February 1984. The validation process described in the Design Validation Final Report has resulted in validation of the reference design of the underground openings based on these criteria. Future changes may necessitate modification of the Design Criteria document and/or the reference design. Validation of the referencemore » design as presented in this report permits the consideration of future design or design criteria modifications necessitated by these changes or by experience gained at the WIPP. Any future modifications to the design criteria and/or the reference design will be governed by a DOE Standard Operation Procedure (SOP) covering underground design changes. This procedure will explain the process to be followed in describing, evaluating and approving the change.« less

  17. GPHS-RTG performance on the Galileo mission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hemler, R.J.; Cockfield, R.D.

    The Galileo spacecraft, launched in October, 1989, is powered by two General Purpose Heat source-Radioisotope Thermoelectric Generator (GPHS-RTGs). These RTGs were designed, built, and tested by General Electric under contract from the Office of Special Applications of the Department of Energy (DOE). Isotope heat source installation and additional testing of these RTGs were performed at DOE's EG G Mound Facility in Miamisburg, Ohio. This paper provides a report on performance of the RTGs during launch and the early phases of the eight year Galileo mission.The effect of long term storage of the RTGs on power output, since the originally scheduledmore » launch data in May, 1986, will be dicussed, including the effects of helium buildup and subsequent purging with xenon. The RTGs performed as expected during the launch transient, met all specified power requirements for Beginning of Mission (BOM), and continue to follow prediced performance characteristics during the first year of the Galileo mission.« less

  18. Space Technology 5: Pathfinder for Future Micro-Sat Constellations

    NASA Technical Reports Server (NTRS)

    Carlisle, Candace; Finnegan, Eric

    2004-01-01

    The Space Technology 5 (ST-5) Project, currently in the implementation phase, is part of the National Aeronautics and Space Administration (NASA) s New Millennium Program (NMP). ST-5 will consist of a constellation of three miniature satellites, each with mass less than 25 kg and size approximately 60 cm by 30 cm. ST-5 addresses technology challenges, as well as fabrication, assembly, test and operations strategies for future micro-satellite missions. ST-5 will be deployed into a highly eccentric, geo-transfer orbit (GTO). This will expose the spacecraft to a high radiation environment as well as provide a low level magnetic background. A three-month flight demonstration phase is planned to validate the technologies and demonstrate concepts for future missions. Each ST-5 spacecraft incorporates NMP competitively-selected breakthrough technologies. These include Cold Gas Micro-Thrusters for propulsion and attitude control, miniature X-band transponder for space-ground communications, Variable Emittance Coatings for dynamic thermal control, and CULPRiT ultra low power logic chip used for Reed-Solomon encoding. The ST-5 spacecraft itself is a technology that can be infused into future missions. It is a fully functional micro-spacecraft built within tight volume and mass constraints. It is built to withstand a high radiation environment, large thermal variations, and high launch loads. The spacecraft power system is low-power and low-voltage, and is designed to turn on after separation &om the launch vehicle. Some of the innovations that are included in the ST-5 design are a custom spacecraft deployment structure, magnetometer deployment boom, nutation damper, X-band antenna, miniature spinning sun sensor, solar array with triple junction solar cells, integral card cage assembly containing single card Command and Data Handling and Power System Electronics, miniature magnetometer, and lithium ion battery. ST-5 will demonstrate the ability of a micro satellite to perform research-quality science. Each ST-5 spacecraft will deploy a precision magnetometer to be used both for attitude determination and as a representative science instrument. The spacecraft has been developed with a low magnetic signature to avoid interference with the magnetometer. The spacecraft will be able to detect and respond autonomously to science events, i.e. significant changes in the magnetic field measurements. The three spacecraft will be a pathfinder for future constellation missions. They will be deployed to demonstrate an appropriate geometry for scientific measurements as a constellation. They will be operationally managed as a constellation, demonstrating automation and communication strategies that will be useful for future missions. The technologies and future mission concepts will be validated both on the ground and in space. Technologies will be validated on the ground by a combination of component level and system level testing of the flight hardware in a thermal vacuum environment. In flight, specific validation runs are planned for each of the technologies. Each validation run consists of one or more orbits with a specific validation objective. This paper will describe the ST-5 mission, and the applicability of the NMP technologies, spacecraft, and mission concepts to future missions. It will also discuss the validation approach for the ST-5 technologies and mission concepts.

  19. The Advanced Technology Operations System: ATOS

    NASA Technical Reports Server (NTRS)

    Kaufeler, J.-F.; Laue, H. A.; Poulter, K.; Smith, H.

    1993-01-01

    Mission control systems supporting new space missions face ever-increasing requirements in terms of functionality, performance, reliability and efficiency. Modern data processing technology is providing the means to meet these requirements in new systems under development. During the past few years the European Space Operations Centre (ESOC) of the European Space Agency (ESA) has carried out a number of projects to demonstrate the feasibility of using advanced software technology, in particular, knowledge based systems, to support mission operations. A number of advances must be achieved before these techniques can be moved towards operational use in future missions, namely, integration of the applications into a single system framework and generalization of the applications so that they are mission independent. In order to achieve this goal, ESA initiated the Advanced Technology Operations System (ATOS) program, which will develop the infrastructure to support advanced software technology in mission operations, and provide applications modules to initially support: Mission Preparation, Mission Planning, Computer Assisted Operations, and Advanced Training. The first phase of the ATOS program is tasked with the goal of designing and prototyping the necessary system infrastructure to support the rest of the program. The major components of the ATOS architecture is presented. This architecture relies on the concept of a Mission Information Base (MIB) as the repository for all information and knowledge which will be used by the advanced application modules in future mission control systems. The MIB is being designed to exploit the latest in database and knowledge representation technology in an open and distributed system. In conclusion the technological and implementation challenges expected to be encountered, as well as the future plans and time scale of the project, are presented.

  20. Lunar and Mars Exploration: The Autonomy Factor

    NASA Technical Reports Server (NTRS)

    Rando, Cynthia M.; Schuh, Susan V.

    2008-01-01

    Long duration space flight crews have relied heavily on almost constant communication with ground control mission support. Ground control teams provide vehicle status and system monitoring, while offering near real time support for specific tasks, emergencies, and ensuring crew health and well being. With extended exploration goals to lunar and Mars outposts, real time communication with ground control teams and the ground s ability to conduct mission monitoring will be very limited compared to the resources provided to current International Space Station (ISS) crews. An operational shift toward more autonomy and a heavier reliance on the crew to monitor their vehicle and operations will be required for these future missions. NASA s future exploration endeavors and the subsequent increased autonomy will require a shift in crew skill composition, i.e. engineer, doctor, mission specialist etc. and lead to new training challenges and mission scenarios. Specifically, operational and design changes will be necessary in many areas including: Habitat Infrastructure and Support Systems, Crew Composition, Training, Procedures and Mission Planning. This paper will specifically address how to apply ISS lessons learned to further use ISS as a test bed to address decreased amounts of ground support to achieve full autonomous operations for lunar and Mars missions. Understanding these lessons learned and applying them to current operations will help to address the future impacts of increased crew autonomy for the lunar and Mars outposts and pave the way for success in increasingly longer mission durations.

  1. ELaNa - Educational Launch of Nanosatellite Enhance Education Through Space Flight

    NASA Technical Reports Server (NTRS)

    Skrobot, Garrett Lee

    2011-01-01

    One of NASA's missions is to attract and retain students in the science, technology, engineering and mathematics (STEM) disciplines. Creating missions or programs to achieve this important goal helps strengthen NASA and the nation's future work force as well as engage and inspire Americans and the rest of the world. During the last three years, in an attempt to revitalize educational space flight, NASA generated a new and exciting initiative. This initiative, NASA's Educational Launch of Nanosatellite (ELaNa), is now fully operational and producing exciting results. Nanosatellites are small secondary satellite payloads called CubeSats. One of the challenges that the CubeSat community faced over the past few years was the lack of rides into space. Students were building CubeSats but they just sat on the shelf until an opportunity arose. In some cases, these opportunities never developed and so the CubeSat never made it to orbit. The ELaNa initiative is changing this by providing sustainable launch opportunities for educational CubeSats. Across America, these CubeSats are currently being built by students in high school all the way through graduate school. Now students know that if they build their CubeSat, submit their proposal and are selected for an ELaNa mission, they will have the opportunity to fly their satellite. ELaNa missions are the first educational cargo to be carried on expendable launch vehicles (ELY) for NASA's Launch Services Program (LSP). The first ELaNa CubeSats were slated to begin their journey to orbit in February 2011 with NASA's Glory mission. Due to an anomaly with the launch vehicle, ELaNa II and Glory failed to reach orbit. This first ELaNa mission was comprised of three IU CubeSats built by students at Montana State University (Explorer Prime Flight 1), the University of Colorado (HERMES), and Kentucky Space, a consortium of state universities (KySat). The interface between the launch vehicle and the CubeSat, the Poly-Picosatellite Orbital Deployer (P-POD), was developed and built by students at California Polytechnic State University (Cal Poly). Integrating a P-POD on a NASA ELV was not an easy task. The creation of new processes and requirements as well as numerous reviews and approvals were necessary within NASA before the first ELaNa mission could be attached to a NASA launch vehicle (LV). One of the key objectives placed on an ELaNa mission is that the CubeSat and PPOD does not increase the baseline risk to the primary mission and launch vehicle. The ELaNa missions achieve this objective by placing a rigorous management and engineering process on both the LV and CubeSat teams. So, what is the future of ELaNa? Currently there are 16 P-POD missions manifested across four launch vehicles to support educational CubeSats selected under the NASA CubeSat Initiative. From this initiative, a rigorous selection process produced 22-student CubeSat missions that are scheduled to fly before the end of 2012. For the initiative to continue, organizations need to submit proposals to the annual CubeSat initiative call so they have the opportunity to be manifested and launched.

  2. The Mission Project: Building a Nation of Learners by Advancing America's Community Colleges.

    ERIC Educational Resources Information Center

    American Association of Community Colleges, Washington, DC.

    This document describes the American Association of Community Colleges (AACC), its new mission and vision statements, and a recommended set of strategic action areas deemed essential to creating the future described in the mission and vision statements. The proposed AACC mission statement reads: "building a nation of learners by advancing…

  3. CIRS-lite: A Fourier Transform Spectrometer for a Future Mission to Titan

    NASA Technical Reports Server (NTRS)

    Brasunas, John C.; Flasar, F. Michael; Jennings, Donald E.

    2009-01-01

    The CIRS FTS, aboard the NASA/ESA Cassini-Huygens mission to Saturn, has been returning exciting science since 2004. CIRS-lire, a lightweight CIRS successor, is being designed for a follow-up Titan mission.

  4. Potential Lunar In-Situ Resource Utilization Experiments and Mission Scenarios

    NASA Technical Reports Server (NTRS)

    Sanders, Gerald B.

    2010-01-01

    The extraction and use of resources on the Moon, known as In-Situ Resource Utilization (ISRU), can potentially reduce the cost and risk of human lunar exploration while also increasing science achieved. By not having to bring all of the shielding and mission consumables from Earth and being able to make products on the Moon, missions may require less mass to accomplish the same objectives, carry more science equipment, go to more sites of exploration, and/or provide options to recover from failures not possible with delivery of spares and consumables from Earth alone. While lunar ISRU has significant potential for mass, cost, and risk reduction for human lunar missions, it has never been demonstrated before in space. To demonstrate that ISRU can meet mission needs and to increase confidence in incorporating ISRU capabilities into mission architectures, terrestrial laboratory and analog field testing along with robotic precursor missions are required. A stepwise approach with international collaboration is recommended. This paper will outline the role of ISRU in future lunar missions, and define the approach and possible experiments to increase confidence in ISRU applications for future human lunar exploration

  5. Habitat Concepts for Deep Space Exploration

    NASA Technical Reports Server (NTRS)

    Smitherman, David; Griffin, Brand N.

    2014-01-01

    Future missions under consideration requiring human habitation beyond the International Space Station (ISS) include deep space habitats in the lunar vicinity to support asteroid retrieval missions, human and robotic lunar missions, satellite servicing, and Mars vehicle servicing missions. Habitat designs are also under consideration for missions beyond the Earth-Moon system, including transfers to near-Earth asteroids and Mars orbital destinations. A variety of habitat layouts have been considered, including those derived from the existing ISS designs and those that could be fabricated from the Space Launch System (SLS) propellant tanks. This paper presents a comparison showing several options for asteroid, lunar, and Mars mission habitats using ISS derived and SLS derived modules and identifies some of the advantages and disadvantages inherent in each. Key findings indicate that the larger SLS diameter modules offer built-in compatibility with the launch vehicle, single launch capability without on-orbit assembly, improved radiation protection, lighter structures per unit volume, and sufficient volume to accommodate consumables for long duration missions without resupply. The information provided with the findings includes mass and volume comparison data that should be helpful to future exploration mission planning efforts.

  6. Simulation Study of a Follow-on Gravity Mission to GRACE

    NASA Technical Reports Server (NTRS)

    Loomis, Bryant D.; Nerem, R. S.; Luthcke, Scott B.

    2012-01-01

    The gravity recovery and climate experiment (GRACE) has been providing monthly estimates of the Earth's time-variable gravity field since its launch in March 2002. The GRACE gravity estimates are used to study temporal mass variations on global and regional scales, which are largely caused by a redistribution of water mass in the Earth system. The accuracy of the GRACE gravity fields are primarily limited by the satellite-to-satellite range-rate measurement noise, accelerometer errors, attitude errors, orbit errors, and temporal aliasing caused by unmodeled high-frequency variations in the gravity signal. Recent work by Ball Aerospace and Technologies Corp., Boulder, CO has resulted in the successful development of an interferometric laser ranging system to specifically address the limitations of the K-band microwave ranging system that provides the satellite-to-satellite measurements for the GRACE mission. Full numerical simulations are performed for several possible configurations of a GRACE Follow-On (GFO) mission to determine if a future satellite gravity recovery mission equipped with a laser ranging system will provide better estimates of time-variable gravity, thus benefiting many areas of Earth systems research. The laser ranging system improves the range-rate measurement precision to approximately 0.6 nm/s as compared to approx. 0.2 micro-seconds for the GRACE K-band microwave ranging instrument. Four different mission scenarios are simulated to investigate the effect of the better instrument at two different altitudes. The first pair of simulated missions is flown at GRACE altitude (approx. 480 km) assuming on-board accelerometers with the same noise characteristics as those currently used for GRACE. The second pair of missions is flown at an altitude of approx. 250 km which requires a drag-free system to prevent satellite re-entry. In addition to allowing a lower satellite altitude, the drag-free system also reduces the errors associated with the accelerometer. All simulated mission scenarios assume a two satellite co-orbiting pair similar to GRACE in a near-polar, near-circular orbit. A method for local time variable gravity recovery through mass concentration blocks (mascons) is used to form simulated gravity estimates for Greenland and the Amazon region for three GFO configurations and GRACE. Simulation results show that the increased precision of the laser does not improve gravity estimation when flown with on-board accelerometers at the same altitude and spacecraft separation as GRACE, even when time-varying background models are not included. This study also shows that only modest improvement is realized for the best-case scenario (laser, low-altitude, drag-free) as compared to GRACE due to temporal aliasing errors. These errors are caused by high-frequency variations in the hydrology signal and imperfections in the atmospheric, oceanographic, and tidal models which are used to remove unwanted signal. This work concludes that applying the updated technologies alone will not immediately advance the accuracy of the gravity estimates. If the scientific objectives of a GFO mission require more accurate gravity estimates, then future work should focus on improvements in the geophysical models, and ways in which the mission design or data processing could reduce the effects of temporal aliasing.

  7. Small V/STOL aircraft analysis. Volume 2: Appendices. [to determine current and future general aviation missions and performance requirements

    NASA Technical Reports Server (NTRS)

    Smith, K. R., Jr.; Belina, F. W.

    1973-01-01

    A survey of general aviation activities in the United States was principally conducted through interviews with users, manufacturers, trade associations, and government organizations. A list of the organizations interviews is presented. The data became the basis for defining the current and future general aviation missions and performance. The economic characteristics of general aviation are examined. The desires of each organization regarding future aircraft characteristics are summarized.

  8. Future applications of artificial intelligence to Mission Control Centers

    NASA Technical Reports Server (NTRS)

    Friedland, Peter

    1991-01-01

    Future applications of artificial intelligence to Mission Control Centers are presented in the form of the viewgraphs. The following subject areas are covered: basic objectives of the NASA-wide AI program; inhouse research program; constraint-based scheduling; learning and performance improvement for scheduling; GEMPLAN multi-agent planner; planning, scheduling, and control; Bayesian learning; efficient learning algorithms; ICARUS (an integrated architecture for learning); design knowledge acquisition and retention; computer-integrated documentation; and some speculation on future applications.

  9. Advanced thermal control technologies for space science missions at JPL

    NASA Technical Reports Server (NTRS)

    Birur, G. C.; O'Donnell, T.

    2000-01-01

    A wide range of deep space science missions are planned by NASA for the future. Many of these missions are being planned under strict cost caps and advanced technologies are needed in order to enable these challenging mssions. Because of the wide range of thermal environments the spacecraft experience during the mission, advanced thermal control technologies are the key to enabling many of these missions.

  10. Exploration Life Support Critical Questions for Future Human Space Missions

    NASA Technical Reports Server (NTRS)

    Kwert, Michael K.; Barta, Daniel J.; McQuillan, Jeff

    2010-01-01

    Exploration Life Support (ELS) is a current project under NASA's Exploration Systems Mission Directorate. The ELS Project plans, coordinates and implements the development of advanced life support technologies for human exploration missions in space. Recent work has focused on closed loop atmosphere and water systems for long duration missions, including habitats and pressurized rovers. But, what are the critical questions facing life support system developers for these and other future human missions? This paper explores those questions and how progress in the development of ELS technologies can help answer them. The ELS Project includes the following Elements: Atmosphere Revitalization Systems, Water Recovery Systems, Waste Management Systems, Habitation Engineering, Systems Integration, Modeling and Analysis, and Validation and Testing, which includes the Sub-Elements Flight Experiments and Integrated Testing. Systems engineering analysis by ELS seeks to optimize overall mission architectures by considering all the internal and external interfaces of the life support system and the potential for reduction or reuse of commodities. In particular, various sources and sinks of water and oxygen are considered along with the implications on loop closure and the resulting launch mass requirements. Systems analysis will be validated through the data gathered from integrated testing, which will demonstrate the interfaces of a closed loop life support system. By applying a systematic process for defining, sorting and answering critical life support questions, the ELS project is preparing for a variety of future human space missions

  11. Emirates Mars Mission (EMM) 2020 Overview

    NASA Astrophysics Data System (ADS)

    Amiri, S.; Sharaf, O.; AlMheiri, S.; AlRais, A.; Wali, M.; Al Shamsi, Z.; Al Qasim, I.; Al Harmoodi, K.; Al Teneiji, N.; Almatroushi, H. R.; Al Shamsi, M. R.; Altunaiji, E. S.; Lootah, F. H.; Badri, K. M.; McGrath, M.; Withnell, P.; Ferrington, N.; Reed, H.; Landin, B.; Ryan, S.; Pramann, B.; Brain, D.; Deighan, J.; Chaffin, M.; Holsclaw, G.; Drake, G.; Wolff, M. J.; Edwards, C. S.; Lillis, R. J.; Smith, M. D.; Forget, F.; Fillingim, M. O.; England, S.; Christensen, P. R.; Osterloo, M. M.; Jones, A. R.

    2017-12-01

    United Arab Emirates (UAE) has entered the space exploration race with the announcement of Emirates Mars Mission (EMM), the first Emirati mission to another planet, in 2014. Through this mission, UAE is to send an unmanned probe, called Hope probe, to be launched in summer 2020 and reach Mars by 2021 to coincide with UAE's 50th anniversary. The mission should be unique, and should aim for novel and significant discoveries that contributed to the ongoing work of the global space science community. EMM has passed its Mission Concept Review (MCR), System Requirements Review (SRR), System Design Review (SDR), Preliminary Design Review (PDR), and Critical Design Review (CDR) phases. The mission is led by the Mohammed Bin Rashid Space Centre (MBRSC), in partnership with the University of Colorado Laboratory for Atmospheric and Space Physics (LASP), University of California Berkeley Space Sciences Laboratory (SSL), and Arizona State University (ASU) School of Earth and Space Exploration. The mission is designed to answer the following three science questions: (1) How does the Martian lower atmosphere respond globally, diurnally, and seasonally to solar forcing? (2) How do conditions throughout the Martian atmosphere affect rates of atmospheric escape? (3) How does the Martian exosphere behave temporally and spatially?. Each question is aligned with three mission objectives and four investigations that study the Martian atmospheric circulation and connections through measurements done using three instruments that image Mars in the visible, thermal infrared and ultraviolet wavelengths. Data will be collected around Mars for a period of an entire Martian year to provide scientists with valuable understanding of the changes to the Martian atmosphere today. The presentation will focus on the overviews of the mission and science objectives, instruments and spacecraft, as well as the ground and launch segments.

  12. Advanced Ablative TPS

    NASA Technical Reports Server (NTRS)

    Gasch, Matthew J.

    2011-01-01

    Early NASA missions (Gemini, Apollo, Mars Viking) employed new ablative TPS that were tailored for the entry environment. After 40 years, heritage ablative TPS materials using Viking or Pathfinder era materials are at or near their performance limits and will be inadequate for future exploration missions. Significant advances in TPS materials technology are needed in order to enable any subsequent human exploration missions beyond Low Earth Orbit. This poster summarizes some recent progress at NASA in developing families of advanced rigid/conformable and flexible ablators that could potentially be used for thermal protection in planetary entry missions. In particular the effort focuses technologies required to land heavy (approx.40 metric ton) masses on Mars to facilitate future exploration plans.

  13. Explosive propulsion applications. [to future unmanned missions

    NASA Technical Reports Server (NTRS)

    Nakamura, Y.; Varsi, G.; Back, L. H.

    1974-01-01

    The feasibility and application of an explosive propulsion concept capable of supporting future unmanned missions in the post-1980 era were examined and recommendations made for advanced technology development tasks. The Venus large lander mission was selected as the first in which the explosive propulsion concept can find application. A conceptual design was generated and its performance, weight, costs, and interaction effects determined. Comparisons were made with conventional propulsion alternatives. The feasibility of the explosive propulsion system was verified for planetology experiments within the dense atmosphere of Venus as well as the outer planets. Additionally, it was determined that the Venus large lander mission could be augmented ballistically with a significant delivery margin.

  14. A potassium Rankine multimegawatt nuclear electric propulsion concept

    NASA Technical Reports Server (NTRS)

    Baumeister, E.; Rovang, R.; Mills, J.; Sercel, J.; Frisbee, R.

    1990-01-01

    Multimegawatt nuclear electric propulsion (NEP) has been identified as a potentially attractive option for future space exploratory missions. A liquid-metal-cooled reactor, potassium Rankine power system that is being developed is suited to fulfill this application. The key features of the nuclear power system are described, and system characteristics are provided for various potential NEP power ranges and operational lifetimes. The results of recent mission studies are presented to illustrate some of the potential benefits to future space exploration to be gained from high-power NEP. Specifically, mission analyses have been performed to assess the mass and trip time performance of advanced NEP for both cargo and piloted missions to Mars.

  15. Technology developments integrating a space network communications testbed

    NASA Technical Reports Server (NTRS)

    Kwong, Winston; Jennings, Esther; Clare, Loren; Leang, Dee

    2006-01-01

    As future manned and robotic space explorations missions involve more complex systems, it is essential to verify, validate, and optimize such systems through simulation and emulation in a low cost testbed environment. The goal of such a testbed is to perform detailed testing of advanced space and ground communications networks, technologies, and client applications that are essential for future space exploration missions. We describe the development of new technologies enhancing our Multi-mission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE) that enables its integration in a distributed space communications testbed. MACHETE combines orbital modeling, link analysis, and protocol and service modeling to quantify system performance based on comprehensive considerations of different aspects of space missions.

  16. Enabling Autonomous Space Mission Operations with Artificial Intelligence

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy

    2017-01-01

    For over 50 years, NASA's crewed missions have been confined to the Earth-Moon system, where speed-of-light communications delays between crew and ground are practically nonexistent. This ground-centered mode of operations, with a large, ground-based support team, is not sustainable for NASAs future human exploration missions to Mars. Future astronauts will need smarter tools employing Artificial Intelligence (AI) techniques make decisions without inefficient communication back and forth with ground-based mission control. In this talk we will describe several demonstrations of astronaut decision support tools using AI techniques as a foundation. These demonstrations show that astronauts tasks ranging from living and working to piloting can benefit from AI technology development.

  17. Lessons Learned on Operating and Preparing Operations for a Technology Mission from the Perspective of the Earth Observing-1 Mission

    NASA Technical Reports Server (NTRS)

    Mandl, Dan; Howard, Joseph

    2000-01-01

    The New Millennium Program's first Earth-observing mission (EO-1) is a technology validation mission. It is managed by the NASA Goddard Space Flight Center in Greenbelt, Maryland and is scheduled for launch in the summer of 2000. The purpose of this mission is to flight-validate revolutionary technologies that will contribute to the reduction of cost and increase of capabilities for future land imaging missions. In the EO-1 mission, there are five instrument, five spacecraft, and three supporting technologies to flight-validate during a year of operations. EO-1 operations and the accompanying ground system were intended to be simple in order to maintain low operational costs. For purposes of formulating operations, it was initially modeled as a small science mission. However, it quickly evolved into a more complex mission due to the difficulties in effectively integrating all of the validation plans of the individual technologies. As a consequence, more operational support was required to confidently complete the on-orbit validation of the new technologies. This paper will outline the issues and lessons learned applicable to future technology validation missions. Examples of some of these include the following: (1) operational complexity encountered in integrating all of the validation plans into a coherent operational plan, (2) initial desire to run single shift operations subsequently growing to 6 "around-the-clock" operations, (3) managing changes in the technologies that ultimately affected operations, (4) necessity for better team communications within the project to offset the effects of change on the Ground System Developers, Operations Engineers, Integration and Test Engineers, S/C Subsystem Engineers, and Scientists, and (5) the need for a more experienced Flight Operations Team to achieve the necessary operational flexibility. The discussion will conclude by providing several cost comparisons for developing operations from previous missions to EO-1 and discuss some details that might be done differently for future technology validation missions.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbara Chapman

    OpenMP was not well recognized at the beginning of the project, around year 2003, because of its limited use in DoE production applications and the inmature hardware support for an efficient implementation. Yet in the recent years, it has been graduately adopted both in HPC applications, mostly in the form of MPI+OpenMP hybrid code, and in mid-scale desktop applications for scientific and experimental studies. We have observed this trend and worked deligiently to improve our OpenMP compiler and runtimes, as well as to work with the OpenMP standard organization to make sure OpenMP are evolved in the direction close tomore » DoE missions. In the Center for Programming Models for Scalable Parallel Computing project, the HPCTools team at the University of Houston (UH), directed by Dr. Barbara Chapman, has been working with project partners, external collaborators and hardware vendors to increase the scalability and applicability of OpenMP for multi-core (and future manycore) platforms and for distributed memory systems by exploring different programming models, language extensions, compiler optimizations, as well as runtime library support.« less

  19. EFRC:CST at the University of Texas at Austin - A DOE Energy Frontier Research Center (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema

    Zhu, Xiaoyang (Director, Understanding Charge Separation and Transfer at Interfaces in Energy Materials); CST Staff

    2017-12-09

    'EFRC:CST at the University of Texas at Austin - A DOE Energy Frontier Research Center' was submitted by the EFRC for Understanding Charge Separation and Transfer at Interfaces in Energy Materials (EFRC:CST) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. EFRC:CST is directed by Xiaoyang Zhu at the University of Texas at Austin in partnership with Sandia National Laboratories. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.

  20. Space Human Factors Engineering Gap Analysis Project Final Report

    NASA Technical Reports Server (NTRS)

    Hudy, Cynthia; Woolford, Barbara

    2006-01-01

    Humans perform critical functions throughout each phase of every space mission, beginning with the mission concept and continuing to post-mission analysis (Life Sciences Division, 1996). Space missions present humans with many challenges - the microgravity environment, relative isolation, and inherent dangers of the mission all present unique issues. As mission duration and distance from Earth increases, in-flight crew autonomy will increase along with increased complexity. As efforts for exploring the moon and Mars advance, there is a need for space human factors research and technology development to play a significant role in both on-orbit human-system interaction, as well as the development of mission requirements and needs before and after the mission. As part of the Space Human Factors Engineering (SHFE) Project within the Human Research Program (HRP), a six-month Gap Analysis Project (GAP) was funded to identify any human factors research gaps or knowledge needs. The overall aim of the project was to review the current state of human factors topic areas and requirements to determine what data, processes, or tools are needed to aid in the planning and development of future exploration missions, and also to prioritize proposals for future research and technology development.

  1. Human Assisted Robotic Vehicle Studies - A conceptual end-to-end mission architecture

    NASA Astrophysics Data System (ADS)

    Lehner, B. A. E.; Mazzotta, D. G.; Teeney, L.; Spina, F.; Filosa, A.; Pou, A. Canals; Schlechten, J.; Campbell, S.; Soriano, P. López

    2017-11-01

    With current space exploration roadmaps indicating the Moon as a proving ground on the way to human exploration of Mars, it is clear that human-robotic partnerships will play a key role for successful future human space missions. This paper details a conceptual end-to-end architecture for an exploration mission in cis-lunar space with a focus on human-robot interactions, called Human Assisted Robotic Vehicle Studies (HARVeSt). HARVeSt will build on knowledge of plant growth in space gained from experiments on-board the ISS and test the first growth of plants on the Moon. A planned deep space habitat will be utilised as the base of operations for human-robotic elements of the mission. The mission will serve as a technology demonstrator not only for autonomous tele-operations in cis-lunar space but also for key enabling technologies for future human surface missions. The successful approach of the ISS will be built on in this mission with international cooperation. Mission assets such as a modular rover will allow for an extendable mission and to scout and prepare the area for the start of an international Moon Village.

  2. Education and Public Outreach and Engagement at NASA's Analog Missions in 2012

    NASA Technical Reports Server (NTRS)

    Watkins, Wendy L.; Janoiko, Barbara A.; Mahoney, Erin; Hermann, Nicole B.

    2013-01-01

    Analog missions are integrated, multi-disciplinary activities that test key features of future human space exploration missions in an integrated fashion to gain a deeper understanding of system-level interactions and operations early in conceptual development. These tests often are conducted in remote and extreme environments that are representative in one or more ways to that of future spaceflight destinations. They may also be conducted at NASA facilities, using advanced modeling and human-in-the-loop scenarios. As NASA develops a capability driven framework to transport crew to a variety of space environments, it will use analog missions to gather requirements and develop the technologies necessary to ensure successful exploration beyond low Earth orbit. NASA s Advanced Exploration Systems (AES) Division conducts these high-fidelity integrated tests, including the coordination and execution of a robust education and public outreach (EPO) and engagement program for each mission. Conducting these mission scenarios in unique environments not only provides an opportunity to test the EPO concepts for the particular future-mission scenario, such as the best methods for conducting events with a communication time delay, but it also provides an avenue to deliver NASA s human space exploration key messages. These analogs are extremely exciting to students and the public, and they are performed in such a way that the public can feel like part of the mission. They also provide an opportunity for crew members to obtain training in education and public outreach activities similar to what they would perform in space. The analog EPO team is responsible for the coordination and execution of the events, the overall social media component for each mission, and public affairs events such as media visits and interviews. They also create new and exciting ways to engage the public, manage and create website content, coordinate video footage for missions, and coordinate and integrate each activity into the mission timeline. In 2012, the AES Analog Missions Project performed three distinct missions - NASA Extreme Environment Mission Operations (NEEMO), which simulated a mission to an asteroid using an undersea laboratory; In-Situ Resource Utilization (ISRU) Field Test, which simulated a robotic mission to the moon searching and drilling for water; and Research and Technology Studies (RATS) integrated tests, which also simulated a mission to an asteroid. This paper will discuss the education and public engagement that occurred during these missions.

  3. Bounding the Spacecraft Atmosphere Design Space for Future Exploration Missions

    NASA Technical Reports Server (NTRS)

    Lange, Kevin E.; Perka, Alan T.; Duffield, Bruce E.; Jeng, Frank F.

    2005-01-01

    The selection of spacecraft and space suit atmospheres for future human space exploration missions will play an important, if not critical, role in the ultimate safety, productivity, and cost of such missions. Internal atmosphere pressure and composition (particularly oxygen concentration) influence many aspects of spacecraft and space suit design, operation, and technology development. Optimal atmosphere solutions must be determined by iterative process involving research, design, development, testing, and systems analysis. A necessary first step in this process is the establishment of working bounds on the atmosphere design space.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, A.R.; Hurley, D.L.

    A year ago at the First LDEF Post-Retrieval Symposium, we reported detailed measurements on trunnion sections, as well as results from intentional'' samples (Co, Ni, In, Ta, and V) and spacecraft parts. For this year's Symposium we re-evaluate some of these findings in combination with more recent results, to cast a longer perspective on the LDEF experience, and to sketch some promising avenues toward more effective participation in future missions. The LDEF analysis effort has been a superb training exercise, from which lessons learned needs be applied to future missions -- right back to the early phases of mission planning.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, A.R.; Hurley, D.L.

    A year ago at the First LDEF Post-Retrieval Symposium, we reported detailed measurements on trunnion sections, as well as results from ``intentional`` samples (Co, Ni, In, Ta, and V) and spacecraft parts. For this year`s Symposium we re-evaluate some of these findings in combination with more recent results, to cast a longer perspective on the LDEF experience, and to sketch some promising avenues toward more effective participation in future missions. The LDEF analysis effort has been a superb training exercise, from which lessons learned needs be applied to future missions -- right back to the early phases of mission planning.

  6. Entry, Descent, and Landing With Propulsive Deceleration

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    2012-01-01

    The future exploration of the Solar System will require innovations in transportation and the use of entry, descent, and landing (EDL) systems at many planetary landing sites. The cost of space missions has always been prohibitive, and using the natural planetary and planet s moons atmospheres for entry, descent, and landing can reduce the cost, mass, and complexity of these missions. This paper will describe some of the EDL ideas for planetary entry and survey the overall technologies for EDL that may be attractive for future Solar System missions.

  7. Cross support overview and operations concept for future space missions

    NASA Technical Reports Server (NTRS)

    Stallings, William; Kaufeler, Jean-Francois

    1994-01-01

    Ground networks must respond to the requirements of future missions, which include smaller sizes, tighter budgets, increased numbers, and shorter development schedules. The Consultative Committee for Space Data Systems (CCSDS) is meeting these challenges by developing a general cross support concept, reference model, and service specifications for Space Link Extension services for space missions involving cross support among Space Agencies. This paper identifies and bounds the problem, describes the need to extend Space Link services, gives an overview of the operations concept, and introduces complimentary CCSDS work on standardizing Space Link Extension services.

  8. Thermal Protection Systems: Past, Present and Future

    NASA Technical Reports Server (NTRS)

    Johnson, Sylvia M.

    2015-01-01

    Thermal protection materials and systems (TPS) have been critical to fulfilling humankinds desire to explore space. Composite and ceramic materials have enabled the early missions to orbit, the moon, the space station, Mars with robots, and sample return. Crewed missions to Mars are being considered, and this places even more demands on TPS materials. This talk will give some history on the materials used for earth and planetary entry and the demands placed upon such materials. TPS needs for future missions, especially to Mars, will be identified and potential solutions discussed.

  9. Advanced electrostatic ion thruster for space propulsion

    NASA Technical Reports Server (NTRS)

    Masek, T. D.; Macpherson, D.; Gelon, W.; Kami, S.; Poeschel, R. L.; Ward, J. W.

    1978-01-01

    The suitability of the baseline 30 cm thruster for future space missions was examined. Preliminary design concepts for several advanced thrusters were developed to assess the potential practical difficulties of a new design. Useful methodologies were produced for assessing both planetary and earth orbit missions. Payload performance as a function of propulsion system technology level and cost sensitivity to propulsion system technology level are among the topics assessed. A 50 cm diameter thruster designed to operate with a beam voltage of about 2400 V is suggested to satisfy most of the requirements of future space missions.

  10. The Deep Space Gateway: The Next Stepping Stone to Mars

    NASA Astrophysics Data System (ADS)

    Cassady, R. J.; Carberry, C.; Cichan, T.

    2018-02-01

    Human missions to Mars will benefit from precursor missions such as the Deep Space Gateway (DSG) that achieve important science and human health and safety milestones. The DSG can perform lunar science and prepare for future Mars mission science.

  11. Extravehicular Activity (EVA) Technology Development Status and Forecast

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda; Westheimer, David T.

    2010-01-01

    Beginning in Fiscal Year (FY) 2011, Extravehicular activity (EVA) technology development became a technology foundational domain under a new program Enabling Technology Development and Demonstration. The goal of the EVA technology effort is to further develop technologies that will be used to demonstrate a robust EVA system that has application for a variety of future missions including microgravity and surface EVA. Overall the objectives will be reduce system mass, reduce consumables and maintenance, increase EVA hardware robustness and life, increase crew member efficiency and autonomy, and enable rapid vehicle egress and ingress. Over the past several years, NASA realized a tremendous increase in EVA system development as part of the Exploration Technology Development Program and the Constellation Program. The evident demand for efficient and reliable EVA technologies, particularly regenerable technologies was apparent under these former programs and will continue to be needed as future mission opportunities arise. The technological need for EVA in space has been realized over the last several decades by the Gemini, Apollo, Skylab, Space Shuttle, and the International Space Station (ISS) programs. EVAs were critical to the success of these programs. Now with the ISS extension to 2028 in conjunction with a current forecasted need of at least eight EVAs per year, the EVA technology life and limited availability of the EMUs will become a critical issue eventually. The current Extravehicular Mobility Unit (EMU) has vastly served EVA demands by performing critical operations to assemble the ISS and provide repairs of satellites such as the Hubble Space Telescope. However, as the life of ISS and the vision for future mission opportunities are realized, a new EVA systems capability could be an option for the future mission applications building off of the technology development over the last several years. Besides ISS, potential mission applications include EVAs for missions to Near Earth Objects (NEO), Phobos, or future surface missions. Surface missions could include either exploration of the Moon or Mars. Providing an EVA capability for these types of missions enables in-space construction of complex vehicles or satellites, hands on exploration of new parts of our solar system, and engages the public through the inspiration of knowing that humans are exploring places that they have never been before. This paper offers insight into what is currently being developed and what the potential opportunities are in the forecast

  12. Searching for Life in the Martian Subsurface: Results from the MARTE Astrobiological Drilling Experiment and Implications for Future Missions

    NASA Astrophysics Data System (ADS)

    Stoker, C. R.

    2007-07-01

    Drilling for subsurface life should be a goal of future Mars missions. The approach is illustrated by MARTE: A search for subsurface life in Rio Tinto, Spain explored a biosphere using reduced iron and sulfur minerals and demonstrated automated drilling, sample handling, and life detection.

  13. A Collection of Papers on Self-Study and Institutional Improvement, 2003. Volume 2: Organizational Effectiveness and Future Directions. 2003 Edition.

    ERIC Educational Resources Information Center

    Van Kollenburg, Susan E., Ed.

    Papers in this collection were prepared for the annual meeting of the North Central Association of Colleges and Schools. This volume contains papers related to organizational effectiveness and future directions. Chapter 1, "Mission, Planning, and Organizational Change," contains: (1) "Revitalizing Mission: A Collaborative Model" (Stephany…

  14. Forward Contamination of the Moon and Mars: Implications for Future Life Detection Missions

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Dworkin, Jason P.; Lupisella, Mark; Kminek, Gerhard; Rummel, John D.

    2004-01-01

    NASA and ESA have outlined new visions for solar system exploration that will include a series of lunar robotic missions to prepare for, and support a human return to the Moon, and future human exploration of Mars and other destinations. One of the guiding principles for exploration is to pursue compelling scientific questions about the origin and evolution of life. The search for life on objects such as Mars will require that all spacecraft and instrumentation be sufficiently cleaned and sterilized prior to launch to ensure that the scientific integrity of extraterrestrial samples is not jeopardized by terrestrial organic contamination. Under COSPAR's current planetary protection policy for the Moon, no sterilization procedures are required for outbound lunar spacecraft. Nonetheless, future in situ investigations of a variety of locations on the Moon by highly sensitive instruments designed to search for biologically derived organic compounds would help assess the contamination of the Moon by lunar spacecraft. These studies could also provide valuable "ground truth" data for Mars sample return missions and help define planetary protection requirements for future Mars bound spacecraft carrying life detection experiments. In addition, studies of the impact of terrestrial contamination of the lunar surface by the Apollo astronauts could provide valuable data to help refine future Mars surface exploration plans for a human mission to Mars.

  15. Mars Atmospheric Characterization Using Advanced 2-Micron Orbiting Lidar

    NASA Technical Reports Server (NTRS)

    Singh, U.; Engelund, W.; Refaat, T.; Kavaya, M.; Yu, J.; Petros, M.

    2015-01-01

    Mars atmospheric characterization is critical for exploring the planet. Future Mars missions require landing massive payloads to the surface with high accuracy. The accuracy of entry, descent and landing (EDL) of a payload is a major technical challenge for future Mars missions. Mars EDL depends on atmospheric conditions such as density, wind and dust as well as surface topography. A Mars orbiting 2-micron lidar system is presented in this paper. This advanced lidar is capable of measuring atmospheric pressure and temperature profiles using the most abundant atmospheric carbon dioxide (CO2) on Mars. In addition Martian winds and surface altimetry can be mapped, independent of background radiation or geographical location. This orbiting lidar is a valuable tool for developing EDL models for future Mars missions.

  16. Advanced Curation Activities at NASA: Preparing to Receive, Process, and Distribute Samples Returned from Future Missions

    NASA Technical Reports Server (NTRS)

    McCubbin, Francis M.; Zeigler, Ryan A.

    2017-01-01

    The Astromaterials Acquisition and Curation Office (henceforth referred to herein as NASA Curation Office) at NASA Johnson Space Center (JSC) is responsible for curating all of NASA's extraterrestrial samples. Under the governing document, NASA Policy Directive (NPD) 7100.10F JSC is charged with curation of all extraterrestrial material under NASA control, including future NASA missions. The Directive goes on to define Curation as including documentation, preservation, preparation, and distribution of samples for research, education, and public outreach. Here we briefly describe NASA's astromaterials collections and our ongoing efforts related to enhancing the utility of our current collections as well as our efforts to prepare for future sample return missions. We collectively refer to these efforts as advanced curation.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crolley, R.; Thompson, M.

    There has been a need for a faster and cheaper deployment model for information technology (IT) solutions to address waste management needs at US Department of Energy (DOE) complex sites for years. Budget constraints, challenges in deploying new technologies, frequent travel, and increased job demands for existing employees have prevented IT organizations from staying abreast of new technologies or deploying them quickly. Despite such challenges, IT organizations have added significant value to waste management handling through better worker safety, tracking, characterization, and disposition at DOE complex sites. Systems developed for site-specific missions have broad applicability to waste management challenges andmore » in many cases have been expanded to meet other waste missions. Radio frequency identification (RFID) and global positioning satellite (GPS)-enabled solutions have reduced the risk of radiation exposure and safety risks. New web-based and mobile applications have enabled precision characterization and control of nuclear materials. These solutions have also improved operational efficiencies and shortened schedules, reduced cost, and improved regulatory compliance. Collaboration between US Department of Energy (DOE) complex sites is improving time to delivery and cost efficiencies for waste management missions with new information technologies (IT) such as wireless computing, global positioning satellite (GPS), and radio frequency identification (RFID). Integrated solutions developed at separate DOE complex sites by new technology Centers of Excellence (CoE) have increased material control and accountability, worker safety, and environmental sustainability. CoEs offer other DOE sister sites significant cost and time savings by leveraging their technology expertise in project scoping, implementation, and ongoing operations.« less

  18. Planetary Protection Considerations for Life Support and Habitation Systems

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.; Hogan, John A.

    2010-01-01

    Life support systems for future human missions beyond low Earth orbit may include a combination of existing hardware components and advanced technologies. Discipline areas for technology development include atmosphere revitalization, water recovery, solid waste management, crew accommodations, food production, thermal systems, environmental monitoring, fire protection and radiation protection. Life support systems will be influenced by in situ resource utilization (ISRU), crew mobility and the degree of extravehicular activity. Planetary protection represents an additional set of requirements that technology developers have generally not considered. Planetary protection guidelines will affect the kind of operations, processes, and functions that can take place during future exploration missions, including venting and discharge of liquids and solids, ejection of wastes, use of ISRU, requirements for cabin atmospheric trace contaminant concentrations, cabin leakage and restrictions on what materials, organisms, and technologies that may be brought on missions. Compliance with planetary protection requirements may drive development of new capabilities or processes (e.g. in situ sterilization, waste containment, contaminant measurement) and limit or prohibit certain kinds of operations or processes (e.g. unfiltered venting). Ultimately, there will be an effect on mission costs, including the mission trade space. Planetary protection requirements need to be considered early in technology development programs. It is expected that planetary protection will have a major impact on technology selection for future missions.

  19. A look towards the future in the handling of space science mission geometry

    NASA Astrophysics Data System (ADS)

    Acton, Charles; Bachman, Nathaniel; Semenov, Boris; Wright, Edward

    2018-01-01

    The "SPICE" system has been widely used since the days of the Magellan mission to Venus as the method for scientists and engineers to access a variety of space mission geometry such as positions, velocities, directions, orientations, sizes and shapes, and field-of-view projections (Acton, 1996). While originally focused on supporting NASA's planetary missions, the use of SPICE has slowly grown to include most worldwide planetary missions, and it has also been finding application in heliophysics and other space science disciplines. This paper peeks under the covers to see what new capabilities are being developed or planned at SPICE headquarters to better support the future of space science. The SPICE system is implemented and maintained by NASA's Navigation and Ancillary Information Facility (NAIF) located at the Jet Propulsion Laboratory in Pasadena, California (http://naif.jpl.nasa.gov).

  20. Work Package 5: Contingency Management. Mission Planning Requirements Document: Preliminary Version. Revision A

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The purpose of this document is to identify the general flight/mission planning requirements for same-day file-and-fly access to the NAS for both civil and military High-Altitude Long Endurance (HALE) Unmanned Aircraft System (UAS). Currently the scope of this document is limited to Step 1, operations above flight level 43,000 feet (FL430). This document describes the current applicable mission planning requirements and procedures for both manned and unmanned aircraft and addresses HALE UAS flight planning considerations in the future National Airspace System (NAS). It also discusses the unique performance and operational capabilities of HALE UAS associated with the Access 5 Project, presents some of the projected performance characteristics and conceptual missions for future systems, and provides detailed analysis of the recommended mission planning elements for operating HALE UAS in the NAS.

  1. Laboratory-Directed Research and Development 2016 Summary Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pillai, Rekha Sukamar; Jacobson, Julie Ann

    The Laboratory-Directed Research and Development (LDRD) Program at Idaho National Laboratory (INL) reports its status to the U.S. Department of Energy (DOE) by March of each year. The program operates under the authority of DOE Order 413.2C, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the laboratory director broad flexibility for program implementation. LDRD funds are obtained through a charge to all INL programs. This report includes summaries of all INL LDRD research activities supported during Fiscal Year (FY) 2016. INL is the lead laboratory for the DOE Office of Nuclearmore » Energy (DOE-NE). The INL mission is to discover, demonstrate, and secure innovative nuclear energy solutions, other clean energy options, and critical infrastructure with a vision to change the world’s energy future and secure our critical infrastructure. Operating since 1949, INL is the nation’s leading research, development, and demonstration center for nuclear energy, including nuclear nonproliferation and physical and cyber-based protection of energy systems and critical infrastructure, as well as integrated energy systems research, development, demonstration, and deployment. INL has been managed and operated by Battelle Energy Alliance, LLC (a wholly owned company of Battelle) for DOE since 2005. Battelle Energy Alliance, LLC, is a partnership between Battelle, BWX Technologies, Inc., AECOM, the Electric Power Research Institute, the National University Consortium (Massachusetts Institute of Technology, Ohio State University, North Carolina State University, University of New Mexico, and Oregon State University), and the Idaho university collaborators (i.e., University of Idaho, Idaho State University, and Boise State University). Since its creation, INL’s research and development (R&D) portfolio has broadened with targeted programs supporting national missions to advance nuclear energy, enable clean energy deployment, and secure and modernize critical infrastructure. INL’s research, development, and demonstration capabilities, its resources, and its unique geography enable integration of scientific discovery, innovation, engineering, operations, and controls into complex large-scale testbeds for discovery, innovation, and demonstration of transformational clean energy and security concepts. These attributes strengthen INL’s leadership as a demonstration laboratory. As a national resource, INL also applies its capabilities and skills to the specific needs of other federal agencies and customers through DOE’s Strategic Partnership Program.« less

  2. What Threats to Human Health Does Space Radiation Pose in Orbit

    NASA Technical Reports Server (NTRS)

    Wu, Honglu; Semones, Eddie; Weyland, Mark; Zapp, Neal; Cucinotta, Francis A.

    2011-01-01

    The Space Shuttle program spanned more than the entire length of a solar cycle. Investigations aimed towards understanding the health risks of the astronauts from exposures to space radiation involved mostly physical measurements of the dose and the linear energy transfer (LET) spectrum. Measurement of the dose rate on the Shuttle provided invariable new data for different periods of the solar cycle, whereas measurement of the LET spectrum using the tissue equivalent proportional counter (TEPC) produced the most complete mapping of the radiation environment of the low Earth orbits (LEO). Exposures to the Shuttle astronauts were measured by the personal dosimeter worn by the crewmembers. Analysis of over 300 personal dosimeter readings indicated a dependence on the mission duration, the altitude and inclination of the orbit, and the solar cycle, with the crewmembers on the launch and repair of the Hubble telescope receiving the highest doses due to the altitude of the mission. Secondary neutrons inside the Shuttle were determined by recoil protons or with Bonner spheres, and may contribute significantly to the risks of the crewmembers. In addition, the skin dose and the doses received at different organs were compared using a human phantom onboard a Shuttle mission. A number of radiobiology investigations wer e also performed. The biological doses were determined on six astronauts/cosmonauts on long-duration Shuttle/Mir missions and on two crewmembers on a Hubble repair mission by analyzing the damages in the chromosomes of the crewmembers? white blood cells. Several experiments were also conducted to address the question of possible synergistic effects of spaceflight, microgravity in particular, on the repair of radiation-induced DNA damages. The experimental design included exposure of cells before launch, during flight, or after landing. These physical and biological studies were invaluable in predicting the health risks for astronauts on ISS and future exploration missions. Educational Objectives: A group of high school students flew color negative films on tw o Shuttle missions to detect the radiation environment in orbit. This and other experiments onboard of the Shuttle were aimed at educating the general public of the space program.

  3. Idaho National Laboratory Annual Report FY 2013 LDRD Project Summaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dena Tomchak

    The FY 2013 LDRD Annual Report is a compendium of the diverse research performed to develop and ensure the INL’s technical capabilities support the current and future DOE missions and national research priorities. LDRD is essential to INL—it provides a means for the Laboratory to maintain scientific and technical vitality while funding highly innovative, high-risk science and technology research and development (R&D) projects. The program enhances technical capabilities at the Laboratory, providing scientific and engineering staff with opportunities to explore proof-of-principle ideas, advanced studies of innovative concepts, and preliminary technical analyses. Established by Congress in 1991, the LDRD Program provesmore » its benefit each year through new programs, intellectual property, patents, copyrights, national and international awards, and publications.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NREL's Sustainability Program is responsible for upholding all executive orders, federal regulations, U.S. Department of Energy (DOE) orders, and goals related to sustainable and resilient facility operations. But NREL continues to expand sustainable practices above and beyond the laboratory's regulations and requirements to ensure that the laboratory fulfills its mission into the future, leaves the smallest possible legacy footprint, and models sustainable operations and behaviors on national, regional, and local levels. The report, per the GRI reporting format, elaborates on multi-year goals relative to executive orders, achievements, and challenges; and success stories provide specific examples. A section called 'NREL's Resiliencymore » is Taking Many Forms' provides insight into how NREL is drawing on its deep knowledge of renewable energy and energy efficiency to help mitigate or avoid climate change impacts.« less

  5. Evaluation and Mitigation of the Risk Due to Climate Change at the Department of Energy's Savannah River Site

    NASA Astrophysics Data System (ADS)

    Werth, D. W.

    2016-12-01

    The state of South Carolina, home to the Department of Energy's (DOE) Savannah River Site (SRS), has been identified as facing an `above average' risk due to extreme heat, and the threat due to wildfire is expected to nearly double by 2050. To comply with DOE requirements that each of its sites prepares for climate change, the Savannah River National Laboratory (SRNL) is involved in an ongoing process to evaluate the site vulnerability and establish policies to mitigate those effects. This requires close cooperation between the managers of various site facilities and on-site climate researchers. The Atmospheric Technologies Group at SRNL currently provides short-term weather forecasts to support outdoor activities on site, but is also now working with site decision-makers to achieve DOE's goals of climate change mitigation and adaptation. We will discuss the results of our climate vulnerability assessment, which includes the effects of climate change on the energy requirements for mission critical infrastructure, the health, safety and productivity of the outdoor workforce, the danger of fire in the SRS forest, and the levels of surface water impoundments. (The latter of which must be maintained to avoid the release of radioactive contaminants sequestered beneath them). For each of these, existing climate change projections were carefully studied and `translated' into numerical indices relevant to facility personnel at SRS, along with a vulnerability rating (also based on conversations with site workers) to estimate the most endangered `assets'. We will also explain the process we have developed to facilitate effective communication between researchers and managers - involving them both in the development of the climate vulnerability assessment and the next steps toward planning, resource allocation, actions to mitigate rising costs, and safety considerations as well as helping the site remain sustainable throughout the future of its missions.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirk, Bernadette Lugue; Eipeldauer, Mary D; Whitaker, J Michael

    In 2007, the Department of Energy's National Nuclear Security Administration (DOE/NNSA) Office of Nonproliferation and International Security (NA-24) completed a comprehensive review of the current and potential future challenges facing the international safeguards system. The review examined trends and events impacting the mission of international safeguards and the implications of expanding and evolving mission requirements on the legal authorities and institutions that serve as the foundation of the international safeguards system, as well as the technological, financial, and human resources required for effective safeguards implementation. The review's findings and recommendations were summarized in the report, 'International Safeguards: Challenges and Opportunitiesmore » for the 21st Century (October 2007)'. One of the report's key recommendations was for DOE/NNSA to launch a major new program to revitalize the international safeguards technology and human resource base. In 2007, at the International Atomic Energy Agency's General Conference, then Secretary of Energy Samuel W. Bodman announced the newly created Next Generation Safeguards Initiative (NGSI). NGSI consists of five program elements: (1) Policy development and outreach; (2) Concepts and approaches; (3) Technology and analytical methodologies; (4) Human resource development; and (5) Infrastructure development. The ensuing report addresses the 'Human Resource Development (HRD)' component of NGSI. The goal of the HRD as defined in the NNSA Program Plan (November 2008) is 'to revitalize and expand the international safeguards human capital base by attracting and training a new generation of talent.' One of the major objectives listed in the HRD goal includes education and training, outreach to universities, professional societies, postdoctoral appointments, and summer internships at national laboratories. ORNL is a participant in the NGSI program, together with several DOE laboratories such as Pacific Northwest National Laboratory (PNNL), Lawrence Livermore National Laboratory (LLNL), Brookhaven National Laboratory (BNL), and Los Alamos National Laboratory (LANL). In particular, ORNL's participation encompasses student internships, postdoctoral appointments, collaboration with universities in safeguards curriculum development, workshops, and outreach to professional societies through career fairs.« less

  7. Deep space 1 mission and observation of comet Borrellly

    USGS Publications Warehouse

    Lee, M.; Weidner, R.J.; Soderblom, L.A.

    2002-01-01

    The NASA's new millennium program (NMP) focuses on testing high-risk, advanced technologies in space with low-cost flights. The objective of the NMP technology validation missions is to enable future science missions. The NMP missions are technology-driven, with the principal requirements coming from the needs of the advanced technologies that form the 'payload'.

  8. How Might the Ares V Change the Need for Future Mirror Technology

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2008-01-01

    More Massive Missions do not need to be More Expensive. Simple, robust, low-risk, high-TRL mission is likely to be low cost. It is also likely to be more massive than a complex, high-risk, low TRL mission. The challenge will be to overcome human nature. Launch Date Constrained Missions Cost Less

  9. Advances in Astromaterials Curation: Supporting Future Sample Return Missions

    NASA Technical Reports Server (NTRS)

    Evans, C. A.; Zeigler, R. A.; Fries, M. D..; Righter, K.; Allton, J. H.; Zolensky, M. E.; Calaway, M. J.; Bell, M. S.

    2015-01-01

    NASA's Astromaterials, curated at the Johnson Space Center in Houston, are the most extensive, best-documented, and leastcontaminated extraterrestrial samples that are provided to the worldwide research community. These samples include lunar samples from the Apollo missions, meteorites collected over nearly 40 years of expeditions to Antarctica (providing samples of dozens of asteroid bodies, the Moon, and Mars), Genesis solar wind samples, cosmic dust collected by NASA's high altitude airplanes, Comet Wild 2 and interstellar dust samples from the Stardust mission, and asteroid samples from JAXA's Hayabusa mission. A full account of NASA's curation efforts for these collections is provided by Allen, et al [1]. On average, we annually allocate about 1500 individual samples from NASA's astromaterials collections to hundreds of researchers from around the world, including graduate students and post-doctoral scientists; our allocation rate has roughly doubled over the past 10 years. The curation protocols developed for the lunar samples returned from the Apollo missions remain relevant and are adapted to new and future missions. Several lessons from the Apollo missions, including the need for early involvement of curation scientists in mission planning [1], have been applied to all subsequent sample return campaigns. From the 2013 National Academy of Sciences report [2]: "Curation is the critical interface between sample return missions and laboratory research. Proper curation has maintained the scientific integrity and utility of the Apollo, Antarctic meteorite, and cosmic dust collections for decades. Each of these collections continues to yield important new science. In the past decade, new state-of-the-art curatorial facilities for the Genesis and Stardust missions were key to the scientific breakthroughs provided by these missions." The results speak for themselves: research on NASA's astromaterials result in hundreds of papers annually, yield fundamental discoveries about the evolution of the solar system (e.g. [3] and references contained therein), and serve the global scientific community as ground truth for current and planned missions such as NASA's Dawn mission to Vesta and Ceres, and the future OSIRIS REx mission to asteroid Bennu [1,3

  10. Precise positioning with sparse radio tracking: How LRO-LOLA and GRAIL enable future lunar exploration

    NASA Astrophysics Data System (ADS)

    Mazarico, E.; Goossens, S. J.; Barker, M. K.; Neumann, G. A.; Zuber, M. T.; Smith, D. E.

    2017-12-01

    Two recent NASA missions to the Moon, the Lunar Reconnaissance Orbiter (LRO) and the Gravity Recovery and Interior Laboratory (GRAIL), have obtained highly accurate information about the lunar shape and gravity field. These global geodetic datasets resolve long-standing issues with mission planning; the tidal lock of the Moon long prevented collection of accurate gravity measurements over the farside, and deteriorated precise positioning of topographic data. We describe key datasets and results from the LRO and GRAIL mission that are directly relevant to future lunar missions. SmallSat and CubeSat missions especially would benefit from these recent improvements, as they are typically more resource-constrained. Even with limited radio tracking data, accurate knowledge of topography and gravity enables precise orbit determination (OD) (e.g., limiting the scope of geolocation and co-registration tasks) and long-term predictions of altitude (e.g., dramatically reducing uncertainties in impact time). With one S-band tracking pass per day, LRO OD now routinely achieves total position knowledge better than 10 meters and radial position knowledge around 0.5 meter. Other tracking data, such as Laser Ranging from Earth-based SLR stations, can further support OD. We also show how altimetry can be used to substantially improve orbit reconstruction with the accurate topographic maps now available from Lunar Orbiter Laser Altimeter (LOLA) data. We present new results with SELENE extended mission and LRO orbits processed with direct altimetry measurements. With even a simple laser altimeter onboard, high-quality OD can be achieved for future missions because of the datasets acquired by LRO and GRAIL, without the need for regular radio contact. Onboard processing of altimetric ranges would bring high-quality real-time position knowledge to support autonomous operation. We also describe why optical ranging transponders are ideal payloads for future lunar missions, as they can address both communication and navigation needs with little resources.

  11. NASA HRP Plans for Collaboration at the IBMP Ground-Based Experimental Facility (NEK)

    NASA Technical Reports Server (NTRS)

    Cromwell, Ronita L.

    2016-01-01

    NASA and IBMP are planning research collaborations using the IBMP Ground-based Experimental Facility (NEK). The NEK offers unique capabilities to study the effects of isolation on behavioral health and performance as it relates to spaceflight. The NEK is comprised of multiple interconnected modules that range in size from 50-250m(sup3). Modules can be included or excluded in a given mission allowing for flexibility of platform design. The NEK complex includes a Mission Control Center for communications and monitoring of crew members. In an effort to begin these collaborations, a 2-week mission is planned for 2017. In this mission, scientific studies will be conducted to assess facility capabilities in preparation for longer duration missions. A second follow-on 2-week mission may be planned for early in 2018. In future years, long duration missions of 4, 8 and 12 months are being considered. Missions will include scenarios that simulate for example, transit to and from asteroids, the moon, or other interplanetary travel. Mission operations will be structured to include stressors such as, high workloads, communication delays, and sleep deprivation. Studies completed at the NEK will support International Space Station expeditions, and future exploration missions. Topics studied will include communication, crew autonomy, cultural diversity, human factors, and medical capabilities.

  12. SO-QT: Collaborative Tool to Project the Future Space Object Population

    NASA Technical Reports Server (NTRS)

    Stupl, Jan

    2017-01-01

    Earth orbit gets increasingly congested, a challenge to space operators, both in governments and industry. We present a web tool that provides: 1) data on todays and the historic space object environments, by aggregating object-specific tracking data; and 2) future trends through a collaboration platform to collect information on planed launches. The collaborative platform enables experts to pool and compare their data in order to generate future launch scenarios. The tool is intended to support decision makers and mission designers while they investigate future missions and scholars as they develop strategies for space traffic management.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Department of Energy Order DOE 5000.4A establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is ``research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this Order. LDRD includes activities previously defined as ER&D, as well as other discretionary research and development activities not provided for in amore » DOE program.`` Consistent with the Mission Statement and Strategic Plan provided in PNL`s Institutional Plan, the LDRD investments are focused on developing new and innovative approaches in research related to our ``core competencies.`` Currently, PNL`s core competencies have been identified as integrated environmental research; process technology; energy systems research. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these core competencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. A significant proportion of PNL`s LDRD funds are also allocated to projects within the various research centers that are proposed by individual researchers or small research teams. The projects are described in Section 2.0. The projects described in this report represent PNL`s investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. In accordance with DOE guidelines, the report provides an overview of PNL`s LDRD program and the management process used for the program and project summaries for each LDRD project.« less

  14. Does NASA's Constellation Architecture Offer Opportunities to Achieve Multiple Additional Goals in Space?

    NASA Technical Reports Server (NTRS)

    Thronson, Harley A.; Lester, Daniel F.

    2008-01-01

    Every major NASA human spaceflight program in the last four decades has been modified to achieve goals in space not incorporated within the original design goals: the Apollo Applications Program, Skylab, Space Shuttle, and International Space Station. Several groups in the US have been identifying major future science goals, the science facilities necessary to investigate them, as well as possible roles for augmented versions of elements of NASA's Constellation program. Specifically, teams in the astronomy community have been developing concepts for very capable missions to follow the James Webb Space Telescope that could take advantage of - or require - free-space operations by astronauts and/or robots. Taking as one example, the Single-Aperture Far-InfraRed (SAFIR) telescope with a approx.10+ m aperture proposed for operation in the 2020 timeframe. According to current NASA plans, the Ares V launch vehicle (or a variant) will be available about the same time, as will the capability to transport astronauts to the vicinity of the Moon via the Orion Crew Exploration Vehicle and associated systems. [As the lunar surface offers no advantages - and major disadvantages - for most major optical systems, the expensive system for landing and operating on the lunar surface is not required.] Although as currently conceived, SAFIR and other astronomical missions will operate at the Sun-Earth L2 location, it appears trivial to travel for servicing to the more accessible Earth-Moon L1,2 locations. Moreover, as the recent Orbital Express and Automated Transfer Vehicle missions have demonstrated, future robotic capabilities should offer capabilities that would (remotely) extend human presence far beyond the vicinity of the Earth. In addition to multiplying the value of NASA's architecture for future human spaceflight to achieve the goals multiple major stakeholders, if humans one day travel beyond the Earth-Moon system - say, to Mars - technologies and capabilities for operating for long periods in free space must be developed. The engineering. management, and operational successes of the Space Station have demonstrated that international collaboration is possible. However, there is a danger that the hard-won lessons of current programs will be lost without continuing development of in-space operations. A program to achieve. for example, major astronomical goals in space using astronauts and robots will sustain international capabilities, produce highly visible achievements, and appeal to an additional broad community of stakeholders not currently involved with missions to the lunar surface.

  15. Does NASA's Constellation Architecture Offer Opportunities to Achieve Multiple Additional Goals in Space?

    NASA Technical Reports Server (NTRS)

    Thronson, Harley; Lester, Daniel F.

    2008-01-01

    Every major NASA human spaceflight program in the last four decades has been modified to achieve goals in space not incorporated within the original design goals: the Apollo Applications Program, Skylab, Space Shuttle, and International Space Station. Several groups in the US have been identifying major future science goals, the science facilities necessary to investigate them, as well as possible roles for augmented versions of elements of NASA's Constellation program. Specifically, teams in the astronomy community have been developing concepts for very capable missions to follow the James Webb Space Telescope that could take advantage of - or require - free-space operations by astronauts and/or robots. Taking as one example, the Single-Aperture Far-InfraRed (SAFIR) telescope with a approx. 10+ m aperture proposed for operation in the 2020 timeframe. According to current NASA plans, the Ares V launch vehicle (or a variant) will be available about the same time, as will the capability to transport astronauts to the vicinity of the Moon via the Orion Crew Exploration Vehicle and associated systems. [As the lunar surface offers no advantages - and major disadvantages - for most major optical systems, the expensive system for landing and operating on the lunar surface is not required.] Although as currently conceived, SAFIR and other astronomical missions will operate at the Sun-Earth L2 location, it appears trivial to travel for servicing to the more accessible Earth-Moon L1,2 locations. Moreover. as the recent Orbital Express and Automated Transfer Vehicle missions have demonstrated, future robotic capabilities should offer capabilities that would (remotely) extend human presence far beyond the vicinity of the Earth. In addition to multiplying the value of NASA's architecture for future human spaceflight to achieve the goals multiple major stakeholders. if humans one day travel beyond the Earth-Moon system - say, to Mars - technologies and capabilities for operating for long periods in free space must be developed. The engineering, management. and operational successes of the Space Station have demonstrated that international collaboratioi is possible. However, there is a danger that the hard-won lessons of cLul+sent programs will be lost without continuing development of in-space operations. A program to achieve. for example. major astronomical goals in space using astronauts and robots will sustain international capabilities. produce highly visible achievements. and appeal to a11 additional broad community of stakeholders not currently involved with missions to the lunar surface.

  16. 14 CFR 1214.1704 - Policy.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... onboard the Space Shuttle is not required for operation of payloads or for other essential mission... opportunities for future space flight participants, consistent with safety and mission considerations. When NASA... or more Space Shuttle missions in which their participation is desired. A NASA-designated outside...

  17. 14 CFR 1214.1704 - Policy.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... onboard the Space Shuttle is not required for operation of payloads or for other essential mission... opportunities for future space flight participants, consistent with safety and mission considerations. When NASA... or more Space Shuttle missions in which their participation is desired. A NASA-designated outside...

  18. 14 CFR 1214.1704 - Policy.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... onboard the Space Shuttle is not required for operation of payloads or for other essential mission... opportunities for future space flight participants, consistent with safety and mission considerations. When NASA... or more Space Shuttle missions in which their participation is desired. A NASA-designated outside...

  19. 14 CFR 1214.1704 - Policy.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... onboard the Space Shuttle is not required for operation of payloads or for other essential mission... opportunities for future space flight participants, consistent with safety and mission considerations. When NASA... or more Space Shuttle missions in which their participation is desired. A NASA-designated outside...

  20. 14 CFR § 1214.1704 - Policy.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... onboard the Space Shuttle is not required for operation of payloads or for other essential mission... opportunities for future space flight participants, consistent with safety and mission considerations. When NASA... or more Space Shuttle missions in which their participation is desired. A NASA-designated outside...

  1. Ice Dragon: A Mission to Address Science and Human Exploration Objectives on Mars

    NASA Technical Reports Server (NTRS)

    Stoker, Carol R.; Davila, A.; Sanders, G.; Glass, Brian; Gonzales, A.; Heldmann, Jennifer; Karcz, J.; Lemke, L.; Sanders, G.

    2012-01-01

    We present a mission concept where a SpaceX Dragon capsule lands a payload on Mars that samples ground ice to search for evidence of life, assess hazards to future human missions, and demonstrate use of Martian resources.

  2. Ice Dragon: A Mission to Address Science and Human Exploration Objectives on Mars

    NASA Astrophysics Data System (ADS)

    Stoker, C.; Davilla, A.; Davis, S.; Glass, B.; Gonzales, A.; Heldmann, J.; Karcz, J.; Lemke, L.; Sanders, G.

    2012-06-01

    We present a mission concept where a SpaceX Dragon capsule lands a payload on Mars that samples ground ice to search for evidence of life, assess hazards to future human missions, and demonstrate use of Martian resources.

  3. Dual mode nuclear rocket system applications.

    NASA Technical Reports Server (NTRS)

    Boretz, J. E.; Bell, J. M.; Plebuch, R. K.; Priest, C. C.

    1972-01-01

    Mission areas where the dual-mode nuclear rocket system is superior to nondual-mode systems are demonstrated. It is shown that the dual-mode system is competitive with the nondual-mode system even for those specific missions and particular payload configurations where it does not have a clear-cut advantage.

  4. Unmanned Aircraft Systems - Is the Commander Getting What is Needed?

    DTIC Science & Technology

    2011-02-23

    launched strike missions , communications relay operations, and ballistic missile tracking, to name a few.3 The focus on unmanned aviation systems is...with which to execute their mission . The commanders of a mere century ago would be awed by the capabilities of today’s force. Interestingly enough...these systems is so great that there is no branch of the United States military that does not depend upon them to accomplish missions of one

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sjoreen, Terrence P

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2A, 'Laboratory Directed Research and Development' (January 8, 2001), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report describes all ORNL LDRD research activities supported during FY 2005 and includes final reports for completed projects and shorter progress reports for projects thatmore » were active, but not completed, during this period. The FY 2005 ORNL LDRD Self-Assessment (ORNL/PPA-2006/2) provides financial data about the FY 2005 projects and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching national security mission, which encompasses science, energy resources, environmental quality, and national nuclear security. As a national resource, the Laboratory also applies its capabilities and skills to the specific needs of other federal agencies and customers through the DOE Work For Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at . LDRD is a relatively small but vital DOE program that allows ORNL, as well as other multiprogram DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing the Laboratory's ability to address future DOE missions; (3) fostering creativity and stimulating exploration of forefront science and technology; (4) serving as a proving ground for new research; and (5) supporting high-risk, potentially high-value R&D. Through LDRD the Laboratory is able to improve its distinctive capabilities and enhance its ability to conduct cutting-edge R&D for its DOE and WFO sponsors. To meet the LDRD objectives and fulfill the particular needs of the Laboratory, ORNL has established a program with two components: the Director's R&D Fund and the Seed Money Fund. As outlined in Table 1, these two funds are complementary. The Director's R&D Fund develops new capabilities in support of the Laboratory initiatives, while the Seed Money Fund is open to all innovative ideas that have the potential for enhancing the Laboratory's core scientific and technical competencies. Provision for multiple routes of access to ORNL LDRD funds maximizes the likelihood that novel and seminal ideas with scientific and technological merit will be recognized and supported.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sjoreen, Terrence P

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2A, 'Laboratory Directed Research and Development' (January 8, 2001), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report describes all ORNL LDRD research activities supported during FY 2004 and includes final reports for completed projects and shorter progress reports for projects thatmore » were active, but not completed, during this period. The FY 2004 ORNL LDRD Self-Assessment (ORNL/PPA-2005/2) provides financial data about the FY 2004 projects and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching national security mission, which encompasses science, energy resources, environmental quality, and national nuclear security. As a national resource, the Laboratory also applies its capabilities and skills to the specific needs of other federal agencies and customers through the DOE Work For Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at . LDRD is a relatively small but vital DOE program that allows ORNL, as well as other multiprogram DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing the Laboratory's ability to address future DOE missions; (3) fostering creativity and stimulating exploration of forefront science and technology; (4) serving as a proving ground for new research; and (5) supporting high-risk, potentially high-value R&D. Through LDRD the Laboratory is able to improve its distinctive capabilities and enhance its ability to conduct cutting-edge R&D for its DOE and WFO sponsors. To meet the LDRD objectives and fulfill the particular needs of the Laboratory, ORNL has established a program with two components: the Director's R&D Fund and the Seed Money Fund. As outlined in Table 1, these two funds are complementary. The Director's R&D Fund develops new capabilities in support of the Laboratory initiatives, while the Seed Money Fund is open to all innovative ideas that have the potential for enhancing the Laboratory's core scientific and technical competencies. Provision for multiple routes of access to ORNL LDRD funds maximizes the likelihood that novel and seminal ideas with scientific and technological merit will be recognized and supported.« less

  7. NASA's Advanced Radioisotope Power Conversion Technology Development Status

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Sankovic, John; Wilt, David; Abelson, Robert D.; Fleurial, Jean-Pierre

    2007-01-01

    NASA's Advanced Radioisotope Power Systems (ARPS) project is developing the next generation of radioisotope power conversion technologies that will enable future missions that have requirements that cannot be met by either photovoltaic systems or by current radioisotope power systems (RPSs). Requirements of advanced RPSs include high efficiency and high specific power (watts/kilogram) in order to meet future mission requirements with less radioisotope fuel and lower mass so that these systems can meet requirements for a variety of future space applications, including continual operation surface missions, outer-planetary missions, and solar probe. These advances would enable a factor of 2 to 4 decrease in the amount of fuel required to generate electrical power. Advanced RPS development goals also include long-life, reliability, and scalability. This paper provides an update on the contractual efforts under the Radioisotope Power Conversion Technology (RPCT) NASA Research Announcement (NRA) for research and development of Stirling, thermoelectric, and thermophotovoltaic power conversion technologies. The paper summarizes the current RPCT NRA efforts with a brief description of the effort, a status and/or summary of the contractor's key accomplishments, a discussion of upcoming plans, and a discussion of relevant system-level benefits and implications. The paper also provides a general discussion of the benefits from the development of these advanced power conversion technologies and the eventual payoffs to future missions (discussing system benefits due to overall improvements in efficiency, specific power, etc.).

  8. A Test Stand to Characterize and Contribute to the Development of DEPFET X-ray Detectors

    NASA Astrophysics Data System (ADS)

    Falcone, Abe

    The field of X-ray astronomy is currently looking forward to several new missions (e.g Athena, BeppiColumbo, and IXPE which is a new SMEX polarimeter), and there is the possibility of a flag-ship mission (e.g. the Lynx X-ray Surveyor) and/or other SMEX through probe class missions in the long-term future with many mission concepts being developed (e.g. ARCUS). The X-ray detec-tors for these future missions must be developed to suitable maturity to be proposed for flight, and expertise operating the newest versions of the detectors must be acquired by potential mis-sion designers and proposers. There are several silicon X-ray imaging active pixel sensor (APS) detectors being developed at this time (hybrid CMOS, monolithic CMOS, and DEPFETs), and each of these have their own advantages and levels of maturity, while they all provide enhanced radia-tion hardness, lower power operation, and versatile readout modes. Of the new APS X-ray detec-tors being developed, the DEPleted p-channel Field Effect Transistors (DEPFETs) have exhibited the best noise performance to-date. While they do require larger pixel structures than their com-petitors, the low noise performance of these detectors makes them an excellent choice for many mission applications (e.g. they will be launched on 2 ESA missions, Athena & BepiColumbo), and their further development could benefit other missions, particularly future missions that might be led by NASA and US scientists. Up until now, the development of these detectors has been lim-ited to only two groups located in Germany; one group is at Max Planck Institute and the other is PNSensors which is comprised of engineers and scientists that previously led the DEPFET design work at Max Planck. We propose to engage one of these groups in order to: (a) acquire newly de-signed test DEPFET detectors built by PNSensor, through a very-low-cost arrangement, (b) build a test stand that can operate these detectors and gain valuable experience running them in vari-ous modes with variations on the detector settings, (c) characterize the DEPFETs independently of the manufacturer and in modes that are relevant to our x-ray applications, and (d) use this new operation experience and characterization data to inform the next design iterations and the op-timization of DEPFET detectors for future X-ray missions.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohon, Jared L.; Glauthier, T. J.; Augustine, Norman R.

    The Commission to Review the Effectiveness of the National Energy Laboratories was charged by Congress in January 2014 to evaluate the mission, capabilities, size, performance, governance, and agency oversight of the 17 Department of Energy (DOE) laboratories. Given the incredibly broad scope and aggressive timeline (the original deadline was February 2015), the Secretary of Energy and Congress agreed to split the task into two phases. This interim report contains the preliminary observations and recommendations gleaned from Phase 1 of the study, which consisted of a literature review; visits to five of the National Laboratories; semi-structured interviews with staff from acrossmore » the National Laboratories, DOE, other Federal agencies, companies, other non-governmental organizations, and additional interested parties; and presentations at monthly public Commission meetings. The Commission notes that the purpose of the National Laboratories is to provide critical capabilities and facilities in service of DOE’s mission and the needs of the broader national and international science and technology (S&T) community, including other Federal agencies, academia, and private industry. The National Laboratories are successfully fulfilling that mission today. While the Commission believes significant improvements can be made to many aspects of DOE management and governance of the laboratories, those issues do not detract from the National Laboratories’ remarkable contributions to the American public. In Phase 2 the Commission will focus on ways to make the process of carrying out their missions more efficient and effective.« less

  10. Laboratory directed research and development FY98 annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Ayat, R; Holzrichter, J

    1999-05-01

    In 1984, Congress and the Department of Energy (DOE) established the Laboratory Directed Research and Development (LDRD) Program to enable the director of a national laboratory to foster and expedite innovative research and development (R and D) in mission areas. The Lawrence Livermore National Laboratory (LLNL) continually examines these mission areas through strategic planning and shapes the LDRD Program to meet its long-term vision. The goal of the LDRD Program is to spur development of new scientific and technical capabilities that enable LLNL to respond to the challenges within its evolving mission areas. In addition, the LDRD Program provides LLNLmore » with the flexibility to nurture and enrich essential scientific and technical competencies and enables the Laboratory to attract the most qualified scientists and engineers. The FY98 LDRD portfolio described in this annual report has been carefully structured to continue the tradition of vigorously supporting DOE and LLNL strategic vision and evolving mission areas. The projects selected for LDRD funding undergo stringent review and selection processes, which emphasize strategic relevance and require technical peer reviews of proposals by external and internal experts. These FY98 projects emphasize the Laboratory's national security needs: stewardship of the U.S. nuclear weapons stockpile, responsibility for the counter- and nonproliferation of weapons of mass destruction, development of high-performance computing, and support of DOE environmental research and waste management programs.« less

  11. Impact risk assessment and planetary defense mission planning for asteroid 2015 PDC

    NASA Astrophysics Data System (ADS)

    Vardaxis, George; Sherman, Peter; Wie, Bong

    2016-05-01

    In this paper, an integrated utilization of analytic keyhole theory, B-plane mapping, and planetary encounter geometry, augmented by direct numerical simulation, is shown to be useful in determining the impact risk of an asteroid with the Earth on a given encounter, as well on potential future encounters via keyhole passages. The accurate estimation of the impact probability of hazardous asteroids is extremely important for planetary defense mission planning. Asteroids in Earth resonant orbits are particularly troublesome because of the continuous threat they pose in the future. Based on the trajectories of the asteroid and the Earth, feasible mission trajectories can be found to mitigate the impact threat of hazardous asteroids. In order to try to ensure mission success, trajectories are judged based on initial and final mission design parameters that would make the mission easier to complete. Given the potential of a short-warning time scenario, a disruption mission considered in this paper occurs approximately one year prior to the anticipated impact date. Expanding upon the established theory, a computational method is developed to estimate the impact probability of the hazardous asteroid, in order to assess the likelihood of an event, and then investigate the fragmentation of the asteroid due to a disruption mission and analyze its effects on the current and future encounters of the fragments with Earth. A fictional asteroid, designated as 2015 PDC - created as an example asteroid risk exercise for the 2015 Planetary Defence Conference, is used as a reference target asteroid to demonstrate the effectiveness and applicability of computational tools being developed for impact risk assessment and planetary defense mission planning for a hazardous asteroid or comet.

  12. Using Existing NASA Satellites as Orbiting Testbeds to Accelerate Technology Infusion into Future Missions

    NASA Technical Reports Server (NTRS)

    Mandl, Daniel; Ly, Vuong; Frye, Stuart

    2006-01-01

    One of the shared problems for new space mission developers is that it is extremely difficult to infuse new technology into new missions unless that technology has been flight validated. Therefore, the issue is that new technology is required to fly on a successful mission for flight validation. We have been experimenting with new technology on existing satellites by retrofitting primarily the flight software while the missions are on-orbit to experiment with new operations concepts. Experiments have been using Earth Observing 1 (EO-1), which is part of the New Millennium Program at NASA. EO-1 finished its prime mission one year after its launch on November 21,2000. From November 21,2001 until the present, EO-1 has been used in parallel with additional science data gathering to test out various sensor web concepts. Similarly, the Cosmic Hot Interstellar Plasma Spectrometer (CHIPS) satellite was also a one year mission flown by the University of Berkeley, sponsored by NASA and whose prime mission ended August 30,2005. Presently, CHIPS is being used to experiment with a seamless space to ground interface by installing Core Flight System (cFS), a "plug-and-play" architecture developed by the Flight Software Branch at NASA/GSFC on top of the existing space-to-ground Internet Protocol (IP) interface that CHIPS implemented. For example, one targeted experiment is to connect CHIPS to a rover via this interface and the Internet, and trigger autonomous actions on CHIPS, the rover or both. Thus far, having satellites to experiment with new concepts has turned out to be an inexpensive way to infuse new technology for future missions. Relevant experiences thus far and future plans will be discussed in this presentation.

  13. In Situ Biological Contamination Studies of the Moon: Implications for Planetary Protection and Life Detection Missions

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Dworkin, Jason P.; Lupisella, Mark; Williams, David R.; Kminek, Gerhard; Rummel, John D.

    2010-01-01

    NASA and ESA have outlined visions for solar system exploration that will include a series of lunar robotic precursor missions to prepare for, and support a human return to the Moan, and future human exploration of Mars and other destinations, including possibly asteroids. One of the guiding principles for exploration is to pursue compelling scientific questions about the origin and evolution of life. The search for life on objects such as Mars will require careful operations, and that all systems be sufficiently cleaned and sterilized prior to launch to ensure that the scientific integrity of extraterrestrial samples is not jeopardized by terrestrial organic contamination. Under the Committee on Space Research's (COSPAR's) current planetary protection policy for the Moon, no sterilization procedures are required for outbound lunar spacecraft, nor is there a different planetary protection category for human missions, although preliminary C SPAR policy guidelines for human missions to Mars have been developed. Future in situ investigations of a variety of locations on the Moon by highly sensitive instruments designed to search for biologically derived organic compounds would help assess the contamination of the Moon by lunar spacecraft. These studies could also provide valuable "ground truth" data for Mars sample return missions and help define planetary protection requirements for future Mars bound spacecraft carrying life detection experiments. In addition, studies of the impact of terrestrial contamination of the lunar surface by the Apollo astronauts could provide valuable data to help refine future: Mars surface exploration plans for a human mission to Mars.

  14. The Possibilities and Challenges in Missions to Europa and Titan for Exploration and as a Stepping Stone to Mankind

    NASA Astrophysics Data System (ADS)

    Ganapathy, Rohan M.

    This enthusiastic project describes a long-term development plan to enable human exploration of the outer solar system, with a focus on Europa and Titan. These are two of the most interesting moons of Jupiter and Saturn, respectively, because they are the places in the solar system with the greatest potential for harboring extraterrestrial life. Since human expeditions to these worlds are considered impossible with current capabilities, the proposal of a well-organized sequence of steps towards making this a reality is formulated. The project includes the necessary development strategies in key scientic and technological areas that are essential for identifying the requirements for the exploration of the outer planetary moons. Some of the topics that are analyzed throughout the project plan include: scientic observations at Europa and Titan, advanced propulsion and nuclear power systems, in-situ resource utilization, radiation mitigation techniques, closed life support systems, habitation for long-term space flight, and artificial gravity. In addition to the scientic and technological aspects of this project, it is recognized that before any research and development work may begin, some level of program management must be established. Within this paper, legal issues, national and international policy, motivation, organization and management, economic considerations, outreach, education, ethics, and social implications are all considered with respect to possible future scenarios which enable human missions to the outer solar system. This project illustrates how such accomplishments could influence a mission to Europa to search for evidence of life in its subsurface oceans. The future remains unpredictable, as does the realization of any of these possibilities. However, projects such as this remind us that the final frontier for humans is truly outer space, and only our imagination will determine where the frontier stops. We can dream of visiting other planetary systems and perhaps even galaxies, but we must begin closer, and considering the scope of our known universe, Europa and Titan are very close indeed.

  15. Perspectives of Future Satellite Observations for Studying Aerosol-Cloud Interactions

    NASA Astrophysics Data System (ADS)

    Vane, D. G.; Stephens, G. L.

    2008-12-01

    There are many studies that examine the effects of aerosol on clouds and the consequence of these effects for climate. Much of the focus of these interactions revolve around two types of indirect effects. Using the A- Train as a resource for studying these interactions as a way of defining the requirements for future new missions, we find that the sensitivity of the cloud albedo, as observed by CERES, to aerosol varies according to these various conditions and does not simply correlate with decreased particle size as is typically assumed. It is clear that these effects require more in-depth information about cloud water path, and the occurrence and amount of precipitation and the environmental conditions in which the interactions take place. Information about the motions in clouds, the depths of clouds and more resolved microphysical details on cloud and drizzle are essential to study these effects. Perhaps more important than indirect effects on cloud albedo are the possible effects of aerosol on precipitation. There is much speculation about such influences and the A-Train observations are beginning to reveal much insight on such effects. These observations appear to suggest that the effects on shallow clouds is to delay precipitation production and reduce rainfall as has been speculated. The effects of aerosol on the precipitation falling from deep convection is less clear and more difficult to observe, although many model studies consistently suggest that the effects might be even more pronounced than on shallow convection through, among other mechanisms, the invigoration of storms via freezing of elevated water contents in updrafts. Such studies are now clearly pointing to the need to define the water contents and microphysics of hydrometeors in convective updrafts. This talk draws on these results as a way of framing the definition of the cloud-aerosol and precipitation component of the ACE mission of the decadal survey. This mission represents the follow-on to CloudSat and CALIPSO and notional measurement needs will be discussed.

  16. Assessment of the NASA Astrobiology Institute

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Astrobiology is a scientific discipline devoted to the study of life in the universe--its origins, evolution, distribution, and future. It brings together the physical and biological sciences to address some of the most fundamental questions of the natural world: How do living systems emerge? How do habitable worlds form and how do they evolve? Does life exist on worlds other than Earth? As an endeavor of tremendous breadth and depth, astrobiology requires interdisciplinary investigation in order to be fully appreciated and examined. As part of a concerted effort to undertake such a challenge, the NASA Astrobiology Institute (NAI) was established in 1998 as an innovative way to develop the field of astrobiology and provide a scientific framework for flight missions. Now that the NAI has been in existence for almost a decade, the time is ripe to assess its achievements. At the request of NASA's Associate Administrator for the Science Mission Directorate (SMD), the Committee on the Review of the NASA Astrobiology Institute undertook the assignment to determine the progress made by the NAI in developing the field of astrobiology. It must be emphasized that the purpose of this study was not to undertake a review of the scientific accomplishments of NASA's Astrobiology program, in general, or of the NAI, in particular. Rather, the objective of the study is to evaluate the success of the NAI in achieving its stated goals of: 1. Conducting, supporting, and catalyzing collaborative interdisciplinary research; 2. Training the next generation of astrobiology researchers; 3. Providing scientific and technical leadership on astrobiology investigations for current and future space missions; 4. Exploring new approaches, using modern information technology, to conduct interdisciplinary and collaborative research among widely distributed investigators; and 5. Supporting outreach by providing scientific content for use in K-12 education programs, teaching undergraduate classes, and communicating directly with the public. The committee s assessment of the NAI's progress in these five areas is presented in Chapters 2 to 6, respectively.

  17. NASA In-Space Propulsion Technologies and Their Infusion Potential

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Pencil,Eric J.; Peterson, Todd; Vento, Daniel; Munk, Michelle M.; Glaab, Louis J.; Dankanich, John W.

    2012-01-01

    The In-Space Propulsion Technology (ISPT) program has been developing in-space propulsion technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (Electric and Chemical), Entry Vehicle Technologies (Aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance; 2) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; and aerothermal effect models. Two component technologies that will be ready for flight infusion in the near future will be Advanced Xenon Flow Control System, and ultra-lightweight propellant tank technologies. Future focuses for ISPT are sample return missions and other spacecraft bus technologies like: 1) Mars Ascent Vehicles (MAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) for sample return missions; and 3) electric propulsion for sample return and low cost missions. These technologies are more vehicle-focused, and present a different set of technology infusion challenges. While the Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion technologies to a wide variety of mission concepts. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicability to potential Flagship missions. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness of in-space propulsion technologies in the areas of electric propulsion, aerocapture, Earth entry vehicles, propulsion components, Mars ascent vehicle, and mission/systems analysis.

  18. NASA Laboratory Analysis for Manned Exploration Missions

    NASA Technical Reports Server (NTRS)

    Krihak, Michael (Editor); Shaw, Tianna

    2014-01-01

    The Exploration Laboratory Analysis (ELA) project supports the Exploration Medical Capability Element under the NASA Human Research Program. ELA instrumentation is identified as an essential capability for future exploration missions to diagnose and treat evidence-based medical conditions. However, mission architecture limits the medical equipment, consumables, and procedures that will be available to treat medical conditions during human exploration missions. Allocated resources such as mass, power, volume, and crew time must be used efficiently to optimize the delivery of in-flight medical care. Although commercial instruments can provide the blood and urine based measurements required for exploration missions, these commercial-off-the-shelf devices are prohibitive for deployment in the space environment. The objective of the ELA project is to close the technology gap of current minimally invasive laboratory capabilities and analytical measurements in a manner that the mission architecture constraints impose on exploration missions. Besides micro gravity and radiation tolerances, other principal issues that generally fail to meet NASA requirements include excessive mass, volume, power and consumables, and nominal reagent shelf-life. Though manned exploration missions will not occur for nearly a decade, NASA has already taken strides towards meeting the development of ELA medical diagnostics by developing mission requirements and concepts of operations that are coupled with strategic investments and partnerships towards meeting these challenges. This paper focuses on the remote environment, its challenges, biomedical diagnostics requirements and candidate technologies that may lead to successful blood/urine chemistry and biomolecular measurements in future space exploration missions. SUMMARY The NASA Exploration Laboratory Analysis project seeks to develop capability to diagnose anticipated space exploration medical conditions on future manned missions. To achieve this goal, NASA will leverage existing point-of-care technology to provide clinical laboratory measurements in space. This approach will place the project on a path to minimize sample, reagent consumption, mass, volume and power. For successful use in the space environment, NASA specific conditions such as micro gravity and radiation, for example, will also need to be addressed.

  19. The GETE approach to facilitating the commercialization and use of DOE-developed environmental technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harvey, T.N.

    The Global Environmental Technology Enterprise (GETE) was conceived to develop and implement strategies to facilitate the commercialization of innovative, cost-effective Department of Energy (DOE)-developed environmental technologies. These strategies are needed to aid DOE`s clean-up mission; to break down barriers to commercialization; and to build partnerships between the federal government and private industry in order to facilitate the development and use of innovative environmental technologies.

  20. Discovery and New Frontiers Project Budget Analysis Tool

    NASA Technical Reports Server (NTRS)

    Newhouse, Marilyn E.

    2011-01-01

    The Discovery and New Frontiers (D&NF) programs are multi-project, uncoupled programs that currently comprise 13 missions in phases A through F. The ability to fly frequent science missions to explore the solar system is the primary measure of program success. The program office uses a Budget Analysis Tool to perform "what-if" analyses and compare mission scenarios to the current program budget, and rapidly forecast the programs ability to meet their launch rate requirements. The tool allows the user to specify the total mission cost (fixed year), mission development and operations profile by phase (percent total mission cost and duration), launch vehicle, and launch date for multiple missions. The tool automatically applies inflation and rolls up the total program costs (in real year dollars) for comparison against available program budget. Thus, the tool allows the user to rapidly and easily explore a variety of launch rates and analyze the effect of changes in future mission or launch vehicle costs, the differing development profiles or operational durations of a future mission, or a replan of a current mission on the overall program budget. Because the tool also reports average monthly costs for the specified mission profile, the development or operations cost profile can easily be validate against program experience for similar missions. While specifically designed for predicting overall program budgets for programs that develop and operate multiple missions concurrently, the basic concept of the tool (rolling up multiple, independently-budget lines) could easily be adapted to other applications.

Top