Sample records for future electric utility

  1. Perspectives on the future of the electric utility industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tonn, B.; Schaffhauser, A.

    1994-04-01

    This report offers perspectives on the future of the electric utility industry. These perspectives will be used in further research to assess the prospects for Integrated Resource Planning (IRP). The perspectives are developed first by examining economic, political and regulatory, societal, technological, and environmental trends that are (1) national and global in scope and (2) directly related to the electric utility industry. Major national and global trends include increasing global economic competition, increasing political and ethnic strife, rapidly changing technologies, and increasing worldwide concern about the environment. Major trends in the utility industry include increasing competition in generation; changing patternsmore » of electricity demand; increasing use of information technology to control power systems; and increasing implementation of environmental controls. Ways in which the national and global trends may directly affect the utility industry are also explored. The trends are used to construct three global and national scenarios- ``business as usual,`` ``technotopia future,`` and ``fortress state`` -and three electric utility scenarios- ``frozen in headlights,`` ``megaelectric,`` and ``discomania.`` The scenarios are designed to be thought provoking descriptions of potential futures, not predictions of the future, although three key variables are identified that will have significant impacts on which future evolves-global climate change, utility technologies, and competition. While emphasis needs to be placed on understanding the electric utility scenarios, the interactions between the two sets of scenarios is also of interest.« less

  2. The past, present, and future of U.S. utility demand-side management programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eto, J.

    Demand-side management or DSM refers to active efforts by electric and gas utilities to modify customers` energy use patterns. The experience in the US shows that utilities, when provided with appropriate incentives, can provide a powerful stimulus to energy efficiency in the private sector. This paper describes the range and history of DSM programs offered by US electric utilities, with a focus on the political, economic, and regulatory events that have shaped their evolution. It also describes the changes these programs are undergoing as a result of US electricity industry restructuring. DSM programs began modestly in the 1970s in responsemore » to growing concerns about dependence on foreign sources of oil and environmental consequences of electricity generation, especially nuclear power. The foundation for the unique US partnership between government and utility interests can be traced first to the private-ownership structure of the vertically integrated electricity industry and second to the monopoly franchise granted by state regulators. Electricity industry restructuring calls into question both of these basic conditions, and thus the future of utility DSM programs for the public interest. Future policies guiding ratepayer-funded energy-efficiency DSM programs will need to pay close attention to the specific market objectives of the programs and to the balance between public and private interests.« less

  3. Renewable Electricity Futures (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hand, M.

    2012-10-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It is being presented at the Utility Variable-Generation Integration Group Fall Technical Workshop on October 24, 2012.

  4. The Future of Electricity Resource Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kahrl, Fredrich; Mills, Andrew; Lavin, Luke

    Electricity resource planning is the process of identifying longer-term investments to meet electricity reliability requirements and public policy goals at a reasonable cost. Resource planning processes provide a forum for regulators, electric utilities, and electricity industry stakeholders to evaluate the economic, environmental, and social benefits and costs of different investment options. By facilitating a discussion on future goals, challenges and strategies, resource planning processes often play an important role in shaping utility business decisions. Resource planning emerged more than three decades ago in an era of transition, where declining electricity demand and rising costs spurred fundamental changes in electricity industrymore » regulation and structure. Despite significant changes in the industry, resource planning continues to play an important role in supporting investment decision making. Over the next two decades, the electricity industry will again undergo a period of transition, driven by technological change, shifting customer preferences and public policy goals. This transition will bring about a gradual paradigm shift in resource planning, requiring changes in scope, approaches and methods. Even as it changes, resource planning will continue to be a central feature of the electricity industry. Its functions — ensuring the reliability of high voltage (“bulk”) power systems, enabling oversight of regulated utilities and facilitating low-cost compliance with public policy goals — are likely to grow in importance as the electricity industry enters a new period of technological, economic and regulatory change. This report examines the future of electricity resource planning in the context of a changing electricity industry. The report examines emerging issues and evolving practices in five key areas that will shape the future of resource planning: (1) central-scale generation, (2) distributed generation, (3) demand-side resources, (4) transmission and (5) uncertainty and risk management. The analysis draws on a review of recent resource plans for 10 utilities that reflect some of the U.S. electricity industry’s extensive diversity.« less

  5. Electric utilities and the info-way - are electrics and telcos fellow travelers or competitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashworth, M.J.

    1994-03-15

    This article examines the future role of telecommunications and the so-called information superhighway in the operations of electric utilities. Utilities should take advantage of information technology through informal alliances with telecommunications hardware and service suppliers, should limit investments in alternative meter-level technologies to those that are cheap, easily integrated, and flexible, and should consider outsourcing network implementation, maintenance, and management functions.

  6. Utility interconnection issues for wind power generation

    NASA Technical Reports Server (NTRS)

    Herrera, J. I.; Lawler, J. S.; Reddoch, T. W.; Sullivan, R. L.

    1986-01-01

    This document organizes the total range of utility related issues, reviews wind turbine control and dynamic characteristics, identifies the interaction of wind turbines to electric utility systems, and identifies areas for future research. The material is organized at three levels: the wind turbine, its controls and characteristics; connection strategies as dispersed or WPSs; and the composite issue of planning and operating the electric power system with wind generated electricity.

  7. Renewable Electricity Futures (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hand, M. M.

    2012-08-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented to the 2012 Western Conference of Public Service Commissioners, during their June, 2012, meeting. The Western Conference of Public Service Commissioners is a regional association within the National Association of Regulatory Utility Commissioners (NARUC).

  8. The Flexible Solar Utility. Preparing for Solar's Impacts to Utility Planning and Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sterling, John; Davidovich, Ted; Cory, Karlynn

    2015-09-01

    This paper seeks to provide a flexible utility roadmap for identifying the steps that need to be taken to place the utility in the best position for addressing solar in the future. Solar growth and the emergence of new technologies will change the electric utility of tomorrow. Although not every utility, region, or market will change in the same way or magnitude, developing a path forward will be needed to reach the Electric System of the Future in the coming decades. In this report, a series of potential future states are identified that could result in drastically different energy mixesmore » and profiles: 1) Business as Usual, 2) Low Carbon, Centralized Generation, 3) Rapid Distributed Energy Resource Growth, 4) Interactivity of Both the Grid and Demand, and 5) Grid or Load Defection. Complicating this process are a series of emerging disruptions; decisions or events that will cause the electric sector to change. Understanding and preparing for these items is critical for the transformation to any of the future states to be successful. Predicting which future state will predominate 15 years from now is not possible; however, utilities still will need to look ahead and try to anticipate how factors will impact their planning, operations, and business models. In order to dig into the potential transformations facing the utility industry, the authors conducted a series of utility interviews, held a working session at a major industry solar conference, and conducted a quantitative survey. To focus conversations, the authors leveraged the Rapid Distributed Energy Resource (DER) Growth future to draw out how utilities would have to adapt from current processes and procedures in order to manage and thrive in that new environment. Distributed solar was investigated specifically, and could serve as a proxy resource for all distributed generation (DG). It can also provide the foundation for all DERs.« less

  9. Section 210 of PURPA and solar-thermal-energy development: the current regulatory environment and suggestions for future action. Task III report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Section 210 of the Public Utility Regulatory Policies Act of 1978 (PURPA) (16 U.S.C. Section 824a-3) (Attachment 1) was enacted to overcome certain institutional barriers and to provide a favorable, non-discriminatory regulatory environment for the integration of electricity-producing solar thermal and other qualifying technologies into the electric utility network. PURPA Section 210 is designed to reduce these institutional barriers for qualifying cogeneration and small power production facilities (QF's) - terminology which includes solar thermal facilities producing electricity for sale, if other prerequisites are met - by exempting certain QF's from economically burdensome legal requirements applicable to electric utilities, and bymore » requiring utilities to offer to purchase electricity from, and sell electricity to, QF's at reasonable and non-discriminatory rates. The present and future PURPA Section 210 regulatory implications for solar thermal QF's are explored. The current PURPA Section 210 regulatory environment and its consequences for solar thermal energy development are outlined. Legislation pending before Congress to amend PURPA Section 210 is described. Possible amendments to PURPA Section 210 that might further stimulate construction and operation of economically sound solar thermal facilities are explored.« less

  10. The future of the US electric utility industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dar, V.K.

    1995-07-01

    The future of the electricity industry will be shaped by five forces, already unleashed, and industry leaders` reaction to them. The opportunities for heady executives in well-positioned companies will extend far beyond the borders of today`s confined industry. How the game is played will determine whether utilities are the conquerors or vanquished. The future history of the industry will be written by those who are beginning to fashion their strategic responses to these forces: the deregulation of energy distribution, technological change, intellectual capital, interindustry convergence, and cultural dissonance. For most utilities, strategies are now being contemplated - come coherently, othersmore » inchoately - according to the perceived competences and weaknesses of each company in the eyes of its management and board.« less

  11. Study on feasible technical potential of coal to electricity in china

    NASA Astrophysics Data System (ADS)

    Jia, Dexiang; Tan, Xiandong

    2017-01-01

    The control of bulk coal is one of the important work of air pollution control in China’s future. Existing research mainly focuses on the adaptability, economy, construction and renovation plan, and operation optimization of specific energy substitution utilization, and lacks the strategy research of long-term layout of energy substitution utilization in large area. This paper puts forward a technical potential prediction method of coal to electricity based on the thermal equivalent method, which is based on the characteristics of regional coal consumption, and combined with the trend of adaptability and economy of energy substitution utilization. Also, the paper calculates the comprehensive benefit of coal to electricity according to the varieties of energy consumption and pollutant emission level of unit energy consumption in China’s future. The research result shows that the development technical potential of coal to electricity in China is huge, about 1.8 trillion kWh, including distributed electric heating, heat pump and electric heating boiler, mainly located in North China, East China, and Northeast China. The implementation of coal to electricity has remarkable comprehensive benefits in energy conservation and emission reduction, and improvement of energy consumption safety level. Case study shows the rationality of the proposed method.

  12. Electricity Consumption in the Industrial Sector of Jordan: Application of Multivariate Linear Regression and Adaptive Neuro-Fuzzy Techniques

    NASA Astrophysics Data System (ADS)

    Samhouri, M.; Al-Ghandoor, A.; Fouad, R. H.

    2009-08-01

    In this study two techniques, for modeling electricity consumption of the Jordanian industrial sector, are presented: (i) multivariate linear regression and (ii) neuro-fuzzy models. Electricity consumption is modeled as function of different variables such as number of establishments, number of employees, electricity tariff, prevailing fuel prices, production outputs, capacity utilizations, and structural effects. It was found that industrial production and capacity utilization are the most important variables that have significant effect on future electrical power demand. The results showed that both the multivariate linear regression and neuro-fuzzy models are generally comparable and can be used adequately to simulate industrial electricity consumption. However, comparison that is based on the square root average squared error of data suggests that the neuro-fuzzy model performs slightly better for future prediction of electricity consumption than the multivariate linear regression model. Such results are in full agreement with similar work, using different methods, for other countries.

  13. Photovoltaics as a terrestrial energy source. Volume 2: System value

    NASA Technical Reports Server (NTRS)

    Smith, J. L.

    1980-01-01

    Assumptions and techniques employed by the electric utility industry and other electricity planners to make estimates of the future value of photovoltaic (PV) systems interconnected with U.S. electric utilities were examined. Existing estimates of PV value and their interpretation and limitations are discussed. PV value is defined as the marginal private savings accruing to potential PV owners. For utility-owned PV systems, these values are shown to be the after-tax savings in conventional fuel and capacity displaced by the PV output. For non-utility-owned (distributed) systems, the utility's savings in fuel and capacity must first be translated through the electric rate structure (prices) to the potential PV system owner. Base-case estimates of the average value of PV systems to U.S. utilities are presented. The relationship of these results to the PV Program price goals and current energy policy is discussed; the usefulness of PV output quantity goals is also reviewed.

  14. Energy: Education and Industry Changes for a New Era Utilization System Modifications.

    ERIC Educational Resources Information Center

    Dille, Earl K.; Dreifke, Gerald E.

    This paper provides data and opinions on long- and short-term challenges and changes required to meet the human resource and educational needs in a nuclear electric era as seen from a utility company's point of view. In particular, statements on engineering education curriculum, statistics on certain future manpower requirements, electric utility…

  15. Electric vehicle utilization for ancillary grid services

    NASA Astrophysics Data System (ADS)

    Aziz, Muhammad

    2018-02-01

    Electric vehicle has been developed through several decades as transportation mean, without paying sufficient attention of its utilization for other purposes. Recently, the utilization of electric vehicle to support the grid electricity has been proposed and studied intensively. This utilization covers several possible services including electricity storage, spinning reserve, frequency and voltage regulation, and emergency energy supply. This study focuses on theoretical and experimental analysis of utilization of electric vehicles and their used batteries to support a small-scale energy management system. Charging rate of electric vehicle under different ambient temperature (seasonal condition) is initially analyzed to measure the correlation of charging rate, charging time, and state-of-charge. It is confirmed that charging under warmer condition (such as in summer or warmer region) shows higher charging rate than one in colder condition, therefore, shorter charging time can be achieved. In addition, in the demonstration test, each five electric vehicles and used batteries from the same electric vehicles are employed and controlled to support the electricity of the office building. The performance of the system is evaluated throughout a year to measure the load leveling effect during peak-load time. The results show that the targeted peak-load can be shaved well under certain calculated peak-shaving threshold. The finding confirms that the utilization of electric vehicle for supporting the electricity of grid or certain energy management system is feasible and deployable in the future.

  16. In the aftermath of PURPA: The future of the biomass energy industry in Maine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, S.J.; Connors, J.F.

    During the 1980`s the biomass power industry in Maine grew to nearly 500 MW of installed capacity in 21 cogeneration and stand alone plants. By 1992 these plants consumed four million tons of woody fuels annually, while providing 25% of the states` electricity supply. Moreover, this new industry supported over 2500 jobs throughout rural Maine, generated substantial local property taxes and provided a critically need management option for forest management and mill waste disposal. All of this capacity was developed by non-utility generators as Qualifying Facilities (QF) under PURPA rules. Most power contracts were fixed price, must take agreements guidedmore » by avoided cost calculations that assumed high future costs for energy alternatives. Circumstances have changed. Historically low oil prices, economic recession, and rising electricity rates have made biomass fueled power plants some of the most expensive sources of electricity on the power grid. Utilities are responding to rising rates, to public and political pressure to control costs and lower rates by seeking to renegotiate or buy out power contracts and closing biomass plants. While there are strong demands to control electricity costs, there are equally strong concerns about losing the benefits that accrue from the use of indigenous renewable resources. This article evaluates the actions of Maine utilities, independent power producers, the Maine Public Utilities Commission, and the Main Legislature related to PURPA contracts and their likely effects on the future of the biomass power industry in Maine. In particular, we will describe Maine`s new Electric Rate Stabilization Program and subsequent efforts of the Executive Branch to mediate a compromise solution in one case of a utility buy out of a biomass power plant.« less

  17. District heating and cooling systems for communities through power plant retrofit and distribution networks. Phase 1: identificaion and assessment. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-09-01

    Appendix A, Utility Plant Characteristics, contains information describing the characteristics of seven utility plants that were considered during the final site selection process. The plants are: Valley Electric Generating Plant, downtown Milwaukee; Manitowoc Electric Generating Plant, downtown Manitowoc; Blount Street Electric Generating Plant, downtown Madison; Pulliam Electric Generating Plant, downtown Green Bay; Edgewater Electric Generating Plant, downtown Sheboygan; Rock River Electric Generating Plant, near Janesville and Beloit; and Black Hawk Electric Generating Plant, downtown Beloit. Additional appendices are: Future Loads; hvac Inventory; Load Calculations; Factors to Induce Potential Users; Turbine Retrofit/Distribution System Data; and Detailed Economic Analysis Results/Data.

  18. Leadership skills for the California electric utility industry: A qualitative study

    NASA Astrophysics Data System (ADS)

    Hubbell, Michael

    The purpose of this qualitative study was to determine the skills and knowledge necessary for leaders in the California electric utility industry in 2020. With rapid industry changes, skills to effectively lead and stay competitive are undetermined. Leaders must manage an increasingly hostile social and political environment, incorporate new technology, and deal with an aging workforce and infrastructure. Methodology. This study utilized a qualitative case study design to determine the factors that influence the skills leaders will require in 2020. It incorporated the perspectives of current electric utility leaders while looking with a future lens. Findings. Interviews were conducted with transmission and distribution (T&D) directors at 3 investor-owned public electric utilities headquartered in California. The questions followed an open-ended format to gather responses as perceived by electric utility leaders for each research question category: overall skills, aging workforce, regulation, technology, and leading younger generations. The research resulted in 18 major themes: 5 for overall skills, 3 for aging workforce, 4 for regulation, 3 for technology, and 3 for leading younger generations. Conclusions. The study identified leadership skills including the ability to embrace, leverage, and stay current with technology; understand and provide a clear vision for the future; increase creativity; manage the next set of workers; motivate during a time of great change; prepare for knowledge transfer and change in workforce culture; manage regulatory expectations; expand potential utility opportunities; leverage "big data"; allow worker collaboration; and understand what drives younger generations. Recommendations. California-based electric utility leaders can remain effective by implementing key strategies identified herein. Further research could examine perspectives of additional utility leaders who lead in organizational units outside of T&D, expand the research to include additional states, and/or demonstrate how to acquire the identified skills. It is also recommended that a replication of this study be undertaken to include a perspective and analysis of union or "field" workers.

  19. States of Cybersecurity: Electricity Distribution System Discussions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pena, Ivonne; Ingram, Michael; Martin, Maurice

    State and local entities that oversee the reliable, affordable provision of electricity are faced with growing and evolving threats from cybersecurity risks to our nation's electricity distribution system. All-hazards system resilience is a shared responsibility among electric utilities and their regulators or policy-setting boards of directors. Cybersecurity presents new challenges and should be a focus for states, local governments, and Native American tribes that are developing energy-assurance plans to protect critical infrastructure. This research sought to investigate the implementation of governance and policy at the distribution utility level that facilitates cybersecurity preparedness to inform the U.S. Department of Energy (DOE),more » Office of Energy Policy and Systems Analysis; states; local governments; and other stakeholders on the challenges, gaps, and opportunities that may exist for future analysis. The need is urgent to identify the challenges and inconsistencies in how cybersecurity practices are being applied across the United States to inform the development of best practices, mitigations, and future research and development investments in securing the electricity infrastructure. By examining the current practices and applications of cybersecurity preparedness, this report seeks to identify the challenges and persistent gaps between policy and execution and reflect the underlying motivations of distinct utility structures as they play out at the local level. This study aims to create an initial baseline of cybersecurity preparedness within the distribution electricity sector. The focus of this study is on distribution utilities not bound by the cybersecurity guidelines of the North American Electric Reliability Corporation (NERC) to examine the range of mechanisms taken by state regulators, city councils that own municipal utilities, and boards of directors of rural cooperatives.« less

  20. Utilities bullish on meter-reading technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garner, W.L.

    1995-01-15

    By the end of 1996, the 400,000 customers of Kansas City Power & Light Company (KCPL) will have their electric meters read by a real-time wireless network that will relay electrical consumption readings back to computers at the utility`s customer service office. KCPL`s executives believe the new radio and cellular network will greatly improve the company`s ability to control its power distribution, manage its load requirements, monitor outages, and in the near future, allow time-of-use and offpeak pricing. The KCPL system represents the first systemwide, commercial application of wireless automated meter reading (AMR) by a U.S. utility. The article alsomore » describes other AMR systems for reading water and gas meters, along with saying that $18 billion in future power plant investments can be avoided by using time-of-use pricing for residential customers.« less

  1. Survey of spatial data needs and land use forecasting methods in the electric utility industry

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A representative sample of the electric utility industry in the United States was surveyed to determine industry need for spatial data (specifically LANDSAT and other remotely sensed data) and the methods used by the industry to forecast land use changes and future energy demand. Information was acquired through interviews, written questionnaires, and reports (both published and internal).

  2. Electric utility pole yard training facility: Designing an effective learning environment

    NASA Astrophysics Data System (ADS)

    Topping, Robert P.

    The primary responsibility of electric utilities is to supply consistent, dependable, and affordable energy to private customers, businesses, and industries. As with many businesses, electric utilities are experiencing the effects of an aging workforce and expending considerable resources to train their current and replacement workers. Community colleges can partner with electric utilities to provide effective learning environments for these workers, and gain access to new sources of revenue and community support for the colleges. The purpose of this study was to describe the functions, features, and major design issues of an effective learning environment for training electric utility industry workers, the electric utility line-worker pole yard. Case studies of three "state of the art" line-worker pole yard training environments provide the basis for the study's findings and implications. The study was guided by the following research questions: (1) What is the function of a line-worker pole yard in supporting effective training? (2) What are the features of present day ("state of the art") line-worker pole yard learning environments? and (3) What are the major issues that need to be addressed in designing a line-worker pole yard learning environment for the future? The study participants included industry representatives, training coordinators, instructors, and students from the three selected "state of the art" line-worker pole yard sites. The overall findings from the study resulted in composites of the desired features of learning outcomes, learning process, and learning environment for a line-worker pole yard training program and major issues that are affecting the future design of these training programs. Composite findings of a pole-yard training environment included unique features associated with: (a) outdoor, (b) indoor, (c) underground, (d) classroom, (e) gathering places, and (f) work-based learning components. Composite findings with regard to major issues that need to be considered in future designs of pole-yard training environments included: (a) available unrestricted land for expansion, (b) resource commitment level, (c) workforce demographics, (d) aging industrial infrastructure, (e) electronic information and communication capability, (f) quality and quantity of available instructors, and (g) environmental and economic impact.

  3. A Multi Agent-Based Framework for Simulating Household PHEV Distribution and Electric Distribution Network Impact

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Xiaohui; Liu, Cheng; Kim, Hoe Kyoung

    2011-01-01

    The variation of household attributes such as income, travel distance, age, household member, and education for different residential areas may generate different market penetration rates for plug-in hybrid electric vehicle (PHEV). Residential areas with higher PHEV ownership could increase peak electric demand locally and require utilities to upgrade the electric distribution infrastructure even though the capacity of the regional power grid is under-utilized. Estimating the future PHEV ownership distribution at the residential household level can help us understand the impact of PHEV fleet on power line congestion, transformer overload and other unforeseen problems at the local residential distribution network level.more » It can also help utilities manage the timing of recharging demand to maximize load factors and utilization of existing distribution resources. This paper presents a multi agent-based simulation framework for 1) modeling spatial distribution of PHEV ownership at local residential household level, 2) discovering PHEV hot zones where PHEV ownership may quickly increase in the near future, and 3) estimating the impacts of the increasing PHEV ownership on the local electric distribution network with different charging strategies. In this paper, we use Knox County, TN as a case study to show the simulation results of the agent-based model (ABM) framework. However, the framework can be easily applied to other local areas in the US.« less

  4. Structural change in industry and futures for the electricity industry. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwartz, P.; Harris, G.

    1995-06-01

    The electricity supply industry in the United States has been experiencing major technological changes and economics of the business have altered dramatically since the passage of the Public Utilities Regulatory Policies Act of 1978 (PURPA). This opening of power generation business to competition was under-pinned by significant increases in gas turbine efficiency, commercialization of smaller units with high efficiencies, low gas prices, and cost consciousness on the part of independent power producers (IPPs) and major industrial customers. The pace of change continues to accelerate, driven by ongoing technological innovations and customer demands for better, more customized services and lower costs.more » The purpose of this report is to provoke further thought on the likely course of structural change in the electric utility industry over the next twenty years. The prime focus of the report is on technological change and its impact on economics, and the resulting organizational and structural change. This report begins with a brief look at structural change in several capital-intensive industries to identify common patterns applicable to the electricity industry. The industries selected have network-like operations, similar to the electric utility industry. This is followed by two scenarios which illuminate different plausible futures for the electric power industry. The report concludes with insights on the potential course of regulations and suitable strategies to prosper during the transition phase.« less

  5. Impact of residential PV adoption on Retail Electricity Rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, DWH; Adlakha, S; Low, SH

    2013-11-01

    The price of electricity supplied from home rooftop photo voltaic (PV) solar cells has fallen below the retail price of grid electricity in some areas. A number of residential households have an economic incentive to install rooftop PV systems and reduce their purchases of electricity from the grid. A significant portion of the costs incurred by utility companies are fixed costs which must be recovered even as consumption falls. Electricity rates must increase in order for utility companies to recover fixed costs from shrinking sales bases. Increasing rates will, in turn, result in even more economic incentives for customers tomore » adopt rooftop PV. In this paper, we model this feedback between PV adoption and electricity rates and study its impact on future PV penetration and net-metering costs. We find that the most important parameter that determines whether this feedback has an effect is the fraction of customers who adopt PV in any year based solely on the money saved by doing so in that year, independent of the uncertainties of future years. These uncertainties include possible changes in rate structures such as the introduction of connection charges, the possibility of PV prices dropping significantly in the future, possible changes in tax incentives, and confidence in the reliability and maintainability of PV. (C) 2013 Elsevier Ltd. All rights reserved.« less

  6. Transitioning to an uncertain and competitive environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davison, J.C.

    1996-08-01

    The move to greater competition by natural gas and electric utilities has meant change unparalleled since the 1930s. To adapt to this revolution, utilities will have to, first, understand the nature of the restructuring and, second, answer such fundamental questions as what they are selling and how they can operate profitably. Answering these and related questions will likely result in the utility evaluating its own structure and deciding how it can bring the most value to its customers. Both natural gas and electric utilities ultimately may have to choose what business niche they will most profitably operate in as themore » days of operating as vertically integrated entities in a cost-plus environment are all but gone. This paper analyzes the changing natural gas and electric utility industries and presents a model of the utility industry in the future. It explains why restructure is inevitable, what form it may take and how newly configured utilities might withstand the brutality of competition by using GIS predictive tools, such as business geographies.« less

  7. Global renewable energy-based electricity generation and smart grid system for energy security.

    PubMed

    Islam, M A; Hasanuzzaman, M; Rahim, N A; Nahar, A; Hosenuzzaman, M

    2014-01-01

    Energy is an indispensable factor for the economic growth and development of a country. Energy consumption is rapidly increasing worldwide. To fulfill this energy demand, alternative energy sources and efficient utilization are being explored. Various sources of renewable energy and their efficient utilization are comprehensively reviewed and presented in this paper. Also the trend in research and development for the technological advancement of energy utilization and smart grid system for future energy security is presented. Results show that renewable energy resources are becoming more prevalent as more electricity generation becomes necessary and could provide half of the total energy demands by 2050. To satisfy the future energy demand, the smart grid system can be used as an efficient system for energy security. The smart grid also delivers significant environmental benefits by conservation and renewable generation integration.

  8. Global Renewable Energy-Based Electricity Generation and Smart Grid System for Energy Security

    PubMed Central

    Islam, M. A.; Hasanuzzaman, M.; Rahim, N. A.; Nahar, A.; Hosenuzzaman, M.

    2014-01-01

    Energy is an indispensable factor for the economic growth and development of a country. Energy consumption is rapidly increasing worldwide. To fulfill this energy demand, alternative energy sources and efficient utilization are being explored. Various sources of renewable energy and their efficient utilization are comprehensively reviewed and presented in this paper. Also the trend in research and development for the technological advancement of energy utilization and smart grid system for future energy security is presented. Results show that renewable energy resources are becoming more prevalent as more electricity generation becomes necessary and could provide half of the total energy demands by 2050. To satisfy the future energy demand, the smart grid system can be used as an efficient system for energy security. The smart grid also delivers significant environmental benefits by conservation and renewable generation integration. PMID:25243201

  9. Study of aircraft electrical power systems

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The formulation of a philosophy for devising a reliable, efficient, lightweight, and cost effective electrical power system for advanced, large transport aircraft in the 1980 to 1985 time period is discussed. The determination and recommendation for improvements in subsystems and components are also considered. All aspects of the aircraft electrical power system including generation, conversion, distribution, and utilization equipment were considered. Significant research and technology problem areas associated with the development of future power systems are identified. The design categories involved are: (1) safety-reliability, (2) power type, voltage, frequency, quality, and efficiency, (3) power control, and (4) selection of utilization equipment.

  10. Coal conversion products Industrial applications

    NASA Technical Reports Server (NTRS)

    Warren, D.; Dunkin, J.

    1980-01-01

    The synfuels economic evaluation model was utilized to analyze cost and product economics of the TVA coal conversion facilities. It is concluded that; (1) moderate yearly future escalations ( 6%) in current natural gas prices will result in medium-Btu gas becoming competitive with natural gas at the plant boundary; (2) utilizing DRI price projections, the alternate synfuel products, except for electricity, will be competitive with their counterparts; (3) central site fuel cell generation of electricity, utilizing MBG, is economically less attractive than the other synthetic fuels, given projected price rises in electricity produced by other means; and (4) because of estimated northern Alabama synfuels market demands, existing conventional fuels, infrastructure and industrial synfuels retrofit problems, a diversity of transportable synfuels products should be produced by the conversion facility.

  11. Reading the Tea Leaves: How Utilities in the West Are Managing Carbon Regulatory Risk in their Resource Plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbose, Galen; Wiser, Ryan; Phadke, Amol

    2008-02-01

    The long economic lifetime and development lead-time of many electric infrastructure investments requires that utility resource planning consider potential costs and risks over a lengthy time horizon. One long-term -- and potentially far-reaching -- risk currently facing the electricity industry is the uncertain cost of future carbon dioxide (CO2) regulations. Recognizing the importance of this issue, many utilities (sometimes spurred by state regulatory requirements) are beginning to actively assess carbon regulatory risk within their resource planning processes, and to evaluate options for mitigating that risk. However, given the relatively recent emergence of this issue and the rapidly changing political landscape,more » methods and assumptions used to analyze carbon regulatory risk, and the impact of this analysis on the selection of a preferred resource portfolio, vary considerably across utilities. In this study, we examine the treatment of carbon regulatory risk in utility resource planning, through a comparison of the most-recent resource plans filed by fifteen investor-owned and publicly-owned utilities in the Western U.S. Together, these utilities account for approximately 60percent of retail electricity sales in the West, and cover nine of eleven Western states. This report has two related elements. First, we compare and assess utilities' approaches to addressing key analytical issues that arise when considering the risk of future carbon regulations. Second, we summarize the composition and carbon intensity of the preferred resource portfolios selected by these fifteen utilities and compare them to potential CO2 emission benchmark levels.« less

  12. Monitoring and control requirement definition study for Dispersed Storage and Generation (DSG). Volume 4, appendix C: Identification from utility visits of present and future approaches to integration of DSG into distribution networks

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Visits to four utilities concerned with the use of DSG power sources on their distribution networks yielded useful impressions of present and future approaches to the integration of DSGs into electrical distribution network. Different approaches to future utility systems with DSG are beginning to take shape. The new DSG sources will be in decentralized locations with some measure of centralized control. The utilities have yet to establish firmly the communication and control means or their organization. For the present, the means for integrating the DSGs and their associated monitoring and control equipment into a unified system have not been decided.

  13. Convergence of electric, gas markets prompts cross-industry mergers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warkentin, D.

    1997-03-01

    The upsurge in the number of mergers between electric utilities and natural gas companies over the last couple of years has largely resulted from two occurrences: the convergence of the two industries and the related concern many electric and gas companies have about becoming complete energy providers in order to vie for survival in an increasingly competitive atmosphere. According to a Prudential Securities Equity Research wrap-up report, {open_quotes}Electricity and Natural Gas: Two Deregulated Markets on a Merger Path,{close_quotes} a single market for energy has emerged, where Btus and killowatt hours are being blended together. The convergence of the electricity andmore » gas markets, the study said, is the reason for cross-industry mergers. Barry Abramson and M. Carol Coale, Prudential Securities senior energy and utilities analysts and authors of the report, said, {open_quotes}We believe that in the future, few large players will be content without a presence in both the electricity and gas markets. Hence, natural gas providers should continue to buy electric utilities, and vice versa, as deregulation advances.« less

  14. PUHCA's Repeal Appeal: Analogies to Banking and Telecom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higgins, Mark D.

    There are many possible scenarios for the future of electric utility consolidation, but experiences in banking and telecommunications deregulation and consolidation suggest one as the most likely: larger players will continue to consolidate, smaller players will be acquired or focus on niche markets, and new, non-utility investors will enter utility markets, with varying degrees of success.

  15. Investigation into the risk perceptions of investors in the securities of nuclear-dependent electric utilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spudeck, R.E.

    1983-01-01

    Two weeks prior to the Three Mile Island accident, March 15, 1979, the Nuclear Regulatory Commission ordered five operating nuclear plants shut down in order to reexamine safety standards in these plants. Reports in the popular and trade press during this time suggested that these events, particularly the accident at Three Mile Island, caused investors in the securities of electric utilities that had nuclear-generation facilities to revise their risk perceptions. This study was designed to examine the impact of both the Nuclear Regulatory Commission order and the accident at Three Mile Island on investor risk perceptions. Selected categories of electricmore » utilities were chosen to examine any differential risk effects resulting from these events. An asset pricing model devoid of many of the restrictive assumptions of more familiar models was used to model investor behavior. The findings suggest that the events described did cause investors to revise upward their perceptions of systematic risk regarding different categories of electric utilities. More specifically, those electric utilities that were operating nuclear plants in 1979 experienced the largest and most sustained increase in systematic risk. However, electric utilities that in 1979 had no operating nuclear plants, but had planned and committed funds for nuclear plants in the future, also experienced increases in systematic risk.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neal, J.W.

    The nation`s rural electric cooperatives own a high proportion of coal-fired generation, in excess of 80 percent of their generating capacity. As the electric utility industry moves toward a competitive electricity market, the generation mix for electric cooperatives is expected to change. Distributed generation will likely serve more customer loads than is now the case, and that will lead to an increase in gas-fired generation capacity. But, clean low-cost central station coal-fired capacity is expected to continue to be the primary source of power for growing rural electric cooperatives. Gasification combined cycle could be the lowest cost coal based generationmore » option in this new competitive market if both capital cost and electricity production costs can be further reduced. This paper presents anticipated utility business scenarios for the deregulated future and identifies combined cycle power plant configurations that might prove most competitive.« less

  17. New FERC chairman says plenty of activity yet to come

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Share, J.

    Utility executives may have slowed their merger and acquisition activity to catch their breath, but it`s far from over, says Jim Hoecker, the new chairman of the Federal Energy Regulatory Commission. He doesn`t think we`ve seen the last of this phenomenon. As the industry begins to understand the shape of market developments to come in the future, increasingly creative M and A activities will be seen. But there`s also many other contractual arrangements among utilities and between utilities, pipelines, and gas distribution companies that reflect the more dynamic market of today. In the interview, he referred to a survey ofmore » utility executives in which as many as 45% indicated that their companies were involved in merger or acquisition activity. That survey found about 70% of these executives felt there is going to be more consolidation within the utility industry and an even larger proportion concluded there would be increased mergers between the electric and natural gas industries. In addition, Hoecker discusses gas versus electric, gas versus coal, and FERC`s future.« less

  18. Toward an electrical power utility for space exploration

    NASA Technical Reports Server (NTRS)

    Bercaw, Robert W.

    1989-01-01

    Future electrical power requirements for space exploration are discussed. Megawatts of power with enough reliability for multi-year missions and with enough flexibility to adapt to needs unanticipated at design time are some of the criteria which space power systems must be able to meet. The reasons for considering the power management and distribution in the various systems, from a total mission perspective rather than simply extrapolating current spacecraft design practice, are discussed. A utility approach to electric power integrating requirements from a broad selection of current development programs, with studies in which both space and terrestrial technologies are conceptually applied to exploration mission scenarios, is described.

  19. Constructing the electricity-carbohydrate-hydrogen cycle for a sustainability revolution.

    PubMed

    Zhang, Y-H Percival; Huang, Wei-Dong

    2012-06-01

    In this opinion, we suggest the electricity-carbohydrate-hydrogen (ECHo) cycle which bridges primary energies and secondary energies. Carbohydrates are sources of food, feed, liquid biofuels, and renewable materials and are a high-density hydrogen carrier and electricity storage compounds (e.g. >3000 Wh/kg). One element of this ECHo cycle can be converted to another reversibly and efficiently depending on resource availability, needs and costs. This cycle not only supplements current and future primary energy utilization systems for facilitating electricity and hydrogen storage and enhancing secondary energy conversion efficiencies, but also addresses such sustainability challenges as transportation fuel production, CO(2) utilization, fresh water conservation, and maintenance of a small closed ecosystem in emergency situations. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. The Future of Utility Customer-Funded Energy Efficiency Programs in the United States: Projected Spending and Savings to 2025

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbose, Galen; Goldman, Charles; Hoffman, Ian

    2012-09-11

    We develop projections of future spending on, and savings from, energy efficiency programs funded by electric and gas utility customers in the United States, under three scenarios through 2025. Our analysis, which updates a previous LBNL study, relies on detailed bottom-up modeling of current state energy efficiency policies, regulatory decisions, and demand-side management and utility resource plans. The three scenarios are intended to represent a range of potential outcomes under the current policy environment (i.e., without considering possible major new policy developments). By 2025, spending on electric and gas efficiency programs (excluding load management programs) is projected to double frommore » 2010 levels to $9.5 billion in the medium case, compared to $15.6 billion in the high case and $6.5 billion in the low case. Compliance with statewide legislative or regulatory savings or spending targets is the primary driver for the increase in electric program spending through 2025, though a significant share of the increase is also driven by utility DSM planning activity and integrated resource planning. Our analysis suggests that electric efficiency program spending may approach a more even geographic distribution over time in terms of absolute dollars spent, with the Northeastern and Western states declining from over 70% of total U.S. spending in 2010 to slightly more than 50% in 2025, with the South and Midwest splitting the remainder roughly evenly. Under our medium case scenario, annual incremental savings from customer-funded electric energy efficiency programs increase from 18.4 TWh in 2010 in the U.S. (which is about 0.5% of electric utility retail sales) to 28.8 TWh in 2025 (0.8% of retail sales). These savings would offset the majority of load growth in the Energy Information Administration’s most recent reference case forecast, given specific assumptions about the extent to which future energy efficiency program savings are captured in that forecast. However, the pathway that customer-funded efficiency programs ultimately take will depend on a series of key challenges and uncertainties associated both with the broader market and policy context and with the implementation and regulatory oversight of the energy efficiency programs themselves.« less

  1. The coming electric Wal-Mart

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drzemiecki, J.H.; Augustini, P.

    1993-07-15

    Market power in the competitive electric marketplace will depend on being a low-price leader. Electric utility executives are beginning to peer over the wall into the emerging world of competitive electric markets. Many will be terrified by the uncertainties and disorder associated with new service offerings such as retail wheeling and the transformation of other vestiges of the vertically integrated electric monopolies known for the past 100 years. The potential for increased competition for retail customers promises to have as fundamental an effect on the electric utility industry as Wal-Mart has had on retailing. Firms that are prepared for themore » new competitive environment will be in the strongest position to respond to the marketplace; those that are not prepared might want to consider the fate of the corner five-and-dime. To remain competitive, utility executives must take proactive steps to redefine their vision of their company's future. Such a redefinition must include a candid assessment of the strategies to be taken to reposition their firm to succeed, not just within the existing service area but in multiple markets.« less

  2. Space station electrical power distribution analysis using a load flow approach

    NASA Technical Reports Server (NTRS)

    Emanuel, Ervin M.

    1987-01-01

    The space station's electrical power system will evolve and grow in a manner much similar to the present terrestrial electrical power system utilities. The initial baseline reference configuration will contain more than 50 nodes or busses, inverters, transformers, overcurrent protection devices, distribution lines, solar arrays, and/or solar dynamic power generating sources. The system is designed to manage and distribute 75 KW of power single phase or three phase at 20 KHz, and grow to a level of 300 KW steady state, and must be capable of operating at a peak of 450 KW for 5 to 10 min. In order to plan far into the future and keep pace with load growth, a load flow power system analysis approach must be developed and utilized. This method is a well known energy assessment and management tool that is widely used throughout the Electrical Power Utility Industry. The results of a comprehensive evaluation and assessment of an Electrical Distribution System Analysis Program (EDSA) is discussed. Its potential use as an analysis and design tool for the 20 KHz space station electrical power system is addressed.

  3. Building the Clean Energy Future of States and Local Communities | NREL

    Science.gov Websites

    Partnership Successes Photo of a hand holding an ecobee smart thermostat Bringing Comfort, Convenience, and adoption-a win-win for both homeowners and utilities. Learn more. Blue electric bus in California's Santa Clara Valley Evaluating Electric Bus Grid Integration Performance in California's Santa Clara Valley

  4. Current shock: Competition in electricity service

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stuntz, L.G.

    1995-07-01

    Consumers may not have given much thought to who supplies their electricity, or how, but they should know that a tremendous battle is being waged behind their electrical sockets. Just as several long-distance telecommunication carriers (AT&T, Spring, MCI) now compete to serve each household, so too firms with currently unfamiliar names may one day - in the not-so-distant future - be competing to supply household electricity. Whether, when, and how this happens are questions at the center of a vigorous debate occurring in Washington, in state capitals, and in courtrooms around the United States. Many utilities, small consumer groups, andmore » environmentalists argue that moving to wide-open competition in electricity markets will benefit only the largest customers. With enhanced competition, what becomes of the electric utilities` historic obligation to serve? Customers and society may not be prepared to assume the risk that some customers could become, quite literally, powerless.« less

  5. Technology opportunities in a restructured electric industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gehl, S.

    1995-12-31

    This paper describes the Strategic Research & Development (SR&D) program of the Electric Power Research Institute (EPRI). The intent of the program is to anticipate and shape the scientific and technological future of the electricity enterprise. SR&D serves those industry R&D needs that are more exploratory, precompetitive, and longer-term. To this end, SR&D seeks to anticipate technological change and, where possible, shape that change to the advantage of the electric utility enterprise and its customers. SR&D`s response to this challenge is research and development program that addresses the most probable future of the industry, but at the same time ismore » robust against alternative futures. The EPRI SR&D program is organized into several vectors, each with a mission that relates directly to one or more EPRI industry goals, which are summarized in the paper. 1 fig., 2 tabs.« less

  6. Electrical distribution studies for the 200 Area tank farms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisler, J.B.

    1994-08-26

    This is an engineering study providing reliability numbers for various design configurations as well as computer analyses (Captor/Dapper) of the existing distribution system to the 480V side of the unit substations. The objective of the study was to assure the adequacy of the existing electrical system components from the connection at the high voltage supply point through the transformation and distribution equipment to the point where it is reduced to its useful voltage level. It also was to evaluate the reasonableness of proposed solutions of identified deficiencies and recommendations of possible alternate solutions. The electrical utilities are normally considered themore » most vital of the utility systems on a site because all other utility systems depend on electrical power. The system accepts electric power from the external sources, reduces it to a lower voltage, and distributes it to end-use points throughout the site. By classic definition, all utility systems extend to a point 5 feet from the facility perimeter. An exception is made to this definition for the electric utilities at this site. The electrical Utility System ends at the low voltage section of the unit substation, which reduces the voltage from 13.8 kV to 2,400, 480, 277/480 or 120/208 volts. These transformers are located at various distances from existing facilities. The adequacy of the distribution system which transports the power from the main substation to the individual area substations and other load centers is evaluated and factored into the impact of the future load forecast.« less

  7. Evaluating the Financial Vulnerability of a Major Electric Utility in the Southeastern U.S. to Drought under Climate Change and an Evolving Generation Mix.

    PubMed

    Kern, Jordan D; Characklis, Gregory W

    2017-08-01

    There is increasing recognition of the vulnerability of electric power systems to drought and the potential for both climate change and a shifting generation mix to alter this vulnerability. Nonetheless, the considerable research in this area has not been synthesized to inform electric utilities with respect to a key factor that influences their decisions about critical infrastructure: financial risk for shareholders. This study addresses this gap in knowledge by developing a systems framework for assessing the financial exposure of utilities to drought, with further consideration of the effects of climate change and a shifting generation mix. We then apply this framework to a major utility in the Southeastern U.S. Results suggest that extreme drought could cause profit shortfalls of more than $100 million if water temperature regulations are strictly enforced. However, even losses of this magnitude would not significantly impact returns for shareholders. This may inadvertently reduce pressure internally at utilities to incorporate drought vulnerability into long-term strategic planning, potentially leaving utilities and their customers at greater risk in the future.

  8. A Framework for Organizing Current and Future Electric Utility Regulatory and Business Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Satchwell, Andrew; Cappers, Peter; Schwartz, Lisa

    In this report, we will present a descriptive and organizational framework for incremental and fundamental changes to regulatory and utility business models in the context of clean energy public policy goals. We will also discuss the regulated utility's role in providing value-added services that relate to distributed energy resources, identify the "openness" of customer information and utility networks necessary to facilitate change, and discuss the relative risks, and the shifting of risks, for utilities and customers.

  9. A Marriage Proposal: Cable Television and Local Public Power.

    ERIC Educational Resources Information Center

    Schwartz, Louis; Woods, Robert A.

    Two articles reprinted from "Public Power" discuss the present state of cable television (TV), its future prospects, and the opportunities offered municipal utilities by cable TV. The proposal is that local publicly-owned electric utilities meet the requirements of the Federal Communications Commission (FCC) for cable TV ownership and have the…

  10. Modeling a Linear Generator for Energy Harvesting Applications

    DTIC Science & Technology

    2014-12-01

    sensors where electrical power is not available (e.g., wireless sensors on train cars). While piezoelectric harvesters are primarily utilized in...Ship and the Future of Electricity Generation ............3 2. Unmanned Sensor Energy Needs .......................................................4...18 Figure 8. Example two-pole, three-phase salient-pole synchronous machine showing the general layout of windings and major axis

  11. Photovoltaic technology for sustainability: An investigation of the distributed utility concept as a policy framework

    NASA Astrophysics Data System (ADS)

    Letendre, Steven Emery

    The U.S. electric utility sector in its current configuration is unsustainable. The majority of electricity in the United States is produced using finite fossil fuels. In addition, significant potential exists to improve the nation's efficient use of energy. A sustainable electric utility sector will be characterized by increased use of renewable energy sources and high levels of end-use efficiency. This dissertation analyzes two alternative policy approaches designed to move the U.S. electric utility sector toward sustainability. One approach is labeled incremental which involves maintaining the centralized structure of the electric utility sector but facilitating the introduction of renewable energy and efficiency into the electrical system through the pricing mechanism. A second policy approach was described in which structural changes are encouraged based on the emerging distributed utility (DU) concept. A structural policy orientation attempts to capture the unique localized benefits that distributed renewable resources and energy efficiency offer to electric utility companies and their customers. A market penetration analysis of PV in centralized energy supply and distributed peak-shaving applications is conducted for a case-study electric utility company. Sensitivity analysis was performed based on incremental and structural policy orientations. The analysis provides compelling evidence which suggests that policies designed to bring about structural change in the electric utility sector are needed to move the industry toward sustainability. Specifically, the analysis demonstrates that PV technology, a key renewable energy option likely to play an important role in a renewable energy future, will begin to penetrate the electrical system in distributed peak-shaving applications long before the technology is introduced as a centralized energy supply option. Most policies to date, which I term incremental, attempt to encourage energy efficiency and renewables through the pricing system. Based on past policy experience, it is unlikely that such an approach would allow PV to compete in Delaware as an energy supply option in the next ten to twenty years. Alternatively, a market-based, or green pricing, approach will not create significant market opportunities for PV as a centralized energy supply option. However, structural policies designed to encourage the explicit recognition of the localized benefits of distributed resources could result in PV being introduced into the electrical system early in the next century.

  12. Life Cycle Assessment of Coal-fired Power Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spath, P. L.; Mann, M. K.; Kerr, D. R.

    1999-09-01

    Coal has the largest share of utility power generation in the US, accounting for approximately 56% of all utility-produced electricity (US DOE, 1998). Therefore, understanding the environmental implications of producing electricity from coal is an important component of any plan to reduce total emissions and resource consumption. A life cycle assessment (LCA) on the production of electricity from coal was performed in order to examine the environmental aspects of current and future pulverized coal boiler systems. Three systems were examined: (1) a plant that represents the average emissions and efficiency of currently operating coal-fired power plants in the US (thismore » tells us about the status quo), (2) a new coal-fired power plant that meets the New Source Performance Standards (NSPS), and (3) a highly advanced coal-fired power plant utilizing a low emission boiler system (LEBS).« less

  13. The strategic role of electric vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balzhiser, R.E.; Bryson, J.E

    Electric vehicles could become one of the hottest items in the international marketplace within the next five years, say two electric-utility officials. Richard E. Balzhiser, president of the Electric Power Research Institute in Palo Alto, California, and John E. Bryson, chief executive officer of Southern California Edison Company in Rosemead, California, say the opportunity is there. They strongly urge the electric utility industry to join with policy makers, urban planners, and environmentalists in seizing this historic opportunity: [open quotes]Electric transportation is the preferred mode for the future, not only for its direct environmental advantages but also for its broader valuemore » to the economy and national security,[close quotes] they claim. Acknowledging that the limitation of present batteries is the biggest technological handicap to widespread use of electric vehicles, they predict significant improvements over the next few years, thanks in part to the newly formed U.S. Advanced Battery Consortium. Government support will be vital in successfully launching a vital and self-sustaining electric-vehicle market, they say. But such support, they add, is fully justified.« less

  14. Long-range PV R&D and the electric utilities

    NASA Astrophysics Data System (ADS)

    Peterson, Terry M.

    1997-04-01

    In the short term, photovoltaics will probably continue to enjoy great success in niche markets and non-utility businesses, but see relatively little use within utilities. Deregulation is driving major restructuring of the electric-utility sector, causing great uncertainty among its planners and executives, and leading them to favor cost-cutting over other corporate strategies. However, the competitive motives at the root of that restructuring will ultimately induce resourceful utility executives to seek novel non-commodity energy-service businesses to sustain their companies' success in the deregulated industry of the future. In that industry, technology innovation will play a very important role. Specifically, photovoltaics will be highly valued in light of its unsurpassed modularity, extreme siting ease, very low operation and maintenance costs, and public popularity. The eventual leaders in wielding that powerful technology likely will be among those who recognize those assets earliest and strive to bring its promises to reality through innovative applications.

  15. Prediction of energy balance and utilization for solar electric cars

    NASA Astrophysics Data System (ADS)

    Cheng, K.; Guo, L. M.; Wang, Y. K.; Zafar, M. T.

    2017-11-01

    Solar irradiation and ambient temperature are characterized by region, season and time-domain, which directly affects the performance of solar energy based car system. In this paper, the model of solar electric cars used was based in Xi’an. Firstly, the meteorological data are modelled to simulate the change of solar irradiation and ambient temperature, and then the temperature change of solar cell is calculated using the thermal equilibrium relation. The above work is based on the driving resistance and solar cell power generation model, which is simulated under the varying radiation conditions in a day. The daily power generation and solar electric car cruise mileage can be predicted by calculating solar cell efficiency and power. The above theoretical approach and research results can be used in the future for solar electric car program design and optimization for the future developments.

  16. Creating biodiversity partnerships: The Nature Conservancy's perspective

    NASA Astrophysics Data System (ADS)

    Sawhill, John C.

    1996-11-01

    The Nature Conservancy is an international organization dedicated to the mission of conserving biodiversity throughout the world. By working in a nonconfrontational manner, an approach that has promoted both government and corporate sponsorship of its activities, The Nature Conservancy has developed symbiotic relationships with many electric utility companies. Drawing on the organization's experiences, and the experiences of the author as the President and Chief Executive Officer of The Nature Conservancy, five broad areas of cooperation between conservation organizations and the utility industry are explored: landmanagement agreements, mitigation projects, conflictavoidance programs, program support, and volunteer activities. The paper is concluded with comments on the future trends of biodiversity conservation, challenging the electric utility industry to become involved with conservation efforts by forming cooperative partnerships.

  17. Inventory of Power Plants in the United States, October 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Inventory of Power Plants in the United States is prepared annually by the Survey Management Division, Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), US Department of Energy (DOE). The purpose of this publication is to provide year-end statistics about electric generating units operated by electric utilities in the United States (the 50 States and the District of Columbia). The publication also provides a 10-year outlook of future generating unit additions. Data summarized in this report are useful to a wide audience including Congress, Federal and State agencies, the electric utility industry, and the generalmore » public. Data presented in this report were assembled and published by the EIA to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended. The report is organized into the following chapters: Year in Review, Operable Electric Generating Units, and Projected Electric Generating Unit Additions. Statistics presented in these chapters reflect the status of electric generating units as of December 31, 1992.« less

  18. The smart meter and a smarter consumer: quantifying the benefits of smart meter implementation in the United States.

    PubMed

    Cook, Brendan; Gazzano, Jerrome; Gunay, Zeynep; Hiller, Lucas; Mahajan, Sakshi; Taskan, Aynur; Vilogorac, Samra

    2012-04-23

    The electric grid in the United States has been suffering from underinvestment for years, and now faces pressing challenges from rising demand and deteriorating infrastructure. High congestion levels in transmission lines are greatly reducing the efficiency of electricity generation and distribution. In this paper, we assess the faults of the current electric grid and quantify the costs of maintaining the current system into the future. While the proposed "smart grid" contains many proposals to upgrade the ailing infrastructure of the electric grid, we argue that smart meter installation in each U.S. household will offer a significant reduction in peak demand on the current system. A smart meter is a device which monitors a household's electricity consumption in real-time, and has the ability to display real-time pricing in each household. We conclude that these devices will provide short-term and long-term benefits to utilities and consumers. The smart meter will enable utilities to closely monitor electricity consumption in real-time, while also allowing households to adjust electricity consumption in response to real-time price adjustments.

  19. Performance and operational economics estimates for a coal gasification combined-cycle cogeneration powerplant

    NASA Technical Reports Server (NTRS)

    Nainiger, J. J.; Burns, R. K.; Easley, A. J.

    1982-01-01

    A performance and operational economics analysis is presented for an integrated-gasifier, combined-cycle (IGCC) system to meet the steam and baseload electrical requirements. The effect of time variations in steam and electrial requirements is included. The amount and timing of electricity purchases from sales to the electric utility are determined. The resulting expenses for purchased electricity and revenues from electricity sales are estimated by using an assumed utility rate structure model. Cogeneration results for a range of potential IGCC cogeneration system sizes are compared with the fuel consumption and costs of natural gas and electricity to meet requirements without cogeneration. The results indicate that an IGCC cogeneration system could save about 10 percent of the total fuel energy presently required to supply steam and electrical requirements without cogeneration. Also for the assumed future fuel and electricity prices, an annual operating cost savings of 21 percent to 26 percent could be achieved with such a cogeneration system. An analysis of the effects of electricity price, fuel price, and system availability indicates that the IGCC cogeneration system has a good potential for economical operation over a wide range in these assumptions.

  20. Electric machine differential for vehicle traction control and stability control

    NASA Astrophysics Data System (ADS)

    Kuruppu, Sandun Shivantha

    Evolving requirements in energy efficiency and tightening regulations for reliable electric drivetrains drive the advancement of the hybrid electric (HEV) and full electric vehicle (EV) technology. Different configurations of EV and HEV architectures are evaluated for their performance. The future technology is trending towards utilizing distinctive properties in electric machines to not only to improve efficiency but also to realize advanced road adhesion controls and vehicle stability controls. Electric machine differential (EMD) is such a concept under current investigation for applications in the near future. Reliability of a power train is critical. Therefore, sophisticated fault detection schemes are essential in guaranteeing reliable operation of a complex system such as an EMD. The research presented here emphasize on implementation of a 4kW electric machine differential, a novel single open phase fault diagnostic scheme, an implementation of a real time slip optimization algorithm and an electric machine differential based yaw stability improvement study. The proposed d-q current signature based SPO fault diagnostic algorithm detects the fault within one electrical cycle. The EMD based extremum seeking slip optimization algorithm reduces stopping distance by 30% compared to hydraulic braking based ABS.

  1. The gates open wide. [The Energy Policy Act of 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burton, S.D.

    1993-01-01

    For independent electric producers, the new energy law opens wide the gate to the future. It does not give an entitlement or a subsidy; merely the freedom to expand - along with utilities - electricity's share of the next century's energy market. If anything, the new law, by removing investment barriers and creating the right to transmission access, affirms the potential of electrical generation and urges us all to get on with the job. It underscores the most powerful forces for future growth: the increasing demand for more electric power, greater production at less cost, and lessening demand on themore » environment's resources. With half-century-old barriers to broader production finally down, the real action now belongs to the regulators. It's one thing to pass a bill. It's quite another to make it work. The reform bill does not deregulate, but essentially defines public policy objectives (competitive markets), creates a framework to develop them, and vest responsibility for the regulation of the generation and sale of power where it belongs: with state public utility commissions and the FERC. It is going to be up to them to set the limits of the market, and to set the pace of expansion; in other words, to rearrange the play to achieve the bill's objective.« less

  2. Fuel Economy Improvement by Utilizing Thermoelectric Generator in Heavy-Duty Vehicle

    NASA Astrophysics Data System (ADS)

    Deng, Y. D.; Hu, T.; Su, C. Q.; Yuan, X. H.

    2017-05-01

    Recent advances in thermoelectric technology have made exhaust-based thermoelectric generators (TEGs) promising for recovery of waste heat. Utilization of exhaust-based TEGs in heavy-duty vehicles was studied in this work. Given that the generated power is limited, the alternator is still indispensable. To improve the fuel economy, the generated electricity must be integrated into the automotive electrical system and consumed by electrical loads. Therefore, two feasible ways of integrating the generated electricity into the automotive electrical system are discussed: one in which the original alternator works only under certain conditions, i.e., the "thermostat" strategy, and another in which a smaller alternator is adopted and works together with the TEG, i.e., the "cooperative work" strategy. The overall performance and efficiency are obtained through simulation analysis. The simulation results show that both methods can improve the fuel economy, but the former provides better results. Moreover, if the electrical loads can be properly modified, the fuel economy is further improved. These simulation results lay a solid foundation for application of TEGs in vehicles in the future.

  3. Electricity Bill Savings from Residential Photovoltaic Systems: Sensitivities to Changes in Future Electricity Market Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darghouth, Naim; Barbose, Galen; Wiser, Ryan

    2013-01-09

    Customer-sited photovoltaic (PV) systems in the United States are often compensated at the customer’s underlying retail electricity rate through net metering. Calculations of the customer economics of PV, meanwhile, often assume that retail rate structures and PV compensation mechanisms will not change and that retail electricity prices will increase (or remain constant) over time, thereby also increasing (or keeping constant) the value of bill savings from PV. Given the multitude of potential changes to retail rates and PV compensation mechanisms in the future, however, understanding how such changes might impact the value of bill savings from PV is critical formore » policymakers, regulators, utilities, the solar industry, and potential PV owners, i.e., any stakeholder interested in understanding uncertainties in and potential changes to the long-term customer economics of PV. This scoping study investigates the impact of, and interactions among, three key sources of uncertainty in the future value of bill savings from customer-sited PV, focusing in particular on residential customers. These three sources of uncertainty are: changes to electricity market conditions that would affect retail electricity prices, changes to the types of retail rate structures available to residential customers with PV, and shifts away from standard net-metering toward other compensation mechanisms for residential PV.« less

  4. Autonomously managed electrical power systems

    NASA Technical Reports Server (NTRS)

    Callis, Charles P.

    1986-01-01

    The electric power systems for future spacecraft such as the Space Station will necessarily be more sophisticated and will exhibit more nearly autonomous operation than earlier spacecraft. These new power systems will be more reliable and flexible than their predecessors offering greater utility to the users. Automation approaches implemented on various power system breadboards are investigated. These breadboards include the Hubble Space Telescope power system test bed, the Common Module Power Management and Distribution system breadboard, the Autonomusly Managed Power System (AMPS) breadboard, and the 20 kilohertz power system breadboard. Particular attention is given to the AMPS breadboard. Future plans for these breadboards including the employment of artificial intelligence techniques are addressed.

  5. On the Path to SunShot - Utility Regulatory Business Model Reforms forAddressing the Financial Impacts of Distributed Solar on Utilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    Net-energy metering (NEM) with volumetric retail electricity pricing has enabled rapid proliferation of distributed photovoltaics (DPV) in the United States. However, this transformation is raising concerns about the potential for higher electricity rates and cost-shifting to non-solar customers, reduced utility shareholder profitability, reduced utility earnings opportunities, and inefficient resource allocation. Although DPV deployment in most utility territories remains too low to produce significant impacts, these concerns have motivated real and proposed reforms to utility regulatory and business models, with profound implications for future DPV deployment. This report explores the challenges and opportunities associated with such reforms in the context ofmore » the U.S. Department of Energy’s SunShot Initiative. As such, the report focuses on a subset of a broader range of reforms underway in the electric utility sector. Drawing on original analysis and existing literature, we analyze the significance of DPV’s financial impacts on utilities and non-solar ratepayers under current NEM rules and rate designs, the projected effects of proposed NEM and rate reforms on DPV deployment, and alternative reforms that could address utility and ratepayer concerns while supporting continued DPV growth. We categorize reforms into one or more of four conceptual strategies. Understanding how specific reforms map onto these general strategies can help decision makers identify and prioritize options for addressing specific DPV concerns that balance stakeholder interests.« less

  6. Competition and Cooperation of Distributed Generation and Power System

    NASA Astrophysics Data System (ADS)

    Miyake, Masatoshi; Nanahara, Toshiya

    Advances in distributed generation technologies together with the deregulation of an electric power industry can lead to a massive introduction of distributed generation. Since most of distributed generation will be interconnected to a power system, coordination and competition between distributed generators and large-scale power sources would be a vital issue in realizing a more desirable energy system in the future. This paper analyzes competitions between electric utilities and cogenerators from the viewpoints of economic and energy efficiency based on the simulation results on an energy system including a cogeneration system. First, we examine best response correspondence of an electric utility and a cogenerator with a noncooperative game approach: we obtain a Nash equilibrium point. Secondly, we examine the optimum strategy that attains the highest social surplus and the highest energy efficiency through global optimization.

  7. The smart meter and a smarter consumer: quantifying the benefits of smart meter implementation in the United States

    PubMed Central

    2012-01-01

    The electric grid in the United States has been suffering from underinvestment for years, and now faces pressing challenges from rising demand and deteriorating infrastructure. High congestion levels in transmission lines are greatly reducing the efficiency of electricity generation and distribution. In this paper, we assess the faults of the current electric grid and quantify the costs of maintaining the current system into the future. While the proposed “smart grid” contains many proposals to upgrade the ailing infrastructure of the electric grid, we argue that smart meter installation in each U.S. household will offer a significant reduction in peak demand on the current system. A smart meter is a device which monitors a household’s electricity consumption in real-time, and has the ability to display real-time pricing in each household. We conclude that these devices will provide short-term and long-term benefits to utilities and consumers. The smart meter will enable utilities to closely monitor electricity consumption in real-time, while also allowing households to adjust electricity consumption in response to real-time price adjustments. PMID:22540990

  8. Modeling of Electric Demand for Sustainable Energy and Management in India Using Spatio-Temporal DMSP-OLS Night-Time Data.

    PubMed

    Tripathy, Bismay Ranjan; Sajjad, Haroon; Elvidge, Christopher D; Ting, Yu; Pandey, Prem Chandra; Rani, Meenu; Kumar, Pavan

    2018-04-01

    Changes in the pattern of electric power consumption in India have influenced energy utilization processes and socio-economic development to greater extent during the last few decades. Assessment of spatial distribution of electricity consumption is, thus, essential for projecting availability of energy resource and planning its infrastructure. This paper makes an attempt to model the future electricity demand for sustainable energy and its management in India. The nighttime light database provides a good approximation of availability of energy. We utilized defense meteorological satellite program-operational line-scan system (DMSP-OLS) nighttime satellite data, electricity consumption (1993-2013), gross domestic product (GDP) and population growth to construct the model. We also attempted to examine the sensitiveness of electricity consumption to GDP and population growth. The results revealed that the calibrated DMSP and model has provided realistic information on the electric demand with respect to GDP and population, with a better accuracy of r 2  = 0.91. The electric demand was found to be more sensitive to GDP (r = 0.96) than population growth (r = 0.76) as envisaged through correlation analysis. Hence, the model proved to be useful tool in predicting electric demand for its sustainable use and management.

  9. Modeling of Electric Demand for Sustainable Energy and Management in India Using Spatio-Temporal DMSP-OLS Night-Time Data

    NASA Astrophysics Data System (ADS)

    Tripathy, Bismay Ranjan; Sajjad, Haroon; Elvidge, Christopher D.; Ting, Yu; Pandey, Prem Chandra; Rani, Meenu; Kumar, Pavan

    2018-04-01

    Changes in the pattern of electric power consumption in India have influenced energy utilization processes and socio-economic development to greater extent during the last few decades. Assessment of spatial distribution of electricity consumption is, thus, essential for projecting availability of energy resource and planning its infrastructure. This paper makes an attempt to model the future electricity demand for sustainable energy and its management in India. The nighttime light database provides a good approximation of availability of energy. We utilized defense meteorological satellite program-operational line-scan system (DMSP-OLS) nighttime satellite data, electricity consumption (1993-2013), gross domestic product (GDP) and population growth to construct the model. We also attempted to examine the sensitiveness of electricity consumption to GDP and population growth. The results revealed that the calibrated DMSP and model has provided realistic information on the electric demand with respect to GDP and population, with a better accuracy of r 2 = 0.91. The electric demand was found to be more sensitive to GDP ( r = 0.96) than population growth ( r = 0.76) as envisaged through correlation analysis. Hence, the model proved to be useful tool in predicting electric demand for its sustainable use and management.

  10. Future directions: Integrated resource planning

    NASA Astrophysics Data System (ADS)

    Bauer, D. C.; Eto, J.

    Integrated resource planning or IRP is the process for integrating supply- and demand-side resources to provide energy services at a cost that balances the interests of all stakeholders. It now is the resource planning process used by electric utilities in over 30 states. The goals of IRP have evolved from least cost planning and encouragement of demand-side management to broader, more complex issues including core competitive business activity, risk management and sharing, accounting for externalities, and fuel switching between gas and electricity. IRP processes are being extended to other interior regions of the country, to non-investor owned utilities, and to regional (rather than individual utility) planning bases, and to other fuels (natural gas). The comprehensive, multi-valued, and public reasoning characteristics of IRP could be extended to applications beyond energy, e.g., transportation, surface water management, and health care in ways suggested.

  11. Monitoring and control requirement definition study for Dispersed Storage and Generation (DSG). Volume 3, appendix B: State of the art, trends, and potential growth of selected DSG technologies

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Present and future relatively small (30 MW) energy systems, such as solar thermal electric, photovoltaic, wind, fuel cell, storage battery, hydro, and cogeneration can help achieve national energy goals and can be dispersed throughout the distribution portion of an electric utility system. Based on current projections, it appears that dispersed storage and generation (DSG) electrical energy will comprise only a small portion, from 4 to 10 percent, of the national total by the end of this century. In general, the growth potential for DSG seems favorable in the long term because of finite fossil energy resources and increasing fuel prices. Recent trends, especially in the institutional and regulatory fields, favor greater use of the DSGs for the future.

  12. Monitoring and control requirement definition study for Dispersed Storage and Generation (DSG). Volume 3, appendix B: State of the art, trends, and potential growth of selected DSG technologies

    NASA Astrophysics Data System (ADS)

    1980-10-01

    Present and future relatively small (30 MW) energy systems, such as solar thermal electric, photovoltaic, wind, fuel cell, storage battery, hydro, and cogeneration can help achieve national energy goals and can be dispersed throughout the distribution portion of an electric utility system. Based on current projections, it appears that dispersed storage and generation (DSG) electrical energy will comprise only a small portion, from 4 to 10 percent, of the national total by the end of this century. In general, the growth potential for DSG seems favorable in the long term because of finite fossil energy resources and increasing fuel prices. Recent trends, especially in the institutional and regulatory fields, favor greater use of the DSGs for the future.

  13. Electric portfolio modeling with stochastic water - climate interactions: Implications for co-management of water and electric utilities

    NASA Astrophysics Data System (ADS)

    Woldeyesus, Tibebe Argaw

    Water supply constraints can significantly restrict electric power generation, and such constraints are expected to worsen with future climate change. The overarching goal of this thesis is to incorporate stochastic water-climate interactions into electricity portfolio models and evaluate various pathways for water savings in co-managed water-electric utilities. Colorado Springs Utilities (CSU) is used as a case study to explore the above issues. The thesis consists of three objectives: Characterize seasonality of water withdrawal intensity factors (WWIF) for electric power generation and develop a risk assessment framework due to water shortages; Incorporate water constraints into electricity portfolio models and evaluate the impact of varying capital investments (both power generation and cooling technologies) on water use and greenhouse gas emissions; Compare the unit cost and overall water savings from both water and electric sectors in co-managed utilities to facilitate overall water management. This thesis provided the first discovery and characterization of seasonality of WWIF with distinct summertime and wintertime variations of +/-17% compared to the power plant average (0.64gal/kwh) which itself is found to be significantly higher than the literature average (0.53gal/kwh). Both the streamflow and WWIF are found to be highly correlated with monthly average temperature (r-sq = 89%) and monthly precipitation (r-sq of 38%) enabling stochastic simulation of future WWIF under moderate climate change scenario. Future risk to electric power generation also showed the risk to be underestimated significantly when using either the literature average or the power plant average WWIF. Seasonal variation in WWIF along with seasonality in streamflow, electricity demand and other municipal water demands along with storage are shown to be important factors for more realistic risk estimation. The unlimited investment in power generation and/or cooling technologies is also found to save water and GHG emissions by 68% and 75% respectively at a marginal levelized cost increase of 12%. In contrast, the zero investment scenarios (which optimizes exiting technologies to address water scarcity constraints on power generation) shows 50% water savings and 23% GHG emissions reduction at a relatively high marginal levelized cost increase of 37%. Water saving strategies in electric sector show very high cost of water savings (48,000 and 200,000)/Mgal-year under unlimited investment and zero investment scenarios respectively, but they have greater water saving impacts of 6% to CSU municipal water demand; while the individual water saving strategies from water sector have low cost of water savings ranging from (37-1,500)/Mgal-year but with less than 0.5% water reduction impact to CSU due to their low penetration. On the other hand, use of reclaimed water for power plant cooling systems have shown great water savings of up to 92% against the BAU and cost of water saving from (0-73,000)/Mgal-year when integrated with unlimited investment and zero investment water minimizing scenarios respectively in the electric sector. Overall, cities need to focus primarily on use of reclaimed water and in new generation technologies' investment including cooling system retrofits while focusing on expanding the penetration rate of individual water saving strategies in the water sector.

  14. Basic and applied research related to the technology of space energy conversion systems, 1982 - 1983

    NASA Technical Reports Server (NTRS)

    Hertzberg, A.

    1983-01-01

    Topics on solar energy conversion concepts and applications are discussed. An overview of the current status and future utilization of radiation receivers for electrical energy generation, liquid droplet radiation systems, and liquid droplet heat exchangers is presented.

  15. Solar Energy.

    ERIC Educational Resources Information Center

    Eaton, William W.

    Presented is the utilization of solar radiation as an energy resource principally for the production of electricity. Included are discussions of solar thermal conversion, photovoltic conversion, wind energy, and energy from ocean temperature differences. Future solar energy plans, the role of solar energy in plant and fossil fuel production, and…

  16. Utility involvement in cogeneration and small power production since PURPA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hallaron, S.A.

    One of the objectives of PURPA was more efficient energy production through cogeneration and the use of renewable resources. Under PURPA regulations, cogeneration and small power-producing plants may file for qualifying status to receive benefits allowed by the National Energy Act. There has been a steady increase in the number of qualifying facilities (QFs) and some electric utilities have increased ownership of small power-producing facilities as well as electric purchases from QFs. QFs are not only exempt from federal and state utility regulations under PURPA, but they also may be eligible for an exemption from the provisions of the Fuelmore » Use Act of 1978 which prohibits or limits use of oil and natural gas in power plants and other major fuel-burning installations. To obtain QF status under PURPA, small power-producing facilities are limited to a capacity of 80 MW or less and must use some combination of biomass, waste, geothermal, or other renewable resource as the primary energy source. Cogenerators are not limited in size or fuel. The purchase of electricity from cogenerators and small power producers can be an attractive alternative for utilities in meeting future demands.« less

  17. Electric network interconnection of Mashreq Arab Countries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El-Amin, I.M.; Al-Shehri, A.M.; Opoku, G.

    1994-12-01

    Power system interconnection is a well established practice for a variety of technical and economical reasons. Several interconnected networks exist worldwide for a number of factors. Some of these networks cross international boundaries. This presentation discusses the future developments of the power systems of Mashreq Arab Countries (MAC). MAC consists of Bahrain, Egypt, Iraq, Jordan, Kuwait, Lebanon, Oman, Qatar, Saudi Arabia, United Arab Emirates (UAE), and Yemen. Mac power systems are operated by government or semigovernment bodies. Many of these countries have national or regional electric grids but are generally isolated from each other. With the exception of Saudi Arabiamore » power systems, which employ 60 Hz, all other MAC utilities use 50 Hz frequency. Each country is served by one utility, except Saudi Arabia, which is served by four major utilities and some smaller utilities serving remote towns and small load centers. The major utilities are the Saudi Consolidated electric Company in the Eastern Province (SCECO East), SCECO Center, SCECO West, and SCECO South. These are the ones considered in this study. The energy resources in MAC are varied. Countries such as Egypt, Iraq, and Syria have significant hydro resources.The gulf countries and Iraq have abundant fossil fuel, The variation in energy resources as well as the characteristics of the electric load make it essential to look into interconnections beyond the national boundaries. Most of the existing or planned interconnections involve few power systems. A study involving 12 countries and over 20 utilities with different characteristics represents a very large scale undertaking.« less

  18. [Methods of brain stimulation based on weak electric current--future tool for the clinician?].

    PubMed

    Kotilainen, Tuukka; Lehto, Soili M

    2016-01-01

    Methods of brain stimulation based on a weak electric current are non-invasive neuromodulation techniques. They include transcranial direct current, alternating current and random noise stimulation. These methods modify the membrane potential of neurons without triggering the action potential, and have been successfully utilized to influence cognition and regulation of emotions in healthy experimental subjects. In clinical studies, indications of the efficacy of these techniques have been obtained in the treatment of depression, schizophrenia, memory disorders and pain as well as in stroke rehabilitation. It is hoped that these techniques will become established as part of the care and rehabilitation of psychiatric and neurologic patients in the future.

  19. The feasibility of replacing or upgrading utility distribution transformers during routine maintenance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, P.R.; Van Dyke, J.W.; McConnell, B.W.

    It is estimated that electric utilities use about 40 million distribution transformers in supplying electricity to customers in the United States. Although utility distribution transformers collectively have a high average efficiency, they account for approximately 61 billion kWh of the 229 billion kWh of energy lost annually in the delivery of electricity. Distribution transformers are being replaced over time by new, more efficient, lower-loss units during routine utility maintenance of power distribution systems. Maintenance is typically not performed on units in service. However, units removed from service with appreciable remaining life are often refurbished and returned to stock. Distribution transformersmore » may be removed from service for many reasons, including failure, over- or underloading, or line upgrades such as voltage changes or rerouting. When distribution transformers are removed from service, a decision must be made whether to dispose of the transformer and purchase a lower-loss replacement or to refurbish the transformer and return it to stock for future use. This report contains findings and recommendations on replacing utility distribution transformers during routine maintenance, which is required by section 124(c) of the Energy Policy Act of 1992. The objectives of the study are to evaluate the practicability, cost-effectiveness, and potential energy savings of replacing or upgrading existing transformers during routine utility maintenance and to develop recommendations on was to achieve the potential energy savings.« less

  20. The chiller`s role within a utility`s marketing strategy: Using chiller related products and services to win and retain customers. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-04-01

    Commercial chillers are used in space and industrial process cooling. Approximately 3% of commercial buildings, representing 19% of all commercial floor space, are cooled by chillers. Consequently, every chiller represents significant electric (or gas) consumption. Chillers can comprise as much as 30% of a large office building`s electrical load. The selection decisions (electric versus gas, standard versus high efficiency, thermal storage or no thermal storage, etc.) for a new or replacement chiller will affect the customer`s energy consumption for twenty to thirty years. Consequently, this decision can play a major role in the customer`s relationship with the energy provider. However,more » even though these chiller decisions have a significant impact on the utility, today the utility has limited influence over these decisions. EPRI commissioned this study to develop understanding that will help utilities increase their influence over chiller decisions. To achieve this objective, this study looks at the customer`s behavior -- how they make chiller decisions, how the customer`s behavior and decisions are influenced today, and how these decisions might change in the future due to the impact of deregulation and changes in customer goals. The output of this project includes a list of product and service offerings that utilities and EPRI could offer to increase their influence over chiller decisions.« less

  1. New and future heat pump technologies

    NASA Astrophysics Data System (ADS)

    Creswick, F. A.

    It is not possible to say for sure what future heat pumps will look like, but there are some interesting possibilities. In the next five years, we are likely to see US heat pumps with two kinds of innovations: capacity modulation and charge control. Capacity modulation will be accomplished by variable-speed compressor motors. The objective of charge control is to keep the refrigerant charge in the system where it belongs for best performance; there are probably many ways to accomplish this. Charge control will improve efficiency and durability; capacity modulation will further improve efficiency and comfort. The Stirling cycle heat pump has several interesting advantages, but it is farther out in time. At present, we don't know how to make it as efficient as the conventional vapor-compression heat pump. Electric utility people should be aware that major advances are being made in gas-fired heat pumps which could provide strong competition in the future. However, even a gas-fired heat pump has a substantial auxiliary electric power requirement. The resources needed to develop advanced heat pumps are substantial and foreign competition will be intense. It will be important for utilities, manufacturers, and the federal government to work in close cooperation.

  2. Advancing Transportation through Vehicle Electrification - PHEV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bazzi, Abdullah; Barnhart, Steven

    2014-12-31

    FCA US LLC viewed the American Recovery and Reinvestment Act (ARRA) as an historic opportunity to learn about and develop PHEV technologies and create the FCA US LLC engineering center for Electrified Powertrains. The ARRA funding supported FCA US LLC’s light-duty electric drive vehicle and charging infrastructure-testing activities and enabled FCA US LLC to utilize the funding on advancing Plug-in Hybrid Electric Vehicle (PHEV) technologies for production on future programs. FCA US LLC intended to develop the next-generations of electric drive and energy batteries through a properly paced convergence of standards, technology, components and common modules. To support the developmentmore » of a strong, commercially viable supplier base, FCA US LLC also utilized this opportunity to evaluate various designated component and sub-system suppliers. The original proposal of this project was submitted in May 2009 and selected in August 2009. The project ended in December 2014.« less

  3. Capital requirements for the US investor-owned electric utility industry, 1985-2005: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolbe, A.L.; Johnson, S.K.; O'Loughlin, M.P.

    1988-06-01

    In recent years, financial concerns have increasingly constrained the traditional utility planning focus, on engineering and economic tradeoffs. After a troubled period, however, many utilities have completed major construction programs and face fewer financial constraints in the near term, while other utilities hope to achieve this status shortly. At the same time, many utilities and regulatory commissions are reluctant to begin construction of large new plants, both because of current high reserve margins and because of past unhappy outcomes for ratepayers and investors when load growth proved lower than expected. This study examines the potential long-run financial constraints and risksmore » the electric utility industry faces as a result of the current incentives to delay the start of major new projects as long as possible. The study analyzes industry-wide financial and operating data from 1985 to 2005 under several scenarios. The findings suggest that if the future is no worse than postulated in our scenarios, total construction expenditures and external funding requirements should be manageable at the national level. Also, the study finds that the cost of delaying new construction /en dash/ although possibly significant /en dash/ will depend critically on the relative prices of coal and natural gas which actually occur. Thus this report concludes that the possibility of significant future financial constraints does not appear to be a problem at the national level. There is good reason to believe, however, that there could be a problem under certain adverse conditions for specific regions and for individual utilities. Given the relatively large amount of external funds likely to be needed by some utilities in those situations and the risks investors may perceive in supplying these funds, financial constraints may cause some construction delays. 23 refs., 21 figs., 6 tabs.« less

  4. 7 CFR 1767.21 - Operating income.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... amortization charges applicable to amounts included in the electric plant accounts for limited-term franchises..., franchise taxes, Federal excise taxes, social security taxes, and all other taxes assessed by Federal, state... include, as approved by RUS, amounts relating to gains from the disposition of future use utility plant...

  5. The Impact of Utility Tariff Evolution on Behind-the-Meter PV Adoption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, Wesley J; Gagnon, Pieter J; Frew, Bethany A

    This analysis uses a new method to link the NREL Regional Energy Deployment System (ReEDS) capacity expansion model with the NREL distributed generation market demand model (dGen) to explore the impact that the evolution of retail electricity tariffs can have on the adoption of distributed photovoltaics (DPV). The evolution most notably takes the form of decreased mid-day electricity costs, as low-cost PV reduces the marginal cost of electricity during those hours and the changes are subsequently communicated to electricity consumers through tariffs. We find that even under the low PV prices of the new SunShot targets the financial performance ofmore » DPV under evolved tariffs still motivates behind-the-meter adoption, despite significant reduction in the costs of electricity during afternoon periods driven by deployment of cheap utility-scale PV. The amount of DPV in 2050 in these low-cost futures ranged from 206 GW to 263 GW, a 13-fold and 16-fold increase over 2016 adoption levels respectively. From a utility planner's perspective, the representation of tariff evolution has noteworthy impacts on forecasted DPV adoption in scenarios with widespread time-of-use tariffs. Scenarios that projected adoption under a portfolio of time-of-use tariffs, but did not represent the evolution of those tariffs, predicted up to 36 percent more DPV in 2050, compared to scenarios that did not represent that evolution. Lastly, we find that a reduction in DPV deployment resulting from evolved tariffs had a negligible impact on the total generation from PV - both utility-scale and distributed - in the scenarios we examined. Any reduction in DPV generation was replaced with utility-scale PV generation, to arrive at the quantity that makes up the least-cost portfolio.« less

  6. 2025 California Demand Response Potential Study - Charting California’s Demand Response Future. Final Report on Phase 2 Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alstone, Peter; Potter, Jennifer; Piette, Mary Ann

    California’s legislative and regulatory goals for renewable energy are changing the power grid’s dynamics. Increased variable generation resource penetration connected to the bulk power system, as well as, distributed energy resources (DERs) connected to the distribution system affect the grid’s reliable operation over many different time scales (e.g., days to hours to minutes to seconds). As the state continues this transition, it will require careful planning to ensure resources with the right characteristics are available to meet changing grid management needs. Demand response (DR) has the potential to provide important resources for keeping the electricity grid stable and efficient, tomore » defer upgrades to generation, transmission and distribution systems, and to deliver customer economic benefits. This study estimates the potential size and cost of future DR resources for California’s three investor-owned utilities (IOUs): Pacific Gas and Electric Company (PG&E), Southern California Edison Company (SCE), and San Diego Gas & Electric Company (SDG&E). Our goal is to provide data-driven insights as the California Public Utilities Commission (CPUC) evaluates how to enhance DR’s role in meeting California’s resource planning needs and operational requirements. We address two fundamental questions: 1. What cost-competitive DR service types will meet California’s future grid needs as it moves towards clean energy and advanced infrastructure? 2. What is the size and cost of the expected resource base for the DR service types?« less

  7. A preliminary estimate of future communications traffic for the electric power system

    NASA Technical Reports Server (NTRS)

    Barnett, R. M.

    1981-01-01

    Diverse new generator technologies using renewable energy, and to improve operational efficiency throughout the existing electric power systems are presented. A description of a model utility and the information transfer requirements imposed by incorporation of dispersed storage and generation technologies and implementation of more extensive energy management are estimated. An example of possible traffic for an assumed system, and an approach that can be applied to other systems, control configurations, or dispersed storage and generation penetrations is provided.

  8. Liquid Crystals: The Phase of the Future.

    ERIC Educational Resources Information Center

    Ondris-Crawford, Renate; And Others

    1992-01-01

    Liquid crystal displays are currently utilized to convey information via graphic displays. Presents experiments and explanations that employ the concept of liquid crystals to learn concepts related to the various states of matter, electric and magnetic forces, refraction of light, and optics. Discusses applications of liquid crystal technology.…

  9. PERFORMANCE AND COST OF MERCURY EMISSION CONTROL TECHNOLOGY APPLICATIONS ON ELECTRIC UTILITY BOILERS

    EPA Science Inventory

    The report presents estimates of the performance and cost of powdered activated carbon (PAC) injection-based mercury control technologies and projections of costs for future applications. (NOTE: Under the Clean Air Act Amendments of 1990, the U.S. EPA has to determine whether mer...

  10. Charting the Emergence of Corporate Procurement of Utility-Scale PV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heeter, Jenny S.; Cook, Jeffrey J.; Bird, Lori A.

    Through July 2017, corporate customers contracted for more than 2,300 MW of utility-scale solar. This paper examines the benefits, challenges, and outlooks for large-scale off-site solar purchasing through four pathways: PPAs, retail choice, utility partnerships (green tariffs and bilateral contracts with utilities), and by becoming a licensed wholesale seller of electricity. Each pathway differs based on where in the United States it is available, the value provided to a corporate off-taker, and the ease of implementation. The paper concludes with a discussion of future pathway comparison, noting that to deploy more corporate off-site solar, new procurement pathways are needed.

  11. Performance-Based Regulation In A High Distributed Energy Resources Future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newton Lowry, Mark; Woolf, Tim; Schwartz, Lisa C.

    Performance-based regulation (PBR) of utilities has emerged as an important ratemaking option in the last 25 years. It has been implemented in numerous jurisdictions across the United States and is common in many other advanced industrialized countries. PBR’s appeal lies chiefly in its ability to strengthen utility performance incentives relative to traditional cost-of-service regulation (COSR). Some forms of PBR can streamline regulation and provide utilities with greater operating flexibility. Ideally, the benefits of better performance are shared by the utility and its customers. The shortcomings of traditional COSR in providing electric utilities with incentives that are aligned with certain regulatorymore » goals are becoming increasingly clear. In particular, COSR can provide strong incentives to increase electricity sales and utility rate base. Further, some parties express concern that traditional COSR does not provide utilities with appropriate financial incentives to address evolving industry challenges such as changing customer demands for electricity services, increased levels of distributed energy resources (DERs), and growing pressure to mitigate carbon dioxide emissions. In addition, attention to potential new regulatory models to support the “utility of the future” has renewed interest in PBR. This report describes key elements of PBR and explains some of the advantages and disadvantages of various PBR options. We present pertinent issues from the perspectives of utilities and customers. In practice, these different perspectives are not diametrically opposed. Nonetheless, this framework is useful for illustrating how various aspects of PBR may be viewed by those key groups. Regulators have a unique perspective, in that they must balance consumer, utility, and other interests with the goal of achieving a result that is in the overall public interest.« less

  12. An analysis of the impact of Renewable Portfolio Standards on residential electricity prices

    NASA Astrophysics Data System (ADS)

    Larson, Andrew James

    A Renewable Portfolio Standard (RPS) has become a popular policy for states seeking to increase the amount of renewable energy generated for consumers of electricity. The success of these state programs has prompted debate about the viability of a national RPS. The impact that these state level policies have had on the price consumers pay for electricity is the subject of some debate. Several federal organizations have conducted studies of the impact that a national RPS would have on electricity prices paid by consumers. NREL and US EIA utilize models that analyze the inputs in electricity generation to examine the future price impact of changes to electricity generation and show marginal increases in prices paid by end users. Other empirical research has produced similar results, showing that the existence of an RPS increases the price of electricity. These studies miss important aspects of RPS policies that may change how we view these price increases from RPS policies. By examining the previous empirical research on RPS policies, this study seeks to identify the controls necessary to build an effective model. These controls are utilized in a fixed effects model that seeks to show how the controls and variables of interest impact electricity prices paid by residential consumers of electricity. This study utilizes a panel data set from 1990 to 2014 to analyze the impact of these policies controlling for generating capacity, the regulatory status of utilities in each state, demographic characteristics of the states, and fuel prices. The results of the regressions indicate that prices are likely to be higher in states that have an RPS compared to states that do not have such a policy. Several of the characteristics mentioned above have price impacts, and so discussing RPS policies in the context of other factors that contribute to electricity prices is essential. In particular, the regulatory status of utilities in each state is an important determinate of price as well as the amount of renewable energy generated in each state. There are several implications of this analysis that are relevant for policy makers who seek to gain the environmental benefits of these policies, but who are also concerned with the costs those polices may impose on consumers of electricity. First, allowing utilities as much time as possible to comply with the mandates of the RPS will mitigate the price increases associated with implementation of and compliance with the policy. Secondly, policy makers need not fear imposing high targets for their RPS as this is not associated with higher electricity prices. Finally, policy makers should be concerned with the bindingness of the policies they impose. States with non-binding policies tend to have higher electricity prices, likely due to the costs of early compliance. As such imposing interim targets may raise rates more than simply allowing compliance at a pace utilities can bear without substantially increasing prices.

  13. The Northeastern United States Energy-Water Nexus: Climate Change Impacts and Alternative Water Management Strategies for the Power Sector

    NASA Astrophysics Data System (ADS)

    Miara, A.; Macknick, J.; Vorosmarty, C. J.; Cohen, S. M.; Rosenzweig, B.

    2014-12-01

    The Northeastern United States (NE) relies heavily on thermoelectric power plants (90% of total capacity) to provide electricity to more than 70 million people. This region's power plants require consistent, large volumes of water at sufficiently cold temperatures to generate electricity efficiently, and withdraw approximately 10.5 trillion gallons of water annually. Previous findings indicate that assessments of future electricity pathways must account for water availability, water temperature and the changing climate, as changes in these conditions may limit operational efficiency in the future. To account for such electric system vulnerabilities, we have created a link between an electricity system capacity expansion model (ReEDS) and a hydrologic model that is coupled to a power plant simulation model (FrAMES-TP2M) that allows for a new approach to analyze electricity system development, performance, and environmental impacts. Together, these coupled tools allow us to estimate electricity development and operations in the context of a changing climate and impacts on the seasonal spatial and temporal variability of water resources, downstream thermal effluents that cause plant-to-plant interferences and harm aquatic habitat, economic costs of water conservation methods and associated carbon emissions. In this study, we test and compare a business-as-usual strategy with three alternative water management scenarios that include changes in cooling technologies and water sources utilized for the years 2014-2050. Results of these experiments can provide useful insight into the feasibility of the electricity expansion scenarios in terms of associated water use and thermal impacts, carbon emissions, the cost of generating electricity, and also highlight the importance of accounting for water resources in future power sector planning and performance assessments.

  14. Performance potential of combined cycles integrated with low-Btu gasifiers for future electric utility applications

    NASA Technical Reports Server (NTRS)

    Nainiger, J. J.; Burns, R. K.

    1977-01-01

    A comparison and an assessment of 10 advanced utility power systems on a consistent basis and to a common level of detail were analyzed. Substantial emphasis was given to a combined cycle systems integrated with low-Btu gasifiers. Performance and cost results from that study were presented for these combined cycle systems, together with a comparative evaluation. The effect of the gasifier type and performance and the interface between the gasifier and the power system were discussed.

  15. Power industry competition, reengineering, and globalization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyman, L.S.

    1994-07-01

    This article presents the views of a vice-president of a financial company on the future of the US electric utility industry. The topics of the article include a historical perspective of the structure of the industry, government regulation, deregulation and competition, rate structures and pricing, effects on stockholders and bondholders, and strategies for growth.

  16. Information Technology - Its Impact on Decision-Making.

    ERIC Educational Resources Information Center

    Hammer, Carl

    Electronic systems of the future are bound to be larger, faster, and more reliable. They will furnish management with uninterrupted services in a real-time mode for practically all applications. In short, they will provide computing power as a utility company of today provides electric power. But the most spectacular advance is likely to be the…

  17. What can nuclear energy do for society?

    NASA Technical Reports Server (NTRS)

    Rom, F. E.

    1971-01-01

    The utilization of nuclear energy and the predicted impact of future uses of nuclear energy are discussed. Areas of application in electric power production and transportation methods are described. It is concluded that the need for many forms of nuclear energy will become critical as the requirements for power to supply an increasing population are met.

  18. Essays on energy derivatives pricing and financial risk management =

    NASA Astrophysics Data System (ADS)

    Madaleno, Mara Teresa da Silva

    This thesis consists of an introductory chapter (essay I) and five more empirical essays on electricity markets and CO2 spot price behaviour, derivatives pricing analysis and hedging. Essay I presents the structure of the thesis and electricity markets functioning and characteristics, as well as the type of products traded, to be analyzed on the following essays. In the second essay we conduct an empirical study on co-movements in electricity markets resorting to wavelet analysis, discussing long-term dynamics and markets integration. Essay three is about hedging performance and multiscale relationships in the German electricity spot and futures markets, also using wavelet analysis. We concentrate the investigation on the relationship between coherence evolution and hedge ratio analysis, on a time-frequency-scale approach, between spot and futures which conditions the effectiveness of the hedging strategy. Essays four, five and six are interrelated between them and with the other two previous essays given the nature of the commodity analyzed, CO2 emission allowances, traded in electricity markets. Relationships between electricity prices, primary energy fuel prices and carbon dioxide permits are analyzed on essay four. The efficiency of the European market for allowances is examined taking into account markets heterogeneity. Essay five analyzes stylized statistical properties of the recent traded asset CO2 emission allowances, for spot and futures returns, examining also the relation linking convenience yield and risk premium, for the German European Energy Exchange (EEX) between October 2005 and October 2009. The study was conducted through empirical estimations of CO2 allowances risk premium, convenience yield, and their relation. Future prices from an ex-post perspective are examined to show evidence for significant negative risk premium, or else a positive forward premium. Finally, essay six analyzes emission allowances futures hedging effectiveness, providing evidence for utility gains increases with investor’s preference over risk. Deregulation of electricity markets has led to higher uncertainty in electricity prices and by presenting these essays we try to shed new lights about structuring, pricing and hedging in this type of markets.

  19. Utilization of artificial intelligence techniques for the Space Station power system

    NASA Technical Reports Server (NTRS)

    Evatt, Thomas C.; Gholdston, Edward W.

    1988-01-01

    Due to the complexity of the Space Station Electrical Power System (EPS) as currently envisioned, artificial intelligence/expert system techniques are being investigated to automate operations, maintenance, and diagnostic functions. A study was conducted to investigate this technology as it applies to failure detection, isolation, and reconfiguration (FDIR) and health monitoring of power system components and of the total system. Control system utilization of expert systems for load scheduling and shedding operations was also researched. A discussion of the utilization of artificial intelligence/expert systems for Initial Operating Capability (IOC) for the Space Station effort is presented along with future plans at Rocketdyne for the utilization of this technology for enhanced Space Station power capability.

  20. (Power sector efficiency analysis in Costa Rica). [Power Sector Efficiency Analysis in Costa Rica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waddle, D.B.

    I traveled to San Jose, Costa Rica, to review the state of the electric power utility with a team of specialists, including a transmission and distribution specialist, a hydroelectric engineering specialist, and a thermal power plant specialist. The purpose of the mission was to determine the costs and benefits of efficiency improvements to supply side technologies employed by the Instituto Costarricense de Electricidad, the national power company in Costa Rica, and the potential contribution of these efficiency measures to the future electric power needs of Costa Rica.

  1. Sensitivity Analysis of Hybrid Propulsion Transportation System for Human Mars Expeditions

    NASA Technical Reports Server (NTRS)

    Chai, Patrick R.; Joyce, Ryan T.; Kessler, Paul D.; Merrill, Raymond G.; Qu, Min

    2017-01-01

    The National Aeronautics and Space Administration continues to develop and refine various transportation options to successfully field a human Mars campaign. One of these transportation options is the Hybrid Transportation System which utilizes both solar electric propulsion and chemical propulsion. The Hybrid propulsion system utilizes chemical propulsion to perform high thrust maneuvers, where the delta-V is most optimal when ap- plied to save time and to leverage the Oberth effect. It then utilizes solar electric propulsion to augment the chemical burns throughout the interplanetary trajectory. This eliminates the need for the development of two separate vehicles for crew and cargo missions. Previous studies considered single point designs of the architecture, with fixed payload mass and propulsion system performance parameters. As the architecture matures, it is inevitable that the payload mass and the performance of the propulsion system will change. It is desirable to understand how these changes will impact the in-space transportation system's mass and power requirements. This study presents an in-depth sensitivity analysis of the Hybrid crew transportation system to payload mass growth and solar electric propulsion performance. This analysis is used to identify the breakpoints of the current architecture and to inform future architecture and campaign design decisions.

  2. A city invests in its future

    NASA Technical Reports Server (NTRS)

    Baker, J. N.

    1974-01-01

    Events occurring during the past four years which led to the City of Burbank's decision to acquire an energy source adequate for the city's present and future power requirements are discussed. The community reaction to this unprecedented move is also covered. Burbank's long-range plans for the development of geothermal energy are outlined as well as the challenges which confront a public utility in implementing its projected goals. There are several advantages accurring to the city which in the opinion of the Burbank City Council and the administration justify this venture. The need for a cooperative climate which will enable all electrical utilities to better meet their obligations to the public, which is their prime responsibility before all other considerations, is analyzed.

  3. The feasibility of replacing or upgrading utility distribution transformers during routine maintenance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, P.R.; Van Dyke, J.W; McConnell, B.W.

    It is estimated that electric utilities use about 40 million distribution transformers in supplying electricity to customers in the United States. Although utility distribution transformers collectively have a high average efficiency, they account for approximately 61 billion kWh of the 229 billion kWh of energy lost annually in the delivery of electricity. Distribution transformers are being replaced over time by new, more efficient, lower-loss units during routine utility maintenance of power distribution systems. Maintenance is typically not performed on units in service. However, units removed from service with appreciable remaining life are often refurbished and returned to stock. Distribution transformersmore » may be removed from service for many reasons, including failure, over- or underloading, or line upgrades such as voltage changes or rerouting. When distribution transformers are removed from service, a decision must be made whether to dispose of the transformer and purchase a lower-loss replacement or to refurbish the transformer and return it to stock for future use. This report contains findings and recommendations on replacing utility distribution transformers during routine maintenance, which is required by section 124 of the Energy Policy Act of 1992. The objectives of the study are to evaluate the practicability, cost-effectiveness, and potential energy savings of replacing or upgrading existing transformers during routine utility maintenance and to develop recommendations on ways to achieve the potential energy savings. Using survey data obtained from utilities and analyses of the economics of refurbishment versus replacement of distribution transformers that are removed from service, it is found that on average utilities are implementing reasonable decisions on refurbishment versus replacement.« less

  4. Usage of Electric Vehicle Supply Equipment Along the Corridors between the EV Project Major Cities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mindy Kirkpatrick

    The report explains how the EVSE are being used along the corridors between the EV Project cities. The EV Project consists of a nationwide collaboration between Idaho National Laboratory (INL), ECOtality North America, Nissan, General Motors, and more than 40 other city, regional and state governments, and electric utilities. The purpose of the EV Project is to demonstrate the deployment and use of approximately 14,000 Level II (208-240V) electric vehicle supply equipment (EVSE) and 300 fast chargers in 16 major cities. This research investigates the usage of all currently installed EV Project commercial EVSE along major interstate corridors. ESRI ArcMapmore » software products are utilized to create geographic EVSE data layers for analysis and visualization of commercial EVSE usage. This research locates the crucial interstate corridors lacking sufficient commercial EVSE and targets locations for future commercial EVSE placement. The results and methods introduced in this research will be used by INL for the duration of the EV Project.« less

  5. Sensitivity of power system operations to projected changes in water availability due to climate change: the Western U.S. case study

    NASA Astrophysics Data System (ADS)

    Voisin, N.; Macknick, J.; Fu, T.; O'Connell, M.; Zhou, T.; Brinkman, G.

    2017-12-01

    Water resources provide multiple critical services to the electrical grid through hydropower technologies, from generation to regulation of the electric grid (frequency, capacity reserve). Water resources can also represent vulnerabilities to the electric grid, as hydropower and thermo-electric facilities require water for operations. In the Western U.S., hydropower and thermo-electric plants that rely on fresh surface water represent 67% of the generating capacity. Prior studies have looked at the impact of change in water availability under future climate conditions on expected generating capacity in the Western U.S., but have not evaluated operational risks or changes resulting from climate. In this study, we systematically assess the impact of change in water availability and air temperatures on power operations, i.e. we take into account the different grid services that water resources can provide to the electric grid (generation, regulation) in the system-level context of inter-regional coordination through the electric transmission network. We leverage the Coupled Model Intercomparison Project Phase 5 (CMIP5) hydrology simulations under historical and future climate conditions, and force the large scale river routing- water management model MOSART-WM along with 2010-level sectoral water demands. Changes in monthly hydropower potential generation (including generation and reserves), as well as monthly generation capacity of thermo-electric plants are derived for each power plant in the Western U.S. electric grid. We then utilize the PLEXOS electricity production cost model to optimize power system dispatch and cost decisions for the 2010 infrastructure under 100 years of historical and future (2050 horizon) hydroclimate conditions. We use economic metrics as well as operational metrics such as generation portfolio, emissions, and reserve margins to assess the changes in power system operations between historical and future normal and extreme water availability conditions. We provide insight on how this information can be used to support resource adequacy and grid expansion studies over the Western U.S. in the context of inter-annual variability and climate change.

  6. Development and validation of safety climate scales for mobile remote workers using utility/electrical workers as exemplar.

    PubMed

    Huang, Yueng-Hsiang; Zohar, Dov; Robertson, Michelle M; Garabet, Angela; Murphy, Lauren A; Lee, Jin

    2013-10-01

    The objective of this study was to develop and test the reliability and validity of a new scale designed for measuring safety climate among mobile remote workers, using utility/electrical workers as exemplar. The new scale employs perceived safety priority as the metric of safety climate and a multi-level framework, separating the measurement of organization- and group-level safety climate items into two sub-scales. The question of the emergence of shared perceptions among remote workers was also examined. For the initial survey development, several items were adopted from a generic safety climate scale and new industry-specific items were generated based on an extensive literature review, expert judgment, 15-day field observations, and 38 in-depth individual interviews with subject matter experts (i.e., utility industry electrical workers, trainers and supervisors of electrical workers). The items were revised after 45 cognitive interviews and a pre-test with 139 additional utility/electrical workers. The revised scale was subsequently implemented with a total of 2421 workers at two large US electric utility companies (1560 participants for the pilot company and 861 for the second company). Both exploratory (EFA) and confirmatory factor analyses (CFA) were adopted to finalize the items and to ensure construct validity. Reliability of the scale was tested based on Cronbach's α. Homogeneity tests examined whether utility/electrical workers' safety climate perceptions were shared within the same supervisor group. This was followed by an analysis of the criterion-related validity, which linked the safety climate scores to self-reports of safety behavior and injury outcomes (i.e., recordable incidents, missing days due to work-related injuries, vehicle accidents, and near misses). Six dimensions (Safety pro-activity, General training, Trucks and equipment, Field orientation, Financial Investment, and Schedule flexibility) with 29 items were extracted from the EFA to measure the organization-level safety climate. Three dimensions (Supervisory care, Participation encouragement, and Safety straight talk) with 19 items were extracted to measure the group-level safety climate. Acceptable ranges of internal consistency statistics for the sub-scales were observed. Whether or not to aggregate these multi-dimensions of safety climate into a single higher-order construct (overall safety climate) was discussed. CFAs confirmed the construct validity of the developed safety climate scale for utility/electrical workers. Homogeneity tests showed that utility/electrical workers' safety climate perceptions were shared within the same supervisor group. Both the organization- and group-level safety climate scores showed a statistically significant relationship with workers' self-reported safety behaviors and injury outcomes. A valid and reliable instrument to measure the essential elements of safety climate for utility/electrical workers in the remote working situation has been introduced. The scale can provide an in-depth understanding of safety climate based on its key dimensions and show where improvements can be made at both group and organization levels. As such, it may also offer a valuable starting point for future safety interventions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Options for Kentucky's Energy Future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larry Demick

    2012-11-01

    Three important imperatives are being pursued by the Commonwealth of Kentucky: ? Developing a viable economic future for the highly trained and experienced workforce and for the Paducah area that today supports, and is supported by, the operations of the US Department of Energy’s (DOE’s) Paducah Gaseous Diffusion Plant (PGDP). Currently, the PGDP is scheduled to be taken out of service in May, 2013. ? Restructuring the economic future for Kentucky’s most abundant indigenous resource and an important industry – the extraction and utilization of coal. The future of coal is being challenged by evolving and increasing requirements for itsmore » extraction and use, primarily from the perspective of environmental restrictions. Further, it is important that the economic value derived from this important resource for the Commonwealth, its people and its economy is commensurate with the risks involved. Over 70% of the extracted coal is exported from the Commonwealth and hence not used to directly expand the Commonwealth’s economy beyond the severance taxes on coal production. ? Ensuring a viable energy future for Kentucky to guarantee a continued reliable and affordable source of energy for its industries and people. Today, over 90% of Kentucky’s electricity is generated by burning coal with a delivered electric power price that is among the lowest in the United States. Anticipated increased environmental requirements necessitate looking at alternative forms of energy production, and in particular electricity generation.« less

  8. Recent developments in microbial fuel cell technologies for sustainable bioenergy.

    PubMed

    Watanabe, Kazuya

    2008-12-01

    Microbial fuel cells (MFCs) are devices that exploit microbial catabolic activities to generate electricity from a variety of materials, including complex organic waste and renewable biomass. These sources provide MFCs with a great advantage over chemical fuel cells that can utilize only purified reactive fuels (e.g., hydrogen). A developing primary application of MFCs is its use in the production of sustainable bioenergy, e.g., organic waste treatment coupled with electricity generation, although further technical developments are necessary for its practical use. In this article, recent advances in MFC technologies that can become fundamentals for future practical MFC developments are summarized. Results of recent studies suggest that MFCs will be of practical use in the near future and will become a preferred option among sustainable bioenergy processes.

  9. The use of scenarios for long-range planning by investor-owned electric utilities in the Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Lyons, John V.

    Scenario planning is a method of organizing and understanding large amounts of quantitative and qualitative data for leaders to make better strategic decisions. There is a lack of academic research about scenario planning with a subsequent shortage of definitions and theories. This study utilized a case study methodology to analyze scenario planning by investor-owned electric utilities in the Pacific Northwest in their integrated resource planning (IRP) process. The cases include Avista Corporation, Idaho Power, PacifiCorp, Portland General Electric, and Puget Sound Energy. This study sought to determine how scenario planning was used, what scenario approach was used, the scenario outcomes, and the similarities and differences in the scenario planning processes. The literature review of this study covered the development of scenario planning, common definitions and theories, approaches to scenario development, and scenario outcomes. A research methodology was developed to classify the scenario development approach into intuitive, hybrid, or quantitative approaches; and scenario outcomes of changed thinking, stories of plausible futures, improved decision making, and enhanced organizational learning. The study found all three forms of scenario planning in the IRPs. All of the cases used a similar approach to IRP development. All of the cases had at least improved decision making as an outcome of scenario planning. Only one case demonstrated all four scenario outcomes. A critical finding was a correlation between the use of the intuitive approach and the use of all scenario outcomes. Another major finding was the unique use of predetermined elements, which are normally consistent across scenarios, but became critical uncertainties in some of the scenarios in the cases for this study. This finding will need to be confirmed by future research as unique to the industry or an aberration. An unusually high number of scenarios were found for cases using the hybrid approach, which was unexpected based on the literature. This work expanded the methods for studying scenario planning, enhanced the body of scholarly works on scenario planning, and provided a starting point for additional research concerning the use of scenario planning by electric utilities.

  10. Three essays on research and development

    NASA Astrophysics Data System (ADS)

    Sanyal, Paroma

    The impact of institutional changes and market structure on research and development (R&D) and technical progress is controversial. My dissertation investigates the determinants of R&D in the context of institutional change. The first two papers address the impact of deregulation in the US electric utility industry on R&D. The third paper investigates the linkage between patenting and different funding sources and patent office attributes. The first paper, "Deregulation, Restructuring and Changing R&D Paradigms in the US Electric Utility Industry", investigates the linkage between market structures and the conduct of R&D in the US electric utility industry. The primary finding of this paper is that institutional and competition factors interact in a way that suggest that the occurrence of full deregulation, coupled with effective retail competition in the market may mitigate the problem of declining R&D expenditures in the face of deregulation. The second paper, "Powering a Green Progress: Environmental Research in the Absence of Regulatory Oversight" analyzes the impact of changing market structure on environmental R&D expenditures by IOUs in the electric utility industry. Conventional wisdom holds that increased competition would lead firms to cut back on R&D funds directed towards social goals, such as the environment. But these arguments fail to take account the threat of future environmental regulations and its influence on disciplining firms. Theory and empirical results from this paper suggest that under certain conditions, even with high monitoring costs, an environmental regulatory agency's threat of stricter future regulations will successfully stem the decrease in environmental R&D expenditures. My third paper, "Birth of a Patent: the Role of Parents, Nursemaids and Constraints", presents an integrated theoretical and empirical approach that models the effects of different sources of R&D funding and patent office attributes on the patenting process. The primary results are: First, the source of R&D funding as well as performer (academic, federal and industry) has a differential effect on patenting. Second, federal R&D has positive spillovers for company R&D. Third, in the short run patenting is heavily influenced by patent office attributes.

  11. Influence of fossil-fuel power plant emissions on the surface fine particulate matter in the Seoul Capital Area, South Korea.

    PubMed

    Kim, Byeong-Uk; Kim, Okgil; Kim, Hyun Cheol; Kim, Soontae

    2016-09-01

    The South Korean government plans to reduce region-wide annual PM2.5 (particulate matter with an aerodynamic diameter ≤2.5 μm) concentrations in the Seoul Capital Area (SCA) from 2010 levels of 27 µg/m(3) to 20 µg/m(3) by 2024. At the same time, it is inevitable that emissions from fossil-fuel power plants will continue to increase if electricity generation expands and the generation portfolio remains the same in the future. To estimate incremental PM2.5 contributions due to projected electricity generation growth in South Korea, we utilized an ensemble forecasting member of the Integrated Multidimensional Air Quality System for Korea based on the Community Multi-scale Air Quality model. We performed sensitivity runs with across-the-board emission reductions for all fossil-fuel power plants in South Korea to estimate the contribution of PM2.5 from domestic fossil-fuel power plants. We estimated that fossil-fuel power plants are responsible for 2.4% of the annual PM2.5 national ambient air quality standard in the SCA as of 2010. Based on the electricity generation and the annual contribution of fossil-fuel power plants in 2010, we estimated that annual PM2.5 concentrations may increase by 0.2 µg/m(3) per 100 TWhr due to additional electricity generation. With currently available information on future electricity demands, we estimated that the total future contribution of fossil-fuel power plants would be 0.87 µg/m(3), which is 12.4% of the target reduction amount of the annual PM2.5 concentration by 2024. We also approximated that the number of premature deaths caused by existing fossil-fuel power plants would be 736 in 2024. Since the proximity of power plants to the SCA and the types of fuel used significantly impact this estimation, further studies are warranted on the impact of physical parameters of plants, such as location and stack height, on PM2.5 concentrations in the SCA due to each precursor. Improving air quality by reducing fine particle pollution is challenging when fossil-fuel-based electricity production is increasing. We show that an air quality forecasting system based on a photochemical model can be utilized to efficiently estimate PM2.5 contributions from and health impacts of domestic power plants. We derived PM2.5 concentrations per unit amount of electricity production from existing fossil-fuel power plants in South Korea. We assessed the health impacts of existing fossil-fuel power plants and the PM2.5 concentrations per unit electricity production to quantify the significance of existing and future fossil-fuel power plants with respect to the planned PM2.5 reduction target.

  12. Solar Powered Aircraft, Photovoltaic Array/Battery System Tabletop Demonstration: Design and Operation Manual

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.; Scheiman, David A.; Bailey, Sheila (Technical Monitor)

    2000-01-01

    A system was constructed to demonstrate the power system operation of a solar powered aircraft. The system consists of a photovoltaic (PV) array, a charge controller, a battery, an electric motor and propeller. The system collects energy from the PV array and either utilizes this energy to operate an electric motor or stores it in a rechargeable battery for future use. The system has a control panel which displays the output of the array and battery as well as the total current going to the electric motor. The control panel also has a means for adjusting the output to the motor to control its speed. The entire system is regulated around 12 VDC.

  13. The effects of regional insolation differences upon advanced solar thermal electric power plant performance and energy costs

    NASA Technical Reports Server (NTRS)

    Latta, A. F.; Bowyer, J. M.; Fujita, T.; Richter, P. H.

    1980-01-01

    The performance and cost of four 10 MWe advanced solar thermal electric power plants sited in various regions of the continental United States was studied. Each region has different insolation characteristics which result in varying collector field areas, plant performance, capital costs and energy costs. The regional variation in solar plant performance was assessed in relation to the expected rise in the future cost of residential and commercial electricity supplied by conventional utility power systems in the same regions. A discussion of the regional insolation data base is presented along with a description of the solar systems performance and costs. A range for the forecast cost of conventional electricity by region and nationally over the next several decades is given.

  14. A Small Modular Laboratory Hall Effect Thruster

    NASA Astrophysics Data System (ADS)

    Lee, Ty Davis

    Electric propulsion technologies promise to revolutionize access to space, opening the door for mission concepts unfeasible by traditional propulsion methods alone. The Hall effect thruster is a relatively high thrust, moderate specific impulse electric propulsion device that belongs to the class of electrostatic thrusters. Hall effect thrusters benefit from an extensive flight history, and offer significant performance and cost advantages when compared to other forms of electric propulsion. Ongoing research on these devices includes the investigation of mechanisms that tend to decrease overall thruster efficiency, as well as the development of new techniques to extend operational lifetimes. This thesis is primarily concerned with the design and construction of a Small Modular Laboratory Hall Effect Thruster (SMLHET), and its operation on argon propellant gas. Particular attention was addressed at low-cost, modular design principles, that would facilitate simple replacement and modification of key thruster parts such as the magnetic circuit and discharge channel. This capability is intended to facilitate future studies of device physics such as anomalous electron transport and magnetic shielding of the channel walls, that have an impact on thruster performance and life. Preliminary results demonstrate SMLHET running on argon in a manner characteristic of Hall effect thrusters, additionally a power balance method was utilized to estimate thruster performance. It is expected that future thruster studies utilizing heavier though more expensive gases like xenon or krypton, will observe increased efficiency and stability.

  15. Pathways for Off-site Corporate PV Procurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heeter, Jenny S

    Through July 2017, corporate customers contracted for more than 2,300 MW of utility-scale solar. This paper examines the benefits, challenges, and outlooks for large-scale off-site solar purchasing through four pathways: power purchase agreements, retail choice, utility partnerships (green tariffs and bilateral contracts with utilities), and by becoming a licensed wholesale seller of electricity. Each pathway differs based on where in the United States it is available, the value provided to a corporate off-taker, and the ease of implementation. The paper concludes with a discussion of future pathway comparison, noting that to deploy more corporate off-site solar, new procurement pathways aremore » needed.« less

  16. Limiting the financial risks of electricity generation capital investments under carbon constraints: Applications and opportunities for public policies and private investments

    NASA Astrophysics Data System (ADS)

    Newcomer, Adam

    Increasing demand for electricity and an aging fleet of generators are the principal drivers behind an increasing need for a large amount of capital investments in the US electric power sector in the near term. The decisions (or lack thereof) by firms, regulators and policy makers in response to this challenge have long lasting consequences, incur large economic and environmental risks, and must be made despite large uncertainties about the future operating and business environment. Capital investment decisions are complex: rates of return are not guaranteed; significant uncertainties about future environmental legislation and regulations exist at both the state and national levels---particularly about carbon dioxide emissions; there is an increasing number of shareholder mandates requiring public utilities to reduce their exposure to potentially large losses from stricter environmental regulations; and there are significant concerns about electricity and fuel price levels, supplies, and security. Large scale, low carbon electricity generation facilities using coal, such as integrated gasification combined cycle (IGCC) facilities coupled with carbon capture and sequestration (CCS) technologies, have been technically proven but are unprofitable in the current regulatory and business environment where there is no explicit or implicit price on carbon dioxide emissions. The paper examines two separate scenarios that are actively discussed by policy and decision makers at corporate, state and national levels: a future US electricity system where coal plays a role; and one where the role of coal is limited or nonexistent. The thesis intends to provide guidance for firms and policy makers and outline applications and opportunities for public policies and for private investment decisions to limit financial risks of electricity generation capital investments under carbon constraints.

  17. Biosensing with Förster Resonance Energy Transfer Coupling between Fluorophores and Nanocarbon Allotropes

    PubMed Central

    Ding, Shaowei; Cargill, Allison A.; Das, Suprem R.; Medintz, Igor L.; Claussen, Jonathan C.

    2015-01-01

    Nanocarbon allotropes (NCAs), including zero-dimensional carbon dots (CDs), one-dimensional carbon nanotubes (CNTs) and two-dimensional graphene, exhibit exceptional material properties, such as unique electrical/thermal conductivity, biocompatibility and high quenching efficiency, that make them well suited for both electrical/electrochemical and optical sensors/biosensors alike. In particular, these material properties have been exploited to significantly enhance the transduction of biorecognition events in fluorescence-based biosensing involving Förster resonant energy transfer (FRET). This review analyzes current advances in sensors and biosensors that utilize graphene, CNTs or CDs as the platform in optical sensors and biosensors. Widely utilized synthesis/fabrication techniques, intrinsic material properties and current research examples of such nanocarbon, FRET-based sensors/biosensors are illustrated. The future outlook and challenges for the research field are also detailed. PMID:26110411

  18. Rethinking chiller plant design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meckler, M.

    1998-07-01

    While most refrigeration chillers operate today on electricity, the use of natural gas is becoming an increasingly attractive alternative. This is largely because electricity does not use energy very efficiency (because of transmission and combustion fuel losses), high demand charges, and the high incremental cost of electricity to operate chillers. The use of gas engine-driven chillers eliminates the high incremental cost of electricity. Additionally, gas engine-driven systems can operate with COPs up to 1.8 and, therefore, are economically viable alternatives. Recent advances in gas engine-driven and DFA absorption chillers, and in commercially viable solid and liquid desiccant-cooling systems, suggest amore » bright future for the gas industry. The use of such equipment in conjunction with or in place of commercially available electrical-powered alternatives can significantly impact demand-side management savings for utility ratepayers in the short run and provide significant hybrid opportunities for deregulated markets in the intermediate to long term.« less

  19. Rethinking chiller plant design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meckler, M.

    1998-01-01

    While most refrigeration chillers operate today on electricity, the use of natural gas is becoming an increasingly attractive alternative. This is largely because electricity does not use energy very efficiently (due to transmission and combustion fuel losses), high demand charges, and the high incremental cost of electricity to operate chillers. The use of gas engine-driven chillers eliminates the high incremental cost of electricity. Additionally, gas engine-driven systems can operate with COPs up to 1.8 and therefore are economically viable alternatives. Recent advances in gas engine-driven and direct-fired absorption chillers and in commercially viable solid- and liquid-desiccant cooling systems suggest amore » bright future for the gas industry. The use of such equipment in conjunction with or in place of commercially available electrical-powered alternatives can significantly impact demand-side management savings for utility ratepayers in the short run and provide significant hybrid opportunities for deregulated markets in the intermediate to long term.« less

  20. Magnetoelectrical control of nonreciprocal microwave response in a multiferroic helimagnet

    NASA Astrophysics Data System (ADS)

    Iguchi, Yusuke; Nii, Yoichi; Onose, Yoshinori

    Control of physical property in terms of external fields is essential for contemporary technologies. The conductance can be controlled by a gate electric field in a field effect transistor, which is a main component of the integrated circuit. Optical phenomena induced by an electric field such as electroluminescence and electrochromism are useful for display and other technologies. Control of microwave propagation seems also imperative for future wireless communication technology. Microwave properties in solids are dominated mostly by magnetic excitations, which cannot be easily controlled by an electric field. One of the solutions for this problem is utilizing magnetically induced ferroelectrics (multiferroics). Here we show that microwave nonreciprocity, which is difference between oppositely propagating microwaves, can be reversed by the external electric field in a multiferroic helimagnet Ba2Mg2Fe12O22. This result offers a new avenue for the electrical control of microwave properties.

  1. Optimal Operation of Data Centers in Future Smart Grid

    NASA Astrophysics Data System (ADS)

    Ghamkhari, Seyed Mahdi

    The emergence of cloud computing has established a growing trend towards building massive, energy-hungry, and geographically distributed data centers. Due to their enormous energy consumption, data centers are expected to have major impact on the electric grid by significantly increasing the load at locations where they are built. However, data centers also provide opportunities to help the grid with respect to robustness and load balancing. For instance, as data centers are major and yet flexible electric loads, they can be proper candidates to offer ancillary services, such as voluntary load reduction, to the smart grid. Also, data centers may better stabilize the price of energy in the electricity markets, and at the same time reduce their electricity cost by exploiting the diversity in the price of electricity in the day-ahead and real-time electricity markets. In this thesis, such potentials are investigated within an analytical profit maximization framework by developing new mathematical models based on queuing theory. The proposed models capture the trade-off between quality-of-service and power consumption in data centers. They are not only accurate, but also they posses convexity characteristics that facilitate joint optimization of data centers' service rates, demand levels and demand bids to different electricity markets. The analysis is further expanded to also develop a unified comprehensive energy portfolio optimization for data centers in the future smart grid. Specifically, it is shown how utilizing one energy option may affect selecting other energy options that are available to a data center. For example, we will show that the use of on-site storage and the deployment of geographical workload distribution can particularly help data centers in utilizing high-risk energy options such as renewable generation. The analytical approach in this thesis takes into account service-level-agreements, risk management constraints, and also the statistical characteristics of the Internet workload and the electricity prices. Using empirical data, the performance of our proposed profit maximization models for data centers are evaluated, and the capability of data centers to benefit from participation in a variety of Demand Response programs is assessed.

  2. 77 FR 9303 - National Emission Standards for Hazardous Air Pollutants From Coal- and Oil-Fired Electric...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-16

    ... Utility Steam Generating Units and Standards of Performance for Fossil-Fuel-Fired Electric Utility... Performance for Fossil-Fuel-Fired Electric Utility, Industrial-Commercial-Institutional, and Small Industrial... electric utility steam generating units (EGUs) and standards of performance for fossil-fuel-fired electric...

  3. Nuclear power: the bargain we can't afford

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, R.

    1977-01-01

    This is a handbook for citizens who wish to raise questions about the costs of atomic energy. It explains, step-by-step, why nuclear reactors have failed to produce low-cost electricity, and it tells citizens how they can use economic arguments to challenge nuclear expansion. Part One, The Costs of Nuclear Energy, contains 7 chapters--The Price of Power (electricity is big business); Mushrooming Capital Costs (nuclear construction costs are skyrocketing); Nuclear Lemons (reactors spend much of their time closed for repairs); The Faulty Fuel Cycle (turning uranium into electricity is not as simple as the utilities say); Hidden Costs (goverment subsidies obscuremore » the true costs of atomic energy); Ratepayer Roulette (nuclear problems translate into higher electric rates); and Alternatives to the Atom (coal-fired power and energy conservation can meet future energy needs more cheaply than nuclear energy). Part Two, Challenging Nuclear Power, contains 3 chapters--Regulators and Reactors (state utility commissions can eliminate the power companies' bias toward nuclear energy); Legislation, Licensing, and Lawsuits (nuclear critics can challenge reactor construction in numerous forums); and Winning the Battle (building an organization is a crucial step in fighting nuclear power). (MCW)« less

  4. Current and anticipated uses of thermal-hydraulic codes in Germany

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teschendorff, V.; Sommer, F.; Depisch, F.

    1997-07-01

    In Germany, one third of the electrical power is generated by nuclear plants. ATHLET and S-RELAP5 are successfully applied for safety analyses of the existing PWR and BWR reactors and possible future reactors, e.g. EPR. Continuous development and assessment of thermal-hydraulic codes are necessary in order to meet present and future needs of licensing organizations, utilities, and vendors. Desired improvements include thermal-hydraulic models, multi-dimensional simulation, computational speed, interfaces to coupled codes, and code architecture. Real-time capability will be essential for application in full-scope simulators. Comprehensive code validation and quantification of uncertainties are prerequisites for future best-estimate analyses.

  5. Building application of solar energy. Study no. 4: Scenarios for the utilization of solar energy in southern California buildings, change 1

    NASA Technical Reports Server (NTRS)

    Davis, E. S.; French, R. L.; Hirshberg, A. S.

    1976-01-01

    Plausible future market scenarios for solar heating and cooling systems into buildings in the area served by the Southern California Edison Company. A range of plausible estimates for the number of solar systems which might be installed and the electrical energy which might be displaced by energy from these systems are provided. The effect on peak electrical load was not explicitly calculated but preliminary conclusions concerning peak load can be inferred from the estimates presented. Two markets are investigated: the single family market and the large power commercial market.

  6. Assessment of Interval Data and Their Potential Application to Residential Electricity End-Use Modeling, An

    EIA Publications

    2015-01-01

    The Energy Information Administration (EIA) is investigating the potential benefits of incorporating interval electricity data into its residential energy end use models. This includes interval smart meter and submeter data from utility assets and systems. It is expected that these data will play a significant role in informing residential energy efficiency policies in the future. Therefore, a long-term strategy for improving the RECS end-use models will not be complete without an investigation of the current state of affairs of submeter data, including their potential for use in the context of residential building energy modeling.

  7. Distributed Energy Systems: Security Implications of the Grid of the Future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stamber, Kevin L.; Kelic, Andjelka; Taylor, Robert A.

    2017-01-01

    Distributed Energy Resources (DER) are being added to the nation's electric grid, and as penetration of these resources increases, they have the potential to displace or offset large-scale, capital-intensive, centralized generation. Integration of DER into operation of the traditional electric grid requires automated operational control and communication of DER elements, from system measurement to control hardware and software, in conjunction with a utility's existing automated and human-directed control of other portions of the system. Implementation of DER technologies suggests a number of gaps from both a security and a policy perspective. This page intentionally left blank.

  8. Utilization of recently developed codes for high power Brayton and Rankine cycle power systems

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.

    1993-01-01

    Two recently developed FORTRAN computer codes for high power Brayton and Rankine thermodynamic cycle analysis for space power applications are presented. The codes were written in support of an effort to develop a series of subsystem models for multimegawatt Nuclear Electric Propulsion, but their use is not limited just to nuclear heat sources or to electric propulsion. Code development background, a description of the codes, some sample input/output from one of the codes, and state future plans/implications for the use of these codes by NASA's Lewis Research Center are provided.

  9. Recent trends in power system reliability and implications for evaluating future investments in resiliency

    DOE PAGES

    Larsen, Peter H.; LaCommare, Kristina H.; Eto, Joseph H.; ...

    2016-10-27

    Here, this study examines the relationship between annual changes in electricity reliability reported by a large cross-section of U.S. electricity distribution utilities over a period of 13 years and a broad set of potential explanatory variables, including weather and utility characteristics. We find statistically significant correlations between the average number of power interruptions experienced annually and above average wind speeds, precipitation, lightning strikes, and a measure of population density: customers per line mile. We also find significant relationships between the average number of minutes of power interruptions experienced and above average wind speeds, precipitation, cooling degree-days, and one strategy usedmore » to mitigate the impacts of severe weather: the amount of underground transmission and distribution line miles. Perhaps most importantly, we find a significant time trend of increasing annual average number of minutes of power interruptions over time—especially when interruptions associated with extreme weather are included. Lastly, the research method described in this analysis can provide a basis for future efforts to project long-term trends in reliability and the associated benefits of strategies to improve grid resiliency to severe weather—both in the U.S. and abroad.« less

  10. Power Conversion and Energy Storage System for a Fusion Reactor 3. Performance of Large Electric Power Equipment and Future View 3.1 Large Capacity Battery System -Sodium-Sulfur Battery-

    NASA Astrophysics Data System (ADS)

    Nakabayashi, Takashi

    The Ford Motor Company proposed the principle of the sodium-sulfur battery based on a beta-alumina solid electrolyte in 1967. Accordingly, sodium-sulfur battery technology was initially developed primarily for electric vehicle applications. Later, the Tokyo Electric Power Company (TEPCO) selected the sodium-sulfur battery technology as the preferred system for a dispersed utility energy storage system to substitute for the pumped hydro energy storage system. NGK Insulators, Ltd. (NGK) and TEPCO have jointly carried out the development of the sodium-sulfur battery since 1984. In April 2002, TEPCO and NGK made the sodium-sulfur battery for use as an energy storage system commercially available.

  11. Electric chiller handbook. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-02-01

    Electric chillers have dominated the market for large commercial cooling systems due to their history of reliable, economical operation. The phaseout of CFCs and deregulation of the utility industry are two factors that significantly impact the chiller market. The CFC phaseout is resulting in the upgrading or replacement of thousands of electric chillers nationwide. In a deregulated environment, utilities are finding increasing need to provide services that can win and retain new customers. Utility representatives need current information on applying and selecting cost-effective chiller systems. The objective of this report was to develop a comprehensive handbook that helps utility technicalmore » and marketing staff, their customers, and design professionals evaluate and select the best options for chilled-water systems in commercial buildings. Investigators used a variety of industry data sources to develop market-share information for electric and gas chiller systems and to determine applications according to building age, type, and region. Discussions with chiller manufacturers provided information on product availability, performance, and ownership cost. Using EPRI`s COMTECH software, investigators performed comprehensive cost analyses for placement of large and small chillers in three representative cities. Case studies of actual installations support these analyses. Electric Chiller Handbook provides a single source of current information on all major issues associated with chiller selection and application. Key issues include chiller availability and markets, rated performance, future viability of various refrigerant options, the cost-effectiveness of alternative chillers, and chilled-water system optimization. The Handbook also describes available hardware, outlines the features and costs of gas-fired competitive systems, and provides methods and comparisons of life-cycle costing of various chiller system options. Analyses of chiller features and economics show that electric chillers are preferable to gas chillers in the large majority of applications, consistent with current market trends. Furthermore, today`s chillers offer a wide range of efficiencies and refrigerant options to serve cooling system needs for the 20-year lifetime of the chiller. Finally, new higher-efficiency models of electric chillers offer very attractive paybacks.« less

  12. New meters open new business opportunities for Blue Earth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mashaw, R.

    1996-07-01

    Competition in the electric utility industry isn`t a concern only for the big boys. Small utilities, too, are giving increasing attention to measures that will improve their competitiveness through paring costs and improving service. Blue Earth, Minn., Light and Water Department, with approximately 2,200 electric meters, is a prime example of a small utility that thinks big. {open_quotes}We conducted a customer survey to determine what our customers want from us in terms of service,{close_quotes} said General Manager Jeffrey Jansen. {open_quotes}To meet those needs we`ve begun to sell a new fiberglass, high-efficiency electric water heater; offer rent or purchase of uninterruptiblemore » power systems to provide back-up for sensitive electronics if an outage occurs; and we`re even selling bottled water. We`re also going to offer budget billing as of August 1, because our customers wanted that option.{close_quotes} Recognizing that providing excellent customer service is only part of the competitiveness equation, Blue Earth has also looked for ways to cut costs. Its latest effort has been the implementation of a new hand-held meter reading system, which Jansen expects to provide substantial savings, and offer opportunities for adding new services in the future.« less

  13. Electric and hybrid vehicle site operators program: Thinking of the future

    NASA Astrophysics Data System (ADS)

    Kansas State University, with support from federal, state, public, and private companies, is participating in the Department of Energy's Electric Vehicle Site Operator Program. Through participation in this program, Kansas State is displaying, testing, and evaluating electric or hybrid vehicle technology. This participation will provide organizations the opportunity to examine the latest EHV prototypes under actual operating conditions. KSU proposes to purchase one electric or hybrid van and two electric cars during the first two years of this five-year program. KSU has purchased one G-Van built by Conceptor Industries, Toronto, Canada and has initiated a procurement order to purchase two Soleq 1993 Ford EVcort station wagons. The G-Van has been signed in order for the public to be aware that this is an electric drive vehicle. Financial participants' names have been stenciled on the back door of the van. This vehicle is available for short term loan to interested utilities and companies. When other vehicles are obtained, the G-Van will be maintained on K-State's campus.

  14. Electric Vehicles in Colorado: Anticipating Consumer Demand for Direct Current Fast Charging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, Eric W.; Rames, Clement L.

    To support the State of Colorado in planning for growth in direct current fast charging (DCFC) for electric vehicles, the National Renewable Energy Laboratory (NREL) has partnered with the Regional Air Quality Council (RAQC) and the Colorado Department of Transportation (CDOT) to analyze a number of DCFC investment scenarios. NREL analyzed existing electric vehicle registration data from IHS Markit (IHS) to highlight early trends in the electric vehicle market, which were compared with sales forecasts predicting large growth in the Colorado electric vehicle market. Electric vehicle forecasts were then used to develop future DCFC scenarios to be evaluated in amore » simulation environment to estimate consumer benefits of the hypothetical DCFC networks in terms of increased driving range and electric vehicle miles traveled (eVMT). Simulated utilization of the hypothetical DCFC networks was analyzed for geographic trends, particularly for correlations with vehicle electric range. Finally, a subset of simulations is presented for consumers with potentially inconsistent access to charging at their home location and presumably greater reliance on public DCFC infrastructure.« less

  15. Financial statistics of major US investor-owned electric utilities 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Financial Statistics of Major US Investor-Owned Electric Utilities publication presents summary and detailed financial accounting data on the investor-owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decisionmaking purposes related to investor-owned electric utility issues. The Financial Statistics of Major US Investor-Owned Electric Utilities publication provides information about the financial results of operations of investor-owned electric utilities for use by government, industry, electric utilities, financial organizations and educational institutions in energy planning. In the private sector,more » the readers of this publication are researchers and analysts associated with the financial markets, the policymaking and decisionmaking members of electric utility companies, and economic development organizations. Other organizations that may be interested in the data presented in this publication include manufacturers of electric power equipment and marketing organizations. In the public sector, the readers of this publication include analysts, researchers, statisticians, and other professionals engaged in regulatory, policy, and program areas. These individuals are generally associated with the Congress, other legislative bodies, State public utility commissions, universities, and national strategic planning organizations.« less

  16. 76 FR 3587 - Standards of Performance for Fossil-Fuel-Fired, Electric Utility, Industrial-Commercial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-20

    ... Standards of Performance for Fossil-Fuel-Fired, Electric Utility, Industrial-Commercial-Institutional, and... Fossil fuel-fired electric utility steam generating units. Federal Government 22112 Fossil fuel-fired... 22112 Fossil fuel-fired electric utility steam generating units owned by municipalities. 921150 Fossil...

  17. 76 FR 3517 - Standards of Performance for Fossil-Fuel-Fired, Electric Utility, Industrial-Commercial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-20

    ... Standards of Performance for Fossil-Fuel-Fired, Electric Utility, Industrial-Commercial-Institutional, and... following: Category NAICS \\1\\ Examples of regulated entities Industry 221112 Fossil fuel-fired electric utility steam generating units. Federal Government 22112 Fossil fuel-fired electric utility steam...

  18. Nuclear power and the market value of the shares of electric utilities

    NASA Astrophysics Data System (ADS)

    Lyons, Joseph T.

    The most basic principle of security valuation is that market prices are determined by investors' expectations of the firm's performance in the future. These expectations are generally understood to be related to the risk that investors will bear by holding the firm's equity. There is considerable evidence that financial statements prepared in accordance with accrual-based accounting standards consistent with Generally Accepted Accounting Principles (GAAP) have information content relevant to the establishment of market prices. In 2001, the Financial Accounting Standards Board (FASB) issued Statement of Financial Accounting Standard No. 143, "Accounting for Asset Retirement Obligations," changing the accounting standards that must be used to prepare financial statements. This paper investigates the effect that investment in nuclear power has on the market value of electric utilities and the impact on the securities markets of the significant changes in financial statement presentation mandated by this new standard.

  19. Reducing Gridlock on the Grid: Utility Trends in Managing Peak Electric Load through Residential Demand Response

    NASA Astrophysics Data System (ADS)

    McDonald, Betsy

    Utilities across the United States are piloting residential demand response programs to help manage peak electric demand. Using publicly available program evaluations, this thesis analyzes nine such programs to uncover and synthesize the range of program offerings, goals, enrollment strategies, and customer experiences. This review reveals that program participation, components, and results differ based on a variety of factors, including geographic characteristics, program goals, and implementation strategies. The diversity of program designs and evaluation findings suggests an underlying tension between the need to generate cost-effective program impacts and the desire to increase accessibility so that program benefits are not exclusive to certain segments of the population. For more significant and impactful engagement, program goals may need to shift. State level policy support could help shift program goals toward increasing program accessibility. Future research should explore creative strategies that target existing barriers and allow for more inclusive deployment.

  20. Method for assigning sites to projected generic nuclear power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holter, G.M.; Purcell, W.L.; Shutz, M.E.

    1986-07-01

    Pacific Northwest Laboratory developed a method for forecasting potential locations and startup sequences of nuclear power plants that will be required in the future but have not yet been specifically identified by electric utilities. Use of the method results in numerical ratings for potential nuclear power plant sites located in each of the 10 federal energy regions. The rating for each potential site is obtained from numerical factors assigned to each of 5 primary siting characteristics: (1) cooling water availability, (2) site land area, (3) power transmission land area, (4) proximity to metropolitan areas, and (5) utility plans for themore » site. The sequence of plant startups in each federal energy region is obtained by use of the numerical ratings and the forecasts of generic nuclear power plant startups obtained from the EIA Middle Case electricity forecast. Sites are assigned to generic plants in chronological order according to startup date.« less

  1. Task 2 Report - A GIS-Based Technical Potential Assessment of Domestic Energy Resources for Electricity Generation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Nathan; Grue, Nicholas W; Rosenlieb, Evan

    The purpose of this report is to support the Lao Ministry of Energy and Mines in assessing the technical potential of domestic energy resources for utility scale electricity generation in the Lao PDR. Specifically, this work provides assessments of technical potential, and associated maps of developable areas, for energy technologies of interest. This report details the methodology, assumptions, and datasets employed in this analysis to provide a transparent, replicable process for future analyses. The methodology and results presented are intended to be a fundamental input to subsequent decision making and energy planning-related analyses. This work concentrates on domestic energy resourcesmore » for utility-scale electricity generation and considers solar photovoltaic, wind, biomass, and coal resources. This work does not consider potentially imported energy resources (e.g., natural gas) or domestic energy resources that are not present in sufficient quantity for utility-scale generation (e.g., geothermal resources). A technical potential assessment of hydropower resources is currently not feasible due to the absence of required data including site-level assessments of multiple characteristics (e.g., geology environment and access) as well as spatial data on estimated non-exploited hydropower resources. This report is the second output of the Energy Alternatives Study for the Lao PDR, a collaboration led by the Lao Ministry of Energy and Mines and the United States Agency for International Development under the auspices of the Smart Infrastructure for the Mekong program. The Energy Alternatives Study is composed of five successive tasks that collectively support the project's goals. This work is focused on Task 2 - Assess technical potential of domestic energy resources for electricity generation. The work was carried out by a team from the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) in collaboration with the Lao Ministry of Energy and Mines and other Lao power sector stakeholders. and datasets employed in this analysis to provide a transparent, replicable process for future analyses. The methodology and results presented are intended to be a fundamental input to subsequent decision making and energy planning-related analyses. This work concentrates on domestic energy resources for utility-scale electricity generation and considers solar photovoltaic, wind, biomass, and coal resources. This work does not consider potentially imported energy resources (e.g., natural gas) or domestic energy resources that are not present in sufficient quantity for utility-scale generation (e.g., geothermal resources). A technical potential assessment of hydropower resources is currently not feasible due to the absence of required data including site-level assessments of multiple characteristics (e.g., geology environment and access) as well as spatial data on estimated non-exploited hydropower resources.« less

  2. Photovoltaics as a terrestrial energy source. Volume 1: An introduction

    NASA Technical Reports Server (NTRS)

    Smith, J. L.

    1980-01-01

    Photovoltaic (PV) systems were examined their potential for terrestrial application and future development. Photovoltaic technology, existing and potential photovoltaic applications, and the National Photovoltaics Program are reviewed. The competitive environment for this electrical source, affected by the presence or absence of utility supplied power is evaluated in term of systems prices. The roles of technological breakthroughs, directed research and technology development, learning curves, and commercial demonstrations in the National Program are discussed. The potential for photovoltaics to displace oil consumption is examined, as are the potential benefits of employing PV in either central-station or non-utility owned, small, distributed systems.

  3. Deregulation strategies for local governments and the role/opportunities for energy efficiency services in the utility industry deregulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tseng, P.C.

    As the future shape of the electric utility industry continues to unfold and as retail competition becomes a reality, local governments are faced with balancing the need for: (1) economic development; (2) and to avoid the potential impact of cost-shifting among residents and businesses, while ensuring reliable and universal energy services. Furthermore, local governments need to find ways to recoup potential loss of franchise and tax revenues, to ensure fair and adequate energy-efficiency programs, and to continue other social programs for low income families. This paper will address two important issues every local government in the US are facing: (1)more » the development of viable deregulation strategies before, during and after the promulgation of utility deregulation; (2) opportunities for energy efficiency services in the competitive markets to serve local governments, which typically constitutes the largest market segment in utility's service territory. This paper presents issues and challenges common to all local governments. It documents strategies that several local governments are utilizing to embrace the coming electric utility restructuring and competition challenge to the benefits of their respective communities. This paper presents the results on deregulation work by the City of Portland, Oregon, Barnstable County, Massachusetts, and Montgomery County, Maryland. The research by these local governments was sponsored by the Urban Consortium Energy Task Force and Public Technology, Inc.« less

  4. Status of the Southern California Edison Company 3 MW Wind Turbine Generator (WTG) demonstration project

    NASA Technical Reports Server (NTRS)

    Scheffler, R. L.

    1979-01-01

    To demonstrate the concept of utility scale electricity production from a high wind energy resource, a program was initiated to construct and test a 3 megawatt (3,000 kW) Schachle wind turbine generator near Palm Springs, California. The background and current status of this program are presented along with a summary of future planned program activities.

  5. Developing a UAS Program for Electric Utilities

    NASA Astrophysics Data System (ADS)

    Keltgen, James

    New innovations and technologies using unmanned aerial systems (UAS), or drones, have created unique opportunities for commercial applications. Electric utilities, likewise, realize the benefits of using UAS as a tool in electric utility operations. Although the opportunities exist, establishing a UAS program for electric utilities is largely an endeavor of trial and error or research and development with no clear path defined on how to establish a UAS program. By reviewing UAS use case examples and integrating lessons learned with Federal Aviation Administration (FAA) regulations, UAS best practices, unique electric utility values, legal and insurance perspectives, equipment selection, and thoughtful planning and preparation; a solution model is developed to establish a UAS program for electric utilities.

  6. 29 CFR 1910.302 - Electric utilization systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 5 2012-07-01 2012-07-01 false Electric utilization systems. 1910.302 Section 1910.302..., DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Design Safety Standards for Electrical Systems § 1910.302 Electric utilization systems. Sections 1910.302 through 1910.308 contain design...

  7. 29 CFR 1910.302 - Electric utilization systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 5 2013-07-01 2013-07-01 false Electric utilization systems. 1910.302 Section 1910.302..., DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Design Safety Standards for Electrical Systems § 1910.302 Electric utilization systems. Sections 1910.302 through 1910.308 contain design...

  8. 29 CFR 1910.302 - Electric utilization systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 5 2014-07-01 2014-07-01 false Electric utilization systems. 1910.302 Section 1910.302..., DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Design Safety Standards for Electrical Systems § 1910.302 Electric utilization systems. Sections 1910.302 through 1910.308 contain design...

  9. 29 CFR 1910.302 - Electric utilization systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 5 2011-07-01 2011-07-01 false Electric utilization systems. 1910.302 Section 1910.302..., DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Design Safety Standards for Electrical Systems § 1910.302 Electric utilization systems. Sections 1910.302 through 1910.308 contain design...

  10. 29 CFR 1910.302 - Electric utilization systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 5 2010-07-01 2010-07-01 false Electric utilization systems. 1910.302 Section 1910.302..., DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Design Safety Standards for Electrical Systems § 1910.302 Electric utilization systems. Sections 1910.302 through 1910.308 contain design...

  11. Quality electric motor repair: A guidebook for electric utilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schueler, V.; Douglass, J.

    This guidebook provides utilities with a resource for better understanding and developing their roles in relation to electric motor repair shops and the industrial and commercial utility customers that use them. The guidebook includes information and tools that utilities can use to raise the quality of electric motor repair practices in their service territories.

  12. 77 FR 45967 - National Emission Standards for Hazardous Air Pollutants From Coal- and Oil-Fired Electric...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-02

    ... Electric Utility Steam Generating Units and Standards of Performance for Fossil-Fuel-Fired Electric Utility...-fired Electric Utility Steam Generating Units and Standards of Performance for Fossil-Fuel-Fired...

  13. Advancing Plug-In Hybrid Technology and Flex Fuel Application on a Chrysler Minivan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bazzi, Abdullah; Barnhart, Steven

    2014-12-31

    FCA US LLC viewed this DOE funding as a historic opportunity to begin the process of achieving required economies of scale on technologies for electric vehicles. The funding supported FCA US LLC’s light-duty electric drive vehicle and charging infrastructure-testing activities and enabled FCA US LLC to utilize the funding on advancing Plug-in Hybrid Electric Vehicle (PHEV) technologies to future programs. FCA US LLC intended to develop the next generations of electric drive and energy batteries through a properly paced convergence of standards, technology, components, and common modules, as well as first-responder training and battery recycling. To support the development ofmore » a strong, commercially viable supplier base, FCA US LLC also used this opportunity to evaluate various designated component and sub-system suppliers. The original project proposal was submitted in December 2009 and selected in January 2010. The project ended in December 2014.« less

  14. Electricity market design for the prosumer era

    NASA Astrophysics Data System (ADS)

    Parag, Yael; Sovacool, Benjamin K.

    2016-04-01

    Prosumers are agents that both consume and produce energy. With the growth in small and medium-sized agents using solar photovoltaic panels, smart meters, vehicle-to-grid electric automobiles, home batteries and other ‘smart’ devices, prosuming offers the potential for consumers and vehicle owners to re-evaluate their energy practices. As the number of prosumers increases, the electric utility sector of today is likely to undergo significant changes over the coming decades, offering possibilities for greening of the system, but also bringing many unknowns and risks that need to be identified and managed. To develop strategies for the future, policymakers and planners need knowledge of how prosumers could be integrated effectively and efficiently into competitive electricity markets. Here we identify and discuss three promising potential prosumer markets related to prosumer grid integration, peer-to-peer models and prosumer community groups. We also caution against optimism by laying out a series of caveats and complexities.

  15. Hybrid Vehicle Technologies and their potential for reducing oil use

    NASA Astrophysics Data System (ADS)

    German, John

    2006-04-01

    Vehicles with hybrid gasoline-electric powertrains are starting to gain market share. Current hybrid vehicles add an electric motor, battery pack, and power electronics to the conventional powertrain. A variety of engine/motor configurations are possible, each with advantages and disadvantages. In general, efficiency is improved due to engine shut-off at idle, capture of energy during deceleration that is normally lost as heat in the brakes, downsizing of the conventional engine, and, in some cases, propulsion on the electric motor alone. Ongoing increases in hybrid market share are dependent on cost reduction, especially the battery pack, efficiency synergies with other vehicle technologies, use of the high electric power to provide features desired by customers, and future fuel price and availability. Potential barriers include historically low fuel prices, high discounting of the fuel savings by new vehicle purchasers, competing technologies, and tradeoffs with other factors desired by customers, such as performance, utility, safety, and luxury features.

  16. Financial statistics of major U.S. publicly owned electric utilities 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-12-01

    The 1997 edition of the ``Financial Statistics of Major U.S. Publicly Owned Electric Utilities`` publication presents 5 years (1993 through 1997) of summary financial data and current year detailed financial data on the major publicly owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decisionmaking purposes related to publicly owned electric utility issues. Generator (Tables 3 through 11) and nongenerator (Tables 12 through 20) summaries are presented in this publication. Five years of summary financial data aremore » provided (Tables 5 through 11 and 14 through 20). Summaries of generators for fiscal years ending June 30 and December 31, nongenerators for fiscal years ending June 30 and December 31, and summaries of all respondents are provided in Appendix C. The composite tables present aggregates of income statement and balance sheet data, as well as financial indicators. Composite tables also display electric operation and maintenance expenses, electric utility plant, number of consumers, sales of electricity, operating revenue, and electric energy account data. The primary source of publicly owned financial data is the Form EIA-412, ``Annual Report of Public Electric Utilities.`` Public electric utilities file this survey on a fiscal year basis, in conformance with their recordkeeping practices. The EIA undertook a review of the Form EIA-412 submissions to determine if alternative classifications of publicly owned electric utilities would permit the inclusion of all respondents. The review indicated that financial indicators differ most according to whether or not a publicly owned electric utility generates electricity. Therefore, the main body of the report provides summary information in generator/nongenerator classifications. 2 figs., 101 tabs.« less

  17. Trade Studies for a Manned High-Power Nuclear Electric Propulsion Vehicle

    NASA Technical Reports Server (NTRS)

    SanSoucie, Michael; Hull, Patrick V.; Irwin, Ryan W.; TInker, Michael L.; Patton, Bruce W.

    2005-01-01

    Nuclear electric propulsion (NEP) vehicles will be needed for future manned missions to Mars and beyond. Candidate vehicles must be identified through trade studies for further detailed design from a large array of possibilities. Genetic algorithms have proven their utility in conceptual design studies by effectively searching a large design space to pinpoint unique optimal designs. This research combines analysis codes for NEP subsystems with genetic algorithm-based optimization. Trade studies for a NEP reference mission to the asteroids were conducted to identify important trends, and to determine the effects of various technologies and subsystems on vehicle performance. It was found that the electric thruster type and thruster performance have a major impact on the achievable system performance, and that significant effort in thruster research and development is merited.

  18. Three-dimensional direct laser written graphitic electrical contacts to randomly distributed components

    NASA Astrophysics Data System (ADS)

    Dorin, Bryce; Parkinson, Patrick; Scully, Patricia

    2018-04-01

    The development of cost-effective electrical packaging for randomly distributed micro/nano-scale devices is a widely recognized challenge for fabrication technologies. Three-dimensional direct laser writing (DLW) has been proposed as a solution to this challenge, and has enabled the creation of rapid and low resistance graphitic wires within commercial polyimide substrates. In this work, we utilize the DLW technique to electrically contact three fully encapsulated and randomly positioned light-emitting diodes (LEDs) in a one-step process. The resolution of the contacts is in the order of 20 μ m, with an average circuit resistance of 29 ± 18 kΩ per LED contacted. The speed and simplicity of this technique is promising to meet the needs of future microelectronics and device packaging.

  19. Fiber-optic sensors for aerospace electrical measurements: An update

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Rose, A. H.; Tang, D.; Day, G. W.

    1991-01-01

    Fiber-optic sensors are being developed for electrical current, voltage, and power measurements in aerospace applications. These sensors are presently designed to cover ac frequencies from 60 Hz to 20 kHz. The current sensor, based on the Faraday effect in optical fiber, is in advanced development after some initial testing. Concentration is on packaging methods and ways to maintain consistent sensitivity with changes in temperature. The voltage sensor, utilizing the Pockels effect in a crystal, has excelled in temperature tests. This paper reports on the development of these sensors, the results of evaluation, improvements now in progress, and the future direction of the work.

  20. Odyne Plug-In Hybrid Electric Utility Truck Testing | Transportation

    Science.gov Websites

    Research | NREL Odyne Plug-In Hybrid Electric Utility Truck Evaluation Odyne Plug-In Hybrid data on plug-in hybrid electric utility trucks operated by a variety of companies. Photo courtesy of Odyne, NREL NREL is evaluating the in-service performance of about 120 plug-in hybrid electric utility

  1. Potential for Jobs and Economic Development from Offshore Wind in California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tegen, Suzanne

    In California's future scenarios, energy demand increases with population growth and productivity. Decision-makers will have to make choices about which energy resources to utilize, and offshore wind offers one option for carbon-free electricity with the potential for increased local jobs. This presentation discusses results from an NREL report, Floating Offshore Wind in California: Gross Potential for Jobs and Economic Impacts from Two Future Scenarios. Presenter Suzanne Tegen describes the Jobs and Economic Development Impact (JEDI) model and its results for two offshore wind scenarios in California. She discusses different assumptions and how they affect the scenarios.

  2. 18 CFR Appendix A to Part 290 - Nonexempt Electric Utilities

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Nonexempt Electric... 1978 Pt. 290, App. A Appendix A to Part 290—Nonexempt Electric Utilities Electric utilities that are... follows: Department of Water and Power of the City of Los Angeles, California. Pacific Gas & Electric Co...

  3. 18 CFR Appendix A to Part 290 - Nonexempt Electric Utilities

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Nonexempt Electric... 1978 Pt. 290, App. A Appendix A to Part 290—Nonexempt Electric Utilities Electric utilities that are... follows: Department of Water and Power of the City of Los Angeles, California. Pacific Gas & Electric Co...

  4. 18 CFR Appendix A to Part 290 - Nonexempt Electric Utilities

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Nonexempt Electric... 1978 Pt. 290, App. A Appendix A to Part 290—Nonexempt Electric Utilities Electric utilities that are... follows: Department of Water and Power of the City of Los Angeles, California. Pacific Gas & Electric Co...

  5. 18 CFR Appendix A to Part 290 - Nonexempt Electric Utilities

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Nonexempt Electric... 1978 Pt. 290, App. A Appendix A to Part 290—Nonexempt Electric Utilities Electric utilities that are... follows: Department of Water and Power of the City of Los Angeles, California. Pacific Gas & Electric Co...

  6. 18 CFR Appendix A to Part 290 - Nonexempt Electric Utilities

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Nonexempt Electric... 1978 Pt. 290, App. A Appendix A to Part 290—Nonexempt Electric Utilities Electric utilities that are... follows: Department of Water and Power of the City of Los Angeles, California. Pacific Gas & Electric Co...

  7. 18 CFR 292.302 - Availability of electric utility system cost data.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... electric utility, in any calendar year, if the total sales of electric energy by such utility for purposes... electric energy for purposes other than resale of less than one billion kilowatt-hours during any calendar... which is legally obligated to obtain all its requirements for electric energy and capacity from another...

  8. The Future of Centrally-Organized Wholesale Electricity Markets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glazer, Craig; Morrison, Jay; Breakman, Paul

    The electricity grid in the United States is organized around a network of large, centralized power plants and high voltage transmission lines that transport electricity, sometimes over large distances, before it is delivered to the customer through a local distribution grid. This network of centralized generation and high voltage transmission lines is called the “bulk power system.” Costs relating to bulk power generation typically account for more than half of a customer’s electric bill.1 For this reason, the structure and functioning of wholesale electricity markets have major impacts on costs and economic value for consumers, as well as energy securitymore » and national security. Diverse arrangements for bulk power wholesale markets have evolved over the last several decades. The Southeast and Western United States outside of California have a “bilateral-based” bulk power system where market participants enter into long-term bilateral agreements — using competitive procurements through power marketers, direct arrangements among utilities or with other generation owners, and auctions and exchanges.« less

  9. The Oak Ridge Competitive Electricity Dispatch (ORCED) Model Version 9

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadley, Stanton W.; Baek, Young Sun

    The Oak Ridge Competitive Electricity Dispatch (ORCED) model dispatches power plants in a region to meet the electricity demands for any single given year up to 2030. It uses publicly available sources of data describing electric power units such as the National Energy Modeling System and hourly demands from utility submittals to the Federal Energy Regulatory Commission that are projected to a future year. The model simulates a single region of the country for a given year, matching generation to demands and predefined net exports from the region, assuming no transmission constraints within the region. ORCED can calculate a numbermore » of key financial and operating parameters for generating units and regional market outputs including average and marginal prices, air emissions, and generation adequacy. By running the model with and without changes such as generation plants, fuel prices, emission costs, plug-in hybrid electric vehicles, distributed generation, or demand response, the marginal impact of these changes can be found.« less

  10. An Assessment Model for Energy Efficiency Program Planning in Electric Utilities: Case of the Pacific of Northwest U.S.A

    NASA Astrophysics Data System (ADS)

    Iskin, Ibrahim

    Energy efficiency stands out with its potential to address a number of challenges that today's electric utilities face, including increasing and changing electricity demand, shrinking operating capacity, and decreasing system reliability and flexibility. Being the least cost and least risky alternative, the share of energy efficiency programs in utilities' energy portfolios has been on the rise since the 1980s, and their increasing importance is expected to continue in the future. Despite holding great promise, the ability to determine and invest in only the most promising program alternatives plays a key role in the successful use of energy efficiency as a utility-wide resource. This issue becomes even more significant considering the availability of a vast number of potential energy efficiency programs, the rapidly changing business environment, and the existence of multiple stakeholders. This dissertation introduces hierarchical decision modeling as the framework for energy efficiency program planning in electric utilities. The model focuses on the assessment of emerging energy efficiency programs and proposes to bridge the gap between technology screening and cost/benefit evaluation practices. This approach is expected to identify emerging technology alternatives which have the highest potential to pass cost/benefit ratio testing procedures and contribute to the effectiveness of decision practices in energy efficiency program planning. The model also incorporates rank order analysis and sensitivity analysis for testing the robustness of results from different stakeholder perspectives and future uncertainties in an attempt to enable more informed decision-making practices. The model was applied to the case of 13 high priority emerging energy efficiency program alternatives identified in the Pacific Northwest, U.S.A. The results of this study reveal that energy savings potential is the most important program management consideration in selecting emerging energy efficiency programs. Market dissemination potential and program development and implementation potential are the second and third most important, whereas ancillary benefits potential is the least important program management consideration. The results imply that program value considerations, comprised of energy savings potential and ancillary benefits potential; and program feasibility considerations, comprised of program development and implementation potential and market dissemination potential, have almost equal impacts on assessment of emerging energy efficiency programs. Considering the overwhelming number of value-focused studies and the few feasibility-focused studies in the literature, this finding clearly shows that feasibility-focused studies are greatly understudied. The hierarchical decision model developed in this dissertation is generalizable. Thus, other utilities or power systems can adopt the research steps employed in this study as guidelines and conduct similar assessment studies on emerging energy efficiency programs of their interest.

  11. Water Resource Impacts Embedded in the Western US Electrical Energy Trade; Current Patterns and Adaptation to Future Drought

    NASA Astrophysics Data System (ADS)

    Adams, E. A.; Herron, S.; Qiu, Y.; Tidwell, V. C.; Ruddell, B. L.

    2013-12-01

    Water resources are a key element in the global coupled natural-human (CNH) system, because they are tightly coupled with the world's social, environmental, and economic subsystems, and because water resources are under increasing pressure worldwide. A fundamental adaptive tool used especially by cities to overcome local water resource scarcity is the outsourcing of water resource impacts through substitutionary economic trade. This is generally understood as the indirect component of a water footprint, and as ';virtual water' trade. This work employs generalized CNH methods to reveal the trade in water resource impacts embedded in electrical energy within the Western US power grid, and utilizes a general equilibrium economic trade model combined with drought and demand growth constraints to estimate the future status of this trade. Trade in embedded water resource impacts currently increases total water used for electricity production in the Western US and shifts water use to more water-limited States. Extreme drought and large increases in electrical energy demand increase the need for embedded water resource impact trade, while motivating a shift to more water-efficient generation technologies and more water-abundant generating locations. Cities are the largest users of electrical energy, and in the 21st Century will outsource a larger fraction of their water resource impacts through trade. This trade exposes cities to risks associated with disruption of long-distance transmission and distant hydrological droughts.

  12. Current and Future United States Light-Duty Vehicle Pathways: Cradle-to-Grave Lifecycle Greenhouse Gas Emissions and Economic Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elgowainy, Amgad; Han, Jeongwoo; Ward, Jacob

    This article presents a cradle-to-grave (C2G) assessment of greenhouse gas (GHG) emissions and costs for current (2015) and future (2025-2030) light-duty vehicles. The analysis addressed both fuel cycle and vehicle manufacturing cycle for the following vehicle types: gasoline and diesel internal combustion engine vehicles (ICEVs), flex fuel vehicles, compressed natural gas (CNG) vehicles, hybrid electric vehicles (HEVs), hydrogen fuel cell electric vehicles (FCEVs), battery electric vehicles (BEVs), and plug-in hybrid electric vehicles (PHEVs). Gasoline ICEVs using current technology have C2G emissions of ~450 gCO2e/mi (grams of carbon dioxide equivalents per mile), while C2G emissions from HEVs, PHEVs, H2 FCEVs, andmore » BEVs range from 300-350 gCO2e/mi. Future vehicle efficiency gains are expected to reduce emissions to ~350 gCO2/mi for ICEVs and ~250 gCO2e/mi for HEVs, PHEVs, FCEVs, and BEVs. Utilizing low-carbon fuel pathways yields GHG reductions more than double those achieved by vehicle efficiency gains alone. Levelized costs of driving (LCDs) are in the range $0.25-$1.00/mi depending on time frame and vehicle-fuel technology. In all cases, vehicle cost represents the major (60-90%) contribution to LCDs. Currently, HEV and PHEV petroleum-fueled vehicles provide the most attractive cost in terms of avoided carbon emissions, although they offer lower potential GHG reductions. The ranges of LCD and cost of avoided carbon are narrower for the future technology pathways, reflecting the expected economic competitiveness of these alternative vehicles and fuels.« less

  13. Current and Future United States Light-Duty Vehicle Pathways: Cradle-to-Grave Lifecycle Greenhouse Gas Emissions and Economic Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elgowainy, Amgad; Han, Jeongwoo; Ward, Jacob

    This article presents a cradle-to-grave (C2G) assessment of greenhouse gas (GHG) emissions and costs for current (2015) and future (2025–2030) light-duty vehicles. The analysis addressed both fuel cycle and vehicle manufacturing cycle for the following vehicle types: gasoline and diesel internal combustion engine vehicles (ICEVs), flex fuel vehicles, compressed natural gas (CNG) vehicles, hybrid electric vehicles (HEVs), hydrogen fuel cell electric vehicles (FCEVs), battery electric vehicles (BEVs), and plug-in hybrid electric vehicles (PHEVs). Gasoline ICEVs using current technology have C2G emissions of ~450 gCO2e/mi (grams of carbon dioxide equivalents per mile), while C2G emissions from HEVs, PHEVs, H2 FCEVs, andmore » BEVs range from 300–350 gCO2e/mi. Future vehicle efficiency gains are expected to reduce emissions to ~350 gCO2/mi for ICEVs and ~250 gCO2e/mi for HEVs, PHEVs, FCEVs and BEVs. Utilizing low-carbon fuel pathways yields GHG reductions more than double those achieved by vehicle efficiency gains alone. Levelized costs of driving (LCDs) are in the range $0.25–$1.00/mi depending on timeframe and vehicle-fuel technology. In all cases, vehicle cost represents the major (60–90%) contribution to LCDs. Currently, HEV and PHEV petroleum-fueled vehicles provide the most attractive cost in terms of avoided carbon emissions, although they offer lower potential GHG reductions The ranges of LCD and cost of avoided carbon are narrower for the future technology pathways, reflecting the expected economic competitiveness of these alternative vehicles and fuels.« less

  14. Current and Future United States Light-Duty Vehicle Pathways: Cradle-to-Grave Lifecycle Greenhouse Gas Emissions and Economic Assessment.

    PubMed

    Elgowainy, Amgad; Han, Jeongwoo; Ward, Jacob; Joseck, Fred; Gohlke, David; Lindauer, Alicia; Ramsden, Todd; Biddy, Mary; Alexander, Mark; Barnhart, Steven; Sutherland, Ian; Verduzco, Laura; Wallington, Timothy J

    2018-02-20

    This article presents a cradle-to-grave (C2G) assessment of greenhouse gas (GHG) emissions and costs for current (2015) and future (2025-2030) light-duty vehicles. The analysis addressed both fuel cycle and vehicle manufacturing cycle for the following vehicle types: gasoline and diesel internal combustion engine vehicles (ICEVs), flex fuel vehicles, compressed natural gas (CNG) vehicles, hybrid electric vehicles (HEVs), hydrogen fuel cell electric vehicles (FCEVs), battery electric vehicles (BEVs), and plug-in hybrid electric vehicles (PHEVs). Gasoline ICEVs using current technology have C2G emissions of ∼450 gCO 2 e/mi (grams of carbon dioxide equivalents per mile), while C2G emissions from HEVs, PHEVs, H 2 FCEVs, and BEVs range from 300-350 gCO 2 e/mi. Future vehicle efficiency gains are expected to reduce emissions to ∼350 gCO 2 /mi for ICEVs and ∼250 gCO 2e /mi for HEVs, PHEVs, FCEVs, and BEVs. Utilizing low-carbon fuel pathways yields GHG reductions more than double those achieved by vehicle efficiency gains alone. Levelized costs of driving (LCDs) are in the range $0.25-$1.00/mi depending on time frame and vehicle-fuel technology. In all cases, vehicle cost represents the major (60-90%) contribution to LCDs. Currently, HEV and PHEV petroleum-fueled vehicles provide the most attractive cost in terms of avoided carbon emissions, although they offer lower potential GHG reductions. The ranges of LCD and cost of avoided carbon are narrower for the future technology pathways, reflecting the expected economic competitiveness of these alternative vehicles and fuels.

  15. Renewable Electricity Futures Study. Volume 1. Exploration of High-Penetration Renewable Electricity Futures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hand, M. M.; Baldwin, S.; DeMeo, E.

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a futuremore » through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/« less

  16. Renewable Electricity Futures Study. Volume 1: Exploration of High-Penetration Renewable Electricity Futures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mai, T.; Wiser, R.; Sandor, D.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a futuremore » through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).« less

  17. Life expectancy impacts due to heating energy utilization in China: Distribution, relations, and policy implications.

    PubMed

    Wang, Shaobin; Luo, Kunli

    2018-01-01

    The relation between life expectancy and energy utilization is of particular concern. Different viewpoints concerned the health impacts of heating policy in China. However, it is still obscure that what kind of heating energy or what pattern of heating methods is the most related with the difference of life expectancies in China. The aim of this paper is to comprehensively investigate the spatial relations between life expectancy at birth (LEB) and different heating energy utilization in China by using spatial autocorrelation models including global spatial autocorrelation, local spatial autocorrelation and hot spot analysis. The results showed that: (1) Most of heating energy exhibit a distinct north-south difference, such as central heating supply, stalks and domestic coal. Whereas spatial distribution of domestic natural gas and electricity exhibited west-east differences. (2) Consumption of central heating, stalks and domestic coal show obvious spatial dependence. Whereas firewood, natural gas and electricity did not show significant spatial autocorrelation. It exhibited an extinct south-north difference of heat supply, stalks and domestic coal which were identified to show significant positive spatial autocorrelation. (3) Central heating, residential boilers and natural gas did not show any significant correlations with LEB. While, the utilization of domestic coal and biomass showed significant negative correlations with LEB, and household electricity shows positive correlations. The utilization of domestic coal in China showed a negative effect on LEB, rather than central heating. To improve the solid fuel stoves and control consumption of domestic coal consumption and other low quality solid fuel is imperative to improve the public health level in China in the future. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Characteristics of future Vertical Axis Wind Turbines (VAWTs). [to generate utility grid electric power

    NASA Technical Reports Server (NTRS)

    Kadlec, E. G.

    1979-01-01

    The developing Darrieus VAWT technology whose ultimate objective is economically feasible, industry-produced, commercially marketed wind energy systems is reviewed. First-level aerodynamic, structural, and system analyses capabilities which support and evaluate the system designs are discussed. The characteristics of current technology designs are presented and their cost effectiveness is assessed. Potential improvements identified are also presented along with their cost benefits.

  19. 18 CFR 292.304 - Rates for purchases.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... PRODUCTION AND COGENERATION Arrangements Between Electric Utilities and Qualifying Cogeneration and Small... reasonable to the electric consumer of the electric utility and in the public interest; and (ii) Not... requires any electric utility to pay more than the avoided costs for purchases. (b) Relationship to avoided...

  20. The political economy of United States multiutilities: The United States electric power industry and communication services

    NASA Astrophysics Data System (ADS)

    Quail, Christine M.

    This study consists of a political economic analysis of the multiutility industry, the industry located at the confluence of electric utilities, telephone, cable, and Internet markets. The study uses a theoretical framework based in political economy and urban theory. Methodologies used include industrial analysis and instrumental analysis. A discussion of technological convergence establishes the technical means by which multiutilities developed. Refusing technological determinism, however, the study presents a critical analysis of the history, philosophy, and regulation of utilities. Distinctions are made between public and private ownership structures in the electric utility industry. Next, the study embarks on an industrial analysis of the multiutility industry. The industrial analysis includes a discussion of the industry's history, markets, ownership types, and legal struggles. Following the broad industrial overview, two case studies are presented: Hawarden Integrated Technology, Energy and Communications (HITEC), and Con Edison Communications, LLC. HITEC is a public multiutility in the City of Hawarden, Iowa. Con Edison Communications is a private multiutility, based in New York City. The case studies provide a vehicle by which theoretical and philosophical underpinnings, as well as general trends, in the multiutility industry are localized and concretized. Finally, the study draws conclusions about the nature, history, and future of public versus private control of multiutilities' converged communications infrastructures. Questions of democratic control of media infrastructures are raised.

  1. Solar thermal power plants in small utilities - An economic impact analysis

    NASA Technical Reports Server (NTRS)

    Bluhm, S. A.; Ferber, R. R.; Mayo, L. G.

    1979-01-01

    A study was performed to assess the potential economic impact of small solar thermal electric power systems in statistically representative synthetic small utilities of the Southwestern United States. Power supply expansion plans were compared on the basis of present worth of future revenue requirements for 1980-2000 with and without solar thermal plants. Coal-fired and oil-fired municipal utility expansion plans with 5 percent solar penetration were 0.5 percent and 2.25 percent less expensive, respectively, than the corresponding conventional plan. At $969/kWe, which assumes the same low cost solar equipment but no improvement in site development costs, solar penetration of 5 percent in the oil-fired municipal reduced revenue requirements 0.88 percent. The paper concludes that some solar thermal plants are potentially economic in small community utilities of the Southwest.

  2. Renewable Electricity Futures Study. Volume 2. Renewable Electricity Generation and Storage Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Augustine, Chad; Bain, Richard; Chapman, Jamie

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a futuremore » through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/« less

  3. Renewable Electricity Futures Study. Volume 3. End-Use Electricity Demand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hostick, Donna; Belzer, David B.; Hadley, Stanton W.

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a futuremore » through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/« less

  4. Renewable Electricity Futures Study. Volume 4: Bulk Electric Power Systems. Operations and Transmission Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milligan, Michael; Ela, Erik; Hein, Jeff

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a futuremore » through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/« less

  5. Renewable Electricity Futures Study. Volume 4: Bulk Electric Power Systems: Operations and Transmission Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milligan, M.; Ela, E.; Hein, J.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a futuremore » through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).« less

  6. Renewable Electricity Futures Study. Volume 3: End-Use Electricity Demand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hostick, D.; Belzer, D.B.; Hadley, S.W.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a futuremore » through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).« less

  7. Renewable Electricity Futures Study. Volume 2: Renewable Electricity Generation and Storage Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Augustine, C.; Bain, R.; Chapman, J.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a futuremore » through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).« less

  8. Financial statistics of major US investor-owned electric utilities 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-12-01

    The Financial Statistics of Major U.S. Investor-Owned Electric Utilities publication presents summary and detailed financial accounting data on the investor-owned electric utilities. The objective of the publication is to provide Federal and State Governments, industry, and the general public with current and historical data that can be used for making policy and decisions relating to investor-owned electric utility issues.

  9. Financial statistics of major U.S. investor-owned electric utilities 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1995-01-01

    The Financial Statistics of Major US Investor-Owned Electric Utilities publication presents summary and detailed financial accounting data on the investor-owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decisionmaking purposes related to investor-owned electric utility issues.

  10. High-Power Solar Electric Propulsion for Future NASA Missions

    NASA Technical Reports Server (NTRS)

    Manzella, David; Hack, Kurt

    2014-01-01

    NASA has sought to utilize high-power solar electric propulsion as means of improving the affordability of in-space transportation for almost 50 years. Early efforts focused on 25 to 50 kilowatt systems that could be used with the Space Shuttle, while later efforts focused on systems nearly an order of magnitude higher power that could be used with heavy lift launch vehicles. These efforts never left the concept development phase in part because the technology required was not sufficiently mature. Since 2012 the NASA Space Technology Mission Directorate has had a coordinated plan to mature the requisite solar array and electric propulsion technology needed to implement a 30 to 50 kilowatt solar electric propulsion technology demonstration mission. Multiple solar electric propulsion technology demonstration mission concepts have been developed based on these maturing technologies with recent efforts focusing on an Asteroid Redirect Robotic Mission. If implemented, the Asteroid Redirect Vehicle will form the basis for a capability that can be cost-effectively evolved over time to provide solar electric propulsion transportation for a range of follow-on mission applications at power levels in excess of 100 kilowatts.

  11. Solar-to-vehicle (S2V) systems for powering commuters of the future

    NASA Astrophysics Data System (ADS)

    Birnie, Dunbar P.

    Hybrid electric vehicles are growing in popularity and significance in our marketplace as gasoline prices continue to rise. Consumers are also increasingly aware of their carbon "footprint" and seek ways of lowering their carbon dioxide output. Plug-in hybrid and electric vehicles appear to be the next wave in helping transition from a gasoline-based transportation infrastructure to an electric-grid-sourced mode, though most plug-in scenarios ultimately rely on having the electric utilities converted from fossil sources to renewable generation in the long run. At present, one of the key advantages of plug-in hybrid/electric vehicles is that they can be charged at home, at night, when lower off-peak rates could apply. The present analysis considers a further advancement: the impact of daytime recharging using solar arrays located at commuters' work sites. This would convert large parking areas into solar recharge stations for commuters. The solar power would be large enough to supply many commuters' needs. The implications for electric car design in relation to commuter range are discussed in detail.

  12. Time-varying value of electric energy efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mims, Natalie A.; Eckman, Tom; Goldman, Charles

    Electric energy efficiency resources save energy and may reduce peak demand. Historically, quantification of energy efficiency benefits has largely focused on the economic value of energy savings during the first year and lifetime of the installed measures. Due in part to the lack of publicly available research on end-use load shapes (i.e., the hourly or seasonal timing of electricity savings) and energy savings shapes, consideration of the impact of energy efficiency on peak demand reduction (i.e., capacity savings) has been more limited. End-use load research and the hourly valuation of efficiency savings are used for a variety of electricity planningmore » functions, including load forecasting, demand-side management and evaluation, capacity and demand response planning, long-term resource planning, renewable energy integration, assessing potential grid modernization investments, establishing rates and pricing, and customer service. This study reviews existing literature on the time-varying value of energy efficiency savings, provides examples in four geographically diverse locations of how consideration of the time-varying value of efficiency savings impacts the calculation of power system benefits, and identifies future research needs to enhance the consideration of the time-varying value of energy efficiency in cost-effectiveness screening analysis. Findings from this study include: -The time-varying value of individual energy efficiency measures varies across the locations studied because of the physical and operational characteristics of the individual utility system (e.g., summer or winter peaking, load factor, reserve margin) as well as the time periods during which savings from measures occur. -Across the four locations studied, some of the largest capacity benefits from energy efficiency are derived from the deferral of transmission and distribution system infrastructure upgrades. However, the deferred cost of such upgrades also exhibited the greatest range in value of all the components of avoided costs across the locations studied. -Of the five energy efficiency measures studied, those targeting residential air conditioning in summer-peaking electric systems have the most significant added value when the total time-varying value is considered. -The increased use of rooftop solar systems, storage, and demand response, and the addition of electric vehicles and other major new electricity-consuming end uses are anticipated to significantly alter the load shape of many utility systems in the future. Data used to estimate the impact of energy efficiency measures on electric system peak demands will need to be updated periodically to accurately reflect the value of savings as system load shapes change. -Publicly available components of electric system costs avoided through energy efficiency are not uniform across states and utilities. Inclusion or exclusion of these components and differences in their value affect estimates of the time-varying value of energy efficiency. -Publicly available data on end-use load and energy savings shapes are limited, are concentrated regionally, and should be expanded.« less

  13. Uses and Applications of Climate Forecasts for Power Utilities.

    NASA Astrophysics Data System (ADS)

    Changnon, Stanley A.; Changnon, Joyce M.; Changnon, David

    1995-05-01

    The uses and potential applications of climate forecasts for electric and gas utilities were assessed 1) to discern needs for improving climate forecasts and guiding future research, and 2) to assist utilities in making wise use of forecasts. In-depth structured interviews were conducted with 56 decision makers in six utilities to assess existing and potential uses of climate forecasts. Only 3 of the 56 use forecasts. Eighty percent of those sampled envisioned applications of climate forecasts, given certain changes and additional information. Primary applications exist in power trading, load forecasting, fuel acquisition, and systems planning, with slight differences in interests between utilities. Utility staff understand probability-based forecasts but desire climatological information related to forecasted outcomes, including analogs similar to the forecasts, and explanations of the forecasts. Desired lead times vary from a week to three months, along with forecasts of up to four seasons ahead. The new NOAA forecasts initiated in 1995 provide the lead times and longer-term forecasts desired. Major hindrances to use of forecasts are hard-to-understand formats, lack of corporate acceptance, and lack of access to expertise. Recent changes in government regulations altered the utility industry, leading to a more competitive world wherein information about future weather conditions assumes much more value. Outreach efforts by government forecast agencies appear valuable to help achieve the appropriate and enhanced use of climate forecasts by the utility industry. An opportunity for service exists also for the private weather sector.

  14. 77 FR 26476 - Standards of Performance for Greenhouse Gas Emissions for New Stationary Sources: Electric...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-04

    ... Performance for Greenhouse Gas Emissions for New Stationary Sources: Electric Utility Generating Units AGENCY... Greenhouse Gas Emissions for New Stationary Sources: Electric Utility Generating Units.'' The EPA is making... for Greenhouse Gas Emissions for New Stationary Sources: Electric Utility Generating Units, and...

  15. NREL, San Diego Gas & Electric Are Advancing Utility Microgrid Performance

    Science.gov Websites

    in Borrego Springs, California | Energy Systems Integration Facility | NREL NREL, San Diego Gas & Electric Models Utility Microgrid in Borrego Springs NREL, San Diego Gas & Electric Are Advancing Utility Microgrid Performance in Borrego Springs, California San Diego Gas & Electric Company

  16. Advanced excimer laser technologies enable green semiconductor manufacturing

    NASA Astrophysics Data System (ADS)

    Fukuda, Hitomi; Yoo, Youngsun; Minegishi, Yuji; Hisanaga, Naoto; Enami, Tatsuo

    2014-03-01

    "Green" has fast become an important and pervasive topic throughout many industries worldwide. Many companies, especially in the manufacturing industries, have taken steps to integrate green initiatives into their high-level corporate strategies. Governments have also been active in implementing various initiatives designed to increase corporate responsibility and accountability towards environmental issues. In the semiconductor manufacturing industry, there are growing concerns over future environmental impact as enormous fabs expand and new generation of equipments become larger and more powerful. To address these concerns, Gigaphoton has implemented various green initiatives for many years under the EcoPhoton™ program. The objective of this program is to drive innovations in technology and services that enable manufacturers to significantly reduce both the financial and environmental "green cost" of laser operations in high-volume manufacturing environment (HVM) - primarily focusing on electricity, gas and heat management costs. One example of such innovation is Gigaphoton's Injection-Lock system, which reduces electricity and gas utilization costs of the laser by up to 50%. Furthermore, to support the industry's transition from 300mm to the next generation 450mm wafers, technologies are being developed to create lasers that offer double the output power from 60W to 120W, but reducing electricity and gas consumption by another 50%. This means that the efficiency of lasers can be improve by up to 4 times in 450mm wafer production environments. Other future innovations include the introduction of totally Heliumfree Excimer lasers that utilize Nitrogen gas as its replacement for optical module purging. This paper discusses these and other innovations by Gigaphoton to enable green manufacturing.

  17. Space propulsion technology overview

    NASA Technical Reports Server (NTRS)

    Pelouch, J. J., Jr.

    1979-01-01

    Chemical and electric propulsion technologies for operations beyond the shuttle's orbit with focus on future mission needs and economic effectiveness is discussed. The adequacy of the existing propulsion state-of-the-art, barriers to its utilization, benefit of technology advances, and the prognosis for advancement are the themes of the discussion. Low-thrust propulsion for large space systems is cited as a new technology with particularly high benefit. It is concluded that the shuttle's presence for at least two decades is a legitimate basis for new propulsion technology, but that this technology must be predicted on an awareness of mission requirements, economic factors, influences of other technologies, and real constraints on its utilization.

  18. Decision support for mitigating the risk of tree induced transmission line failure in utility rights-of-way.

    PubMed

    Poulos, H M; Camp, A E

    2010-02-01

    Vegetation management is a critical component of rights-of-way (ROW) maintenance for preventing electrical outages and safety hazards resulting from tree contact with conductors during storms. Northeast Utility's (NU) transmission lines are a critical element of the nation's power grid; NU is therefore under scrutiny from federal agencies charged with protecting the electrical transmission infrastructure of the United States. We developed a decision support system to focus right-of-way maintenance and minimize the potential for a tree fall episode that disables transmission capacity across the state of Connecticut. We used field data on tree characteristics to develop a system for identifying hazard trees (HTs) in the field using limited equipment to manage Connecticut power line ROW. Results from this study indicated that the tree height-to-diameter ratio, total tree height, and live crown ratio were the key characteristics that differentiated potential risk trees (danger trees) from trees with a high probability of tree fall (HTs). Products from this research can be transferred to adaptive right-of-way management, and the methods we used have great potential for future application to other regions of the United States and elsewhere where tree failure can disrupt electrical power.

  19. Electric utilities, fiscal illusion and the provision of local public services

    NASA Astrophysics Data System (ADS)

    Dowell, Paula Elizabeth Kay

    2000-10-01

    Restructuring activity in the electric utility industry is threatening a once stable and significant source of revenue for local governments. Potentially declining revenues from electric utilities leaves local policymakers with the unpopular decision of raising taxes or reducing the level of public services provided. This has led to pressure on state governments to introduce legislation aimed at mitigating potential revenue loss for local government due to restructuring activity. However, before imposing such legislation, a better understanding of the potential distortionary effects of internal subsidization by electric utilities is needed. Two models of the demand for local public services--a structural model using the Stone-Geary utility framework and a reduced form model--are developed in an attempt to model the behavioral responses of local public expenditures to revenue contributions from electric utilities. Empirical analysis of both models is conducted using a panel data set for 242 municipalities in Tennessee from 1988 to 1998. Aggregate spending and expenditures on four specific service functions are examined. The results provide evidence of a positive flypaper effect. Furthermore, the source of the flypaper effect is attributed to fiscal illusion caused by price distortions. The stimulative effect of electric utility revenue contributions on the level of local public services indicate that a 1.00 change in electric utility subsidies results in a change in local expenditures ranging from 0.22 to 1.32 for the structural model and 1.97 to 2.51 for the reduced form model. The amount of the marginal effect directly attributed to price illusion is estimated to range from 0.04 to $0.85. In addition, the elasticities of electric utility revenue contributions are estimated to range from 0.05 to 0.90. The results raise a number of interesting issues regarding municipal ownership of utilities and legislation regarding tax treatment of utilities after restructuring. The fact that the current study suggests that electric utility subsidies give rise to fiscal illusion raises new questions regarding the justification of safeguarding the exclusive franchise of municipally-owned utilities and revenues from electric utilities in the era of restructuring.

  20. Guideline for assessing the performance of electric power systems in natural hazard and human threat events

    USGS Publications Warehouse

    Savage, W.U.; Nishenko, S.P.; Honegger, D.G.; Kempner, L.

    2006-01-01

    Electric power utilities are familiar with and skilled in preparing for and responding to almost-routine natural hazard events such as strong wind and ice storms and seasonal floods, as well as intentional human acts such as vandalism. Recent extreme weather (hurricanes Katrina and Rita), extremely destructive international earthquakes (in Sumatra and Pakistan), and nation-wide concerns regarding future terrorist attacks have increased the pressure on utilities to take appropriate steps to avoid being overwhelmed by such infrequent and exceedingly severe events. Determining what constitutes the appropriate steps to take requires various levels of understanding of the specific hazards and the risks faced by the utility. The American Lifelines Alliance (www. americanlifelinesalliance.org) has prepared a Guideline that provides clear, concise, and nationally-applicable guidance on determining the scope and level of effort necessary to assess power system performance in the wide range of natural hazard or human threat events. Included in this Guideline are specific procedures to follow and information to consider in performing standardized assessments. With the results of such assessments, utility owners can effectively establish and carry out risk management programs that will lead to achieving appropriate levels of performance in future events. The Guideline incorporates an inquiry-driven process with a two-phase performance assessment that can be applied to power systems of any size. The screening phase enables systems or components that are clearly not at risk to be screened out early. The subsequent analysis phase uses results from the screening phase to prioritize and allocate resources for more detailed assessments of hazard, vulnerability, and system performance. This process helps assure that the scope of the assessment meets the specific performance objectives of the inquiry. A case history is presented to illustrate the type of experience with an inquiry-driven process that was considered in developing the Guideline to meet the diverse needs of utility personnel in engineering, operations, and management. Copyright ASCE 2007.

  1. Electrical Conductivity in Polymer Blends/ Multiwall Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Kulkarni, Ajit R.; Bose, Suryasarathi; Bhattacharyya, Arup R.

    2008-10-01

    Carbon nanotubes (CNT) based polymer composites have emerged as the future multifunctional materials in view of its exceptional mechanical, thermal and electrical properties. One of the major interests is to develop conductive polymer composites preferably at low concentration of CNT utilizing their high aspect ratio (L/D) for numerous applications, which include antistatic devices, capacitors and materials for EMI shielding. In this context, polymer blends have emerged as a potential candidate in lowering the percolation thresholds further by the utilization of `double-percolation' which arises from the synergistic improvements in blend properties associated with the co-continuous morphology. Due to strong inter-tube van der Waals' forces, they often tend to aggregate and uniform dispersion remains a challenge. To overcome this challenge, we exploited sodium salt of 6-aminohexanoic acid (Na-AHA) which was able to assist in debundlling the multiwall carbon nanotubes (MWNT) through `cation-π' interactions during melt-mixing leading to percolative `network-like' structure of MWNT within polyamide6 (PA6) phase in co-continuous PA6/acrylonitrile butadiene styrene (ABS) blends. The composite exhibited low electrical percolation thresholds of 0.25 wt% of MWNT, the lowest reported value in this system so far. Retention of `network-like structure' in the solid state with significant refinement was observed even at lower MWNT concentration in presence Na-AHA, which was assessed through AC electrical conductivity measurements. Reactive coupling was found to be a dominant factor besides `cation-π' interactions in achieving low electrical percolation in PA6/ABS+MWNT composites.

  2. Integrated Renewable Hydrogen Utility System (IRHUS) business plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1999-03-01

    This business plan is for a proposed legal entity named IRHUS, Inc. which is to be formed as a subsidiary of Energy Partners, L.C. (EP) of West Palm Beach, Florida. EP is a research and development company specializing in hydrogen proton exchange membrane (PEM) fuel cells and systems. A fuel cell is an engine with no moving parts that takes in hydrogen and produces electricity. The purpose of IRHUS, Inc. is to develop and manufacture a self-sufficient energy system based on the fuel cell and other new technology that produces hydrogen and electricity. The product is called the Integrated renewablemore » Hydrogen utility System (IRHUS). IRHUS, Inc. plans to start limited production of the IRHUS in 2002. The IRHUS is a unique product with an innovative concept in that it provides continuous electrical power in places with no electrical infrastructure, i.e., in remote and island locations. The IRHUS is a zero emissions, self-sufficient, hydrogen fuel generation system that produces electricity on a continuous basis by combining any renewable power source with hydrogen technology. Current plans are to produce a 10 kilowatt IRHUS MP (medium power). Future plans are to design and manufacture IRHUS models to provide power for a variety of power ranges for identified attractive market segments. The technological components of the IRHUS include an electrolyzer, hydrogen and oxygen storage subsystems, fuel cell system, and power control system. The IRHUS product is to be integrated with a variety of renewable energy technologies. 5 figs., 10 tabs.« less

  3. Modeling water resources as a constraint in electricity capacity expansion models

    NASA Astrophysics Data System (ADS)

    Newmark, R. L.; Macknick, J.; Cohen, S.; Tidwell, V. C.; Woldeyesus, T.; Martinez, A.

    2013-12-01

    In the United States, the electric power sector is the largest withdrawer of freshwater in the nation. The primary demand for water from the electricity sector is for thermoelectric power plant cooling. Areas likely to see the largest near-term growth in population and energy usage, the Southwest and the Southeast, are also facing freshwater scarcity and have experienced water-related power reliability issues in the past decade. Lack of water may become a barrier for new conventionally-cooled power plants, and alternative cooling systems will impact technology cost and performance. Although water is integral to electricity generation, it has long been neglected as a constraint in future electricity system projections. Assessing the impact of water resource scarcity on energy infrastructure development is critical, both for conventional and renewable energy technologies. Efficiently utilizing all water types, including wastewater and brackish sources, or utilizing dry-cooling technologies, will be essential for transitioning to a low-carbon electricity system. This work provides the first demonstration of a national electric system capacity expansion model that incorporates water resources as a constraint on the current and future U.S. electricity system. The Regional Electricity Deployment System (ReEDS) model was enhanced to represent multiple cooling technology types and limited water resource availability in its optimization of electricity sector capacity expansion to 2050. The ReEDS model has high geographic and temporal resolution, making it a suitable model for incorporating water resources, which are inherently seasonal and watershed-specific. Cooling system technologies were assigned varying costs (capital, operations and maintenance), and performance parameters, reflecting inherent tradeoffs in water impacts and operating characteristics. Water rights supply curves were developed for each of the power balancing regions in ReEDS. Supply curves include costs and availability of freshwater (surface and groundwater) and alternative water resources (municipal wastewater and brackish groundwater). In each region, a new power plant must secure sufficient water rights for operation before being built. Water rights constraints thus influence the type of power plant, cooling system, or location of new generating capacity. Results indicate that the aggregate national generating capacity by fuel type and associated carbon dioxide emissions change marginally with the inclusion of water rights. Water resource withdrawals and consumption, however, can vary considerably. Regional water resource dynamics indicate substantial differences in the location where power plant-cooling system technology combinations are built. These localized impacts highlight the importance of considering water resources as a constraint in the electricity sector when evaluating costs, transmission infrastructure needs, and externalities. Further scenario evaluations include assessments of how climate change could affect the availability of water resources, and thus the development of the electricity sector.

  4. Renewable Electricity Futures Study. Executive Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mai, T.; Sandor, D.; Wiser, R.

    2012-12-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a futuremore » through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).« less

  5. 10 CFR 490.307 - Option for Electric Utilities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Option for Electric Utilities. 490.307 Section 490.307... Provider Vehicle Acquisition Mandate § 490.307 Option for Electric Utilities. (a) A covered person or its... regulation by acquiring electric motor vehicles. (b) If a covered person or its affiliate, division, or...

  6. 10 CFR 490.307 - Option for Electric Utilities.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Option for Electric Utilities. 490.307 Section 490.307... Provider Vehicle Acquisition Mandate § 490.307 Option for Electric Utilities. (a) A covered person or its... regulation by acquiring electric motor vehicles. (b) If a covered person or its affiliate, division, or...

  7. Photovoltaic at Hollywood and Desert Breeze Recreational Centers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ammerman, Shane

    Executive Summary Renewable Energy Initiatives for Clark County Parks and Recreation Solar Project DOE grant # DE-EE0003180 In accordance with the goals of the Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy for promoting solar energy as clean, carbon-free and cost-effective, the County believed that a recreational center was an ideal place to promote solar energy technologies to the public. This project included the construction of solar electricity generation facilities (40kW) at two Clark County facility sites, Desert Breeze Recreational Center and Hollywood Recreational Center, with educational kiosks and Green Boxes for classroom instruction. The major objectivesmore » and goals of this Solar Project include demonstration of state of the art technologies for the generation of electricity from solar technology and the creation of an informative and educational tool in regards to the benefits and process of generating alternative energy. Clark County partnered with Anne Johnson (design architect/consultant), Affiliated Engineers Inc. (AEI), Desert Research Institute (DRI), and Morse Electric. The latest photovoltaic technologies were used in the project to help create the greatest expected energy savings for60443 each recreational center. This coupled with the data created from the monitoring system will help Clark County and NREL further understand the real time outputs from the system. The educational portion created with AEI and DRI incorporates material for all ages with a focus on K - 12. The AEI component is an animated story telling the fundamentals of how sunlight is turned into electricity and DRI‘s creation of Solar Green Boxes brings environmental education into the classroom. In addition to the educational component for the public, the energy that is created through the photovoltaic system also translates into saved money and health benefits for the general public. This project has helped Clark County to further add to its own energy reduction goals created by the energy management agenda (Resolution to Encourage Sustainability) and the County’s Eco-initiative. Each site has installed photovoltaic panels on the existing roof structures that exhibit suitable solar exposure. The generation systems utilize solar energy creating electricity used for the facility’s lighting system and other electrical requirements. Unused electricity is sent to the electric utility grid, often at peak demand times. Educational signage, kiosks and information have been included to inform and expand the public’s understanding of solar energy technology. The Solar Green Boxes were created for further hands on classroom education of solar power. In addition, data is sent by a Long Term PV performance monitoring system, complete with data transmission to NREL (National Renewable Energy Laboratory), located in Golden, CO. This system correlates local solar irradiance and weather with power production. The expected outcomes of this Solar Project are as follows: (1) Successful photovoltaic electricity generation technologies to capture solar energy in a useful form of electrical energy. (2) Reduction of greenhouse gas emissions and environmental degradation resulting from reduced energy demand from traditional electricity sources such as fossil fuel fired and nuclear power plants. (3) Advance the research and development of solar electricity generation. (4) The education of the general public in regards to the benefits of environmentally friendly electricity generation and Clark County’s efforts to encourage sustainable living practices. (5) To provide momentum for the nexus for future solar generation facilities in Clark County facilities and buildings and further the County’s energy reduction goals. (6) To ultimately contribute to the reduction of dependence on foreign oil and other unsustainable sources of energy. This Solar Project addresses several objectives and goals of the U.S. Department of Energy’s Solar Energy Technology Program. The project improves the integration and performance of solar electricity directly through implementation of cutting edge technology. The project further addresses this goal by laying important ground work and infrastructure for integration into the utility grid in future related projects. There will also be added security, reliability, and diversity to the energy system by providing and using reliable, secure, distributed electricity in Clark County facilities as well as sending such electricity back into the utility electric grid. A final major objective met by the Solar Project will be the displacement of energy derived by fossil fuels with clean renewable energy created by photovoltaic panels.« less

  8. Expert systems for MSFC power systems

    NASA Technical Reports Server (NTRS)

    Weeks, David J.

    1988-01-01

    Future space vehicles and platforms including Space Station will possess complex power systems. These systems will require a high level of autonomous operation to allow the crew to concentrate on mission activities and to limit the number of ground support personnel to a reasonable number. The Electrical Power Branch at NASA-Marshall is developing advanced automation approaches which will enable the necessary levels of autonomy. These approaches include the utilization of knowledge based or expert systems.

  9. The utilization of solar energy to help meet our nation's energy needs

    NASA Technical Reports Server (NTRS)

    Thomas, R. L.

    1973-01-01

    The nation's energy needs, domestic energy resources, and possible future energy resources are briefly discussed in this paper. Three potential solutions, coal, nuclear and solar are compared as to benefits and problems. The paper primarily discusses the options available in using solar energy as a natural energy resource. These options are discussed under the generation of electricity, heating and cooling of buildings, and the production of clean fuel.

  10. Revolution...Now The Future Arrives for Five Clean Energy Technologies – 2016 Update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donohoo-Vallett, Paul

    Decades of investments by the federal government and industry in five key clean energy technologies are making an impact today. The cost of land-based wind power, utility and distributed photovoltaic (PV) solar power, light emitting diodes (LEDs), and electric vehicles (EVs) has fallen by 41% to as high as 94% since 2008. These cost reductions have enabled widespread adoption of these technologies with deployment increasing across the board.

  11. Fast Initialization of Bubble-Memory Systems

    NASA Technical Reports Server (NTRS)

    Looney, K. T.; Nichols, C. D.; Hayes, P. J.

    1986-01-01

    Improved scheme several orders of magnitude faster than normal initialization scheme. State-of-the-art commercial bubble-memory device used. Hardware interface designed connects controlling microprocessor to bubblememory circuitry. System software written to exercise various functions of bubble-memory system in comparison made between normal and fast techniques. Future implementations of approach utilize E2PROM (electrically-erasable programable read-only memory) to provide greater system flexibility. Fastinitialization technique applicable to all bubble-memory devices.

  12. Campbell Creek TVA 2010 First Year Performance Report July 1, 2009 August 31, 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christian, Jeffrey E; Gehl, Anthony C; Boudreaux, Philip R

    2010-10-01

    This research project was initiated by TVA in March 2008 and encompasses three houses that are of similar size, design and located within the same community - Campbell Creek, Farragut TN with simulated occupancy. This report covers the performance period from July 1, 2009 to August 31, 2010. It is the intent of TVA that this Valley Data will inform electric utilities future residential retrofit incentive program.

  13. Battery resource assessment. Battery demands scenarios materials

    NASA Astrophysics Data System (ADS)

    Sullivan, D.

    1980-12-01

    Projections of demand for batteries and battery materials between 1980 and 2000 are presented. The estimates are based on existing predictions for the future of the electric vehicle, photovoltaic, utility load-leveling, and existing battery industry. Battery demand was first computed as kilowatt-hours of storage for various types of batteries. Using estimates for the materials required for each battery, the maximum demand that could be expected for each battery material was determined.

  14. Electrical-power-system data base for consumables analysis. Volume 1: Electrical equipment list, activity blocks, and time lines

    NASA Technical Reports Server (NTRS)

    Pipher, M. D.; Green, P. A.; Wolfgram, D. F.

    1975-01-01

    A standardized data base is described which consists of a space shuttle electrical equipment list, activity blocks defining electrical equipment utilization, and activity-block time lines for specific mission analyses. Information is presented to facilitate utilization of the data base, to provide the basis for the electrical equipment utilization to enable interpretation of analyses based on the data contained herein.

  15. Assessing corporate restructurings in the electric utility industry: A framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malko, J.R.

    1996-12-31

    Corporate restructurings of electric utilities in the United States have become an important and controversial issue during the 1980s. Regulators and electric utility executives have different perspectives concerning corporate restructurings associated with diversification, mergers, and functional separation of generation, transmission, and distribution. Regulators attempt to regulate electric utilities effectively in order to assure that adequate electricity services are provided at reasonable cost and to protect the public interest which includes considering choices and risks to customers. Regulators are considering and developing new regulatory approaches in order to address corporate restructurings and balance regulation and competitive pressures. Electric utility executives typicallymore » view corporate restructurings as a potential partial solution to financial challenges and problems and are analyzing corporate restructuring activities within the framework of the corporate strategic planning process. Executives attempt to find new sources of economic value and consider risks and potential returns to investors in an increasingly competitive environment. The parent holding company is generally used as the basic corporate form for restructuring activities in the electric utility industry. However, the wholly-owned utility subsidiary structure remains in use for some restructurings. The primary purpose of this paper is to propose a framework to assess corporate restructurings in the electric utility industry from a public policy perspective. This paper is organized in the following manner. First, different types of corporate restructurings in the electric utility industry are examined. Second, reasons for corporate restructuring activities are represented. Third, a framework for assessing corporate restructuring activities is proposed. Fourth, the application of the framework is discussed.« less

  16. Distributed Electrical Power Generation: Summary of Alternative Available Technologies

    DTIC Science & Technology

    2003-09-01

    standby charges, among others. Federal law (Public Utilities Regulatory Policy Act [ PURPA ] Section 210) prohibits utilities from assessing...a customer-generator. PURPA . The PURPA of 1978 requires electric utilities to purchase electricity produced from any qualifying power producers

  17. Assessing the sustainability of lead utilization in China.

    PubMed

    Sun, Lingyu; Zhang, Chen; Li, Jinhui; Zeng, Xianlai

    2016-12-01

    Lead is not only one of heavy metals imposing environment and health risk, but also critical resource to maintain sustainable development of many industries. Recently, due to the shortage of fossil fuels, clean energy vehicles, including electric bicycle, have emerged and are widely adopted soon in the world. China became the world's largest producer of primary lead and a very significant consumer in the past decade, which has strained the supplies of China's lead deposits from lithosphere and boost the anthropogenic consumption of metallic lead and lead products. Here we summarize that China's lead demand will continually increase due to the rapid growth of electric vehicle, resulting in a short carrying duration of lead even with full lead recycling. With these applications increasing at an annual rate of 2%, the carrying duration of lead resource until 2030 will oblige that recycling rate should be not less than 90%. To sustain lead utilization in China, one approach would be to improve the utilization technology, collection system and recycling technology towards closed-loop supply chain. Other future endeavors should include optimizing lead industrial structure and development of new energy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Renewable Electricity Futures Study Executive Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mai, Trieu; Sandor, Debra; Wiser, Ryan

    2012-12-01

    The Renewable Electricity Futures Study (RE Futures) provides an analysis of the grid integration opportunities, challenges, and implications of high levels of renewable electricity generation for the U.S. electric system. The study is not a market or policy assessment. Rather, RE Futures examines renewable energy resources and many technical issues related to the operability of the U.S. electricity grid, and provides initial answers to important questions about the integration of high penetrations of renewable electricity technologies from a national perspective. RE Futures results indicate that a future U.S. electricity system that is largely powered by renewable sources is possible andmore » that further work is warranted to investigate this clean generation pathway.« less

  19. Impacts and Benefits of a Satellite Power System on the Electric Utility Industry

    NASA Technical Reports Server (NTRS)

    Winer, B. M.

    1977-01-01

    The purpose of this limited study was to investigate six specific issues associated with interfacing a Satellite Power System (5 GW) with large (by present standards) terrestrial power pools to a depth sufficient to determine if certain interface problems and/or benefits exist and what future studies of these problems are required. The issues investigated are as follows: (1) Stability of Power Pools Containing a 5 GWe SPS; (2) Extra Reserve Margin Required to Maintain the Reliability of Power Pools Containing a 5 GWe SPS; (3) Use of the SPS in Load Following Service (i.e. in two independent pools whose times of peak demand differ by three hours); (4) Ownership of the SPS and its effect on SPS Usage and Utility Costs; (5) Utility Sharing of SPS related RD and D Costs; (6) Utility Liability for SPS Related Hazards.

  20. The Feasibility of Utilizing Wind Energy in Commercial Buildings With Special Reference to the Kingdom of Bahrain

    NASA Astrophysics Data System (ADS)

    Abdulrahim Saeed, Saeed

    2017-11-01

    This article shall investigate the feasibility of utilizing wind energy for commercial buildings with special reference to the Kingdom of Bahrain. Bahrain World Trade Center which was built in 2008, is located in the city of Manama. The fifty-story complex contains identical twin towers that rise over 240 meters in height. The towers are connected by three bridges which hold three turbines each 29 meters long. The three turbines were originally design to provide electric energy required for lighting. The Bahrain World Trade Center was selected as a case study to investigate the feasibility of utilizing wind energy technologies in skyscrapers with special reference to the Kingdom of Bahrain. It is hoped that the findings and conclusion of the study shall be of some value for future utilization of wind energy in the GCC countries and the world at large.

  1. Breakeven Prices for Photovoltaics on Supermarkets in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ong, S.; Clark, N.; Denholm, P.

    The photovoltaic (PV) breakeven price is the PV system price at which the cost of PV-generated electricity equals the cost of electricity purchased from the grid. This point is also called 'grid parity' and can be expressed as dollars per watt ($/W) of installed PV system capacity. Achieving the PV breakeven price depends on many factors, including the solar resource, local electricity prices, customer load profile, PV incentives, and financing. In the United States, where these factors vary substantially across regions, breakeven prices vary substantially across regions as well. In this study, we estimate current and future breakeven prices formore » PV systems installed on supermarkets in the United States. We also evaluate key drivers of current and future commercial PV breakeven prices by region. The results suggest that breakeven prices for PV systems installed on supermarkets vary significantly across the United States. Non-technical factors -- including electricity rates, rate structures, incentives, and the availability of system financing -- drive break-even prices more than technical factors like solar resource or system orientation. In 2020 (where we assume higher electricity prices and lower PV incentives), under base-case assumptions, we estimate that about 17% of supermarkets will be in utility territories where breakeven conditions exist at a PV system price of $3/W; this increases to 79% at $1.25/W (the DOE SunShot Initiative's commercial PV price target for 2020). These percentages increase to 26% and 91%, respectively, when rate structures favorable to PV are used.« less

  2. Inventory of Electric Utility Power Plants in the United States

    EIA Publications

    2002-01-01

    Final issue of this report. Provides detailed statistics on existing generating units operated by electric utilities as of December 31, 2000, and certain summary statistics about new generators planned for operation by electric utilities during the next 5 years.

  3. Development of a solar-powered electric bicycle in bike sharing transportation system

    NASA Astrophysics Data System (ADS)

    Adhisuwignjo, S.; Siradjuddin, I.; Rifa'i, M.; Putri, R. I.

    2017-06-01

    The increasing mobility has directly led to deteriorating traffic conditions, extra fuel consumption, increasing automobile exhaust emissions, air pollution and lowering quality of life. Apart from being clean, cheap and equitable mode of transport for short-distance journeys, cycling can potentially offer solutions to the problem of urban mobility. Many cities have tried promoting cycling particularly through the implementation of bike-sharing. Apparently the fourth generation bikesharing system has been promoted utilizing electric bicycles which considered as a clean technology implementation. Utilization of solar power is probably the development keys in the fourth generation bikesharing system and will become the standard in bikesharing system in the future. Electric bikes use batteries as a source of energy, thus they require a battery charger system which powered from the solar cells energy. This research aims to design and implement electric bicycle battery charging system with solar energy sources using fuzzy logic algorithm. It is necessary to develop an electric bicycle battery charging system with solar energy sources using fuzzy logic algorithm. The study was conducted by means of experimental method which includes the design, manufacture and testing controller systems. The designed fuzzy algorithm have been planted in EEPROM microcontroller ATmega8535. The charging current was set at 1.2 Amperes and the full charged battery voltage was observed to be 40 Volts. The results showed a fuzzy logic controller was able to maintain the charging current of 1.2 Ampere with an error rate of less than 5% around the set point. The process of charging electric bike lead acid batteries from empty to fully charged was 5 hours. In conclusion, the development of solar-powered electric bicycle controlled using fuzzy logic controller can keep the battery charging current in solar-powered electric bicycle to remain stable. This shows that the fuzzy algorithm can be used as a controller in the process of charging for a solar electric bicycle.

  4. Requirements for a Hydrogen Powered All-Electric Manned Helicopter

    NASA Technical Reports Server (NTRS)

    Datta, Anubhav

    2012-01-01

    The objective of this paper is to set propulsion system targets for an all-electric manned helicopter of ultra-light utility class to achieve performance comparable to combustion engines. The approach is to begin with a current two-seat helicopter (Robinson R 22 Beta II-like), design an all-electric power plant as replacement for its existing piston engine, and study performance of the new all-electric aircraft. The new power plant consists of high-pressure Proton Exchange Membrane fuel cells, hydrogen stored in 700 bar type-4 tanks, lithium-ion batteries, and an AC synchronous permanent magnet motor. The aircraft and the transmission are assumed to remain the same. The paper surveys the state of the art in each of these areas, synthesizes a power plant using best available technologies in each, examines the performance achievable by such a power plant, identifies key barriers, and sets future technology targets to achieve performance at par with current internal combustion engines.

  5. Magnetic Resonance Based Electrical Properties Tomography: A Review

    PubMed Central

    Zhang, Xiaotong; Liu, Jiaen

    2014-01-01

    Frequency-dependent electrical properties (EPs; conductivity and permittivity) of biological tissues provide important diagnostic information (e.g. tumor characterization), and also play an important role in quantifying radiofrequency (RF) coil induced Specific Absorption Rate (SAR) which is a major safety concern in high- and ultrahigh-field Magnetic Resonance Imaging (MRI) applications. Cross-sectional imaging of EPs has been pursued for decades. Recently introduced Electrical Properties Tomography (EPT) approaches utilize the measurable RF magnetic field induced by the RF coil in an MRI system to quantitatively reconstruct the EP distribution in vivo and non-invasively with a spatial resolution of a few millimeters or less. This paper reviews the Electrical Properties Tomography approach from its basic theory in electromagnetism to the state of the art research outcomes. Emphasizing on the imaging reconstruction methods rather than experimentation techniques, we review the developed imaging algorithms, validation results in physical phantoms and biological tissues, as well as their applications in in vivo tumor detection and subject-specific SAR prediction. Challenges for future research are also discussed. PMID:24803104

  6. Utility negotiating strategies for end-users

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Studebaker, J.M.

    This exciting new book discusses how retail electricity and natural gas consumers can learn to negotiate a concessionary rate with their utility service -- new, and post-deregulation. This includes survey resources that are available to the retail customer and negotiation processes that one should become familiar with in the electric utility industry. The contents include: Electricity -- an overview; Regulation of electricity -- now; Basic procedures for reducing electricity costs; Negotiation of electricity costs; Negotiation on electricity that is provided by marketers; The retail wheeling transaction; The retail wheeling contract process; Natural gas negotiation strategies; Regulation of natural gas utilities;more » Developing a strategy for reducing natural gas costs; Process of getting the natural gas to the customer; How to select an agent; and Negotiating with an agent.« less

  7. Transport of ions through a (6,6) carbon nanotube under electric fields

    NASA Astrophysics Data System (ADS)

    Shen, Li; Xu, Zhen; Zhou, Zhe-Wei; Hu, Guo-Hui

    2014-11-01

    The transport of water and ions through carbon nanotubes (CNTs) is crucial in nanotechnology and biotechnology. Previous investigation indicated that the ions can hardly pass through (6,6) CNTs due to their hydrated shells. In the present study, utilizing molecular dynamics simulation, it is shown that the energy barrier mainly originating from the hydrated water molecules could be overcome by applying an electric field large enough in the CNT axis direction. Potential of mean force is calculated to show the reduction of energy barrier when the electric field is present for (Na+, K+, Cl-) ions. Consequently, ionic flux through (6,6) CNTs can be found once the electric field becomes larger than a threshold value. The variation of the coordination numbers of ions at different locations from the bulk to the center of the CNT is also explored to elaborate this dynamic process. The thresholds of the electric field are different for Na+, K+, and Cl- due to their characteristics. This consequence might be potentially applied in ion selectivity in the future.

  8. Static Measurements on HTS Coils of Fully Superconducting AC Electric Machines for Aircraft Electric Propulsion System

    NASA Technical Reports Server (NTRS)

    Choi, Benjamin B.; Hunker, Keith R.; Hartwig, Jason; Brown, Gerald V.

    2017-01-01

    The NASA Glenn Research Center (GRC) has been developing the high efficiency and high-power density superconducting (SC) electric machines in full support of electrified aircraft propulsion (EAP) systems for a future electric aircraft. A SC coil test rig has been designed and built to perform static and AC measurements on BSCCO, (RE)BCO, and YBCO high temperature superconducting (HTS) wire and coils at liquid nitrogen (LN2) temperature. In this paper, DC measurements on five SC coil configurations of various geometry in zero external magnetic field are measured to develop good measurement technique and to determine the critical current (Ic) and the sharpness (n value) of the super-to-normal transition. Also, standard procedures for coil design, fabrication, coil mounting, micro-volt measurement, cryogenic testing, current control, and data acquisition technique were established. Experimentally measured critical currents are compared with theoretical predicted values based on an electric-field criterion (Ec). Data here are essential to quantify the SC electric machine operation limits where the SC begins to exhibit non-zero resistance. All test data will be utilized to assess the feasibility of using HTS coils for the fully superconducting AC electric machine development for an aircraft electric propulsion system.

  9. WTG Energy Systems' Rotor: Steel at 80 Feet

    NASA Technical Reports Server (NTRS)

    Barrows, R. E.

    1979-01-01

    The design, specifications, and performance of the 80 foot diameter fixed pitch rotor operating on the MP1-200 wind turbine generator installed as part of the Island of Cuttyhunk's electric power utility grid system are described. This synchronous generating system rated 200 kilowatts at 28 mph wind velocity, and produces constant 60 Hz, 480 VAC current at +/- 1 percent accuracy throughout the machine's operating range. Future R & D requirements and suggestions are included with cost data.

  10. H2 at Scale: Benefitting our Future Energy System - Update for the Hydrogen Technical Advisory Committee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruth, Mark

    2016-12-06

    Hydrogen is a flexible, clean energy carrying intermediate that enables aggressive market penetration of renewables while deeply decarbonizing our energy system. H2 at Scale is a concept that supports the electricity grid by utilizing energy without other demands at any given time and also supports transportation and industry by providing low-priced hydrogen to them. This presentation is an update to the Hydrogen Technical Advisory Committee (HTAC).

  11. 2015 California Demand Response Potential Study - Charting California’s Demand Response Future. Interim Report on Phase 1 Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alstone, Peter; Potter, Jennifer; Piette, Mary Ann

    Demand response (DR) is an important resource for keeping the electricity grid stable and efficient; deferring upgrades to generation, transmission, and distribution systems; and providing other customer economic benefits. This study estimates the potential size and cost of the available DR resource for California’s three investor-owned utilities (IOUs), as the California Public Utilities Commission (CPUC) evaluates how to enhance the role of DR in meeting California’s resource planning needs and operational requirements. As the state forges a clean energy future, the contributions of wind and solar electricity from centralized and distributed generation will fundamentally change the power grid’s operational dynamics.more » This transition requires careful planning to ensure sufficient capacity is available with the right characteristics – flexibility and fast response – to meet reliability needs. Illustrated is a snapshot of how net load (the difference between demand and intermittent renewables) is expected to shift. Increasing contributions from renewable generation introduces steeper ramps and a shift, into the evening, of the hours that drive capacity needs. These hours of peak capacity need are indicated by the black dots on the plots. Ultimately this study quantifies the ability and the cost of using DR resources to help meet the capacity need at these forecasted critical hours in the state.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eichman, Josh; Flores-Espino, Francisco

    Flexible operation of electrolysis systems represents an opportunity to reduce the cost of hydrogen for a variety of end-uses while also supporting grid operations and thereby enabling greater renewable penetration. California is an ideal location to realize that value on account of growing renewable capacity and markets for hydrogen as a fuel cell electric vehicle (FCEV) fuel, refineries, and other end-uses. Shifting the production of hydrogen to avoid high cost electricity and participation in utility and system operator markets along with installing renewable generation to avoid utility charges and increase revenue from the Low Carbon Fuel Standard (LCFS) program canmore » result in around $2.5/kg (21%) reduction in the production and delivery cost of hydrogen from electrolysis. This reduction can be achieved without impacting the consumers of hydrogen. Additionally, future strategies for reducing hydrogen cost were explored and include lower cost of capital, participation in the Renewable Fuel Standard program, capital cost reduction, and increased LCFS value. Each must be achieved independently and could each contribute to further reductions. Using the assumptions in this study found a 29% reduction in cost if all future strategies are realized. Flexible hydrogen production can simultaneously improve the performance and decarbonize multiple energy sectors. The lessons learned from this study should be used to understand near-term cost drivers and to support longer-term research activities to further improve cost effectiveness of grid integrated electrolysis systems.« less

  13. Testing activities at the National Battery Test Laboratory

    NASA Astrophysics Data System (ADS)

    Hornstra, F.; Deluca, W. H.; Mulcahey, T. P.

    The National Battery Test Laboratory (NBTL) is an Argonne National Laboratory facility for testing, evaluating, and studying advanced electric storage batteries. The facility tests batteries developed under Department of Energy programs and from private industry. These include batteries intended for future electric vehicle (EV) propulsion, electric utility load leveling (LL), and solar energy storage. Since becoming operational, the NBTL has evaluated well over 1400 cells (generally in the form of three- to six-cell modules, but up to 140-cell batteries) of various technologies. Performance characterization assessments are conducted under a series of charge/discharge cycles with constant current, constant power, peak power, and computer simulated dynamic load profile conditions. Flexible charging algorithms are provided to accommodate the specific needs of each battery under test. Special studies are conducted to explore and optimize charge procedures, to investigate the impact of unique load demands on battery performance, and to analyze the thermal management requirements of battery systems.

  14. Electric utilities and telecommunications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moeller, J.W.

    1995-08-01

    Part I of this article will provide some background on the involvement of electric utilities in telecommunications. It will discuss the Power Radio Services, under which the FCC regulates radio communications of electric utilities, the pole attachment statute of the Communications Act, which authorized the FCC to regulate attachments of cable television cables to electric utility poles, and a recent Department of Energy (DOE) report on the need for a demonstration on the use of telecommunications for DSM. Part I will also discuss several recent developments relative to the Power Radio Services and the pole attachment statute. Part II willmore » discuss electric utilities and telecommunications under PUHCA. It will outline the extensive and complex requirements of PUHCA that are applicable to public utility holding companies, as well as the specific requirements of PUHCA for the formation by public utility holding companies of subsidiaries to engage in telecommunications activities. It will also discuss the seven instances in the past decade in which the SEC has approved the formation by public utility holding companies of such subsidiaries. Part III of this article will discuss a principal obstacle to expanded electric utility involvement in telecommunications activities-a series of administrative and judicial decisions that illustrate the potential for dual regulation by the SEC and the FERC to result in confusion and inefficiencies. It will also discuss proposals in Congress to minimize this potential. Part IV will discuss House Bill 3636 and Senate Bill 1822 and their proposals to amend PUHCA to facilitate the formation or acquisition by public utility holding companies of non-utility subsidiaries to engage in telecommunications activities. It will also discuss their proposals to address the potential consequences of dual regulation by the SEC and the FERC of electric utilities involved in telecommunications.« less

  15. Solar heating and the electric utilities

    NASA Astrophysics Data System (ADS)

    Maidique, M. A.; Woo, B.

    1980-05-01

    The article considers the effect of widespread use of solar thermal systems on the role of electric utilities, emphasizing the foreseen short term economic problems. While the average electricity demand will be reduced, infrequent high demand peaks could occur when on nights and certain days, solar users with inadequate storage capacity are forced to depend upon conventional energy sources. Since utility costs are closely related to changes in peak demands, the modification of electricity rate structures as a load management technique is discussed. Some advantages of wide solar energy application for electric utilities are cited including the possibility of their key role in the development of solar heating.

  16. Space propulsion technology overview

    NASA Technical Reports Server (NTRS)

    Pelouch, J. J., Jr.

    1979-01-01

    This paper discusses Shuttle-era, chemical and electric propulsion technologies for operations beyond the Shuttle's orbit with focus on future mission needs and economic effectiveness. The adequacy of the existing propulsion state-of-the-art, barriers to its utilization, benefit of technology advances, and the prognosis for advancement are the themes of the discussion. Low-thrust propulsion for large space systems is cited as a new technology with particularly high benefit. It is concluded that the Shuttle's presence for at least two decades is a legitimate basis for new propulsion technology, but that this technology must be predicated on an awareness of mission requirements, economic factors, influences of other technologies, and real constraints on its utilization.

  17. Library Space: Assessment and Planning through a Space Utilization Study.

    PubMed

    Prentice, Katherine A; Argyropoulos, Erica K

    2018-01-01

    The objective of this article is to describe the recent space and furniture utilization study conducted through direct observation at the small, academic-centered Schusterman Library. Student workers from the library's reference desk monitored two semesters of use and went on to observe a third semester after electrical power upgrades were installed. Extensive use details were collected about where library patrons sat during which parts of the day, and certain areas of the library were ultimately identified as much more active than others. Overall, the information gathered proved useful to library planning and will be valuable to future space initiatives. This article further demonstrates feasible means for any library to implement a similar study with minimal resources.

  18. Financial statistics major US publicly owned electric utilities 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-03-01

    The 1996 edition of The Financial Statistics of Major US Publicly Owned Electric Utilities publication presents 5 years (1992 through 1996) of summary financial data and current year detailed financial data on the major publicly owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decision making purposes related to publicly owned electric utility issues. Generator and nongenerator summaries are presented in this publication. Five years of summary financial data are provided. Summaries of generators for fiscal yearsmore » ending June 30 and December 31, nongenerators for fiscal years ending June 30 and December 31, and summaries of all respondents are provided. The composite tables present aggregates of income statement and balance sheet data, as well as financial indicators. Composite tables also display electric operation and maintenance expenses, electric utility plant, number of consumers, sales of electricity, and operating revenue, and electric energy account data. 2 figs., 32 tabs.« less

  19. RETHINKING THE FUTURE GRID: INTEGRATED NUCLEAR-RENEWABLE ENERGY SYSTEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S.M. Bragg-Sitton; R. Boardman

    2014-12-01

    The 2013 electricity generation mix in the United States consisted of ~13% renewables (hydropower, wind, solar, geothermal), 19% nuclear, 27% natural gas, and 39% coal. In the 2011 State of the Union Address, President Obama set a clean energy goal for the nation: “By 2035, 80 percent of America’s electricity will come from clean energy sources. Some folks want wind and solar. Others want nuclear, clean coal and natural gas. To meet this goal we will need them all.” The U.S. Department of Energy (DOE) Offices of Nuclear Energy (NE) and Energy Efficiency and Renewable Energy (EERE) recognize that “allmore » of the above” means that we are called to best utilize all available clean energy sources. To meet the stated environmental goals for electricity generation and for the broader energy sector, there is a need to transform the energy infrastructure of the U.S. and elsewhere. New energy systems must be capable of significantly reducing environmental impacts in an efficient and economically viable manner while utilizing both hydrocarbon resources and clean energy generation sources. The U.S. DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options, to meet both grid demand and thermal energy needs in the industrial sector. A concept being advanced by the DOE-NE and DOE-EERE is tighter coupling of nuclear and renewable energy sources in a manner that better optimizes energy use for the combined electricity, industrial manufacturing, and the transportation sectors. This integration concept has been referred to as a “hybrid system” that is capable of apportioning thermal and electrical energy to first meet the grid demand (with appropriate power conversion systems), then utilizing excess thermal and, in some cases, electrical energy to drive a process that results in an additional product. For the purposes of the present work, the hybrid system would integrate two or more energy resources to generate two or more products, one of which must be an energy commodity, such as electricity or transportation fuel. Subsystems would be integrated ‘‘behind’’ the electrical transmission bus and would be comprised of two or more energy conversion subsystems that have traditionally been separate or isolated. Energy flows would be dynamically apportioned as necessary to meet grid demand via a single, highly responsive connection to the grid that provides dispatchable electricity while capital-intensive generation assets operate at full capacity. Candidate region-specific hybrid energy systems selected for further study and figures of merit that will be used to assess system performance will be presented.« less

  20. Battery energy-storage systems — an emerging market for lead/acid batteries

    NASA Astrophysics Data System (ADS)

    Cole, J. F.

    Although the concept of using batteries for lead levelling and peak shaving has been known for decades, only recently have these systems become commercially viable. Changes in the structure of the electric power supply industry have required these companies to seek more cost-effective ways of meeting the needs of their customers. Through experience gained, primarily in the USA, batteries have been shown to provide multiple benefits to electric utilities. Also, lower maintenance batteries, more reliable electrical systems, and the availability of methods to predict costs and benefits have made battery energy-storage systems more attractive. Technology-transfer efforts in the USA have resulted in a willingness of electric utilities to install a number of these systems for a variety of tasks, including load levelling, peak shaving, frequency regulation and spinning reserve. Additional systems are being planned for several additional locations for similar applications, plus transmission and distribution deferral and enhanced power quality. In the absence of US champions such as the US Department of Energy and the Electric Power Research Institute, ILZRO is attempting to mount a technology-transfer programme to bring the benefits of battery energy-storage to European power suppliers. As a result of these efforts, a study group on battery energy-storage systems has been established with membership primarily in Germany and Austria. Also, a two-day workshop, prepared by the Electric Power Research Institute was held in Dublin. Participants included representatives of several European power suppliers. As a result, ESB National Grid of Ireland has embarked upon a detailed analysis of the costs and benefits of a battery energy-storage system in their network. Plans for the future include continuation of this technology-transfer effort, assistance in the Irish effort, and a possible approach to the European Commission for funding.

  1. 18 CFR 292.313 - Reinstatement of obligation to sell.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... finding under § 292.312 relieving an electric utility of its obligation to sell electric energy, a... purchase electric energy under this section. Such application shall set forth the factual basis upon which... application reinstating the electric utility's obligation to sell electric energy under this section if the...

  2. 18 CFR 292.313 - Reinstatement of obligation to sell.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... finding under § 292.312 relieving an electric utility of its obligation to sell electric energy, a... purchase electric energy under this section. Such application shall set forth the factual basis upon which... application reinstating the electric utility's obligation to sell electric energy under this section if the...

  3. [Electric and hybrid vehicle site operators program]: Thinking of the future. Second year third quarter report, January 1--March 31, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Kansas State University, with funding support from federal, state, public, and private companies, is participating in the Department of Energy`s Electric Vehicle Site Operator Program. Through participation in this program, Kansas State is displaying, testing, and evaluating electric or hybrid vehicle technology. This participation will provide organizations the opportunity to examine the latest EHV prototypes under actual operating conditions. KSU proposes to purchase one (1) electric or hybrid vans and two (2) electric cars during the first two years of this five-year program. KSU has purchased one G-Van built by Conceptor Industries, Toronto, Canada and has initiated a procurement ordermore » to purchase two (2) Soleq 1993 Ford EVcort station wagons. The G-Van has been signed in order for the public to be aware that this is an electric drive vehicle. Financial participants` names have been stenciled on the back door of the van. This vehicle is available for short term loan to interested utilities and companies. When other vehicles are obtained, the G-Van will be maintained on K-State`s campus.« less

  4. Solar Energy Grid Integration Systems (SEGIS): adding functionality while maintaining reliability and economics

    NASA Astrophysics Data System (ADS)

    Bower, Ward

    2011-09-01

    An overview of the activities and progress made during the US DOE Solar Energy Grid Integration Systems (SEGIS) solicitation, while maintaining reliability and economics is provided. The SEGIS R&D opened pathways for interconnecting PV systems to intelligent utility grids and micro-grids of the future. In addition to new capabilities are "value added" features. The new hardware designs resulted in smaller, less material-intensive products that are being viewed by utilities as enabling dispatchable generation and not just unpredictable negative loads. The technical solutions enable "advanced integrated system" concepts and "smart grid" processes to move forward in a faster and focused manner. The advanced integrated inverters/controllers can now incorporate energy management functionality, intelligent electrical grid support features and a multiplicity of communication technologies. Portals for energy flow and two-way communications have been implemented. SEGIS hardware was developed for the utility grid of today, which was designed for one-way power flow, for intermediate grid scenarios, AND for the grid of tomorrow, which will seamlessly accommodate managed two-way power flows as required by large-scale deployment of solar and other distributed generation. The SEGIS hardware and control developed for today meets existing standards and codes AND provides for future connections to a "smart grid" mode that enables utility control and optimized performance.

  5. Measuring public understanding on Tenaga Nasional Berhad (TNB) electricity bills using ordered probit model

    NASA Astrophysics Data System (ADS)

    Zainudin, WNRA; Ramli, NA

    2017-09-01

    In 2016, Tenaga Nasional Berhad (TNB) had introduced an upgrade in its Billing and Customer Relationship Management (BCRM) as part of its long-term initiative to provide its customers with greater access to billing information. This includes information on real and suggested power consumption by the customers and further details in their billing charges. This information is useful to help TNB customers to gain better understanding on their electricity usage patterns and items involved in their billing charges. Up to date, there are not many studies done to measure public understanding on current electricity bills and whether this understanding could contribute towards positive impacts. The purpose of this paper is to measure public understanding on current TNB electricity bills and whether their satisfaction towards energy-related services, electricity utility services, and their awareness on the amount of electricity consumed by various appliances and equipment in their home could improve this understanding on the electricity bills. Both qualitative and quantitative research methods are used to achieve these objectives. A total of 160 respondents from local universities in Malaysia participated in a survey used to collect relevant information. Using Ordered Probit model, this paper finds respondents that are highly satisfied with the electricity utility services tend to understand their electricity bills better. The electric utility services include management of electricity bills and the information obtained from utility or non-utility supplier to help consumers manage their energy usage or bills. Based on the results, this paper concludes that the probability to understand the components in the monthly electricity bill increases as respondents are more satisfied with their electric utility services and are more capable to value the energy-related services.

  6. 77 FR 73968 - Reconsideration of Certain New Source and Startup/Shutdown Issues: National Emission Standards...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-12

    ... Units and Standards of Performance for Fossil-Fuel-Fired Electric Utility, Industrial-Commercial...- and Oil-fired Electric Utility Steam Generating Units and Standards of Performance for Fossil-Fuel... Units and Standards of Performance for Fossil-Fuel-Fired Electric Utility, Industrial-Commercial...

  7. 40 CFR 60.45Da - Standard for mercury (Hg).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-fired electric utility steam generating unit that burns only lignite, you must not discharge into the... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Electric Utility... for mercury (Hg). (a) For each coal-fired electric utility steam generating unit other than an IGCC...

  8. 75 FR 77866 - Agency Information Collection Activities; Submission to OMB for Review and Approval; Comment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-14

    ... Approval; Comment Request; NSPS for Electric Utility Steam Generating (Renewal) AGENCY: Environmental... the electronic docket, go to http://www.regulations.gov . Title: NSPS for Electric Utility Steam.../Affected Entities: Owners or operators of electric utility steam generating units. Estimated Number of...

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cunningham, P.

    For energy users, the driving force that makes renegotiating an electric contract realistic is the deregulation of the electric utility industry. Monumental changes are occurring that has the whole industry in chaos at the moment. Utilities are scrambling to retain or gain market share. New alternatives for power supplies will become available. Regulatory agencies are becoming more flexible. Many users are finding the utilities very willing to change from a rigid approach to a customer oriented attitude in anticipation of further changes in the deregulation process. Now is the time to renegotiate your electric contracts. The paper discusses the statusmore » of electric deregulation; new technology; utility company reactions; regulatory agency attitudes; independent power producers; power marketers and brokers; wheeling or transporting power; commoditization of electricity; power costs; stranded investment; and utilities` willingness to negotiate new contracts.« less

  10. Electrical Conductivity in Polymer Blends/ Multiwall Carbon Nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulkarni, Ajit R.; Bose, Suryasarathi; Bhattacharyya, Arup R.

    2008-10-23

    Carbon nanotubes (CNT) based polymer composites have emerged as the future multifunctional materials in view of its exceptional mechanical, thermal and electrical properties. One of the major interests is to develop conductive polymer composites preferably at low concentration of CNT utilizing their high aspect ratio (L/D) for numerous applications, which include antistatic devices, capacitors and materials for EMI shielding. In this context, polymer blends have emerged as a potential candidate in lowering the percolation thresholds further by the utilization of 'double-percolation' which arises from the synergistic improvements in blend properties associated with the co-continuous morphology. Due to strong inter-tube vanmore » der Waals' forces, they often tend to aggregate and uniform dispersion remains a challenge. To overcome this challenge, we exploited sodium salt of 6-aminohexanoic acid (Na-AHA) which was able to assist in debundlling the multiwall carbon nanotubes (MWNT) through 'cation-{pi}' interactions during melt-mixing leading to percolative 'network-like' structure of MWNT within polyamide6 (PA6) phase in co-continuous PA6/acrylonitrile butadiene styrene (ABS) blends. The composite exhibited low electrical percolation thresholds of 0.25 wt% of MWNT, the lowest reported value in this system so far. Retention of 'network-like structure' in the solid state with significant refinement was observed even at lower MWNT concentration in presence Na-AHA, which was assessed through AC electrical conductivity measurements. Reactive coupling was found to be a dominant factor besides 'cation-{pi}' interactions in achieving low electrical percolation in PA6/ABS+MWNT composites.« less

  11. Lewis Research Center studies of multiple large wind turbine generators on a utility network

    NASA Technical Reports Server (NTRS)

    Gilbert, L. J.; Triezenberg, D. M.

    1979-01-01

    A NASA-Lewis program to study the anticipated performance of a wind turbine generator farm on an electric utility network is surveyed. The paper describes the approach of the Lewis Wind Energy Project Office to developing analysis capabilities in the area of wind turbine generator-utility network computer simulations. Attention is given to areas such as, the Lewis Purdue hybrid simulation, an independent stability study, DOE multiunit plant study, and the WEST simulator. Also covered are the Lewis mod-2 simulation including analog simulation of a two wind turbine system and comparison with Boeing simulation results, and gust response of a two machine model. Finally future work to be done is noted and it is concluded that the study shows little interaction between the generators and between the generators and the bus.

  12. Biophysics of olfaction

    NASA Astrophysics Data System (ADS)

    Marques Simoes de Souza, Fabio; Antunes, Gabriela

    2007-03-01

    The majority of the biophysical models of olfaction have been focused on the electrical properties of the system, which is justified by the relative facility of recording the electrical activity of the olfactory cells. However, depending on the level of detail utilized, a biophysical model can explore molecular, cellular and network phenomena. This review presents the state of the art of the biophysical approach to understanding olfaction. The reader is introduced to the principal problems involving the study of olfaction and guided gradually to comprehend why it is important to develop biophysical models to investigate olfaction. A large number of representative biophysical efforts in olfaction, their main contributions, the trends for the next generations of biophysical models and the improvements that may be explored by future biophysicists of olfaction have been reviewed.

  13. Economies of scale and asset values in power production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Considine, T.J.

    While innovative trading tools have become an increasingly important aspect of the electricity business, the future of any firm in the industry boils down to a basic bread and butter issue of generating power at competitive costs. While buying electricity from power pools at spot prices instead of generating power to service load may be profitable for some firms in the short run, the need to efficiently utilize existing plants in the long run remains. These competitive forces will force the closure of many inefficient plants. As firms close plants and re-evaluate their generating asset portfolios, the basic structure ofmore » the industry will change. This article presents some quantitative analysis that sheds light on this unfolding transformation.« less

  14. Preliminary Design of a Manned Nuclear Electric Propulsion Vehicle Using Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Irwin, Ryan W.; Tinker, Michael L.

    2005-01-01

    Nuclear electric propulsion (NEP) vehicles will be needed for future manned missions to Mars and beyond. Candidate designs must be identified for further detailed design from a large array of possibilities. Genetic algorithms have proven their utility in conceptual design studies by effectively searching a large design space to pinpoint unique optimal designs. This research combined analysis codes for NEP subsystems with a genetic algorithm. The use of penalty functions with scaling ratios was investigated to increase computational efficiency. Also, the selection of design variables for optimization was considered to reduce computation time without losing beneficial design search space. Finally, trend analysis of a reference mission to the asteroids yielded a group of candidate designs for further analysis.

  15. Electric plant cost and power production expenses 1989. [Glossary included

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-03-29

    This publication presents electric utility statistics on power production expenses and construction costs of electric generating plants. Data presented here are intended to provide information to the electric utility industry, educational institutions, federal, state, and local governments, and the general public. This report primarily presents aggregate operation, maintenance, and fuel expense data about all power plants owned and operated by the major investor-owned electric utilities in the United States. The power production expenses for the major investor-owned electric utilities are summarized. Plant-specific data are presented for a selection of both investor-owned and publicly owned plants. Summary statistics for each plantmore » type (prime mover), as reported by the electric utilities, are presented in the separate chapters as follows: Hydroelectric Plants; Fossil-Fueled Steam-Electric Plants; Nuclear Steam-Electric Plants; and Gas Turbine and Small Scale Electric Plants. These chapters contain plant level data for 50 conventional hydroelectric plants and 22 pumped storage hydroelectric plants, 50 fossil-fueled steam-electric plants, 71 nuclear steam-electric plants, and 50 gas turbine electric plants. Among the operating characteristics of each plant are the capacity, capability, generation and demand on the plant. Physical characteristics comprise the number of units in the plant, the average number of employees, and other information relative to the plant's operation. The Glossary section will enable the reader to understand clearly the terms used in this report. 4 figs., 18 tabs.« less

  16. Multi-objective generation scheduling with hybrid energy resources

    NASA Astrophysics Data System (ADS)

    Trivedi, Manas

    In economic dispatch (ED) of electric power generation, the committed generating units are scheduled to meet the load demand at minimum operating cost with satisfying all unit and system equality and inequality constraints. Generation of electricity from the fossil fuel releases several contaminants into the atmosphere. So the economic dispatch objective can no longer be considered alone due to the environmental concerns that arise from the emissions produced by fossil fueled electric power plants. This research is proposing the concept of environmental/economic generation scheduling with traditional and renewable energy sources. Environmental/economic dispatch (EED) is a multi-objective problem with conflicting objectives since emission minimization is conflicting with fuel cost minimization. Production and consumption of fossil fuel and nuclear energy are closely related to environmental degradation. This causes negative effects to human health and the quality of life. Depletion of the fossil fuel resources will also be challenging for the presently employed energy systems to cope with future energy requirements. On the other hand, renewable energy sources such as hydro and wind are abundant, inexhaustible and widely available. These sources use native resources and have the capacity to meet the present and the future energy demands of the world with almost nil emissions of air pollutants and greenhouse gases. The costs of fossil fuel and renewable energy are also heading in opposite directions. The economic policies needed to support the widespread and sustainable markets for renewable energy sources are rapidly evolving. The contribution of this research centers on solving the economic dispatch problem of a system with hybrid energy resources under environmental restrictions. It suggests an effective solution of renewable energy to the existing fossil fueled and nuclear electric utilities for the cheaper and cleaner production of electricity with hourly emission targets. Since minimizing the emissions and fuel cost are conflicting objectives, a practical approach based on multi-objective optimization is applied to obtain compromised solutions in a single simulation run using genetic algorithm. These solutions are known as non-inferior or Pareto-optimal solutions, graphically illustrated by the trade-off curves between criterions fuel cost and pollutant emission. The efficacy of the proposed approach is illustrated with the help of different sample test cases. This research would be useful for society, electric utilities, consultants, regulatory bodies, policy makers and planners.

  17. Innovative electricity marketing. Utilities must rethink how they can meet their customers' needs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierobon, J.R.

    1994-04-15

    Tradition-bound utility commissioners and electricity providers who believe electric utilities are insulated from competition until retail wheeling arrives should carefully assess just how quickly competition is remaking the electric power marketplace. The widely predicted industry evolution spawned by the Energy Policy Act of 1992 is becoming nothing less than a revolution. Some utilities and their regulators still don't seem to grasp the sea-change taking place. Others are genuinely rethinking how utilities can serve their most valued customers and try to win new ones-even if it means taking customers away from another utility. Electric utilities that respond by understanding, communicating, andmore » meeting needs in the marketplace will likely thrive in the new era. Those that don't are tempting fate. And fate could arrive before a full-fledged retail wheeling proposal becomes law. Regulators fixated on retail wheeling per se or determined to defend the status quo are missing the point. Large users of electricity certainly want retail wheeling. They're applying pressure wherever and however they can to win it. But they're not waiting until they get retail wheeling to flex their purchasing clout. Some state commissioners need to recognize this and empower utilities to respond.« less

  18. The National Opportunity for Interoperability and its Benefits for a Reliable, Robust, and Future Grid Realized Through Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    Today, increasing numbers of intermittent generation sources (e.g., wind and photovoltaic) and new mobile intermittent loads (e.g., electric vehicles) can significantly affect traditional utility business practices and operations. At the same time, a growing number of technologies and devices, from appliances to lighting systems, are being deployed at consumer premises that have more sophisticated controls and information that remain underused for anything beyond basic building equipment operations. The intersection of these two drivers is an untapped opportunity and underused resource that, if appropriately configured and realized in open standards, can provide significant energy efficiency and commensurate savings on utility bills,more » enhanced and lower cost reliability to utilities, and national economic benefits in the creation of new markets, sectors, and businesses being fueled by the seamless coordination of energy and information through device and technology interoperability. Or, as the Quadrennial Energy Review puts it, “A plethora of both consumer-level and grid-level devices are either in the market, under development, or at the conceptual stage. When tied together through the information technology that is increasingly being deployed on electric utilities’ distribution grids, they can be an important enabling part of the emerging grid of the future. However, what is missing is the ability for all of these devices to coordinate and communicate their operations with the grid, and among themselves, in a common language — an open standard.” In this paper, we define interoperability as the ability to exchange actionable information between two or more systems within a home or building, or across and within organizational boundaries. Interoperability relies on the shared meaning of the exchanged information, with agreed-upon expectations and consequences, for the response to the information exchange.« less

  19. Potential and prospective implementation of carbon nanotubes on next generation aircraft and space vehicles: A review of current and expected applications in aerospace sciences

    NASA Astrophysics Data System (ADS)

    Gohardani, Omid; Elola, Maialen Chapartegui; Elizetxea, Cristina

    2014-10-01

    Carbon nanotubes have instigated the interest of many different scientific fields since their authenticated introduction, more than two decades ago. Particularly in aerospace applications, the potential implementations of these advanced materials have been predicted to have a large impact on future aircraft and space vehicles, mainly due to their distinct features, which include superior mechanical, thermal and electrical properties. This article provides the very first consolidated review of the imminent prospects of utilizing carbon nanotubes and nanoparticles in aerospace sciences, based on their recent implementations and predicted future applications. Explicitly, expected carbon nanotube employment in aeronautics and astronautics are identified for commercial aircraft, military aircraft, rotorcraft, unmanned aerial vehicles, satellites, and space launch vehicles. Attention is devoted to future utilization of carbon nanotubes, which may comprise hydrogen storage encapsulation, composite material implementation, lightning protection for aircraft, aircraft icing mitigation, reduced weight of airframes/satellites, and alleviation of challenges related to future space launch. This study further sheds light onto recent actualized implementations of carbon nanotubes in aerospace applications, as well as current and prospective challenges related to their usage in aerospace sciences, encompassing health and safety hazards, large scale manufacturing, achievement of optimum properties, recycling, and environmental impacts.

  20. 100-Lb(f) LO2/LCH4 Reaction Control Engine Technology Development for Future Space Vehicles

    NASA Technical Reports Server (NTRS)

    Robinson, Philip J.; Veith, Eric M.; Hurlbert, Eric A.; Jimenez, Rafael; Smith, Timothy D.

    2008-01-01

    The National Aeronautics and Space Administration (NASA) has identified liquid oxygen (LO2)/liquid methane (LCH4) propulsion systems as promising options for some future space vehicles. NASA issued a contract to Aerojet to develop a 100-lbf (445 N) LO2/LCH4 Reaction Control Engine (RCE) aimed at reducing the risk of utilizing a cryogenic reaction control system (RCS) on a space vehicle. Aerojet utilized innovative design solutions to develop an RCE that can ignite reliably over a broad range of inlet temperatures, perform short minimum impulse bits (MIB) at small electrical pulse widths (EPW), and produce excellent specific impulse (Isp) across a range of engine mixture ratios (MR). These design innovations also provide a start transient with a benign MR, ensuring good thrust chamber compatibility and long life. In addition, this RCE can successfully operate at MRs associated with main engines, enabling the RCE to provide emergency backup propulsion to minimize vehicle propellant load and overall system mass.

  1. 100-LBF LO2/LCH4 - Reaction Control Engine Technology Development for Future Space Vehicles

    NASA Technical Reports Server (NTRS)

    Robinson, Philip J.; Veith, Eric M.; Hurlbert, Eric A.; Jimenez, Rafael; Smith, Timothy D.

    2008-01-01

    The National Aeronautics and Space Administration (NASA) has identified liquid oxygen (LO2)/liquid methane (LCH4) propulsion systems as promising options for some future space vehicles. NASA issued a contract to Aerojet to develop a 100-lbf (445 N) LO2/LCH4 Reaction Control Engine (RCE) aimed at reducing the risk of utilizing a cryogenic reaction control system (RCS) on a space vehicle. Aerojet utilized innovative design solutions to develop an RCE that can ignite reliably over a broad range of inlet temperatures, perform short minimum impulse bits (MIB) at small electrical pulse widths (EPW), and produce excellent specific impulse (Isp) across a range of engine mixture ratios (MR). These design innovations also provide a start transient with a benign MR, ensuring good thrust chamber compatibility and long life. In addition, this RCE can successfully operate at MRs associated with main engines, enabling the RCE to provide emergency backup propulsion to minimize vehicle propellant load and overall system mass.

  2. Identifying Pathways toward Sustainable Electricity Supply and Demand Using an Integrated Resource Strategic Planning Model for Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Alabbas, Nabeel H.

    Despite holding 16% of proved oil reserves in the world, Saudi Arabia might be on an unsustainable path to become a net oil importer by the 2030s. Decades of domestic energy subsidies accompanied by a high population growth rate have encouraged inefficient production and high domestic consumption of fossil fuel energy, which has resulted in environmental degradation, and significant social and economic consequences. In addition, the government's dependence on oil as a main source of revenue (89%) to finance its development programs cannot be sustained due to oil's exhaustible nature and rapidly increasing domestic consumption. The electricity and water sectors consume more energy than other sectors. The literature review revealed that electricity use in Saudi Arabia is following an unsustainable path (7-8% annual growth over the last decade). The water sector is another major energy consumer due to an unprecedented demand for water in the Kingdom (18% of world's total desalinated water output with per capita consumption is twice the world average). Multiple entities have been involved in fragmented planning activities on the supply-side as well as to a certain extent on the demand-side; moreover, comprehensive integrated resource strategic plans have been lacking at the national level. This dissertation established an integrated resource strategic planning (IRSP) model for Saudi Arabia's electricity and water sectors. The IRSP can clearly determine the Kingdom's future vision of its utility sector, including goals, policies, programs, and an execution timetable, taking into consideration economic, environmental and social benefits. Also, a weather-based hybrid end-use econometric demand forecasting model was developed to project electricity demand until 2040. The analytical economic efficiency and technical assessments reveal that Saudi Arabia can supply almost 75% of its electricity from renewable energy sources with a significant achievable potential for saving 26% of peak demand by 2040. However, the development of sustainable energy systems in the country's utility sector will not occur automatically. Thus, several actions are proposed for developing the sustainable energy roadmap, strategies, and policies for Saudi Arabia's utility sector, supporting its position as a new vehicle of growth that facilitates national and socio-economic development and economic diversification plan.

  3. A methodology to identify stranded generation facilities and estimate stranded costs for Louisiana's electric utility industry

    NASA Astrophysics Data System (ADS)

    Cope, Robert Frank, III

    1998-12-01

    The electric utility industry in the United States is currently experiencing a new and different type of growing pain. It is the pain of having to restructure itself into a competitive business. Many industry experts are trying to explain how the nation as a whole, as well as individual states, will implement restructuring and handle its numerous "transition problems." One significant transition problem for federal and state regulators rests with determining a utility's stranded costs. Stranded generation facilities are assets which would be uneconomic in a competitive environment or costs for assets whose regulated book value is greater than market value. At issue is the methodology which will be used to estimate stranded costs. The two primary methods are known as "Top-Down" and "Bottom-Up." The "Top-Down" approach simply determines the present value of the losses in revenue as the market price for electricity changes over a period of time into the future. The problem with this approach is that it does not take into account technical issues associated with the generation and wheeling of electricity. The "Bottom-Up" approach computes the present value of specific strandable generation facilities and compares the resulting valuations with their historical costs. It is regarded as a detailed and difficult, but more precise, approach to identifying stranded assets and their associated costs. This dissertation develops a "Bottom-Up" quantitative, optimization-based approach to electric power wheeling within the state of Louisiana. It optimally evaluates all production capabilities and coordinates the movement of bulk power through transmission interconnections of competing companies in and around the state. Sensitivity analysis to this approach is performed by varying seasonal consumer demand, electric power imports, and transmission inter-connection cost parameters. Generation facility economic dispatch and transmission interconnection bulk power transfers, specific to each set of parameters, lead to the identification of stranded generation facilities. Stranded costs of non-dispatched and uneconomically dispatched generation facilities can then be estimated to indicate, arguably, the largest portion of restructuring transition costs as the industry is transformed from its present monopolistic structure to a competitive one.

  4. Compressed Natural Gas Technology for Alternative Fuel Power Plants

    NASA Astrophysics Data System (ADS)

    Pujotomo, Isworo

    2018-02-01

    Gas has great potential to be converted into electrical energy. Indonesia has natural gas reserves up to 50 years in the future, but the optimization of the gas to be converted into electricity is low and unable to compete with coal. Gas is converted into electricity has low electrical efficiency (25%), and the raw materials are more expensive than coal. Steam from a lot of wasted gas turbine, thus the need for utilizing exhaust gas results from gas turbine units. Combined cycle technology (Gas and Steam Power Plant) be a solution to improve the efficiency of electricity. Among other Thermal Units, Steam Power Plant (Combined Cycle Power Plant) has a high electrical efficiency (45%). Weakness of the current Gas and Steam Power Plant peak burden still using fuel oil. Compressed Natural Gas (CNG) Technology may be used to accommodate the gas with little land use. CNG gas stored in the circumstances of great pressure up to 250 bar, in contrast to gas directly converted into electricity in a power plant only 27 bar pressure. Stored in CNG gas used as a fuel to replace load bearing peak. Lawyer System on CNG conversion as well as the power plant is generally only used compressed gas with greater pressure and a bit of land.

  5. Regulatory environment and its impact on the market value of investor-owned electric utilities

    NASA Astrophysics Data System (ADS)

    Vishwanathan, Raman

    While other regulated industries have one by one been exposed to competitive reform, electric power, for over eighty years, has remained a great monopoly. For all those years, the vertically integrated suppliers of electricity in the United States have been assigned exclusive territorial (consumer) franchises and have been closely regulated. This environment is in the process change because the electric power industry is currently undergoing some dramatic adjustments. Since 1992, a number of states have initiated regulatory reform and are moving to allow retail customers to choose their energy supplier. There has also been a considerable federal government role in encouraging competition in the generation and transmission of electricity. The objective of this research is to investigate the reaction of investors to the prevailing regulatory environment in the electric utility industry by analyzing the market-to-book value for investor-owned electric utilities in the United States as a gauge of investor concern or support for change. In this study, the variable of interest is the market valuation of utilities, as it captures investor confidence to changes in the regulatory environment. Initially a classic regression model is analyzed on the full sample (of the 96 investor-owned utilities for the years 1992 through 1996), providing a total number of 480 (96 firms over 5 years) observations. Later fixed- and random-effects models are analyzed for the same full-sample model specified in the previous analysis. Also, the analysis is carried forward to examine the impact of the size of the utility and its degree of reliability on nuclear power generation on market values. In the period of this study, 1992--1996, the financial security markets downgraded utilities that were still operating in a regulated environment or had a substantial percentage of their power generation from nuclear power plants. It was also found that the financial market was sensitive to the size of the electric utility. The negative impact of the regulatory environment declined with the increase in the size of the utility, indicating favorable treatment for larger utilities by financial markets. Similarly, for the electric utility industry as a whole, financial markets reacted negatively to nuclear power generation.

  6. Reliability and cost/worth evaluation of generating systems utilizing wind and solar energy

    NASA Astrophysics Data System (ADS)

    Bagen

    The utilization of renewable energy resources such as wind and solar energy for electric power supply has received considerable attention in recent years due to adverse environmental impacts and fuel cost escalation associated with conventional generation. At the present time, wind and/or solar energy sources are utilized to generate electric power in many applications. Wind and solar energy will become important sources for power generation in the future because of their environmental, social and economic benefits, together with public support and government incentives. The wind and sunlight are, however, unstable and variable energy sources, and behave far differently than conventional sources. Energy storage systems are, therefore, often required to smooth the fluctuating nature of the energy conversion system especially in small isolated applications. The research work presented in this thesis is focused on the development and application of reliability and economic benefits assessment associated with incorporating wind energy, solar energy and energy storage in power generating systems. A probabilistic approach using sequential Monte Carlo simulation was employed in this research and a number of analyses were conducted with regards to the adequacy and economic assessment of generation systems containing wind energy, solar energy and energy storage. The evaluation models and techniques incorporate risk index distributions and different operating strategies associated with diesel generation in small isolated systems. Deterministic and probabilistic techniques are combined in this thesis using a system well-being approach to provide useful adequacy indices for small isolated systems that include renewable energy and energy storage. The concepts presented and examples illustrated in this thesis will help power system planners and utility managers to assess the reliability and economic benefits of utilizing wind energy conversion systems, solar energy conversion systems and energy storage in electric power systems and provide useful input to the managerial decision process.

  7. Value-Added Electricity Services: New Roles for Utilities and Third-Party Providers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blansfield, J.; Wood, L.; Katofsky, R.

    New energy generation, storage, delivery, and end-use technologies support a broad range of value-added electricity services for retail electricity customers. Sophisticated energy management services, distributed generation coupled with storage, and electric vehicle charging are just a few examples of emerging offerings. Who should provide value-added services — utilities or third parties, or both, and under what conditions? What policy and regulatory changes may be needed to promote competition and innovation, to account for utility costs to enable these services, and to protect consumers? The report approaches the issues from three perspectives: utilities, third-party service providers, and consumers: -Jonathan Blansfield andmore » Lisa Wood, Institute for Electric Innovation -Ryan Katofsky, Benjamin Stafford and Danny Waggoner, Advanced Energy Economy -National Association of State Utility Consumer Advocates« less

  8. An overview of large wind turbine tests by electric utilities

    NASA Technical Reports Server (NTRS)

    Vachon, W. A.; Schiff, D.

    1982-01-01

    A summary of recent plants and experiences on current large wind turbine (WT) tests being conducted by electric utilities is provided. The test programs discussed do not include federal research and development (R&D) programs, many of which are also being conducted in conjunction with electric utilities. The information presented is being assembled in a project, funded by the Electric Power Research Institute (EPRI), the objective of which is to provide electric utilities with timely summaries of test performance on key large wind turbines. A summary of key tests, test instrumentation, and recent results and plans is given. During the past year, many of the utility test programs initiated have encountered test difficulties that required specific WT design changes. However, test results to date continue to indicate that long-term machine performance and cost-effectiveness are achievable.

  9. 25 CFR 175.1 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... marketing of electric power or energy. Electric service means the delivery of electric energy or power by... relationships with the utility. Special contract means a written agreement between the utility and a customer...

  10. 18 CFR 292.311 - Reinstatement of obligation to purchase.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... electric energy, a qualifying cogeneration facility, a qualifying small power production facility, a State... utility's obligation to purchase electric energy under this section. Such application shall set forth the... application reinstating the electric utility's obligation to purchase electric energy under this section if...

  11. 18 CFR 292.311 - Reinstatement of obligation to purchase.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... electric energy, a qualifying cogeneration facility, a qualifying small power production facility, a State... utility's obligation to purchase electric energy under this section. Such application shall set forth the... application reinstating the electric utility's obligation to purchase electric energy under this section if...

  12. Selenium nanomaterials: applications in electronics, catalysis and sensors.

    PubMed

    Chaudhary, Savita; Mehta, S K

    2014-02-01

    This review provides insights into the synthesis, functionalization, and applications of selenium nanoparticles in electronics, optics, catalysis and sensors. The variation of physicochemical properties such as particle size, surface area, and shape of the selenium nanoparticles and the effect of experimental conditions has also been discussed. An overview has also been provided on the fundamental electrical and optical properties of selenium nanomaterials as well as their utilization in different research fields. The work presents an insight on selenium nanoparticles with interesting properties and their future applications.

  13. Coal conversion legislation. Part I. Hearings before the Subcommittee on Energy Production and Supply of the Committee on Energy and Natural Resources, United States Senate, Ninety-Fifth Congress, First Session on S. 272, S. 273, and S. 977, March 21 and 29, 1977. [Coal utilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1977-01-01

    The legislation on greater coal utilization before the committee includes S. 272 (requiring, to the extent practicable, electric power plants and major fuel-bearing installations to utilize fuels other than natural gas); S. 273 (requiring, to the extent practicable, new electric power plants and new major fuel-burning installations be constructed to utliize fuels other than natural gas or petroleum); and S. 977 (requiring, to the extent practicable, existing electric power plants and major fuel-burning installations to utilize fuels other than natural gas or petroleum). Statements were heard from seven senators and representatives from the following: American Electric Power Service Corp., Americanmore » Boiler Manufactures Association, National Electric Reliability Council, Virgina Electric and Power Co., Fossil Power Systems, Houston Lighting and Power Co., other electric utility industry representatives, and the Federal Energy Adminstration. Additional material from the Wall Street Journal and the Washington Post is included. (MCW)« less

  14. Testing the effectiveness of deregulation in the electric utility industry: A market-based approach

    NASA Astrophysics Data System (ADS)

    Wang, Manfen

    In this paper, I investigate one stated purpose of deregulation in the electric utility industry---to make utility operations more responsive to news releases, a proxy for market forces. My premise is that utilities providing electricity to highly deregulated states will be more responsive to market forces than those providing electricity to non-deregulated states. I employ intraday data from April to June 2001, the year after deregulation, and from 1994, the year before deregulation. I also employ the Brown-Forsythe-Modified Levene (BFL) test to determine the volatility differences between days with released news and days without released news. The results of BFL F tests for the year 2001 indicate that utilities headquartered in and serving states that have undergone substantial deregulation respond to news releases more strongly than those utilities headquartered in and serving states that are still regulated. The BFL F tests for utilities in 1994 confirm the premise that regulated utilities are less responsive to news releases. Finally, I conduct regression tests for utilities, the results of which support the findings from BFL tests---that all utilities serving highly deregulated states show pronounced responses to macroeconomic news releases. It appears that deregulation in the electric utility industry does, in fact, make utility operations more responsive to market forces and that deregulation is effective for states that implement a customer-choice model.

  15. Solar thermal technologies - Potential benefits to U.S. utilities and industry

    NASA Technical Reports Server (NTRS)

    Terasawa, K. L.; Gates, W. R.

    1983-01-01

    Solar energy systems were investigated which complement nuclear and coal technologies as a means of reducing the U.S. dependence on imported petroleum. Solar Thermal Energy Systems (STES) represents an important category of solar energy technologies. STES can be utilized in a broad range of applications servicing a variety of economic sectors, and they can be deployed in both near-term and long-term markets. The net present value of the energy cost savings attributable to electric utility and IPH applications of STES were estimated for a variety of future energy cost scenarios and levels of R&D success. This analysis indicated that the expected net benefits of developing an STES option are significantly greater than the expected costs of completing the required R&D. In addition, transportable fuels and chemical feedstocks represent a substantial future potential market for STES. Due to the basic nature of this R&D activity, however, it is currently impossible to estimate the value of STES in these markets. Despite this fact, private investment in STES R&D is not anticipated due to the high level of uncertainty characterizing the expected payoffs. Previously announced in STAR as N83-10547

  16. A Quantitative Assessment of Utility Reporting Practices for Reporting Electric Power Distribution Events

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamachi La Commare, Kristina

    Metrics for reliability, such as the frequency and duration of power interruptions, have been reported by electric utilities for many years. This study examines current utility practices for collecting and reporting electricity reliability information and discusses challenges that arise in assessing reliability because of differences among these practices. The study is based on reliability information for year 2006 reported by 123 utilities in 37 states representing over 60percent of total U.S. electricity sales. We quantify the effects that inconsistencies among current utility reporting practices have on comparisons of System Average Interruption Duration Index (SAIDI) and System Average Interruption Frequency Indexmore » (SAIFI) reported by utilities. We recommend immediate adoption of IEEE Std. 1366-2003 as a consistent method for measuring and reporting reliability statistics.« less

  17. Renewable Electricity Futures: Exploration of Up to 80% Renewable Electricity Penetration in the United States (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hand, M.; DeMeo, E.; Hostick, D.

    2013-04-01

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

  18. 76 FR 38383 - Revised Public Utility Filing; Requirements for Electric Quarterly Reports; Notice of Electric...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-30

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No.: ER02-2001-000] Revised Public Utility Filing; Requirements for Electric Quarterly Reports; Notice of Electric Quarterly Reports Users Group Meeting This notice announces a meeting of the Electric Quarterly Reports (EQR) Users Group to be held Wednesday, July 13, 2011, in the...

  19. Cycle Trades for Nuclear Thermal Rocket Propulsion Systems

    NASA Technical Reports Server (NTRS)

    White, C.; Guidos, M.; Greene, W.

    2003-01-01

    Nuclear fission has been used as a reliable source for utility power in the United States for decades. Even in the 1940's, long before the United States had a viable space program, the theoretical benefits of nuclear power as applied to space travel were being explored. These benefits include long-life operation and high performance, particularly in the form of vehicle power density, enabling longer-lasting space missions. The configurations for nuclear rocket systems and chemical rocket systems are similar except that a nuclear rocket utilizes a fission reactor as its heat source. This thermal energy can be utilized directly to heat propellants that are then accelerated through a nozzle to generate thrust or it can be used as part of an electricity generation system. The former approach is Nuclear Thermal Propulsion (NTP) and the latter is Nuclear Electric Propulsion (NEP), which is then used to power thruster technologies such as ion thrusters. This paper will explore a number of indirect-NTP engine cycle configurations using assumed performance constraints and requirements, discuss the advantages and disadvantages of each cycle configuration, and present preliminary performance and size results. This paper is intended to lay the groundwork for future efforts in the development of a practical NTP system or a combined NTP/NEP hybrid system.

  20. 18 CFR 141.400 - FERC Form No. 3-Q, Quarterly financial report of electric utilities, licensees, and natural gas...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., Quarterly financial report of electric utilities, licensees, and natural gas companies. 141.400 Section 141..., licensees, and natural gas companies. (a) Prescription. The quarterly report of electric utilities, licensees, and natural gas companies, designated as FERC Form No. 3-Q, is prescribed for the reporting...

  1. 18 CFR 260.300 - FERC Form No. 3-Q, Quarterly financial report of electric utilities, licensees, and natural gas...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., Quarterly financial report of electric utilities, licensees, and natural gas companies. 260.300 Section 260... ENERGY APPROVED FORMS, NATURAL GAS ACT STATEMENTS AND REPORTS (SCHEDULES) § 260.300 FERC Form No. 3-Q, Quarterly financial report of electric utilities, licensees, and natural gas companies. (a) Prescription...

  2. Integration of photovoltaic units into electric utility grids: experiment information requirements and selected issues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-09-01

    A number of investigations, including those conducted by The Aerospace Corporation and other contractors, have led to the recognition of technical, economic, and institutional issues relating to the interface between solar electric technologies and electric utility systems. These issues derive from three attributes of solar electric power concepts, including (1) the variability and unpredictability of the solar resources, (2) the dispersed nature of those resources which suggests the feasible deployment of small dispersed power units, and (3) a high initial capital cost coupled with relatively low operating costs. It is imperative that these integration issues be pursued in parallel withmore » the development of each technology if the nation's electric utility systems are to effectively utilize these technologies in the near to intermediate term. Analyses of three of these issues are presented: utility information requirements, generation mix and production cost impacts, and rate structures in the context of photovoltaic units integrated into the utility system. (WHK)« less

  3. Examination of Electric Utility CEO Compensation 2000-2011 and its significance to Company Earnings, Company Revenue, Company Stock and the Dow Jones Utility Average

    NASA Astrophysics Data System (ADS)

    Labovitch, Andrew

    This dissertation examined electric utility CEO compensation during the years 2000 through 2011 for United States owned and operated companies. To determine the extent to which agency theory may apply to electric utility CEO compensation, this examination segmented the industry by four types of company financial metrics: revenue, earnings, stock price and the Dow Jones Utility Average; by five categories of CEO compensation: base salary, bonus, stock grants, all other compensation and total compensation; and by four categories of company size as measured by revenue: large, medium, small and the industry as a whole. Electric utility CEO compensation data was analyzed with the financial metrics to determine correlations. No type of compensation was highly correlated to any of the financial metrics for any size industry segment indicating that there was little agency. CEO compensation in large electric utility companies was higher than compensation in medium and smaller companies even though the CEOs at larger companies earned less per dollar of revenue and per dollar of earnings than their counterparts in smaller companies.

  4. Cyber Threat and Vulnerability Analysis of the U.S. Electric Sector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glenn, Colleen; Sterbentz, Dane; Wright, Aaron

    With utilities in the U.S. and around the world increasingly moving toward smart grid technology and other upgrades with inherent cyber vulnerabilities, correlative threats from malicious cyber attacks on the North American electric grid continue to grow in frequency and sophistication. The potential for malicious actors to access and adversely affect physical electricity assets of U.S. electricity generation, transmission, or distribution systems via cyber means is a primary concern for utilities contributing to the bulk electric system. This paper seeks to illustrate the current cyber-physical landscape of the U.S. electric sector in the context of its vulnerabilities to cyber attacks,more » the likelihood of cyber attacks, and the impacts cyber events and threat actors can achieve on the power grid. In addition, this paper highlights utility perspectives, perceived challenges, and requests for assistance in addressing cyber threats to the electric sector. There have been no reported targeted cyber attacks carried out against utilities in the U.S. that have resulted in permanent or long term damage to power system operations thus far, yet electric utilities throughout the U.S. have seen a steady rise in cyber and physical security related events that continue to raise concern. Asset owners and operators understand that the effects of a coordinated cyber and physical attack on a utility’s operations would threaten electric system reliability–and potentially result in large scale power outages. Utilities are routinely faced with new challenges for dealing with these cyber threats to the grid and consequently maintain a set of best practices to keep systems secure and up to date. Among the greatest challenges is a lack of knowledge or strategy to mitigate new risks that emerge as a result of an exponential rise in complexity of modern control systems. This paper compiles an open-source analysis of cyber threats and risks to the electric grid, utility best practices for prevention and response to cyber threats, and utility suggestions about how the federal government can aid utilities in combating and mitigating risks.« less

  5. Plasma Oscillation Characterization of NASA's HERMeS Hall Thruster via High Speed Imaging

    NASA Technical Reports Server (NTRS)

    Huang, Wensheng; Kamhawi, Hani; Haag, Thomas W.

    2016-01-01

    For missions beyond low Earth orbit, spacecraft size and mass can be dominated by onboard chemical propulsion systems and propellants that may constitute more than 50 percent of the spacecraft mass. This impact can be substantially reduced through the utilization of Solar Electric Propulsion (SEP) due to its substantially higher specific impulse. Studies performed for NASA's Human Exploration and Operations Mission Directorate and Science Mission Directorate have demonstrated that a 50kW-class SEP capability can be enabling for both near term and future architectures and science missions. A high-power SEP element is integral to the Evolvable Mars Campaign, which presents an approach to establish an affordable evolutionary human exploration architecture. To enable SEP missions at the power levels required for these applications, an in-space demonstration of an operational 50kW-class SEP spacecraft has been proposed as a SEP Technology Demonstration Mission (TDM). In 2010 NASA's Space Technology Mission Directorate (STMD) began developing high-power electric propulsion technologies. The maturation of these critical technologies has made mission concepts utilizing high-power SEP viable.

  6. History of SO2 removal system at the Meramec plant of union electric.

    PubMed

    Dreifke, G E; McLaughlin, J F; Smith, J D

    1975-01-01

    In line with the then emerging air pollution control regulations Union Electric installed a limestone injection wet scrubber sulfur dioxide removal system on an intermediate size coal-fired utility boiler at its Meramec Power Plant on an experimental basis in September, 1968. Approximately 3 years of operation many difficulties were encountered with plugging and scaling of various system components by calcium sulphate. As a result of this experience along with related experiences by other utilities employing similar systems, the experiment was terminated in June, 1971. As a result of the experiences gained, however, second generation experiments in sulfur dioxide removal have been initiated elsewhere with the hope of improved performance. A number of experimental projects are still under tests. Costs in resources, reliability, and disposal of residual by-products are matters of great concern. The ture cost of sulfur dioxide removal systems in dollars and resources is not well known and perhaps a reevaluation of current and future SO2 removal projects is in order at this time before additional resources are committed.

  7. A future for models?

    NASA Astrophysics Data System (ADS)

    Posey, C. J.

    During times when overshot and undershot water wheels provided power for turning millstones, much depended upon the miller's judgment. “A big order is coming in tomorrow. Better shut down this afternoon. The trash rack needs to be cleaned and the flash boards raised.” Common sense could solve most of the problems in those days. It had to, if business was to continue.As the industrial revolution progressed, generation of electricity became a possibility. Higher rotational speeds than could be obtained by belts, pulleys, or gears were needed. Ingenious though the miller might have been, he had to depend on engineers who understood electricity and high-velocity flow to mate water wheels to dynamos. Enough engineers did, and by making tests of a variety of designs, often with small-scale runners, were able to guarantee the efficiency of hydroelectric generators suitable for a variety of sites. The miller was thus relieved of the “high-tech” decision. Now all important decisions fall to his successors, the utility companies, with assistance(?) from the State Utilities Boards and the National Securities and Exchange Commission.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, Peter H.; LaCommare, Kristina H.; Eto, Joseph H.

    Here, this study examines the relationship between annual changes in electricity reliability reported by a large cross-section of U.S. electricity distribution utilities over a period of 13 years and a broad set of potential explanatory variables, including weather and utility characteristics. We find statistically significant correlations between the average number of power interruptions experienced annually and above average wind speeds, precipitation, lightning strikes, and a measure of population density: customers per line mile. We also find significant relationships between the average number of minutes of power interruptions experienced and above average wind speeds, precipitation, cooling degree-days, and one strategy usedmore » to mitigate the impacts of severe weather: the amount of underground transmission and distribution line miles. Perhaps most importantly, we find a significant time trend of increasing annual average number of minutes of power interruptions over time—especially when interruptions associated with extreme weather are included. Lastly, the research method described in this analysis can provide a basis for future efforts to project long-term trends in reliability and the associated benefits of strategies to improve grid resiliency to severe weather—both in the U.S. and abroad.« less

  9. Electric sales and revenue 1992, April 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Electric Sales and Revenue is prepared by the Survey Management Division, Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. This publication provides information about sales of electricity, its associated revenue, and the average revenue per kilowatthour sold to residential, commercial, industrial, and other consumers throughout the United States. The sales, revenue, and average revenue per kilowatthour provided in the Electric Sales and Revenue are based on annual data reported by electric utilities for the calendar year ending December 31, 1992. The electric revenue reported by each electric utility includes the applicablemore » revenue from kilowatthours sold; revenue from income; unemployment and other State and local taxes; energy, demand, and consumer service charges; environmental surcharges; franchise fees; fuel adjustments; and other miscellaneous charges. The revenue does not include taxes, such as sales and excise taxes, that are assessed on the consumer and collected through the utility. Average revenue per kilowatthour is defined as the cost per unit of electricity sold and is calculated by dividing retail sales into the associated electric revenue. The sales of electricity, associated revenue, and average revenue per kilowatthour provided in this report are presented at the national, Census division, State, and electric utility levels.« less

  10. Basic Research Needs for Solar Energy Utilization. Report of the Basic Energy Sciences Workshop on Solar Energy Utilization, April 18-21, 2005

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, N. S.; Crabtree, G.; Nozik, A. J.

    2005-04-21

    World demand for energy is projected to more than double by 2050 and to more than triple by the end of the century. Incremental improvements in existing energy networks will not be adequate to supply this demand in a sustainable way. Finding sufficient supplies of clean energy for the future is one of society?s most daunting challenges. Sunlight provides by far the largest of all carbon-neutral energy sources. More energy from sunlight strikes the Earth in one hour (4.3 ? 1020 J) than all the energy consumed on the planet in a year (4.1 ? 1020 J). We currently exploitmore » this solar resource through solar electricity ? a $7.5 billion industry growing at a rate of 35?40% per annum ? and solar-derived fuel from biomass, which provides the primary energy source for over a billion people. Yet, in 2001, solar electricity provided less than 0.1% of the world's electricity, and solar fuel from modern (sustainable) biomass provided less than 1.5% of the world's energy. The huge gap between our present use of solar energy and its enormous undeveloped potential defines a grand challenge in energy research. Sunlight is a compelling solution to our need for clean, abundant sources of energy in the future. It is readily available, secure from geopolitical tension, and poses no threat to our environment through pollution or to our climate through greenhouse gases. This report of the Basic Energy Sciences Workshop on Solar Energy Utilization identifies the key scientific challenges and research directions that will enable efficient and economic use of the solar resource to provide a significant fraction of global primary energy by the mid 21st century. The report reflects the collective output of the workshop attendees, which included 200 scientists representing academia, national laboratories, and industry in the United States and abroad, and the U.S. Department of Energy?s Office of Basic Energy Sciences and Office of Energy Efficiency and Renewable Energy.« less

  11. Utilities Power Change: Engaging Commercial Customers in Workplace Charging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lommele, Stephen; Dafoe, Wendy

    As stewards of an electric grid that is available almost anywhere people park, utilities that support workplace charging are uniquely positioned to help their commercial customers be a part of the rapidly expanding network of charging infrastructure. Utilities understand the distinctive challenges of their customers, have access to technical information about electrical infrastructure, and have deep experience modeling and managing demand for electricity. This case study highlights the experiences of two utilities with workplace charging programs.

  12. Renewable Electricity Futures (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mai, T.

    2012-11-01

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

  13. Renewable Electricity Futures (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hand, M. M.

    2012-09-01

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

  14. Renewable Electricity Futures (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mai, T.

    2013-04-01

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

  15. Renewable Electricity Futures (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mai, T.

    2012-10-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

  16. Resonant power supplies for a rapid-cycling accelerator

    NASA Astrophysics Data System (ADS)

    Karady, G.; Thiessen, H. A.; Schneider, E. J.

    1988-10-01

    A resonant power supply has been proposed as an efficient power supply for a future 60-GeV, Kaon-producing accelerator. The engineering design of the electric system of the main-ring power supplies is described. It is shown that the resonant power supply can be built with standard commercially available components. The most critical component is the bypass switch, which requires gate-turn off thyristors, connected in parallel. Standard metal-clad switchgear can be used for the AC system. The resonant power supplies can be fed directly from the 115-kV utility network, but the resonance power supplies draw pulse loads from the utility network. This pulse may produce disturbances. AC filter and reactive power compensation is needed for economical operation.

  17. Electric utility companies and geothermal power

    NASA Technical Reports Server (NTRS)

    Pivirotto, D. S.

    1976-01-01

    The requirements of the electric utility industry as the primary potential market for geothermal energy are analyzed, based on a series of structured interviews with utility companies and financial institution executives. The interviews were designed to determine what information and technologies would be required before utilities would make investment decisions in favor of geothermal energy, the time frame in which the information and technologies would have to be available, and the influence of the governmental politics. The paper describes the geothermal resources, electric utility industry, its structure, the forces influencing utility companies, and their relationship to geothermal energy. A strategy for federal stimulation of utility investment in geothermal energy is suggested. Possibilities are discussed for stimulating utility investment through financial incentives, amelioration of institutional barriers, and technological improvements.

  18. Franchise fees reexamined

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osteryoung, J.S.

    The author examines franchise fees imposed by local governments and allocated by electric utilities to see if the fees are more equitably applied by the spread or direct method. Examples are drawn from Florida to illustrate how, under the spread method, customers living outside the franchise area contribute 60 percent of the allocated fees but have no control over how they are calculated or spent by the utility. Some cities use excess franchise fees to lower municipal taxes or to provide extra municipal services not available to those in the nonfranchise area. Also at issue is the value of themore » small amount of land used for utility right-of-way, which is of no value to the nonfranchise area customer. The author concludes that franchise fees imposed for the purpose of raising municipal revenues should be directly applied to only those customers living within the franchise area. Direct application of fees, by drawing the customer's attention to the total cost of utilities, could help to restrain future costs. (DCK)« less

  19. Developing hydropower in Washington state. Volume 2: An electricity marketing manual

    NASA Astrophysics Data System (ADS)

    James, J. W.; McCoy, G. A.

    1982-03-01

    An electricity marketing manual for the potential small and micro-hydroelectric project developer within the state of Washington is presented. Public utility regulatory policies (PURPA) requires electric utilities to interconnect with and pay a rate based on their full avoided costs for the purchase of electrical output from qualifying small power production facilities. The determination of avoided costs, as business organizational considerations, utility interface concerns, interconnection requirements, metering options, and liability and wheeling are discussed. The utility responses are summarized, legislation which is of importance to hydropower developers and the powers and functions of the authorities responsible for enforcing the mandate of PURPA are described.

  20. Bioelectrical Impedance Methods for Noninvasive Health Monitoring: A Review

    PubMed Central

    Bera, Tushar Kanti

    2014-01-01

    Under the alternating electrical excitation, biological tissues produce a complex electrical impedance which depends on tissue composition, structures, health status, and applied signal frequency, and hence the bioelectrical impedance methods can be utilized for noninvasive tissue characterization. As the impedance responses of these tissue parameters vary with frequencies of the applied signal, the impedance analysis conducted over a wide frequency band provides more information about the tissue interiors which help us to better understand the biological tissues anatomy, physiology, and pathology. Over past few decades, a number of impedance based noninvasive tissue characterization techniques such as bioelectrical impedance analysis (BIA), electrical impedance spectroscopy (EIS), electrical impedance plethysmography (IPG), impedance cardiography (ICG), and electrical impedance tomography (EIT) have been proposed and a lot of research works have been conducted on these methods for noninvasive tissue characterization and disease diagnosis. In this paper BIA, EIS, IPG, ICG, and EIT techniques and their applications in different fields have been reviewed and technical perspective of these impedance methods has been presented. The working principles, applications, merits, and demerits of these methods has been discussed in detail along with their other technical issues followed by present status and future trends. PMID:27006932

  1. High Temperature Fusion Reactor Cooling Using Brayton Cycle Based Partial Energy Conversion

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.; Sawicki, Jerzy T.

    2003-01-01

    For some future space power systems using high temperature nuclear heat sources most of the output energy will be used in other than electrical form, and only a fraction of the total thermal energy generated will need to be converted to electrical work. The paper describes the conceptual design of such a partial energy conversion system, consisting of a high temperature fusion reactor operating in series with a high temperature radiator and in parallel with dual closed cycle gas turbine (CCGT) power systems, also referred to as closed Brayton cycle (CBC) systems, which are supplied with a fraction of the reactor thermal energy for conversion to electric power. Most of the fusion reactor's output is in the form of charged plasma which is expanded through a magnetic nozzle of the interplanetary propulsion system. Reactor heat energy is ducted to the high temperature series radiator utilizing the electric power generated to drive a helium gas circulation fan. In addition to discussing the thermodynamic aspects of the system design the authors include a brief overview of the gas turbine and fan rotor-dynamics and proposed bearing support technology along with performance characteristics of the three phase AC electric power generator and fan drive motor.

  2. High Temperature Fusion Reactor Cooling Using Brayton Cycle Based Partial Energy Conversion

    NASA Astrophysics Data System (ADS)

    Juhasz, Albert J.; Sawicki, Jerzy T.

    2004-02-01

    For some future space power systems using high temperature nuclear heat sources most of the output energy will be used in other than electrical form, and only a fraction of the total thermal energy generated will need to be converted to electrical work. The paper describes the conceptual design of such a ``partial energy conversion'' system, consisting of a high temperature fusion reactor operating in series with a high temperature radiator and in parallel with dual closed cycle gas turbine (CCGT) power systems, also referred to as closed Brayton cycle (CBC) systems, which are supplied with a fraction of the reactor thermal energy for conversion to electric power. Most of the fusion reactor's output is in the form of charged plasma which is expanded through a magnetic nozzle of the interplanetary propulsion system. Reactor heat energy is ducted to the high temperature series radiator utilizing the electric power generated to drive a helium gas circulation fan. In addition to discussing the thermodynamic aspects of the system design the authors include a brief overview of the gas turbine and fan rotor-dynamics and proposed bearing support technology along with performance characteristics of the three phase AC electric power generator and fan drive motor.

  3. The German R&D Program for CO2 Utilization-Innovations for a Green Economy.

    PubMed

    Mennicken, Lothar; Janz, Alexander; Roth, Stefanie

    2016-06-01

    Carbon capture and utilization (CCU) is a field of key emerging technologies. CCU can support the economy to decrease the dependency on fossil carbon raw materials, to stabilize electricity grids and markets with respect to a growing share of fluctuating renewable energy. Furthermore, it can contribute to mitigate anthropogenic CO2 emissions. The German Federal Ministry of Education and Research has provided substantial financial support for research and development projects, stimulating research, development, and innovations in the field of CO2 utilization. This review provides an overview over the most relevant funding measures in this field. Examples of successful projects demonstrate that CCU technologies are already economically viable or technologically ready for industrial application. CCU technologies as elements of a future "green economy" can contribute to reach the ambitious German sustainability targets with regard to climate protection as well as raw material productivity.

  4. Socio-economic benefits of electric power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clemente, F.

    1979-01-01

    Empirical evidence and actual experience strongly demonstrate that the socio-economic benefits of electric power have received less than adequate attention. In terms of the reliability issue, so much emphasis has been placed on the cost of having electricity that the cost of not having reliable power has been ignored. Apart from a few comments on jobs or taxes, the Environmental Impact Statements submitted by utilities generally ignore the broad range of socio-economic (quality of life) benefits the proposed facility will have for the local community, the region, and society at large. The author feels strongly that electric utilities should notmore » look askance at the soft sciences, but should begin to utilize them. Sociology, social welfare, and macroeconomics remain fertile ground for the electric-power industry. The techniques and concepts of the social sciences can be readily utilized to identify and document many heretofore unarticulated socio-economic benefits of electric power.« less

  5. Photovoltaic utility/customer interface study

    NASA Astrophysics Data System (ADS)

    Eichler, C. H.; Hayes, T. P.; Matthews, M. M.; Wilraker, V. F.

    1980-12-01

    The technical, economic, and legal and regulatory issues of interconnecting small, privately-owned, on-site photovoltaic generating systems to an electric utility are addressed. Baseline residential, commercial and industrial class photovoltaic systems were developed. Technical issues of concern affecting this interconnection were identified and included fault protection, undervoltage protection, lamp flicker, revenue metering, loss of synchromism, electrical safety, prevention of backfeeding a de-energized utility feeder, effects of on-site generation on utility relaying schemes, effects of power conditioner harmonic distortion on the electric utility, system isolation, electromagnetic interference and site power factor as seen by the utility. Typical interconnection wiring diagrams were developed for interconnecting each class of baseline photovoltaic generating system.

  6. Electric Motor Thermal Management R&D (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennion, K.

    2014-11-01

    Thermal constraints place significant limitations on how electric motors ultimately perform. Without the ability to remove heat, the motor cannot operate without sacrificing performance, efficiency, and reliability. Finite element analysis and computational fluid dynamics modeling approaches are being increasingly utilized in the design and analysis of electric motors. As the models become more sophisticated, it is important to have detailed and accurate knowledge of both the passive thermal performance and the active cooling performance. In this work, we provide an overview of research characterizing both passive and active thermal elements related to electric motor thermal management. To better characterize themore » passive thermal performance, the effective thermal properties and inter-lamination thermal contact resistances were measured for different stator lamination materials. The active cooling performance of automatic transmission fluid (ATF) jets was also measured to better understand the heat transfer coefficients of ATF impinging on motor copper windings. Ford's Mercon LV was the ATF evaluated in this study. The presentation provides an overview of prior work with a focus on describing future plans for research to be performed during FY15.« less

  7. Electricity Breakdown Management for Sarawak Energy: Use of Condition-Based Equipment for Detection of Defective Insulator

    NASA Astrophysics Data System (ADS)

    Tan, J. K.; Abas, N.

    2017-07-01

    Managing electricity breakdown is vital since an outage causes economic losses for customers and the utility companies. However, electricity breakdown is unavoidable due to some internal or external factors beyond our control. Electricity breakdown on overhead lines tend occur more frequently because it is prone to external disturbances such as animal, overgrown vegetation and defective pole top accessories. In Sarawak Energy Berhad (SEB), majority of the network are composed of overhead lines and hence, is more prone to failure. Conventional method of equipment inspection and fault finding are not effective to quickly identify the root cause of failure. SEB has engaged the use of corona discharge camera as condition-based monitoring equipment to carry out condition based inspection on the line in order to diagnose the condition of the lines prior to failure. Experimental testing has been carried out to determine the correlation between the corona discharge count and the level of defect on line insulator. The result shall be tabulated and will be used as reference for future scanning and diagnostic on any defect on the lines.

  8. Electric Ground Support Equipment Advanced Battery Technology Demonstration Project at the Ontario Airport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyler Gray; Jeremy Diez; Jeffrey Wishart

    2013-07-01

    The intent of the electric Ground Support Equipment (eGSE) demonstration is to evaluate the day-to-day vehicle performance of electric baggage tractors using two advanced battery technologies to demonstrate possible replacements for the flooded lead-acid (FLA) batteries utilized throughout the industry. These advanced battery technologies have the potential to resolve barriers to the widespread adoption of eGSE deployment. Validation testing had not previously been performed within fleet operations to determine if the performance of current advanced batteries is sufficient to withstand the duty cycle of electric baggage tractors. This report summarizes the work performed and data accumulated during this demonstration inmore » an effort to validate the capabilities of advanced battery technologies. This report summarizes the work performed and data accumulated during this demonstration in an effort to validate the capabilities of advanced battery technologies. The demonstration project also grew the relationship with Southwest Airlines (SWA), our demonstration partner at Ontario International Airport (ONT), located in Ontario, California. The results of this study have encouraged a proposal for a future demonstration project with SWA.« less

  9. 17 CFR 250.7 - Companies deemed not to be electric or gas utility companies.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... or manufactured gas distributed at retail by means of the facilities owned or operated by such... connection with the generation, transmission, or distribution of electric energy is the ownership or... steam is used in the generation of electric energy shall not be deemed an electric utility company...

  10. 18 CFR 35.10b - Electric Quarterly Reports.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Electric Quarterly... Application § 35.10b Electric Quarterly Reports. Each public utility as well as each non-public utility with more than a de minimis market presence shall file an updated Electric Quarterly Report with the...

  11. 18 CFR 35.10b - Electric Quarterly Reports.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Electric Quarterly... Application § 35.10b Electric Quarterly Reports. Each public utility as well as each non-public utility with more than a de minimis market presence shall file an updated Electric Quarterly Report with the...

  12. Hydrogen-via-electricity concept. Critique report

    NASA Technical Reports Server (NTRS)

    Escher, W. J. D.

    1981-01-01

    The hydrogen-via-electricity (HvE) concept is the prospective use of hydrogen fuel produced electrolytically from the electric utility grid as a means of responding to conventional fuels shortages. The two sets of comments and critiques of this concept solicited from the Government/Government contractor group and from the electric utility companies are presented.

  13. Fuel and Emissions Reduction in Electric Power Take-Off Equipped Utility Vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konan, Arnaud; Ragatz, Adam; Prohaska, Robert

    The National Renewable Energy Laboratory (NREL) evaluated the performance of Pacific Gas and Electric plug-in hybrid electric power take off (ePTO) utility trucks equipped with Altec, Inc.'s Jobsite Energy Management System. NREL collected on-road performance data from Class 5 utility 'trouble trucks' and Class 8 material handlers and developed representative drive cycles for chassis dynamometer testing. The drive cycles were analyzed and jobsite energy use was quantified for impacts and potential further hybridization for the utility truck vocation.

  14. Burdensome and Unnecessary Reporting Requirements of the Public Utility Regulatory Policies Act Need to be Changed.

    DTIC Science & Technology

    1981-09-14

    Commissioners PURPA Public Utility Regulatory Policies Act %GLOSSAk(¥ Aavertising standard As aefineu oy PUijA, no electric utility may recover from any per- son...systems in 4o States, vuerto kico, (uam, and virgin Islanus. Automatic adjustment As detined by PURPA , no electric clause stanuard utility may increase any...Interruptiole rate standard As defined by PURPA , a rate oftereu to eacn industrial and commercial * electric consumer tnat snail retiect the cost of

  15. California-Specific Power-to-Hydrogen and Power-to-Gas Business Case Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eichman, Joshua D.; Flores-Espino, Francisco

    Flexible operation of electrolysis systems represents an opportunity to reduce the cost of hydrogen for a variety of end-uses while also supporting grid operations and thereby enabling greater renewable penetration. California is an ideal location to realize that value on account of growing renewable capacity and markets for hydrogen as a fuel cell electric vehicle (FCEV) fuel, refineries, and other end-uses. Shifting the production of hydrogen to avoid high cost electricity and participation in utility and system operator markets along with installing renewable generation to avoid utility charges and increase revenue from the Low Carbon Fuel Standard (LCFS) program canmore » result in around $2.5/kg (21%) reduction in the production and delivery cost of hydrogen from electrolysis. This reduction can be achieved without impacting the consumers of hydrogen. Additionally, future strategies for reducing hydrogen cost were explored and include lower cost of capital, participation in the Renewable Fuel Standard program, capital cost reduction, and increased LCFS value. Each must be achieved independently and could each contribute to further reductions. Using the assumptions in this study found a 29% reduction in cost if all future strategies are realized. Flexible hydrogen production can simultaneously improve the performance and decarbonize multiple energy sectors. The lessons learned from this study should be used to understand near-term cost drivers and to support longer-term research activities to further improve cost effectiveness of grid integrated electrolysis systems.« less

  16. CONSOL`s perspective on CCT deployment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burke, F.P.; Statnick, R.M.

    1997-12-31

    The principal focus of government investment in Clean Coal Technology must be to serve the interests of the US energy consumer. Because of its security of supply and low cost, coal will continue to be the fuel of choice in the existing domestic electricity generating market. The ability of coal to compete for new generating capacity will depend largely on natural gas prices and the efficiency of coal and gas-fired generating options. Furthermore, potential environmental regulations, coupled with utility deregulation, create a climate of economic uncertainty that may limit future investment decisions favorable to coal. Therefore, the federal government, throughmore » programs such as CCT, should promote the development of greenfield and retrofit coal use technology that improves generating efficiency and meets environmental requirements for the domestic electric market.« less

  17. Nanostructured Gas Sensors for Health Care: An Overview

    PubMed Central

    Kaushik, Ajeet; Kumar, Rajesh; Jayant, Rahul Dev; Nair, Madhavan

    2015-01-01

    Nanostructured platforms have been utilized for fabrication of small, sensitive and reliable gas sensing devices owing to high functionality, enhanced charge transport and electro-catalytic property. As a result of globalization, rapid, sensitive and selective detection of gases in environment is essential for health care and security. Nonmaterial such as metal, metal oxides, organic polymers, and organic-inorganic hybrid nanocomposites exhibit interesting optical, electrical, magnetic and molecular properties, and hence are found potential gas sensing materials. Morphological, electrical, and optical properties of such nanostructures can be tailored via controlling the precursor concentration and synthesis conditions resulting to achieve desired sensing. This review presents applications of nano-enabling gas sensors to detect gases for environment monitoring. The recent update, challenges, and future vision for commercial applications of such sensor are also described here. PMID:26491544

  18. Hawaiian Electric Advanced Inverter Grid Support Function Laboratory Validation and Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Austin; Nagarajan, Adarsh; Prabakar, Kumar

    The objective for this test plan was to better understand how to utilize the performance capabilities of advanced inverter functions to allow the interconnection of distributed energy resource (DER) systems to support the new Customer Self-Supply, Customer Grid-Supply, and other future DER programs. The purpose of this project was: 1) to characterize how the tested grid supportive inverters performed the functions of interest, 2) to evaluate the grid supportive inverters in an environment that emulates the dynamics of O'ahu's electrical distribution system, and 3) to gain insight into the benefits of the grid support functions on selected O'ahu island distributionmore » feeders. These goals were achieved through laboratory testing of photovoltaic inverters, including power hardware-in-the-loop testing.« less

  19. Towards Prognostics for Electronics Components

    NASA Technical Reports Server (NTRS)

    Saha, Bhaskar; Celaya, Jose R.; Wysocki, Philip F.; Goebel, Kai F.

    2013-01-01

    Electronics components have an increasingly critical role in avionics systems and in the development of future aircraft systems. Prognostics of such components is becoming a very important research field as a result of the need to provide aircraft systems with system level health management information. This paper focuses on a prognostics application for electronics components within avionics systems, and in particular its application to an Isolated Gate Bipolar Transistor (IGBT). This application utilizes the remaining useful life prediction, accomplished by employing the particle filter framework, leveraging data from accelerated aging tests on IGBTs. These tests induced thermal-electrical overstresses by applying thermal cycling to the IGBT devices. In-situ state monitoring, including measurements of steady-state voltages and currents, electrical transients, and thermal transients are recorded and used as potential precursors of failure.

  20. Dual-mode, high energy utilization system concept for mars missions

    NASA Astrophysics Data System (ADS)

    El-Genk, Mohamed S.

    2000-01-01

    This paper describes a dual-mode, high energy utilization system concept based on the Pellet Bed Reactor (PeBR) to support future manned missions to Mars. The system uses proven Closed Brayton Cycle (CBC) engines to partially convert the reactor thermal power to electricity. The electric power generated is kept the same during the propulsion and the power modes, but the reactor thermal power in the former could be several times higher, while maintaining the reactor temperatures almost constant. During the propulsion mode, the electric power of the system, minus ~1-5 kWe for house keeping, is used to operate a Variable Specific Impulse Magnetoplasma Rocket (VASIMR). In addition, the reactor thermal power, plus more than 85% of the head load of the CBC engine radiators, are used to heat hydrogen. The hot hydrogen is mixed with the high temperature plasma in a VASIMR to provide both high thrust and Isp>35,000 N.s/kg, reducing the travel time to Mars to about 3 months. The electric power also supports surface exploration of Mars. The fuel temperature and the inlet temperatures of the He-Xe working fluid to the nuclear reactor core and the CBC turbine are maintained almost constant during both the propulsion and power modes to minimize thermal stresses. Also, the exit temperature of the He-Xe from the reactor core is kept at least 200 K below the maximum fuel design temperature. The present system has no single point failure and could be tested fully assembled in a ground facility using electric heaters in place of the nuclear reactor. Operation and design parameters of a 40-kWe prototype are presented and discussed to illustrate the operation and design principles of the proposed system. .

  1. Distributed Energy Generation Systems Based on Renewable Energy and Natural Gas Blending: New Business Models for Economic Incentives, Electricity Market Design and Regulatory Innovation

    NASA Astrophysics Data System (ADS)

    Nyangon, Joseph

    Expansion of distributed energy resources (DERs) including solar photovoltaics, small- and medium-sized wind farms, gas-fired distributed generation, demand-side management, and energy storage poses significant complications to the design, operation, business model, and regulation of electricity systems. Using statistical regression analysis, this dissertation assesses if increased use of natural gas results in reduced renewable energy capacity, and if natural gas growth is correlated with increased or decreased non-fossil renewable fuels demand. System Generalized Method of Moments (System GMM) estimation of the dynamic relationship was performed on the indicators in the econometric model for the ten states with the fastest growth in solar generation capacity in the U.S. (e.g., California, North Carolina, Arizona, Nevada, New Jersey, Utah, Massachusetts, Georgia, Texas, and New York) to analyze the effect of natural gas on renewable energy diffusion and the ratio of fossil fuels increase for the period 2001-2016 to policy driven solar demand. The study identified ten major drivers of change in electricity systems, including growth in distributed energy generation systems such as intermittent renewable electricity and gas-fired distributed generation; flat to declining electricity demand growth; aging electricity infrastructure and investment gaps; proliferation of affordable information and communications technologies (e.g., advanced meters or interval meters), increasing innovations in data and system optimization; and greater customer engagement. In this ongoing electric power sector transformation, natural gas and fast-flexing renewable resources (mostly solar and wind energy) complement each other in several sectors of the economy. The dissertation concludes that natural gas has a positive impact on solar and wind energy development: a 1% rise in natural gas capacity produces 0.0304% increase in the share of renewable energy in the short-run (monthly) compared to the long-term effect estimated at 0.9696% (15-year period). Evidence from the main policy, environmental, and economic indicators for solar and wind-power development such as feed-in tariffs, state renewable portfolio standards, public benefits fund, net metering, interconnection standards, environmental quality, electricity import ratio, per-capita energy-related carbon dioxide emissions, average electricity price, per-capita real gross domestic product, and energy intensity are discussed and evaluated in detail in order to elucidate their effectiveness in supporting the utility industry transformation. The discussion is followed by a consideration of a plausible distributed utility framework that is tailored for major DERs development that has emerged in New York called Reforming the Energy Vision. This framework provides a conceptual base with which to imagine the utility of the future as well as a practical solution to study the potential of DERs in other states. The dissertation finds this grid and market modernization initiative has considerable influence and importance beyond New York in the development of a new market economy in which customer choice and distributed utilities are prominent.

  2. Distributed Electrical Energy Systems: Needs, Concepts, Approaches and Vision (in Chinese)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yingchen; Zhang, Jun; Gao, Wenzhong

    Intelligent distributed electrical energy systems (IDEES) are featured by vast system components, diversifled component types, and difficulties in operation and management, which results in that the traditional centralized power system management approach no longer flts the operation. Thus, it is believed that the blockchain technology is one of the important feasible technical paths for building future large-scale distributed electrical energy systems. An IDEES is inherently with both social and technical characteristics, as a result, a distributed electrical energy system needs to be divided into multiple layers, and at each layer, a blockchain is utilized to model and manage its logicmore » and physical functionalities. The blockchains at difierent layers coordinate with each other and achieve successful operation of the IDEES. Speciflcally, the multi-layer blockchains, named 'blockchain group', consist of distributed data access and service blockchain, intelligent property management blockchain, power system analysis blockchain, intelligent contract operation blockchain, and intelligent electricity trading blockchain. It is expected that the blockchain group can be self-organized into a complex, autonomous and distributed IDEES. In this complex system, frequent and in-depth interactions and computing will derive intelligence, and it is expected that such intelligence can bring stable, reliable and efficient electrical energy production, transmission and consumption.« less

  3. Electrical utilities model for determining electrical distribution capacity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fritz, R. L.

    1997-09-03

    In its simplest form, this model was to obtain meaningful data on the current state of the Site`s electrical transmission and distribution assets, and turn this vast collection of data into useful information. The resulting product is an Electrical Utilities Model for Determining Electrical Distribution Capacity which provides: current state of the electrical transmission and distribution systems; critical Hanford Site needs based on outyear planning documents; decision factor model. This model will enable Electrical Utilities management to improve forecasting requirements for service levels, budget, schedule, scope, and staffing, and recommend the best path forward to satisfy customer demands at themore » minimum risk and least cost to the government. A dynamic document, the model will be updated annually to reflect changes in Hanford Site activities.« less

  4. Load Management - Methods to Reduce Electric Utilities Peak Loads.

    DTIC Science & Technology

    1983-08-01

    for electric utilities.1 The largest impact came in 1978 when the Public Utilities Regulatory Policies Act ( PURPA ) was enacted which required state...management option. 7 CHAPTER VII CONCLUSION Since PURPA was enacted in 1978, utilities have been required to investigate methods in which to more effectively

  5. Managing Campus Energy: Compromising between Rapid Needs and Environmental Requirement

    NASA Astrophysics Data System (ADS)

    Ambariyanto, Ambariyanto; Utama, Yos J.; Purwanto

    2018-02-01

    The utilization of energy, especially electricity at Diponegoro University campus continues to increase in line with the development of the university. This increase has a direct impact on the increased costs to be paid by the university. Some of the causes of increased utilization of electrical energy is the construction of new buildings to meet the needs, increased learning activities and education, research activities in the laboratory, and various other activities. On the other hand, the increase of energy utilization is considered not good from the environment point of view, especially the utilization of electrical energy coming from non sustainable resources. Efforts to compromise on both are to develop policies in developing environmentally friendly buildings, efficiency in utilization of electrical energy, and development of sustainable energy sources.

  6. Planning and managing market research: Electric utility market research monograph series: Monograph 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitelaw, R.W.

    1987-01-01

    The market research techniques available now to the electric utility industry have evolved over the last thirty years into a set of sophisticated tools that permit complex behavioral analyses that earlier had been impossible. The marketing questions facing the electric utility industry now are commensurately more complex than ever before. This document was undertaken to present the tools and techniques needed to start or improve the usefulness of market research activities within electric utilities. It describes proven planning and management techniques as well as decision criteria for structuring effective market research functions for each utility's particular needs. The monograph establishesmore » the parameters of sound utility market research given trade-offs between highly centralized or decentralized organizations, research focus, involvement in decision making, and personnel and management skills necessary to maximize the effectiveness of the structure chosen.« less

  7. Experimental investigation of a variable speed constant frequency electric generating system from a utility perspective

    NASA Technical Reports Server (NTRS)

    Herrera, J. I.; Reddoch, T. W.; Lawler, J. S.

    1985-01-01

    As efforts are accelerated to improve the overall capability and performance of wind electric systems, increased attention to variable speed configurations has developed. A number of potentially viable configurations have emerged. Various attributes of variable speed systems need to be carefully tested to evaluate their performance from the utility points of view. With this purpose, the NASA experimental variable speed constant frequency (VSCF) system has been tested. In order to determine the usefulness of these systems in utility applications, tests are required to resolve issues fundamental to electric utility systems. Legitimate questions exist regarding how variable speed generators will influence the performance of electric utility systems; therefore, tests from a utility perspective, have been performed on the VSCF system and an induction generator at an operating power level of 30 kW on a system rated at 200 kVA and 0.8 power factor.

  8. Electrical load management at the Goldstone DSN Complex

    NASA Technical Reports Server (NTRS)

    Rayburn, J. C.

    1981-01-01

    A Power Load Management Plan was deveoped which utilizes the unique power generating capabilities of the stations to reduce the stress on the local utility's reserve capacity and reduce the cost of electrical power at the stations. The plan has greatly reduced the cost of Goldstone electrical power by completely eliminating the use of commercial power during the local utility's high usage periods each day.

  9. Security Vulnerability and Patch Management in Electric Utilities: A Data-Driven Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Qinghua; Zhang, Fengli

    This paper explores a real security vulnerability and patch management dataset from an electric utility in order to shed light on characteristics of the vulnerabilities that electric utility assets have and how they are remediated in practice. Specifically, it first analyzes the distribution of vulnerabilities over software, assets, and other metric. Then it analyzes how vulnerability features affect remediate actions.

  10. Illegal, Unethical or Just Fattening? A Revisionist Look at the FTC Hearings on Electric Utility Public Relations and Franklin Roosevelt's 1932 Public Power Pledge.

    ERIC Educational Resources Information Center

    Jordan, Myron K.

    Did President Franklin D. Roosevelt's condemnation of electric utility public relations represent a fair interpretation of the findings of the Federal Trade Commission (FTC) investigation into the electric utility industry as authorized by Senate Resolution 83 in February, 1928, or were Roosevelt's statements simply campaign hyperbole that met the…

  11. Critical review: Uncharted waters? The future of the electricity-water nexus.

    PubMed

    Sanders, Kelly T

    2015-01-06

    Electricity generation often requires large amounts of water, most notably for cooling thermoelectric power generators and moving hydroelectric turbines. This so-called "electricity-water nexus" has received increasing attention in recent years by governments, nongovernmental organizations, industry, and academics, especially in light of increasing water stress in many regions around the world. Although many analyses have attempted to project the future water requirements of electricity generation, projections vary considerably due to differences in temporal and spatial boundaries, modeling frameworks, and scenario definitions. This manuscript is intended to provide a critical review of recent publications that address the future water requirements of electricity production and define the factors that will moderate the water requirements of the electric grid moving forward to inform future research. The five variables identified include changes in (1) fuel consumption patterns, (2) cooling technology preferences, (3) environmental regulations, (4) ambient climate conditions, and (5) electric grid characteristics. These five factors are analyzed to provide guidance for future research related to the electricity-water nexus.

  12. 77 FR 134 - In the Matter of Yankee Atomic Electric Company; Northeast Utilities; NSTAR (Yankee Nuclear Power...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-03

    ... Matter of Yankee Atomic Electric Company; Northeast Utilities; NSTAR (Yankee Nuclear Power Station); Order Approving Application Regarding Proposed Merger I Yankee Atomic Electric Company (Yankee Atomic or... (together, the [[Page 135

  13. 10 CFR 436.30 - Purpose and scope.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... (3) Entering into negotiations with electric, water, and gas utilities to design cost-effective... regulations. The provisions of this subpart are controlling with regard to energy savings performance... manage electricity demand conducted by gas, water, or electric utilities and generally available to...

  14. Uncertainties in the Value of Bill Savings from Behind-the-Meter, Residential Photovoltaic Systems: The Roles of Electricity Market Conditions, Retail Rate Design, and Net Metering

    NASA Astrophysics Data System (ADS)

    Darghouth, Naim Richard

    Net metering has become a widespread policy mechanism in the U.S. for supporting customer adoption of distributed photovoltaics (PV), allowing customers with PV systems to reduce their electric bills by offsetting their consumption with PV generation, independent of the timing of the generation relative to consumption. Although net metering is one of the principal drivers for the residential PV market in the U.S., the academic literature on this policy has been sparse and this dissertation contributes to this emerging body of literature. This dissertation explores the linkages between the availability of net metering, wholesale electricity market conditions, retail rates, and the residential bill savings from behind-the-meter PV systems. First, I examine the value of the bill savings that customers receive under net metering and alternatives to net metering, and the associated role of retail rate design, based on current rates and a sample of approximately two hundred residential customers of California's two largest electric utilities. I find that the bill savings per kWh of PV electricity generated varies greatly, largely attributable to the increasing block structure of the California utilities' residential retail rates. I also find that net metering provides significantly greater bill savings than alternative compensation mechanisms based on avoided costs. However, retail electricity rates may shift as wholesale electricity market conditions change. I then investigate a potential change in market conditions -- increased solar PV penetrations -- on wholesale prices in the short-term based on the merit-order effect. This demonstrates the potential price effects of changes in market conditions, but also points to a number of methodological shortcomings of this method, motivating my usage of a long-term capacity investment and economic dispatch model to examine wholesale price effects of various wholesale market scenarios in the subsequent analysis. By developing three types of retail rates (a flat rate, a time-of-use rate, and real-time pricing) from these wholesale price profiles, I examine bill savings from PV generation for the ten wholesale market scenarios under net metering and an alternative to net metering where hourly excess PV generation is compensated at the wholesale price. Most generally, I challenge the common assertion that PV compensation is likely to stay constant (or rise) due to constant (or rising) retail rates, and find that future electricity market scenarios can drive substantial changes in residential retail rates and that these changes, in concert with variations in retail rate structures and PV compensation mechanisms, interact to place substantial uncertainty on the future value of bill savings from residential PV.

  15. Estimating potential stranded commitments for U.S. investor-owned electric utilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baxter, L.; Hirst, E.

    New technologies, low natural gas prices, and federal and state utility regions are restructuring the electricity industry. Yesterday`s vertically integrated utility with a retail monopoly franchise may be a very different organization in a few years. Conferences, regulatory-commission hearings, and other industry fora are dominated by debates over the extent and form of utility deintegration, wholesale competition, and retail wheeling. A key obstacle to restructuring the electricity industry is stranded commitments. Past investments, power-purchase contracts, and public-policy-driven programs that made sense in an era of cost-of-service regulation may not be cost-effective in a competitive power market. Regulators, utilities, and othermore » parties face tough decisions concerning the mitigation and allocation of these stranded commitments. The authors developed and applied a simple method to calculate the amount of stranded commitments facing US investor-owned electric utilities. The results obtained with this method depend strongly on a few key assumptions: (1) the fraction of utility sales that is at risk with respect to competition, (2) the market price of electric generation, and (3) the number of years during which the utility would lose money because of differences between its embedded cost of production and the market price.« less

  16. The Shifting Landscape of Ratepayer-Funded Energy Efficiency in the U.S.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbose, Galen L; Goldman, Charles; Schlegel, Jeff

    Over the last two decades, utility ratepayer funding for energy efficiency programs - and the associated energy savings - has seen both booms and busts. Currently, about 35 states implement ratepayer-funded energy efficiency programs, with a total U.S. budget of $3.1 billion in 2008, approximately 80% of which is concentrated in just ten states (CEE 2008).2 However, a proliferation of new state-level policies enacted over the past several years suggests that the next decade may see a dramatic and sustained increase in overall funding levels, and a fundamental re-drawing of the energy efficiency map. These new state energy efficiency policiesmore » reflect a variety of concerns, including the increasing cost and siting challenges of building new generation and transmission, fuel cost and supply risks, and the potential cost of future carbon regulations. Within the past three years, for example, eleven states have adopted energy efficiency portfolio (or resource) standards (EEPS or EERS) that establish specific long-term savings targets that utilities are obligated to meet, and at least three other states are currently considering the same. A growing number of states have recently established laws requiring utilities to acquire all available cost-effective energy efficiency. Regulators in several Western states have also recently revised integrated resource planning (IRP) and demand-side management (DSM) planning rules to require more robust analysis of the resource potential and benefits of energy efficiency, which has resulted in increased savings targets for their energy efficiency portfolios (Hopper et al. 2008). Finally, regulators and utilities in many states are beginning to look more closely at regulatory incentive mechanisms to better align utility financial interests with improvements in customer energy efficiency. We examined energy efficiency policies on the books or in the pipeline in all 50 states, along with recent IRPs and DSM plans, and developed low, medium and high projections of future energy efficiency spending and savings. Depending on how aggressively and effectively states implement these policies, we estimate that spending on ratepayer-funded energy efficiency could increase from $3.1 billion in 2008 to more than $12 billion (nominal dollars) per year by 2020 in our high case, a growth rate in spending of about 12% per year. Annual electricity savings nationally could triple from an estimated 0.3% of retail electricity sales in 2008 to 0.9% of retail electricity sales in 2020. In the low and medium scenarios, ratepayer funding for electric and gas energy efficiency in the U.S. would increase to $5.4 and $7.5 billion, respectively, by 2020. What are the implications of such a scale-up of ratepayer-funded energy efficiency activity for national energy policy, such as a national EEPS or future carbon regulations? Can a ramp-up of this scale be achieved, and what practical constraints might slow these efforts? This paper addresses these questions by first providing an overview of recent trends in state policies pertaining to ratepayer-funded energy efficiency programs in the U.S. The paper then presents our set of projections of future spending and savings from such programs, highlighting key themes. Projected energy savings are compared to what might be required under a future national EEPS (or broader clean energy standard that includes energy efficiency), in order to gauge the potential incremental impact of such policies. In addition, the carbon emission reductions associated with our projection of energy savings from ratepayer-funded programs is compared to the total emission reductions that might be required under the American Clean Energy and Security Act of 2009 (aka, the Waxman-Markey bill), which was passed by the U.S. House of Representatives in June 2009 and would establish a cap on total greenhouse gas emission for many sectors of the U.S. economy. Last, the paper discusses some of the major obstacles and challenges that states and program administrators may face over the coming decade, as they seek to dramatically ramp-up ratepayer-funded energy efficiency program activity, as projected.« less

  17. Performance assessment of the PNM Prosperity electricity storage project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberson, Dakota; Ellison, James F.; Bhatnagar, Dhruv

    2014-05-01

    The purpose of this study is to characterize the technical performance of the PNM Prosperity electricity storage project, and to identify lessons learned that can be used to improve similar projects in the future. The PNM Prosperity electricity storage project consists of a 500 kW/350 kWh advanced lead-acid battery with integrated supercapacitor (for energy smoothing) and a 250 kW/1 MWh advanced lead-acid battery (for energy shifting), and is co-located with a 500 kW solar photovoltaic (PV) resource. The project received American Reinvestment and Recovery Act (ARRA) funding. The smoothing system is e ective in smoothing intermittent PV output. The shiftingmore » system exhibits good round-trip efficiencies, though the AC-to-AC annual average efficiency is lower than one might hope. Given the current utilization of the smoothing system, there is an opportunity to incorporate additional control algorithms in order to increase the value of the energy storage system.« less

  18. An assessment of memristor intrinsic fluctuations: a measurement of single atomic motion

    NASA Astrophysics Data System (ADS)

    Borghetti, Julien; Yang, J. Joshua; Medeiros-Ribeiro, Gilberto; Williams, R. Stanley

    2010-03-01

    Memristors provides electrically tunable resistance for upcoming non-volatile memory and future neuromorphic computing. One of the key benefits of such a device is its scalability, which can be demonstrated from an architectural perspective as well as from a fundamental physics limit. 4D addressing schemes utilizing cross bar structures that can be stacked several layers high above the chip embodies unlimited addressing space. On the other limit, the basic operating principles of memristive devices allow one to reach storage of information in a single atom. In this report of nanoscale (sub 50nm) devices, we detect single atom fluctuations, which would then represent the ultimate limit for noise sources thus delineating the boundary conditions for circuit design. We show that electrically induced individual atom migrations do not affect the overall device atomic configuration until a critical bias where a single local fluctuation triggers a general atomic reconfiguration. This instability illustrates the robustness of the device non-volatility upon small electrical stress.

  19. Biomass-directed synthesis of 20 g high-quality boron nitride nanosheets for thermoconductive polymeric composites.

    PubMed

    Wang, Xue-Bin; Weng, Qunhong; Wang, Xi; Li, Xia; Zhang, Jun; Liu, Fei; Jiang, Xiang-Fen; Guo, Hongxuan; Xu, Ningsheng; Golberg, Dmitri; Bando, Yoshio

    2014-09-23

    Electrically insulating boron nitride (BN) nanosheets possess thermal conductivity similar to and thermal and chemical stabilities superior to those of electrically conductive graphenes. Currently the production and application of BN nanosheets are rather limited due to the complexity of the BN binary compound growth, as opposed to massive graphene production. Here we have developed the original strategy "biomass-directed on-site synthesis" toward mass production of high-crystal-quality BN nanosheets. The strikingly effective, reliable, and high-throughput (dozens of grams) synthesis is directed by diverse biomass sources through the carbothermal reduction of gaseous boron oxide species. The produced BN nanosheets are single crystalline, laterally large, and atomically thin. Additionally, they assemble themselves into the same macroscopic shapes peculiar to original biomasses. The nanosheets are further utilized for making thermoconductive and electrically insulating epoxy/BN composites with a 14-fold increase in thermal conductivity, which are envisaged to be particularly valuable for future high-performance electronic packaging materials.

  20. Energy and economic efficiency alternatives for electric lighting in commercial buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robbins, C L; Hunter, K C; Carlisle, N

    1985-10-01

    This report investigates current efficient alternatives for replacing or supplementing electric lighting systems in commercial buildings. Criteria for establishing the economic attractiveness of various lighting alternatives are defined and the effect of future changes in building lighting on utility capacity. The report focuses on the energy savings potential, economic efficiency, and energy demand reduction of three categories of lighting alternatives: (1) use of a renewable resource (daylighting) to replace or supplement electric lighting; (2) use of task/ambient lighting in lieu of overhead task lighting; and (3) equipment changes to improve lighting energy efficiency. The results indicate that all three categoriesmore » offer opportunities to reduce lighting energy use in commercial buildings. Further, reducing lighting energy causes a reduction in cooling energy use and cooling capacity while increasing heating energy use. It does not typically increase heating capacity because the use of lighting in the building does not offset the need for peak heating at night.« less

  1. Area-Specific Marginal Costing for Electric Utilities: a Case Study of Transmission and Distribution Costs

    NASA Astrophysics Data System (ADS)

    Orans, Ren

    1990-10-01

    Existing procedures used to develop marginal costs for electric utilities were not designed for applications in an increasingly competitive market for electric power. The utility's value of receiving power, or the costs of selling power, however, depend on the exact location of the buyer or seller, the magnitude of the power and the period of time over which the power is used. Yet no electric utility in the United States has disaggregate marginal costs that reflect differences in costs due to the time, size or location of the load associated with their power or energy transactions. The existing marginal costing methods used by electric utilities were developed in response to the Public Utilities Regulatory Policy Act (PURPA) in 1978. The "ratemaking standards" (Title 1) established by PURPA were primarily concerned with the appropriate segmentation of total revenues to various classes-of-service, designing time-of-use rating periods, and the promotion of efficient long-term resource planning. By design, the methods were very simple and inexpensive to implement. Now, more than a decade later, the costing issues facing electric utilities are becoming increasingly complex, and the benefits of developing more specific marginal costs will outweigh the costs of developing this information in many cases. This research develops a framework for estimating total marginal costs that vary by the size, timing, and the location of changes in loads within an electric distribution system. To complement the existing work at the Electric Power Research Institute (EPRI) and Pacific Gas and Electric Company (PGandE) on estimating disaggregate generation and transmission capacity costs, this dissertation focuses on the estimation of distribution capacity costs. While the costing procedure is suitable for the estimation of total (generation, transmission and distribution) marginal costs, the empirical work focuses on the geographic disaggregation of marginal costs related to electric utility distribution investment. The study makes use of data from an actual distribution planning area, located within PGandE's service territory, to demonstrate the important characteristics of this new costing approach. The most significant result of this empirical work is that geographic differences in the cost of capacity in distribution systems can be as much as four times larger than the current system average utility estimates. Furthermore, lumpy capital investment patterns can lead to significant cost differences over time.

  2. PV solar electricity: status and future

    NASA Astrophysics Data System (ADS)

    Hoffmann, Winfried

    2006-04-01

    Within the four main market segments of PV solar electricity there are already three areas competitive today. These are off-grid industrial and rural as well as consumer applications. The overall growth within the past 8 years was almost 40 % p.a. with a "normal" growth of about 18 % p.a. for the first three market segments whereas the grid connected market increased with an astonishing 63 % p.a. The different growth rates catapulted the contribution of grid connected systems in relation to the total market from about one quarter 6 years ago towards more than three quarters today. The reason for this development is basically due to industry-politically induced market support programs in the aforementioned countries. It is quite important to outline under which boundary conditions grid connected systems will be competitive without support programs like the feed in tariff system in Germany, Spain and some more to come in Europe as well as investment subsidies in Japan, US and some other countries. It will be shown that in a more and more liberalized utility market worldwide electricity produced by PV solar electricity systems will be able to compete with their generating cost against peak power prices from utilities. The point of time for this competitiveness is mainly determined by the following facts: 1. Price decrease for PV solar electricity systems leading to an equivalent decrease in the generated cost for PV produced kWh. 2. Development of a truly liberalized electricity market. 3. Degree of irradiation between times of peak power demand and delivery of PV electricity. The first topic is discussed using price experience curves. Some explanations will be given to correlate the qualitative number of 20 % price decrease for doubling cumulative worldwide sales derived from the historic price experience curve with a more quantitative analysis based on our EPIA-Roadmap (productivity increase and ongoing improvements for existing technologies as well as development of new concepts to broaden the product portfolio in coming years). The second topic outlines the most likely development of liberalized electricity markets in various regions worldwide. It will be emphasized that in such markets the future prices for electricity will more and more reflect the different cost for bulk and peak power production. This will not only happen for industrial electricity customers - as already today in many countries - but also for private households. The third topic summarizes the existing data and facts by correlating peak power demand and prices traded in various stock exchange markets with delivered PV kWh. It will be shown that a high degree of correlation is existent. Combining the three topics and postulating reverse net metering the competitiveness of PV solar electricity as described is most likely to occur. The described price decrease of modules will also have a very positive impact on off-grid rural applications, mainly in 3rd world countries. It will be shown that this is strongly advanced due to the development of mini-grids starting from solar home systems - with mini grids looking very similar to on-grid applications in weak grid areas of nowadays electricity network.

  3. Biomass resources for energy in Ohio: The OH-MARKAL modeling framework

    NASA Astrophysics Data System (ADS)

    Shakya, Bibhakar

    The latest reports from the Intergovernmental Panel on Climate Change have indicated that human activities are directly responsible for a significant portion of global warming trends. In response to the growing concerns regarding climate change and efforts to create a sustainable energy future, biomass energy has come to the forefront as a clean and sustainable energy resource. Biomass energy resources are environmentally clean and carbon neutral with net-zero carbon dioxide (CO2) emissions, since CO2 is absorbed or sequestered from the atmosphere during the plant growth. Hence, biomass energy mitigates greenhouse gases (GHG) emissions that would otherwise be added to the environment by conventional fossil fuels, such as coal. The use of biomass resources for energy is even more relevant in Ohio, as the power industry is heavily based on coal, providing about 90 percent of the state's total electricity while only 50 percent of electricity comes from coal at the national level. The burning of coal for electricity generation results in substantial GHG emissions and environmental pollution, which are responsible for global warming and acid rain. Ohio is currently one of the top emitters of GHG in the nation. This dissertation research examines the potential use of biomass resources by analyzing key economic, environmental, and policy issues related to the energy needs of Ohio over a long term future (2001-2030). Specifically, the study develops a dynamic linear programming model (OH-MARKAL) to evaluate biomass cofiring as an option in select coal power plants (both existing and new) to generate commercial electricity in Ohio. The OH-MARKAL model is based on the MARKAL (MARKet ALlocation) framework. Using extensive data on the power industry and biomass resources of Ohio, the study has developed the first comprehensive power sector model for Ohio. Hence, the model can serve as an effective tool for Ohio's energy planning, since it evaluates economic and environmental consequences of alternative energy scenarios for the future. The model can also be used to estimate the relative merits of various energy technologies. By developing OH-MARKAL as an empirical model, this study evaluates the prospects of biomass cofiring in Ohio to generate commercial electricity. As cofiring utilizes the existing infrastructure, it is an attractive option for utilizing biomass energy resources, with the objective of replacing non-renewable fuel (coal) with renewable and cleaner fuel (biomass). It addresses two key issues: first, the importance of diversifying the fuel resource base for the power industry; and second, the need to increase the use of biomass or renewable resources in Ohio. The results of the various model scenarios developed in this study indicate that policy interventions are necessary to make biomass co-firing competitive with coal, and that about 7 percent of electricity can be generated by using biomass feedstock in Ohio. This study recommends mandating an optimal level of a renewable portfolio standard (RPS) for Ohio to increase renewable electricity generation in the state. To set a higher goal of RPS than 7 percent level, Ohio needs to include other renewable sources such as wind, solar or hydro in its electricity generation portfolio. The results also indicate that the marginal price of electricity must increase by four fold to mitigate CO2 emissions 15 percent below the 2002 level, suggesting Ohio will also need to consider and invest in clean coal technologies and examine the option of carbon sequestration. Hence, Ohio's energy strategy should include a mix of domestic renewable energy options, energy efficiency, energy conservation, clean coal technology, and carbon sequestration options. It would seem prudent for Ohio to become proactive in reducing CO2 emissions so that it will be ready to deal with any future federal mandates, otherwise the consequences could be detrimental to the state's economy.

  4. The Cost of Saving Electricity Through Energy Efficiency Programs Funded by Utility Customers: 2009–2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffman, Ian M.; Goldman, Charles A.; Murphy, Sean

    The average cost to utilities to save a kilowatt-hour (kWh) in the United States is 2.5 cents, according to the most comprehensive assessment to date of the cost performance of energy efficiency programs funded by electricity customers. These costs are similar to those documented earlier. Cost-effective efficiency programs help ensure electricity system reliability at the most affordable cost as part of utility planning and implementation activities for resource adequacy. Building on prior studies, Berkeley Lab analyzed the cost performance of 8,790 electricity efficiency programs between 2009 and 2015 for 116 investor-owned utilities and other program administrators in 41 states. Themore » Berkeley Lab database includes programs representing about three-quarters of total spending on electricity efficiency programs in the United States.« less

  5. Fiber in the Local Loop: The Role of Electric Utilities

    NASA Astrophysics Data System (ADS)

    Meehan, Charles M.

    1990-01-01

    Electric utilities are beginning to make heavy use of fiber for a number of applications beyond transmission of voice and data among operating centers and plant facilities which employed fiber on the electric transmission systems. These additional uses include load management and automatic meter reading. Thus, utilities are beginning to place fiber on the electric distribution systems which, in many cases covers the same customer base as the "local loop". This shift to fiber on the distribution system is due to the advantages offered by fiber and because of congestion in the radio bands used for load management. This shift to fiber has been facilitated by a regulatory policy permitting utilities to lease reserve capacity on their fiber systems on an unregulated basis. This, in turn, has interested electric utilities in building fiber to their residential and commercial customers for voice, data and video. This will also provide for sophisticated load management systems and, possibly, generation of revenue.

  6. Powertrain system for a hybrid electric vehicle

    DOEpatents

    Reed, Jr., Richard G.; Boberg, Evan S.; Lawrie, Robert E.; Castaing, Francois J.

    1999-08-31

    A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration.

  7. Powertrain system for a hybrid electric vehicle

    DOEpatents

    Reed, R.G. Jr.; Boberg, E.S.; Lawrie, R.E.; Castaing, F.J.

    1999-08-31

    A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration. 34 figs.

  8. Cleaning High-Voltage Equipment With Corncob Grit

    NASA Technical Reports Server (NTRS)

    Caveness, C.

    1986-01-01

    High electrical resistance of particles makes power shutdown unnecessary. New, inexpensive method of cleaning high-voltage electrical equipment uses plentiful agricultural product - corncob grit. Method removes dirt and debris from transformers, circuit breakers, and similar equipment. Suitable for utilities, large utility customers, and electrical-maintenance services.

  9. Walking in a rotating space station, an electromyographic and kinematic study

    NASA Technical Reports Server (NTRS)

    Harris, R. L.

    1975-01-01

    Biomechanics were studied of locomotion in a rotating environment like that of a space station at various gravity levels. Comparisons were made of the walking gait patterns and the amplitudes of various leg muscle electrical outputs at different gravity levels. The results of these tests are applicable to planning future space missions by providing a part of the information that will be needed to determine the type of vehicle and the gravity level to be provided for the astronauts if it is decided that artificial gravity is to be utilized.

  10. Smart Electronic Textiles.

    PubMed

    Weng, Wei; Chen, Peining; He, Sisi; Sun, Xuemei; Peng, Huisheng

    2016-05-17

    This Review describes the state-of-the-art of wearable electronics (smart textiles). The unique and promising advantages of smart electronic textiles are highlighted by comparing them with the conventional planar counterparts. The main kinds of smart electronic textiles based on different functionalities, namely the generation, storage, and utilization of electricity, are then discussed with an emphasis on the use of functional materials. The remaining challenges are summarized together with important new directions to provide some useful clues for the future development of smart electronic textiles. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Renewable Electricity Futures (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hand, M. M.

    2012-08-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in a webinar given by the California Energy Commission.

  12. NOX EMISSION CONTROL OPTIONS FOR COAL-FIRED ELECTRIC UTILITY BOILERS

    EPA Science Inventory

    The paper reviews NOx control options for coal-fired electric utility boilers. (NOTE: Acid Rain NOx regulations, the Ozone Transport Commission's NOx Budget Program, revision of the New Source Performance Standards (NSPS) for NOx emissions from utility sources, and Ozone Transpor...

  13. Educational application for visualization and analysis of electric field strength in multiple electrode electroporation.

    PubMed

    Mahnič-Kalamiza, Samo; Kotnik, Tadej; Miklavčič, Damijan

    2012-10-30

    Electrochemotherapy is a local treatment that utilizes electric pulses in order to achieve local increase in cytotoxicity of some anticancer drugs. The success of this treatment is highly dependent on parameters such as tissue electrical properties, applied voltages and spatial relations in placement of electrodes that are used to establish a cell-permeabilizing electric field in target tissue. Non-thermal irreversible electroporation techniques for ablation of tissue depend similarly on these parameters. In the treatment planning stage, if oversimplified approximations for evaluation of electric field are used, such as U/d (voltage-to-distance ratio), sufficient field strength may not be reached within the entire target (tumor) area, potentially resulting in treatment failure. In order to provide an aid in education of medical personnel performing electrochemotherapy and non-thermal irreversible electroporation for tissue ablation, assist in visualizing the electric field in needle electrode electroporation and the effects of changes in electrode placement, an application has been developed both as a desktop- and a web-based solution. It enables users to position up to twelve electrodes in a plane of adjustable dimensions representing a two-dimensional slice of tissue. By means of manipulation of electrode placement, i.e. repositioning, and the changes in electrical parameters, the users interact with the system and observe the resulting electrical field strength established by the inserted electrodes in real time. The field strength is calculated and visualized online and instantaneously reflects the desired changes, dramatically improving the user friendliness and educational value, especially compared to approaches utilizing general-purpose numerical modeling software, such as finite element modeling packages. In this paper we outline the need and offer a solution in medical education in the field of electroporation-based treatments, e.g. primarily electrochemotherapy and non-thermal irreversible tissue ablation. We present the background, the means of implementation and the fully functional application, which is the first of its kind. While the initial feedback from students that have evaluated this application as part of an e-learning course is positive, a formal study is planned to thoroughly evaluate the current version and identify possible future improvements and modifications.

  14. Energy efficiency design strategies for buildings with grid-connected photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Yimprayoon, Chanikarn

    The building sector in the United States represents more than 40% of the nation's energy consumption. Energy efficiency design strategies and renewable energy are keys to reduce building energy demand. Grid-connected photovoltaic (PV) systems installed on buildings have been the fastest growing market in the PV industry. This growth poses challenges for buildings qualified to serve in this market sector. Electricity produced from solar energy is intermittent. Matching building electricity demand with PV output can increase PV system efficiency. Through experimental methods and case studies, computer simulations were used to investigate the priorities of energy efficiency design strategies that decreased electricity demand while producing load profiles matching with unique output profiles from PV. Three building types (residential, commercial, and industrial) of varying sizes and use patterns located in 16 climate zones were modeled according to ASHRAE 90.1 requirements. Buildings were analyzed individually and as a group. Complying with ASHRAE energy standards can reduce annual electricity consumption at least 13%. With energy efficiency design strategies, the reduction could reach up to 65%, making it possible for PV systems to meet reduced demands in residential and industrial buildings. The peak electricity demand reduction could be up to 71% with integration of strategies and PV. Reducing lighting power density was the best single strategy with high overall performances. Combined strategies such as zero energy building are also recommended. Electricity consumption reductions are the sum of the reductions from strategies and PV output. However, peak electricity reductions were less than their sum because they reduced peak at different times. The potential of grid stress reduction is significant. Investment incentives from government and utilities are necessary. The PV system sizes on net metering interconnection should not be limited by legislation existing in some states. Data from this study provides insight of impacts from applying energy efficiency design strategies in buildings with grid-connected PV systems. With the current transition from traditional electric grids to future smart grids, this information plus large database of various building conditions allow possible investigations needed by governments or utilities in large scale communities for implementing various measures and policies.

  15. Projecting Electricity Demand in 2050

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hostick, Donna J.; Belzer, David B.; Hadley, Stanton W.

    2014-07-01

    This paper describes the development of end-use electricity projections and load curves that were developed for the Renewable Electricity (RE) Futures Study (hereafter RE Futures), which explored the prospect of higher percentages (30% - 90%) of total electricity generation that could be supplied by renewable sources in the United States. As input to RE Futures, two projections of electricity demand were produced representing reasonable upper and lower bounds of electricity demand out to 2050. The electric sector models used in RE Futures required underlying load profiles, so RE Futures also produced load profile data in two formats: 8760 hourly datamore » for the year 2050 for the GridView model, and in 2-year increments for 17 time slices as input to the Regional Energy Deployment System (ReEDS) model. The process for developing demand projections and load profiles involved three steps: discussion regarding the scenario approach and general assumptions, literature reviews to determine readily available data, and development of the demand curves and load profiles.« less

  16. Air pollution effects due to deregulation of the electric industry

    NASA Astrophysics Data System (ADS)

    Davoodi, Khojasteh Riaz

    The Energy Policy Act of 1992 introduced the concept of open-access into the electric utility industry which allows privately-owned utilities to transmit power produced by non-utility generators and independent power producers (IPPs). In April 1996, the Federal Energy Regulatory Commission (FERC) laid down the final rules (Orders No. 888 & No. 889), which required utilities to open their transmission lines to any power producer and charge them no more than what they pay for the use of their own lines. These rules set the stage for the retail sale of electricity to industrial, commercial and residential utility customers; non-utility generators (Nugs); and power marketers. These statutory, regulatory and administrative changes create for the electric utility industry two different forces that contradict each other. The first is the concept of competition among utility companies; this places a greater emphasis on electric power generation cost control and affects generation/fuel mix selection and demand side management (DSM) activities. The second force, which is converse to the first, is that utilities are major contributors to the air pollution burden in the United States and environmental concerns are forcing them to reduce emissions of air pollutants by using more environmentally friendly fuels and implementing energy saving programs. This study evaluates the impact of deregulation within the investor owned electric utilities and how this deregulation effects air quality by investigating the trend in demand side management programs and generation/fuel mix. A survey was conducted of investor owned utilities and independent power producers. The results of the survey were analyzed by analysis of variance and regression analysis to determine the impact to Air Pollution. An air Quality Impact model was also developed in this study. This model consists of six modules: (1) demand side management and (2) consumption of coal, (3) gas, (4) renewable, (5) oil and (6) nuclear sources until the year 2005. Each module was analyzed separately and the result from each module was transferred into the Air Quality Impact model. The model assesses the changes in electricity generation within each module due to deregulation and these changes can then be correlated to the emission of air pollutants in the United States.

  17. Fossil fuels in a sustainable energy future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bechtel, T.F.

    1995-12-01

    The coal industry in the United States has become a world leader in safety, productivity, and environmental protection in the mining of coal. The {open_quotes}pick-and-shovel{close_quotes} miner with mangled limbs and black lung disease has been replaced by the highly skilled technicians that lead the world in tons per man-hour. The gob piles, polluted streams, and scared land are a thing of the past. The complementary efforts of the DOE and EPRI-funded programs in coal utilization R&D and the Clean Coal Technology Program commercial demonstrations, have positioned the power generation industry to utilize coal in a way that doesn`t pollute themore » air or water, keeps electrical power costs low, and avoids the mountains of waste material. This paper reviews the potential for advanced coal utilization technologies in new power generation applications as well as the repowering of existing plants to increase their output, raise their efficiency, and reduce pollution. It demonstrates the potential for these advanced coal-fueled plants to play a complementary role in future planning with the natural gas and oil fired units currently favored in the market place. The status of the US program to demonstrate these technologies at commercial scale is reviewed in some detail.« less

  18. Would-Be Solar Electric Homeowners Sought For Project

    Science.gov Websites

    photovoltaic power systems connected to local utility grids. A grid-tied rooftop photovoltaic system consists . Excess electricity may be sold back to the utility. At night, or when additional power is needed, the utilities, will assess the market potential and practicality of home photovoltaic systems. The utilities

  19. Lawmakers vie to let utilities onto the info highway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burkhart, L.A.

    1994-03-15

    Capitol Hill is alive with talk of the information superhighway and the need to amend the antiquated Communications Act of 1936. Electric and gas utilities hope that whatever bill is passed will allow them to provide telecommunications services and take part in the communication revolution. After all, the Clinton Administration's white paper on the issue advocates following a policy that would allow energy utilities to provide telephone services. Rep. Boucher has become a chief advocate of allowing electric utilities to compete in the cable television and telephone industries. Under the Public Utility Holding Company Act (PUHCA), electric utility holding companiesmore » whose operations cross state lines are prohibited from offering telecommunications services. Boucher's measure would amend PUHCA by removing those restrictions.« less

  20. 77 FR 71478 - Notice of Rail Energy Transportation Advisory Committee Vacancies

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-30

    ... Transportation Advisory Committee for (1) a representative from a state- or municipally-owned electric utility... coal producers, five representatives from electric utilities (including at least one rural electric... car owners, car lessors, or car manufacturers. RETAC may also include up to three members with...

  1. 78 FR 64291 - Notice of Rail Energy Transportation Advisory Committee Vacancy

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-28

    ... Committee (RETAC) for a representative of an electric utility. The Board is soliciting suggestions from the... coal producers; five representatives from electric utilities (including at least one rural electric... shipping industry; and two representatives from private car owners, car lessors, or car manufacturers...

  2. Patterns of mercury dispersion from local and regional emission sources, rural Central Wisconsin, USA

    USGS Publications Warehouse

    Kolker, A.; Olson, M.L.; Krabbenhoft, D.P.; Tate, M.T.; Engle, M.A.

    2010-01-01

    Simultaneous real-time changes in mercury (Hg) speciation ?????" reactive gaseous Hg (RGM), elemental Hg (Hg??), and fine particulate Hg (Hg-PM2.5), were determined from June to November 2007, in ambient air at three locations in rural Central Wisconsin. Known Hg emission sources within the airshed of the monitoring sites include: 1) a 1114 megawatt (MW) coal-fired electric utility generating station; 2) a Hg-bed chlor-alkali plant; and 3) a smaller (465 MW) coal-burning electric utility. Monitoring sites, showing sporadic elevation of RGM, Hg?? and Hg-PM 2.5, were positioned at distances of 25, 50 and 100 km northward of the larger electric utility. A series of RGM events were recorded at each site. The largest, on 23 September, occurred under prevailing southerly winds, with a maximum RGM value (56.8 pg m-3) measured at the 100 km site, and corresponding elevated SO2 (10.41 ppbv; measured at 50 km site). The finding that RGM, Hg??, and Hg-PM2.5 are not always highest at the 25 km site, closest to the large generating station, contradicts the idea that RGM decreases with distance from a large point source. This may be explained if: 1) the 100 km site was influenced by emissions from the chlor-alkali facility or by RGM from regional urban sources; 2) the emission stack height of the larger power plant promoted plume transport at an elevation where the Hg is carried over the closest site; or 3) RGM was being generated in the plume through oxidation of Hg??. Operational changes at each emitter since 2007 should reduce their Hg output, potentially allowing quantification of the environmental benefit in future studies.

  3. Gross domestic product estimation based on electricity utilization by artificial neural network

    NASA Astrophysics Data System (ADS)

    Stevanović, Mirjana; Vujičić, Slađana; Gajić, Aleksandar M.

    2018-01-01

    The main goal of the paper was to estimate gross domestic product (GDP) based on electricity estimation by artificial neural network (ANN). The electricity utilization was analyzed based on different sources like renewable, coal and nuclear sources. The ANN network was trained with two training algorithms namely extreme learning method and back-propagation algorithm in order to produce the best prediction results of the GDP. According to the results it can be concluded that the ANN model with extreme learning method could produce the acceptable prediction of the GDP based on the electricity utilization.

  4. Renewable Electricity Futures (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mai, T.

    2012-08-01

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in a Power Systems Engineering Research Center webinar on September 4, 2012.

  5. Renewable Electricity Futures (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hand, M.; Mai, T.

    2012-08-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in an Union of Concerned Scientists webinar on June 12, 2012.

  6. Potential benefits from a successful solar thermal program

    NASA Technical Reports Server (NTRS)

    Terasawa, K. L.; Gates, W. R.

    1982-01-01

    Solar energy systems were investigated which complement nuclear and coal technologies as a means of reducing the U.S. dependence on imported petroleum. Solar Thermal Energy Systems (STES) represents an important category of solar energy technologies. STES can be utilized in a broad range of applications servicing a variety of economic sectors, and they can be deployed in both near-term and long-term markets. The net present value of the energy cost savings attributable to electric utility and IPH applications of STES were estimated for a variety of future energy cost scenarios and levels of R&D success. This analysis indicated that the expected net benefits of developing an STES option are significantly greater than the expected costs of completing the required R&D. In addition, transportable fuels and chemical feedstocks represent a substantial future potential market for STES. Due to the basic nature of this R&D activity, however, it is currently impossible to estimate the value of STES in these markets. Despite this fact, private investment in STES R&D is not anticipated due to the high level of uncertainty characterizing the expected payoffs.

  7. Envisioning a Low-Cost Solar Future: Exploring the Potential Impact of Achieving the SunShot 2030 Targets for Photovoltaics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, Wesley J; Frew, Bethany A; Gagnon, Pieter J

    In the context of recent dramatic solar energy cost reductions, the U.S. Department of Energy set new levelized cost of energy goals for photovoltaics (PV) to achieve by 2030 to enable significantly greater PV adoption: $0.03/kWh for utility-scale, $0.04/kWh for commercial, and $0.05/kWh for residential PV systems. We analyze the potential impacts of achieving these 'SunShot 2030' cost targets for the contiguous United States using the Regional Energy Deployment System (ReEDS) and Distributed Generation (dGen) capacity expansion models. We consider the impacts under a wide range of future conditions. We find that PV could provide 13%-18% of U.S. electricity demandmore » in 2030 and 28%-64% of demand if the SunShot 2030 goals are achieved, with PV deployment increasing in every state. The availability of low-cost storage has the largest impact on projected deployment, followed by natural gas prices and electricity demand. For comparison, PV deployed under a business-as-usual scenario could provide only 5% of generation in 2030 and 17% in 2050. We find that the high levels of PV deployment explored here lead to lower electricity prices and system costs, lower carbon dioxide emissions, lower water consumption, increased renewable energy curtailment, and increased storage deployment compared with the business-as-usual scenario.« less

  8. Transportation Energy Futures Series: Alternative Fuel Infrastructure Expansion: Costs, Resources, Production Capacity, and Retail Availability for Low-Carbon Scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melaina, M. W.; Heath, G.; Sandor, D.

    2013-04-01

    Achieving the Department of Energy target of an 80% reduction in greenhouse gas emissions by 2050 depends on transportation-related strategies combining technology innovation, market adoption, and changes in consumer behavior. This study examines expanding low-carbon transportation fuel infrastructure to achieve deep GHG emissions reductions, with an emphasis on fuel production facilities and retail components serving light-duty vehicles. Three distinct low-carbon fuel supply scenarios are examined: Portfolio: Successful deployment of a range of advanced vehicle and fuel technologies; Combustion: Market dominance by hybridized internal combustion engine vehicles fueled by advanced biofuels and natural gas; Electrification: Market dominance by electric drive vehiclesmore » in the LDV sector, including battery electric, plug-in hybrid, and fuel cell vehicles, that are fueled by low-carbon electricity and hydrogen. A range of possible low-carbon fuel demand outcomes are explored in terms of the scale and scope of infrastructure expansion requirements and evaluated based on fuel costs, energy resource utilization, fuel production infrastructure expansion, and retail infrastructure expansion for LDVs. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored transportation-related strategies for abating GHGs and reducing petroleum dependence.« less

  9. Evaluation of logistic and economic impacts of hybrid vehicle propulsion/microgrid concepts: Demonstration of LOCSS applied to HE HMMWV in future unit of action

    NASA Astrophysics Data System (ADS)

    Farrell, Michael; Tiberi, Lisa; Burns, Joseph; Udvare, Thomas B.

    2006-05-01

    Computer models have been developed and used to predict the performance of vehicles equipped with advanced fuel and power train technologies such as hybrid electric or fuel cells. However, simulations that describe the interaction of the vehicle with the rest of the vehicle fleet and infrastructure are just emerging. This paper documents the results of an experiment to demonstrate the utility of these types of simulations. The experiment examined the business case of fielding hybrid electric, high-mobility multipurpose wheeled vehicles (HE HMMWVs) in a future Army organization. The hypothesis was that fielding HE vehicles would significantly reduce fuel consumption due to the economy offered by the HE technology and reducing the number of generators as a result of using the vehicles to generate electrical power. The Logistical and Combat Systems Simulation (LOCSS) was used to estimate differences in fuel consumption and associated equipment during a 72-hour operation with and without HE HMMWVs. There was a 25 percent reduction in fuel consumption over the systems examined. However, due to the relatively low density of the HE vehicles in the organization, the total difference in fuel consumption was not operationally significant; and the savings in fuel costs did not overcome the additional procurement costs over a twenty-year life cycle.

  10. Uranium, its impact on the national and global energy mix; and its history, distribution, production, nuclear fuel-cycle, future, and relation to the environment

    USGS Publications Warehouse

    Finch, Warren Irvin

    1997-01-01

    The many aspects of uranium, a heavy radioactive metal used to generate electricity throughout the world, are briefly described in relatively simple terms intended for the lay reader. An adequate glossary of unfamiliar terms is given. Uranium is a new source of electrical energy developed since 1950, and how we harness energy from it is explained. It competes with the organic coal, oil, and gas fuels as shown graphically. Uranium resources and production for the world are tabulated and discussed by country and for various energy regions in the United States. Locations of major uranium deposits and power reactors in the United States are mapped. The nuclear fuel-cycle of uranium for a typical light-water reactor is illustrated at the front end-beginning with its natural geologic occurrence in rocks through discovery, mining, and milling; separation of the scarce isotope U-235, its enrichment, and manufacture into fuel rods for power reactors to generate electricity-and at the back end-the reprocessing and handling of the spent fuel. Environmental concerns with the entire fuel cycle are addressed. The future of the use of uranium in new, simplified, 'passively safe' reactors for the utility industry is examined. The present resource assessment of uranium in the United States is out of date, and a new assessment could aid the domestic uranium industry.

  11. Interconnected operations services in a vertically integrated utility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffman, S.P.

    1999-11-01

    The North American electric industry has historically been composed of regulated Vertically Integrated Utilities (VIU). Vertical integration means that the same company owns generation, transmission, and distribution facilities. Regulated utilities were ensured cost recovery for all justifiable expenses. The entire industry is in the process of deregulation. The industry-wide trend is to competitive generation, while transmission and distribution remain regulated. Many variations, in both timing and structure, exist in states that have enacted deregulation and retail choice legislation. Some have combined retail choice with an ISO and power exchange; others have opted for retail choice without either. In the past,more » Interconnected Operations Services (IOS) were obtained by informal means within the same company. Generation is now being actively bought and sold as companies align their strategic direction with different sectors of the emerging electric industry. In the future, these IOS will have to be obtained by formal arrangements. The formal arrangements will need to encompass parameters including service definitions, compensation, performance measurement, and performance incentives. These formal arrangements are presently taking different forms in the industry depending on the stage of deregulation in each area, and on the particular agreements made by each Control Area. This paper describes how VIUs obtained and dispatched the IOS needed for reliability, and what challenges will be faced with respect to these services.« less

  12. MENU OF NOX EMISSION CONTROL OPTIONS FOR COAL-FIRED ELECTRIC UTILITY BOILERS

    EPA Science Inventory

    The paper reviews NOx control options for coal-fired electric utility boilers. (NOTE: Acid Rain NOx regulations, the Ozone Transport Commission's NOx Budget Program, revision of the New Source Performance Standards (NSPS) for NOx emissions from utility sources, and Ozone Transpor...

  13. Electric power competition & the economic doctrine of contestable markets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owan, R.E.

    This paper addresses electric power competition and ascribes a prototypical market structure for the utility industry. The advent of {open_quotes}limited{close_quotes} competition in the electric utility industry has created interesting market challenges for incumbent companies and those eager to enter the fray. Competition is viewed as limited in the sense that not all aspects of the utility industry have been deregulated. While transmission and distribution remain protected market segments, the metamorphosis is most evident in the generation component of the utility industry. The changes have been orchestrated by favorable actions by the Federal Energy Regulatory Commission (FERC) and Public Utilities Regulatorymore » Policies Act (PURPA). Because of the industry changes, the classical view of the electric utility company as a vertical monopoly is arguable. Welfare considerations not withstanding, part of the rationale for the deregulation of power generation is that the technology and techniques are sufficiently common (i.e. not proprietary) as to allow others to provide the same product or service at competitive prices.« less

  14. Electrical generation

    NASA Astrophysics Data System (ADS)

    Although electricity is not a natural resource in the sense of coal or oil and gas, the electric utility industry is an integral part of the energy sector of the economy. Electricity is derived by converting one type of energy resource (oil, gas, coal, uranium) into a usable energy form (electricity) and thus has unique properties as a source of energy for the end user. Electrical energy, however, is not only important to New Mexico because electric utilities consume a portion of the natural gas and a large portion of coal resources extracted in the state, but also because electricity affects industrial growth in both the energy and non-energy sectors of the state's economy.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bird, L.; Brown, E.

    In the early 1990s, only a handful of utilities offered their customers a choice of purchasing electricity generated from renewable energy sources. Today, nearly 600 utilities in regulated electricity markets--or almost 20% of all utilities nationally--provide their customers a "green power" option. Because some utilities offer programs in conjunction with cooperative associations or other publicly owned power entities, the number of distinct programs totals about 125. Through these programs, more than 40 million customers spanning 34 states have the ability to purchase renewable energy to meet some portion or all of their electricity needs--or make contributions to support the developmentmore » of renewable energy resources. Typically, customers pay a premium above standard electricity rates for this service. This report presents year-end 2004 data on utility green pricing programs, and examines trends in consumer response and program implementation over time. The data in this report, which were obtained via a questionnaire distributed to utility green pricing program managers, can be used by utilities as benchmarks by which to gauge the success of their green power programs.« less

  16. 76 FR 72752 - Notice of Rail Energy Transportation Advisory Committee Vacancy

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-25

    ... Transportation Advisory Committee for a representative of a state- or municipally-owned electric utility. The... producers, 5 representatives from electric utilities (including at least 1 rural electric cooperative and 1... distributors, or biofuel feedstock growers or providers, and 2 representatives from private car owners, car...

  17. U.S. utilities' experiences with the implementation of energy efficiency programs

    NASA Astrophysics Data System (ADS)

    Goss, Courtney

    In the U.S., many electric utility companies are offering demand-side management (DSM) programs to their customers as ways to save money and energy. However, it is challenging to compare these programs between utility companies throughout the U.S. because of the variability of state energy policies. For example, some states in the U.S. have deregulated electricity markets and others do not. In addition, utility companies within a state differ depending on ownership and size. This study examines 12 utilities' experiences with DSM programs and compares the programs' annual energy savings results that the selected utilities reported to the Energy Information Administration (EIA). The 2009 EIA data suggests that DSM program effectiveness is not significantly affected by electricity market deregulation or utility ownership. However, DSM programs seem to generally be more effective when administered by utilities located in states with energy savings requirements and DSM program mandates.

  18. A review of utility issues for the integration of wind electric generators

    NASA Technical Reports Server (NTRS)

    Reddoch, T. W.; Barnes, P. R.

    1982-01-01

    A review of issues and concerns of the electric utility industry for the integration of wind electric generation is offered. The issues have been categorized in three major areas: planning, operations, and dynamic interaction. Representative studies have been chosen for each area to illustrate problems and to alleviate some concerns. The emphasis of this paper is on individual large wind turbines (WTs) and WT arrays for deployment at the bulk level in a utility system.

  19. Assessing summertime urban air conditioning consumption in a semiarid environment

    NASA Astrophysics Data System (ADS)

    Salamanca, F.; Georgescu, M.; Mahalov, A.; Moustaoui, M.; Wang, M.; Svoma, B. M.

    2013-09-01

    Evaluation of built environment energy demand is necessary in light of global projections of urban expansion. Of particular concern are rapidly expanding urban areas in environments where consumption requirements for cooling are excessive. Here, we simulate urban air conditioning (AC) electric consumption for several extreme heat events during summertime over a semiarid metropolitan area with the Weather Research and Forecasting (WRF) model coupled to a multilayer building energy scheme. Observed total load values obtained from an electric utility company were split into two parts, one linked to meteorology (i.e., AC consumption) which was compared to WRF simulations, and another to human behavior. WRF-simulated non-dimensional AC consumption profiles compared favorably to diurnal observations in terms of both amplitude and timing. The hourly ratio of AC to total electricity consumption accounted for ˜53% of diurnally averaged total electric demand, ranging from ˜35% during early morning to ˜65% during evening hours. Our work highlights the importance of modeling AC electricity consumption and its role for the sustainable planning of future urban energy needs. Finally, the methodology presented in this article establishes a new energy consumption-modeling framework that can be applied to any urban environment where the use of AC systems is prevalent.

  20. Concept designs for NASA's Solar Electric Propulsion Technology Demonstration Mission

    NASA Technical Reports Server (NTRS)

    Mcguire, Melissa L.; Hack, Kurt J.; Manzella, David H.; Herman, Daniel A.

    2014-01-01

    Multiple Solar Electric Propulsion Technology Demonstration Mission were developed to assess vehicle performance and estimated mission cost. Concepts ranged from a 10,000 kilogram spacecraft capable of delivering 4000 kilogram of payload to one of the Earth Moon Lagrange points in support of future human-crewed outposts to a 180 kilogram spacecraft capable of performing an asteroid rendezvous mission after launched to a geostationary transfer orbit as a secondary payload. Low-cost and maximum Delta-V capability variants of a spacecraft concept based on utilizing a secondary payload adapter as the primary bus structure were developed as were concepts designed to be co-manifested with another spacecraft on a single launch vehicle. Each of the Solar Electric Propulsion Technology Demonstration Mission concepts developed included an estimated spacecraft cost. These data suggest estimated spacecraft costs of $200 million - $300 million if 30 kilowatt-class solar arrays and the corresponding electric propulsion system currently under development are used as the basis for sizing the mission concept regardless of launch vehicle costs. The most affordable mission concept developed based on subscale variants of the advanced solar arrays and electric propulsion technology currently under development by the NASA Space Technology Mission Directorate has an estimated cost of $50M and could provide a Delta-V capability comparable to much larger spacecraft concepts.

  1. The Characteristics of Electrical and Physical Properties of Peat Soil in Rasau Village, West Kalimantan

    NASA Astrophysics Data System (ADS)

    Aminudin, A.; Hasanah, T. R.; Iryati, M.

    2018-05-01

    The Electrical and physical properties can be used as indicators for measuring soil conditions. One of the methods developed in agricultural systems to obtain information on soil conditions is through measuring of electrical conductivity. Peat soil is one of the natural resources that exist in Indonesia. This study aims to determine the characteristics of peat soil in Rasau village, West Kalimantan. This research was conducted by the properties of electrical conductivity and water content using 5TE Water Contents and EC Sensor equipment, but also to know the change of physical nature of peat soil covering peat soil and peat type. The results showed that the electrical conductivity value of 1-4 samples was 0.02 -0.29 dS/m and the volume water content value (VWC) was 0.255-0.548 m3/m3 and the physical characteristics obtained were peat colour brown to dark brown that allegedly the soil still has a very high content of organic material derived from weathering plants and there are discovery of wood chips, wood powder and leaf powder on the ground. Knowing the information is expected to identify the land needs to be developed to be considered for future peat soil utilization.

  2. Using Drained Spacecraft Propellant Tanks for Habitation

    NASA Technical Reports Server (NTRS)

    Thomas, Andrew S. W.

    2009-01-01

    A document proposes that future spacecraft for planetary and space exploration be designed to enable reuse of drained propellant tanks for occupancy by humans. This proposal would enable utilization of volume and mass that would otherwise be unavailable and, in some cases, discarded. Such utilization could enable reductions in cost, initial launch mass, and number of launches needed to build up a habitable outpost in orbit about, or on the surface of, a planet or moon. According to the proposal, the large propellant tanks of a spacecraft would be configured to enable crews to gain access to their interiors. The spacecraft would incorporate hatchways, between a tank and the crew volume, that would remain sealed while the tank contained propellant and could be opened after the tank was purged by venting to outer space and then refilled with air. The interior of the tank would be pre-fitted with some habitation fixtures that were compatible with the propellant environment. Electrical feed-throughs, used originally for gauging propellants, could be reused to supply electric power to equipment installed in the newly occupied space. After a small amount of work, the tank would be ready for long-term use as a habitation module.

  3. Towards smart energy systems: application of kernel machine regression for medium term electricity load forecasting.

    PubMed

    Alamaniotis, Miltiadis; Bargiotas, Dimitrios; Tsoukalas, Lefteri H

    2016-01-01

    Integration of energy systems with information technologies has facilitated the realization of smart energy systems that utilize information to optimize system operation. To that end, crucial in optimizing energy system operation is the accurate, ahead-of-time forecasting of load demand. In particular, load forecasting allows planning of system expansion, and decision making for enhancing system safety and reliability. In this paper, the application of two types of kernel machines for medium term load forecasting (MTLF) is presented and their performance is recorded based on a set of historical electricity load demand data. The two kernel machine models and more specifically Gaussian process regression (GPR) and relevance vector regression (RVR) are utilized for making predictions over future load demand. Both models, i.e., GPR and RVR, are equipped with a Gaussian kernel and are tested on daily predictions for a 30-day-ahead horizon taken from the New England Area. Furthermore, their performance is compared to the ARMA(2,2) model with respect to mean average percentage error and squared correlation coefficient. Results demonstrate the superiority of RVR over the other forecasting models in performing MTLF.

  4. Getting ready for petaflop capacities and beyond: a utility perspective

    NASA Astrophysics Data System (ADS)

    Hamelin, J. F.; Berthou, J. Y.

    2008-07-01

    Why should EDF, the leading producer and marketer of electricity in Europe, start adding teraflops to its terawatt-hours and become involved in high-performance computing (HPC)? In this paper we answer this question through examples of major opportunities that HPC brings to our business today and, we hope well into the future of petaflop and exaflop computing. Five cases are presented dealing with nondestructive testing, nuclear fuel management, mechanical behavior of nuclear fuel assemblies, water management, and energy management. For each case we show the benefits brought by HPC, describe the current level of numerical simulation performance, and discuss the perspectives for future steps. We also present the general background that explains why EDF is moving to this technology and briefly comment on the development of user-oriented simulation platforms.

  5. Business Models and Regulation | Distributed Generation Interconnection

    Science.gov Websites

    @nrel.gov 303-384-4641 Utilities and regulators are responding to the growth of distributed generation with new business models and approaches. The growing role of distributed resources in the electricity Electric Cooperative, Groton Utilities Distributed Solar for Small Utilities A recording of the webinar is

  6. Wearable Electricity Generators Fabricated Utilizing Transparent Electronic Textiles Based on Polyester/Ag Nanowires/Graphene Core-Shell Nanocomposites.

    PubMed

    Wu, Chaoxing; Kim, Tae Whan; Li, Fushan; Guo, Tailiang

    2016-07-26

    The technological realization of wearable triboelectric generators is attractive because of their promising applications in wearable self-powered intelligent systems. However, the low electrical conductivity, the low electrical stability, and the low compatibility of current electronic textiles (e-textiles) and clothing restrict the comfortable and aesthetic integration of wearable generators into human clothing. Here, we present high-performance, transparent, smart e-textiles that employ commercial textiles coated with silver nanowire/graphene sheets fabricated by using a scalable, environmentally friendly, full-solution process. The smart e-textiles show superb and stable conduction of below 20 Ω/square as well as excellent flexibility, stretchability, foldability, and washability. In addition, wearable electricity-generating textiles, in which the e-textiles act as electrodes as well as wearable substrates, are presented. Because of the high compatibility of smart e-textiles and clothing, the electricity-generating textiles can be easily integrated into a glove to harvest the mechanical energy induced by the motion of the fingers. The effective output power generated by a single generator due to that motion reached as high as 7 nW/cm(2). The successful demonstration of the electricity-generating glove suggests a promising future for polyester/Ag nanowire/graphene core-shell nanocomposite-based smart e-textiles for real wearable electronic systems and self-powered clothing.

  7. Thermal and energy battery management optimization in electric vehicles using Pontryagin's maximum principle

    NASA Astrophysics Data System (ADS)

    Bauer, Sebastian; Suchaneck, Andre; Puente León, Fernando

    2014-01-01

    Depending on the actual battery temperature, electrical power demands in general have a varying impact on the life span of a battery. As electrical energy provided by the battery is needed to temper it, the question arises at which temperature which amount of energy optimally should be utilized for tempering. Therefore, the objective function that has to be optimized contains both the goal to maximize life expectancy and to minimize the amount of energy used for obtaining the first goal. In this paper, Pontryagin's maximum principle is used to derive a causal control strategy from such an objective function. The derivation of the causal strategy includes the determination of major factors that rule the optimal solution calculated with the maximum principle. The optimization is calculated offline on a desktop computer for all possible vehicle parameters and major factors. For the practical implementation in the vehicle, it is sufficient to have the values of the major factors determined only roughly in advance and the offline calculation results available. This feature sidesteps the drawback of several optimization strategies that require the exact knowledge of the future power demand. The resulting strategy's application is not limited to batteries in electric vehicles.

  8. Renewable Electricity Futures Study - Volume One

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hand, Maureen; Mai, Treui; Baldwin, Sam

    Renewable Electricity Futures Study - Volume One. This is part of a series of four volumes describing exploring a high-penetration renewable electricity future for the United States of America. This data set is provides data for the entire volume one document and includes all data for the charts and graphs included in the document.

  9. Tacit Knowledge Capture and the Brain-Drain at Electrical Utilities

    NASA Astrophysics Data System (ADS)

    Perjanik, Nicholas Steven

    As a consequence of an aging workforce, electric utilities are at risk of losing their most experienced and knowledgeable electrical engineers. In this research, the problem was a lack of understanding of what electric utilities were doing to capture the tacit knowledge or know-how of these engineers. The purpose of this qualitative research study was to explore the tacit knowledge capture strategies currently used in the industry by conducting a case study of 7 U.S. electrical utilities that have demonstrated an industry commitment to improving operational standards. The research question addressed the implemented strategies to capture the tacit knowledge of retiring electrical engineers and technical personnel. The research methodology involved a qualitative embedded case study. The theories used in this study included knowledge creation theory, resource-based theory, and organizational learning theory. Data were collected through one time interviews of a senior electrical engineer or technician within each utility and a workforce planning or training professional within 2 of the 7 utilities. The analysis included the use of triangulation and content analysis strategies. Ten tacit knowledge capture strategies were identified: (a) formal and informal on-boarding mentorship and apprenticeship programs, (b) formal and informal off-boarding mentorship programs, (c) formal and informal training programs, (d) using lessons learned during training sessions, (e) communities of practice, (f) technology enabled tools, (g) storytelling, (h) exit interviews, (i) rehiring of retirees as consultants, and (j) knowledge risk assessments. This research contributes to social change by offering strategies to capture the know-how needed to ensure operational continuity in the delivery of safe, reliable, and sustainable power.

  10. NREL's EVI-Pro Lite Tool Paves the Way for Future Electric Vehicle

    Science.gov Websites

    Electric Vehicle Infrastructure Planning NREL's EVI-Pro Lite Tool Paves the Way for Future Electric Vehicle electric vehicle charging station To assist state and local governments anticipating this type of growth in simplified version of the Electric Vehicle Infrastructure Projection Tool (EVI-Pro) model. Combining a sleek

  11. 77 FR 23399 - National Emission Standards for Hazardous Air Pollutants From Coal- and Oil-Fired Electric...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-19

    ... Coal- and Oil-Fired Electric Utility Steam Generating Units and Standards of Performance for Fossil... Units and Standards of Performance for Fossil-Fuel-Fired Electric Utility, Industrial-Commercial... before March 1, 2005, means a 24-hour period during which fossil fuel is combusted in a steam-generating...

  12. Project demonstration of wind-turbine electricity: Interconnecting a northern Michigan fruit farm with a major utility

    NASA Astrophysics Data System (ADS)

    Amon, D. M.

    Progress is reviewed in a project to test the economic feasibility of wind turbine technology for generating electricity. The use of wind generating electricity on a commercial fruit farm interconnecting a commercial fruit farm with a major utility to sell power are the find project goals.

  13. 76 FR 23768 - National Emission Standards for Hazardous Air Pollutants From Coal- and Oil-Fired Electric...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-28

    ...-Fired Electric Utility Steam Generating Units and Standards of Performance for Fossil-Fuel-Fired... Units and Standards of Performance for Fossil-Fuel-Fired Electric Utility, Industrial-Commercial... copy form. The hearing schedules, including lists of speakers, will be posted on EPA's Web Sites http...

  14. 76 FR 21735 - Solutions for Utilities, Inc.v. Pacific Gas and Electric Company, Southern California Edison...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-18

    ..., 2011, pursuant to section 210(h)(2) of the Public Utility Regulatory Policies Act of 1978 (PURPA),\\1... (Commission) enforce the requirements of PURPA against Pacific Gas and Electric Company (PG&E), Southern... interstate wholesale sales of electricity and the Commission's Regulations implementing PURPA, in addition to...

  15. Electric vehicles look promising for use in utility fleets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minner, D.

    1984-06-01

    The Electric Vehicle Development Corp. (EVDV) expects EV fleets to find a market for urban driving, especially among service fleets, once mass production begins. Electric utilities joined to form EVDC in order to keep abreast of research developments and the results of demonstrations taking place in several cities, where driver acceptance in utility demonstration programs is high. Major auto makers still need persuasion to develop a commercial prototype. Marketing will focus on controlled fleets having the management skills and the motivation to make the program work.

  16. Electric utility of the year for 1984: Potomac Electric Power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1984-11-01

    High performance, efficiency improvements, a modest construction program, a clear balance sheet, and an effort to expend power plant life were among the qualities that earned Potomac Electric Power (PEPCO) the title of 1984 Utility of the Year. Other key elements in the utility's selection were its strategy for purchasing power, a load management plan, diversified investments into subsidiary businesses, community concern that considers the aesthetics of transmission facilities, and its interest in personnel development, especially among minorities. 3 figures.

  17. Renewable Electricity Futures for the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mai, Trieu; Hand, Maureen; Baldwin, Sam F.

    2014-04-14

    This paper highlights the key results from the Renewable Electricity (RE) Futures Study. It is a detailed consideration of renewable electricity in the United States. The paper focuses on technical issues related to the operability of the U. S. electricity grid and provides initial answers to important questions about the integration of high penetrations of renewable electricity technologies from a national perspective. The results indicate that the future U. S. electricity system that is largely powered by renewable sources is possible and the further work is warranted to investigate this clean generation pathway. The central conclusion of the analysis ismore » that renewable electricity generation from technologies that are commercially available today, in combination with a more flexible electric system, is more than adequate to supply 80% of the total U. S. electricity generation in 2050 while meeting electricity demand on an hourly basis in every region of the United States.« less

  18. Energy Regulation Effects on Critical Infrastructure Protection

    DTIC Science & Technology

    2008-12-01

    Holding Company Act (1935) PURPA Public Utility Regulatory Policies Act (1978) QF Qualifying Facility RTO Regional Transmission Organization SEC...1935 (PUHCA) and the Federal Power Act; the Public Utility Regulatory Policies Act of 1978 ( PURPA ); and the Energy Policy Acts of 1992 (EPAct 1992) and...Congress passed the Public Utility Regulatory Policies Act ( PURPA ) in 1978 which required electric utilities to buy electricity from other generating

  19. Energy Requirements by the Water Sector in the Southwestern US: Past, Present, and Future

    NASA Astrophysics Data System (ADS)

    Averyt, K.; Yates, D. N.; Meldrum, J.

    2014-12-01

    Climate, energy, and water are fundamentally linked such that shifts in one sector have cascading impacts on the others. Consideration of the integrated system is necessary to fully understand the individual risk profile of each sector. In defining vulnerabilities and potential adaptations, the policy and regulatory environment must be considered alongside the biological and physical systems. Take, for example, the Southwestern U.S., a naturally arid system, where water availability is declining as a consequence of climate change and population growth. Adaptations by the water sector to convey, store, and develop new water sources (e.g. desalination, groundwater pumping, water-reuse) are strategies designed to enhance sustainability of the sector. But, the energy requirements embedded in these management techniques pose challenges to electric utilities. West wide, approximately 20% of total electricity generation goes toward supplying and heating water. If future investments made by the water sector to deal with changing supply and demand regimes continue to follow current trends, the dependence of water on energy availability will grow, meaning that the water supply will be increasingly reliant on the electricity system. Here, we use the example of long-term aridity and the recent drought in the Western US to illustrate the tradeoffs and challenges inherent at the nexus between energy and water. We present long-term trends in the energy intensity of water supplies in the Southwestern US, with a specific focus on groundwater systems. Projected energy requirements for proposed and future conveyance systems are discussed. The potential impacts of reduced flows on the Colorado River on the energy demands for groundwater pumping in the Lower Colorado River Basin are highlighted.

  20. Harvest and utilization of chemical energy in wastes by microbial fuel cells.

    PubMed

    Sun, Min; Zhai, Lin-Feng; Li, Wen-Wei; Yu, Han-Qing

    2016-05-21

    Organic wastes are now increasingly viewed as a resource of energy that can be harvested by suitable biotechnologies. One promising technology is microbial fuel cells (MFC), which can generate electricity from the degradation of organic pollutants. While the environmental benefits of MFC in waste treatment have been recognized, their potential as an energy producer is not fully understood. Although progresses in material and engineering have greatly improved the power output from MFC, how to efficiently utilize the MFC's energy in real-world scenario remains a challenge. In this review, fundamental understandings on the energy-generating capacity of MFC from real waste treatment are provided and the challenges and opportunities are discussed. The limiting factors restricting the energy output and impairing the long-term reliability of MFC are also analyzed. Several energy storage and in situ utilization strategies for the management of MFC's energy are proposed, and future research needs for real-world application of this approach are explored.

  1. Refractory metal alloys and composites for space nuclear power systems

    NASA Technical Reports Server (NTRS)

    Titran, Robert H.; Stephens, Joseph R.; Petrasek, Donald W.

    1988-01-01

    Space power requirements for future NASA and other U.S. missions will range from a few kilowatts to megawatts of electricity. Maximum efficiency is a key goal of any power system in order to minimize weight and size so that the Space Shuttle may be used a minimum number of times to put the power supply into orbit. Nuclear power has been identified as the primary power source to meet these high levels of electrical demand. One method to achieve maximum efficiency is to operate the power supply, energy conservation system, and related components at relatively high temperatures. For systems now in the planning stages, design temperatures range from 1300 K for the immediate future to as high as 1700 K for the advanced systems. NASA Lewis Research Center has undertaken a research program on advanced technology of refractory metal alloys and composites that will provide baseline information for space power systems in the 1900's and the 21st century. Special emphasis is focused on the refractory metal alloys of niobium and on the refractory metal composites which utilize tungsten alloy wires for reinforcement. Basic research on the creep and creep-rupture properties of wires, matrices, and composites are discussed.

  2. Quiet Clean Short Haul Experimental Engine

    NASA Image and Video Library

    1973-02-21

    Program manager Carl Ciepluch poses with a model of the Quiet Clean Short Haul Experimental Engine (QCSEE) conceived by the National Aeronautics and Space Administration (NASA) Lewis Research Center. The QCSEE engine was designed to power future short-distance transport aircraft without generating significant levels of noise or pollution and without hindering performance. The engines were designed to be utilized on aircraft operating from small airports with short runways. Lewis researchers investigated two powered-lift designs and an array of new technologies to deal with the shorter runways. Lewis contracted General Electric to design the two QCSEE engines—one with over-the-wing power-lift and one with an under-the-wing design. A scale model of the over-the-wing engine was tested in the Full Scale Tunnel at the Langley Research Center in 1975 and 1976. Lewis researchers investigated both versions in a specially-designed test stand, the Engine Noise Test Facility, on the hangar apron. The QCSEE engines met the goals set out by the NASA researchers. The aircraft industry, however, never built the short-distance transport aircraft for which the engines were intended. Different technological elements of the engine, however, were applied to some future General Electric engines.

  3. Unraveling the Importance of Climate Change Resilience in Planning the Future Sustainable Energy System

    NASA Astrophysics Data System (ADS)

    Tarroja, B.; AghaKouchak, A.; Forrest, K.; Chiang, F.; Samuelsen, S.

    2017-12-01

    In response to concerns regarding the environmental impacts of the current energy resource mix, significant research efforts have been focused on determining the future energy resource mix to meet emissions reduction and environmental sustainability goals. Many of these studies focus on various constraints such as costs, grid operability requirements, and environmental performance, and develop different plans for the rollout of energy resources between the present and future years. One aspect that has not yet been systematically taken into account in these planning studies, however, is the potential impacts that changing climates may have on the availability and performance of key energy resources that compose these plans. This presentation will focus on a case study for California which analyzes the impacts of climate change on the greenhouse gas emissions and renewable resource utilization of an energy resource plan developed by Energy Environmental Economics for meeting the state's year 2050 greenhouse gas goal of 80% reduction in emissions by the year 2050. Specifically, climate change impacts on three aspects of the energy system are investigated: 1) changes in hydropower generation due to altered precipitation, streamflow and runoff patterns, 2) changes in the availability of solar thermal and geothermal power plant capacity due to shifting water availability, and 3) changes in the residential and commercial electric building loads due to increased temperatures. These impacts were discovered to cause the proposed resource plan to deviate from meeting its emissions target by up to 5.9 MMT CO2e/yr and exhibit a reduction in renewable resource penetration of up to 3.1% of total electric energy. The impacts of climate change on energy system performance were found to be mitigated by increasing the flexibility of the energy system through increased storage and electric load dispatchability. Overall, this study highlights the importance of taking into account and building resilience against potential climate change impacts on the energy system in planning the future energy resource mix.

  4. Three empirical essays on energy and labor economics

    NASA Astrophysics Data System (ADS)

    Chow, Melissa

    This dissertation analyzes the differences between private and non-private firms in two contexts. Chapters 1 and 2 examine the electricity industry in the United States and the motivation behind electric utilities' usage of demand side management programs. The first chapter focuses on load management programs, which decrease electricity demand during the peak hours of the day. It looks into the impact of a plausibly exogenous decrease in natural gas prices on the utilization and capacity of these programs. The second chapter analyzes the relationship between electricity market deregulation and electric utilities' energy efficiency activity. The third chapter investigates the impact of Chinese enterprise restructuring on employment, wage bills, and productivity. All three chapters show that different objectives due to ownership type lead to differences in firm behavior.

  5. Renewable Electricity Futures (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mai, T.

    2012-08-01

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. This presentation was presented in a Wind Powering America webinar on August 15, 2012 and is now available through the Wind Powering America website.

  6. 78 FR 38001 - Reconsideration of Certain Startup/Shutdown Issues: National Emission Standards for Hazardous Air...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-25

    ... Standards of Performance for Fossil-Fuel-Fired Electric Utility, Industrial- Commercial-Institutional, and... Utility Steam Generating Units and Standards of Performance for Fossil-Fuel-Fired Electric Utility.... Electronic files should avoid the use of special characters, any form of encryption, and be free of any...

  7. 17 CFR 250.7 - Companies deemed not to be electric or gas utility companies.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Companies deemed not to be electric or gas utility companies. 250.7 Section 250.7 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) GENERAL RULES AND REGULATIONS, PUBLIC UTILITY HOLDING COMPANY ACT OF 1935...

  8. Green Power Marketing in the United States: A Status Report (Ninth Edition)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bird, L.; Swezey, B.

    Voluntary consumer decisions to purchase electricity supplied by renewable energy sources represent a powerful market support mechanism for renewable energy development. Beginning in the early 1990s, a small number of U.S. utilities began offering ''green power'' options to their customers. Since then, these products have become more prevalent, both from traditional utilities and from marketers operating in states that have introduced competition into their retail electricity markets. Today, more than half of all U.S. consumers have an option to purchase some type of green power product from a retail electricity provider. Currently, more than 600 utilities, or about 20% ofmore » utilities nationally, offer green power programs to customers. These programs allow customers to purchase some portion of their power supply as renewable energy--almost always at a higher price--or to contribute funds for the utility to invest in renewable energy development. The term ''green pricing'' is typically used to refer to these utility programs offered in regulated or noncompetitive electricity markets. This report documents green power marketing activities and trends in the United States.« less

  9. After the Fire! Returning to Normal

    MedlinePlus

    ... department will make sure the utility services (water, electricity and gas) are safe to use. If they ... department will tell you if your utilities (water, electricity and gas) are safe to use. If not, ...

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bird, L.; Kaiser, M.

    In the early 1990s, only a handful of utilities offered their customers a choice of purchasing electricity generated from renewable energy sources. Today, more than 750 utilities--or about 25% of all utilities nationally--provide their customers a "green power" option. Through these programs, more than 70 million customers have the ability to purchase renewable energy to meet some portion or all of their electricity needs--or make contributions to support the development of renewable energy resources. Typically, customers pay a premium above standard electricity rates for this service. This report presents year-end 2006 data on utility green pricing programs, and examines trendsmore » in consumer response and program implementation over time. The data in this report, which were obtained via a questionnaire distributed to utility green pricing program managers, can be used by utilities to benchmark the success of their green power programs.« less

  11. The US space station and its electric power system

    NASA Technical Reports Server (NTRS)

    Thomas, Ronald L.

    1988-01-01

    The United States has embarked on a major development program to have a space station operating in low earth orbit by the mid-1990s. This endeavor draws on the talents of NASA and most of the aerospace firms in the U.S. Plans are being pursued to include the participation of Canada, Japan, and the European Space Agency in the space station. From the start of the program these was a focus on the utilization of the space station for science, technology, and commercial endeavors. These requirements were utilized in the design of the station and manifest themselves in: pressurized volume; crew time; power availability and level of power; external payload accommodations; microgravity levels; servicing facilities; and the ability to grow and evolve the space station to meet future needs. President Reagan directed NASA to develop a permanently manned space station in his 1984 State of the Union message. Since then the definition phase was completed and the development phase initiated. A major subsystem of the space station is its 75 kW electric power system. The electric power system has characteristics similar to those of terrestrial power systems. Routine maintenance and replacement of failed equipment must be accomplished safely and easily and in a minimum time while providing reliable power to users. Because of the very high value placed on crew time it is essential that the power system operate in an autonomous mode to minimize crew time required. The power system design must also easily accommodate growth as the power demands by users are expected to grow. An overview of the U.S. space station is provided with special emphasis on its electrical power system.

  12. Rapid Building Assessment Project

    DTIC Science & Technology

    2014-05-01

    Efficiency Buildings Hub EISA Energy Independence Security Act EPRI The Electric Power and Research Institute ESTCP Environmental Security Technology...Ordinary Least Squares PG&E Pacific Gas & Electric R&D research and development RBA Remote Building Analytics REST representational state...utilities across North America and Europe. Requiring only hourly utility electric meter data, the building type, and address, FirstFuel can produce a

  13. Organization of bulk power markets: A concept paper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kahn, E.; Stoft, S.

    The electricity industry in the US today is at a crossroads. The restructuring debate going on in most regions has made it clear that the traditional model of vertically integrated firms serving defined franchise areas and regulated by state commissions may not be the pattern for the future. The demands of large customers seeking direct access to power markets, the entry of new participants, and proposed reforms of the regulatory process all signify a momentum for fundamental change in the organization of the industry. This paper addresses electricity restructuring from the perspective of bulk power markets. The authors focus attentionmore » on the organization of electricity trade and the various ways it has been and might be conducted. Their approach concentrates on conceptual models and empirical case studies, not on specific proposals made by particular utilities or commissions. They review literature in economics and power system engineering that is relevant to the major questions. The objective is to provide conceptual background to industry participants, e.g. utility staff, regulatory staff, new entrants, who are working on specific proposals. While they formulate many questions, they do not provide definitive answers on most issues. They attempt to put the industry restructuring dialogue in a neutral setting, translating the language of economists for engineers and vice versa. Towards this end they begin with a review of the basic economic institutions in the US bulk power markets and a summary of the engineering practices that dominate trade today.« less

  14. Tritium Breeding Blanket for a Commercial Fusion Power Plant - A System Engineering Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meier, Wayne R.

    The goal of developing a new source of electric power based on fusion has been pursued for decades. If successful, future fusion power plants will help meet growing world-wide demand for electric power. A key feature and selling point for fusion is that its fuel supply is widely distributed globally and virtually inexhaustible. Current world-wide research on fusion energy is focused on the deuterium-tritium (DT for short) fusion reaction since it will be the easiest to achieve in terms of the conditions (e.g., temperature, density and confinement time of the DT fuel) required to produce net energy. Over the pastmore » decades countless studies have examined various concepts for TBBs for both magnetic fusion energy (MFE) and inertial fusion energy (IFE). At this time, the key organizations involved are government sponsored research organizations world-wide. The near-term focus of the MFE community is on the development of TBB mock-ups to be tested on the ITER tokamak currently under construction in Caderache France. TBB concepts for IFE tend to be different from MFE primarily due to significantly different operating conditions and constraints. This report focuses on longer-term commercial power plants where the key stakeholders include: electric utilities, plant owner and operator, manufacturer, regulators, utility customers, and in-plant subsystems including the heat transfer and conversion systems, fuel processing system, plant safety systems, and the monitoring control systems.« less

  15. “All talk no torque”- A novel set of metrics to quantify muscle fatigue through isometric dynamometry in Functional Electrical Stimulation (FES) muscle studies

    NASA Astrophysics Data System (ADS)

    Taylor, M. J.; Fornusek, C.; de Chazal, P.; Ruys, A. J.

    2017-10-01

    Functional Electrical Stimulation (FES) activates nerves and muscles that have been ravished and rendered paralysed by disease. As such, it is advantageous to study joint torques that arise due to electrical stimulation of muscle, to measure fatigue in an indirect, minimally-invasive way. Dynamometry is one way in which this can be achieved. In this paper, torque data is presented from an FES experiment on quadriceps, using isometric dynamometry to measure torque. A library of fatigue metrics to quantify these data are put forward. These metrics include; start and end torque peaks, percentage changes in torque over time, and maximum and minimum torque period algorithms (MTPA 1 and 2), and associated torque-time plots. It is illustrated, by example, how this novel library of metrics can model fatigue over time. Furthermore, these methods are critiqued by a qualitative assessment and compared against one another for their utility in modelling fatigue. Linear trendlines with coefficients of correlation (R 2) and qualitative descriptions of data are used to achieve this. We find that although arduous, individual peak plots yield the most relevant values upon which fatigue can be assessed. Methods to calculate peaks in data have less of a utility, offset by an order of magnitude of ˜101 in comparison with theoretically expected peak numbers. In light of this, we suggest that future methods would be well-inclined to investigate optimized form of peak analysis.

  16. Wind Energy Applications for Municipal Water Services: Opportunities, Situation Analyses, and Case Studies; Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flowers, L.; Miner-Nordstrom, L.

    2006-01-01

    As communities grow, greater demands are placed on water supplies, wastewater services, and the electricity needed to power the growing water services infrastructure. Water is also a critical resource for thermoelectric power plants. Future population growth in the United States is therefore expected to heighten competition for water resources. Many parts of the United States with increasing water stresses also have significant wind energy resources. Wind power is the fastest-growing electric generation source in the United States and is decreasing in cost to be competitive with thermoelectric generation. Wind energy can offer communities in water-stressed areas the option of economicallymore » meeting increasing energy needs without increasing demands on valuable water resources. Wind energy can also provide targeted energy production to serve critical local water-system needs. The research presented in this report describes a systematic assessment of the potential for wind power to support water utility operation, with the objective to identify promising technical applications and water utility case study opportunities. The first section describes the current situation that municipal providers face with respect to energy and water. The second section describes the progress that wind technologies have made in recent years to become a cost-effective electricity source. The third section describes the analysis employed to assess potential for wind power in support of water service providers, as well as two case studies. The report concludes with results and recommendations.« less

  17. The allowance exchange - ALEX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mangis, J.K.; Miller, C.; Nicholas, J.

    1997-12-31

    The success of market approaches to pollution control in reducing the cost of compliance with environmental regulation, has insured the inclusion of emissions trading programs in current and future regulatory programs. As these environmental trading programs multiply, (SO{sub 2}, NO{sub x}, Ozone Precursors, Wetlands, CO{sub 2} and others), utility companies will need a central location to buy, sell, and trade these allowances to meet regulatory needs. In response, SAIC has designed and prototyped an electronic trading system that can provide a common forum for the location and exchange of environmental allowances, marketable permits, and other market based instruments for environmentalmore » management. SAIC intends to open and operate the Allowance Exchange (ALEX) for the trading of all environmental allowances, associated with the operation of electric utilities, as a service to the nation, the industry, and the environmental community.« less

  18. Dielectrophoresis for Biomedical Sciences Applications: A Review

    PubMed Central

    Abd Rahman, Nurhaslina; Ibrahim, Fatimah; Yafouz, Bashar

    2017-01-01

    Dielectrophoresis (DEP) is a label-free, accurate, fast, low-cost diagnostic technique that uses the principles of polarization and the motion of bioparticles in applied electric fields. This technique has been proven to be beneficial in various fields, including environmental research, polymer research, biosensors, microfluidics, medicine and diagnostics. Biomedical science research is one of the major research areas that could potentially benefit from DEP technology for diverse applications. Nevertheless, many medical science research investigations have yet to benefit from the possibilities offered by DEP. This paper critically reviews the fundamentals, recent progress, current challenges, future directions and potential applications of research investigations in the medical sciences utilizing DEP technique. This review will also act as a guide and reference for medical researchers and scientists to explore and utilize the DEP technique in their research fields. PMID:28245552

  19. Nuclear Energy for Space Exploration

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.

    2010-01-01

    Nuclear power and propulsion systems can enable exciting space exploration missions. These include bases on the moon and Mars; and the exploration, development, and utilization of the solar system. In the near-term, fission surface power systems could provide abundant, constant, cost-effective power anywhere on the surface of the Moon or Mars, independent of available sunlight. Affordable access to Mars, the asteroid belt, or other destinations could be provided by nuclear thermal rockets. In the further term, high performance fission power supplies could enable both extremely high power levels on planetary surfaces and fission electric propulsion vehicles for rapid, efficient cargo and crew transfer. Advanced fission propulsion systems could eventually allow routine access to the entire solar system. Fission systems could also enable the utilization of resources within the solar system. Fusion and antimatter systems may also be viable in the future

  20. Assessment of distributed photovoltair electric-power systems

    NASA Astrophysics Data System (ADS)

    Neal, R. W.; Deduck, P. F.; Marshall, R. N.

    1982-10-01

    The development of a methodology to assess the potential impacts of distributed photovoltaic (PV) systems on electric utility systems, including subtransmission and distribution networks, and to apply that methodology to several illustrative examples was developed. The investigations focused upon five specific utilities. Impacts upon utility system operations and generation mix were assessed using accepted utility planning methods in combination with models that simulate PV system performance and life cycle economics. Impacts on the utility subtransmission and distribution systems were also investigated. The economic potential of distributed PV systems was investigated for ownership by the utility as well as by the individual utility customer.

  1. Optimal Design of Biomass Utilization System for Rural Area Includes Technical and Economic Dimensions

    NASA Astrophysics Data System (ADS)

    Morioka, Yasuki; Nakata, Toshihiko

    In order to design optimal biomass utilization system for rural area, OMNIBUS (The Optimization Model for Neo-Integrated Biomass Utilization System) has been developed. OMNIBUS can derive the optimal system configuration to meet different objective function, such as current account balance, amount of biomass energy supply, and CO2 emission. Most of biomass resources in a focused region e.g. wood biomass, livestock biomass, and crop residues are considered in the model. Conversion technologies considered are energy utilization technologies e.g. direct combustion and methane fermentation, and material utilization technologies e.g. composting and carbonization. Case study in Miyakojima, Okinawa prefecture, has been carried out for several objective functions and constraint conditions. Considering economics of the utilization system as a priority requirement, composting and combustion heat utilization are mainly chosen in the optimal system configuration. However gasification power plant and methane fermentation are included in optimal solutions, only when both biomass energy utilization and CO2 reduction have been set as higher priorities. External benefit of CO2 reduction has large impacts on the system configuration. Provided marginal external benefit of more than 50,000 JPY/t-C, external benefit becomes greater than the revenue from electricity and compost etc. Considering technological learning in the future, expensive technologies such as gasification power plant and methane fermentation will have economic feasibility as well as market competitiveness.

  2. Foundational Report Series. Advanced Distribution management Systems for Grid Modernization (Importance of DMS for Distribution Grid Modernization)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jianhui

    2015-09-01

    Grid modernization is transforming the operation and management of electric distribution systems from manual, paper-driven business processes to electronic, computer-assisted decisionmaking. At the center of this business transformation is the distribution management system (DMS), which provides a foundation from which optimal levels of performance can be achieved in an increasingly complex business and operating environment. Electric distribution utilities are facing many new challenges that are dramatically increasing the complexity of operating and managing the electric distribution system: growing customer expectations for service reliability and power quality, pressure to achieve better efficiency and utilization of existing distribution system assets, and reductionmore » of greenhouse gas emissions by accommodating high penetration levels of distributed generating resources powered by renewable energy sources (wind, solar, etc.). Recent “storm of the century” events in the northeastern United States and the lengthy power outages and customer hardships that followed have greatly elevated the need to make power delivery systems more resilient to major storm events and to provide a more effective electric utility response during such regional power grid emergencies. Despite these newly emerging challenges for electric distribution system operators, only a small percentage of electric utilities have actually implemented a DMS. This paper discusses reasons why a DMS is needed and why the DMS may emerge as a mission-critical system that will soon be considered essential as electric utilities roll out their grid modernization strategies.« less

  3. Electric Vehicle Interaction at the Electrical Circuit Level

    DOT National Transportation Integrated Search

    2018-01-01

    The objective of the Electric Vehicle Interaction at the Electrical Circuit Level project was to investigate electric vehicle (EV) charging as a means of mitigating transient over-voltages (TOVs) on the circuit level electric utility distribution gri...

  4. Economics of regulation: externalities and institutional issues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kahn, A.E.

    In two previous articles, ''Can An Economist Find Happiness Setting Public Utility Rates'' and ''Applications of Economics to Public Utility Rate Structures'', appearing in Public Utilities Fortnightly January 5 and January 19, 1978, respectively, the author summarized his experiences in applying elementary economic principles to the regulation of public utilities in New York state, specifically to setting utility rates. In this article, Mr. Kahn discusses second-best considerations and externalities. He points out that opponents of marginal-cost pricing--particularly of electricity--have in recent years become enthusiastic exponents of the theory of second best. What is required, he feels, is an examination ofmore » how other, most directly pertinent prices in the economy do actually stand relative to their marginal costs. These would be the prices of goods and services for which electricity is a substitute; with which electricity is used as a complement; in whose supply electricity is an input; and which themselves constitute inputs in the production and delivery of electricity. Oil and gas are more complicated cases. External costs, such as abatement requirements, are considered when setting rates. The author points out other regulatory issues to be considered in decision making to conclude this series of articles. (MCW)« less

  5. Strong Coupling of Epsilon-Near-Zero Phonon Polaritons in Polar Dielectric Heterostructures.

    PubMed

    Passler, Nikolai Christian; Gubbin, Christopher R; Folland, Thomas Graeme; Razdolski, Ilya; Katzer, D Scott; Storm, David F; Wolf, Martin; De Liberato, Simone; Caldwell, Joshua D; Paarmann, Alexander

    2018-06-18

    We report the first observation of epsilon-near-zero (ENZ) phonon polaritons in an ultrathin AlN film fully hybridized with surface phonon polaritons (SPhP) supported by the adjacent SiC substrate. Employing a strong coupling model for the analysis of the dispersion and electric field distribution in these hybridized modes, we show that they share the most prominent features of the two precursor modes. The novel ENZ-SPhP coupled polaritons with a highly propagative character and deeply subwavelength light confinement can be utilized as building blocks for future infrared and terahertz nanophotonic integration and communication devices.

  6. Solar energy research and utilization

    NASA Technical Reports Server (NTRS)

    Cherry, W. R.

    1974-01-01

    The role is described that solar energy will play in the heating and cooling of buildings, the production of renewable gaseous, liquid and solid fuels, and the production of electric power over the next 45 years. Potential impacts on the various energy markets and estimated costs of such systems are discussed along with illustrations of some of the processes to accomplish the goals. The conclusions of the NSF/NASA Solar Energy Panel (1972) are given along with the estimated costs to accomplish the 15 year recommended program and also the recent and near future budget appropriations and recommendations are included.

  7. An advanced concept secondary power systems study for an advanced transport technology aircraft

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The application of advanced technology to the design of an integrated secondary power system for future near-sonic long-range transports was investigated. The study showed that the highest payoff is achieved by utilizing secondary power equipment that contributes to minimum cruise drag. This is best accomplished by the use of the dedicated auxiliary power unit concept (inflight APU) as the prime power source for an airplane with a body-mounted engine or by the use of the internal engine generator concept (electrical power extraction from the propulsion engine) for an airplane with a wing-pod-mounted engine.

  8. Evaluation of Less-Flammable Insulation Fluids and Fire-Prevention Guidance for Transformers

    NASA Astrophysics Data System (ADS)

    Yamagishi, Akira; Sugawa, Osami

    This paper concerns the definition and evaluation of less-flammable of insulation fluids for transformers. In particular it focuses on the ISO5660 cone calorimeter method, which is widely used as an evaluation method for the less-flammable of solids, and proposes that such method is also valid for quantitative evaluation of the less-flammable of insulating fluids. Quantifying the combustion characteristics of insulation fluids and analyzing the causes of fires can be said to be the first step toward implementing appropriate safety measures that will render electric utility equipment more fire retardant or fireproof in the future.

  9. Innovations for ISS Plug-In Plan (IPiP) Operations

    NASA Technical Reports Server (NTRS)

    Moore, Kevin D.

    2013-01-01

    Limited resources and increasing requirements will continue to influence decisions on ISS. The ISS Plug-In Plan (IPiP) supports power and data for utilization, systems, and daily operations through the Electrical Power System (EPS) Secondary Power/Data Subsystem. Given the fluid launch schedule, the focus of the Plug-In Plan has evolved to anticipate future requirements by judicious development and delivery of power supplies, power strips, Alternating Current (AC) power inverters, along with innovative deployment strategies. A partnership of ISS Program Office, Engineering Directorate, Mission Operations, and International Partners poses unique solutions with existing on-board equipment and resources.

  10. Stimuli-Responsive Polymers for Actuation.

    PubMed

    Zhang, Qiang Matthew; Serpe, Michael J

    2017-06-02

    A variety of stimuli-responsive polymers have been developed and used as actuators and/or artificial muscles, with the movement being driven by an external stimulus, such as electrical potential. This Review highlights actuators constructed from liquid-crystal elastomers, dielectric elastomers, ionic polymers, and conducting polymers. The Review covers recent examples of a variety of actuators generated from these materials and their utility. The mechanism of actuation will be detailed for most examples in order to stimulate possible future research, and lead to new applications and advanced applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Water and Land Use Efficiency in Current and Potential Future US Corn and Brazilian Sugarcane Ethanol Systems

    NASA Astrophysics Data System (ADS)

    Warner, E. S.; Zhang, Y.; Newmark, R. L.

    2012-12-01

    Biofuels represent an opportunity for domestic fuel production from renewable energy sources with potential environmental and social benefits such as reducing greenhouse gas (GHG) and promoting rural development. However, as demand for biofuel continues to increase worldwide, concerns about land competition between food and fuel, excessive water usage and other unintended environmental consequences have grown. Through a comparative study between US corn ethanol and Brazilian sugarcane ethanol, we examine the energy, land, water and GHG performance of the two largest industrial fuel ethanol production systems in the world. Our comparisons include current and potential future systems with improved agronomic practices, crop yields, ethanol conversion processes, and utilization of agricultural residues. Our results suggest that the average water footprints of US corn ethanol and Brazilian sugarcane ethanol are fairly close (108 and 110 m3/GJ of ethanol, respectively) while the variations can range from 50 to 250 m3/GJ for sugarcane ethanol and 50 to380 m3/GJ for corn ethanol. Results emphasize the need to examine the water footprint within the context of local and regional climatic variability, water availability, competing uses (e.g. agricultural, industrial, and municipal water needs) and other ecosystem constraints. Research is under way (at the National Renewable Energy Laboratory and other institutions) to develop models to analyze water supply and demand at the watershed-scale for current and future biomass production, and to understand the tradeoffs among water supply, demand and quality due to more intensive agricultural practices and expansion of biofuels. Land use efficiency metrics, with regards to life cycle GHG emissions (without land use change) savings through gasoline displacement with ethanol, illustrate the progression of the biofuel industry and the importance of maximizing bioenergy production by utilizing both the crops and the residues. A recent average sugarcane ethanol system producing ethanol and electricity can save about 13 Mg CO2eq/ha of land compared to 12 in the early 2000s, while a recent average corn ethanol system saves about 6.2 Mg CO2eq/ha compared to near zero GHG savings in the early 2000s. The net energy balance (i.e., energy produced minus energy consumed) per ha for a recent average sugarcane ethanol system producing both ethanol and electricity is about 160 GJ/ha compared to 140 GJ/ha in early 2000s, while the recent average corn ethanol system achieves a net energy production of about 90 GJ/ha compares to only 30 GJ/ha in the early 2000s. The land use efficiency of corn and sugarcane ethanol systems, especially future systems, can vary depending on factors such as the assumed technologies, the suite of co-products produced, field practices, and technological learning. For example, projected future (2020) advanced sugarcane ethanol systems could save 22 Mg CO2eq/ha while an advanced corn ethanol system using integrated gasification of corn stover for electricity production could save 9.3Mg CO2eq/ha. Future advanced sugarcane ethanol systems could produce 210 GJ of net energy/ha while an advanced corn ethanol system using integrated gasification of corn stover for electricity production could achieve 110 GJ/ha.

  12. Energy and Environment Guide to Action - Chapter 7: Electric Utility Policies

    EPA Pesticide Factsheets

    Focuses on the authorites that state legislatures have granted to PUCs to regulate electricity and reliability, as these authorities directly affect utilities' and customers' investments in energy efficiency, renewable energy, and CHP.

  13. Active colloids as mobile microelectrodes for unified label-free selective cargo transport.

    PubMed

    Boymelgreen, Alicia M; Balli, Tov; Miloh, Touvia; Yossifon, Gilad

    2018-02-22

    Utilization of active colloids to transport both biological and inorganic cargo has been widely examined in the context of applications ranging from targeted drug delivery to sample analysis. In general, carriers are customized to load one specific target via a mechanism distinct from that driving the transport. Here we unify these tasks and extend loading capabilities to include on-demand selection of multiple nano/micro-sized targets without the need for pre-labelling or surface functionalization. An externally applied electric field is singularly used to drive the active cargo carrier and transform it into a mobile floating electrode that can attract (trap) or repel specific targets from its surface by dielectrophoresis, enabling dynamic control of target selection, loading and rate of transport via the electric field parameters. In the future, dynamic selectivity could be combined with directed motion to develop building blocks for bottom-up fabrication in applications such as additive manufacturing and soft robotics.

  14. Enhancing CO2 electrolysis through synergistic control of non-stoichiometry and doping to tune cathode surface structures

    PubMed Central

    Ye, Lingting; Zhang, Minyi; Huang, Ping; Guo, Guocong; Hong, Maochun; Li, Chunsen; Irvine, John T. S.; Xie, Kui

    2017-01-01

    Sustainable future energy scenarios require significant efficiency improvements in both electricity generation and storage. High-temperature solid oxide cells, and in particular carbon dioxide electrolysers, afford chemical storage of available electricity that can both stabilize and extend the utilization of renewables. Here we present a double doping strategy to facilitate CO2 reduction at perovskite titanate cathode surfaces, promoting adsorption/activation by making use of redox active dopants such as Mn linked to oxygen vacancies and dopants such as Ni that afford metal nanoparticle exsolution. Combined experimental characterization and first-principle calculations reveal that the adsorbed and activated CO2 adopts an intermediate chemical state between a carbon dioxide molecule and a carbonate ion. The dual doping strategy provides optimal performance with no degradation being observed after 100 h of high-temperature operation and 10 redox cycles, suggesting a reliable cathode material for CO2 electrolysis. PMID:28300066

  15. Materials challenges for repeatable RF wireless device reconfiguration with microfluidic channels

    NASA Astrophysics Data System (ADS)

    Griffin, Anthony S.; Sottos, Nancy R.; White, Scott R.

    2018-03-01

    Recently, adaptive wireless devices have utilized displacement of EGaIn within microchannels as an electrical switching mechanism to enable reconfigurable electronics. Device reconfiguration using EGaIn in microchannels overcomes many challenges encountered by more traditional reconfiguration mechanisms such as diodes and microelectromechanical systems (MEMS). Reconfiguration using EGaIn is severely limited by undesired permanent shorting due to retention of the liquid in microchannels caused by wetting and rapid oxide skin formation. Here, we investigate the conditions which prevent repeatable electrical switching using EGaIn in microchannels. Initial contact angle tests of EGaIn on epoxy surfaces demonstrate the wettability of EGaIn on flat surfaces. SEM cross-sections of microchannels reveal adhesion of EGaIn residue to channel walls. Micro-computed tomography (microCT) scans of provide volumetric measurements of EGaIn remaining inside channels after flow cycling. Non-wetting coatings are proposed as materials based strategy to overcome these issues in future work.

  16. PV source based high voltage gain current fed converter

    NASA Astrophysics Data System (ADS)

    Saha, Soumya; Poddar, Sahityika; Chimonyo, Kudzai B.; Arunkumar, G.; Elangovan, D.

    2017-11-01

    This work involves designing and simulation of a PV source based high voltage gain, current fed converter. It deals with an isolated DC-DC converter which utilizes boost converter topology. The proposed converter is capable of high voltage gain and above all have very high efficiency levels as proved by the simulation results. The project intends to produce an output of 800 V dc from a 48 V dc input. The simulation results obtained from PSIM application interface were used to analyze the performance of the proposed converter. Transformer used in the circuit steps up the voltage as well as to provide electrical isolation between the low voltage and high voltage side. Since the converter involves high switching frequency of 100 kHz, ultrafast recovery diodes are employed in the circuitry. The major application of the project is for future modeling of solar powered electric hybrid cars.

  17. Manned Mars Explorer project: Guidelines for a manned mission to the vicinity of Mars using Phobos as a staging outpost; schematic vehicle designs considering chemical and nuclear electric propulsion

    NASA Technical Reports Server (NTRS)

    Nolan, Sean; Neubek, Deb; Baxmann, C. J.

    1988-01-01

    The Manned Mars Explorer (MME) project responds to the fundamental problems of sending human beings to Mars in a mission scenario and schematic vehicle designs. The mission scenario targets an opposition class Venus inbound swingby for its trajectory with concentration on Phobos and/or Deimos as a staging base for initial and future Mars vicinity operations. Optional vehicles are presented as a comparison using nuclear electric power/propulsion technology. A Manned Planetary Vehicle and Crew Command Vehicle are used to accomplish the targeted mission. The Manned Planetary Vehicle utilizes the mature technology of chemical propulsion combined with an advanced aerobrake, tether and pressurized environment system. The Crew Command Vehicle is the workhorse of the mission performing many different functions including a manned Mars landing, and Phobos rendezvous.

  18. Electric power processing, distribution and control for advanced aerospace vehicles.

    NASA Technical Reports Server (NTRS)

    Krausz, A.; Felch, J. L.

    1972-01-01

    The results of a current study program to develop a rational basis for selection of power processing, distribution, and control configurations for future aerospace vehicles including the Space Station, Space Shuttle, and high-performance aircraft are presented. Within the constraints imposed by the characteristics of power generation subsystems and the load utilization equipment requirements, the power processing, distribution and control subsystem can be optimized by selection of the proper distribution voltage, frequency, and overload/fault protection method. It is shown that, for large space vehicles which rely on static energy conversion to provide electric power, high-voltage dc distribution (above 100 V dc) is preferable to conventional 28 V dc and 115 V ac distribution per MIL-STD-704A. High-voltage dc also has advantages over conventional constant frequency ac systems in many aircraft applications due to the elimination of speed control, wave shaping, and synchronization equipment.

  19. A Survey on Gas Sensing Technology

    PubMed Central

    Liu, Xiao; Cheng, Sitian; Liu, Hong; Hu, Sha; Zhang, Daqiang; Ning, Huansheng

    2012-01-01

    Sensing technology has been widely investigated and utilized for gas detection. Due to the different applicability and inherent limitations of different gas sensing technologies, researchers have been working on different scenarios with enhanced gas sensor calibration. This paper reviews the descriptions, evaluation, comparison and recent developments in existing gas sensing technologies. A classification of sensing technologies is given, based on the variation of electrical and other properties. Detailed introduction to sensing methods based on electrical variation is discussed through further classification according to sensing materials, including metal oxide semiconductors, polymers, carbon nanotubes, and moisture absorbing materials. Methods based on other kinds of variations such as optical, calorimetric, acoustic and gas-chromatographic, are presented in a general way. Several suggestions related to future development are also discussed. Furthermore, this paper focuses on sensitivity and selectivity for performance indicators to compare different sensing technologies, analyzes the factors that influence these two indicators, and lists several corresponding improved approaches. PMID:23012563

  20. Ceramic thermal barrier coatings for electric utility gas turbine engines

    NASA Technical Reports Server (NTRS)

    Miller, R. A.

    1986-01-01

    Research and development into thermal barrier coatings for electric utility gas turbine engines is reviewed critically. The type of coating systems developed for aircraft applications are found to be preferred for clear fuel electric utility applications. These coating systems consists of a layer of plasma sprayed zirconia-yttria ceramic over a layer of MCrAly bond coat. They are not recommended for use when molten salts are presented. Efforts to understand coating degradation in dirty environments and to develop corrosion resistant thermal barrier coatings are discussed.

  1. Electric Utility Phase I Acid Rain Compliance Strategies for the Clean Air Act Amendments of 1990

    EIA Publications

    1994-01-01

    The Acid Rain Program is divided into two time periods; Phase I, from 1995 through 1999, and Phase II, starting in 2000. Phase I mostly affects power plants that are the largest sources of SO2 and NOx . Phase II affects virtually all electric power producers, including utilities and nonutilities. This report is a study of the effects of compliance with Phase I regulations on the costs and operations of electric utilities, but does not address any Phase II impacts.

  2. Life cycle assessment of mobility options using wood based fuels--comparison of selected environmental effects and costs.

    PubMed

    Weinberg, Jana; Kaltschmitt, Martin

    2013-12-01

    An environmental assessment and a cost analysis were conducted for mobility options using electricity, hydrogen, ethanol, Fischer-Tropsch diesel and methane derived from wood. Therefore, the overall life cycle with regard to greenhouse gas emissions, acidifying emissions and fossil energy demand as well as costs is analysed. The investigation is carried out for mobility options in 2010 and gives an outlook to the year 2030. Results show that methane utilization in the car is beneficial with regard to environmental impacts (e.g. 58.5 g CO2-eq./km) and costs (23.1 €-ct./km) in 2010, especially in comparison to hydrogen usage (132.4 g CO2-eq./km and 63.9 €-ct./km). The electric vehicle construction has high environmental impacts and costs compared to conventional vehicles today, but with technical improvements and further market penetration, battery electric vehicles can reach the level of concepts with combustion engines in future applications (e.g. cost decrease from 38.7 to 23.4 €-ct./km). Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Programmable Hydrogel Ionic Circuits for Biologically Matched Electronic Interfaces.

    PubMed

    Zhao, Siwei; Tseng, Peter; Grasman, Jonathan; Wang, Yu; Li, Wenyi; Napier, Bradley; Yavuz, Burcin; Chen, Ying; Howell, Laurel; Rincon, Javier; Omenetto, Fiorenzo G; Kaplan, David L

    2018-06-01

    The increased need for wearable and implantable medical devices has driven the demand for electronics that interface with living systems. Current bioelectronic systems have not fully resolved mismatches between engineered circuits and biological systems, including the resulting pain and damage to biological tissues. Here, salt/poly(ethylene glycol) (PEG) aqueous two-phase systems are utilized to generate programmable hydrogel ionic circuits. High-conductivity salt-solution patterns are stably encapsulated within PEG hydrogel matrices using salt/PEG phase separation, which route ionic current with high resolution and enable localized delivery of electrical stimulation. This strategy allows designer electronics that match biological systems, including transparency, stretchability, complete aqueous-based connective interface, distribution of ionic electrical signals between engineered and biological systems, and avoidance of tissue damage from electrical stimulation. The potential of such systems is demonstrated by generating light-emitting diode (LED)-based displays, skin-mounted electronics, and stimulators that deliver localized current to in vitro neuron cultures and muscles in vivo with reduced adverse effects. Such electronic platforms may form the basis of future biointegrated electronic systems. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Automated seed manipulation and planting

    NASA Technical Reports Server (NTRS)

    Garcia, Ray; Herrera, Javier; Holcomb, Scott; Kelly, Paul; Myers, Scott; Rosendo, Manny; Sivitz, Herbert; Wolsefer, Dave

    1988-01-01

    Activities for the Fall Semester, 1987 focused on investigating the mechanical/electrical properties of wheat seeds and forming various Seed Planting System (SPS) concepts based on those properties. The Electrical Division of the design group was formed to devise an SPS using electrostatic charge fields for seeding operations. Experiments concerning seed separation using electrical induction (rearranging of the charges within the seed) were conducted with promising results. The seeds, when exposed to the high voltage and low current field produced by a Van de Graff generator, were observed to move back and forth between two electrodes. An SPS concept has been developed based on this phenomena, and will be developed throughout the Spring Semester, 1988. The Mechanical Division centered on SPS concepts involving valves, pumps, and fluids to separate and deliver seeds. An SPS idea utilizing the pressure difference caused by air as it rushes out of holes drilled in the wall of a closed container has been formulated and will be considered for future development. Also, a system of seed separation and delivery employing a combination of centrifugal force, friction, and air flow was considered.

  5. Comparative Evaluation of Phase 1 Results from the Energy Conversion Alternatives Study (ECAS). [coal utilization for electric power plants feasibility analysis

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Ten advanced energy conversion systems for central-station, based-load electric power generation using coal and coal-derived fuels which were studied by NASA are presented. Various contractors were selected by competitive bidding to study these systems. A comparative evaluation is provided of the contractor results on both a system-by-system and an overall basis. Ground rules specified by NASA, such as coal specifications, fuel costs, labor costs, method of cost comparison, escalation and interest during construction, fixed charges, emission standards, and environmental conditions, are presented. Each system discussion includes the potential advantages of the system, the scope of each contractor's analysis, typical schematics of systems, comparison of cost of electricity and efficiency for each contractor, identification and reconciliation of differences, identification of future improvements, and discussion of outside comments. Considerations common to all systems, such as materials and furnaces, are also discussed. Results of selected in-house analyses are presented, in addition to contractor data. The results for all systems are then compared.

  6. Fundamental Study on Saving Energy for Electrified Railway System Applying High Temperature Superconductor Motor and Energy Storage System

    NASA Astrophysics Data System (ADS)

    Konishi, Takeshi; Nakamura, Taketsune; Amemiya, Naoyuki

    Induction motor instead of dc one has been applied widely for dc electric rolling stock because of the advantage of its utility and efficiency. However, further improvement of motor characteristics will be required to realize environment-friendly dc railway system in the future. It is important to study more efficient machine applying dc electric rolling stock for next generation high performance system. On the other hand, the methods to reuse regenerative energy produced by motors effectively are also important. Therefore, we carried out fundamental study on saving energy for electrified railway system. For the first step, we introduced the energy storage system applying electric double-layer capacitors (EDLC), and its control system. And then, we tried to obtain the specification of high temperature superconductor induction/synchronous motor (HTS-ISM), which performance is similar with that of the conventional induction motors. Furthermore, we tried to evaluate an electrified railway system applying energy storage system and HTS-ISM based on simulation. We succeeded in showing the effectiveness of the introductions of energy storage system and HTS-ISM in DC electrified railway system.

  7. Integration of SPS with utility system networks

    NASA Technical Reports Server (NTRS)

    Kaupang, B. M.

    1980-01-01

    The integration of Satellite Power System (SPS) power in electric utility power systems is discussed. Specifically, the nature of the power output variations from the spacecraft to the rectenna, the operational characteristics of the rectenna power, and the impacts on the electric utility system from utilizing SPS power to serve part of the system load are treated. It is concluded that if RF beam control is an acceptable method for power control, and that the site distribution of SPS rectennas do not cause a very high local penetration (40 to 50%), SPS may be integrated into electric utility system with a few negative impacts. Increased regulating duty on the conventional generation, and a potential impact on system reliability for SPS penetration in excess of about 25% appear to be two areas of concern.

  8. Designing PURPA (Public Utilities Regulatory Act) power purchase auctions: Theory and practice. [Cogenerated electricity purchasing model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rothkopf, M.H.; Kahn, E.P.; Teisberg, T.J.

    The Public Utilities Regulatory Act (PURPA) requires there to be procedures for electric utilities to buy electric power from qualifying cogenerators and small power producers (QFs) at rates up to ''avoided cost.'' This has led to price-posting procedures at prices calculated as the utility's marginal cost. Unexpectedly large sales at these prices and slow adjustment to falling energy cost are partially responsible for payments to QFs in excess of the utility's true avoided cost. Using competitive bidding instead of posted prices has been proposed as a way to avoid this outcome. This report reviews bidding theory and explores four issuesmore » that arise in deisigning auction systems for the purchase of power from QFs under PURPA. 77 refs., 6 figs., 15 tabs.« less

  9. Reshaping the electric utility industry: Competitive implications for Illinois

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maschoff, D.C.

    1995-12-31

    This paper briefly outlines some of the issues in the electric power industry restructuring. In addition, the impacts of these changes on the energy marketplace are discussed. Federal policy initiatives, state regulatory response, and utility management response are each described. Management skills are identified as the critical success factor for competition in the utility market.

  10. 78 FR 48867 - Nationwide Categorical Waivers Under the American Recovery and Reinvestment Act of 2009 (Recovery...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-12

    ... shaft (VHS) electric motors (less than 40 HP) to be utilized in Recovery Act projects funded by EERE...) vertical hollow shaft (VHS) electric motors (less than 40 HP) are not produced or manufactured in the...-horsepower (HP) vertical hollow shaft (VHS) electric motors (less than 40 HP) to be utilized in Recovery Act...

  11. Analysis of the costs of fuel supply for wood-fired electric power plants in rural Liberia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perlack, R.D.; Barron, W.F.; Samuels, G.

    1985-06-01

    In recent years the quality of rural electric services in Liberia has been declining and the future economic viability of these power stations is a growing concern. Each of the ten operating and each of the planned rural public power stations is designed to operate exclusively on gas oil (diesel fuel). Fuel expenditures by the Liberian Electricity Corporation (LEC) for the rural public stations represent a major and growing burden on the financially hardpressed utility. Liberia has two potentially significant alternatives to oil-fired electric power for its up-country towns: small (1 to 5 MW) hydroelectric facilities, and wood-fired steam ormore » gasifier plants (0.2 to 2 MW). Although small hydroelectric facilities appear viable for several locations, they cannot serve all locations and will require thermal back-up. The economics of supplying wood to a rural electric power plant or rural grid were evaluated under several scenarios involving: (1) different sources of the feedstock, and (2) differences in wood supply requirements for plants based on the use of steam or gasifier technology, and variation in the utilization level for such plants. With a few minor exceptions, wood energy supplies are plentiful throughout Liberia. Liberia has four different potential sources of wood fuel supply: the commercial cutting of retired rubber trees; the harvesting of secondary growth forest just prior to the land returning to temporary cultivation as part of a system of shifting agriculture; adding to the system of shifting agriculture the planting of fast-growing wood species and harvesting these trees when the land again is brought back under cultivation (generally after about five to seven years); and the establishment of commercial short-rotation wood energy plantations. Results indicate that the use of wood to fuel rural power stations is a viable economic option.« less

  12. Analysis of the electrical harmonic characteristics of a slip recovery variable speed generating system for wind turbine applications

    NASA Astrophysics Data System (ADS)

    Herrera, J. I.; Reddoch, T. W.

    1988-02-01

    Variable speed electric generating technology can enhance the general use of wind energy in electric utility applications. This enhancement results from two characteristic properties of variable speed wind turbine generators: an improvement in drive train damping characteristics, which results in reduced structural loading on the entire wind turbine system, and an improvement in the overall efficiency by using a more sophisticated electrical generator. Electronic converter systems are the focus of this investigation -- in particular, the properties of a wound-rotor induction generator with the slip recovery system and direct-current link converter. Experience with solid-state converter systems in large wind turbines is extremely limited. This report presents measurements of electrical performances of the slip recovery system and is limited to the terminal characteristics of the system. Variable speed generating systems working effectively in utility applications will require a satisfactory interface between the turbine/generator pair and the utility network. The electrical testing described herein focuses largely on the interface characteristics of the generating system. A MOD-O wind turbine was connected to a very strong system; thus, the voltage distortion was low and the total harmonic distortion in the utility voltage was less than 3 percent (within the 5 percent limit required by most utilities). The largest voltage component of a frequency below 60 Hz was 40 dB down from the 60-Hz less than component.

  13. The cost of energy from utility-owned solar electric systems. A required revenue methodology for ERDA/EPRI evaluations

    NASA Technical Reports Server (NTRS)

    1976-01-01

    This methodology calculates the electric energy busbar cost from a utility-owned solar electric system. This approach is applicable to both publicly- and privately-owned utilities. Busbar cost represents the minimum price per unit of energy consistent with producing system-resultant revenues equal to the sum of system-resultant costs. This equality is expressed in present value terms, where the discount rate used reflects the rate of return required on invested capital. Major input variables describe the output capabilities and capital cost of the energy system, the cash flows required for system operation amd maintenance, and the financial structure and tax environment of the utility.

  14. Photovoltaics and electric utilities

    NASA Astrophysics Data System (ADS)

    Bright, R.; Leigh, R.; Sills, T.

    1981-12-01

    The long term value of grid connected, residential photovoltaic (PV) systems is determined. The value of the PV electricity is defined as the full avoided cost in accordance with the Public Utilities Regulatory Policies Act of 1978. The avoided cost is computed using a long range utility planning approach to measure revenue requirement changes in response to the time phased introduction of PV systems into the grid. A case study approach to three utility systems is used. The changing value of PV electricity over a twenty year period from 1985 is presented, and the fuel and capital savings due to FY are analyzed. These values are translated into measures of breakeven capital investment under several options of power interchange and pricing.

  15. Design Report Final - CUB Inc.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armijo, Kenneth Miguel; Monda, Mark J.; Brunson, Gregory Paul

    CUB (Critical Utility Base), Fig. 1.0, are individual portable energy and utility units utilizing renewable energy technologies integrated with high efficient conventional components to provide electricity, battery storage, heat, potable water, waste water treatment, cooling, liquid fuels, to name some of the primary utilities. Typically, these units were designed to provide power / utilities to any remote location or facility like forward operating bases, disaster relief centers, and Native American communities or to energize African villages. Although some CUB models have already been designed to date, the main unit, the CUB-E (electricity), lacks a critical component included in its design.more » It is the integral portion that automates solar electric panel racking deployment and retraction. This racking system will enable the CUB-E to rapidly deploy its utility within minutes, a feature not available in any form currently on the market.« less

  16. Wind power for the electric-utility industry: Policy incentives for fuel conservation

    NASA Astrophysics Data System (ADS)

    March, F.; Dlott, E. H.; Korn, D. H.; Madio, F. R.; McArthur, R. C.; Vachon, W. A.

    1982-06-01

    A systematic method for evaluating the economics of solar-electric/conservation technologies as fuel-savings investments for electric utilities in the presence of changing federal incentive policies is presented. The focus is on wind energy conversion systems (WECS) as the solar technology closest to near-term large scale implementation. Commercially available large WECS are described, along with computer models to calculate the economic impact of the inclusion of WECS as 10% of the base-load generating capacity on a grid. A guide to legal structures and relationships which impinge on large-scale WECS utilization is developed, together with a quantitative examination of the installation of 1000 MWe of WECS capacity by a utility in the northeast states. Engineering and financial analyses were performed, with results indicating government policy changes necessary to encourage the entrance of utilities into the field of windpower utilization.

  17. Energy and Environment Guide to Action - Chapter 7.0: Electric Utility Policies

    EPA Pesticide Factsheets

    Focuses on the authorites that state legislatures have granted to PUCs to regulate electricity and reliability, as these authorities directly affect utilities' and customers' investments in energy efficiency, renewable energy, and CHP.

  18. 18 CFR 141.1 - FERC Form No. 1, Annual report of Major electric utilities, licensees and others.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... instrumentality engaged in generation, transmission, distribution, or sale of electric energy, however produced... the business of developing, transmitting, utilizing, or distributing power). (2) When to file and what...

  19. 18 CFR 141.1 - FERC Form No. 1, Annual report of Major electric utilities, licensees and others.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... instrumentality engaged in generation, transmission, distribution, or sale of electric energy, however produced... the business of developing, transmitting, utilizing, or distributing power). (2) When to file and what...

  20. 18 CFR 141.1 - FERC Form No. 1, Annual report of Major electric utilities, licensees and others.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... instrumentality engaged in generation, transmission, distribution, or sale of electric energy, however produced... the business of developing, transmitting, utilizing, or distributing power). (2) When to file and what...

  1. 18 CFR 141.1 - FERC Form No. 1, Annual report of Major electric utilities, licensees and others.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... instrumentality engaged in generation, transmission, distribution, or sale of electric energy, however produced... the business of developing, transmitting, utilizing, or distributing power). (2) When to file and what...

  2. 76 FR 38590 - Proposed National Emission Standards for Hazardous Air Pollutants From Coal- and Oil-Fired...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-01

    ...- and Oil-Fired Electric Utility Steam Generating Units and Standards of Performance for Fossil-Fuel... Performance for Fossil-Fuel- Fired Electric Utility, Industrial-Commercial-Institutional, and Small Industrial...

  3. 75 FR 38803 - Combined Notice of Filings #1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-06

    .... Applicants: PPL Electric Utilities Corporation. Description: PECO Energy Company submits Notice of.... Applicants: PPL Electric Utilities Corporation. Description: PECO Energy Company submits Transmission... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Combined Notice of Filings 1 June 25...

  4. Anti-Ferroelectric Ceramics for High Energy Density Capacitors.

    PubMed

    Chauhan, Aditya; Patel, Satyanarayan; Vaish, Rahul; Bowen, Chris R

    2015-11-25

    With an ever increasing dependence on electrical energy for powering modern equipment and electronics, research is focused on the development of efficient methods for the generation, storage and distribution of electrical power. In this regard, the development of suitable dielectric based solid-state capacitors will play a key role in revolutionizing modern day electronic and electrical devices. Among the popular dielectric materials, anti-ferroelectrics (AFE) display evidence of being a strong contender for future ceramic capacitors. AFE materials possess low dielectric loss, low coercive field, low remnant polarization, high energy density, high material efficiency, and fast discharge rates; all of these characteristics makes AFE materials a lucrative research direction. However, despite the evident advantages, there have only been limited attempts to develop this area. This article attempts to provide a focus to this area by presenting a timely review on the topic, on the relevant scientific advancements that have been made with respect to utilization and development of anti-ferroelectric materials for electric energy storage applications. The article begins with a general introduction discussing the need for high energy density capacitors, the present solutions being used to address this problem, and a brief discussion of various advantages of anti-ferroelectric materials for high energy storage applications. This is followed by a general description of anti-ferroelectricity and important anti-ferroelectric materials. The remainder of the paper is divided into two subsections, the first of which presents various physical routes for enhancing the energy storage density while the latter section describes chemical routes for enhanced storage density. This is followed by conclusions and future prospects and challenges which need to be addressed in this particular field.

  5. Anti-Ferroelectric Ceramics for High Energy Density Capacitors

    PubMed Central

    Chauhan, Aditya; Patel, Satyanarayan; Vaish, Rahul; Bowen, Chris R.

    2015-01-01

    With an ever increasing dependence on electrical energy for powering modern equipment and electronics, research is focused on the development of efficient methods for the generation, storage and distribution of electrical power. In this regard, the development of suitable dielectric based solid-state capacitors will play a key role in revolutionizing modern day electronic and electrical devices. Among the popular dielectric materials, anti-ferroelectrics (AFE) display evidence of being a strong contender for future ceramic capacitors. AFE materials possess low dielectric loss, low coercive field, low remnant polarization, high energy density, high material efficiency, and fast discharge rates; all of these characteristics makes AFE materials a lucrative research direction. However, despite the evident advantages, there have only been limited attempts to develop this area. This article attempts to provide a focus to this area by presenting a timely review on the topic, on the relevant scientific advancements that have been made with respect to utilization and development of anti-ferroelectric materials for electric energy storage applications. The article begins with a general introduction discussing the need for high energy density capacitors, the present solutions being used to address this problem, and a brief discussion of various advantages of anti-ferroelectric materials for high energy storage applications. This is followed by a general description of anti-ferroelectricity and important anti-ferroelectric materials. The remainder of the paper is divided into two subsections, the first of which presents various physical routes for enhancing the energy storage density while the latter section describes chemical routes for enhanced storage density. This is followed by conclusions and future prospects and challenges which need to be addressed in this particular field. PMID:28793694

  6. The future market in electricity in the Czech Republic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vacik, J.

    1998-07-01

    The Czech Republic has signed the Association Agreement with the European Union in early nineties and it has been the Republic's goal to accede to full membership in the European Union. In the power sector, the Directive 96/92/EC is, in this respect, the most important document. The Czech Energy Law was become effective from 1995 in a compromise form which proved to stay well short of perfection. Unfortunately, a number of articles and provisions fail to be consistent with the relevant EU documents, and even far less so with Directive 96/92/EC. The draft Energy Policy of the Czech Republic asmore » presented officially in May 1997, has already definitely stressed some basic features of the future market in electricity. Regrettably, also in the draft Energy Policy some pressing long-term problems fail to be recognized or addressed and also areas failing to conform with the European power industry laws can be found in it. For the Czech Republic, it will be useful to utilize the experience of mainly the smaller EU countries and to proceed in pursuance of the findings of a thorough analysis and in a stepwise manner. In the first phase, it will be enough to make those moves which are common for all the conceivable solutions. Directive 96/92/EC does not prescribe a change in the structure of the existing electric power sector and far less any change in the ownership relation. In the same token, Directive 96/92/EC does not charge the member states with any duty to launch a wholesale market in electricity (pool of exchange). That is reserved under the discretion of the member states. Nowhere throughout the Directive is encountered any requirement to reduce the market strength of the dominant entities, if such exist.« less

  7. Deregulating electricity in the American states

    NASA Astrophysics Data System (ADS)

    Terbush, Thomas Lee

    This dissertation develops nine stylized facts that summarize the major consequences of deregulation and tests these against recent experience in the electric utility industry. The experience of the electric utility industry matches the predictions of the stylized facts, except in one instance: although real electricity prices fell between 1982 and 1999, real prices fell less in states that deregulated. This dissertation presents three possible explanations for this discrepancy. First, through dynamic efficiency, consumers may benefit in the long run through lower rates and better service in the electricity market, or deregulation may be a public good that benefits electricity consumers through economy-wide improvements in efficiency. Second, higher prices may be a long-run outcome as predicted by the theory of the second best. Or third, both regulators and utilities may use deregulation to generate new rents. Because the original rents from regulation had dissipated, new rents could be generated under deregulation by making consumers pay off the utilities and then creating more new rents through re-regulation of the industry. Close examination tends to support the first and third explanations, although the second-best explanation cannot yet be ruled out completely. Higher prices appear to be a transitional phenomenon, resulting from a short-term payoff from consumers to incumbent utilities that was required to move deregulation forward. This payoff occurs as residential and commercial consumers bear relatively higher rates over three to five years to compensate utilities for stranded costs, investments thought to be unrecoverable under full competition. All states are benefiting from deregulation, but states that are deregulating are benefiting less while stranded costs are being recovered. This dissertation also examines California electricity deregulation and finds that the experience in California conforms with to the stylized facts, and that certain structural, demand and supply factors caused the electricity crisis in 2000 and 2001. The most important factor was the disallowance of long-term contracts and other instruments for shedding price risk, which discouraged the construction of new generating plants.

  8. Energy service companies -- The sky's the limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fraser, M.; Montross, C.

    The term ESCO has a different meaning to different people. Increasingly, the term is used in its broadest sense to describe any company providing services related to a customer's energy acquisition and use. Previously, the term ESCO was synonymous with contractors who installed new equipment that was paid for by the energy cost savings that resulted. As a result of competition, restructuring and de-regulation of the electricity and gas sectors, the range of firms offering energy services now includes: local utilities using services to retain customers, remote utilities offering services to customers outside their franchise as a door opener tomore » future commodity sales, local and remote utilities who see services as a more lucrative growth opportunity than commodities or transportation of the commodity, facility managers taking advantage of outsourcing trends and using energy management to reduce costs, power marketers, power brokers, aggregators combining energy analysis to segment their customers with processes to identify potential conservation and load management opportunities, cogeneration developers, and agents who help their customers navigate the uncharted waters of the deregulated energy business. This paper will review the impact of the broader definition of ESCOs with a view toward forecasting future trends in the industry including consideration of the fact that the term, energy service, may, itself, be too narrow a definition for a successful business of industry.« less

  9. Baseline Testing of the Ultracapacitor Enhanced Photovoltaic Power Station

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.; Kolacz, John S.; Tavernelli, Paul F.

    2001-01-01

    The NASA John H. Glenn Research Center is developing an advanced ultracapacitor enhanced photovoltaic power station. Goals of this effort include maximizing photovoltaic power generation efficiency and extending the life of photovoltaic energy storage systems. Unique aspects of the power station include the use of a solar tracker, and ultracapacitors for energy storage. The photovoltaic power station is seen as a way to provide electric power in remote locations that would otherwise not have electric power, provide independence form utility systems, reduce pollution, reduce fossil fuel consumption, and reduce operating costs. The work was done under the Hybrid Power Management (HPM) Program, which includes the Hybrid Electric Transit Bus (HETB), and the E-Bike. The power station complements the E-Bike extremely well in that it permits the charging of the vehicle batteries in remote locations. Other applications include scientific research and medical power sources in isolated regions. The power station is an inexpensive approach to advance the state of the art in power technology in a practical application. The project transfers space technology to terrestrial use via nontraditional partners, and provides power system data valuable for future space applications. A description of the ultracapacitor enhanced power station, the results of performance testing and future power station development plans is the subject of this report. The report concludes that the ultracapacitor enhanced power station provides excellent performance, and that the implementation of ultracapacitors in the power system can provide significant performance improvements.

  10. Analysis of Fast Charging Station Network for Electrified Ride-Hailing Services

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, Eric W; Rames, Clement L; Kontou, Eleftheria

    Today's electric vehicle (EV) owners charge their vehicles mostly at home and seldom use public direct current fast charger (DCFCs), reducing the need for a large deployment of DCFCs for private EV owners. However, due to the emerging interest among transportation network companies to operate EVs in their fleet, there is great potential for DCFCs to be highly utilized and become economically feasible in the future. This paper describes a heuristic algorithm to emulate operation of EVs within a hypothetical transportation network company fleet using a large global positioning system data set from Columbus, Ohio. DCFC requirements supporting operation ofmore » EVs are estimated using the Electric Vehicle Infrastructure Projection tool. Operation and installation costs were estimated using real-world data to assess the economic feasibility of the recommended fast charging stations. Results suggest that the hypothetical transportation network company fleet increases daily vehicle miles traveled per EV with less overall down time, resulting in increased demand for DCFC. Sites with overhead service lines are recommended for hosting DCFC stations to minimize the need for trenching underground service lines. A negative relationship was found between cost per unit of energy and fast charging utilization, underscoring the importance of prioritizing utilization over installation costs when siting DCFC stations. Although this preliminary analysis of the impacts of new mobility paradigms on alternative fueling infrastructure requirements has produced several key results, the complexity of the problem warrants further investigation.« less

  11. Essays on microgrids, asymmetric pricing and market power in electricity markets

    NASA Astrophysics Data System (ADS)

    Lo Prete, Chiara

    This dissertation presents four studies of the electricity industry. The first and second essays use economic-engineering models to assess different aspects of microgrid penetration in regional electricity markets, while the last two studies contain empirical analyses aimed at evaluating the performance of wholesale electricity markets. Chapter 2 develops a framework to quantify economic, environmental, efficiency and reliability impacts of different power production scenarios in a regional system, focusing on the interaction of microgrids with the existing transmission and distribution grid. The setting is the regional network formed by Belgium, France, Germany and the Netherlands. The study presents simulations of power market outcomes under various policies and levels of microgrid penetration, and evaluates them using a diverse set of metrics. Chapter 3 studies the interaction between a microgrid and a regulated electric utility in a regional electricity market. I consider the interaction among the utility, the microgrid developer and consumers in the framework of cooperative game theory (assuming exchangeable utility), and use regional market models to simulate scenarios in which microgrid introduction may or may not be socially beneficial. Under the assumptions of this chapter, customer participation is essential to the development of socially beneficial microgrids, while the utility has little or no gain from it. Discussed incentives to avoid that utilities block microgrid entry include additional revenue drivers related to microgrid connection, decoupling and performance-based mechanisms targeted at service quality. When prices are below marginal costs of utility provided power, microgrid development may be socially beneficial, but unprofitable for microgrid customers and its developer. By imposing lower charges and higher remuneration for its services, the regulator could ensure that microgrid value is positive, without adversely impacting the utility. Chapter 4 examines the possibility of asymmetric transmission of CO 2 and fuel prices to electricity futures prices in the second phase of the European Emission Trading Scheme. The goal is to assess whether output prices tend to respond more quickly to input price increases than decreases: this phenomenon is known as "rockets and feathers" in the literature. Results do not provide empirical evidence of statistically significant differences in the response of power prices to positive and negative shocks in CO 2 allowance and fuel markets. Chapter 5 re-examines the issue of the potential exercise of market power in California after liberalization, with a focus on its day-ahead energy market (the former PX) and its five largest thermal generators. The analysis focuses on a peak hour of operation (hour 18) and disregards hours in which congestion occurred. First, I define a direct measure of unilateral market power for each firm, equal to the hourly inverse elasticity of its residual demand function. The second part of the analysis aims at assessing whether the necessary conditions for the unilateral exercise of market power were satisfied in practice, based on a comparison of PX market-clearing prices, estimated marginal revenues and estimated bounds for the marginal costs of generation of each supplier. By conservatively assuming that the estimated upper bound is close to each firm's actual marginal cost of generation, the analysis suggests that in a large fraction of hours the thermal generators were acting less competitively that what implied by unilateral profit maximization. If instead I explicitly account for uncertainty in the marginal cost estimates with the introduction of a +/-10% margin on the estimated bounds, thermal generators are equally likely to bid close to their marginal costs or above them. Among the hours characterized by market-clearing prices above marginal costs, 64% present, on average, evidence of less competitive than Nash behavior. Two possible explanations for the observed restrained quantities, relative to the Nash level, include firms' coordinating efforts to raise prices on the day-ahead market and a Cournot game among the thermal generators, since the Cournot equilibrium represents an upper bound on supply function equilibria. (Abstract shortened by UMI.)

  12. Electric power quarterly, April-June 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-10-13

    The EPQ presents monthly summaries of electric utility statistics at the national, divisional, state, company, and plant levels on the following subjects: quantity of fuel, cost of fuel, quality of fuel, net generation, fuel consumption, fuel stocks. In addition, the EPQ presents a quarterly summary of reported major disturbances and unusual occurrences. These data are collected on the Form IE-417R. Every electric utility engaged in the generation, transmission, or distribution of electric energy must file a report with DOE if it experiences a major power system emergency.

  13. Electric power quarterly, July-September 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-01-22

    The EPQ presents monthly summaries of electric utility statistics at the national, divisional, state, company, and plant levels on the following subjects: quantity of fuel, cost of fuel, quality of fuel, net generation, fuel consumption, fuel stocks. In addition, the EPQ presents a quarterly summary of reported major disturbances and unusual occurrences. These data are collected on the Form IE-417R. Every electric utility engaged in the generation, transmission, or distribution of electric energy must file a report with DOE if it experiences a major power system emergency.

  14. Orbiter electrical equipment utilization baseline

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The baseline for utilization of Orbiter electrical equipment in both electrical and Environmental Control and Life Support System (ECLSS) thermal analyses is established. It is a composite catalog of Space Shuttle equipment, as defined in the Shuttle Operational Data Book. The major functions and expected usage of each component type are described. Functional descriptions are designed to provide a fundamental understanding of the Orbiter electrical equipment, to insure correlation of equipment usage within nominal analyses, and to aid analysts in the formulation of off-nominal, contingency analyses.

  15. Understanding profitability: Why some customers are hot and others are not

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sioshansi, F.P.

    Gone are the days when utilities would boast how many new customers were being added to their system annually-regardless of whether they were in fact profitable to serve or not-as if bigger was always better. In a not too distant future, and with the liberalization of the business environment, some utilities may no longer wish to serve certain customers on their systems, while at the same time aggressively wooing other customers. With the anticipated arrival of competition and erosion of utility franchise service areas, the electric power industry will gradually evolve into a mode where customers will be segmented intomore » finer groups and evaluated based on their expected profit margins-theoretically the difference between the revenues expected from them and the cost of serving them. Understanding this basic concept, and the mastery of the art of arriving at the correct profit margin for each market segment, will be essential to overall business profitability and survival in the future. In practice, however, many utilities are ill-prepared to accomplish such fundamental analyses correctly and consistently because they do not have the correct analytical framework, the right information, or the right tools to perform the analysis. This paper will outline the fundamentals of market segmentation and evaluating customer profitability. It will also illustrate how to balance the cost of serving a customer with the revenues derived to produce a {open_quotes}reasonable{close_quotes} profit margin in each market segment. EPRI has developed a software tool specifically designed to assist utility analysts perform this type of work. Other ongoing research in the area of profitability analysis is also described.« less

  16. The quest to be "modern": The adoption of electric light, heat, and power technology in small-town America, 1883-1929

    NASA Astrophysics Data System (ADS)

    Hellrigel, Mary Ann

    This dissertation is a social, business, and technological history of electrification in the United States. It examines the origins of the electric utility industry, the development of light, heat and power technology, the marketing of electric service, and the adoption of electricity and domestic appliances in the late nineteenth and early twentieth centuries in two communities: Harrisburg and West Chester, Pennsylvania. Beginning in the 1880s, manufactured gas and electric utilities waged an intense and lengthy battle for the urban energy marketplace. Many villages, small towns and big cities had multiple gas and electric companies, driving technological change as they worked to increase reliability, lower costs, and improve lamps, lighting fixtures, and appliances. Producers as well as consumers grappled with these new sources of energy, looking for profitable and practical ways to incorporate them into everyday life. Gas and utility executives, locked in head-to-head competition, realized that marketing their invisible product was an uncertain process. Utilities redefined the concepts of "tradition" and "modernity" to attract investors and offer appliances and installation in addition to selling energy. Upper and middle class households seeking a modern comfortable home could use gas or electricity (and often both), while working classes made do with kerosene, coal and wood. Mixed technologies, based on consumer preference, access, product availability, price, and service greatly influenced the creation of "modern" America. Initially, Pennsylvania law mandated local energy systems-electricity and gas had to be consumed within the same town. Only in the early twentieth century were these laws amended to permit inter-connections, allowing merger and consolidation of utilities to serve a wider geographic area. By the 1910s, law, technology, and capital made it possible to abandon local central stations. In only a few decades, the industry shifted from locally-owned small scale generation plants to larger regional systems capable of long distance transmission and directed by a cadre of engineering, financial, and managerial experts. In 1928, Harrisburg's electric utility merged into the Pennsylvania Power & Light Company and the next year West Chester's electric and gas companies became part of the Philadelphia Electric Company, marking the beginning of a new era.

  17. Comparison of anthropometry of U.S. electric utility field-workers with North American general populations.

    PubMed

    Marklin, Richard W; Saginus, Kyle A; Seeley, Patricia; Freier, Stephen H

    2010-12-01

    The primary purpose of this study was to determine whether conventional anthropometric databases of the U.S. general population are applicable to the population of U.S. electric utility field-workers. On the basis of anecdotal observations, field-workers for electric power utilities were thought to be generally taller and larger than the general population. However, there were no anthropometric data available on this population, and it was not known whether the conventional anthropometric databases could be used to design for this population. For this study, 3 standing and II sitting anthropometric measurements were taken from 187 male field-workers from three electric power utilities located in the upper Midwest of the United States and Southern California. The mean and percentile anthropometric data from field-workers were compared with seven well-known conventional anthropometric databases for North American males (United States, Canada, and Mexico). In general, the male field-workers were taller and heavier than the people in the reference databases for U.S. males. The field-workers were up to 2.3 cm taller and 10 kg to 18 kg heavier than the averages of the reference databases. This study was justified, as it showed that the conventional anthropometric databases of the general population underestimated the size of electric utility field-workers, particularly with respect to weight. When designing vehicles and tools for electric utility field-workers, designers and ergonomists should consider the population being designed for and the data from this study to maximize safety, minimize risk of injuries, and optimize performance.

  18. National Utility Rate Database: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ong, S.; McKeel, R.

    2012-08-01

    When modeling solar energy technologies and other distributed energy systems, using high-quality expansive electricity rates is essential. The National Renewable Energy Laboratory (NREL) developed a utility rate platform for entering, storing, updating, and accessing a large collection of utility rates from around the United States. This utility rate platform lives on the Open Energy Information (OpenEI) website, OpenEI.org, allowing the data to be programmatically accessed from a web browser, using an application programming interface (API). The semantic-based utility rate platform currently has record of 1,885 utility rates and covers over 85% of the electricity consumption in the United States.

  19. Alternative Fuels Data Center

    Science.gov Websites

    Utility Company Electric Vehicle (EV) Charging Load Projection Requirement The Public Utilities Regulatory Authority requires electric distribution companies to integrate EV charging load projections into the EV charging load projections for the company's distribution planning. (Reference Connecticut

  20. 10 CFR 205.353 - Special investigation and reports.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Energy DEPARTMENT OF ENERGY OIL ADMINISTRATIVE PROCEDURES AND SANCTIONS Electric Power System Permits and Reports; Applications; Administrative Procedures and Sanctions Report of Major Electric Utility System... surrounding a specific power system disturbance, including the restoration procedures utilized. The report...

  1. History of Power Transmission Technologies and Future Prospects of Power System of Chubu Electric Power Company

    NASA Astrophysics Data System (ADS)

    Takagi, Hirotaka; Sugiyama, Tomonari; Zashibo, Toshihito

    Since its foundation, the power system of Chubu Electric Power Company (hereinafter CEPCO) has developed through power source and transmission facility formation to meet electricity demand increases. This development has been accompanied by progress in transmission technologies including capacity scale-up, compactification and power system stabilization to operate complex power systems. Now, changes in business situation due to electricity market liberalizatin may bring new challenges to future facility formation. This paper reviews CEPCO's history of power system formation and progress in transmission technologies, and describes future challenges.

  2. Advanced Stirling Convertor Control Unit Testing at NASA Glenn Research Center in the Radioisotope Power Systems System Integration Laboratory

    NASA Technical Reports Server (NTRS)

    Dugala, Gina M.; Taylor, Linda M.; Kussmaul, Michael; Casciani, Michael; Brown, Gregory; Wiser, Joel

    2017-01-01

    Future NASA missions could include establishing Lunar or Martian base camps, exploring Jupiters moons and travelling beyond where generating power from sunlight may be limited. Radioisotope Power Systems (RPS) provide a dependable power source for missions where inadequate sunlight or operational requirements make other power systems impractical. Over the past decade, NASA Glenn Research Center (GRC) has been supporting the development of RPSs. The Advanced Stirling Radioisotope Generator (ASRG) utilized a pair of Advanced Stirling Convertors (ASC). While flight development of the ASRG has been cancelled, much of the technology and hardware continued development and testing to guide future activities. Specifically, a controller for the convertor(s) is an integral part of a Stirling-based RPS. For the ASRG design, the controller maintains stable operation of the convertors, regulates the alternating current produced by the linear alternator of the convertor, provides a specified direct current output voltage for the spacecraft, synchronizes the piston motion of the two convertors in order to minimize vibration as well as manage and maintain operation with a stable piston amplitude and hot end temperature. It not only provides power to the spacecraft but also must regulate convertor operation to avoid damage to internal components and maintain safe thermal conditions after fueling. Lockheed Martin Coherent Technologies has designed, developed and tested an Engineering Development Unit (EDU) Advanced Stirling Convertor Control Unit (ACU) to support this effort. GRC used the ACU EDU as part of its non-nuclear representation of a RPS which also consists of a pair of Dual Advanced Stirling Convertor Simulator (DASCS), and associated support equipment to perform a test in the Radioisotope Power Systems System Integration Laboratory (RSIL). The RSIL was designed and built to evaluate hardware utilizing RPS technology. The RSIL provides insight into the electrical interactions between as many as 3 radioisotope power generators, associated control strategies, and typical electric system loads. The first phase of testing included a DASCS which was developed by Johns Hopkins UniversityApplied Physics Laboratory and simulates the operation and electrical behavior of a pair of ASCs in real time via a combination of hardware and software. Testing included the following spacecraft electrical energy storage configurations: capacitive, battery, and supercapacitor. Testing of the DASCS and ACU in each energy storage configuration included simulation of a typical mission profile, and transient voltage and current data during load turn-on/turn-off. Testing for these devices also included the initiation of several system faults such as short circuits, electrical bus over-voltage, under-voltage and a dead bus recovery to restore normal power operations. The goal of this testing was to verify operation of the ACU(s) when connected to a spacecraft electrical bus.

  3. Next-Generation Performance-Based Regulation: Emphasizing Utility Performance to Unleash Power Sector Innovation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Logan, Jeffrey S; Zinaman, Owen R; Littell, David

    Performance-based regulation (PBR) enables regulators to reform hundred-year-old regulatory structures to unleash innovations within 21st century power systems. An old regulatory paradigm built to ensure safe and reliable electricity at reasonable prices from capital-intensive electricity monopolies is now adjusting to a new century of disruptive technological advances that change the way utilities make money and what value customers expect from their own electricity company. Advanced technologies are driving change in power sectors around the globe. Innovative technologies are transforming the way electricity is generated, delivered, and consumed. These emerging technology drivers include renewable generation, distributed energy resources such as distributedmore » generation and energy storage, demand-side management measures such as demand-response, electric vehicles, and smart grid technologies and energy efficiency (EE). PBR enables regulators to recognize the value that electric utilities bring to customers by enabling these advanced technologies and integrating smart solutions into the utility grid and utility operations. These changes in the electric energy system and customer capacities means that there is an increasing interest in motivating regulated entities in other areas beyond traditional cost-of-service performance regulation. This report addresses best practices gleaned from more than two decades of PBR in practice, and analyzes how those best practices and lessons can be used to design innovative PBR programs. Readers looking for an introduction to PBR may want to focus on Chapters 1-5. Chapters 6 and 7 contain more detail for those interested in the intricate workings of PBR or particularly innovative PBR.« less

  4. From franchise to state commission: Regulation of the electric utility industry, 1907 to 1932

    NASA Astrophysics Data System (ADS)

    Reutter, Keith Alan

    1997-09-01

    Empirical research into the effects of regulation on industry has been around since the early 1960s. Over the last thirty plus years a number of interesting results have been brought to the fore. For instance, it has been found that regulation of the trucking industry limits entry and increases prices. A similar result has been pointed to in other industries such as commercial airlines and banking. The effect of the state commission form of regulation on the electric utility industry has been less conclusive. State commissions became dominant during the period 1910-1930, replacing local franchising as a method of regulating the electric utility industry. Two competing theories suggest why this transformation took place, the "capture" and "public interest" theories of regulation. The capture theory of regulation suggests that the electric utility industry demanded state regulation as a way to earn above normal profits and reduce competition. The public interest theory suggests the purpose of regulation by state commissions was to benefit the general public by forcing the industry to be competitive. Few studies have tried to determine which theory more aptly describes the actual events that took place. The empirical model developed in Chapter V, is an extension of the current literature. A set of simultaneous equations describing the natural gas and electricity markets is estimated using cross-sectional time-series data from 1907 to 1932. The effect of regulation on the electric utility industry is modeled with a dummy variable taking on a value of one to designate that a state commission had been established. The results suggest the capture theory of regulation best describes the period under study. The empirical estimates indicate that state commissions (1) reduced the rate at which the real price of electricity was falling, (2) had a negative impact on firms entering the industry, (3) had a positive influence on the cost of producing a kwh of electricity, and (4) prevented industry profits from declining. This research adds to the existing literature on industry regulation in general, and specifically to the literature on the effects of regulation of the electric utility industry.

  5. Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects

    DOE Data Explorer

    Schroeder, Jenna N.

    2013-08-31

    This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operational water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges.

  6. Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, D.H.; Laivenieks, M.; Guettler, M.V.

    1999-07-01

    Electrically reduced neutral red (NR) served as the sole source of reducing power for growth and metabolism of pure and mixed cultures of H[sub 2]-consuming bacteria in a novel electrochemical bioreactor system. NR was continuously reduced by the cathodic potential ([minus]1.5 V) generated from an electric current (0.3 to 1.0 mA), and it was subsequently oxidized by Actinobacillus succinogenes or by mixed methanogenic cultures. The A. succinogenes mutant strain FZ-6 did not grow on fumarate alone unless electrically reduced NR or hydrogen was present as the electron donor for succinate production. The mutant strain, unlike the wild type, lacked pyruvatemore » formate lyase and formate dehydrogenase. Electrically reduced NR also replaced hydrogen as the sole electron donor source for growth and production of methane from CO[sub 2]. These results show that both pure and mixed cultures can function as electrochemical devices when electrically generated reducing power can be used to drive metabolism. The potential utility of utilizing electrical reducing power in enhancing industrial fermentations or biotransformation processes is discussed.« less

  7. Modified Gold Electrode and Hollow Mn3O4 Nanoparticles as Electrode Materials for Microbial Fuel Cell Applications

    NASA Astrophysics Data System (ADS)

    Dhungana, Pramod

    Microbial fuel cell (MFC) technology has attracted great attention in the scientific community as it offers the possibility of extraction of electricity from wide range of soluble and dissolved organic waste or renewable biomass, including sludge, waste water and cellulosic biomass. Microbial fuel cells are devices that utilize microbial metabolic processes to convert chemical energy via the oxidation of organic substances to produce electric current. MFCs consist of two chambers, an anode and cathode, separated by ion-permeable materials. The efficiency of producing electricity using the MFC depends on several factors such as immobilization of microorganisms on anode, mode of electron transfer, types of substrate/fuel and effectiveness of cathode materials for oxygen reduction reaction (ORR). In this work, in order to immobilize the microorganisms on anode materials, we have investigated the surface modification of gold electrode (anode) using alkyl dithiol and aryl thiol with glucose. The modification processes were characterized by using contact angle measurements and proton nuclear magnetic resonance (NMR). In order to study the effectiveness of cathode materials for ORR, we have synthesized hollow Mn3O 4 nanoparticles which are electrically very poor. Therefore, the hollow nanoparticles were mixed with electrically conductive multi-walled carbon nanotube as support and optimized the mixing process. This composite material shows enhanced ORR activity in all types of pH conditions. In future, we will focus to integrate anode and cathode in MFC to check its efficiency to produce electricity.

  8. Overcoming the Range Limitation of Medium-Duty Battery Electric Vehicles through the use of Hydrogen Fuel-Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, E.; Wang, L.; Gonder, J.

    2013-10-01

    Battery electric vehicles possess great potential for decreasing lifecycle costs in medium-duty applications, a market segment currently dominated by internal combustion technology. Characterized by frequent repetition of similar routes and daily return to a central depot, medium-duty vocations are well positioned to leverage the low operating costs of battery electric vehicles. Unfortunately, the range limitation of commercially available battery electric vehicles acts as a barrier to widespread adoption. This paper describes the National Renewable Energy Laboratory's collaboration with the U.S. Department of Energy and industry partners to analyze the use of small hydrogen fuel-cell stacks to extend the range ofmore » battery electric vehicles as a means of improving utility, and presumably, increasing market adoption. This analysis employs real-world vocational data and near-term economic assumptions to (1) identify optimal component configurations for minimizing lifecycle costs, (2) benchmark economic performance relative to both battery electric and conventional powertrains, and (3) understand how the optimal design and its competitiveness change with respect to duty cycle and economic climate. It is found that small fuel-cell power units provide extended range at significantly lower capital and lifecycle costs than additional battery capacity alone. And while fuel-cell range-extended vehicles are not deemed economically competitive with conventional vehicles given present-day economic conditions, this paper identifies potential future scenarios where cost equivalency is achieved.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bird, Lori; Kaiser, Marshall

    In the early 1990s, only a handful of utilities offered their customers a choice of purchasing electricity generated from renewable energy sources. Today, more than 750 utilities—or about 25% of all utilities nationally—provide their customers a “green power” option. Through these programs, more than 70 million customers have the ability to purchase renewable energy to meet some portion or all of their electricity needs—or make contributions to support the development of renewable energy resources. Typically, customers pay a premium above standard electricity rates for this service. This report presents year-end 2006 data on utility green pricing programs, and examines trendsmore » in consumer response and program implementation over time. The data in this report, which were obtained via a questionnaire distributed to utility green pricing program managers, can be used by utilities to benchmark the success of their green power programs.« less

  10. Longitudinal safety evaluation of electric vehicles with the partial wireless charging lane on freeways.

    PubMed

    Li, Ye; Wang, Wei; Xing, Lu; Fan, Qi; Wang, Hao

    2018-02-01

    As an environment friendly transportation mode, the electric vehicle (EV) has drawn an increasing amount of attention from governments, vehicle manufactories and researchers recently. One of the biggest issue impeding EV's popularization associates with the charging process. The wireless charging lane (WCL) has been proposed as a convenient charging facility for EVs. Due to the high costs, the application of WCL on the entire freeways is impractical in the near future, while the partial WCL (PWCL) may be a feasible solution. This study aims to evaluate longitudinal safety of EVs with PWCL on freeways based on simulations. The simulation experiments are firstly designed, including deployment of PWCL on freeways and distribution of state of charge (SOC) of EVs. Then, a vehicle behavior model for EVs is proposed based on the intelligent driver model (IDM). Two surrogate safety measures, derived from time-to-collision (TTC), are utilized as indicators for safety evaluations. Sensitivity analysis is also conducted for related factors. Results show that the distribution of EVs' SOC significantly affect longitudinal safety when the PWCL is utilized. The low SOC in traffic consisting of EVs has the negative effect on longitudinal safety. The randomness and incompliance of EV drivers worsens the safety performance. The sensitivity analysis indicates that the larger maximum deceleration rate results in the higher longitudinal crash risks of EVs, while the length of PWCL has no monotonous effect. Different TTC thresholds also show no impact on results. A case study shows the consistent results. Based on the findings, several suggestions are discussed for EVs' safety improvement. Results of this study provide useful information for freeway safety when EVs are applied in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. A customer oriented systematic framework to extract business strategy in Indian electricity services

    NASA Astrophysics Data System (ADS)

    Satapathy, Suchismita; Mishra, Pravudatta

    2013-11-01

    Competition in the electric service industry is highlighting the importance of a number of issues affecting the nature and quality of customer service. The quality of service(s) provided to electricity customers may be enhanced by competition, if doing so offers service suppliers a competitive advantage. On the other hand, service quality offered to some consumers could decline if utilities focus their attention on those customers most likely to exercise choice, while reducing effort and investment to serve customers less likely to choose alternatives. Service quality is defined as the way in which the utility interacts with and responds to the needs of its customers. To achieve maximum consumer satisfaction in electricity service, This paper has designed a framework by QFD by measuring service quality of electricity utility sector in ANN and also find interrelationship between these design requirements by ISM.

  12. Electrical service reliability: the customer perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samsa, M.E.; Hub, K.A.; Krohm, G.C.

    1978-09-01

    Electric-utility-system reliability criteria have traditionally been established as a matter of utility policy or through long-term engineering practice, generally with no supportive customer cost/benefit analysis as justification. This report presents results of an initial study of the customer perspective toward electric-utility-system reliability, based on critical review of over 20 previous and ongoing efforts to quantify the customer's value of reliable electric service. A possible structure of customer classifications is suggested as a reasonable level of disaggregation for further investigation of customer value, and these groups are characterized in terms of their electricity use patterns. The values that customers assign tomore » reliability are discussed in terms of internal and external cost components. A list of options for effecting changes in customer service reliability is set forth, and some of the many policy issues that could alter customer-service reliability are identified.« less

  13. 27. INTERIOR OF UTILITY ROOM SHOWING ELECTRICAL JUNCTION CABINET, HOPPER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. INTERIOR OF UTILITY ROOM SHOWING ELECTRICAL JUNCTION CABINET, HOPPER WINDOW, OPEN DOOR TO KITCHEN NO. 2, AND METAL SINK. VIEW TO SOUTHWEST. - Bishop Creek Hydroelectric System, Plant 6, Cashbaugh-Kilpatrick House, Bishop Creek, Bishop, Inyo County, CA

  14. 77 FR 36996 - South Mississippi Electric Cooperative: Plant Ratcliff, Kemper County Integrated Gasification...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-20

    ... DEPARTMENT OF AGRICULTURE Rural Utilities Service South Mississippi Electric Cooperative: Plant Ratcliff, Kemper County Integrated Gasification Combined-Cycle (IGCC) Project AGENCY: Rural Utilities... Combined-Cycle (IGCC) Project currently under construction in Kemper County, Mississippi (hereinafter ``the...

  15. Update on the Puerto Rico Electric Power Authority`s spinning reserve battery system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, P.A.

    1996-11-01

    The Puerto Rico Electric Power Authority completed start-up testing and began commercial operation of a 20MW/14MWh battery energy storage facility in April 1995. The battery system was installed to provide rapid spinning reserve and frequency control for the utility`s island electrical system. This paper outlines the needs of an island utility for rapid spinning reserve; identifies Puerto Rico`s unique challenges; reviews the technical and economic analyses that justified installation of a battery energy system; describes the storage facility that was installed; and presents preliminary operating results of the facility.

  16. Artificial lightweight aggregates as utilization for future ashes - A case study.

    PubMed

    Sarabèr, Angelo; Overhof, Robert; Green, Terry; Pels, Jan

    2012-01-01

    In the future, more electricity in the Netherlands will be produced using coal with co-combustion. Due to this, the generated annual ash volume will increase and the chemical composition will be influenced. One of the options for utilization if present markets are saturated and for use of fly ashes with different compositions, is as raw material for lightweight aggregates. This was selected as one of the best utilizations options regarding potential ash volume to be applied, environmental aspects and status of technology. Because of this, a study has been performed to assess the potential utilization of fly ash for the production of lightweight aggregate. Lightweight aggregate has been produced in a laboratory scale rotary kiln. The raw material consisted of class F fly ash with high free lime content. An addition of 8% clay was necessary to get green pellets with sufficient green strength. The basic properties of the produced lightweight aggregate and its behaviour in concrete have been investigated. The concrete has a good compressive strength and its leaching behaviour meets the most stringent requirements of Dutch environmental regulations. The carbon foot print of concrete will be negatively influenced if only the concrete itself is taken into account, but the reduction of the volume weight has advantages regarding design, transport emissions and isolation properties which may counteract this. In the Dutch situation the operational costs are higher than expected potential selling price for the LWA, which implies that the gate fee for the fly ash is negative. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Impacts of High Variable Renewable Energy Futures on Wholesale Electricity Prices, and on Electric-Sector Decision Making

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seel, Joachim; Mills, Andrew D.; Wiser, Ryan H.

    Increasing penetrations of variable renewable energy (VRE) can affect wholesale electricity price patterns and make them meaningfully different from past, traditional price patterns. Many long-lasting decisions for supply- and demand-side electricity infrastructure and programs are based on historical observations or assume a business-as-usual future with low shares of VRE. Our motivating question is whether certain electric-sector decisions that are made based on assumptions reflecting low VRE levels will still achieve their intended objective in a high VRE future. We qualitatively describe how various decisions may change with higher shares of VRE and outline an analytical framework for quantitatively evaluating themore » impacts of VRE on long-lasting decisions. We then present results from detailed electricity market simulations with capacity expansion and unit commitment models for multiple regions of the U.S. for low and high VRE futures. We find a general decrease in average annual hourly wholesale energy prices with more VRE penetration, increased price volatility and frequency of very low-priced hours, and changing diurnal price patterns. Ancillary service prices rise substantially and peak net-load hours with high capacity value are shifted increasingly into the evening, particularly for high solar futures. While in this report we only highlight qualitatively the possible impact of these altered price patterns on other demand- and supply-side electric sector decisions, the core set of electricity market prices derived here provides a foundation for later planned quantitative evaluations of these decisions in low and high VRE futures.« less

  18. Modelling the cost-utility of bio-electric stimulation therapy compared to standard care in the treatment of elderly patients with chronic non-healing wounds in the UK.

    PubMed

    Clegg, John P; Guest, Julian F

    2007-04-01

    To estimate the cost-utility of bio-electric stimulation therapy (Posifect) compared to standard care in elderly patients with chronic, non-healing wounds of > 6 months duration, from the perspective of the National Health Service (NHS) in the UK. Clinical and resource use data from a 16 week clinical evaluation of bio-electric stimulation therapy among patients who had recalcitrant wounds were combined with utility data obtained from a standard gamble analysis to construct a 16 week Markov model. The model considers the decision by a clinician to continue with a patient's previous care plan or treat with bio-electric stimulation therapy. Unit resource costs at 2005/2006 prices were applied to the resource utilisation estimates within the model, enabling the cost-utility of bio-electric stimulation therapy compared to standard care to be estimated. The acquisition cost of Posifect had not been decided at the time of performing this study. Hence, the base case analysis used a cost of 50 pounds per dressing. 33% of all wounds are expected to heal within 16 weeks after the start of bio-electric stimulation therapy. Consequently, using bio-electric stimulation therapy is expected to lead to a 51% decrease in the number of domiciliary clinician visits, from 4.7 to 2.3 per week. The model also showed that using bio-electric stimulation therapy instead of patients' standard care is expected to reduce the NHS cost of managing them by 16% from 2287 pounds (95% CI: 1838 pounds; 2735 pounds) to 1921 pounds (95% CI: 1609 pounds; 2233 pounds) and result in a health gain of 0.023 QALYs over 16 weeks. Hence, bio-electric stimulation therapy was found to be a dominant treatment. Sensitivity analyses demonstrated that the cost-utility of using bio-electric stimulation therapy relative to standard care is very sensitive to the acquisition cost of the therapy, the acquisition cost of patients' drugs and the number of clinician visits and less sensitive to utility values and the acquisition cost of other dressings. Within the limitations of the model, bio-electric stimulation therapy is expected to afford the NHS a cost-effective dressing compared to standard care in the management of chronic non-healing wounds of > 6 months duration. Bio-electric stimulation therapy's acquisition cost is expected to be offset by a reduction in the requirement for domiciliary clinician visits, leading to a release of NHS resources for use elsewhere in the system, thereby generating an increase in NHS efficiency.

  19. Hybrid Energy: Combining Nuclear and Other Energy Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jong Suk; Garcia, Humberto E.

    2015-02-01

    The leading cause of global climate change is generally accepted to be growing emissions of greenhouse gas (GHG) as a result of increased use of fossil fuels [1]. Among various sources of GHG, the global electricity supply sector generates the largest share of GHG emissions (37.5% of total CO2 emissions) [2]. Since the current electricity production heavily relies on fossil fuels, it is envisioned that bolstering generation technologies based on non-emitting energy sources, i.e., nuclear and/or renewables could reduce future GHG emissions. Integrated nuclear-renewable hybrid energy systems HES) are very-low-emitting options, but they are capital-intensive technologies that should operate atmore » full capacities to maximize profits. Hence, electricity generators often pay the grid to take electricity when demand is low, resulting in negative profits for many hours per year. Instead of wasting an excess generation capacity at negative profit during off-peak hours when electricity prices are low, nuclear-renewable HES could result in positive profits by storing and/or utilizing surplus thermal and/or electrical energy to produce useful storable products to meet industrial and transportation demands. Consequently, it is necessary (1) to identify key integrated system options based on specific regions and (2) to propose optimal operating strategy to economically produce products on demand. In prioritizing region-specific HES options, available resources, markets, existing infrastructures, and etc. need to be researched to identify attractive system options. For example, the scarcity of water (market) and the availability of abundant solar radiation make solar energy (resource) a suitable option to mitigate the water deficit the Central-Southern region of the U.S. Thus, a solar energy-driven desalination process would be an attractive option to be integrated into a nuclear power plant to support the production of fresh water in this region. In this work, we introduce a particular HES option proposed for a specific U.S. region and briefly describe our modeling assumptions and procedure utilized for its analysis. Preliminary simulation results are also included addressing several technical characteristics of the proposed nuclear-renewable HES.« less

  20. Renewable Electricity Futures (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeMeo, E.

    2012-08-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented at Wind Powering America States Summit. The Summit, which follows the American Wind Energy Association's (AWEA's) annual WINDPOWER Conference and Exhibition, provides state Wind Working Groups, state energy officials, U.S. Energy Department and national laboratory representatives, and professional and institutional partners an opportunity to review successes, opportunities, and challenges for wind energy and plan future collaboration.

Top