Sample records for future energy usage

  1. The Effectiveness of Taiwan Building Energy Regulation under the influence of Future Climate

    NASA Astrophysics Data System (ADS)

    Weng, Yu-Teng; Huang, Kuo-Tsang

    2017-04-01

    Building energy consumption comprises circa 40% of the national annual energy usage in Taiwan, and the majority proportion is attributed to the cooling apparatus usage. As cooling energy is closely related to the outdoor climate, it is expected that the future global climate change would amplify its demand. Considering the building energy regulation criteria are the minimum requirements that the building has to be complied with, this study tried to investigate whether the current building energy regulation in Taiwan, initiated in 2013, would still be capable of maintaining the energy use in the future as today's level. The research adopted EnergyPlus to simulate the annual cooling energy use of several virtual office building cases with the constructed hourly future weather data under future climate change scenarios of RCP45 and RCP85 defined by IPCC. The virtual building cases are generated by a structured orthogonal array with each case is constituted by 10 building design parameters. The results revealed that the building energy consumption based on the current regulation criteria failed to maintain at the same level in the future as oppose to nowadays. By comparing to the current cooling energy usage, it would rise by 13% and 22% in RCP45 and RCP85, respectively, at the end of this century. This research further parametrically studied the potential cooling energy mitigation strategies and proposed effective building envelope design schemes in order to neutralize the future building energy increase.

  2. Energy profiles of four American states

    NASA Astrophysics Data System (ADS)

    Song, Jiamei

    2018-06-01

    Energy production and usage are the major portion of any economy. With the constant consumption of the polluting energy and the deteriorating environment, people are paying more and more attention to clean, renewable energy. Based on autoregressive model and TOPSIS, though analyzing the past data, this paper establishes the energy profiles of four American states from 1960 to 2009, predict the energy profiles for 2025 and 2050 and obtain the ideal criteria for future clean, renewable energy usage at last. This study finds that by analyzing and predicting the energy profile, human beings can better understand and grasp the trend of energy development and take appropriate measures to deal with future energy trends.

  3. How Does EIA Estimate Energy Consumption and End Uses in U.S. Homes?

    EIA Publications

    2011-01-01

    The Energy Information Administration (EIA) administers the Residential Energy Consumption Survey (RECS) to a nationally representative sample of housing units. Specially trained interviewers collect energy characteristics on the housing unit, usage patterns, and household demographics. This information is combined with data from energy suppliers to these homes to estimate energy costs and usage for heating, cooling, appliances and other end uses information critical to meeting future energy demand and improving efficiency and building design.

  4. The Future of American Power: Energy and National Security

    DTIC Science & Technology

    2010-02-17

    8 What does it all mean ? .................................................................................................................. 11...renewable energy generation and usage within the United States. What does it all mean ? The United States must prepare for a future where the use of

  5. Usage of energy reserves in crustaceans during starvation: status and future directions.

    PubMed

    Sánchez-Paz, Arturo; García-Carreño, Fernando; Muhlia-Almazán, Adriana; Peregrino-Uriarte, Alma B; Hernández-López, Jorge; Yepiz-Plascencia, Gloria

    2006-04-01

    In this paper, we review the current knowledge about the usage of carbohydrates, lipids and proteins as energy source by marine crustaceans during starvation. Crustaceans are a large and diverse group including some economically important species. The efforts to culture them for human consumption has prompted the interest to understand the preferences of energy sources to be applied for feed formulation and cost reduction. Important differences have been found among species and appear to be related not only to the biochemistry and physiology of nutrition, but also to the living environment of the crustaceans. Furthermore, crustaceans undergo morphological, physiological and behavioral changes due to their natural growing process that affect their feeding habits, an aspect that should be carefully considered. We discuss the current information on marine crustaceans about energy usage and describe areas of future research, where starvation studies render important insights.

  6. Energy study of rail passenger transportation. Volume 4. Efficiency improvements and industry future. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henderson, C.; Wilhelm, J.P.

    1979-08-01

    Measures that offer promise of efficiency improvements or economy in energy usage in rail passenger transportation are identified and described; the future of rail passenger transportation in the US is discussed; and possible future roles of Federal agencies are discussed.

  7. Lean energy analysis of CNC lathe

    NASA Astrophysics Data System (ADS)

    Liana, N. A.; Amsyar, N.; Hilmy, I.; Yusof, MD

    2018-01-01

    The industrial sector in Malaysia is one of the main sectors that have high percentage of energy demand compared to other sector and this problem may lead to the future power shortage and increasing the production cost of a company. Suitable initiatives should be implemented by the industrial sectors to solve the issues such as by improving the machining system. In the past, the majority of the energy consumption in industry focus on lighting, HVAC and office section usage. Future trend, manufacturing process is also considered to be included in the energy analysis. A study on Lean Energy Analysis in a machining process is presented. Improving the energy efficiency in a lathe machine by enhancing the cutting parameters of turning process is discussed. Energy consumption of a lathe machine was analyzed in order to identify the effect of cutting parameters towards energy consumption. It was found that the combination of parameters for third run (spindle speed: 1065 rpm, depth of cut: 1.5 mm, feed rate: 0.3 mm/rev) was the most preferred and ideal to be used during the turning machining process as it consumed less energy usage.

  8. Energy monitoring system based on human activity in the workplace

    NASA Astrophysics Data System (ADS)

    Mustafa, Nur Hanim; Husain, Mohd Nor; Aziz, Mohamad Zoinol Abidin Abdul; Othman, Mohd Azlishah; Malek, Fareq

    2015-05-01

    Human behaviors always related to day routine activities in a smart house directly give the significant factor to manage energy usage in human life. An Addition that, the factor will contribute to the best efficiency of the system. This paper will focus on the monitoring efficiency based on duration time in office hours around 8am until 5pm which depend on human behavior at working place. Besides that, the correlation coefficient method is used to show the relation between energy consumption and energy saving based on the total hours of time energy spent. In future, the percentages of energy monitoring system usage will be increase to manage energy saving based on human behaviors. This scenario will help to see the human activity in the workplace in order to get the energy saving and support world green environment.

  9. Energy monitoring based on human activity in the workplace

    NASA Astrophysics Data System (ADS)

    Mustafa, N. H.; Husain, M. N.; Abd Aziz, M. Z. A.; Othman, M. A.; Malek, F.

    2014-04-01

    Human behavior is the most important factor in order to manage energy usage. Nowadays, smart house technology offers a better quality of life by introducing automated appliance control and assistive services. However, human behaviors will contribute to the efficiency of the system. This paper will focus on monitoring efficiency based on duration time in office hours around 8am until 5pm which depend on human behavior atb the workplace. Then, the correlation coefficient method is used to show the relation between energy consumption and energy saving based on the total hours of time energy spent. In future, the percentages of energy monitoring system usage will be increase to manage energy in efficient ways based on human behaviours. This scenario will lead to the positive impact in order to achieve the energy saving in the building and support the green environment.

  10. Is rapid growth in Internet usage environmentally sustainable for Australia? An empirical investigation.

    PubMed

    Salahuddin, Mohammad; Alam, Khorshed; Ozturk, Ilhan

    2016-03-01

    This study estimates the short- and long-run effects of Internet usage and economic growth on carbon dioxide (CO2) emissions using annual time series macro data for Australia for the period 1985-2012. Autoregressive distributive lag (ARDL) bounds and Gregory-Hansen structural break cointegration tests are applied. ARDL estimates indicate no significant long-run relationship between Internet usage and CO2 emissions, which implies that the rapid growth in Internet usage is still not an environmental threat for Australia. The study further indicates that higher level of economic growth is associated with lower level of CO2 emissions; however, Internet usage and economic growth have no significant short-run relationship with CO2 emissions. Financial development has both short-run and long-run significant positive association with CO2 emissions. The findings offer support in favor of energy efficiency gains and a reduction in energy intensity in Australia. However, impulse response and variance decomposition analysis suggest that Internet usage, economic growth and financial development will continue to impact CO2 emissions in the future, and as such, this study recommends that in addition to the existing measures to combat CO2 emissions, Australia needs to exploit the potential of the Internet not only to reduce its own carbon footprint but also to utilize information and communication technology (ICT)-enabled emissions abatement potential to reduce emissions in various other sectors across the economy, such as, power, renewable energy especially in solar and wind energy, agriculture, transport and service.

  11. Optimal control of Formula One car energy recovery systems

    NASA Astrophysics Data System (ADS)

    Limebeer, D. J. N.; Perantoni, G.; Rao, A. V.

    2014-10-01

    The utility of orthogonal collocation methods in the solution of optimal control problems relating to Formula One racing is demonstrated. These methods can be used to optimise driver controls such as the steering, braking and throttle usage, and to optimise vehicle parameters such as the aerodynamic down force and mass distributions. Of particular interest is the optimal usage of energy recovery systems (ERSs). Contemporary kinetic energy recovery systems are studied and compared with future hybrid kinetic and thermal/heat ERSs known as ERS-K and ERS-H, respectively. It is demonstrated that these systems, when properly controlled, can produce contemporary lap time using approximately two-thirds of the fuel required by earlier generation (2013 and prior) vehicles.

  12. Energy Games - A Grade 5 Competition, The Data Analysis and Lessons Learned

    NASA Astrophysics Data System (ADS)

    Kao, W. H.

    2016-12-01

    ISF Academy, a K-G12 school in Hong Kong with over 1500 students and currently spanning 3 buildings, is retrofitting the school with an energy tracking system in three phases. The first phase that happened during February to June 2016, has included retrofitting nine Grade 5 classrooms. In this program, the daily energy usage data from these classrooms were shown. The Grade 5 students received feedback on their energy use in real time, as they competed over four months in their homeroom classes to lower their electrical use, and subsequently their carbon footprint. This competition has successfully given the 180 Grade 5 students initiative to decrease their energy use, leading to a significant decrease in energy usage throughout this competition, compared to the baseline recorded in late 2015. The winning classroom's total energy usage was around 30% lower than the average total energy usage, showing that by using energy efficiently, energy usage in a school can be decreased by a lot. The energy tracking system installed and maintained by from Global Design Corporation utilizes uniquely identified current detectors attached to circuit breakers, to monitor electrical use of individual circuits. The detectors monitor the energy used for classroom lighting, fans and plugs, as well as the air conditioners. Further analysis can also be calculated with current data that is collected in the Phase 1 experiment, such as calculating the carbon emissions reduction throughout the school year, providing possible class learning activities and also aiding in future energy use and carbon footprint predictions. This data collected will help refine phase 2 and 3 of the installation, expanding the system to more buildings and also giving insight to the rollout of the system to the whole school when the systems are fully in place. In Phase 2, the energy tracking system would be expanded to all classrooms in the old buildings, while in Phase 3, the system would be expanded the all classrooms throughout the whole campus.

  13. A review on potential use of low-temperature water in the urban environment as a thermal-energy source

    NASA Astrophysics Data System (ADS)

    Laanearu, J.; Borodinecs, A.; Rimeika, M.; Palm, B.

    2017-10-01

    The thermal-energy potential of urban water sources is largely unused to accomplish the up-to-date requirements of the buildings energy demands in the cities of Baltic Sea Region. A reason is that the natural and excess-heat water sources have a low temperature and heat that should be upgraded before usage. The demand for space cooling should increase in near future with thermal insulation of buildings. There are a number of options to recover heat also from wastewater. It is proposed that a network of heat extraction and insertion including the thermal-energy recovery schemes has potential to be broadly implemented in the region with seasonally alternating temperature. The mapping of local conditions is essential in finding the suitable regions (hot spots) for future application of a heat recovery schemes by combining information about demands with information about available sources. The low-temperature water in the urban environment is viewed as a potential thermal-energy source. To recover thermal energy efficiently, it is also essential to ensure that it is used locally, and adverse effects on environment and industrial processes are avoided. Some characteristics reflecting the energy usage are discussed in respect of possible improvements of energy efficiency.

  14. From Tragedy to Triumph - Rebuilding Green Homes after Disaster (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2009-04-01

    Energy Efficiency/Renewable Energy Fact Sheets, No. 1. Series to include practical, useful info to help people change their behavior around energy usage and "greenness". Greensburg is hanging its future on sustainable development; these fact sheet sheets should help citizens understand what they can do to be a part of that focus. Fact Sheets cover: saving energy and water, using renewable energy (particular interest in small wind), driving "green", general sustainability, living green.

  15. Efficient Use of Electricity.

    ERIC Educational Resources Information Center

    Fickett, Arnold P.; And Others

    1990-01-01

    Discussed are advanced technologies which may offer an opportunity to meet the world's future energy needs while minimizing the environmental impact. Savings to both suppliers and consumers are described. International electricity usage is compared. Government standards for the manufacture of electrical products in the United States are…

  16. Energy and the English Industrial Revolution.

    PubMed

    Wrigley, E A

    2013-03-13

    Societies before the Industrial Revolution were dependent on the annual cycle of plant photosynthesis for both heat and mechanical energy. The quantity of energy available each year was therefore limited, and economic growth was necessarily constrained. In the Industrial Revolution, energy usage increased massively and output rose accordingly. The energy source continued to be plant photosynthesis, but accumulated over a geological age in the form of coal. This poses a problem for the future. Fossil fuels are a depleting stock, whereas in pre-industrial time the energy source, though limited, was renewed each year.

  17. Monitoring Building Energy Systems at NASA Centers Using NASA Earth Science data, CMIP5 climate data products and RETScreen Expert Clean Energy Tool

    NASA Astrophysics Data System (ADS)

    Stackhouse, P. W., Jr.; Ganoe, R. E.; Westberg, D. J.; Leng, G. J.; Teets, E.; Hughes, J. M.; De Young, R.; Carroll, M.; Liou, L. C.; Iraci, L. T.; Podolske, J. R.; Stefanov, W. L.; Chandler, W.

    2016-12-01

    The NASA Climate Adaptation Science Investigator team is devoted to building linkages between NASA Earth Science and those within NASA responsible for infrastructure assessment, upgrades and planning. One of the focus areas is assessing NASA center infrastructure for energy efficiency, planning to meet new energy portfolio standards, and assessing future energy needs. These topics intersect at the provision of current and predicted future weather and climate data. This presentation provides an overview of the multi-center effort to access current building energy usage using Earth science observations, including those from in situ measurements, satellite measurement analysis, and global model data products as inputs to the RETScreen Expert, a clean energy decision support tool. RETScreen® Expert, sponsored by Natural Resources Canada (NRCan), is a tool dedicated to developing and providing clean energy project analysis software for the feasibility design and assessment of a wide range of building projects that incorporate renewable energy technologies. RETScreen Expert requires daily average meteorological and solar parameters that are available within less than a month of real-time. A special temporal collection of meteorological parameters was compiled from near-by surface in situ measurements. These together with NASA data from the NASA CERES (Clouds and Earth's Radiance Energy System)/FLASHFlux (Fast Longwave and SHortwave radiative Fluxes) provides solar fluxes and the NASA GMAO (Global Modeling and Assimilation Office) GEOS (Goddard Earth Observing System) operational meteorological analysis are directly used for meteorological input parameters. Examples of energy analysis for a few select buildings at various NASA centers are presented in terms of the energy usage relationship that these buildings have with changes in their meteorological environment. The energy requirements of potential future climates are then surveyed for a range of changes using the most recent CMIP5 global climate model data output.

  18. Analysis of the Future Effects of the Fuel Shortage and Increased Small Car Usage Upon Traffic Deaths and Injuries

    DOT National Transportation Integrated Search

    1976-01-01

    The Automotive Energy Efficiency Project is concerned with the examination of technological options for improving the fuel efficiency of highway vehicles. This examination includes an analysis of the effects of existing and proposed mandated standard...

  19. HEP Outreach, Inreach, and Web 2.0

    NASA Astrophysics Data System (ADS)

    Goldfarb, Steven

    2011-12-01

    I report on current usage of multimedia and social networking "Web 2.0" tools for Education and Outreach in high-energy physics, and discuss their potential for internal communication within large worldwide collaborations, such as those of the LHC. Following a brief description of the history of Web 2.0 development, I present a survey of the most popular sites and describe their usage in HEP to disseminate information to students and the general public. I then discuss the potential of certain specific tools, such as document and multimedia sharing sites, for boosting the speed and effectiveness of information exchange within the collaborations. I conclude with a brief discussion of the successes and failures of these tools, and make suggestions for improved usage in the future.

  20. Complete Cycle Experiments Using the Adiabatic Gas Law Apparatus

    ERIC Educational Resources Information Center

    Kutzner, Mickey D.; Plantak, Mateja

    2014-01-01

    The ability of our society to make informed energy-usage decisions in the future depends partly on current science and engineering students retaining a deep understanding of the thermodynamics of heat engines. Teacher imaginations and equipment budgets can both be taxed in the effort to engage students in hands-on heat engine activities. The…

  1. Renewable Energy Feasibility Study Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rooney, Tim

    2013-10-30

    The Gila River Indian Community (GRIC or the Community) contracted the ANTARES Group, Inc. (“ANTARES”) to assess the feasibility of solar photovoltaic (PV) installations. A solar energy project could provide a number of benefits to the Community in terms of potential future energy savings, increased employment, environmental benefits from renewable energy generation and usage, and increased energy self-sufficiency. The study addresses a number of facets of a solar project’s overall feasibility, including: Technical appropriateness; Solar resource characteristics and expected system performance; Levelized cost of electricity (LCOE) economic assessment. The Gila River Indian Community (GRIC or the Community) contracted the ANTARESmore » Group, Inc. (“ANTARES”) to prepare a biomass resource assessment study and evaluate the feasibility of a bioenergy project on Community land. A biomass project could provide a number of benefits to the Community in terms of increased employment, environmental benefits from renewable energy generation and usage, and increased energy self-sufficiency. The study addresses a number of facets of a biomass project’s overall feasibility, including: Resource analysis and costs; Identification of potential bioenergy projects; Technical and economic (levelized cost of energy) modeling for selected project configuration.« less

  2. The Future of Low-Carbon Transportation Fuels

    NASA Astrophysics Data System (ADS)

    Yang, Christopher; Yeh, Sonia

    2011-11-01

    Petroleum fuel uses make up essentially all of transportation fuel usage today and will continue to dominate transportation fuel usage well into future without any major policy changes. This chapter focuses on low-carbon transportation fuels, specifically, biofuels, electricity and hydrogen, that are emerging options to displace petroleum based fuels. The transition to cleaner, lower carbon fuel sources will need significant technology advancement, and sustained coordination efforts among the vehicle and fuel industry and policymakers/regulators over long period of time in order to overcome market barriers, consumer acceptance, and externalities of imported oil. We discuss the unique infrastructure challenges, and compare resource, technology, economics and transitional issues for each of these fuels. While each fuel type has important technical and implementation challenges to overcome (including vehicle technologies) in order to contribute a large fraction of our total fuel demand, it is important to note that a portfolio approach will give us the best chance of meeting stringent environmental and energy security goals for a sustainable transportation future.

  3. Modeling & Verifying Aircraft Paint Hangar Airflow to Reduce Green House Gas and Energy Usage while Protecting Occupational Health Energy

    DTIC Science & Technology

    2015-05-30

    provides a smnmaty of results from the site visits and discusses areas of potential future research. 1S. SUBJECT TERMS Aircraft Paint Hangar...Airlift Wing ACCPFF ACGIH Aircraft Corrosion Control and Paint Finishing Facility American Conference of Governmental Industrial Hygienists ACS Cross...velocity did not increase exposure resulted in an interest in expanding the project to encompass more sites around the U.S. with support from the

  4. Issues in International Energy Consumption Analysis: Electricity Usage in India’s Housing Sector

    EIA Publications

    2014-01-01

    India offers a unique set of features for studying electricity use in the context of a developing country. First, it has a rapidly developing economy with high yearly growth rates in gross domestic product (GDP). Second, it has the second -largest population in the world and is likely to have the largest population in the future. Third, its electric system is maturing—with known difficulties (outages, shortages, issues with reliability and quality) that are characteristic of a developing country. This article focuses on electricity use in the residential sector of India and discusses key trends and provides an overview of available usage estimates from various sources. Indian households are an interesting environment where many of India’s unique features interact. The recent economic gains correlate with rising incomes and possible changes in living standards, which could affect electricity or other energy use within households. Additionally, the maturing electric system and large population in India both offer opportunities to study a range of interactions between electrification and electricity usage in a developing country.

  5. Energy Tracking in Classrooms - A Real Time Experiment with Grade 5 Students

    NASA Astrophysics Data System (ADS)

    Lam, H. M.; Ho, F.

    2015-12-01

    ISF Academy, a K-G12 school in Hong Kong with over 1500 students and currently spanning 3 buildings, is retrofitting the school with an energy tracking system in three phases. The first phase during the fall of 2015 will include retrofitting eight Grade 5 classrooms. This new program will show the daily energy usage data from these classrooms. The Grade 5 students receive feedback on their energy use in real time as they compete over two months in their homeroom classes to lower their electrical use, and subsequently their carbon footprint. This competition style initiative will teach the 180 Grade 5 students about their energy usage in a fun and informative manner. ISF Academy has over 400 air-conditioners and we have already determined that the air conditioners are the largest single use of energy in the school. The energy tracking system installed and maintained by from Global Design Corporation utilizes uniquely identified current detectors attached to circuit breakers, to monitor electrical use of individual circuits. These detectors will also monitor the energy used for classroom lighting, fans and plugs, as well as the air conditioners. The system has been installed and the Grade 5 classrooms averaged between 40 kWh and 120 kWh of usage in May 2015. This data will be used as the baseline for the competition. Further analysis can also be done with the data, such as calculating the carbon emissions reduction throughout the school year, providing possible class learning activities and also aiding in future energy use and carbon footprint predictions. The data collected will help refine phase 2 and 3 of the installation, expanding the system to more buildings and also giving insight to the rollout of the system to the whole school when the systems are fully in place.

  6. World market: A survey of opportunities for advanced coal-fired systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holt, N.A.H.

    1995-06-01

    Although there is a wide range of forecasts for the future of World energy demand and consumption over the next 25 years, all forecasts show marked increases being required for all forms of fossil fuels even when optimistic projections are made for the future adoption of Nuclear and Renewable energy. It is also generally expected that coal usage will in this period experience its greatest growth (a doubling) in the Asia-Pacific region dominated demographically by China and India. In this paper, energy projections and the extent and nature of the coal reserves available worldwide are examined. While most coal technologiesmore » can handle a variety of feedstocks, there are often economic factors that will determine the preferred selection. The matching of technology to coal type and other factors is examined with particular reference to the Asia Pacific region. Oil usage is similarly forecast to experience a comparable growth in this region. Over 70% of the World`s oil reserves are heavy oils and refinery crudes are increasing in gravity and sulfur content. The clean coal technologies of gasification and fluid bed combustion can also use low value petroleum residuals as feedstocks. There is therefore a nearer term market opportunity to incorporate such technologies into cogeneration and coproduction schemes adjacent to refineries resulting in extremely efficient use of these resources.« less

  7. Influences of water quality and climate on the water-energy nexus: A spatial comparison of two water systems.

    PubMed

    Stang, Shannon; Wang, Haiying; Gardner, Kevin H; Mo, Weiwei

    2018-07-15

    As drinking water supply systems plan for sustainable management practices, impacts from future water quality and climate changes are a major concern. This study aims to understand the intraannual changes of energy consumption for water treatment, investigate the relative importance of water quality and climate indicators on energy consumption for water treatment, and predict the effects of climate change on the embodied energy of treated, potable water at two municipal drinking water systems located in the northeast and southeast US. To achieve this goal, a life cycle assessment was first performed to quantify the monthly energy consumption in the two drinking water systems. Regression and relative importance analyses were then performed between climate indicators, raw water quality indicators, and chemical and energy usages in the treatment processes to determine their correlations. These relationships were then used to project changes in embodied energy associated with the plants' processes, and the results were compared between the two regions. The projections of the southeastern US water plant were for an increase in energy demand resulted from an increase of treatment chemical usages. The northeastern US plant was projected to decrease its energy demand due to a reduced demand for heating the plant's infrastructure. The findings indicate that geographic location and treatment process may determine the way climate change affects drinking water systems. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Building Climate Resilience at NASA Ames Research Center

    NASA Astrophysics Data System (ADS)

    Iraci, L. T.; Mueller, C.; Podolske, J. R.; Milesi, C.

    2016-12-01

    NASA Ames Research Center, located at the southern end of the San Francisco Bay (SFB) estuary, has identified three primary vulnerabilities to changes in climate. The Ames Climate Adaptation Science Investigator (CASI) workgroup has studied each of these challenges to operations and the potential exposure of infrastructure and employees to an increased frequency of hazards. Sea level rise inundation scenarios for the SFB Area generally refer to projected scenarios in mean sea level rather than changes in extreme tides that could occur during future storm conditions. In the summer of 2014, high resolution 3-D mapping of the low-lying portion of Ames was performed. Those data are integrated with improved sea level inundation scenarios to identify the buildings, basements and drainage systems potentially affected. We will also identify the impacts of sea level and storm surge effects on transportation to and from the Center. This information will help Center management develop future master plans. Climate change will also lead to changes in temperature, storm frequency and intensity. These changes have potential impacts on localized floods and ecosystems, as well as on electricity and water availability. Over the coming decades, these changes will be imposed on top of ongoing land use and land cover changes, especially those deriving from continued urbanization and increase in impervious surface areas. These coupled changes have the potential to create a series of cascading impacts on ecosystems, including changes in primary productivity and disturbance of hydrological properties and increased flood risk. The majority of the electricity used at Ames is supplied by hydroelectric dams, which will be influenced by reductions in precipitation or changes in the timing or phase of precipitation which reduces snow pack. Coupled with increased demand for summertime air conditioning and other cooling needs, NASA Ames is at risk for electricity shortfalls. To assess the anticipated energy usage as climate changes, the Ames CASI team is collecting historical energy usage data from Ames facilities, historical weather data, and projected future weather parameters from the CASI Climate subgroup. This data will be incorporated into the RETScreen model to predict how energy usage at Ames will change over the coming century.

  9. Monolithic LED arrays, next generation smart lighting sources

    NASA Astrophysics Data System (ADS)

    Lagrange, Alexandre; Bono, Hubert; Templier, François

    2016-03-01

    LED have become the main light sources of the future as they open the path for intelligent use of light in time, intensity and color. In many usages, strong energy economy is done by adjusting these properties. The smart lighting has three dimensions, energy efficiency brought by GaN blue emitting LEDs, integration of electronics, sensors, microprocessors in the lighting system and development of new functionalities and services provided by the light. Monolithic LED arrays allow two major innovations, the spatial control of light emission and the adjustment of the electrical properties of the source.

  10. Scope for solar hydrogen power plants along Indian coasts

    NASA Astrophysics Data System (ADS)

    Hajra, Debdyut; Mukhopadhyay, Swarnav

    2016-09-01

    Energy is at the core of economic growth and development in the present day world. But relentless and unchecked use of harmful energy resources like fossil fuels (coil and oil), nuclear energy has taken a toll on mother nature. The energy coffers are being rapidly depleted and within a few years all of them will become empty, leaving nothing for the future generations to build on. Their constant usage has degraded the air quality and given way to land and water pollution. Scientists and world leaders have initiated a call for action to shift our dependence from currently popular energy sources to cleaner and renewable energy sources. Search for such energy sources have been going on for many years. Solar energy, wind energy, ocean energy, tidal energy, biofuel, etc. have caught the attention of people. Another such important which has become popular is 'Solar Hydrogen'. Many visionary scientists have called hydrogen the energy of the future. It is produced from water by direct or indirect use of sunlight in a sustainable manner. This paper discusses the current energy scenario, the importance of solar-hydrogen as a fuel and most importantly the scope for solar hydrogen power plants along Indian coastline.

  11. SWOT analysis of the renewable energy sources in Romania - case study: solar energy

    NASA Astrophysics Data System (ADS)

    Lupu, A. G.; Dumencu, A.; Atanasiu, M. V.; Panaite, C. E.; Dumitrașcu, Gh; Popescu, A.

    2016-08-01

    The evolution of energy sector worldwide triggered intense preoccupation on both finding alternative renewable energy sources and environmental issues. Romania is considered to have technological potential and geographical location suitable to renewable energy usage for electricity generation. But this high potential is not fully exploited in the context of policies and regulations adopted globally, and more specific, European Union (EU) environmental and energy strategies and legislation related to renewable energy sources. This SWOT analysis of solar energy source presents the state of the art, potential and future prospects for development of renewable energy in Romania. The analysis concluded that the development of solar energy sector in Romania depends largely on: viability of legislative framework on renewable energy sources, increased subsidies for solar R&D, simplified methodology of green certificates, and educating the public, investors, developers and decision-makers.

  12. Energy consumption and usage characteristics from field measurements of residential dishwashers, clothes washers and clothes dryers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Y.L.; Grot, R.A.

    1980-10-01

    The measured energy consumption and usage characteristics for household dishwashers, clothes washers, and clothes dryers for ten townhouses at Twin Rivers, N.J., are presented. Whenever the dishwashers and/or clothes washers were in use, the energy consumption, water consumption, frequency of usage, and water temperature were measured by a data acquisition system. The electrical energy of electric clothes dryers and the gas consumption of gas clothes dryers were measured, as well as their frequency and duration of use, and exhaust temperature. Typical household usage patterns of these major appliances are included.

  13. Commercial Building Tenant Energy Usage Aggregation and Privacy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Livingston, Olga V.; Pulsipher, Trenton C.; Anderson, David M.

    A growing number of building owners are benchmarking their building energy use. This requires the building owner to acquire monthly whole-building energy usage information, which can be challenging for buildings in which individual tenants have their own utility meters and accounts with the utility. Some utilities and utility regulators have turned to aggregation of customer energy use data (CEUD) as a way to give building owners whole-building energy usage data while protecting customer privacy. Meter profile aggregation adds a layer of protection that decreases the risk of revealing CEUD as the number of meters aggregated increases. The report statistically characterizesmore » the similarity between individual energy usage patterns and whole-building totals at various levels of meter aggregation.« less

  14. Adaptive Resource Utilization Prediction System for Infrastructure as a Service Cloud.

    PubMed

    Zia Ullah, Qazi; Hassan, Shahzad; Khan, Gul Muhammad

    2017-01-01

    Infrastructure as a Service (IaaS) cloud provides resources as a service from a pool of compute, network, and storage resources. Cloud providers can manage their resource usage by knowing future usage demand from the current and past usage patterns of resources. Resource usage prediction is of great importance for dynamic scaling of cloud resources to achieve efficiency in terms of cost and energy consumption while keeping quality of service. The purpose of this paper is to present a real-time resource usage prediction system. The system takes real-time utilization of resources and feeds utilization values into several buffers based on the type of resources and time span size. Buffers are read by R language based statistical system. These buffers' data are checked to determine whether their data follows Gaussian distribution or not. In case of following Gaussian distribution, Autoregressive Integrated Moving Average (ARIMA) is applied; otherwise Autoregressive Neural Network (AR-NN) is applied. In ARIMA process, a model is selected based on minimum Akaike Information Criterion (AIC) values. Similarly, in AR-NN process, a network with the lowest Network Information Criterion (NIC) value is selected. We have evaluated our system with real traces of CPU utilization of an IaaS cloud of one hundred and twenty servers.

  15. Adaptive Resource Utilization Prediction System for Infrastructure as a Service Cloud

    PubMed Central

    Hassan, Shahzad; Khan, Gul Muhammad

    2017-01-01

    Infrastructure as a Service (IaaS) cloud provides resources as a service from a pool of compute, network, and storage resources. Cloud providers can manage their resource usage by knowing future usage demand from the current and past usage patterns of resources. Resource usage prediction is of great importance for dynamic scaling of cloud resources to achieve efficiency in terms of cost and energy consumption while keeping quality of service. The purpose of this paper is to present a real-time resource usage prediction system. The system takes real-time utilization of resources and feeds utilization values into several buffers based on the type of resources and time span size. Buffers are read by R language based statistical system. These buffers' data are checked to determine whether their data follows Gaussian distribution or not. In case of following Gaussian distribution, Autoregressive Integrated Moving Average (ARIMA) is applied; otherwise Autoregressive Neural Network (AR-NN) is applied. In ARIMA process, a model is selected based on minimum Akaike Information Criterion (AIC) values. Similarly, in AR-NN process, a network with the lowest Network Information Criterion (NIC) value is selected. We have evaluated our system with real traces of CPU utilization of an IaaS cloud of one hundred and twenty servers. PMID:28811819

  16. Walking at non-constant speeds: mechanical work, pendular transduction, and energy congruity.

    PubMed

    Balbinot, G

    2017-05-01

    Although almost half of all walking bouts in urban environments consist of less than 12 consecutive steps and several day-to-day gait activities contain transient gait responses, in most studies gait analysis is performed at steady-state. This study aimed to analyze external (W ext ) and internal mechanical work (W int ), pendulum-like mechanics, and elastic energy usage during constant and non-constant speeds. The mechanical work, pendular transduction, and energy congruity (an estimate of storage and release of elastic energy) during walking were computed using two force platforms. We found that during accelerating gait (+NCS) energy recovery is maintained, besides extra W + ext , for decelerating gait (-NCS) poor energy recovery was counterbalanced by W - ext and C% predominance. We report an increase in elastic energy usage with speed (4-11%). Both W - ext and %C suggests that elastic energy usage is higher at faster speeds and related to -NCS (≈20% of elastic energy usage). This study was the first to show evidences of elastic energy usage during constant and non-constant speeds. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Elaboration of Copper-Oxygen Mediated C–H Activation Chemistry in Consideration of Future Fuel and Feedstock Generation

    PubMed Central

    Lee, Jung Yoon; Karlin, Kenneth D

    2015-01-01

    To contribute solutions for current energy concerns, improvements in the efficiency of C-H bond cleavage chemistry, e.g., selective oxidation of methane to methanol, could minimize losses in natural gas usage or produce feedstocks for fuels. Oxidative C-H activation is also a component of polysaccharide degradation, affording alternative biofuels from abundant biomass. Thus, an understanding of active-site chemistry in copper monooxygenases, those activating strong C-H bonds is briefly reviewed. Then, recent advances in the synthesis-generation and study of various copper-oxygen intermediates are highlighted. Of special interest are cupric-superoxide, Cu-hydroperoxo and Cu-oxy complexes. Such investigations can contribute to an enhanced future application of C-H oxidation or oxygenation processes using air, as concerning societal energy goals. PMID:25756327

  18. Climate Science Performance, Data and Productivity on Titan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayer, Benjamin W; Worley, Patrick H; Gaddis, Abigail L

    2015-01-01

    Climate Science models are flagship codes for the largest of high performance computing (HPC) resources, both in visibility, with the newly launched Department of Energy (DOE) Accelerated Climate Model for Energy (ACME) effort, and in terms of significant fractions of system usage. The performance of the DOE ACME model is captured with application level timers and examined through a sizeable run archive. Performance and variability of compute, queue time and ancillary services are examined. As Climate Science advances in the use of HPC resources there has been an increase in the required human and data systems to achieve programs goals.more » A description of current workflow processes (hardware, software, human) and planned automation of the workflow, along with historical and projected data in motion and at rest data usage, are detailed. The combination of these two topics motivates a description of future systems requirements for DOE Climate Modeling efforts, focusing on the growth of data storage and network and disk bandwidth required to handle data at an acceptable rate.« less

  19. Potential for large-scale solar collector system to offset carbon-based heating in the Ontario greenhouse sector

    NASA Astrophysics Data System (ADS)

    Semple, Lucas M.; Carriveau, Rupp; Ting, David S.-K.

    2018-04-01

    In the Ontario greenhouse sector the misalignment of available solar radiation during the summer months and large heating demand during the winter months makes solar thermal collector systems an unviable option without some form of seasonal energy storage. Information obtained from Ontario greenhouse operators has shown that over 20% of annual natural gas usage occurs during the summer months for greenhouse pre-heating prior to sunrise. A transient model of the greenhouse microclimate and indoor conditioning systems is carried out using TRNSYS software and validated with actual natural gas usage data. A large-scale solar thermal collector system is then incorporated and found to reduce the annual heating energy demand by approximately 35%. The inclusion of the collector system correlates to a reduction of about 120 tonnes of CO2 equivalent emissions per acre of greenhouse per year. System payback period is discussed considering the benefits of a future Ontario carbon tax.

  20. Energy drink and other substance use among adolescent and young adult emergency department patients.

    PubMed

    Cotter, Bradford V; Jackson, Deidrya A E; Merchant, Roland C; Babu, Kavita M; Baird, Janette R; Nirenberg, Ted; Linakis, James G

    2013-10-01

    This study aimed to understand current patterns of energy drink use and compare the extent of usage of energy drinks and other commonly used and misused substances between adolescent (13-17-years-old) and young adult (18-25-years-old) emergency department (ED) patients. During a 6-week period between June and August 2010, all patients presenting to an adult or pediatric ED were asked to complete a computer-based, anonymous questionnaire regarding use of energy drinks and other substances. Wilcoxon rank-sum, 2-sample tests of binomial proportions, Pearson χ(2) testing, and regression models were used to compare energy drink and substance use by age groups. Past 30-day energy drink use was greater for young adults (57.9%) than adolescents (34.9%) (P < 0.03). Adolescents typically consumed a mean of 1.5 and young adults a mean of 2.6 energy drinks per day when using energy drinks and drank at most a mean of 2.4 and 2.6 drinks per day, respectively. Among adolescents, energy drink usage was more common than alcohol, "street" or illicit drugs, and tobacco usage, but less common than caffeine product usage. For young adults, energy drink usage was more common than "street" or illicit drugs, but less common than caffeine use, and similar to tobacco and alcohol usage. Young adult energy drink users were more likely than young adult non-energy drink users also to use tobacco and caffeine. Energy drink use is common among ED patients. Given the high prevalence of energy drink use observed, emergency physicians should consider the involvement of energy drinks in the presentations of young people.

  1. Prospects on hydrogen production for a generalized domestic, industrial and automotive, usage

    NASA Astrophysics Data System (ADS)

    Dini, D.

    Assuming the availability of advanced nuclear and solar systems as prime energy sources for electrolytic production of hydrogen, an assessment is made of high pressure electrolytic gasification, liquefaction and storage work requirements. Also, a pipeline network and associated equipment for the delivery and storage of hydrogen are considered in the context of a future replacement of all fossil fuels by hydrogen. Attention is given to space-based systems and terrestrial photovoltaics.

  2. X-Ray Simulator Theory Support

    DTIC Science & Technology

    1993-11-01

    the pulse power elements in existing and future DNA flash x-ray simulators, in particular DECADE. The pulse power for this machine is based on...usually requires usage at less than the radiation the longer the radiation pulse. full power . Energy delivered to the plasma load is converted into...on the Proto II generator sured with ap-i-n diode filtered with 25 pm ofaluminum; the TABLE 1. Nominal parameters for some pulse power generators used

  3. Preliminary studies on readiness of biojet fuel for commercial aviation: The feasibility and potential in Malaysia

    NASA Astrophysics Data System (ADS)

    Noh, H. Mohd; Mahammad Taher, M. N.; Rodrigo, G. A.; Rahman, N. A. Abdul; Othman, J.; Yahaya, N. H. R.

    2017-12-01

    This paper demonstrates the need for a new alternative energy using biojet fuel in commercial aviation. The demand of air travels leads the authority, airlines and government in seeking for new renewable and sustainable energy for aircraft operation in the future. This study looks into the level of readiness in using biofuel. 40 personnel who are working in the aviation industries have participated and completed the survey questionnaires. The preliminary findings suggest that the impact towards this new fuel will lead to a better environment, less cost, better maintenance and energy sustainability. The usage of biojet fuel seems possible to be pursued in Malaysia.

  4. Primary energy: Present status and future perspectives

    NASA Astrophysics Data System (ADS)

    Thielheim, K. O.

    A survey of the base-load energy sources available to humans is presented, starting from the point of view that all energy used is ultimately derived from nuclear processes within the sun. Specific note is made of European energy options, noting the large dependence on imported oil. Detailed exploration of available nuclear fuel resources is carried out, with attention given to fission, fusion, and breeder reactor plants and to the state-of-the-art and technology for each. The problems of nuclear waste disposal are discussed, and long term burial in salt domes is outlined as a satisfactory method of containing the materials for acceptable periods of time. The CO2-greenhouse effect hazards caused by increased usage of coal-derived fuels are considered and precautions to be taken on a global scale to ameliorate the warming effects are recommended. The limitations to hydropower are examined, as are those of tidal power. Solar cells are projected to be produced in GW quantities by the year 2000, while wind-derived electricity is predicted to provide a minimum of 5% of the world energy needs in the future.

  5. Residential Energy Consumption Survey (RECS)

    EIA Publications

    2028-01-01

    EIA administers the Residential Energy Consumption Survey (RECS) to a nationally representative sample of housing units. Traditionally, specially trained interviewers collect energy characteristics on the housing unit, usage patterns, and household demographics. Data include energy costs and usage for heating, cooling, appliances and other end uses.

  6. Smart Grid Adoption Likeliness Framework: Comparing Idaho and National Residential Consumers' Perceptions

    NASA Astrophysics Data System (ADS)

    Baiya, Evanson G.

    New energy technologies that provide real-time visibility of the electricity grid's performance, along with the ability to address unusual events in the grid and allow consumers to manage their energy use, are being developed in the United States. Primary drivers for the new technologies include the growing energy demand, tightening environmental regulations, aging electricity infrastructure, and rising consumer demand to become more involved in managing individual energy usage. In the literature and in practice, it is unclear if, and to what extent, residential consumers will adopt smart grid technologies. The purpose of this quantitative study was to examine the relationships between demographic characteristics, perceptions, and the likelihood of adopting smart grid technologies among residential energy consumers. The results of a 31-item survey were analyzed for differences within the Idaho consumers and compared against national consumers. Analysis of variance was used to examine possible differences between the dependent variable of likeliness to adopt smart grid technologies and the independent variables of age, gender, residential ownership, and residential location. No differences were found among Idaho consumers in their likeliness to adopt smart grid technologies. An independent sample t-test was used to examine possible differences between the two groups of Idaho consumers and national consumers in their level of interest in receiving detailed feedback information on energy usage, the added convenience of the smart grid, renewable energy, the willingness to pay for infrastructure costs, and the likeliness to adopt smart grid technologies. The level of interest in receiving detailed feedback information on energy usage was significantly different between the two groups (t = 3.11, p = .0023), while the other variables were similar. The study contributes to technology adoption research regarding specific consumer perceptions and provides a framework that estimates the likeliness of adopting smart grid technologies by residential consumers. The study findings could assist public utility managers and technology adoption researchers as they develop strategies to enable wide-scale adoption of smart grid technologies as a solution to the energy problem. Future research should be conducted among commercial and industrial energy consumers to further validate the findings and conclusions of this research.

  7. Switching neuronal state: optimal stimuli revealed using a stochastically-seeded gradient algorithm.

    PubMed

    Chang, Joshua; Paydarfar, David

    2014-12-01

    Inducing a switch in neuronal state using energy optimal stimuli is relevant to a variety of problems in neuroscience. Analytical techniques from optimal control theory can identify such stimuli; however, solutions to the optimization problem using indirect variational approaches can be elusive in models that describe neuronal behavior. Here we develop and apply a direct gradient-based optimization algorithm to find stimulus waveforms that elicit a change in neuronal state while minimizing energy usage. We analyze standard models of neuronal behavior, the Hodgkin-Huxley and FitzHugh-Nagumo models, to show that the gradient-based algorithm: (1) enables automated exploration of a wide solution space, using stochastically generated initial waveforms that converge to multiple locally optimal solutions; and (2) finds optimal stimulus waveforms that achieve a physiological outcome condition, without a priori knowledge of the optimal terminal condition of all state variables. Analysis of biological systems using stochastically-seeded gradient methods can reveal salient dynamical mechanisms underlying the optimal control of system behavior. The gradient algorithm may also have practical applications in future work, for example, finding energy optimal waveforms for therapeutic neural stimulation that minimizes power usage and diminishes off-target effects and damage to neighboring tissue.

  8. Power requirements for commercial communications spacecraft

    NASA Technical Reports Server (NTRS)

    Billerbeck, W. J.

    1985-01-01

    Historical data on commercial spacecraft power systems are presented and their power requirements to the growth of satellite communications channel usage are related. Some approaches for estimating future power requirements of this class of spacecraft through the year 2000 are proposed. The key technology drivers in satellite power systems are addressed. Several technological trends in such systems are described, focusing on the most useful areas for research and development of major subsystems, including solar arrays, energy storage, and power electronics equipment.

  9. RETScreen Plus Software Tutorial

    NASA Technical Reports Server (NTRS)

    Ganoe, Rene D.; Stackhouse, Paul W., Jr.; DeYoung, Russell J.

    2014-01-01

    Greater emphasis is being placed on reducing both the carbon footprint and energy cost of buildings. A building's energy usage depends upon many factors one of the most important is the local weather and climate conditions to which it's electrical, heating and air conditioning systems must respond. Incorporating renewable energy systems, including solar systems, to supplement energy supplies and increase energy efficiency is important to saving costs and reducing emissions. Also retrofitting technologies to buildings requires knowledge of building performance in its current state, potential future climate state, projection of potential savings with capital investment, and then monitoring the performance once the improvements are made. RETScreen Plus is a performance analysis software module that supplies the needed functions of monitoring current building performance, targeting projected energy efficiency improvements and verifying improvements once completed. This tutorial defines the functions of RETScreen Plus as well as outlines the general procedure for monitoring and reporting building energy performance.

  10. Demands For Solar Electricity From The BRICS Countries In The Future

    NASA Astrophysics Data System (ADS)

    Fan, Y.

    2015-12-01

    BRICS countries are presently among the leading the economic powers globally, but their increasing demands for energy and sustainable future requires renewed technical progress on implementation of renewable energy (e.g., solar energy) and a sustainable solution rather than extracting finite natural resources. BRICS countries (Brazil, Russia, India, China and South Africa) face both social and environmental pressures as their economy keeps growing. The rapid development of technology in BRICS inevitably altered their culture and behavior, as reflected by education, gender equality, health, and other demographic/socio-economic indicators. These changes coupled with land use/land cover change have altered ecosystem services, as reflected by NEE (Net Ecosystem Exchange of CO2) and NDVI (Normalized Difference Vegetation Index). Global climatic changes also drives the demand for sustainable energy. With a focus on solar energy, we analyzed time series of energy consuming behaviors, government policies, and the ecosystem services. Structural equation modeling was applied to confirm the relationships among societal transition, ecosystem services, and climate change. We compared the energy consumption patterns for the five countries and forecasted the changes through 2025. We found that government policies significantly influenced energy consumption behaviors for BRICS and that solar energy usage would continue to increase to 2025 and beyond.

  11. Smart Electrochemical Energy Storage Devices with Self-Protection and Self-Adaptation Abilities.

    PubMed

    Yang, Yun; Yu, Dandan; Wang, Hua; Guo, Lin

    2017-12-01

    Currently, with booming development and worldwide usage of rechargeable electrochemical energy storage devices, their safety issues, operation stability, service life, and user experience are garnering special attention. Smart and intelligent energy storage devices with self-protection and self-adaptation abilities aiming to address these challenges are being developed with great urgency. In this Progress Report, we highlight recent achievements in the field of smart energy storage systems that could early-detect incoming internal short circuits and self-protect against thermal runaway. Moreover, intelligent devices that are able to take actions and self-adapt in response to external mechanical disruption or deformation, i.e., exhibiting self-healing or shape-memory behaviors, are discussed. Finally, insights into the future development of smart rechargeable energy storage devices are provided. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. The importance of the different kinds of energy sources for energy future of Turkey

    NASA Astrophysics Data System (ADS)

    Kaplan, Yusuf Alper; Aladağ, Canan

    2016-11-01

    Nowadays, the need of energy has been increasing day by day with the population growth and the advancements of technology. In this study, the current state of nuclear, wind and solar energy on the worldwide has been generally investigated. The general assessments have been made based on Turkey's energy potential and the evaluation situation of this potential. The current political structures of countries are generally assessed and under this policy, the last situation and the latest implemented innovations are given. Turkey's energy demand is constantly increasing and Turkey is a country that needs to energy imports. This is a need for new energy sources to meet the growing need for energy. Nuclear, wind and solar energy are the new sources of energy to the fore in our country recently. In this study is given general information on the usage of energy sources of making and some deficiencies were been emphasized by political considerations in this regard.

  13. Climate change impact on wave energy in the Persian Gulf

    NASA Astrophysics Data System (ADS)

    Kamranzad, Bahareh; Etemad-Shahidi, Amir; Chegini, Vahid; Yeganeh-Bakhtiary, Abbas

    2015-06-01

    Excessive usage of fossil fuels and high emission of greenhouse gases have increased the earth's temperature, and consequently have changed the patterns of natural phenomena such as wind speed, wave height, etc. Renewable energy resources are ideal alternatives to reduce the negative effects of increasing greenhouse gases emission and climate change. However, these energy sources are also sensitive to changing climate. In this study, the effect of climate change on wave energy in the Persian Gulf is investigated. For this purpose, future wind data obtained from CGCM3.1 model were downscaled using a hybrid approach and modification factors were computed based on local wind data (ECMWF) and applied to control and future CGCM3.1 wind data. Downscaled wind data was used to generate the wave characteristics in the future based on A2, B1, and A1B scenarios, while ECMWF wind field was used to generate the wave characteristics in the control period. The results of these two 30-yearly wave modelings using SWAN model showed that the average wave power changes slightly in the future. Assessment of wave power spatial distribution showed that the reduction of the average wave power is more in the middle parts of the Persian Gulf. Investigation of wave power distribution in two coastal stations (Boushehr and Assalouyeh ports) indicated that the annual wave energy will decrease in both stations while the wave power distribution for different intervals of significant wave height and peak period will also change in Assalouyeh according to all scenarios.

  14. Site-Specific Reference Person Parameters and Derived Concentration Standards for the Savannah River Site

    DOE PAGES

    Stone, Daniel K.; Higley, Kathryn A.; Jannik, G. Timothy

    2014-05-01

    The U.S. Department of Energy Order 458.1 states that the compliance with the 1 mSv annual dose constraint to a member of the public may be demonstrated by calculating dose to the maximally exposed individual (MEI) or to a representative person. Historically, the MEI concept was used for dose compliance at the Savannah River Site (SRS) using adult dose coefficients and adult male usage parameters. For future compliance, SRS plans to use the representative person concept for dose estimates to members of the public. The representative person dose will be based on the reference person dose coefficients from the U.S.more » DOE Derived Concentration Technical Standard and on usage parameters specific to SRS for the reference and typical person. Usage parameters and dose coefficients were determined for inhalation, ingestion and external exposure pathways. The parameters for the representative person were used to calculate and tabulate SRS-specific derived concentration standards (DCSs) for the pathways not included in DOE-STD-1196-2011.« less

  15. Green Buildings and Health.

    PubMed

    Allen, Joseph G; MacNaughton, Piers; Laurent, Jose Guillermo Cedeno; Flanigan, Skye S; Eitland, Erika Sita; Spengler, John D

    2015-09-01

    Green building design is becoming broadly adopted, with one green building standard reporting over 3.5 billion square feet certified to date. By definition, green buildings focus on minimizing impacts to the environment through reductions in energy usage, water usage, and minimizing environmental disturbances from the building site. Also by definition, but perhaps less widely recognized, green buildings aim to improve human health through design of healthy indoor environments. The benefits related to reduced energy and water consumption are well-documented, but the potential human health benefits of green buildings are only recently being investigated. The objective of our review was to examine the state of evidence on green building design as it specifically relates to indoor environmental quality and human health. Overall, the initial scientific evidence indicates better indoor environmental quality in green buildings versus non-green buildings, with direct benefits to human health for occupants of those buildings. A limitation of much of the research to date is the reliance on indirect, lagging and subjective measures of health. To address this, we propose a framework for identifying direct, objective and leading "Health Performance Indicators" for use in future studies of buildings and health.

  16. Stable Radical Materials for Energy Applications.

    PubMed

    Wilcox, Daniel A; Agarkar, Varad; Mukherjee, Sanjoy; Boudouris, Bryan W

    2018-06-07

    Although less studied than their closed-shell counterparts, materials containing stable open-shell chemistries have played a key role in many energy storage and energy conversion devices. In particular, the oxidation-reduction (redox) properties of these stable radicals have made them a substantial contributor to the progress of organic batteries. Moreover, the use of radical-based materials in photovoltaic devices and thermoelectric systems has allowed for these emerging molecules to have impacts in the energy conversion realm. Additionally, the unique doublet states of radical-based materials provide access to otherwise inaccessible spin states in optoelectronic devices, offering many new opportunities for efficient usage of energy in light-emitting devices. Here, we review the current state of the art regarding the molecular design, synthesis, and application of stable radicals in these energy-related applications. Finally, we point to fundamental and applied arenas of future promise for these designer open-shell molecules, which have only just begun to be evaluated in full.

  17. The Role of Adolescent Victimization in Energy Drink Consumption: Monitoring the Future, 2010-2016.

    PubMed

    Jackson, Dylan B; Leal, Wanda E; Posick, Chad; Vaughn, Michael G; Olivan, Myrah

    2018-05-21

    Energy drinks have been linked to a number of deleterious health outcomes among youth. Even so, the underlying risk factors for energy drink consumption among youth are less frequently examined. The present study examines the link between adolescent victimization experiences (i.e., property and violent victimization) and energy drink consumption among a nationally representative sample of adolescents. We employed the seven most recent cohorts (2010-2016) from the Monitoring the Future (MTF) study. A multi-stage random sampling technique was used to acquire the U.S. Youths reported the extent to which they consumed energy drinks. Additionally, three indicators of property victimization and four indicators of violent victimization were available in the data. The findings reveal a significant dose-response relationship between energy drink consumption and victimization. This relationship was especially pronounced among females. For instance, more than 52% of females with the highest count of various violent victimization experiences consumed energy drinks, which was three times the rate of females who had no previous violent victimization experiences. Practitioners who interact with adolescent victims may probe for energy drink usage in addition to other addictive substances such as alcohol, tobacco, and drugs. Additional scrutiny may also be in order in regulating the amount of caffeine and sugar allowed in these beverages.

  18. Elaboration of copper-oxygen mediated C-H activation chemistry in consideration of future fuel and feedstock generation.

    PubMed

    Lee, Jung Yoon; Karlin, Kenneth D

    2015-04-01

    To contribute solutions to current energy concerns, improvements in the efficiency of dioxygen mediated C-H bond cleavage chemistry, for example, selective oxidation of methane to methanol, could minimize losses in natural gas usage or produce feedstocks for fuels. Oxidative C-H activation is also a component of polysaccharide degradation, potentially affording alternative biofuels from abundant biomass. Thus, an understanding of active-site chemistry in copper monooxygenases, those activating strong C-H bonds is briefly reviewed. Then, recent advances in the synthesis-generation and study of various copper-oxygen intermediates are highlighted. Of special interest are cupric-superoxide, Cu-hydroperoxo and Cu-oxy complexes. Such investigations can contribute to an enhanced future application of C-H oxidation or oxygenation processes using air, as concerning societal energy goals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Video game console usage and US national energy consumption: Results from a field-metering study

    DOE PAGES

    Desroches, Louis-Benoit; Greenblatt, Jeffery B.; Pratt, Stacy; ...

    2014-10-23

    There has been an increased in attention placed on the energy consumption of miscellaneous electronic loads in buildings by energy analysts and policymakers in recent years. The share of electricity consumed by consumer electronics in US households has increased in the last decade. Many devices, however, lack robust energy use data, making energy consumption estimates difficult and uncertain. Video game consoles are high-performance machines present in approximately half of all households and can consume a considerable amount of power. The precise usage of game consoles has significant uncertainty, however, leading to a wide range of recent national energy consumption estimates.more » We present here an analysis based on field-metered usage data, collected as part of a larger field metering study in the USA. This larger study collected data from 880 households in 2012 on a variety of devices, including 113 game consoles (the majority of which are Generation 7 consoles). From our metering, we find that although some consoles are left on nearly 24 h/day, the overall average usage is lower than many other studies have assumed, leading to a US national energy consumption estimate of 7.1 TWh in 2012. Nevertheless, there is an opportunity to reduce energy use with proper game console power management, as a substantial amount of game console usage occurs with the television turned off. The emergence of Generation 8 consoles may increase national energy consumption.« less

  20. Video game console usage and US national energy consumption: Results from a field-metering study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desroches, Louis-Benoit; Greenblatt, Jeffery B.; Pratt, Stacy

    There has been an increased in attention placed on the energy consumption of miscellaneous electronic loads in buildings by energy analysts and policymakers in recent years. The share of electricity consumed by consumer electronics in US households has increased in the last decade. Many devices, however, lack robust energy use data, making energy consumption estimates difficult and uncertain. Video game consoles are high-performance machines present in approximately half of all households and can consume a considerable amount of power. The precise usage of game consoles has significant uncertainty, however, leading to a wide range of recent national energy consumption estimates.more » We present here an analysis based on field-metered usage data, collected as part of a larger field metering study in the USA. This larger study collected data from 880 households in 2012 on a variety of devices, including 113 game consoles (the majority of which are Generation 7 consoles). From our metering, we find that although some consoles are left on nearly 24 h/day, the overall average usage is lower than many other studies have assumed, leading to a US national energy consumption estimate of 7.1 TWh in 2012. Nevertheless, there is an opportunity to reduce energy use with proper game console power management, as a substantial amount of game console usage occurs with the television turned off. The emergence of Generation 8 consoles may increase national energy consumption.« less

  1. Energy drink usage among university students in a Caribbean country: Patterns of use and adverse effects.

    PubMed

    Reid, Sandra D; Ramsarran, Jonathan; Brathwaite, Rachel; Lyman, Sarika; Baker, Ariane; Cornish, D'Andra C; Ganga, Stefan; Mohammed, Zahrid; Sookdeo, Avinash T; Thapelo, Cathrine K

    2015-06-01

    There has been little inquiry addressing whether or not concerns about adverse effects of energy drink usage are relevant in the Caribbean. This survey investigated energy drink usage and adverse consequences among tertiary level students in Trinidad and Tobago. A cross-sectional survey of 1994 students from eight institutions was conducted using a de novo questionnaire based on findings from a focus group of students. Chi-squared analyses and logistic regression were used to assess relationships between energy drink usage, adverse effects and other factors affecting energy drink use, and to verify predictors of energy drink use. Prevalence of use was 86%; 38% were current users. Males were more likely to use, used more frequently and at an earlier age. Energy drinks were used most commonly to increase energy (50%), combat sleepiness (45%) and enhance academic performance (40%), and occurred during sports (23%) and mixed with alcohol (22.2%). The majority (79.6%) consumed one energy drink per sitting; 62.2% experienced adverse effects, most commonly restlessness (22%), jolt and crash (17.1%) and tachycardia (16.6%). Awareness of adverse effects was associated with no use (p=0.004), but adverse effects were not a deterrent to continued use. Energy drink usage is prevalent among students. The use is not excessive, but associated with high rates of adverse effects and occurs in potentially dangerous situations like during exercise and with alcohol. There is a need to educate students about the potential adverse effects of energy drinks. Copyright © 2014 Ministry of Health, Saudi Arabia. Published by Elsevier Ltd. All rights reserved.

  2. The global contribution of energy consumption by product exports from China.

    PubMed

    Tang, Erzi; Peng, Chong

    2017-06-01

    This paper presents a model to analyze the mechanism of the global contribution of energy usage by product exports. The theoretical analysis is based on the perspective that contribution estimates should be in relatively smaller sectors in which the production characteristics could be considered, such as the productivity distribution for each sector. Then, we constructed a method to measure the global contribution of energy usage. The simple method to estimate the global contribution is the percentage of goods export volume compared to the GDP as a multiple of total energy consumption, but this method underestimates the global contribution because it ignores the structure of energy consumption and product export in China. According to our measurement method and based on the theoretical analysis, we calculated the global contribution of energy consumption only by industrial manufactured product exports in a smaller sector per industry or manufacturing sector. The results indicated that approximately 42% of the total energy usage in the whole economy for China in 2013 was contributed to foreign regions. Along with the primary products and service export in China, the global contribution of energy consumption for China in 2013 by export was larger than 42% of the total energy usage.

  3. Annual Energy Usage Reduction and Cost Savings of a School: End-Use Energy Analysis

    PubMed Central

    Alghoul, M. A.; Bakhtyar, B.; Asim, Nilofar; Sopian, K.

    2014-01-01

    Buildings are among the largest consumers of energy. Part of the energy is wasted due to the habits of users and equipment conditions. A solution to this problem is efficient energy usage. To this end, an energy audit can be conducted to assess the energy efficiency. This study aims to analyze the energy usage of a primary school and identify the potential energy reductions and cost savings. A preliminary audit was conducted, and several energy conservation measures were proposed. The energy conservation measures, with reference to the MS1525:2007 standard, were modelled to identify the potential energy reduction and cost savings. It was found that the school's usage of electricity exceeded its need, incurring an excess expenditure of RM 2947.42. From the lighting system alone, it was found that there is a potential energy reduction of 5489.06 kWh, which gives a cost saving of RM 2282.52 via the improvement of lighting system design and its operating hours. Overall, it was found that there is a potential energy reduction and cost saving of 20.7% when the energy conservation measures are earnestly implemented. The previous energy intensity of the school was found to be 50.6 kWh/m2/year, but can theoretically be reduced to 40.19 kWh/mm2/year. PMID:25485294

  4. Life cycle of the corn-soybean agroecosystem for biobased production.

    PubMed

    Landis, Amy E; Miller, Shelie A; Theis, Thomas L

    2007-02-15

    Biobased product life cycle assessments (LCAs) have focused largely on energy (fossil fuel) usage and greenhouse gas emissions during the agriculture and production stages. This paper compiles a more comprehensive life cycle inventory (LCI) for use in future bioproduct LCAs that rely on corn or soybean crops as feedstocks. The inventory includes energy, C, N, P, major pesticides, and U.S. EPA criteria air pollutants that result from processes such as fertilizer production, energy production, and on-farm chemical and equipment use. Agroecosystem material flows were modeled using a combination of GREET (the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation model), a linear fractionation model that describes P biogeochemical cycling, and Monte Carlo Analysis. Results show that the dominant air emissions resulted from crop farming, fertilizers, and on-farm nitrogen flows (e.g., N20 and NO). Seed production and irrigation provided no more than 0.002% to any of the inventory emissions or energy flows and may be neglected in future LCAs of corn or soybeans as feedstocks from the U.S. Corn Belt. Lime contributes significantly (17% of total emissions) to air emissions and should not be neglected in bioproduct LCAs.

  5. Hydrogen energy systems technology study

    NASA Technical Reports Server (NTRS)

    Kelley, J. H.

    1975-01-01

    The paper discusses the objectives of a hydrogen energy systems technology study directed toward determining future demand for hydrogen based on current trends and anticipated new uses and identifying the critical research and technology advancements required to meet this need with allowance for raw material limitations, economics, and environmental effects. Attention is focused on historic production and use of hydrogen, scenarios used as a basis for projections, projections of energy sources and uses, supply options, and technology requirements and needs. The study found more than a billion dollar annual usage of hydrogen, dominated by chemical-industry needs, supplied mostly from natural gas and petroleum feedstocks. Evaluation of the progress in developing nuclear fusion and solar energy sources relative to hydrogen production will be necessary to direct the pace and character of research and technology work in the advanced water-splitting areas.

  6. Wind power forecasting: IEA Wind Task 36 & future research issues

    NASA Astrophysics Data System (ADS)

    Giebel, G.; Cline, J.; Frank, H.; Shaw, W.; Pinson, P.; Hodge, B.-M.; Kariniotakis, G.; Madsen, J.; Möhrlen, C.

    2016-09-01

    This paper presents the new International Energy Agency Wind Task 36 on Forecasting, and invites to collaborate within the group. Wind power forecasts have been used operatively for over 20 years. Despite this fact, there are still several possibilities to improve the forecasts, both from the weather prediction side and from the usage of the forecasts. The new International Energy Agency (IEA) Task on Forecasting for Wind Energy tries to organise international collaboration, among national meteorological centres with an interest and/or large projects on wind forecast improvements (NOAA, DWD, MetOffice, met.no, DMI,...), operational forecaster and forecast users. The Task is divided in three work packages: Firstly, a collaboration on the improvement of the scientific basis for the wind predictions themselves. This includes numerical weather prediction model physics, but also widely distributed information on accessible datasets. Secondly, we will be aiming at an international pre-standard (an IEA Recommended Practice) on benchmarking and comparing wind power forecasts, including probabilistic forecasts. This WP will also organise benchmarks, in cooperation with the IEA Task WakeBench. Thirdly, we will be engaging end users aiming at dissemination of the best practice in the usage of wind power predictions. As first results, an overview of current issues for research in short-term forecasting of wind power is presented.

  7. Use Contexts and Usage Patterns of Interactive Case Simulation Tools by HIV Healthcare Providers in a Statewide Online Clinical Education Program.

    PubMed

    Wang, Dongwen

    2017-01-01

    We analyzed four interactive case simulation tools (ICSTs) from a statewide online clinical education program. Results have shown that ICSTs are increasingly used by HIV healthcare providers. Smart phone has become the primary usage platform for specific ICSTs. Usage patterns depend on particular ICST modules, usage stages, and use contexts. Future design of ICSTs should consider these usage patterns for more effective dissemination of clinical evidence to healthcare providers.

  8. Baseline information development for energy smart schools -- applied research, field testing and technology integration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Tengfang; Piette, Mary Ann

    2004-08-05

    The original scope of work was to obtain and analyze existing and emerging data in four states: California, Florida, New York, and Wisconsin. The goal of this data collection was to deliver a baseline database or recommendations for such a database that could possibly contain window and daylighting features and energy performance characteristics of Kindergarten through 12th grade (K-12) school buildings (or those of classrooms when available). In particular, data analyses were performed based upon the California Commercial End-Use Survey (CEUS) databases to understand school energy use, features of window glazing, and availability of daylighting in California K-12 schools. Themore » outcomes from this baseline task can be used to assist in establishing a database of school energy performance, assessing applications of existing technologies relevant to window and daylighting design, and identifying future R&D needs. These are in line with the overall project goals as outlined in the proposal. Through the review and analysis of this data, it is clear that there are many compounding factors impacting energy use in K-12 school buildings in the U.S., and that there are various challenges in understanding the impact of K-12 classroom energy use associated with design features of window glazing and skylight. First, the energy data in the existing CEUS databases has, at most, provided the aggregated electricity and/or gas usages for the building establishments that include other school facilities on top of the classroom spaces. Although the percentage of classroom floor area in schools is often available from the databases, there is no additional information that can be used to quantitatively segregate the EUI for classroom spaces. In order to quantify the EUI for classrooms, sub-metering of energy usage by classrooms must be obtained. Second, magnitudes of energy use for electricity lighting are not attainable from the existing databases, nor are the lighting levels contributed by artificial lighting or daylight. It is impossible to reasonably estimate the lighting energy consumption for classroom areas in the sample of schools studied in this project. Third, there are many other compounding factors that may as well influence the overall classroom energy use, e.g., ventilation, insulation, system efficiency, occupancy, control, schedules, and weather. Fourth, although we have examined the school EUI grouped by various factors such as climate zones, window and daylighting design features from the California databases, no statistically significant associations can be identified from the sampled California K-12 schools in the current California CEUS. There are opportunities to expand such analyses by developing and including more powerful CEUS databases in the future. Finally, a list of parameters is recommended for future database development and for use of future investigation in K-12 classroom energy use, window and skylight design, and possible relations between them. Some of the key parameters include: (1) Energy end use data for lighting systems, classrooms, and schools; (2) Building design and operation including features for windows and daylighting; and (3) Other key parameters and information that would be available to investigate overall energy uses, building and systems design, their operation, and services provided.« less

  9. Energy Conservation for School Custodial and Maintenance Personnel. Course Outline and Instructional Materials.

    ERIC Educational Resources Information Center

    Anderson, Calvin E.

    Presented are materials prepared for the inservice education of school maintenance personnel on the subject of energy conservation in school facilities operations. The course is designed to help maintenance staff understand their schools' energy usage and formulate plans to control that usage. Among the topics covered are building inventory,…

  10. Commercial Building Tenant Energy Usage Data Aggregation and Privacy: Technical Appendix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Livingston, Olga V.; Pulsipher, Trenton C.; Anderson, David M.

    2014-11-12

    This technical appendix accompanies report PNNL–23786 “Commercial Building Tenant Energy Usage Data Aggregation and Privacy”. The objective is to provide background information on the methods utilized in the statistical analysis of the aggregation thresholds.

  11. Shungnak Energy Configuration Options.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosewater, David Martin; Eddy, John P.

    Power systems in rural Alaska villages face a unique combination of challenges that can increase the cost of energy and lowers energy supply reliability. In the case of the remote village of Shungnak, diesel and heating fuel is either shipped in by barge or flown in by aircraft. This report presents a technical analysis of several energy infrastructure upgrade and modification options to reduce the amount of fuel consumed by the community of Shungnak. Reducing fuel usage saves money and makes the village more resilient to disruptions in fuel supply. The analysis considers demand side options, such as energy efficiency,more » alongside the installation of wind and solar power generation options. Some novel approaches are also considered including battery energy storage and the use of electrical home heating stoves powered by renewable generation that would otherwise be spilled and wasted. This report concludes with specific recommendations for Shungnak based on economic factors, and fuel price sensitivity. General conclusions are also included to support future work analyzing similar energy challenges in remote arctic regions.« less

  12. Energy Conservation Program Cuts School Gas Use by 45%.

    ERIC Educational Resources Information Center

    Sampson, Walt

    1981-01-01

    Energy conservation measures at Longmont High School (Colorado), including reducing air entry, heating water only during school hours, and lowering lighting levels, are expected to save 45 percent in natural gas usage and 20 percent in electric usage. (Author/MLF)

  13. Near Real Time Surface Solar Radiation and Meteorological Parameters From the CERES FLASHFlux Project: Examples of Usage for Energy-Related Applications

    NASA Astrophysics Data System (ADS)

    Hoell, J. M.; Stockhouse, P.; Chandler, W.; Zhang, T.; Kratz, D. P.; Gupta, S. K.; Wilber, A. C.; Sawaengphokhai, P.; Edwards, A. C.; Westberg, D.; Zell, E.; Leng, G.

    2010-12-01

    The NASA Langley Research Center Fast Longwave And SHortwave Radiative Fluxes (FLASHFlux) project is producing global near real-time surface and top of Atmosphere (TOA) radiative fluxes and analyzing these quantities and their variability on regional and global scales. This is being accomplished by using a portion of the existing Clouds and the Earth's Radiant Energy System (CERES) processing system that fuses CERES with MODIS (Moderate Resolution Imaging Spectrometer) to produce orbital flux products. The orbital products from both Terra and Aqua are subsequently merged to derive global gridded radiative flux products. The FLASHFlux processing system also uses meteorological surface and profile file information from NASA Global Modeling and Data Assimilation Office (GMAO) Goddard Earth Observing System (GEOS) operational analysis version 5.2. The production of these together considering the latency times results in the global gridded surface radiative fluxes within 6-7 days of the original satellite observations. Data from the FLASHFlux have been merged and made available through a user-friendly web-based data portal (http://power.larc.nasa.gov/). Solar data from this portal are being continuously updated to provide time series of daily solar radiation to current time minus 7-days. While the current solar data represents an average over a 1-degree cell, comparison with ground observations exhibits a high degree of correlation on a daily time scale. These data are promoted to the web along with surface meteorological data from the GMAO GEOS 5.2 to provide a complete suite of parameters useful for many applications. This paper highlights the use of these data sets in the Ventyx Corporation database Velocity Suite that is being provided to utilities for power load forecasting. Examples of the usage and impact of this data on subsequent load forecasts are presented. The data sets are also being evaluated in collaboration with the Natural Resource Canada RETScreen International Energy Monitoring, Targeting and Verification tool (MTV). This tool allows the monitoring of building energy usage in correlation with variability in the environmental conditions and provides the flexibility of studying the economic and environmental feasibility of various energy efficient and renewable energy enhancements to the building. The FLASHFlux production system or similar is planned to continue as part as CERES for the upcoming NPP (NPOES Preparatory Project) and may be considered as part of the CERES data production stream on the joint NOAA/NASA JPSS missions. Lastly, we identify currently known usage needs requiring enhancement of the current data products that would be appropriate for these future satellite systems.

  14. The feasibility of solar energy usage on Red River Army Depot. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowder, G.W.

    This feasibility study considers the usage of solar energy to heat and cool the main office buildings on the Red River Army Depot, Texarkana Texas. Solar energy costs are compared with the present heating and cooling system costs with an economic analysis using the annual worth and present worth methods. (GRA)

  15. Practical applications of space systems. [environmental quality and resources management

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The study was conducted to provide an opportunity for knowledgeable users to express their needs for information or services which might or might not be met by space systems, and to relate the present and potential capabilities of space systems to their needs. The needs, accomplishments to date, and future possibilities in the applications of space systems for providing food and energy, while at the same time improving and safeguarding the physical environment and the quality of life, are presented. Organizing the usage of these space systems capabilities is also discussed.

  16. Hydrogen use projections and supply options

    NASA Technical Reports Server (NTRS)

    Manvi, R.; Fujita, T.

    1976-01-01

    Reference and expanded use projections were developed to estimate future hydrogen demand. The rationale in the development of these projections, which estimate the growth of hydrogen usage of approximately 1 X 10 to the fifteenth power Btu in 1973 to approximately 5.5 X 10 to the fifteenth power for reference use and 22 X 10 to the fifteenth power Btu for expanded use projections in year 2000. Primary energy sources required to produce these demands are discussed in the light of transition from a low merchant to high merchant supply option.

  17. A DDS-Based Energy Management Framework for Small Microgrid Operation and Control

    DOE PAGES

    Youssef, Tarek A.; El Hariri, Mohamad; Elsayed, Ahmed T.; ...

    2017-09-26

    The smart grid is seen as a power system with realtime communication and control capabilities between the consumer and the utility. This modern platform facilitates the optimization in energy usage based on several factors including environmental, price preferences, and system technical issues. In this paper a real-time energy management system (EMS) for microgrids or nanogrids was developed. The developed system involves an online optimization scheme to adapt its parameters based on previous, current, and forecasted future system states. The communication requirements for all EMS modules were analyzed and are all integrated over a data distribution service (DDS) Ethernet network withmore » appropriate quality of service (QoS) profiles. In conclusion, the developed EMS was emulated with actual residential energy consumption and irradiance data from Miami, Florida and proved its effectiveness in reducing consumers’ bills and achieving flat peak load profiles.« less

  18. Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lisa M. Daniels

    2002-05-08

    This project was very successful in terms of providing a unique source of information for rural communities and landowners. We are very pleased with the overall results and believe that this is a vital program for the sustainable development of wind energy. The outreach materials created by Windustry are filling a serious void in information about how local communities and rural landowners can participate in wind development projects. In our program implementation we learned how great the demand is for this type of information both through our hotline calls and website usage. We also realized that the materials require constantmore » updating and maintenance. There is a balance that needs to be found in printing the materials to have handouts ready at meetings for our primary target audience and more research and revisions for the website materials. All of this work is of an ongoing nature. Since this funding was awarded for one year, Windustry will be seeking other funding sources to continue the work in future years. Below is a summary of the Windustry accomplishments as well a sampling of website usage reports. Windustry is appreciative of the US DOE for its support of this wind energy industry work and the Wind Powering America initiative.« less

  19. Student Teachers' Perceptions about the Impact of Internet Usage on Their Learning and Jobs

    ERIC Educational Resources Information Center

    Gialamas, Vasilis; Nikolopoulou, Kleopatra; Koutromanos, George

    2013-01-01

    This study investigated student teachers' perceptions about the impact of internet usage on their learning and future jobs. The sample consisted of 448 student teachers from the Early Childhood and Primary Education Departments at the National University of Athens, in Greece. Student teachers' perceptions regarding the impact of internet usage on…

  20. Report on Utilities Usage and Cost, 1980-81 to 1984-85.

    ERIC Educational Resources Information Center

    Alabama State Commission on Higher Education, Montgomery.

    The consumption and cost of energy and other types of utilities by state college campuses were analyzed by the Alabama Commission on Higher Education. A focus of attention has been changes in energy usage per square foot from year to year as an indicator of the institutions' energy conservation and, over time, of the changing characteristics of…

  1. Systems and methods for controlling energy use in a building management system using energy budgets

    DOEpatents

    Wenzel, Michael J.

    2012-06-17

    Systems and methods for limiting power consumption by a heating, ventilation, and air conditioning (HVAC) subsystem of a building are shown and described. A mathematical linear operator is found that transforms the unused or deferred cooling power usage of the HVAC system based on pre-determined temperature settings to a target cooling power usage. The mathematical operator is applied to the temperature settings to create a temperature setpoint trajectory expected to provide the target cooling power usage.

  2. Hybrid Simulation Modeling to Estimate U.S. Energy Elasticities

    NASA Astrophysics Data System (ADS)

    Baylin-Stern, Adam C.

    This paper demonstrates how an U.S. application of CIMS, a technologically explicit and behaviourally realistic energy-economy simulation model which includes macro-economic feedbacks, can be used to derive estimates of elasticity of substitution (ESUB) and autonomous energy efficiency index (AEEI) parameters. The ability of economies to reduce greenhouse gas emissions depends on the potential for households and industry to decrease overall energy usage, and move from higher to lower emissions fuels. Energy economists commonly refer to ESUB estimates to understand the degree of responsiveness of various sectors of an economy, and use estimates to inform computable general equilibrium models used to study climate policies. Using CIMS, I have generated a set of future, 'pseudo-data' based on a series of simulations in which I vary energy and capital input prices over a wide range. I then used this data set to estimate the parameters for transcendental logarithmic production functions using regression techniques. From the production function parameter estimates, I calculated an array of elasticity of substitution values between input pairs. Additionally, this paper demonstrates how CIMS can be used to calculate price-independent changes in energy-efficiency in the form of the AEEI, by comparing energy consumption between technologically frozen and 'business as usual' simulations. The paper concludes with some ideas for model and methodological improvement, and how these might figure into future work in the estimation of ESUBs from CIMS. Keywords: Elasticity of substitution; hybrid energy-economy model; translog; autonomous energy efficiency index; rebound effect; fuel switching.

  3. Energy Conservation: Implementing an Effective Campus Program.

    ERIC Educational Resources Information Center

    Marsee, Jeff

    After reviewing the physical plant environment and temperature control equipment at Eastfield College (Texas), this paper explains how redirected efforts toward energy conservation can result in important cost/usage savings. Electricity billing rates are explained to provide a stronger usage strategy for cost effectiveness. Two methods of reducing…

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Youssef, Tarek A.; El Hariri, Mohamad; Elsayed, Ahmed T.

    The smart grid is seen as a power system with realtime communication and control capabilities between the consumer and the utility. This modern platform facilitates the optimization in energy usage based on several factors including environmental, price preferences, and system technical issues. In this paper a real-time energy management system (EMS) for microgrids or nanogrids was developed. The developed system involves an online optimization scheme to adapt its parameters based on previous, current, and forecasted future system states. The communication requirements for all EMS modules were analyzed and are all integrated over a data distribution service (DDS) Ethernet network withmore » appropriate quality of service (QoS) profiles. In conclusion, the developed EMS was emulated with actual residential energy consumption and irradiance data from Miami, Florida and proved its effectiveness in reducing consumers’ bills and achieving flat peak load profiles.« less

  5. Experimental Verification and Integration of a Next Generation Smart Power Management System

    NASA Astrophysics Data System (ADS)

    Clemmer, Tavis B.

    With the increase in energy demand by the residential community in this country and the diminishing fossil fuel resources being used for electric energy production there is a need for a system to efficiently manage power within a residence. The Smart Green Power Node (SGPN) is a next generation energy management system that automates on-site energy production, storage, consumption, and grid usage to yield the most savings for both the utility and the consumer. Such a system automatically manages on-site distributed generation sources such as a PhotoVoltaic (PV) input and battery storage to curtail grid energy usage when the price is high. The SGPN high level control features an advanced modular algorithm that incorporates weather data for projected PV generation, battery health monitoring algorithms, user preferences for load prioritization within the home in case of an outage, Time of Use (ToU) grid power pricing, and status of on-site resources to intelligently schedule and manage power flow between the grid, loads, and the on-site resources. The SGPN has a scalable, modular architecture such that it can be customized for user specific applications. This drove the topology for the SGPN which connects on-site resources at a low voltage DC microbus; a two stage bi-directional inverter/rectifier then couples the AC load and residential grid connect to on-site generation. The SGPN has been designed, built, and is undergoing testing. Hardware test results obtained are consistent with the design goals set and indicate that the SGPN is a viable system with recommended changes and future work.

  6. Wind power forecasting: IEA Wind Task 36 & future research issues

    DOE PAGES

    Giebel, G.; Cline, J.; Frank, H.; ...

    2016-10-03

    Here, this paper presents the new International Energy Agency Wind Task 36 on Forecasting, and invites to collaborate within the group. Wind power forecasts have been used operatively for over 20 years. Despite this fact, there are still several possibilities to improve the forecasts, both from the weather prediction side and from the usage of the forecasts. The new International Energy Agency (IEA) Task on Forecasting for Wind Energy tries to organise international collaboration, among national meteorological centres with an interest and/or large projects on wind forecast improvements (NOAA, DWD, MetOffice, met.no, DMI,...), operational forecaster and forecast users. The Taskmore » is divided in three work packages: Firstly, a collaboration on the improvement of the scientific basis for the wind predictions themselves. This includes numerical weather prediction model physics, but also widely distributed information on accessible datasets. Secondly, we will be aiming at an international pre-standard (an IEA Recommended Practice) on benchmarking and comparing wind power forecasts, including probabilistic forecasts. This WP will also organise benchmarks, in cooperation with the IEA Task WakeBench. Thirdly, we will be engaging end users aiming at dissemination of the best practice in the usage of wind power predictions. As first results, an overview of current issues for research in short-term forecasting of wind power is presented.« less

  7. Acclimatization to extreme heat

    NASA Astrophysics Data System (ADS)

    Warner, M. E.; Ganguly, A. R.; Bhatia, U.

    2017-12-01

    Heat extremes throughout the globe, as well as in the United States, are expected to increase. These heat extremes have been shown to impact human health, resulting in some of the highest levels of lives lost as compared with similar natural disasters. But in order to inform decision makers and best understand future mortality and morbidity, adaptation and mitigation must be considered. Defined as the ability for individuals or society to change behavior and/or adapt physiologically, acclimatization encompasses the gradual adaptation that occurs over time. Therefore, this research aims to account for acclimatization to extreme heat by using a hybrid methodology that incorporates future air conditioning use and installation patterns with future temperature-related time series data. While previous studies have not accounted for energy usage patterns and market saturation scenarios, we integrate such factors to compare the impact of air conditioning as a tool for acclimatization, with a particular emphasis on mortality within vulnerable communities.

  8. Monitoring of computing resource use of active software releases at ATLAS

    NASA Astrophysics Data System (ADS)

    Limosani, Antonio; ATLAS Collaboration

    2017-10-01

    The LHC is the world’s most powerful particle accelerator, colliding protons at centre of mass energy of 13 TeV. As the energy and frequency of collisions has grown in the search for new physics, so too has demand for computing resources needed for event reconstruction. We will report on the evolution of resource usage in terms of CPU and RAM in key ATLAS offline reconstruction workflows at the TierO at CERN and on the WLCG. Monitoring of workflows is achieved using the ATLAS PerfMon package, which is the standard ATLAS performance monitoring system running inside Athena jobs. Systematic daily monitoring has recently been expanded to include all workflows beginning at Monte Carlo generation through to end-user physics analysis, beyond that of event reconstruction. Moreover, the move to a multiprocessor mode in production jobs has facilitated the use of tools, such as “MemoryMonitor”, to measure the memory shared across processors in jobs. Resource consumption is broken down into software domains and displayed in plots generated using Python visualization libraries and collected into pre-formatted auto-generated Web pages, which allow the ATLAS developer community to track the performance of their algorithms. This information is however preferentially filtered to domain leaders and developers through the use of JIRA and via reports given at ATLAS software meetings. Finally, we take a glimpse of the future by reporting on the expected CPU and RAM usage in benchmark workflows associated with the High Luminosity LHC and anticipate the ways performance monitoring will evolve to understand and benchmark future workflows.

  9. Intelligent demand side management of residential building energy systems

    NASA Astrophysics Data System (ADS)

    Sinha, Maruti N.

    Advent of modern sensing technologies, data processing capabilities and rising cost of energy are driving the implementation of intelligent systems in buildings and houses which constitute 41% of total energy consumption. The primary motivation has been to provide a framework for demand-side management and to improve overall reliability. The entire formulation is to be implemented on NILM (Non-Intrusive Load Monitoring System), a smart meter. This is going to play a vital role in the future of demand side management. Utilities have started deploying smart meters throughout the world which will essentially help to establish communication between utility and consumers. This research is focused on investigation of a suitable thermal model of residential house, building up control system and developing diagnostic and energy usage forecast tool. The present work has considered measurement based approach to pursue. Identification of building thermal parameters is the very first step towards developing performance measurement and controls. The proposed identification technique is PEM (Prediction Error Method) based, discrete state-space model. The two different models have been devised. First model is focused toward energy usage forecast and diagnostics. Here one of the novel idea has been investigated which takes integral of thermal capacity to identify thermal model of house. The purpose of second identification is to build up a model for control strategy. The controller should be able to take into account the weather forecast information, deal with the operating point constraints and at the same time minimize the energy consumption. To design an optimal controller, MPC (Model Predictive Control) scheme has been implemented instead of present thermostatic/hysteretic control. This is a receding horizon approach. Capability of the proposed schemes has also been investigated.

  10. Plastics, the environment and human health: current consensus and future trends

    PubMed Central

    Thompson, Richard C.; Moore, Charles J.; vom Saal, Frederick S.; Swan, Shanna H.

    2009-01-01

    Plastics have transformed everyday life; usage is increasing and annual production is likely to exceed 300 million tonnes by 2010. In this concluding paper to the Theme Issue on Plastics, the Environment and Human Health, we synthesize current understanding of the benefits and concerns surrounding the use of plastics and look to future priorities, challenges and opportunities. It is evident that plastics bring many societal benefits and offer future technological and medical advances. However, concerns about usage and disposal are diverse and include accumulation of waste in landfills and in natural habitats, physical problems for wildlife resulting from ingestion or entanglement in plastic, the leaching of chemicals from plastic products and the potential for plastics to transfer chemicals to wildlife and humans. However, perhaps the most important overriding concern, which is implicit throughout this volume, is that our current usage is not sustainable. Around 4 per cent of world oil production is used as a feedstock to make plastics and a similar amount is used as energy in the process. Yet over a third of current production is used to make items of packaging, which are then rapidly discarded. Given our declining reserves of fossil fuels, and finite capacity for disposal of waste to landfill, this linear use of hydrocarbons, via packaging and other short-lived applications of plastic, is simply not sustainable. There are solutions, including material reduction, design for end-of-life recyclability, increased recycling capacity, development of bio-based feedstocks, strategies to reduce littering, the application of green chemistry life-cycle analyses and revised risk assessment approaches. Such measures will be most effective through the combined actions of the public, industry, scientists and policymakers. There is some urgency, as the quantity of plastics produced in the first 10 years of the current century is likely to approach the quantity produced in the entire century that preceded. PMID:19528062

  11. Plastics, the environment and human health: current consensus and future trends.

    PubMed

    Thompson, Richard C; Moore, Charles J; vom Saal, Frederick S; Swan, Shanna H

    2009-07-27

    Plastics have transformed everyday life; usage is increasing and annual production is likely to exceed 300 million tonnes by 2010. In this concluding paper to the Theme Issue on Plastics, the Environment and Human Health, we synthesize current understanding of the benefits and concerns surrounding the use of plastics and look to future priorities, challenges and opportunities. It is evident that plastics bring many societal benefits and offer future technological and medical advances. However, concerns about usage and disposal are diverse and include accumulation of waste in landfills and in natural habitats, physical problems for wildlife resulting from ingestion or entanglement in plastic, the leaching of chemicals from plastic products and the potential for plastics to transfer chemicals to wildlife and humans. However, perhaps the most important overriding concern, which is implicit throughout this volume, is that our current usage is not sustainable. Around 4 per cent of world oil production is used as a feedstock to make plastics and a similar amount is used as energy in the process. Yet over a third of current production is used to make items of packaging, which are then rapidly discarded. Given our declining reserves of fossil fuels, and finite capacity for disposal of waste to landfill, this linear use of hydrocarbons, via packaging and other short-lived applications of plastic, is simply not sustainable. There are solutions, including material reduction, design for end-of-life recyclability, increased recycling capacity, development of bio-based feedstocks, strategies to reduce littering, the application of green chemistry life-cycle analyses and revised risk assessment approaches. Such measures will be most effective through the combined actions of the public, industry, scientists and policymakers. There is some urgency, as the quantity of plastics produced in the first 10 years of the current century is likely to approach the quantity produced in the entire century that preceded.

  12. Investigating the Energy-Water Usage Efficiency of the Reuse of Treated Municipal Wastewater for Artificial Groundwater Recharge.

    PubMed

    Fournier, Eric D; Keller, Arturo A; Geyer, Roland; Frew, James

    2016-02-16

    This project investigates the energy-water usage efficiency of large scale civil infrastructure projects involving the artificial recharge of subsurface groundwater aquifers via the reuse of treated municipal wastewater. A modeling framework is introduced which explores the various ways in which spatially heterogeneous variables such as topography, landuse, and subsurface infiltration capacity combine to determine the physical layout of proposed reuse system components and their associated process energy-water demands. This framework is applied to the planning and evaluation of the energy-water usage efficiency of hypothetical reuse systems in five case study regions within the State of California. Findings from these case study analyses suggest that, in certain geographic contexts, the water requirements attributable to the process energy consumption of a reuse system can exceed the volume of water that it is able to recover by as much as an order of magnitude.

  13. Low Energy Technology. A Unit of Instruction in Housing and Home Environment. Home Energy Usage and Conservation.

    ERIC Educational Resources Information Center

    Beaulieu, Barbara; And Others

    This unit of instruction on home energy usage and conservation was designed for use by home economics teachers in Florida high schools and by home economics extension agents as they work with their clientele. It is one of a series of 11 instructional units (see note) written to help teachers and agents to educate their students and clients about…

  14. Evaluation of Modeled and Measured Energy Savings in Existing All Electric Public Housing in the Pacific Northwest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordon, A.; Lubliner, M.; Howard, L.

    2014-04-01

    This project analyzes the cost effectiveness of energy savings measures installed by a large public housing authority in Salishan, a community in Tacoma Washington. Research focuses on the modeled and measured energy usage of the first six phases of construction, and compares the energy usage of those phases to phase 7. Market-ready energy solutions were also evaluated to improve the efficiency of affordable housing for new and existing (built since 2001) affordable housing in the marine climate of Washington State.

  15. Evaluating Energy Savings in All-Electric Public Housing in the Pacific Northwest, Tacoma, Washington (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2014-03-01

    This project analyzes the cost effectiveness of energy savings measures installed by a large public housing authority in Salishan, a community in Tacoma Washington. Research focuses on the modeled and measured energy usage of the first six phases of construction, and compares the energy usage of those phases to phase 7. Market-ready energy solutions were also evaluated to improve the efficiency of affordable housing for new and existing (built since 2001) affordable housing in the marine climate of Washington State.

  16. Commercial and Multifamily Building Tenant Energy Usage Aggregation and Privacy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Livingston, Olga V.; Pulsipher, Trenton C.; Wang, Na

    2014-11-17

    In a number of cities and states, building owners are required to disclose and/or benchmark their building energy use. This requires the building owner to possess monthly whole-building energy usage information, which can be challenging for buildings in which individual tenants have their own utility meters and accounts with the utility. Some utilities and utility regulators have turned to aggregation of customer data as a way to give building owners the whole-building energy usage data while protecting customer privacy. However, no utilities or regulators appear to have conducted a concerted statistical, cybersecurity, and privacy analysis to justify the level ofmore » aggregation selected. Therefore, the Tennant Data Aggregation Task was established to help utilities address these issues and provide recommendations as well as a theoretical justification of the aggregation threshold. This study is focused on the use case of submitting data for ENERGY STAR Portfolio Manager (ESPM), but it also looks at other potential use cases for monthly energy consumption data.« less

  17. Membranes for bioelectrochemical systems: challenges and research advances.

    PubMed

    Dhar, Bipro Ranjan; Lee, Hyung-Sool

    2013-01-01

    Increasing energy demand has been a big challenge for current society, as the fossil fuel sources are gradually decreasing. Hence, development of renewable and sustainable energy sources for the future is considered one of the top priorities in national strategic plans. Bioenergy can meet future energy requirements - renewability, sustainability, and even carbon-neutrality. Bioenergy production from wastes and wastewaters is especially attractive because of dual benefits of energy generation and contaminant stabilization. There are several bioenergy technologies using wastes and wastewaters as electron donor, which include anaerobic digestion, dark biohydrogen fermentation, biohydrogen production using photosynthetic microorganisms, and bioelectrochemical systems (BESs). Among them BES seems to be very promising as we can produce a variety of value-added products from wastes and wastewaters, such as electric power, hydrogen gas, hydrogen peroxide, acetate, ethanol etc. Most ofthe traditional BES uses a membrane to separate the anode and cathode chamber, which is essential for improving microbial metabolism on the anode and the recovery of value-added products on the cathode. Performance of BES lacking a membrane can be seriously deteriorated, due to oxygen diffusion or substantial loss of synthesized products. For this reason, usage of a membrane seems essential to facilitate BES performance. However, a membrane can bring several technical challenges to BES application compared to membrane-less BES. These challenges include poor proton permeability, substrate loss, oxygen back diffusion, pH gradient, internal resistance, biofouling, etc. This paper aims to review the major technical barriers associated with membranes and future research directions for their application in BESs.

  18. Development of the Optimum Operation Scheduling Model of Domestic Electric Appliances for the Supply-Demand Adjustment in a Power System

    NASA Astrophysics Data System (ADS)

    Ikegami, Takashi; Iwafune, Yumiko; Ogimoto, Kazuhiko

    The high penetration of variable renewable generation such as Photovoltaic (PV) systems will cause the issue of supply-demand imbalance in a whole power system. The activation of the residential power usage, storage and generation by sophisticated scheduling and control using the Home Energy Management System (HEMS) will be needed to balance power supply and demand in the near future. In order to evaluate the applicability of the HEMS as a distributed controller for local and system-wide supply-demand balances, we developed an optimum operation scheduling model of domestic electric appliances using the mixed integer linear programming. Applying this model to several houses with dynamic electricity prices reflecting the power balance of the total power system, it was found that the adequate changes in electricity prices bring about the shift of residential power usages to control the amount of the reverse power flow due to excess PV generation.

  19. NGDS Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blackman, Harold; Moore, Joseph

    2014-06-30

    The ultimate goal of the National Geothermal Data System (NGDS) is to support the discovery and generation of geothermal sources of energy. The NGDS was designed and has been implemented to provide online access to important geothermal-related data from a network of data providers in order to: • Increase the efficiency of exploration, development and usage of geothermal energy by providing a basis for financial risk analysis of potential sites • Assist state and federal agencies in making land and resource management assessments • Foster the discovery of new geothermal resources by supporting ongoing and future geothermal-related research • Increasemore » public awareness of geothermal energy It is through the implementation of this distributed data system and its subsequent use that substantial increases to the general access and understanding of geothermal related data will result. NGDS provides a mechanism for the sharing of data thereby fostering the discovery of new resources and supporting ongoing geothermal research.« less

  20. Potential reduction of energy consumption in public university library

    NASA Astrophysics Data System (ADS)

    Noranai, Z.; Azman, ADF

    2017-09-01

    Efficient electrical energy usage has been recognized as one of the important factor to reduce cost of electrical energy consumption. Various parties have been emphasized about the importance of using electrical energy efficiently. Inefficient usage of electrical energy usage lead to biggest factor increasing of administration cost in Universiti Tun Hussein Onn Malaysia. With this in view, a project the investigate potential reduction electrical energy consumption in Universiti Tun Hussein Onn Malaysia was carried out. In this project, a case study involving electrical energy consumption of Perpustakaan Tunku Tun Aminah was conducted. The scopes of this project are to identify energy consumption in selected building and to find the factors that contributing to wastage of electrical energy. The MS1525:2001, Malaysian Standard - Code of practice on energy efficiency and use of renewable energy for non-residential buildings was used as reference. From the result, 4 saving measure had been proposed which is change type of the lamp, install sensor, decrease the number of lamp and improve shading coefficient on glass. This saving measure is suggested to improve the efficiency of electrical energy consumption. Improve of human behaviour toward saving energy measure can reduce 10% from the total of saving cost while on building technical measure can reduce 90% from total saving cost.

  1. An overview of the energy situation

    NASA Technical Reports Server (NTRS)

    Pitts, D. R.

    1978-01-01

    Beginning with a historical review of the domestic pattern of energy usage, the current dependence of the United States upon dwindling petroleum resources is examined. The possible limit of petroleum usage is discussed, and recent oil production trends are presented. Coupling these with projected analyses of OPEC oil productive capability in the early 1980's indicates a serious worldwide as well as American energy problem in the next decade. The need for conservation and rapid development of application of alternative energy resources is discussed including quantitative projections of significant conservation efforts as well as estimates of domestic alternative energy resource capabilities.

  2. Post Occupancy energy evaluation of Ronald Tutor Hall using eQUEST; Computer based simulation of existing building and comparison of data

    NASA Astrophysics Data System (ADS)

    Dulom, Duyum

    Buildings account for about 40 percent of total U.S. energy consumption. It is therefore important to shift our focus on important measures that can be taken to make buildings more energy efficient. With the rise in number of buildings day by day and the dwindling resources, retrofitting buildings is the key to an energy efficiency future. Post occupancy evaluation (POE) is an important tool and is ideal for the retrofitting process. POE would help to identify the problem areas in the building and enable researchers and designers to come up with solutions addressing the inefficient energy usage as well as the overall wellbeing of the users of the building. The post occupancy energy evaluation of Ronald Tutor Hall (RTH) located at the University of Southern California is one small step in that direction. RTH was chosen to study because; (a) relatively easy access to the building data (b) it was built in compliance with Title 24 2001 and (c) it was old enough to have post occupancy data. The energy modeling tool eQuest was used to simulate the RTH building using the background information of the building such as internal thermal comfort profile, occupancy profile, building envelope profile, internal heat gain profile, etc. The simulation results from eQuest were then compared with the actual building recorded data to verify that our simulated model was behaving similar to the actual building. Once we were able to make the simulated model behave like the actual building, changes were made to the model such as installation of occupancy sensor in the classroom & laboratories, changing the thermostat set points and introducing solar shade on northwest and southwest facade. The combined savings of the proposed interventions resulted in a 6% savings in the overall usage of energy.

  3. Oxygen consumption rate v. rate of energy utilization of fishes: a comparison and brief history of the two measurements.

    PubMed

    Nelson, J A

    2016-01-01

    Accounting for energy use by fishes has been taking place for over 200 years. The original, and continuing gold standard for measuring energy use in terrestrial animals, is to account for the waste heat produced by all reactions of metabolism, a process referred to as direct calorimetry. Direct calorimetry is not easy or convenient in terrestrial animals and is extremely difficult in aquatic animals. Thus, the original and most subsequent measurements of metabolic activity in fishes have been measured via indirect calorimetry. Indirect calorimetry takes advantage of the fact that oxygen is consumed and carbon dioxide is produced during the catabolic conversion of foodstuffs or energy reserves to useful ATP energy. As measuring [CO2 ] in water is more challenging than measuring [O2 ], most indirect calorimetric studies on fishes have used the rate of O2 consumption. To relate measurements of O2 consumption back to actual energy usage requires knowledge of the substrate being oxidized. Many contemporary studies of O2 consumption by fishes do not attempt to relate this measurement back to actual energy usage. Thus, the rate of oxygen consumption (M˙O2 ) has become a measurement in its own right that is not necessarily synonymous with metabolic rate. Because all extant fishes are obligate aerobes (many fishes engage in substantial net anaerobiosis, but all require oxygen to complete their life cycle), this discrepancy does not appear to be of great concern to the fish biology community, and reports of fish oxygen consumption, without being related to energy, have proliferated. Unfortunately, under some circumstances, these measures can be quite different from one another. A review of the methodological history of the two measurements and a look towards the future are included. © 2016 The Fisheries Society of the British Isles.

  4. Energy in the Mountain West: Colonialism and Independence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steven Piet; Lloyd Brown; Robert Cherry

    2007-08-01

    In many ways, the mountain west (Alaska, Arizona, Colorado, Idaho, Montana, New Mexico, Nevada, Utah, Wyoming) is an energy colony for the rest of the United States: it is rich in energy resources that are extracted to fuel economic growth in the wealthier and more populous coastal regions. Federal agencies and global corporations often behave as if the mountain west is a place to be exploited or managed for the benefit of customers and consumers elsewhere. Yet, the area. is not vast empty space with a limitless supply of natural resources, but rather a fast-growing region with a diverse economicmore » base dependent on a limited supply of water. New decision processes and collaborations are slowly changing this situation, but in a piecemeal fashion that places local communities at odds with powerful external interests. Proper planning of major development is needed to insure that the west has a strong economic and cultural future after the fossil energy resources decline, even if that might be a century from now. To encourage the necessary public discussions, this paper identifies key differences between the mountain west and the rest of the United States and suggests some holistic approaches that could improve our future. This paper is designed to provoke thought and discussion; it does not report new analyses on energy resources or usage. It is a summary of a large group effort.« less

  5. A Meta-Analysis of Single-Family Deep Energy Retrofit Performance in the U.S.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Less, Brennan; Walker, Iain

    2014-08-01

    The current state of Deep Energy Retrofit (DER) performance in the U.S. has been assessed in 116 homes in the United States, using actual and simulated data gathered from the available domestic literature. Substantial airtightness reductions averaging 63% (n=48) were reported (two- to three-times more than in conventional retrofits), with average post-retrofit airtightness of 4.7 Air Changes per House at 50 Pascal (ACH50) (n=94). Yet, mechanical ventilation was not installed consistently. In order to avoid indoor air quality (IAQ) issues, all future DERs should comply with ASHRAE 62.2-2013 requirements or equivalent. Projects generally achieved good energy results, with average annualmore » net-site and net-source energy savings of 47%±20% and 45%±24% (n=57 and n=35), respectively, and carbon emission reductions of 47%±22% (n=23). Net-energy reductions did not vary reliably with house age, airtightness, or reported project costs, but pre-retrofit energy usage was correlated with total reductions (MMBtu).« less

  6. Key role for nuclear energy in global biodiversity conservation.

    PubMed

    Brook, Barry W; Bradshaw, Corey J A

    2015-06-01

    Modern society uses massive amounts of energy. Usage rises as population and affluence increase, and energy production and use often have an impact on biodiversity or natural areas. To avoid a business-as-usual dependence on coal, oil, and gas over the coming decades, society must map out a future energy mix that incorporates alternative sources. This exercise can lead to radically different opinions on what a sustainable energy portfolio might entail, so an objective assessment of the relative costs and benefits of different energy sources is required. We evaluated the land use, emissions, climate, and cost implications of 3 published but divergent storylines for future energy production, none of which was optimal for all environmental and economic indicators. Using multicriteria decision-making analysis, we ranked 7 major electricity-generation sources (coal, gas, nuclear, biomass, hydro, wind, and solar) based on costs and benefits and tested the sensitivity of the rankings to biases stemming from contrasting philosophical ideals. Irrespective of weightings, nuclear and wind energy had the highest benefit-to-cost ratio. Although the environmental movement has historically rejected the nuclear energy option, new-generation reactor technologies that fully recycle waste and incorporate passive safety systems might resolve their concerns and ought to be more widely understood. Because there is no perfect energy source however, conservation professionals ultimately need to take an evidence-based approach to consider carefully the integrated effects of energy mixes on biodiversity conservation. Trade-offs and compromises are inevitable and require advocating energy mixes that minimize net environmental damage. Society cannot afford to risk wholesale failure to address energy-related biodiversity impacts because of preconceived notions and ideals. © 2014 The Authors Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.

  7. Space or terrestrial energy?

    NASA Astrophysics Data System (ADS)

    Boulet, L.

    Consideration is given to the possibility of generating sufficient energy at acceptable costs on earth to offset the need to build solar power satellite systems (SPS). Electricity usage, one of the basic driving forces of developed nations, grows with the population. Currently comprising 33 pct of the total world energy used, electricity is projected to grow to a 50-55 pct share in the 21st century. Future terrestrial electrical energy sources include carbon-based fuels, nuclear (fusion or fission), and the renewable solar technologies. Carbon-based fuel supplies can last until 2030 AD, about the same as fission plants with recycled fuel. Breeder reactors would stretch the nuclear fuels to the year 3000. Solar technologies offer more immediate solutions than fusion reactors and can produce 50 pct of the power available from the construction of the maximum number of nuclear power plants. The addition of SPS would further augment the total. Combinations of all the technologies are recommended, with local research for the most appropriate technology for each nation.

  8. On the usage of agricultural raw materials--energy or food? An assessment from an economics perspective.

    PubMed

    Lenk, Fabian; Bröring, Stefanie; Herzog, Philipp; Leker, Jens

    2007-12-01

    Bioenergies are promoted across the globe as the answer for global warming and the chance to reduce dependency from fossil energy sources. Despite the fact that renewable energy sources offer the opportunity to reduce CO2 emission and present a chance to increase agricultural incomes, they also come along with some drawbacks that have been mostly neglected in the current discussion. This paper seeks to build a basis for discussing the impacts of the growing subsidization of bioenergy and the resulting usage competition of agricultural raw materials between foods and energy. To assess the usage competition and the subsidization of bioenergy, this article employs a welfare economics perspective associated with an emphasize on the construct of externalities. This will help to foster the discussion on the further subsidization of bioenergy, where funding for R&D on new ways of using non-food raw materials ought to play a significant role.

  9. Modeling nexus of urban heat island mitigation strategies with electricity/power usage and consumer costs: a case study for Phoenix, Arizona, USA

    NASA Astrophysics Data System (ADS)

    Silva, Humberto; Fillpot, Baron S.

    2018-01-01

    A reduction in both power and electricity usage was determined using a previously validated zero-dimensional energy balance model that implements mitigation strategies used to reduce the urban heat island (UHI) effect. The established model has been applied to show the change in urban characteristic temperature when executing four common mitigation strategies: increasing the overall (1) emissivity, (2) vegetated area, (3) thermal conductivity, and (4) albedo of the urban environment in a series of increases by 5, 10, 15, and 20% from baseline values. Separately, a correlation analysis was performed involving meteorological data and total daily energy (TDE) consumption where the 24-h average temperature was shown to have the greatest correlation to electricity service data in the Phoenix, Arizona, USA, metropolitan region. A methodology was then developed for using the model to predict TDE consumption reduction and corresponding cost-saving analysis when implementing the four mitigation strategies. The four modeled UHI mitigation strategies, taken in combination, would lead to the largest percent reduction in annual energy usage, where increasing the thermal conductivity is the single most effective mitigation strategy. The single least effective mitigation strategy, increasing the emissivity by 5% from the baseline value, resulted in an average calculated reduction of about 1570 GWh in yearly energy usage with a corresponding 157 million dollar cost savings. When the four parameters were increased in unison by 20% from baseline values, an average calculated reduction of about 2050 GWh in yearly energy usage was predicted with a corresponding 205 million dollar cost savings.

  10. "Heinrich events" (& sediments): A history of terminology and recommendations for future usage

    NASA Astrophysics Data System (ADS)

    Andrews, John T.; Voelker, Antje H. L.

    2018-05-01

    We document the history of terms used to describe Heinrich (H-) layers and events and which mark major glaciological iceberg discharge events in the North Atlantic. We argue that the usage "Heinrich layer," "Heinrich zone", or "Heinrich event" should be restricted to only those sediments that can be ascribed to an origin from the Hudson Strait Ice Stream and the Laurentide Ice Sheet. We also argue that the commonplace understanding of these events--as dominated by massive iceberg discharges --fails to include the earlier well-documented evidence that these events were also massive meltwater events linked to deposition along the North Atlantic Mid-Ocean Channel (NAMOC) in the Labrador Sea. We make five recommendations for future usage of "Heinrich events," which include: restricting the usage to those events that can be mineralogically/geochemically linked to Hudson Strait; abandoning the term "Heinrich stadial"; and promote local terminology for "ice rafted events" that may be correlated, or not, with Hudson Strait Heinrich events based on calibrated radiocarbon dates or other appropriate chronological markers.

  11. Energy, Society, and Education, with Emphasis on Educational Technology Policy for K-12

    NASA Astrophysics Data System (ADS)

    Chedid, Loutfallah Georges

    2005-03-01

    This paper begins by examining the profound impact of energy usage on our lives, and on every major sector of the economy. Then, the anticipated US energy needs by the year 2025 are presented based on the Department of Energy's projections. The paper considers the much-touted National Energy Policy Report, and identifies a major flaw where the policy report neglects education as a contributor to solving future energy problems. The inextricable interaction between energy solutions and education is described, with emphasis on education policy as a potential vehicle for developing economically and commercially sustainable energy systems that have a minimal impact on the environment. With that said, an earnest argument is made as to the need to educate science, technology, engineering, and mathematics (STEM) proficient individuals for the energy technology development workforce, starting with the K-12 level. A framework for the aforementioned STEM education policies is presented that includes a sustained national awareness campaign, address the teacher's salary issues, and addresses teacher quality issues. Moreover, the framework suggests a John Dewey-style "learning-by-doing" shift in pedagogy. Finally, the framework presents specific changes to the current national standards that would be valuable to the 21st century student.

  12. Insights from Smart Meters: Ramp-Up, Dependability, and Short-Term Persistence of Savings from Home Energy Reports

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Todd, A.; Perry, M.; Smith, B.

    2015-04-01

    Smart meters, smart thermostats, and other new technologies provide previously unavailable high-frequency and location-specific energy usage data. Many utilities are now able to capture real-time, customer-specific hourly interval usage data for a large proportion of their residential and small commercial customers. These vast, constantly growing streams of rich data (or big data) have the potential to provide novel insights into key policy questions about how people make energy decisions.

  13. Annual Energy Review 1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seiferlein, Katherine E.

    A generation ago the Ford Foundation convened a group of experts to explore and assess the Nation’s energy future, and published their conclusions in A Time To Choose: America’s Energy Future (Cambridge, MA: Ballinger, 1974). The Energy Policy Project developed scenarios of U.S. potential energy use in 1985 and 2000. Now, with 1985 well behind us and 2000 nearly on the record books, it may be of interest to take a look back to see what actually happened and consider what it means for our future. The study group sketched three primary scenarios with differing assumptions about the growth ofmore » energy use. The Historical Growth scenario assumed that U.S. energy consumption would continue to expand by 3.4 percent per year, the average rate from 1950 to 1970. This scenario assumed no intentional efforts to change the pattern of consumption, only efforts to encourage development of our energy supply. The Technical Fix scenario anticipated a “conscious national effort to use energy more efficiently through engineering know-how." The Zero Energy Growth scenario, while not clamping down on the economy or calling for austerity, incorporated the Technical Fix efficiencies plus additional efficiencies. This third path anticipated that economic growth would depend less on energy-intensive industries and more on those that require less energy, i.e., the service sector. In 2000, total energy consumption was projected to be 187 quadrillion British thermal units (Btu) in the Historical Growth case, 124 quadrillion Btu in the Technical Fix case, and 100 quadrillion Btu in the Zero Energy Growth case. The Annual Energy Review 1999 reports a preliminary total consumption for 1999 of 97 quadrillion Btu (see Table 1.1), and the Energy Information Administration’s Short-Term Energy Outlook (April 2000) forecasts total energy consumption of 98 quadrillion Btu in 2000. What energy consumption path did the United States actually travel to get from 1974, when the scenarios were drawn, to the end of the century? What happened to the relationship between growth and energy consumption? How did the fuel mix change over this period? What are the effects of energy usage on our environment? What level of consumption will the United States—and the world—record in the Annual Energy Review 2025? We present this edition of the Annual Energy Review to help investigate these important questions and to stimulate and inform our thinking about what the future holds.« less

  14. The Study of Smartphone Usage Competency Assessment and Training for the Elderly.

    PubMed

    Lu, Sheng-Chieh; Wen, Tzu-Ning; Chang, Po-Lun

    2017-01-01

    This study aimed at developing an assessment of smartphone usage competence and constructing a training program for the elderly. A list of smartphone usage competencies with 34 items was defined through expert survey and panel. Based on the competence and previous literature, a training program and learning aids were designed in this study. There were 41 participants in our program. The results of self-administrated smartphone usage ability questionnaire indicated that all competencies were significantly improved after training. However, the results also demonstrated that some items were still difficult for the elderly to comprehend. Overall, this study provided a first exploration of defining smartphone usage competency and built a training program for the elderly. With strong suggestion, future mobile health (mHealth) services can follow this study to insure the smartphone usage ability of the elderly.

  15. Dosimetric effects of energy spectrum uncertainties in radiation therapy with laser-driven particle beams.

    PubMed

    Schell, S; Wilkens, J J

    2012-03-07

    Laser-driven particle acceleration is a potentially cost-efficient and compact new technology that might replace synchrotrons or cyclotrons for future proton or heavy-ion radiation therapy. Since the energy spectrum of laser-accelerated particles is rather wide, compared to the monoenergetic beams of conventional machines, studies have proposed the usage of broader spectra for the treatment of at least certain parts of the target volume to make the process more efficient. The thereby introduced additional uncertainty in the applied energy spectrum is analysed in this note. It is shown that the uncertainty can be categorized into a change of the total number of particles, and a change in the energy distribution of the particles. The former one can be monitored by a simple fluence detector and cancels for a high number of statistically fluctuating shots. The latter one, the redistribution of a fixed number of particles to different energy bins in the window of transmitted energies of the energy selection system, only introduces smaller changes to the resulting depth dose curve. Therefore, it might not be necessary to monitor this uncertainty for all applied shots. These findings might enable an easier uncertainty management for particle therapy with broad energy spectra.

  16. A survey on human behavior towards energy efficiency for office worker in malaysia

    NASA Astrophysics Data System (ADS)

    Mustafa, N. H.; Husain, M. N.; Abd Aziz, M. Z. A.; Othman, M. A.; Malek, F.

    2014-04-01

    Green environment has become an important topic around the world. This campaign can be realized if everybody understands and shares similar objectives on managing energy in an efficient way. This paper will present and analyse the survey on energy usage by office workers in Malaysia. The survey will focus on the workers in government sector. In social science surveys, it is important to support the tested data for a project. For issues related to human behaviour we must compare with real situations to verify the tested data and the results in energy monitoring system. The energy monitoring system will improve energy usage efficiency for the basic human activities in different situations and environments.

  17. Technology Acceptance Predictors among Student Teachers and Experienced Classroom Teachers

    ERIC Educational Resources Information Center

    Smarkola, Claudia

    2007-01-01

    This study investigated 160 student teachers' and 158 experienced teachers' self-reported computer usage and their future intentions to use computer applications for school assignments. The Technology Acceptance Model (TAM) was used as the framework to determine computer usage and intentions. Statistically significant results showed that after…

  18. 40 CFR 82.106 - Warning statement requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... calendar year. If at any time future usage exceeds the 95% reduction, all products manufactured with methyl... controlled substances or blends of controlled substances bound for discard; (4) Products manufactured using methyl chloroform or CFC-113 by persons who can demonstrate and certify a 95% reduction in overall usage...

  19. 40 CFR 82.106 - Warning statement requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... calendar year. If at any time future usage exceeds the 95% reduction, all products manufactured with methyl... controlled substances or blends of controlled substances bound for discard; (4) Products manufactured using methyl chloroform or CFC-113 by persons who can demonstrate and certify a 95% reduction in overall usage...

  20. High-Performance Computing Data Center Power Usage Effectiveness |

    Science.gov Websites

    Power Usage Effectiveness When the Energy Systems Integration Facility (ESIF) was conceived, NREL set an , ventilation, and air conditioning (HVAC), which captures fan walls, fan coils that support the data center

  1. Collecting conditions usage metadata to optimize current and future ATLAS software and processing

    NASA Astrophysics Data System (ADS)

    Rinaldi, L.; Barberis, D.; Formica, A.; Gallas, E. J.; Oda, S.; Rybkin, G.; Verducci, M.; ATLAS Collaboration

    2017-10-01

    Conditions data (for example: alignment, calibration, data quality) are used extensively in the processing of real and simulated data in ATLAS. The volume and variety of the conditions data needed by different types of processing are quite diverse, so optimizing its access requires a careful understanding of conditions usage patterns. These patterns can be quantified by mining representative log files from each type of processing and gathering detailed information about conditions usage for that type of processing into a central repository.

  2. Strategic Energy Management Plan for the Santa Ynez Band of Chumash Indians

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davenport, Lars; Smythe, Louisa; Sarquilla, Lindsey

    2015-03-27

    This plan outlines the Santa Ynez Band of Chumash Indians’ comprehensive energy management strategy including an assessment of current practices, a commitment to improving energy performance and reducing overall energy use, and recommended actions to achieve these goals. Vision Statement The primary objective of the Strategic Energy Management Plan is to implement energy efficiency, energy security, conservation, education, and renewable energy projects that align with the economic goals and cultural values of the community to improve the health and welfare of the tribe. The intended outcomes of implementing the energy plan include job creation, capacity building, and reduced energy costsmore » for tribal community members, and tribal operations. By encouraging energy independence and local power production the plan will promote self-sufficiency. Mission & Objectives The Strategic Energy Plan will provide information and suggestions to guide tribal decision-making and provide a foundation for effective management of energy resources within the Santa Ynez Band of Chumash Indians (SYBCI) community. The objectives of developing this plan include; Assess current energy demand and costs of all tribal enterprises, offices, and facilities; Provide a baseline assessment of the SYBCI’s energy resources so that future progress can be clearly and consistently measured, and current usage better understood; Project future energy demand; Establish a system for centralized, ongoing tracking and analysis of tribal energy data that is applicable across sectors, facilities, and activities; Develop a unifying vision that is consistent with the tribe’s long-term cultural, social, environmental, and economic goals; Identify and evaluate the potential of opportunities for development of long-term, cost effective energy sources, such as renewable energy, energy efficiency and conservation, and other feasible supply- and demand-side options; and Build the SYBCI’s capacity for understanding, managing, and developing energy resources by identifying training, distribution of information materials, and community meeting needs and opportunities« less

  3. National Labs Host Classroom Ready Energy Educational Materials

    NASA Astrophysics Data System (ADS)

    Howell, C. D.

    2009-12-01

    The Department of Energy (DOE) has a clear goal of joining all climate and energy agencies in the task of taking climate and energy research and development to communities across the nation and throughout the world. Only as information on climate and energy education is shared with the nation and world do research labs begin to understand the massive outreach work yet to be accomplished. The work at hand is to encourage and ensure the climate and energy literacy of our society. The national labs have defined the K-20 population as a major outreach focus, with the intent of helping them see their future through the global energy usage crisis and ensure them that they have choices and a chance to redirect their future. Students embrace climate and energy knowledge and do see an opportunity to change our energy future in a positive way. Students are so engaged that energy clubs are springing up in highschools across the nation. Because of such global clubs university campuses are being connected throughout the world (Energy Crossroads www.energycrossroads.org) etc. There is a need and an interest, but what do teachers need in order to faciliate this learning? It is simple, they need financial support for classroom resources; standards based classroom ready lessons and materials; and, training. The National Renewable Energy Laboratory (NREL), a Department of Energy Lab, provides standards based education materials to schools across the nation. With a focus on renewable energy and energy efficiency education, NREL helps educators to prompt students to analyze and then question their energy choices and evaluate their carbon footprint. Classrooms can then discover the effects of those choices on greenhouse gas emmissions and climate change. The DOE Office of Science has found a way to contribute to teachers professional development through the Department of Energy Academics Creating Teacher Scientists (DOE ACTS) Program. This program affords teachers an opportunity to take research to the classroom. The DOE ACTS program is designed for science and math teachers seeking an independent research experience with a mentor scientist at a DOE National Laboratory to serve as technical leaders and agents of positive change in their local, regional and national communities. (www.scied.science.doe.gov/scied/ACTS/about.htm) The National Labs developed education materials and outreach combined with DOE ACTS are several small steps in the right direction. That is, a small step toward impacting and influencing thousands of youth across the nation (our future workforce) as only teachers can do. (www.rne2ew.org http://www1.eere.energy.gov/education/)

  4. A Framework for Web Usage Mining in Electronic Government

    NASA Astrophysics Data System (ADS)

    Zhou, Ping; Le, Zhongjian

    Web usage mining has been a major component of management strategy to enhance organizational analysis and decision. The literature on Web usage mining that deals with strategies and technologies for effectively employing Web usage mining is quite vast. In recent years, E-government has received much attention from researchers and practitioners. Huge amounts of user access data are produced in Electronic government Web site everyday. The role of these data in the success of government management cannot be overstated because they affect government analysis, prediction, strategies, tactical, operational planning and control. Web usage miming in E-government has an important role to play in setting government objectives, discovering citizen behavior, and determining future courses of actions. Web usage mining in E-government has not received adequate attention from researchers or practitioners. We developed a framework to promote a better understanding of the importance of Web usage mining in E-government. Using the current literature, we developed the framework presented herein, in hopes that it would stimulate more interest in this important area.

  5. FY17 CSSE L2 Milestone Report: Analyzing Power Usage Characteristics of Workloads Running on Trinity.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pedretti, Kevin

    This report summarizes the work performed as part of a FY17 CSSE L2 milestone to in- vestigate the power usage behavior of ASC workloads running on the ATS-1 Trinity plat- form. Techniques were developed to instrument application code regions of interest using the Power API together with the Kokkos profiling interface and Caliper annotation library. Experiments were performed to understand the power usage behavior of mini-applications and the SNL/ATDM SPARC application running on ATS-1 Trinity Haswell and Knights Landing compute nodes. A taxonomy of power measurement approaches was identified and presented, providing a guide for application developers to follow. Controlledmore » scaling study experiments were performed on up to 2048 nodes of Trinity along with smaller scale ex- periments on Trinity testbed systems. Additionally, power and energy system monitoring information from Trinity was collected and archived for post analysis of "in-the-wild" work- loads. Results were analyzed to assess the sensitivity of the workloads to ATS-1 compute node type (Haswell vs. Knights Landing), CPU frequency control, node-level power capping control, OpenMP configuration, Knights Landing on-package memory configuration, and algorithm/solver configuration. Overall, this milestone lays groundwork for addressing the long-term goal of determining how to best use and operate future ASC platforms to achieve the greatest benefit subject to a constrained power budget.« less

  6. The Solar Energy Consortium of New York Photovoltaic Research and Development Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, Petra M.

    2012-10-15

    Project Objective: To lead New York State to increase its usage of solar electric systems. The expected outcome is that appropriate technologies will be made available which in turn will help to eliminate barriers to solar energy usage in New York State. Background: The Solar Energy Consortium has been created to lead New York State research on solar systems specifically directed at doubling the efficiency, halving the cost and reducing the cost of installation as well as developing unique form factors for the New York City urban environment.

  7. Feasibility Study of a Rotorcraft Health and Usage Monitoring System ( HUMS): Usage and Structural Life Monitoring Evaluation

    NASA Technical Reports Server (NTRS)

    Dickson, B.; Cronkhite, J.; Bielefeld, S.; Killian, L.; Hayden, R.

    1996-01-01

    The objective of this study was to evaluate two techniques, Flight Condition Recognition (FCR) and Flight Load Synthesis (FLS), for usage monitoring and assess the potential benefits of extending the retirement intervals of life-limited components, thus reducing the operator's maintenance and replacement costs. Both techniques involve indirect determination of loads using measured flight parameters and subsequent fatigue analysis to calculate the life expended on the life-limited components. To assess the potential benefit of usage monitoring, the two usage techniques were compared to current methods of component retirement. In addition, comparisons were made with direct load measurements to assess the accuracy of the two techniques. The data that was used for the evaluation of the usage monitoring techniques was collected under an independent HUMS Flight trial program, using a commercially available HUMS and data recording system. The usage data collect from the HUMS trial aircraft was analyzed off-line using PC-based software that included the FCR and FLS techniques. In the future, if the technique prove feasible, usage monitoring would be incorporated into the onboard HUMS.

  8. Integrated Resources Management Approach to Ensuring Sustainable Food Security in Nigeria-The Nexus of Rice Production in Niger State

    NASA Astrophysics Data System (ADS)

    Omotoso, T.

    2015-12-01

    By 2050, the world will need to feed 9 billion people. This will require a 60% increase in agricultural production and subsequently a 6% increase in water use by the agricultural sector alone. By 2030, global water demand is expected to increase by 40%, mostly in developing countries like Nigeria (Addams, Boccaletti, Kerlin, & Stuchtey, 2009) and global energy demand is expected to increase by 33% in 2035, also, mostly in emerging economies (IEA, 2013). These resources have to be managed efficiently in preparation for these future demands. Population growth leads to increased demand for water, energy and food. More food production will lead to more water-for-food and energy-for-food usage; and more demand for energy will lead to more water-for-energy needs. This nexus between water, energy and food is poorly understood and furthermore, complicated by external drivers such as climate change. Niger State Nigeria, which is blessed with abundant water and arable land resources, houses the three hydropower dams in Nigeria and one of the governments' proposed Staple Crops Processing Zones (SCPZ) for rice production. Both of these capital intensive investments depend heavily on water resources and are all highly vulnerable to changes in climate. Thus, it is essential to know how the local climate in this state will likely change and its impacts on water, energy and food security, so that policy makers can make informed mitigation/adaptation plans; operational and investment decisions. The objective of this project is to provide information, using an integrated resources management approach, on the effects of future climate changes on water, energy (hydropower) and food resources in Niger State, Nigeria and improve knowledge on the interlinkages between water, energy and food at a local scale.

  9. Female Athletes and Performance-Enhancer Usage

    ERIC Educational Resources Information Center

    Fralinger, Barbara K.; Pinto-Zipp, Genevieve; Olson, Valerie; Simpkins, Susan

    2007-01-01

    The purpose of this study was to develop a knowledge base on factors associated with performance-enhancer usage among female athletes at the high school level in order to identify markers for a future prevention-education program. The study used a pretest-only, between-subjects Likert Scale survey to rank the importance of internal and external…

  10. Pratt and Whitney Space Propulsion NPSS Usage

    NASA Technical Reports Server (NTRS)

    Olson, Dean

    2004-01-01

    This talk presents Pratt and Whitney's space division overview of the Numerical Propulsion System Simulation (NPSS). It examines their reasons for wanting to use the NPSS system, their past activities supporting its development, and their planned future usage. It also gives an overview how different analysis tools fit into their overall product development.

  11. Survey of Hearth Products in U.S. Homes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siap, David; Willem, Henry; Price, Sarah K.

    There are over 7 million gas-fired fireplaces currently installed in US households. On an annual basis, these use substantial energy. However, the details of the fireplace energy use and the factors that influence it are currently not well understood. Fireplaces are a type of hearth product, which is a product category that primarily consists of fireplaces, stoves, and gas log sets. For the purpose of this study, the fuels used in hearth products are primarily natural gas, propane, or electricity. They may be vented or unvented. This study reports the results of a web survey of 2,100 respondents in themore » United States performed in February 2016. The responses were cleaned and weighted using the raking method to form a nationally representative population. The reported data include hearth product characteristics, usage information, and repair and maintenance practices. The hearth product characteristics include the hearth product type, fuel type, ignition system type, features, venting, and installation details. The usage information includes seasonal usage of the main burner and standing pilot (if present), daily usage, and the primary utility (whether decorative or for heating). These raw data are further processed and combined with values from the literature to estimate the annual operating hours and energy use and to assess how these are impacted by the hearth product type, features, age, and the main heating appliance, if present. Based on the survey responses, the estimated average annual hours of usage was 234 for the main burner, and 4,593 for the standing pilot. The results presented provide the most comprehensive data regarding hearth products in the United States published to date. These new data allow for an improved understanding of hearth products’ energy use, which in turn may facilitate the development of more informed analyses, and ultimately more efficient hearth products and reduced energy use. These new data also provide insight into topics not previously studied, such as the effect of hearth product features on energy use.« less

  12. Plug-In Electric Vehicle Fast Charge Station Operational Analysis with Integrated Renewables: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, M.; Markel, T.

    2012-08-01

    The growing, though still nascent, plug-in electric vehicle (PEV) market currently operates primarily via level 1 and level 2 charging in the United States. Fast chargers are still a rarity, but offer a confidence boost to oppose 'range anxiety' in consumers making the transition from conventional vehicles to PEVs. Because relatively no real-world usage of fast chargers at scale exists yet, the National Renewable Energy Laboratory developed a simulation to help assess fast charging needs based on real-world travel data. This study documents the data, methods, and results of the simulation run for multiple scenarios, varying fleet sizes, and themore » number of charger ports. The grid impact of this usage is further quantified to assess the opportunity for integration of renewables; specifically, a high frequency of fast charging is found to be in demand during the late afternoons and evenings coinciding with grid peak periods. Proper integration of a solar array and stationary battery thus helps ease the load and reduces the need for new generator construction to meet the demand of a future PEV market.« less

  13. Energy Tracking Software Platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryan Davis; Nathan Bird; Rebecca Birx

    2011-04-04

    Acceleration has created an interactive energy tracking and visualization platform that supports decreasing electric, water, and gas usage. Homeowners have access to tools that allow them to gauge their use and track progress toward a smaller energy footprint. Real estate agents have access to consumption data, allowing for sharing a comparison with potential home buyers. Home builders have the opportunity to compare their neighborhood's energy efficiency with competitors. Home energy raters have a tool for gauging the progress of their clients after efficiency changes. And, social groups are able to help encourage members to reduce their energy bills and helpmore » their environment. EnergyIT.com is the business umbrella for all energy tracking solutions and is designed to provide information about our energy tracking software and promote sales. CompareAndConserve.com (Gainesville-Green.com) helps homeowners conserve energy through education and competition. ToolsForTenants.com helps renters factor energy usage into their housing decisions.« less

  14. Development and Implementation of Environmentally Compatible Solid Film Lubricants

    NASA Technical Reports Server (NTRS)

    Novak, Howard L.; Hall, Phillip B.

    1999-01-01

    Multi-body launch vehicles require the use of Solid Film Lubricants (SFLs) to allow for unrestricted relative motion between structural assemblies and components during lift-off and ascent into orbit. The Space Shuttle Solid Rocket Booster (SRB), uses a dual coat, ceramic-bonded high temperature SFL in several locations such as restraint hardware between the SRB aft skirt and the Mobile Launch Platform (MLP), the aft SRB/External Tank (ET) attach struts, and the forward skirt SRB/ET attach ball assembly. Future launch systems may require similar applications of SFLs for attachment and restraint hardware. A family of environmentally compatible non-lead/antimony bearing alternative SFLs have been developed including a compatible repair material. In addition, commercial applications for SFLs on transportation equipment, all types of lubricated fasteners, and energy related equipment allow for wide usage's of these new lubricants. The new SFLs trade named BOOSTERLUBE is a family of single layer thin film (0.001 inch maximum) coatings that are a unique mixture of non-hazardous pigments in a compatible resin system that allows for low temperature curing (450 F). Significant savings in energy and processing time as well as elimination of hazardous material usage and disposal would result from the non-toxic one-step SFL application. Compatible air-dry field repair lubricants will help eliminate disassembly of launch vehicle restraint hardware during critical time sensitive assembly operations.

  15. Biodiesels from microbial oils: Opportunity and challenges.

    PubMed

    Ma, Yingqun; Gao, Zhen; Wang, Qunhui; Liu, Yu

    2018-05-08

    Although biodiesel has been extensively explored as an important renewable energy source, the raw materials-associated cost poses a serious challenge on its large-scale commercial production. The first and second generations of biodiesel are mainly produced from usable raw materials, e.g. edible oils, crops etc. Such a situation inevitably imposes higher demands on land and water usage, which in turn compromise future food and water supply. Obviously, there is an urgent need to explore alternative feedstock, e.g. microbial oils which can be produced by many types of microorganisms including microalgae, fungi and bacteria with the advantages of small footprint, high lipid content and efficient uptake of carbon dioxide. Therefore, this review offers a comprehensive picture of microbial oil-based technology for biodiesel production. The perspectives and directions forward are also outlined for future biodiesel production and commercialization. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Usage of Multi-Mission Radioisotope Thermoelectric Generators (MMRTGs) for Future Potential Missions

    NASA Technical Reports Server (NTRS)

    Zakrajsek, June F.; Cairns-Gallimore, Dirk; Otting, Bill; Johnson, Steve; Woerner, Dave

    2016-01-01

    The goal of NASAs Radioisotope Power Systems (RPS) Program is to make RPS ready and available to support the exploration of the solar system in environments where the use of conventional solar or chemical power generation is impractical or impossible to meet the needs of the missions. To meet this goal, the RPS Program, working closely with the Department of Energy, performs mission and system studies (such as the recently released Nuclear Power Assessment Study), evaluates the readiness of promising technologies to infuse in future generators, assesses the sustainment of key RPS capabilities and knowledge, forecasts and tracks the Programs budgetary needs, and disseminates current information about RPS to the community of potential users. This presentation focuses on the needs of the mission community and provides users a better understanding of how to integrate the MMRTG (Multi-Mission Radioisotope Thermoelectric Generator).

  17. Vibration Testing of Stirling Power Convertors

    NASA Technical Reports Server (NTRS)

    Hughes, Bill; Goodnight, Thomas; McNelis, Mark E.; Suarez, Vicente J.; Schreiber, Jeff; Samorezov, Sergey

    2003-01-01

    The NASA John H. Glenn Research Center (GRC) and the U.S. Department of Energy (DOE) are currently developing a high efficient, long life, free piston Stirling convertor for use as an advanced spacecraft power system for future NASA missions. As part of this development, a Stirling Technology Demonstrator Convertor (TDC), developed by Stirling Technology Company (STC) for DOE, was vibration tested at GRC s Structural Dynamics Laboratory (SDU7735) in November- December 1999. This testing demonstrated that the Stirling TDC is able to withstand the harsh random vibration (20 to 2000 Hertz) seen during a typical spacecraft launch and survive with no structural damage or functional power performance degradation, thereby enabling its usage in future spacecraft power systems. The Stirling Vibration Test Team at NASA GRC and STC personnel conducted tests on a single 55 electric watt TDC. The purpose was to characterize the TDC s structural response to vibration and determine if the TDC could survive the vibration criteria established by the Jet Propulsion Laboratory (JPL) for launch environments. The TDC was operated at full-stroke and full power conditions during the vibration testing. The TDC was tested in two orientations, with the direction of vibration parallel and perpendicular to the TDC s moving components (displacer and piston). The TDC successfully passed a series of sine and random vibration tests. The most severe test was a 12.3 Grms random vibration test (peak vibration level of 0.2 g2/Hz from 50 to 250 Hertz) with test durations of 3 minutes per axis. The random vibration test levels were chosen to simulate, with margin, the maximum anticipated launch vibration conditions. As a result of this very successful vibration testing and successful evaluations in other key technical readiness areas, the Stirling power system is now considered a viable technology for future application for NASA spacecraft missions. Possible usage of the Stirling power system would be to supply on- board electric spacecraft power for future NASA Deep-Space Missions, performing as an attractive alternative to Radioisotope Thermoelectric Generators (RTG). Usage of the Stirling technology is also being considered as the electric power source for future Mars rovers, whose mission profiles may exclude the use of photovoltaic power systems (such as exploring at high Martian latitudes or for missions of lengthy durations). GRC s Thermo-Mechanical Systems Branch (5490) provides Stirling technology expertise under a Space Act Agreement with the DOE. Additional vibration testing, by GRC s Structural Systems Dynamics Branch (7733, is planned to continue to demonstrate the Stirling power system s vibration capability as its technology and flight system designs progress.

  18. Reducing power usage on demand

    NASA Astrophysics Data System (ADS)

    Corbett, G.; Dewhurst, A.

    2016-10-01

    The Science and Technology Facilities Council (STFC) datacentre provides large- scale High Performance Computing facilities for the scientific community. It currently consumes approximately 1.5MW and this has risen by 25% in the past two years. STFC has been investigating leveraging preemption in the Tier 1 batch farm to save power. HEP experiments are increasing using jobs that can be killed to take advantage of opportunistic CPU resources or novel cost models such as Amazon's spot pricing. Additionally, schemes from energy providers are available that offer financial incentives to reduce power consumption at peak times. Under normal operating conditions, 3% of the batch farm capacity is wasted due to draining machines. By using preempt-able jobs, nodes can be rapidly made available to run multicore jobs without this wasted resource. The use of preempt-able jobs has been extended so that at peak times machines can be hibernated quickly to save energy. This paper describes the implementation of the above and demonstrates that STFC could in future take advantage of such energy saving schemes.

  19. Factors Influencing Facebook Usage and Facebook Addictive Tendency in University Students: The Role of Online Psychological Privacy and Facebook Usage Motivation.

    PubMed

    Hong, Fu-Yuan; Chiu, Su-Lin

    2016-04-01

    There are few studies analysing the influence of personal traits and motivation factors on Facebook usage and Facebook addictive tendency as seen in university students. In this study, 225 Taiwanese university students completed a questionnaire to determine their online psychological privacy scale, Facebook usage motivation scale, Facebook usage scale and Facebook addictive tendency scale, in order to evaluate the items that can be conceptualized as the effect of university students' online psychological privacy personal trait and motive factors, and Facebook usage motivation with respect to Facebook usage and Facebook addictive tendency. The study found that a desire for more online psychological privacy correlates with a stronger motivation to use Facebook and more Facebook usage behaviour among university students who may become high-risk groups for Facebook addictive tendency. The study found that a desire for or an acceptance of a lower online psychological privacy correlates with a stronger motivation to use Facebook among university students who may have more Facebook usage behaviour. This study can help understand university students' Facebook usage and Facebook addictive tendency and provide feature indicators for those who may become high-risk groups for Facebook addictive tendency. Finally, this study conducts discussion and proposes relevant suggestions for future study. Copyright © 2014 John Wiley & Sons, Ltd.

  20. Usage of NASA's Near Real-Time Solar and Meteorological Data for Monitoring Building Energy Systems Using RETScreen International's Performance Analysis Module

    NASA Technical Reports Server (NTRS)

    Stackhouse, Paul W., Jr.; Charles, Robert W.; Chandler, William S.; Hoell, James M.; Westberg, David; Zhang, Taiping; Ziegler, Urban; Leng, Gregory J.; Meloche, Nathalie; Bourque, Kevin

    2012-01-01

    This paper describes building energy system production and usage monitoring using examples from the new RETScreen Performance Analysis Module, called RETScreen Plus. The module uses daily meteorological (i.e., temperature, humidity, wind and solar, etc.) over a period of time to derive a building system function that is used to monitor building performance. The new module can also be used to target building systems with enhanced technologies. If daily ambient meteorological and solar information are not available, these are obtained over the internet from NASA's near-term data products that provide global meteorological and solar information within 3-6 days of real-time. The accuracy of the NASA data are shown to be excellent for this purpose enabling RETScreen Plus to easily detect changes in the system function and efficiency. This is shown by several examples, one of which is a new building at the NASA Langley Research Center that uses solar panels to provide electrical energy for building energy and excess energy for other uses. The system shows steady performance within the uncertainties of the input data. The other example involves assessing the reduction in energy usage by an apartment building in Sweden before and after an energy efficiency upgrade. In this case, savings up to 16% are shown.

  1. MAGNESIUM ALLOYS IN US MILITARY APPLICATIONS: PAST, CURRENT AND FUTURE SOLUTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathaudhu, Suveen N.; Nyberg, Eric A.

    2010-02-26

    Since the 1940’s Mg-alloys have been used for military applications, from aircraft components to ground vehicles. The drive for usage was primarily availability and lightweighting of military systems. But the promise of widespread military usage was not met largely based on corrosion and flammability concerns, poor mechanical behavior and inferior ballistic response. This review paper will cover historical, current and potential future applications with a focus on scientific, engineering and social barriers relevant to integration of Mg-alloy. It will also present mechanical and physical property improvements solutions which are currently being developed to address these issues.

  2. FY17 ASC CSSE L2 Milestone 6018: Power Usage Characteristics of Workloads Running on Trinity.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pedretti, Kevin

    The overall goal of this work was to utilize the Advanced Power Management (APM) capabilities of the ATS-1 Trinity platform to understand the power usage behavior of ASC workloads running on Trinity and gain insight into the potential for utilizing power management techniques on future ASC platforms.

  3. From Sensor to Observation Web with environmental enablers in the Future Internet.

    PubMed

    Havlik, Denis; Schade, Sven; Sabeur, Zoheir A; Mazzetti, Paolo; Watson, Kym; Berre, Arne J; Mon, Jose Lorenzo

    2011-01-01

    This paper outlines the grand challenges in global sustainability research and the objectives of the FP7 Future Internet PPP program within the Digital Agenda for Europe. Large user communities are generating significant amounts of valuable environmental observations at local and regional scales using the devices and services of the Future Internet. These communities' environmental observations represent a wealth of information which is currently hardly used or used only in isolation and therefore in need of integration with other information sources. Indeed, this very integration will lead to a paradigm shift from a mere Sensor Web to an Observation Web with semantically enriched content emanating from sensors, environmental simulations and citizens. The paper also describes the research challenges to realize the Observation Web and the associated environmental enablers for the Future Internet. Such an environmental enabler could for instance be an electronic sensing device, a web-service application, or even a social networking group affording or facilitating the capability of the Future Internet applications to consume, produce, and use environmental observations in cross-domain applications. The term "envirofied" Future Internet is coined to describe this overall target that forms a cornerstone of work in the Environmental Usage Area within the Future Internet PPP program. Relevant trends described in the paper are the usage of ubiquitous sensors (anywhere), the provision and generation of information by citizens, and the convergence of real and virtual realities to convey understanding of environmental observations. The paper addresses the technical challenges in the Environmental Usage Area and the need for designing multi-style service oriented architecture. Key topics are the mapping of requirements to capabilities, providing scalability and robustness with implementing context aware information retrieval. Another essential research topic is handling data fusion and model based computation, and the related propagation of information uncertainty. Approaches to security, standardization and harmonization, all essential for sustainable solutions, are summarized from the perspective of the Environmental Usage Area. The paper concludes with an overview of emerging, high impact applications in the environmental areas concerning land ecosystems (biodiversity), air quality (atmospheric conditions) and water ecosystems (marine asset management).

  4. From Sensor to Observation Web with Environmental Enablers in the Future Internet

    PubMed Central

    Havlik, Denis; Schade, Sven; Sabeur, Zoheir A.; Mazzetti, Paolo; Watson, Kym; Berre, Arne J.; Mon, Jose Lorenzo

    2011-01-01

    This paper outlines the grand challenges in global sustainability research and the objectives of the FP7 Future Internet PPP program within the Digital Agenda for Europe. Large user communities are generating significant amounts of valuable environmental observations at local and regional scales using the devices and services of the Future Internet. These communities’ environmental observations represent a wealth of information which is currently hardly used or used only in isolation and therefore in need of integration with other information sources. Indeed, this very integration will lead to a paradigm shift from a mere Sensor Web to an Observation Web with semantically enriched content emanating from sensors, environmental simulations and citizens. The paper also describes the research challenges to realize the Observation Web and the associated environmental enablers for the Future Internet. Such an environmental enabler could for instance be an electronic sensing device, a web-service application, or even a social networking group affording or facilitating the capability of the Future Internet applications to consume, produce, and use environmental observations in cross-domain applications. The term “envirofied” Future Internet is coined to describe this overall target that forms a cornerstone of work in the Environmental Usage Area within the Future Internet PPP program. Relevant trends described in the paper are the usage of ubiquitous sensors (anywhere), the provision and generation of information by citizens, and the convergence of real and virtual realities to convey understanding of environmental observations. The paper addresses the technical challenges in the Environmental Usage Area and the need for designing multi-style service oriented architecture. Key topics are the mapping of requirements to capabilities, providing scalability and robustness with implementing context aware information retrieval. Another essential research topic is handling data fusion and model based computation, and the related propagation of information uncertainty. Approaches to security, standardization and harmonization, all essential for sustainable solutions, are summarized from the perspective of the Environmental Usage Area. The paper concludes with an overview of emerging, high impact applications in the environmental areas concerning land ecosystems (biodiversity), air quality (atmospheric conditions) and water ecosystems (marine asset management). PMID:22163827

  5. Hydrogen fuel - Universal energy

    NASA Astrophysics Data System (ADS)

    Prince, A. G.; Burg, J. A.

    The technology for the production, storage, transmission, and consumption of hydrogen as a fuel is surveyed, with the physical and chemical properties of hydrogen examined as they affect its use as a fuel. Sources of hydrogen production are described including synthesis from coal or natural gas, biomass conversion, thermochemical decomposition of water, and electrolysis of water, of these only electrolysis is considered economicially and technologically feasible in the near future. Methods of production of the large quantities of electricity required for the electrolysis of sea water are explored: fossil fuels, hydroelectric plants, nuclear fission, solar energy, wind power, geothermal energy, tidal power, wave motion, electrochemical concentration cells, and finally ocean thermal energy conversion (OTEC). The wind power and OTEC are considered in detail as the most feasible approaches. Techniques for transmission (by railcar or pipeline), storage (as liquid in underwater or underground tanks, as granular metal hydride, or as cryogenic liquid), and consumption (in fuel cells in conventional power plants, for home usage, for industrial furnaces, and for cars and aircraft) are analyzed. The safety problems of hydrogen as a universal fuel are discussed, noting that they are no greater than those for conventional fuels.

  6. Energy-efficient virtual optical network mapping approaches over converged flexible bandwidth optical networks and data centers.

    PubMed

    Chen, Bowen; Zhao, Yongli; Zhang, Jie

    2015-09-21

    In this paper, we develop a virtual link priority mapping (LPM) approach and a virtual node priority mapping (NPM) approach to improve the energy efficiency and to reduce the spectrum usage over the converged flexible bandwidth optical networks and data centers. For comparison, the lower bound of the virtual optical network mapping is used for the benchmark solutions. Simulation results show that the LPM approach achieves the better performance in terms of power consumption, energy efficiency, spectrum usage, and the number of regenerators compared to the NPM approach.

  7. Conjunctive management of surface and groundwater resources under projected future climate change scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mani, Amir; Tsai, Frank T. -C.; Kao, Shih-Chieh

    Our study introduces a mixed integer linear fractional programming (MILFP) method to optimize conjunctive use of future surface water and groundwater resources under projected climate change scenarios. The conjunctive management model maximizes the ratio of groundwater usage to reservoir water usage. Future inflows to the reservoirs were estimated from the future runoffs projected through hydroclimate modeling considering the Variable Infiltration Capacity model, and 11 sets of downscaled Coupled Model Intercomparison Project phase 5 global climate model projections. Bayesian model averaging was adopted to quantify uncertainty in future runoff projections and reservoir inflow projections due to uncertain future climate projections. Optimizedmore » conjunctive management solutions were investigated for a water supply network in northern Louisiana which includes the Sparta aquifer. Runoff projections under climate change scenarios indicate that runoff will likely decrease in winter and increase in other seasons. Ultimately, results from the developed conjunctive management model with MILFP indicate that the future reservoir water, even at 2.5% low inflow cumulative probability level, could counterbalance groundwater pumping reduction to satisfy demands while improving the Sparta aquifer through conditional groundwater head constraint.« less

  8. Conjunctive management of surface and groundwater resources under projected future climate change scenarios

    DOE PAGES

    Mani, Amir; Tsai, Frank T. -C.; Kao, Shih-Chieh; ...

    2016-06-16

    Our study introduces a mixed integer linear fractional programming (MILFP) method to optimize conjunctive use of future surface water and groundwater resources under projected climate change scenarios. The conjunctive management model maximizes the ratio of groundwater usage to reservoir water usage. Future inflows to the reservoirs were estimated from the future runoffs projected through hydroclimate modeling considering the Variable Infiltration Capacity model, and 11 sets of downscaled Coupled Model Intercomparison Project phase 5 global climate model projections. Bayesian model averaging was adopted to quantify uncertainty in future runoff projections and reservoir inflow projections due to uncertain future climate projections. Optimizedmore » conjunctive management solutions were investigated for a water supply network in northern Louisiana which includes the Sparta aquifer. Runoff projections under climate change scenarios indicate that runoff will likely decrease in winter and increase in other seasons. Ultimately, results from the developed conjunctive management model with MILFP indicate that the future reservoir water, even at 2.5% low inflow cumulative probability level, could counterbalance groundwater pumping reduction to satisfy demands while improving the Sparta aquifer through conditional groundwater head constraint.« less

  9. Tapping The Sun's Energy

    ERIC Educational Resources Information Center

    Lee, David G.

    1974-01-01

    Describes several successful attempts to utilize solar energy for heating and providing electrical energy for homes. Indicates that more research and development are needed, especially in the area of large scale usage. (SLH)

  10. Reducing Operating Costs and Energy Consumption at Water Utilities

    EPA Pesticide Factsheets

    Due to their unique combination of high energy usage and potential for significant savings, utilities are turning to energy-efficient technologies to help save money. Learn about cost and energy saving technologies from this brochure.

  11. Activities Handbook for Energy Education.

    ERIC Educational Resources Information Center

    DeVito, Alfred; Krockover, Gerald H.

    The purpose of this handbook is to present information about energy and to translate this information into learning activities for children. Chapter 1, "Energy: A Delicate Dilemma," presents activities intended to provide an introduction to energy and energy usage. Chapter 2, "What are the Sources of Energy?" provides…

  12. Today's Leaders for a Sustainable Tomorrow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, Bryan

    2013-02-27

    Today's Leaders for a Sustainable Tomorrow is a collaboration of five residential environmental learning centers (Audubon Center of the North Woods, Deep Portage Learning Center, Laurentian Environmental Center, Long Lake Conservation Center and Wolf Ridge Environmental Learning Center) that together increased energy efficiency, energy conservation and renewable energy technologies through a number of different means appropriate for each unique center. For energy efficiency upgrades the centers installed envelope improvements to seal air barriers through better insulation in walls, ceilings, windows, doors as well as the installation of more energy efficient windows, doors, lighting and air ventilation systems. Through energy sub-metermore » monitoring the centers are able to accurately chart the usage of energy at each of their campuses and eliminate unnecessary energy usage. Facilities reduced their dependence on fossil fuel energy sources through the installation of renewable energy technologies including wood gasification, solar domestic hot water, solar photovoltaic, solar air heat, geothermal heating and wind power. Centers also installed energy education displays on the specific renewable energy technologies used at the center.« less

  13. Inductive flux usage and its optimization in tokamak operation

    DOE PAGES

    Luce, Timothy C.; Humphreys, David A.; Jackson, Gary L.; ...

    2014-07-30

    The energy flow from the poloidal field coils of a tokamak to the electromagnetic and kinetic stored energy of the plasma are considered in the context of optimizing the operation of ITER. The goal is to optimize the flux usage in order to allow the longest possible burn in ITER at the desired conditions to meet the physics objectives (500 MW fusion power with energy gain of 10). A mathematical formulation of the energy flow is derived and applied to experiments in the DIII-D tokamak that simulate the ITER design shape and relevant normalized current and pressure. The rate ofmore » rise of the plasma current was varied, and the fastest stable current rise is found to be the optimum for flux usage in DIII-D. A method to project the results to ITER is formulated. The constraints of the ITER poloidal field coil set yield an optimum at ramp rates slower than the maximum stable rate for plasmas similar to the DIII-D plasmas. Finally, experiments in present-day tokamaks for further optimization of the current rise and validation of the projections are suggested.« less

  14. The Future of Air Conditioning for Buildings - Executive Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goetzler, William; Guernsey, Matt; Young, J.

    2016-07-01

    The Building Technologies Office (BTO), within the U.S. Department of Energy’s (DOE) Office of Energy Efficiency and Renewable Energy, works with researchers and industry to develop and deploy technologies that can substantially reduce energy consumption and greenhouse gas (GHG) emissions in residential and commercial buildings. Air conditioning (A/C) systems in buildings contribute to GHG emissions both directly through refrigerant emissions, as well as indirectly through fossil fuel combustion for power generation. BTO promotes pre-competitive research and development (R&D) on next-generation HVAC technologies that support the phase down of hydrofluorocarbon (HFC) production and consumption, as well as cost-effective energy efficiency improvements.more » Over the past several decades, product costs and lifecycle cooling costs have declined substantially in many global markets due to improved, higher-volume manufacturing and higher energy efficiency driven by R&D investments and efficiency policies including minimum efficiency standards and labeling programs.1 This report characterizes the current landscape and trends in the global A/C market, including discussion of both direct and indirect climate impacts, and potential global warming impacts from growing global A/C usage. The report also documents solutions that can help achieve international goals for energy efficiency and GHG emissions reductions. The solutions include pathways related to low-global warming potential2 (GWP) refrigerants, energy efficiency innovations, long-term R&D initiatives, and regulatory actions. DOE provides, with this report, a fact-based vision for the future of A/C use around the world. DOE intends for this vision to reflect a broad and balanced aggregation of perspectives. DOE brings together this content in an effort to support dialogue within the international community and help keep key facts and objectives at the forefront among the many important discussions.« less

  15. A novel contrast agent with rare earth-doped up-conversion luminescence and Gd-DTPA magnetic resonance properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu Qing; Wei Daixu; Cheng Jiejun

    2012-08-15

    The magnetic-luminescent multifunctional nanoparticles based on Gd-DTPA and NaYF{sub 4}:Yb, Er were successfully synthesized by the conjugation of activated DTPA and silica-coated/surface-aminolated NaYF{sub 4}:Yb, Er nanoparticles through EDC/NHS coupling chemistry. The as-prepared products were characterized by powder X-ray diffraction, transmission electron microscopy, dynamic light scattering, energy dispersive X-ray analysis, and fourier transform infrared spectrometry. The room-temperature upconversion luminescent spectra and T{sub 1}-weighted maps of the obtained nanoparticles were carried out by 980 nm NIR light excitation and a 3T MR imaging scanner, respectively. The results indicated that the as-synthesized multifunctional nanoparticles with small size, highly solubility in water, and bothmore » high MR relaxivities and upconversion luminescence may have potential usage for MR imaging in future. - Graphical abstract: We have synthesized magnetic-luminescent multifunctional nanoparticles based on Gd-DTPA and NaYF4:Yb, Er by the conjugation of activated DTPA and silica-coated/surface-aminolated NaYF4:Yb, Er nanoparticles through EDC/NHS coupling chemistry. Highlights: Black-Right-Pointing-Pointer A novel magnetic-luminescent multifunctional nanoparticles are synthesized. Black-Right-Pointing-Pointer The nanoparticles are highly efficient for luminescence and T{sub 1}-weighted MR imaging. Black-Right-Pointing-Pointer The nanoparticles are small in size and highly solubility in water. Black-Right-Pointing-Pointer The nanoparticles hold great potential usage for future biomedical engineering.« less

  16. Advanced Photonic Processes for Photovoltaic and Energy Storage Systems.

    PubMed

    Sygletou, Maria; Petridis, Constantinos; Kymakis, Emmanuel; Stratakis, Emmanuel

    2017-10-01

    Solar-energy harvesting through photovoltaic (PV) conversion is the most promising technology for long-term renewable energy production. At the same time, significant progress has been made in the development of energy-storage (ES) systems, which are essential components within the cycle of energy generation, transmission, and usage. Toward commercial applications, the enhancement of the performance and competitiveness of PV and ES systems requires the adoption of precise, but simple and low-cost manufacturing solutions, compatible with large-scale and high-throughput production lines. Photonic processes enable cost-efficient, noncontact, highly precise, and selective engineering of materials via photothermal, photochemical, or photophysical routes. Laser-based processes, in particular, provide access to a plethora of processing parameters that can be tuned with a remarkably high degree of precision to enable innovative processing routes that cannot be attained by conventional approaches. The focus here is on the application of advanced light-driven approaches for the fabrication, as well as the synthesis, of materials and components relevant to PV and ES systems. Besides presenting recent advances on recent achievements, the existing limitations are outlined and future possibilities and emerging prospects discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. A Comparison of Pig Farmers' and Veterinarians' Perceptions and Intentions to Reduce Antimicrobial Usage in Six European Countries.

    PubMed

    Visschers, V H M; Backhans, A; Collineau, L; Loesken, S; Nielsen, E O; Postma, M; Belloc, C; Dewulf, J; Emanuelson, U; Grosse Beilage, E; Siegrist, M; Sjölund, M; Stärk, K D C

    2016-11-01

    Antimicrobial (AM) resistance is an increasing problem in human and veterinary medicine. To manage this problem, the usage of AM should be reduced in pig farming, as well as in other areas. It is important to investigate the factors that influence both pig farmers' and veterinarians' intentions to reduce AM usage, which is a prerequisite for developing intervention measures. We conducted a mail survey among pig farmers (N = 1,294) and an online survey among veterinarians (N = 334) in Belgium, Denmark, France, Germany, Sweden and Switzerland. The farmers' survey assessed the perceived risks and benefits of and need for AM usage; the intention to reduce AM usage; farmers' efficacy (i.e. perception of their ability to reduce AM usage); support from their veterinarian; and the future reduction potential of AM usage. Additionally, self-reported reduction behaviours, the perceived farmers' barriers to reduce AM usage and relationships with farmers were assessed in the veterinarians' survey. The results showed that farmers and veterinarians had similar perceptions of the risks and benefits of AM usage. Veterinarians appeared to be more optimistic than pig farmers about reducing AM usage in pig farming. Farmers believed that their efficacy over AM reduction was relatively high. Farmers' intention to reduce AM usage and veterinarians' self-reported reduction behaviours were mainly associated with factors concerning the feasibility of reducing AM usage. To promote prudent AM usage, pig farmers should learn and experience how to reduce usage by applying alternative measures, whereas veterinarians should strengthen their advisory role and competencies to support and educate farmers. © 2016 Blackwell Verlag GmbH.

  18. Current On-Campus Attitudes toward Energy Usage, Efficiency, and Emerging Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lennon, Liz; Sintov, Nicole; Orosz, Michael

    Context & Background for Energy Survey Methods & Survey Overview Respondent Demographics Results Demand Response Current Environmental Comfort Perceptions Smart Meters Perceived Smart Meter Benefits Motivators of Energy Efficient Practices Summary & Implications

  19. Regional allocation of biomass to U.S. energy demands under a portfolio of policy scenarios.

    PubMed

    Mullins, Kimberley A; Venkatesh, Aranya; Nagengast, Amy L; Kocoloski, Matt

    2014-01-01

    The potential for widespread use of domestically available energy resources, in conjunction with climate change concerns, suggest that biomass may be an essential component of U.S. energy systems in the near future. Cellulosic biomass in particular is anticipated to be used in increasing quantities because of policy efforts, such as federal renewable fuel standards and state renewable portfolio standards. Unfortunately, these independently designed biomass policies do not account for the fact that cellulosic biomass can equally be used for different, competing energy demands. An integrated assessment of multiple feedstocks, energy demands, and system costs is critical for making optimal decisions about a unified biomass energy strategy. This study develops a spatially explicit, best-use framework to optimally allocate cellulosic biomass feedstocks to energy demands in transportation, electricity, and residential heating sectors, while minimizing total system costs and tracking greenhouse gas emissions. Comparing biomass usage across three climate policy scenarios suggests that biomass used for space heating is a low cost emissions reduction option, while biomass for liquid fuel or for electricity becomes attractive only as emissions reduction targets or carbon prices increase. Regardless of the policy approach, study results make a strong case for national and regional coordination in policy design and compliance pathways.

  20. Future Weather Forecasting in the Year 2020-Investing in Technology Today: Improving Weather and Environmental Predictions

    NASA Technical Reports Server (NTRS)

    Anthes, Richard; Schoeberl, Mark

    2000-01-01

    Fast-forward twenty years to the nightly simultaneous TV/webcast. Accurate 8-14 day regional forecasts will be available as will be a whole host of linked products including economic impact, travel, energy usage, etc. On-demand, personalized street-level forecasts will be downloaded into your PDA. Your home system will automatically update the products of interest to you (e.g. severe storm forecasts, hurricane predictions, etc). Short and long range climate forecasts will be used by your "Quicken 2020" to make suggest changes in your "futures" investment portfolio. Through a lively and informative multi-media presentation, leading Space-Earth Science Researchers and Technologists will share their vision for the year 2020, offering a possible futuristic forecast enabled through the application of new technologies under development today. Copies of the 'broadcast' will be available on Beta Tape for your own future use. If sufficient interest exists, the program may also be made available for broadcasters wishing to do stand-ups with roll-ins from the San Francisco meeting for their viewers back home.

  1. Evaluating rare earth element availability: a case with revolutionary demand from clean technologies.

    PubMed

    Alonso, Elisa; Sherman, Andrew M; Wallington, Timothy J; Everson, Mark P; Field, Frank R; Roth, Richard; Kirchain, Randolph E

    2012-03-20

    The future availability of rare earth elements (REEs) is of concern due to monopolistic supply conditions, environmentally unsustainable mining practices, and rapid demand growth. We present an evaluation of potential future demand scenarios for REEs with a focus on the issue of comining. Many assumptions were made to simplify the analysis, but the scenarios identify some key variables that could affect future rare earth markets and market behavior. Increased use of wind energy and electric vehicles are key elements of a more sustainable future. However, since present technologies for electric vehicles and wind turbines rely heavily on dysprosium (Dy) and neodymium (Nd), in rare-earth magnets, future adoption of these technologies may result in large and disproportionate increases in the demand for these two elements. For this study, upper and lower bound usage projections for REE in these applications were developed to evaluate the state of future REE supply availability. In the absence of efficient reuse and recycling or the development of technologies which use lower amounts of Dy and Nd, following a path consistent with stabilization of atmospheric CO(2) at 450 ppm may lead to an increase of more than 700% and 2600% for Nd and Dy, respectively, over the next 25 years if the present REE needs in automotive and wind applications are representative of future needs.

  2. Climate change mitigation effect of harvested wood products in regions of Japan.

    PubMed

    Kayo, Chihiro; Tsunetsugu, Yuko; Tonosaki, Mario

    2015-12-01

    Harvested wood products (HWPs) mitigate climate change through carbon storage, material substitution, and energy substitution. We construct a model to assess the overall climate change mitigation effect (comprising the carbon storage, material substitution, and energy substitution effects) resulting from HWPs in regions of Japan. The model allows for projections to 2050 based on future scenarios relating to the domestic forestry industry, HWP use, and energy use. Using the production approach, a nationwide maximum figure of 2.9 MtC year -1 for the HWP carbon storage effect is determined for 2030. The maximum nationwide material substitution effect is 2.9 MtC year -1 in 2050. For the energy substitution effect, a nationwide maximum projection of 4.3 MtC year -1 in 2050 is established, with at least 50 % of this figure derived from east and west Japan, where a large volume of logging residue is generated. For the overall climate change mitigation effect, a nationwide maximum projection of 8.4 MtC year -1 in 2050 is established, equivalent to 2.4 % of Japan's current carbon dioxide emissions. When domestic roundwood production and HWP usage is promoted, an overall climate change mitigation effect is consistently expected to be attributable to HWPs until 2050. A significant factor in obtaining the material substitution effect will be substituting non-wooden buildings with wooden ones. The policy of promoting the use of logging residue will have a significant impact on the energy substitution effect. An important future study is an integrated investigation of the climate change mitigation effect for both HWPs and forests.

  3. Motivations and usage patterns of Weibo.

    PubMed

    Zhang, Lixuan; Pentina, Iryna

    2012-06-01

    Referred to as "Weibo," microblogging in China has witnessed an exponential growth. In addition to the Twitter-like functionality, Weibo allows rich media uploads into user feeds, provides threaded comments, and offers applications, games, and Weibo medals. This expanded functionality, as well as the observed differences in trending content, suggests potentially different user motivations to join Weibo and their usage patterns compared to Twitter. This pioneering study identifies dominant Weibo user motivations and their effects on usage patterns. We discuss the findings of an online survey of 234 Weibo users and suggest managerial implications and future research directions.

  4. Energy and National Security

    ERIC Educational Resources Information Center

    Abelson, Philip H.

    1973-01-01

    Discussed in this editorial is the need for a broad and detailed government policy on energy use. Oil companies can not be given complete responsibility to demonstrate usage of different energy sources. The government should construct plants because energy is connected with national security. (PS)

  5. Zu Problemen statistischer Methoden in der Sprachwissenschaft (Problems of Statistical Methods in Linguistics)

    ERIC Educational Resources Information Center

    Zorn, Klaus

    1973-01-01

    Discussion of statistical apparatus employed in L. Doncheva-Mareva's article on the wide-spread usage of the present and future tense forms with future meaning in German letters, Deutsch als Fremdsprache, n1 1971. (RS)

  6. Conceptual study of superconducting urban area power systems

    NASA Astrophysics Data System (ADS)

    Noe, Mathias; Bach, Robert; Prusseit, Werner; Willén, Dag; Gold-acker, Wilfried; Poelchau, Juri; Linke, Christian

    2010-06-01

    Efficient transmission, distribution and usage of electricity are fundamental requirements for providing citizens, societies and economies with essential energy resources. It will be a major future challenge to integrate more sustainable generation resources, to meet growing electricity demand and to renew electricity networks. Research and development on superconducting equipment and components have an important role to play in addressing these challenges. Up to now, most studies on superconducting applications in power systems have been concentrated on the application of specific devices like for example cables and current limiters. In contrast to this, the main focus of our study is to show the consequence of a large scale integration of superconducting power equipment in distribution level urban power systems. Specific objectives are to summarize the state-of-the-art of superconducting power equipment including cooling systems and to compare the superconducting power system with respect to energy and economic efficiency with conventional solutions. Several scenarios were considered starting from the replacement of an existing distribution level sub-grid up to a full superconducting urban area distribution level power system. One major result is that a full superconducting urban area distribution level power system could be cost competitive with existing solutions in the future. In addition to that, superconducting power systems offer higher energy efficiency as well as a number of technical advantages like lower voltage drops and improved stability.

  7. 40 CFR 86.1113-87 - Calculation and payment of penalty.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... reflect actual year-end usage of NCPs and a corrected AAF will be used to establish NCPs in future years...-1=Fraction of engines or vehicles of a subclass using NCPs in previous year (year i-1). Ai=Usage adjustment factor in year i: Ai=0.10 for i=2; Ai=0.08 for i<2. Ii=Percentage increase in overall consumer...

  8. The evolution of social and semantic networks in epistemic communities

    NASA Astrophysics Data System (ADS)

    Margolin, Drew Berkley

    This study describes and tests a model of scientific inquiry as an evolving, organizational phenomenon. Arguments are derived from organizational ecology and evolutionary theory. The empirical subject of study is an epistemic community of scientists publishing on a research topic in physics: the string theoretic concept of "D-branes." The study uses evolutionary theory as a means of predicting change in the way members of the community choose concepts to communicate acceptable knowledge claims. It is argued that the pursuit of new knowledge is risky, because the reliability of a novel knowledge claim cannot be verified until after substantial resources have been invested. Using arguments from both philosophy of science and organizational ecology, it is suggested that scientists can mitigate and sensibly share the risks of knowledge discovery within the community by articulating their claims in legitimate forms, i.e., forms that are testable within and relevant to the community. Evidence from empirical studies of semantic usage suggests that the legitimacy of a knowledge claim is influenced by the characteristics of the concepts in which it is articulated. A model of conceptual retention, variation, and selection is then proposed for predicting the usage of concepts and conceptual co-occurrences in the future publications of the community, based on its past. Results substantially supported hypothesized retention and selection mechanisms. Future concept usage was predictable from previous concept usage, but was limited by conceptual carrying capacity as predicted by density dependence theory. Also as predicted, retention was stronger when the community showed a more cohesive social structure. Similarly, concepts that showed structural signatures of high testability and relevance were more likely to be selected after previous usage frequency was controlled for. By contrast, hypotheses for variation mechanisms were not supported. Surprisingly, concepts whose structural position suggested they would be easiest to discover through search processes were used less frequently, once previous usage frequency was controlled for. The study also makes a theoretical contribution by suggesting ways that evolutionary theory can be used to integrate findings from the study of science with insights from organizational communication. A variety of concrete directions for future studies of social and semantic network evolution are also proposed.

  9. Saving Energy. Managing School Facilities, Guide 3.

    ERIC Educational Resources Information Center

    Department for Education and Employment, London (England). Architects and Building Branch.

    This guide offers information on how schools can implement an energy saving action plan to reduce their energy costs. Various low-cost energy-saving measures are recommended covering heating levels and heating systems, electricity demand reduction and lighting, ventilation, hot water usage, and swimming pool energy management. Additional…

  10. Characterization of Medication Use in a Multicenter Sample of Pediatric Inpatients with Autism Spectrum Disorder.

    PubMed

    Wink, Logan K; Pedapati, Ernest V; Adams, Ryan; Erickson, Craig A; Pedersen, Kahsi A; Morrow, Eric M; Kaplan, Desmond; Siegel, Matthew

    2017-05-17

    Nearly 11% of youth with Autism Spectrum Disorder (ASD) undergo psychiatric hospitalization, and 65% are treated with psychotropic medication. Here we characterize psychotropic medication usage in subjects enrolled in the Autism Inpatient Collection. Participant psychotropic medication usage rates topped 90% at admission and discharge, though there was a decline at 2-month follow-up. Antipsychotics, ADHD medications, and sleep aids were the most commonly reported classes of medications. The impact of age, gender, and non-verbal IQ on medication usage rates was minimal, though age and IQ may play a role in prescribing practices. Future work is indicated to explore medication usage trends, the impact of clinical factors on medication use rates, and the safety of psychotropic medications in youth with ASD.

  11. Energy usage while maintaining thermal comfort: A case study of a UNT dormitory

    NASA Astrophysics Data System (ADS)

    Gambrell, Dusten

    Campus dormitories for the University of North Texas house over 5500 students per year; each one of them requires certain comfortable living conditions while they live there. There is an inherit amount of money required in order to achieve minimal comfort levels; the cost is mostly natural gas for water and room heating and electricity for cooling, lighting and peripherals. The US Department of Energy has developed several programs to aid in performing energy simulations to help those interested design more cost effective building designs. Energy-10 is such a program that allows users to conduct whole house evaluations by reviewing and altering a few parameters such as building materials, solar heating, energy efficient windows etc. The idea of this project was to recreate a campus dormitory and try to emulate existent energy consumption then try to find ways of lowering that usage while maintaining a high level of personal comfort.

  12. MESUR: USAGE-BASED METRICS OF SCHOLARLY IMPACT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BOLLEN, JOHAN; RODRIGUEZ, MARKO A.; VAN DE SOMPEL, HERBERT

    2007-01-30

    The evaluation of scholarly communication items is now largely a matter of expert opinion or metrics derived from citation data. Both approaches can fail to take into account the myriad of factors that shape scholarly impact. Usage data has emerged as a promising complement to existing methods o fassessment but the formal groundwork to reliably and validly apply usage-based metrics of schlolarly impact is lacking. The Andrew W. Mellon Foundation funded MESUR project constitutes a systematic effort to define, validate and cross-validate a range of usage-based metrics of schlolarly impact by creating a semantic model of the scholarly communication process.more » The constructed model will serve as the basis of a creating a large-scale semantic network that seamlessly relates citation, bibliographic and usage data from a variety of sources. A subsequent program that uses the established semantic network as a reference data set will determine the characteristics and semantics of a variety of usage-based metrics of schlolarly impact. This paper outlines the architecture and methodology adopted by the MESUR project and its future direction.« less

  13. Ergonomics work stations decreases the health impairment and saves electrical energy at the woodworking workshop in Bali, Indonesia.

    PubMed

    Sudiajeng, Lilik; Adiputra, Nyoman; Leibbrandt, Richard

    2012-12-01

    This research was conducted to assess the positive effect of the ergonomics work station on the health impairment and electrical energy usage at the woodworking workshop in Bali, Indonesia. Woodworking workshops are dangerous, particularly when they are used improperly. Workers are exposed to health hazards that cause health impairment and inefficiencies in their work conditions. A preliminary study at a woodworking workshop at the Bali State Polytechnic showed that the work station was not suitable to body size of the participants and caused awkward postures. In addition, there was also an inappropriate physical work environment. Both inappropriate work station and physical work environment caused participants to be less active and motivated. This paper reports on an experimental study into the effects of an ergonomic intervention at this workshop. The participants were 2 groups of male students with 10 participants in each group. The first group performed the task with the original work station as a control group, while the second group performed the task with the new work station. The study found a significant difference between groups (p < 0.05) both for the health impairment and the electrical energy usage. The ergonomics intervention on the work station decreased the working heart rate (16.7%), the total score of musculoskeletal disorders (17.3%), and the total score of psychological fatigue (21.5%). Furthermore, it also decreased the electrical energy usage (38.7%). This shows that an ergonomics intervention on work station decreased the health impairment and saved electrical energy usage. It also protected the workers from woodworking hazards and allowed participants to perform their tasks in healthy, safe, convenient and efficient work conditions.

  14. Accurate Energy Transaction Allocation using Path Integration and Interpolation

    NASA Astrophysics Data System (ADS)

    Bhide, Mandar Mohan

    This thesis investigates many of the popular cost allocation methods which are based on actual usage of the transmission network. The Energy Transaction Allocation (ETA) method originally proposed by A.Fradi, S.Brigonne and B.Wollenberg which gives unique advantage of accurately allocating the transmission network usage is discussed subsequently. Modified calculation of ETA based on simple interpolation technique is then proposed. The proposed methodology not only increase the accuracy of calculation but also decreases number of calculations to less than half of the number of calculations required in original ETAs.

  15. Equipment and Energy Usage in a Large Teaching Hospital in Norway.

    PubMed

    Rohde, Tarald; Martinez, Robert

    2015-01-01

    This article presents a study of how equipment is used in a Norwegian University hospital and suggests ways to reduce hospital energy consumption. Analysis of energy data from Norway's newest teaching hospital showed that electricity consumption was up to 50% of the whole-building energy consumption. Much of this is due to the increasing energy intensity of hospital-specific equipment. Measured power and reported usage patterns for equipment in the studied departments show daytime energy intensity of equipment at about 28.5 kBTU/ft2 per year (90 kWh/m2 per year), compared to building code standard value of only 14.9 kBTU/ft2 (47 kWh/m2 per year) for hospitals. This article intends to fill gaps in our understanding of how users and their equipment affect the energy balance in hospitals and suggests ways in which designers and equipment suppliers can help optimize energy performance while maintaining quality in the delivery of health services.

  16. Family Structure and Adolescent Drug Use: An Exploration of Single-Parent Families

    PubMed Central

    Hemovich, Vanessa; Crano, William D.

    2011-01-01

    Data from the 2004 Monitoring the Future survey examined a nationally representative cross-sectional sample of 8th to 12th grade adolescents in rural and urban schools from across the United States (N = 37,507). Results found that drug use among daughters living with single fathers significantly exceeded that of daughters living with single mothers, while gender of parent was not associated with sons’ usage. This distinction in adolescent drug use between mother-only versus father-only households is largely overlooked in contemporary studies. Factors responsible for variations in sons’ and daughters’ usage in single-parent families have important implications for future drug prevention efforts. PMID:20001697

  17. Accelerated Aging with Electrical Overstress and Prognostics for Power MOSFETs

    NASA Technical Reports Server (NTRS)

    Saha, Sankalita; Celaya, Jose Ramon; Vashchenko, Vladislav; Mahiuddin, Shompa; Goebel, Kai F.

    2011-01-01

    Power electronics play an increasingly important role in energy applications as part of their power converter circuits. Understanding the behavior of these devices, especially their failure modes as they age with nominal usage or sudden fault development is critical in ensuring efficiency. In this paper, a prognostics based health management of power MOSFETs undergoing accelerated aging through electrical overstress at the gate area is presented. Details of the accelerated aging methodology, modeling of the degradation process of the device and prognostics algorithm for prediction of the future state of health of the device are presented. Experiments with multiple devices demonstrate the performance of the model and the prognostics algorithm as well as the scope of application. Index Terms Power MOSFET, accelerated aging, prognostics

  18. The Potential Benefits of Earth Observations for the Water-Energy-Food Nexus and Beyond

    NASA Astrophysics Data System (ADS)

    Lawford, R. G.

    2016-12-01

    Earth Observations have been shown to have the potential to play an important role in the management of the Water-Energy-Food (W-E-F) Nexus. To date, their primary application has come through support to decisions related to the better use of water in the production of food and in the extraction of energy. However, to be fully effective, the uses of Earth observations should be coordinated across the sectors and appropriately applied at multiple levels of the governance process. This observation argues for a new approach to governance and management of the W-E-F Nexus that implements collaborative planning based on broader usage of Earth observations. The Future Earth W-E-F Nexus Cluster project has documented a number of ways in which Earth observations can support decision-making that benefits the management of these sectors and has identified gaps in the data and information systems needed for this purpose. This presentation will summarize those findings and discuss how the role of Earth observations could be strengthened and expanded to the Sustainable Development Goals and Integrated Water Resources Management.

  19. Optimal Energy Management for Microgrids

    NASA Astrophysics Data System (ADS)

    Zhao, Zheng

    Microgrid is a recent novel concept in part of the development of smart grid. A microgrid is a low voltage and small scale network containing both distributed energy resources (DERs) and load demands. Clean energy is encouraged to be used in a microgrid for economic and sustainable reasons. A microgrid can have two operational modes, the stand-alone mode and grid-connected mode. In this research, a day-ahead optimal energy management for a microgrid under both operational modes is studied. The objective of the optimization model is to minimize fuel cost, improve energy utilization efficiency and reduce gas emissions by scheduling generations of DERs in each hour on the next day. Considering the dynamic performance of battery as Energy Storage System (ESS), the model is featured as a multi-objectives and multi-parametric programming constrained by dynamic programming, which is proposed to be solved by using the Advanced Dynamic Programming (ADP) method. Then, factors influencing the battery life are studied and included in the model in order to obtain an optimal usage pattern of battery and reduce the correlated cost. Moreover, since wind and solar generation is a stochastic process affected by weather changes, the proposed optimization model is performed hourly to track the weather changes. Simulation results are compared with the day-ahead energy management model. At last, conclusions are presented and future research in microgrid energy management is discussed.

  20. Experimental investigation on AC unit integrated with sensible heat storage (SHS)

    NASA Astrophysics Data System (ADS)

    Aziz, N. A.; Amin, N. A. M.; Majid, M. S. A.; Hussin, A.; Zhubir, S.

    2017-10-01

    The growth in population and economy has increases the energy demand and raises the concerns over the sustainable energy source. Towards the sustainable development, energy efficiency in buildings has become a prime objective. In this paper, the integration of thermal energy storage was studied. This paper presents an experimental investigation on the performance of an air conditioning unit integrated with sensible heat storage (SHS) system. The results were compared to the conventional AC systems in the terms of average electricity usage, indoor temperature and the relative humidity inside the experimented room (cabin container). Results show that the integration of water tank as an SHS reduces the electricity usage by 5%, while the integration of well-insulated water tank saves up to 8% of the electricity consumption.

  1. Component-Based Modelling for Scalable Smart City Systems Interoperability: A Case Study on Integrating Energy Demand Response Systems.

    PubMed

    Palomar, Esther; Chen, Xiaohong; Liu, Zhiming; Maharjan, Sabita; Bowen, Jonathan

    2016-10-28

    Smart city systems embrace major challenges associated with climate change, energy efficiency, mobility and future services by embedding the virtual space into a complex cyber-physical system. Those systems are constantly evolving and scaling up, involving a wide range of integration among users, devices, utilities, public services and also policies. Modelling such complex dynamic systems' architectures has always been essential for the development and application of techniques/tools to support design and deployment of integration of new components, as well as for the analysis, verification, simulation and testing to ensure trustworthiness. This article reports on the definition and implementation of a scalable component-based architecture that supports a cooperative energy demand response (DR) system coordinating energy usage between neighbouring households. The proposed architecture, called refinement of Cyber-Physical Component Systems (rCPCS), which extends the refinement calculus for component and object system (rCOS) modelling method, is implemented using Eclipse Extensible Coordination Tools (ECT), i.e., Reo coordination language. With rCPCS implementation in Reo, we specify the communication, synchronisation and co-operation amongst the heterogeneous components of the system assuring, by design scalability and the interoperability, correctness of component cooperation.

  2. Component-Based Modelling for Scalable Smart City Systems Interoperability: A Case Study on Integrating Energy Demand Response Systems

    PubMed Central

    Palomar, Esther; Chen, Xiaohong; Liu, Zhiming; Maharjan, Sabita; Bowen, Jonathan

    2016-01-01

    Smart city systems embrace major challenges associated with climate change, energy efficiency, mobility and future services by embedding the virtual space into a complex cyber-physical system. Those systems are constantly evolving and scaling up, involving a wide range of integration among users, devices, utilities, public services and also policies. Modelling such complex dynamic systems’ architectures has always been essential for the development and application of techniques/tools to support design and deployment of integration of new components, as well as for the analysis, verification, simulation and testing to ensure trustworthiness. This article reports on the definition and implementation of a scalable component-based architecture that supports a cooperative energy demand response (DR) system coordinating energy usage between neighbouring households. The proposed architecture, called refinement of Cyber-Physical Component Systems (rCPCS), which extends the refinement calculus for component and object system (rCOS) modelling method, is implemented using Eclipse Extensible Coordination Tools (ECT), i.e., Reo coordination language. With rCPCS implementation in Reo, we specify the communication, synchronisation and co-operation amongst the heterogeneous components of the system assuring, by design scalability and the interoperability, correctness of component cooperation. PMID:27801829

  3. 77 FR 23373 - Small Business Investment Companies-Energy Saving Qualified Investments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-19

    ... Debenture usage, number of Small Businesses financed, resulting breakthroughs in technology, comparative studies quantifying energy savings, and performance of Small Businesses financed. While SBA is concerned...

  4. Usage and User Acceptance of Applied Physics Letters Online

    NASA Astrophysics Data System (ADS)

    Ingoldsby, Timothy C.

    1996-03-01

    Applied Physics Letters Online became the first established physics print journal to appear online in full-text, hyperlinked form effective with January 1996 issues. In partnership with the Online Computer Library Center (OCLC), APL Online at the same time became the first established scientific or engineering journal to appear on the World Wide Web, in addition to being available through OCLC's proprietary Guidon user interface. AIP has now accumulated usage data for more than one year of operation, and has recently completed a survey of its full subscriber base. Usage has steadily increased throughout the year, with subscribers showing a clear preference for the Web version, even though it provides an interface in many ways inferior to OCLC's Guidon. Usage data and subscriber survey results will be presented, and directions for future research in online information delivery will be presented.

  5. Energy Efficiency Through Lighting Upgrades

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berst, Kara; Howeth, Maria

    2013-02-26

    Lighting upgrades including neon to LED, incandescent to CFL's and T-12 to T-8 and T-5's were completed through this grant. A total of 16 Chickasaw nation facilities decreased their carbon footprint because of these grant funds. Calculations used were based on comparing the energy usage from the previous year's average and the current energy usage. For facilities without a full year's set of energy bills, the month after installation was compared to the same month from the previous year. Overall, the effect the lighting change-outs had for the gaming centers and casinos far exceeded expectations. For the Madill Gaming Center;more » both an interior and exterior upgrade was performed which resulted in a 31% decrease in energy consumption. This same reduction was seen in every facility that participated in the grant. Just by simply changing out light bulbs to newer energy efficient equivalents, a decrease in energy usage can be achieved and this was validated by the return on investment seen at Chickasaw Nation facilities. Along with the technical project tasks were awareness sessions presented at Chickasaw Head Starts. The positive message of environmental stewardship was passed down to head start students and passed along to Chickasaw employees. Excitement was created in those that learned what they could do to help reduce their energy bills and many followed through and took the idea home. For a fairy low cost, the general public can also use this technique to lower their energy consumption both at home and at work. Although the idea behind the project was somewhat simple, true benefits have been gained through environmental awareness and reductions of energy costs.« less

  6. The Future Subjunctive in Galician-Portuguese: A Review of "Cantigas de Santa Maria" and "A Demanda do Santo Graal"

    ERIC Educational Resources Information Center

    Schultheis, Maria Luiza Carrano

    2009-01-01

    The usage and disappearance of the Central Ibero-Romance future subjunctive have been extensively researched through Old Spanish texts. Studies on the future subjunctive as it evolved in the farther Western Ibero-Romance languages, represented by Galician and Portuguese, have been scarce, if not incomplete. This dissertation partially fills the…

  7. Kilowatt Counter: A Consumer's Guide to Energy Concepts, Quantities, and Uses.

    ERIC Educational Resources Information Center

    Friend, Gil; Morris, David

    This booklet is a basic introduction to energy and energy usage. The first chapter discusses various forms of energy and how they are measured and converted from one to another with a unit conversion chart included. Tables and figures list annual energy requirements of household electrical appliances and energy requirements for houses with various…

  8. Current usage and future trends in gross digital photography in Canada.

    PubMed

    Horn, Christopher L; DeKoning, Lawrence; Klonowski, Paul; Naugler, Christopher

    2014-01-14

    The purpose of this study was to assess the current usage, utilization and future direction of digital photography of gross surgical specimens in pathology laboratories across Canada. An online survey consisting of 23 multiple choice and free-text questions regarding gross digital photography was sent out to via email to laboratory staff across Canada involved in gross dissection of surgical specimens. Sixty surveys were returned with representation from most of the provinces. Results showed that gross digital photography is utilized at most institutions (90.0%) and the primary users of the technology are Pathologists (88.0%), Pathologists' Assistants (54.0%) and Pathology residents (50.0%). Most respondents felt that there is a definite need for routine digital imaging of gross surgical specimens in their practice (80.0%). The top two applications for gross digital photography are for documentation of interesting/ complex cases (98.0%) and for teaching purposes (84.0%). The main limitations identified by the survey group are storage space (42.5%) and security issues (40.0%). Respondents indicated that future applications of gross digital photography mostly include teaching (96.6%), presentation at tumour boards/ clinical rounds (89.8%), medico-legal documentation (72.9%) and usage for consultation purposes (69.5%). The results of this survey indicate that pathology staff across Canada currently utilizes gross digital images for regular documentation and educational reasons. They also show that the technology will be needed for future applications in teaching, consultation and medico-legal purposes.

  9. Converting Constant Volume, Multizone Air Handling Systems to Energy Efficient Variable Air Volume Multizone Systems

    DTIC Science & Technology

    2017-10-26

    1 FINAL REPORT Converting Constant Volume, Multizone Air Handling Systems to Energy Efficient Variable Air Volume Multizone...Systems Energy and Water Projects Project Number: EW-201152 ERDC-CERL 26 October 2017 2 TABLE OF CONTENTS ACKNOWLEDGEMENTS...16 3.2.1 Energy Usage (Quantitative

  10. Assessment of Water Resource Sustainability in Energy Production for Hydraulic Fracturing in the Eagle Ford Shale Play, Texas

    NASA Astrophysics Data System (ADS)

    Obkirchner, G.; Knappett, P.; Burnett, D.; Bhatia, M.; Mohtar, R.

    2017-12-01

    The Eagle Ford shale is one of the largest producers of shale oil globally. It is located in a semi-arid region of South Central Texas where hydraulic fracturing for oil and gas production accounts for 16% of total water consumption in Region L Groundwater Management Area (GMA). Because water is largely supplied through groundwater sources, it is critical to understand, monitor, and predict future groundwater budgets to keep up with growing demands from the municipal and energy sectors to improve its management and sustainability. Within the Texas A&M University Water-Energy-Food (WEF) Nexus Initiative and research group, tools have been developed that quantify the interrelations between water, energy, and transportation within Region L and calculate the environmental needs/outcomes to reach optimum levels of oil and gas production. These tools will be combined with a groundwater budget model to fully integrate groundwater limitations and enhance the resiliency of energy production. With about half of oil and gas production wells located in high to extremely high water stress areas, monitoring and modeling must be drastically improved to predict the impacts of various spatial distributions of pumping rates on future aquifer conditions. These changing conditions will impact the cost of water production in an aquifer. Combining the WEF Nexus tools with hydrologic models creates a multi-disciplinary sustainability assessment model that calculates social and economic constraints from an area's limited water resources. This model will allow industry, governments and scientists to plan through evaluating the impacts of any number of growth, conservation and reuse scenarios across different water usage sectors on groundwater supplies.

  11. Wind turbine blade waste in 2050.

    PubMed

    Liu, Pu; Barlow, Claire Y

    2017-04-01

    Wind energy has developed rapidly over the last two decades to become one of the most promising and economically viable sources of renewable energy. Although wind energy is claimed to provide clean renewable energy without any emissions during operation, but it is only one side of the coin. The blades, one of the most important components in the wind turbines, made with composite, are currently regarded as unrecyclable. With the first wave of early commercial wind turbine installations now approaching their end of life, the problem of blade disposal is just beginning to emerge as a significant factor for the future. This paper is aimed at discovering the magnitude of the wind turbine blade waste problem, looking not only at disposal but at all stages of a blade's lifecycle. The first stage of the research, the subject of this paper, is to accurately estimate present and future wind turbine blade waste inventory using the most recent and most accurate data available. The result will provide a solid reference point to help the industry and policy makers to understand the size of potential environmental problem and to help to manage it better. This study starts by estimating the annual blade material usage with wind energy installed capacity and average blade weight. The effect of other waste contributing factors in the full lifecycle of wind turbine blades is then included, using industrial data from the manufacturing, testing and in-service stages. The research indicates that there will be 43 million tonnes of blade waste worldwide by 2050 with China possessing 40% of the waste, Europe 25%, the United States 16% and the rest of the world 19%. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  12. Energy storage devices for future hybrid electric vehicles

    NASA Astrophysics Data System (ADS)

    Karden, Eckhard; Ploumen, Servé; Fricke, Birger; Miller, Ted; Snyder, Kent

    Powertrain hybridization as well as electrical energy management are imposing new requirements on electrical storage systems in vehicles. This paper characterizes the associated vehicle attributes and, in particular, the various levels of hybrids. New requirements for the electrical storage system are derived, including: shallow-cycle life, high dynamic charge acceptance particularly for regenerative braking and robust service life in sustained partial-state-of-charge usage. Lead/acid, either with liquid or absorptive glass-fibre mat electrolyte, is expected to remain the predominant battery technology for 14 V systems, including micro-hybrids, and with a cost-effective battery monitoring system for demanding applications. Advanced AGM batteries may be considered for mild or even medium hybrids once they have proven robustness under real-world conditions, particularly with respect to cycle life at partial-states-of-charge and dynamic charge acceptance. For the foreseeable future, NiMH and Li-ion are the dominating current and potential battery technologies for higher-functionality HEVs. Li-ion, currently at development and demonstration stages, offers attractive opportunities for improvements in performance and cost. Supercapacitors may be considered for pulse power applications. Aside from cell technologies, attention to the issue of system integration of the battery into the powertrain and vehicle is growing. Opportunities and challenges for potential "battery pack" system suppliers are discussed.

  13. El Mantenimiento o Desplazamiento Linguistico: El Futuro del Espanol en los Estados Unidos. (Linguistic Maintenance or Replacement: The Future of Spanish in the United States)

    ERIC Educational Resources Information Center

    Gaarder, Bruce A.

    1976-01-01

    What is the probability that Spanish, as a vernacular language, will survive in the U.S. with an increasing usage and prestige? Or will its usage, its speakers and its importance diminish rapidly in number and geographical extension? Can it be retained or will there be a shift into English? This article, written in Spanish, addresses these…

  14. Energy index decomposition methodology at the plant level

    NASA Astrophysics Data System (ADS)

    Kumphai, Wisit

    Scope and method of study. The dissertation explores the use of a high level energy intensity index as a facility-level energy performance monitoring indicator with a goal of developing a methodology for an economically based energy performance monitoring system that incorporates production information. The performance measure closely monitors energy usage, production quantity, and product mix and determines the production efficiency as a part of an ongoing process that would enable facility managers to keep track of and, in the future, be able to predict when to perform a recommissioning process. The study focuses on the use of the index decomposition methodology and explored several high level (industry, sector, and country levels) energy utilization indexes, namely, Additive Log Mean Divisia, Multiplicative Log Mean Divisia, and Additive Refined Laspeyres. One level of index decomposition is performed. The indexes are decomposed into Intensity and Product mix effects. These indexes are tested on a flow shop brick manufacturing plant model in three different climates in the United States. The indexes obtained are analyzed by fitting an ARIMA model and testing for dependency between the two decomposed indexes. Findings and conclusions. The results concluded that the Additive Refined Laspeyres index decomposition methodology is suitable to use on a flow shop, non air conditioned production environment as an energy performance monitoring indicator. It is likely that this research can be further expanded in to predicting when to perform a recommissioning process.

  15. Schools Find Answers to the Energy Crunch.

    ERIC Educational Resources Information Center

    Wall, Roger

    1981-01-01

    Highlights two schools that have reduced their energy usage, one through such methods as weatherization and solar water collectors, and the other through switching from burning oil to burning wood pellets. (JM)

  16. Design and operation considerations for attic inlets

    USDA-ARS?s Scientific Manuscript database

    Improving energy efficiency and environmental control in poultry facilities is essential for profitability. Increases in energy costs have prompted evaluation of solar energy systems and passive solar systems such as attic inlets have been adopted as a means to reduce fuel usage. Successful implem...

  17. Social Science Data Archives and Libraries: A View to the Future.

    ERIC Educational Resources Information Center

    Clark, Barton M.

    1982-01-01

    Discusses factors militating against integration of social science data archives and libraries in near future, noting usage of materials, access requisite skills of librarians, economic stability of archives, existing structures which manage social science data archives. Role of librarians, data access tools, and cataloging of machine-readable…

  18. Unmanned Aircraft System (UAS) service demand 2015 - 2035 : literature review & projections of future usage, technical report, version 1.0 - February 2014

    DOT National Transportation Integrated Search

    2014-02-01

    This report assesses opportunities, risks, and challenges attendant to future development and deployment of UAS within the National Airspace System (NAS) affecting UAS forecast growth from 2015 to 2035. Analysis of four key areas is performed: techno...

  19. Building Evidence for Health: Green Buildings, Current Science, and Future Challenges.

    PubMed

    Cedeño-Laurent, J G; Williams, A; MacNaughton, P; Cao, X; Eitland, E; Spengler, J; Allen, J

    2018-04-01

    Civilizational challenges have questioned the status quo of energy and material consumption by humans. From the built environment perspective, a response to these challenges was the creation of green buildings. Although the revolutionary capacity of the green building movement has elevated the expectations of new commercial construction, its rate of implementation has secluded the majority of the population from its benefits. Beyond reductions in energy usage and increases in market value, the main strength of green buildings may be the procurement of healthier building environments. Further pursuing the right to healthy indoor environments could help the green building movement to attain its full potential as a transformational public health tool. On the basis of 40 years of research on indoor environmental quality, we present a summary of nine environment elements that are foundational to human health. We posit the role of green buildings as a critical research platform within a novel sustainability framework based on social-environmental capital assets.

  20. United States Data Center Energy Usage Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shehabi, Arman; Smith, Sarah; Sartor, Dale

    This report estimates historical data center electricity consumption back to 2000, relying on previous studies and historical shipment data, and forecasts consumption out to 2020 based on new trends and the most recent data available. Figure ES-1 provides an estimate of total U.S. data center electricity use (servers, storage, network equipment, and infrastructure) from 2000-2020. In 2014, data centers in the U.S. consumed an estimated 70 billion kWh, representing about 1.8% of total U.S. electricity consumption. Current study results show data center electricity consumption increased by about 4% from 2010-2014, a large shift from the 24% percent increase estimated frommore » 2005-2010 and the nearly 90% increase estimated from 2000-2005. Energy use is expected to continue slightly increasing in the near future, increasing 4% from 2014-2020, the same rate as the past five years. Based on current trend estimates, U.S. data centers are projected to consume approximately 73 billion kWh in 2020.« less

  1. Modeling Battery Behavior on Sensory Operations for Context-Aware Smartphone Sensing

    PubMed Central

    Yurur, Ozgur; Liu, Chi Harold; Moreno, Wilfrido

    2015-01-01

    Energy consumption is a major concern in context-aware smartphone sensing. This paper first studies mobile device-based battery modeling, which adopts the kinetic battery model (KiBaM), under the scope of battery non-linearities with respect to variant loads. Second, this paper models the energy consumption behavior of accelerometers analytically and then provides extensive simulation results and a smartphone application to examine the proposed sensor model. Third, a Markov reward process is integrated to create energy consumption profiles, linking with sensory operations and their effects on battery non-linearity. Energy consumption profiles consist of different pairs of duty cycles and sampling frequencies during sensory operations. Furthermore, the total energy cost by each profile is represented by an accumulated reward in this process. Finally, three different methods are proposed on the evolution of the reward process, to present the linkage between different usage patterns on the accelerometer sensor through a smartphone application and the battery behavior. By doing this, this paper aims at achieving a fine efficiency in power consumption caused by sensory operations, while maintaining the accuracy of smartphone applications based on sensor usages. More importantly, this study intends that modeling the battery non-linearities together with investigating the effects of different usage patterns in sensory operations in terms of the power consumption and the battery discharge may lead to discovering optimal energy reduction strategies to extend the battery lifetime and help a continual improvement in context-aware mobile services. PMID:26016916

  2. Modeling battery behavior on sensory operations for context-aware smartphone sensing.

    PubMed

    Yurur, Ozgur; Liu, Chi Harold; Moreno, Wilfrido

    2015-05-26

    Energy consumption is a major concern in context-aware smartphone sensing. This paper first studies mobile device-based battery modeling, which adopts the kinetic battery model (KiBaM), under the scope of battery non-linearities with respect to variant loads. Second, this paper models the energy consumption behavior of accelerometers analytically and then provides extensive simulation results and a smartphone application to examine the proposed sensor model. Third, a Markov reward process is integrated to create energy consumption profiles, linking with sensory operations and their effects on battery non-linearity. Energy consumption profiles consist of different pairs of duty cycles and sampling frequencies during sensory operations. Furthermore, the total energy cost by each profile is represented by an accumulated reward in this process. Finally, three different methods are proposed on the evolution of the reward process, to present the linkage between different usage patterns on the accelerometer sensor through a smartphone application and the battery behavior. By doing this, this paper aims at achieving a fine efficiency in power consumption caused by sensory operations, while maintaining the accuracy of smartphone applications based on sensor usages. More importantly, this study intends that modeling the battery non-linearities together with investigating the effects of different usage patterns in sensory operations in terms of the power consumption and the battery discharge may lead to discovering optimal energy reduction strategies to extend the battery lifetime and help a continual improvement in context-aware mobile services.

  3. Water-Energy Nexus Challenges & Opportunities in the Arabian Peninsula under Climate Change

    NASA Astrophysics Data System (ADS)

    Flores-Lopez, F.; Yates, D. N.; Galaitsi, S.; Binnington, T.; Dougherty, W.; Vinnaccia, M.; Glavan, J. C.

    2016-12-01

    Demand for water in the GCC countries relies mainly on fossil groundwater resources and desalination. Satisfying water demand requires a great deal of energy as it treats and moves water along the supply chain from sources, through treatment processes, and ultimately to the consumer. Hence, there is an inherent connection between water and energy and with climate change, the links between water and energy are expected to become even stronger. As part of AGEDI's Local, National, and Regional Climate Change Programme, a study of the water-energy nexus of the countries in the Arabian Peninsula was implemented. For water, WEAP models both water demand - and its main drivers - and water supply, simulating policies, priorities and preferences. For energy, LEAP models both energy supply and demand, and is able to capture the impacts of low carbon development strategies. A coupled WEAP-LEAP model was then used to evaluate the future performance of the energy-water system under climate change and policy scenarios. The coupled models required detailed data, which were obtained through literature reviews and consultations with key stakeholders in the region. As part of this process, the outputs of both models were validated for historic periods using existing data The models examined 5 policy scenarios of different futures of resource management to the year 2060. A future under current management practices with current climate and a climate projection based on the RCP8.5; a High Efficiency scenario where each country gradually implements policies to reduce the consumption of water and electricity; a Natural Resource Protection scenario with resource efficiency and phasing out of groundwater extraction and drastic reduction of fossil fuel usage in favor of solar; and an Integrated Policy scenario that integrates the prior two policy scenarios Water demands can mostly be met in any scenario through supply combinations of groundwater, desalination and wastewater reuse, with some regional fossil groundwater basins draw to extinction by 2060. While the analysis includes both demand and supply oriented scenarios, the results of the analysis strongly suggest that the region will need to simultaneously purse demand and supply side policies to achieve more sustainable uses of water and energy into the second half of the 21st century.

  4. Energy Theft in the Advanced Metering Infrastructure

    NASA Astrophysics Data System (ADS)

    McLaughlin, Stephen; Podkuiko, Dmitry; McDaniel, Patrick

    Global energy generation and delivery systems are transitioning to a new computerized "smart grid". One of the principle components of the smart grid is an advanced metering infrastructure (AMI). AMI replaces the analog meters with computerized systems that report usage over digital communication interfaces, e.g., phone lines. However, with this infrastructure comes new risk. In this paper, we consider adversary means of defrauding the electrical grid by manipulating AMI systems. We document the methods adversaries will use to attempt to manipulate energy usage data, and validate the viability of these attacks by performing penetration testing on commodity devices. Through these activities, we demonstrate that not only is theft still possible in AMI systems, but that current AMI devices introduce a myriad of new vectors for achieving it.

  5. NASA GRC MBSE Implementation Status

    NASA Technical Reports Server (NTRS)

    Parrott, Edith; Trase, Katie; Green, Randi; Varga, Denise; Powell, Joe

    2016-01-01

    This presentation gives a brief overview on GRCs Model Based System Engineering (MBSE) implementation status. This overview covers: history, project usage and implementation, challenges and future work.

  6. Energy for Survival: The Alternative to Extinction.

    ERIC Educational Resources Information Center

    Clark, Wilson

    The author initially describes the basic physical principles associated with energy and the rise of energy usage in the United States. Also discussed are the ways energy limits growth and its use in various sectors of society. It is suggested that the decentralization of America's electrical system will save a great deal of energy. A variety of…

  7. Smartphone usage among ROTU and its relationship towards study performance

    NASA Astrophysics Data System (ADS)

    Redzuan, Muhammad Fazrul Ilahi Mohd; Roslan, Mohamad Amri; Rahman, Rosshairy Abd

    2015-12-01

    Reserve Officer Training Unit (ROTU) is a cooperation program between the Ministry of Defense and the Ministry of Higher Education for undergraduate students in public university. ROTU is known for its tight training schedule which might lead to limited learning time. The usage of smartphone with various applications might assist them in their learning activities. Therefore, this study aims to discover the rate of smartphone usage among ROTU and then analyze the relationship of smartphone usage towards their study performance. The result shows that most of the ROTU students use smartphone for five to eight hours a day. No significant correlation between relationship of smartphone and study performance of ROTU students with very small positive relationship was recorded. The result reflects that the frequent use of smartphone applications among ROTU students could not significantly help them in the study. However, further study need to be carried out since this paper does not specifically focus on each type of application. Therefore, for future research, usage rate for each application is also needed to be discovered so that the usage impact for ROTU study performance on each application can be seen clearly.

  8. HOOPER BAY HOUSING ANALYSIS AND ENERGY FEASIBILITY REPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SEA LION CORPORATION; COLD CLIMATE HOUSING RESEARCH CENTER; SOLUTIONS FOR HEALTHY BREATHING

    2012-12-30

    Sea Lion applied for and received a grant from the Department of Energy (DOE) towards this end titled Energy Efficiency Development and Deployment in Indian Country. The initial objectives of the Hooper Bay Energy Efficiency Feasibility Study were to demonstrate a 30% reduction in residential/commercial energy usage and identify the economic benefits of implementing energy efficiency measures to the Tribe through: (1) partnering with Whitney Construction and Solutions for Healthy Breathing in the training and hire of 2 local energy assessors to conduct energy audits of 9 representative housing models and 2 commercial units in the community. These homes aremore » representative of 52 homes constructed across different eras. (2) partnering with Cold Climate Housing Research Center to document current electrical and heating energy consumption and analyze data for a final feasibility report (3) assessing the economics of electricity & heating fuel usage; (4) projecting energy savings or fossil fuel reduction by modeling of improvement scenarios and cost feasibility The following two objectives will be completed after the publication of this report: (5) the development of materials lists for energy efficiency improvements (6) identifying financing options for the follow-up energy efficiency implementation phase.« less

  9. Energy Saving and GHG Emission Reduction in a Micro-CCHP System by Use of Solar Energy

    NASA Astrophysics Data System (ADS)

    Ion, Ion V.; Ciocea, Gheorghe; Popescu, Florin

    2012-12-01

    In this work, the reduction of greenhouse gas emission, and the energy saving by integrating solar collectors and photovoltaic panels in a Stirling engine based microcombined cooling, heating and power (mCCHP) system are studied. The mCCHP system consists of a natural gas Stirling CHP and an adsorber chiller. When the thermal outputs of the Stirling CHP and solar collectors are not sufficient to cover the heat demand for domestic hot water (DHW), heating/cooling, an auxiliary heating boiler starts to operate. The energy saving by using solar energy varies from 13.35% in December to 59.62% in April, in the case of solar collectors usage and from 7.47% in December to 28.27% in July, in the case of photovoltaic panels usage. By using solar energy the annual GHG emission decreases by 31.98% and the fuel cost reduction varies from 12.73% in December to 49.78% in June.

  10. Modulation and multiplexing in ultra-broadband photonic internet: Part II

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2011-06-01

    In this paper, there is presented a review of our today's understanding of the ultimately broadband photonic Internet. A simple calculation is presented showing the estimate of the throughput of the core photonic network branches. Optoelectronic components, circuits, systems and signals, together with analogous electronic entities and common software layers, are building blocks of the contemporary Internet. Participation of photonics in development of the physical layer in the future Internet will probably increase. The photonics leads now to a better usage of the available bandwidth (increase of the spectral efficiency measured in Bit/s/Hz), increase in the transmission rate (from Gbps, via Tbps up to probably Pbps), increase in the transmission distance without signal regeneration (in distortion compensated active optical cables), increase in energy/power efficiency measured in W/Gbps, etc. Photonics may lead, in the future, to fully transparent optical networks and, thus, to essential increase in bandwidth and network reliability. It is expected that photonics (with biochemistry, electronics and mechatronics) may build psychological and physiological interface for humans to the future global network. The following optical signal multiplexing methods were considered, which are possible without O/E/O conversion: TDM-OTDM, FDM-CO-OFDM, OCDM-OCDMA, WDM-DWDM.

  11. Ultra-broadband photonic internet

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2011-06-01

    In this paper, there is presented a review of our today's understanding of the ultimately broadband photonic Internet. A simple calculation is presented showing the estimate of the throughput of the core photonic network branches. Optoelectronic components, circuits, systems and signals, together with analogous electronic entities and common software layers, are building blocks of the contemporary Internet. Participation of photonics in development of the physical layer in the future Internet will probably increase. The photonics leads now to a better usage of the available bandwidth (increase of the spectral efficiency measured in Bit/s/Hz), increase in the transmission rate (from Gbps, via Tbps up to probably Pbps), increase in the transmission distance without signal regeneration (in distortion compensated active optical cables), increase in energy/power efficiency measured in W/Gbps, etc. Photonics may lead, in the future, to fully transparent optical networks and, thus, to essential increase in bandwidth and network reliability. It is expected that photonics (with biochemistry, electronics and mechatronics) may build psychological and physiological interface for humans to the future global network. The following optical signal multiplexing methods were considered, which are possible without O/E/O conversion: TDM-OTDM, FDM-CO-OFDM, OCDM-OCDMA, WDM-DWDM.

  12. Modulation and multiplexing in ultra-broadband photonic internet: Part I

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2011-06-01

    In this paper, there is presented a review of our today's understanding of the ultimately broadband photonic Internet. A simple calculation is presented showing the estimate of the throughput of the core photonic network branches. Optoelectronic components, circuits, systems and signals, together with analogous electronic entities and common software layers, are building blocks of the contemporary Internet. Participation of photonics in development of the physical layer in the future Internet will probably increase. The photonics leads now to a better usage of the available bandwidth (increase of the spectral efficiency measured in Bit/s/Hz), increase in the transmission rate (from Gbps, via Tbps up to probably Pbps), increase in the transmission distance without signal regeneration (in distortion compensated active optical cables), increase in energy/power efficiency measured in W/Gbps, etc. Photonics may lead, in the future, to fully transparent optical networks and, thus, to essential increase in bandwidth and network reliability. It is expected that photonics (with biochemistry, electronics and mechatronics) may build psychological and physiological interface for humans to the future global network. The following optical signal multiplexing methods were considered, which are possible without O/E/O conversion: TDM-OTDM, FDM-CO-OFDM, OCDM-OCDMA, WDM-DWDM.

  13. Web usage mining at an academic health sciences library: an exploratory study.

    PubMed

    Bracke, Paul J

    2004-10-01

    This paper explores the potential of multinomial logistic regression analysis to perform Web usage mining for an academic health sciences library Website. Usage of database-driven resource gateway pages was logged for a six-month period, including information about users' network addresses, referring uniform resource locators (URLs), and types of resource accessed. It was found that referring URL did vary significantly by two factors: whether a user was on-campus and what type of resource was accessed. Although the data available for analysis are limited by the nature of the Web and concerns for privacy, this method demonstrates the potential for gaining insight into Web usage that supplements Web log analysis. It can be used to improve the design of static and dynamic Websites today and could be used in the design of more advanced Web systems in the future.

  14. Psychosocial service needs of pediatric transport accident survivors: Using clinical data-mining to establish demographic and service usage characteristics.

    PubMed

    Manguy, Alys-Marie; Joubert, Lynette; Bansemer, Leah

    2016-09-01

    The objectives in this article are the exploration of demographic and service usage data gained through clinical data mining audit and suggesting recommendations for social work service delivery model and future research. The method is clinical data-mining audit of 100 sequentially sampled cases gathering quantitative demographic and service usage data. Descriptive analysis of file audit data raised interesting trends with potential to inform service delivery and usage; the key areas of the results included patient demographics, family involvement and impact, and child safety and risk issues. Transport accidents involving children often include other family members. Care planning must take into account psychosocial issues including patient and family emotional responses, availability of primary carers, and other practical needs that may impact on recovery and discharge planning. This study provides evidence to plan for further research and development of more integrated models of care.

  15. 2012 Commercial Buildings Energy Consumption Survey: Energy Usage Summary

    EIA Publications

    2016-01-01

    EIA has released summary tables providing energy consumption estimates from the 2012 CBECS. The data show that despite a 14% increase in total buildings and a 22% increase in total floorspace since 2003, energy use in the estimated 5.6 million U.S. commercial buildings was up just 7% during the same period.

  16. Energy management: total program considers all building's systems.

    PubMed

    Blan, G J; Browne, K H

    1978-09-16

    Managing energy consumption, containing fuel usage, and preparing for alternate fuel sources are immediate areas for concern and action for all health care providers. The authors describe how they are meeting the challenge of increased energy costs and reduced availability while maintaining high-quality care by applying the concept of total energy management.

  17. Student Use of Energy Concepts from Physics in Chemistry Courses

    ERIC Educational Resources Information Center

    Nagel, Megan L.; Lindsey, Beth A.

    2015-01-01

    This paper describes an interdisciplinary investigation of students' usage of ideas about energy from physics in the context of introductory chemistry. We focus on student understanding of the idea that potential energy is a function of distance between interacting objects, a concept relevant to understanding potential energy in both physical and…

  18. Design and Implementation of a Wireless Sensor and Actuator Network to Support the Intelligent Control of Efficient Energy Usage.

    PubMed

    Blanco, Jesús; García, Andrés; Morenas, Javier de Las

    2018-06-09

    Energy saving has become a major concern for the developed society of our days. This paper presents a Wireless Sensor and Actuator Network (WSAN) designed to provide support to an automatic intelligent system, based on the Internet of Things (IoT), which enables a responsible consumption of energy. The proposed overall system performs an efficient energetic management of devices, machines and processes, optimizing their operation to achieve a reduction in their overall energy usage at any given time. For this purpose, relevant data is collected from intelligent sensors, which are in-stalled at the required locations, as well as from the energy market through the Internet. This information is analysed to provide knowledge about energy utilization, and to improve efficiency. The system takes autonomous decisions automatically, based on the available information and the specific requirements in each case. The proposed system has been implanted and tested in a food factory. Results show a great optimization of energy efficiency and a substantial improvement on energy and costs savings.

  19. Green Chemistry Challenge: 2017 Small Business Award

    EPA Pesticide Factsheets

    Green Chemistry Challenge 2017 award winner, UniEnergy,improved a vanadium redox flow battery to double the energy density, have a broader operating temperature range, a smaller footprint, reduced chemical usage, and very little capacity degradation.

  20. Didactical determinants use of information and communication technology in process of training of future specialists.

    PubMed

    Palamar, Borys I; Vaskivska, Halyna O; Palamar, Svitlana P

    In the article the author touches upon the subject of significance of computer equipment for organization of cooperation of professor and future specialists. Such subject-subject interaction may be directed to forming of professional skills of future specialists. By using information and communication technologies in education system range of didactic tasks can be solved. Improving of process of teaching of subjects in high school, self-learning future specialists, motivating to learning and self-learning, the development of reflection in the learning process. The authors considers computer equipment as instrument for development of intellectual skills, potential and willingness of future specialists to solve communicative and communication tasks and problems on the creative basis. Based on results of researches the author comes to certain conclusions about the effectiveness of usage of computer technologies in process of teaching future specialists and their self-learning. Improper supplying of high schools with computer equipment, lack of appropriate educational programs, professors' teachers' poor knowledge and usage of computers have negative impact on organization of process of teaching disciplines in high schools. Computer equipment and ICT in general are the instruments of development of intellectual skills, potential and willingness of future specialists to solve communicative and communication tasks and problems. So, the formation of psychosocial environment of development of future specialist is multifaceted, complex and didactically important issue.

  1. Using geographic information systems to identify prospective marketing areas for a special library.

    PubMed

    McConnaughy, Rozalynd P; Wilson, Steven P

    2006-05-04

    The Center for Disability Resources (CDR) Library is the largest collection of its kind in the Southeastern United States, consisting of over 5,200 books, videos/DVDs, brochures, and audiotapes covering a variety of disability-related topics, from autism to transition resources. The purpose of the library is to support the information needs of families, faculty, students, staff, and other professionals in South Carolina working with individuals with disabilities. The CDR Library is funded on a yearly basis; therefore, maintaining high usage is crucial. A variety of promotional efforts have been used to attract new patrons to the library. Anyone in South Carolina can check out materials from the library, and most of the patrons use the library remotely by requesting materials, which are then mailed to them. The goal of this project was to identify areas of low geographic usage as a means of identifying locations for future library marketing efforts. Nearly four years worth of library statistics were compiled in a spreadsheet that provided information per county on the number of checkouts, the number of renewals, and the population. Five maps were created using ArcView GIS software to create visual representations of patron checkout and renewal behavior per county. Out of the 46 counties in South Carolina, eight counties never checked out materials from the library. As expected urban areas and counties near the library's physical location have high usage totals. The visual representation of the data made identification of low usage regions easier than using a standalone database with no visual-spatial component. The low usage counties will be the focus of future Center for Disability Resources Library marketing efforts. Due to the impressive visual-spatial representations created with Geographic Information Systems, which more efficiently communicate information than stand-alone database information can, librarians may benefit from the software's use as a supplemental tool for tracking library usage and planning promotional efforts.

  2. Special Education Technologies for Young Children: Present and Future Learning Scenarios with Related Research Literature.

    ERIC Educational Resources Information Center

    Watson, J. Allen; And Others

    1986-01-01

    The article surveys computer usage with young handicapped children by developing three instructional scenarios (present actual, present possible, and future). Research is reviewed on computer use with very young children, cognitive theory and microcomputer learning, and social aspects of the microcomputer experience. Trends in microcomputer,…

  3. Energy, Society, and Education, with Emphasis on Educational Technology Policy for K-12

    ERIC Educational Resources Information Center

    Chedid, Loutfallah Georges

    2005-01-01

    This paper begins by examining the profound impact of energy usage on our lives, and on every major sector of the economy. Then, the anticipated US energy needs by the year 2025 are presented based on the Department of Energy's projections. The paper considers the much-touted National Energy Policy Report, and identifies a major flaw where the…

  4. A Meta-Analysis of Single-Family Deep Energy Retrofit Performance in the U.S.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Less, Brennan; Walker, Iain

    2014-03-01

    The current state of Deep Energy Retrofit (DER) performance in the U.S. has been assessed in 116 homes in the United States (US), using actual and simulated data gathered from the available domestic literature. Substantial airtightness reductions averaging 63% (n=48) were reported (two- to three-times more than in conventional retrofits), with average post-retrofit airtightness of 4.7 Air Changes per House at 50 Pascal (ACH50) (n=94). Yet, mechanical ventilation was not installed consistently. In order to avoid indoor air quality (IAQ) issues, all future DERs should comply with ASHRAE 62.2-2013 requirements or equivalent. Projects generally achieved good energy results, with averagemore » annual net-site and net-source energy savings of 47%±20% and 45%±24% (n=57 and n=35), respectively, and carbon emission reductions of 47%±22% (n=23). Net-energy reductions did not vary reliably with house age, airtightness, or reported project costs, but pre-retrofit energy usage was correlated with total reductions (MMBtu). Annual energy costs were reduced $1,283±$804 (n=31), from a pre-retrofit average of $2,738±$1,065 to $1,588±$561 post-retrofit (n=25 and n=39). The average reported incremental project cost was $40,420±$30,358 (n=59). When financed on a 30-year term, the median change in net-homeownership cost was only $1.00 per month, ranging from $149 in savings to an increase of $212 (mean=$15.67±$87.74; n=28), and almost half of the projects resulted in reductions in net-cost. The economic value of a DER may be much greater than is suggested by these net-costs, because DERs entail substantial non-energy benefits (NEBs), and retrofit measures may add value to a home at resale similarly to general remodeling, PV panel installation, and green/energy efficient home labels. These results provide estimates of the potential of DERs to address energy use in existing homes across climate zones that can be used in future estimates of the technical potential to reduce household energy use and greenhouse gas emissions through DERs.« less

  5. Maximizing freight movements in local food markets.

    DOT National Transportation Integrated Search

    2011-09-01

    The past several years have seen a rising interest in all things sustainable, from energy efficient homes and vehicles, to alternative : energy sources, to increasing focus on recyclable and renewable material usage. This trend has also been accompan...

  6. Improving urban district heating systems and assessing the efficiency of the energy usage therein

    NASA Astrophysics Data System (ADS)

    Orlov, M. E.; Sharapov, V. I.

    2017-11-01

    The report describes issues in connection with improving urban district heating systems from combined heat power plants (CHPs), to propose the ways for improving the reliability and the efficiency of the energy usage (often referred to as “energy efficiency”) in such systems. The main direction of such urban district heating systems improvement suggests transition to combined heating systems that include structural elements of both centralized and decentralized systems. Such systems provide the basic part of thermal power via highly efficient methods for extracting thermal power plants turbines steam, while peak loads are covered by decentralized peak thermal power sources to be mounted at consumers’ locations, with the peak sources being also reserve thermal power sources. The methodology was developed for assessing energy efficiency of the combined district heating systems, implemented as a computer software product capable of comparatively calculating saving on reference fuel for the system.

  7. Ban on advertising promoting energy usage violates First Amendment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, J.C.

    In reversing the New York Court of Appeals in the Central Hudson Gas suit, the Supreme Court expanded the protection afforded commercial speech. The result could have a major impact on means used to achieve policy objectives of national and state energy conservation. Public utility commissions attempting to limit the growth of energy usage may have to devise stringent economic regulations that directly affect the marketplace and consumer alternatives. This might require an expansion of the statutory powers of public utility commissions. The Court's decision will require public utility commissions to either adopt regulations that restrict the content and formatmore » of utility speech or allocate costs to utility shareholders of impermissible advertising. Otherwise, a utility's unbridled ability to speak, given the economic power of such enterprises and their economic interest, could totally undermine the credibility of national and state energy-conservation policy. 12 references.« less

  8. Integrated Testing, Simulation and Analysis of Electric Drive Options for Medium-Duty Parcel Delivery Vehicles: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramroth, L. A.; Gonder, J.; Brooker, A.

    2012-09-01

    The National Renewable Energy Laboratory verified diesel-conventional and diesel-hybrid parcel delivery vehicle models to evaluate petroleum reduction and cost implications of plug-in hybrid gasoline and diesel variants. These variants are run on a field-data-derived design matrix to analyze the effects of drive cycle, distance, battery replacements, battery capacity, and motor power on fuel consumption and lifetime cost. Two cost scenarios using fuel prices corresponding to forecasted highs for 2011 and 2030 and battery costs per kilowatt-hour representing current and long-term targets compare plug-in hybrid lifetime costs with diesel conventional lifetime costs. Under a future cost scenario of $100/kWh battery energymore » and $5/gal fuel, plug-in hybrids are cost effective. Assuming a current cost of $700/kWh and $3/gal fuel, they rarely recoup the additional motor and battery cost. The results highlight the importance of understanding the application's drive cycle, daily driving distance, and kinetic intensity. For instances in the current-cost scenario where the additional plug-in hybrid cost is regained in fuel savings, the combination of kinetic intensity and daily distance travelled does not coincide with the usage patterns observed in the field data. If the usage patterns were adjusted, the hybrids could become cost effective.« less

  9. Adolescents’ Attitudes toward Anti-marijuana Ads, Usage Intentions, and Actual Marijuana Usage

    PubMed Central

    Alvaro, Eusebio M.; Crano, William D.; Siegel, Jason T.; Hohman, Zachary; Johnson, Ian; Nakawaki, Brandon

    2015-01-01

    The association of adolescents’ appraisals of the anti-marijuana television ads used in the National Youth Anti-drug Media Campaign with future marijuana use was investigated. The 12 to 18 year old respondents (N = 2993) were first classified as users, resolute nonusers, or vulnerable nonusers (Crano, Siegel, Alvaro, Lac, & Hemovich, 2008). Usage status and the covariates of gender, age, and attitudes toward marijuana were used to predict attitudes toward the ads (Aad) in the first phase of a multi-level linear analysis. All covariates were significantly associated with Aad, as was usage status: resolute nonusers evaluated the ads significantly more positively than vulnerable nonusers and users (all p < .001), who did not differ. In the second phase, the covariates along with Aad and respondents’ usage status predicted intentions and actual usage one year after initial measurement. The lagged analysis disclosed negative associations between Aad and usage intentions, and between Aad and actual marijuana use (both p < .05); however, this association held only for users (p < .01), not vulnerable or resolute nonusers. Users reporting more positive attitudes towards the ads were less likely to report intention to use marijuana and to continue marijuana use at 1-year follow-up. These findings may inform designers of persuasion-based prevention campaigns, guiding pre-implementation efforts in the design of ads that targeted groups find appealing and thus, influential. PMID:23528197

  10. Adolescents' attitudes toward antimarijuana ads, usage intentions, and actual marijuana usage.

    PubMed

    Alvaro, Eusebio M; Crano, William D; Siegel, Jason T; Hohman, Zachary; Johnson, Ian; Nakawaki, Brandon

    2013-12-01

    The association of adolescents' appraisals of the antimarijuana TV ads used in the National Youth Antidrug Media Campaign with future marijuana use was investigated. The 12- to 18-year-old respondents (N = 2,993) were first classified as users, resolute nonusers, or vulnerable nonusers (Crano, Siegel, Alvaro, Lac, & Hemovich, 2008). Usage status and the covariates of gender, age, and attitudes toward marijuana were used to predict attitudes toward the ads (Aad) in the first phase of a multilevel linear analysis. All covariates were significantly associated with Aad, as was usage status: Resolute nonusers evaluated the ads significantly more positively than vulnerable nonusers and users (all ps < .001), who did not differ. In the second phase, the covariates along with Aad and respondents' usage status predicted intentions and actual usage 1 year after initial measurement. The lagged analysis disclosed negative associations between Aad and usage intentions and between Aad and actual marijuana use (both ps < .05); however, this association held only for users (p < .01), not vulnerable or resolute nonusers. Users who reported more positive attitudes toward the ads were less likely to report intention to use marijuana and to continue marijuana use at 1-year follow-up. These findings may inform designers of persuasion-based prevention campaigns, guiding preimplementation efforts in the design of ads that targeted groups find appealing and thus, influential. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  11. Energy footprint and carbon emission reduction using off-the-grid solar-powered mixing for lagoon treatment.

    PubMed

    Jiang, Yuyuan; Bebee, Brian; Mendoza, Alvaro; Robinson, Alice K; Zhang, Xiaying; Rosso, Diego

    2018-01-01

    Mixing is the driver for the energy footprint of water resource recovery in lagoons. With the availability of solar-powered equipment, one potential measure to decrease the environmental impacts of treatment is to transition to an off-the-grid treatment. We studied the comparative scenarios of an existing grid-powered mixer and a solar-powered mixer. Testing was conducted to monitor the water quality, and to guarantee that the effluent concentrations were maintained equally between the two scenarios. Meanwhile, the energy consumption was recorded with the electrical energy monitor by the wastewater treatment utility, and the carbon emission changes were calculated using the emission intensity of the power utility. The results show that after the replacement, both energy usage and energy costs were significantly reduced, with the energy usage having decreased by 70% and its cost by 47%. Additionally, carbon-equivalent emission from electricity importation dropped by 64%, with an effect on the overall carbon emissions (i.e., including all other contributions from the process) decreasing from 3.8% to 1.5%. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. How to "Kill a Watt" and Save Energy

    ERIC Educational Resources Information Center

    Massiha, G. H.; Houston, Shelton; Rawat, Kuldeep S.

    2011-01-01

    Many technology students--and especially those interested in environmental and energy issues--can benefit from learning about power ratings and the energy usage of electrical systems like the electrical equipment and appliances found in most homes. Students enrolled in electronics and construction technology courses learn to determine the power…

  13. Cut Next Winter's Heating Bill Today.

    ERIC Educational Resources Information Center

    Sturgeon, Julie

    1999-01-01

    Presents specific steps that help make schools energy efficient and cut costs. Four basic strategies are suggested that include creating a database of energy usage that can also catch the occasional billing error, investigating less obvious ways of cutting energy use, such as applying cellulose commercial spray as an insulation choice, and…

  14. Power Play: Calculating Home Electricity Consumption

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2007-01-01

    With both energy usage and energy costs rising rapidly, people can benefit from paying closer attention to their consumption of energy. Students can gain greater awareness of their personal use of electricity and get some excellent experience with the practical application of mathematics by studying their families' consumption of electricity. A…

  15. ENCOURAGING ELECTRICITY SAVINGS IN A UNIVERSITY RESIDENTIAL HALL THROUGH A COMBINATION OF FEEDBACK, VISUAL PROMPTS, AND INCENTIVES

    PubMed Central

    Bekker, Marthinus J; Cumming, Tania D; Osborne, Nikola K.P; Bruining, Angela M; McClean, Julia I; Leland, Louis S

    2010-01-01

    This experiment investigated the combined use of visual prompts, daily feedback, and rewards to reduce electricity consumption in a university residential hall. After a 17-day baseline period, the experimental intervention was introduced in the intervention hall, and no change was made in the control hall. Energy usage decreased in the intervention hall, but energy usage did not change appreciably in the control hall. In the intervention hall, mean daytime and nighttime savings were 16.2% and 10.7%, respectively, compared to savings of 3.8% (day) and 6.5% (night) in the control hall. PMID:21119909

  16. Experimental investigation of thermal comfort and air quality in an automobile cabin during the cooling period

    NASA Astrophysics Data System (ADS)

    Kilic, M.; Akyol, S. M.

    2012-08-01

    The air quality and thermal comfort strongly influenced by the heat and mass transfer take place together in an automobile cabin. In this study, it is aimed to investigate and assess the effects of air intake settings (recirculation and fresh air) on the thermal comfort, air quality satisfaction and energy usage during the cooling period of an automobile cabin. For this purpose, measurements (temperature, air velocity, CO2) were performed at various locations inside the cabin. Furthermore, whole body and local responses of the human subjects were noted while skin temperatures were measured. A mathematical model was arranged in order to estimate CO2 concentration and energy usage inside the vehicle cabin and verified with experimental data. It is shown that CO2 level inside of the cabin can be greater than the threshold value recommended for the driving safety if two and more occupants exist in the car. It is also shown that an advanced climate control system may satisfy the requirements for the air quality and thermal comfort as well as to reduce the energy usage for the cooling of a vehicle cabin.

  17. Essays on consequences of economic integration

    NASA Astrophysics Data System (ADS)

    Chintrakarn, Pandej

    2007-12-01

    Economic integration is a term used to describe how different aspects between economies are integrated. As economic integration increases, the barriers of trade between markets diminishes. The most integrated economy today, between independent nations, is the European Union and its euro zone. This dissertation consists of three essays which examine consequences of economic integration. The debate over the environmental consequences of free trade is not only quite heated, but also entails significant policy ramifications. Recently, cross-sectional analysis at the country level has made use of exogenous determinants of trade to identify the causal effect of trade on the environment, finding moderate evidence of a beneficial impact of expanded trade on environmental quality. Given the stakes involved, the first essay revisits this finding using subnational data on 'trade' flows across US states and several measures of pollution. Not only does the analysis shed further light on the debate at the international level, but also addresses a heretofore unexamined question: Does greater inter-regional commerce at the subnational level harm the environment? The findings are striking, providing further evidence against a negative environmental impact of trade for the majority of measures analyzed. However, several sources of heterogeneity arise that are noteworthy. The second essay investigates the effect of the euro on trade among EMU members. Using various semi-nonparametric methods based on matching, the results suggest that the euro has a statistical and economic impact on trade. The results show that two countries sharing the euro currency trade somewhere between 9% and 14% more than other country-pairs. In addition, there is no evidence of trade diversion due to the euro. In one strand of research, analysts examine trends in and the determinants of energy usage and intensity. In a second strand, researchers analyze the impact of trade flows on environmental outcomes. Recently, Cole (2006) bridges this gap, analyzing the impact of trade intensity on energy usage utilizing panel data at the country level. Here, the third essay analyzes the impact of subnational trade flows across U.S. states on state-level energy usage and intensity, controlling for the endogeneity of trade flows. The findings indicate that an expansion of subnational trade at worst has no impact on state-level energy usage, and may actually reduce energy usage (contrary to Cole's country-level findings), although the impacts are not uniform across sectors.

  18. Statistical survey of XB-70 airplane responses and control usage with an illustration of the application to handling qualities criteria

    NASA Technical Reports Server (NTRS)

    Powers, B. G.

    1972-01-01

    The magnitude and frequency of occurrence of aircraft responses and control inputs during 27 flights of the XB-70 airplane were measured. Exceedance curves are presented for the airplane responses and control usage. A technique is presented which makes use of these exceedance curves to establish or verify handling qualities criteria. This technique can provide a means of incorporating current operational experience in handling qualities requirements for future aircraft.

  19. Enhanced/Synthetic Vision Systems - Human factors research and implications for future systems

    NASA Technical Reports Server (NTRS)

    Foyle, David C.; Ahumada, Albert J.; Larimer, James; Sweet, Barbara T.

    1992-01-01

    This paper reviews recent human factors research studies conducted in the Aerospace Human Factors Research Division at NASA Ames Research Center related to the development and usage of Enhanced or Synthetic Vision Systems. Research discussed includes studies of field of view (FOV), representational differences of infrared (IR) imagery, head-up display (HUD) symbology, HUD advanced concept designs, sensor fusion, and sensor/database fusion and evaluation. Implications for the design and usage of Enhanced or Synthetic Vision Systems are discussed.

  20. DCDM1: Lessons Learned from the World's Most Energy Efficient Data Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sickinger, David E; Van Geet, Otto D; Carter, Thomas

    This presentation discusses the holistic approach to design the world's most energy-efficient data center, which is located at the U.S. Department of Energy National Renewable Energy Laboratory (NREL). This high-performance computing (HPC) data center has achieved a trailing twelve-month average power usage effectiveness (PUE) of 1.04 and features a chiller-less design, component-level warm-water liquid cooling, and waste heat capture and reuse. We provide details of the demonstrated PUE and energy reuse effectiveness (ERE) and lessons learned during four years of production operation. Recent efforts to dramatically reduce the water footprint will also be discussed. Johnson Controls partnered with NREL andmore » Sandia National Laboratories to deploy a thermosyphon cooler (TSC) as a test bed at NREL's HPC data center that resulted in a 50% reduction in water usage during the first year of operation. The Thermosyphon Cooler Hybrid System (TCHS) integrates the control of a dry heat rejection device with an open cooling tower.« less

  1. Eco Assist Techniques through Real-time Monitoring of BEV Energy Usage Efficiency

    PubMed Central

    Kim, Younsun; Lee, Ingeol; Kang, Sungho

    2015-01-01

    Energy efficiency enhancement has become an increasingly important issue for battery electric vehicles. Even if it can be improved in many ways, the driver’s driving pattern strongly influences the battery energy consumption of a vehicle. In this paper, eco assist techniques to simply implement an energy-efficient driving assistant system are introduced, including eco guide, eco control and eco monitoring methods. The eco guide is provided to control the vehicle speed and accelerator pedal stroke, and eco control is suggested to limit the output power of the battery. For eco monitoring, the eco indicator and eco report are suggested to teach eco-friendly driving habits. The vehicle test, which is done in four ways, consists of federal test procedure (FTP)-75, new european driving cycle (NEDC), city and highway cycles, and visual feedback with audible warnings is provided to attract the driver’s voluntary participation. The vehicle test result shows that the energy usage efficiency can be increased up to 19.41%. PMID:26121611

  2. Optimal trajectory planning for a UAV glider using atmospheric thermals

    NASA Astrophysics Data System (ADS)

    Kagabo, Wilson B.

    An Unmanned Aerial Vehicle Glider (UAV glider) uses atmospheric energy in its different forms to remain aloft for extended flight durations. This UAV glider's aim is to extract atmospheric thermal energy and use it to supplement its battery energy usage and increase the mission period. Given an infrared camera identified atmospheric thermal of known strength and location; current wind speed and direction; current battery level; altitude and location of the UAV glider; and estimating the expected altitude gain from the thermal, is it possible to make an energy-efficient based motivation to fly to an atmospheric thermal so as to achieve UAV glider extended flight time? For this work, an infrared thermal camera aboard the UAV glider takes continuous forward-looking ground images of "hot spots". Through image processing a candidate atmospheric thermal strength and location is estimated. An Intelligent Decision Model incorporates this information with the current UAV glider status and weather conditions to provide an energy-based recommendation to modify the flight path of the UAV glider. Research, development, and simulation of the Intelligent Decision Model is the primary focus of this work. Three models are developed: (1) Battery Usage Model, (2) Intelligent Decision Model, and (3) Altitude Gain Model. The Battery Usage Model comes from the candidate flight trajectory, wind speed & direction and aircraft dynamic model. Intelligent Decision Model uses a fuzzy logic based approach. The Altitude Gain Model requires the strength and size of the thermal and is found a priori.

  3. Energy use of televisions and video cassette recorders in the U.S.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meier, Alan; Rosen, Karen

    1999-03-01

    In an effort to more accurately determine nationwide energy consumption, the U.S. Department of Energy has recently commissioned studies with the goal of improving its understanding of the energy use of appliances in the miscellaneous end-use category. This study presents an estimate of the residential energy consumption of two of the most common domestic appliances in the miscellaneous end-use category: color televisions (TVs) and video cassette recorders (VCRs). The authors used a bottom-up approach in estimating national TV and VCR energy consumption. First, they obtained estimates of stock and usage from national surveys, while TV and VCR power measurements andmore » other data were recorded at repair and retail shops. Industry-supplied shipment and sales distributions were then used to minimize bias in the power measurement samples. To estimate national TV and VCR energy consumption values, ranges of power draw and mode usage were created to represent situations in homes with more than one unit. Average energy use values for homes with one unit, two units, etc. were calculated and summed to provide estimates of total national TV and VCR energy consumption.« less

  4. Energy efficiency trade-offs drive nucleotide usage in transcribed regions

    PubMed Central

    Chen, Wei-Hua; Lu, Guanting; Bork, Peer; Hu, Songnian; Lercher, Martin J.

    2016-01-01

    Efficient nutrient usage is a trait under universal selection. A substantial part of cellular resources is spent on making nucleotides. We thus expect preferential use of cheaper nucleotides especially in transcribed sequences, which are often amplified thousand-fold compared with genomic sequences. To test this hypothesis, we derive a mutation-selection-drift equilibrium model for nucleotide skews (strand-specific usage of ‘A' versus ‘T' and ‘G' versus ‘C'), which explains nucleotide skews across 1,550 prokaryotic genomes as a consequence of selection on efficient resource usage. Transcription-related selection generally favours the cheaper nucleotides ‘U' and ‘C' at synonymous sites. However, the information encoded in mRNA is further amplified through translation. Due to unexpected trade-offs in the codon table, cheaper nucleotides encode on average energetically more expensive amino acids. These trade-offs apply to both strand-specific nucleotide usage and GC content, causing a universal bias towards the more expensive nucleotides ‘A' and ‘G' at non-synonymous coding sites. PMID:27098217

  5. Blended Learning and Innovative Technologies in Training of Future Specialists in Foreign Higher Education Institutions

    ERIC Educational Resources Information Center

    Gurevych, Roman; Kademiya, Maya

    2017-01-01

    The article characterizes one of the most promising models of blended learning in higher education institutions. The article describes the peculiarities of improving the education process, the formation of motivational and professional competency of future specialists as well as the usage of one of the models of blended learning--"flipped…

  6. Prognostics Uncertainty Management with Application to Government and Industry

    NASA Technical Reports Server (NTRS)

    Celaya, Jose; Sankararaman, Shankar; Daigle, Matthew; Saxena, Abhinav; Goebel, Kai

    2014-01-01

    Predictions about the future are contingent on future usage, but also on the quality of the models employed and the assessment of the current health state. These factors, amongst others, need to be considered to arrive at a prediction that is conducted through a rigorous method but where the confidence bounds are not prohibitively large.

  7. Invent the Future--READ! 2000 Texas Reading Club Manual.

    ERIC Educational Resources Information Center

    Bass, Martha; Davis, Robin Works; Harris, Marlive; Marcum, Paul

    The Texas Reading Club is designed to encourage youth to read for pleasure and to promote library usage.A statewide theme is selected each year that emphasizes ways in which reading expands young minds and encourages children to use their imaginations. The year 2000's theme, "Invent the future! READ!," emphasizes ways in which reading…

  8. Socio-economic factors affecting the conservation of natural woodlands in Central Riyadh Area – Saudi Arabia

    PubMed Central

    Al-Subaiee, Faisal Sultan

    2015-01-01

    This study aimed to identify some socioeconomic factors affecting local people in central Riyadh area for the utilization of wood and other energy sources in cooking and heating in order to develop some recommendations for conserving woodlands. The study results revealed that gas is the most common energy source used for cooking with a mean usage level of 2.79 (SD = 0.58). On the other hand, wood ranked first for heating with the highest mean, usage level of 1.90 (SD = 1.06). However, electricity and gas as sources of energy for heating ranked second and third with mean usage level of 1.81 and 0.80 respectively. The study revealed that local people with the university education were significantly making higher use of electricity for both cooking and heating and those with no formal education ranked the highest on wood use for both cooking and heating. In addition, those living in traditional houses significantly used more wood for cooking than those living in villas and apartments. Also, local people with high income levels significantly were using more electricity for heating than others. The study recommended conducting extension and environmental awareness raising programs to enhance local residents’ adoption of wood substitutes, promoting employment opportunities for unemployed locals, and subsidizing prices of alternative energy sources. PMID:27081355

  9. Optimization of Wastewater Lift Stations for Reduction of Energy Usage and Greenhouse Gas Emissions (WERF Report INFR3R11)

    EPA Science Inventory

    One of the major contributions of Greenhouse Gas (GHG) emissions from water resource recovery facilities results from the energy used by the pumping regime of the lift stations. This project demonstrated an energy-efficient control method of lift station system operation that uti...

  10. Sustainable Energy for University Science Majors: Developing Guidelines for Educators

    ERIC Educational Resources Information Center

    Langbeheim, Elon; Rez, Peter

    2017-01-01

    This paper describes the basic tenets of a sustainable energy course for university science majors. First, it outlines the three core components of the course: (1) The scientific evidence for the connection between climate change and energy usage; (2) An analysis of the capacity and environmental impact of various renewable and traditional energy…

  11. Effectiveness of a night radiative cooling system in different geographical latitudes

    NASA Astrophysics Data System (ADS)

    Tsoy, A. P.; Granovskiy, A. S.; Baranenko, A. V.; Tsoy, D. A.

    2017-08-01

    Growth of world energy consumption and depletion of energy resources make humanity to constantly work on the creation of the energy efficient technologies and increase usage of the alternative and renewable sources of energy. One of such alternative sources of energy is the night radiative cooling (NRC). NRC is an alternative and renewable source of energy, derived from the effective radiation of the Earth into the Space. If the given surface is located so that it looks to the night sky, then under the particular condition more energy can be generated under the effect of radiative cooling, than received from the atmosphere. As a result the temperature of the surface can be kept lower than the temperature of the ambient air. This effect can be used for creation of the refrigeration systems with the low energy consumption and as a result lower negative influence on the environment. During the research it has been identified that the possibility of the NRC usage is mostly predetermined by the specifics of the climate of the each region. In particular climate conditions the refrigeration systems working on night radiative cooling will be more effective that in others.

  12. Energy Equity Lost and Found: Rebuilding America's K-12 Schools.

    ERIC Educational Resources Information Center

    Schoff, Lorenz V.

    1999-01-01

    Discusses reversing the trend of school-building deterioration and inefficient energy usage through the Rebuild America program. Explains what Rebuild America is and why schools should join the program. Also provided are overviews of successful programs involving schools. (GR)

  13. Achieving scale strategically : understanding freight flows in regional food supply chains.

    DOT National Transportation Integrated Search

    2013-06-01

    The past several years have seen a rising interest in all things sustainable, from energy efficient homes : and vehicles, to alternative energy sources, to increasing focus on recyclable and renewable material : usage. This trend has also been accomp...

  14. Microbiologically influenced corrosion: looking to the future.

    PubMed

    Videla, Héctor A; Herrera, Liz K

    2005-09-01

    This review discusses the state-of-the-art of research into biocorrosion and the biofouling of metals and alloys of industrial usage. The key concepts needed to understand the main effects of microorganisms on metal decay, and current trends in monitoring and control strategies to mitigate the deleterious effects of biocorrosion and biofouling are also described. Several relevant cases of biocorrosion studied by our research group are provided as examples: (i) biocorrosion of aluminum and its alloys by fungal contaminants of jet fuels; (ii) sulfate-reducing bacteria (SRB)-induced corrosion of steel; (iii) biocorrosion and biofouling interactions in the marine environment; (iv) monitoring strategies for assessing biocorrosion in industrial water systems; (v) microbial inhibition of corrosion; (vi) use and limitations of electrochemical techniques for evaluating biocorrosion effects. Future prospects in the field are described with respect to the potential of innovative techniques in microscopy (environmental scanning electron microscopy, confocal scanning laser microscopy, atomic force microscopy), new spectroscopic techniques for the study of corrosion products and biofilms (energy dispersion X-ray analysis, X-ray photoelectron spectroscopy, electron microprobe analysis) and electrochemistry (electrochemical impedance spectroscopy, electrochemical noise analysis).

  15. Challenges in scaling NLO generators to leadership computers

    NASA Astrophysics Data System (ADS)

    Benjamin, D.; Childers, JT; Hoeche, S.; LeCompte, T.; Uram, T.

    2017-10-01

    Exascale computing resources are roughly a decade away and will be capable of 100 times more computing than current supercomputers. In the last year, Energy Frontier experiments crossed a milestone of 100 million core-hours used at the Argonne Leadership Computing Facility, Oak Ridge Leadership Computing Facility, and NERSC. The Fortran-based leading-order parton generator called Alpgen was successfully scaled to millions of threads to achieve this level of usage on Mira. Sherpa and MadGraph are next-to-leading order generators used heavily by LHC experiments for simulation. Integration times for high-multiplicity or rare processes can take a week or more on standard Grid machines, even using all 16-cores. We will describe our ongoing work to scale the Sherpa generator to thousands of threads on leadership-class machines and reduce run-times to less than a day. This work allows the experiments to leverage large-scale parallel supercomputers for event generation today, freeing tens of millions of grid hours for other work, and paving the way for future applications (simulation, reconstruction) on these and future supercomputers.

  16. Vibration Testing of an Operating Stirling Convertor

    NASA Technical Reports Server (NTRS)

    Hughes, William O.; McNelis, Mark E.; Goodnight, Thomas W.

    2000-01-01

    The NASA John H. Glenn Research Center and the U.S. Department of Energy are currently developing a Stirling convertor for use as an advanced spacecraft power system for future NASA deep-space missions. As part of this development, a Stirling Technology Demonstrator Convertor (TDC) was recently tested to verify its survivability and capability of withstanding its expected launch random vibration environment. The TDC was fully operational (producing power) during the random vibration testing. The output power of the convertor was measured during the testing, and these results are discussed in this paper. Numerous accelerometers and force gauges were also present which provided information on the dynamic characteristics of the TDC and an indication of any possible damage due to vibration. These measurements will also be discussed in this paper. The vibration testing of the Stirling TDC was extremely successful. The TDC survived all its vibration testing with no structural damage or functional performance degradation. As a result of this testing, the Stirling convertor's capability to withstand vibration has been demonstrated, enabling its usage in future spacecraft power systems.

  17. Linking ceragenins to water-treatment membranes to minimize biofouling.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hibbs, Michael R.; Altman, Susan Jeanne; Feng, Yanshu

    Ceragenins were used to create biofouling resistant water-treatment membranes. Ceragenins are synthetically produced antimicrobial peptide mimics that display broad-spectrum bactericidal activity. While ceragenins have been used on bio-medical devices, use of ceragenins on water-treatment membranes is novel. Biofouling impacts membrane separation processes for many industrial applications such as desalination, waste-water treatment, oil and gas extraction, and power generation. Biofouling results in a loss of permeate flux and increase in energy use. Creation of biofouling resistant membranes will assist in creation of clean water with lower energy usage and energy with lower water usage. Five methods of attaching three different cerageninmore » molecules were conducted and tested. Biofouling reduction was observed in the majority of the tests, indicating the ceragenins are a viable solution to biofouling on water treatment membranes. Silane direct attachment appears to be the most promising attachment method if a high concentration of CSA-121a is used. Additional refinement of the attachment methods are needed in order to achieve our goal of several log-reduction in biofilm cell density without impacting the membrane flux. Concurrently, biofilm forming bacteria were isolated from source waters relevant for water treatment: wastewater, agricultural drainage, river water, seawater, and brackish groundwater. These isolates can be used for future testing of methods to control biofouling. Once isolated, the ability of the isolates to grow biofilms was tested with high-throughput multiwell methods. Based on these tests, the following species were selected for further testing in tube reactors and CDC reactors: Pseudomonas ssp. (wastewater, agricultural drainage, and Colorado River water), Nocardia coeliaca or Rhodococcus spp. (wastewater), Pseudomonas fluorescens and Hydrogenophaga palleronii (agricultural drainage), Sulfitobacter donghicola, Rhodococcus fascians, Rhodobacter katedanii, and Paracoccus marcusii (seawater), and Sphingopyxis spp. (groundwater). The testing demonstrated the ability of these isolates to be used for biofouling control testing under laboratory conditions. Biofilm forming bacteria were obtained from all the source water samples.« less

  18. The impact of electric vehicles on the outlook of future energy system

    NASA Astrophysics Data System (ADS)

    Zhuk, A.; Buzoverov, E.

    2018-02-01

    Active promotion of electric vehicles (EVs) and technology of fast EV charging in the medium term may cause significant peak loads on the energy system, what necessitates making strategic decisions related to the development of generating capacities, distribution networks with EV charging infrastructure, and priorities in the development of battery electric vehicles and vehicles with electrochemical generators. The paper analyses one of the most significant aspects of joint development of electric transport system and energy system in the conditions of substantial growth of energy consumption by EVs. The assessments of per-unit-costs of operation and depreciation of EV power unit were made, taking into consideration the expenses of electric power supply. The calculations show that the choice of electricity buffering method for EV fast charging depends on the character of electricity infrastructure in the region where the electric transport is operating. In the conditions of high density of electricity network and a large number of EVs, the stationary storage facilities or the technology of distributed energy storage in EV batteries - vehicle-to-grid (V2G) technology may be used for buffering. In the conditions of low density and low capacity of electricity networks, the most economical solution could be usage of EVs with traction power units based on the combination of air-aluminum electrochemical generator and a buffer battery of small capacity.

  19. Providing Personalized Energy Management and Awareness Services for Energy Efficiency in Smart Buildings.

    PubMed

    Fotopoulou, Eleni; Zafeiropoulos, Anastasios; Terroso-Sáenz, Fernando; Şimşek, Umutcan; González-Vidal, Aurora; Tsiolis, George; Gouvas, Panagiotis; Liapis, Paris; Fensel, Anna; Skarmeta, Antonio

    2017-09-07

    Considering that the largest part of end-use energy consumption worldwide is associated with the buildings sector, there is an inherent need for the conceptualization, specification, implementation, and instantiation of novel solutions in smart buildings, able to achieve significant reductions in energy consumption through the adoption of energy efficient techniques and the active engagement of the occupants. Towards the design of such solutions, the identification of the main energy consuming factors, trends, and patterns, along with the appropriate modeling and understanding of the occupants' behavior and the potential for the adoption of environmentally-friendly lifestyle changes have to be realized. In the current article, an innovative energy-aware information technology (IT) ecosystem is presented, aiming to support the design and development of novel personalized energy management and awareness services that can lead to occupants' behavioral change towards actions that can have a positive impact on energy efficiency. Novel information and communication technologies (ICT) are exploited towards this direction, related mainly to the evolution of the Internet of Things (IoT), data modeling, management and fusion, big data analytics, and personalized recommendation mechanisms. The combination of such technologies has resulted in an open and extensible architectural approach able to exploit in a homogeneous, efficient and scalable way the vast amount of energy, environmental, and behavioral data collected in energy efficiency campaigns and lead to the design of energy management and awareness services targeted to the occupants' lifestyles. The overall layered architectural approach is detailed, including design and instantiation aspects based on the selection of set of available technologies and tools. Initial results from the usage of the proposed energy aware IT ecosystem in a pilot site at the University of Murcia are presented along with a set of identified open issues for future research.

  20. Providing Personalized Energy Management and Awareness Services for Energy Efficiency in Smart Buildings

    PubMed Central

    Fotopoulou, Eleni; Tsiolis, George; Gouvas, Panagiotis; Liapis, Paris; Fensel, Anna; Skarmeta, Antonio

    2017-01-01

    Considering that the largest part of end-use energy consumption worldwide is associated with the buildings sector, there is an inherent need for the conceptualization, specification, implementation, and instantiation of novel solutions in smart buildings, able to achieve significant reductions in energy consumption through the adoption of energy efficient techniques and the active engagement of the occupants. Towards the design of such solutions, the identification of the main energy consuming factors, trends, and patterns, along with the appropriate modeling and understanding of the occupants’ behavior and the potential for the adoption of environmentally-friendly lifestyle changes have to be realized. In the current article, an innovative energy-aware information technology (IT) ecosystem is presented, aiming to support the design and development of novel personalized energy management and awareness services that can lead to occupants’ behavioral change towards actions that can have a positive impact on energy efficiency. Novel information and communication technologies (ICT) are exploited towards this direction, related mainly to the evolution of the Internet of Things (IoT), data modeling, management and fusion, big data analytics, and personalized recommendation mechanisms. The combination of such technologies has resulted in an open and extensible architectural approach able to exploit in a homogeneous, efficient and scalable way the vast amount of energy, environmental, and behavioral data collected in energy efficiency campaigns and lead to the design of energy management and awareness services targeted to the occupants’ lifestyles. The overall layered architectural approach is detailed, including design and instantiation aspects based on the selection of set of available technologies and tools. Initial results from the usage of the proposed energy aware IT ecosystem in a pilot site at the University of Murcia are presented along with a set of identified open issues for future research. PMID:28880227

  1. Evaluation and Selection of Renewable Energy Technologies for Highway Maintenance Facilities

    NASA Astrophysics Data System (ADS)

    Andrews, Taylor

    The interest in renewable energy has been increasing in recent years as attempts to reduce energy costs as well the consumption of fossil fuels are becoming more common. Companies and organizations are recognizing the increasing reliance on limited fossil fuels' resources, and as competition and costs for these resources grow, alternative solutions are becoming more appealing. Many federally run buildings and associations also have the added pressure of meeting the mandates of federal energy policies that dictate specific savings or reductions. Federal highway maintenance facilities run by the Department of Transportation fall into this category. To help meet energy saving goals, an investigation into potential renewable energy technologies was completed for the Ohio Department of Transportation. This research examined several types of renewable energy technologies and the major factors that affect their performance and evaluated their potential for implementation at highway maintenance facilities. Facilities energy usage data were provided, and a facility survey and site visits were completed to enhance the evaluation of technologies and the suitability for specific projects. Findings and technology recommendations were presented in the form of selection matrices, which were designed to help make selections in future projects. The benefits of utilization of other tools such as analysis software and life cycle assessments were also highlighted. These selection tools were designed to be helpful guides when beginning the pursuit of a renewable energy technology for highway maintenance facilities, and can be applied to other similar building types and projects. This document further discusses the research strategies and findings as well as the recommendations that were made to the personnel overseeing Ohio's highway maintenance facilities.

  2. Current Usage and Future Prospects of Multispectral (RGB) Satellite Imagery in Support of NWS Forecast Offices and National Centers

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew; Fuell, Kevin; Knaff, John; Lee, Thomas

    2012-01-01

    What is an RGB Composite Image? (1) Current and future satellite instruments provide remote sensing at a variety of wavelengths. (2) RGB composite imagery assign individual wavelengths or channel differences to the intensities of the red, green, and blue components of a pixel color. (3) Each red, green, and blue color intensity is related to physical properties within the final composite image. (4) Final color assignments are therefore related to the characteristics of image pixels. (5) Products may simplify the interpretation of data from multiple bands by displaying information in a single image. Current Products and Usage: Collaborations between SPoRT, CIRA, and NRL have facilitated the use and evaluation of RGB products at a variety of NWS forecast offices and National Centers. These products are listed in table.

  3. A novel contrast agent with rare earth-doped up-conversion luminescence and Gd-DTPA magnetic resonance properties

    NASA Astrophysics Data System (ADS)

    Lu, Qing; Wei, Daixu; Cheng, Jiejun; Xu, Jianrong; Zhu, Jun

    2012-08-01

    The magnetic-luminescent multifunctional nanoparticles based on Gd-DTPA and NaYF4:Yb, Er were successfully synthesized by the conjugation of activated DTPA and silica-coated/surface-aminolated NaYF4:Yb, Er nanoparticles through EDC/NHS coupling chemistry. The as-prepared products were characterized by powder X-ray diffraction, transmission electron microscopy, dynamic light scattering, energy dispersive X-ray analysis, and fourier transform infrared spectrometry. The room-temperature upconversion luminescent spectra and T1-weighted maps of the obtained nanoparticles were carried out by 980 nm NIR light excitation and a 3T MR imaging scanner, respectively. The results indicated that the as-synthesized multifunctional nanoparticles with small size, highly solubility in water, and both high MR relaxivities and upconversion luminescence may have potential usage for MR imaging in future.

  4. The Global Rise of Zero Liquid Discharge for Wastewater Management: Drivers, Technologies, and Future Directions.

    PubMed

    Tong, Tiezheng; Elimelech, Menachem

    2016-07-05

    Zero liquid discharge (ZLD)-a wastewater management strategy that eliminates liquid waste and maximizes water usage efficiency - has attracted renewed interest worldwide in recent years. Although implementation of ZLD reduces water pollution and augments water supply, the technology is constrained by high cost and intensive energy consumption. In this critical review, we discuss the drivers, incentives, technologies, and environmental impacts of ZLD. Within this framework, the global applications of ZLD in the United States and emerging economies such as China and India are examined. We highlight the evolution of ZLD from thermal- to membrane-based processes, and analyze the advantages and limitations of existing and emerging ZLD technologies. The potential environmental impacts of ZLD, notably greenhouse gas emission and generation of solid waste, are discussed and the prospects of ZLD technologies and research needs are highlighted.

  5. Mobile Phone Usage and its Health Effects Among Adults in a Semi-Urban Area of Southern India.

    PubMed

    Stalin, P; Abraham, Sherin Billy; Kanimozhy, K; Prasad, R Vishnu; Singh, Zile; Purty, Anil J

    2016-01-01

    Worldwide, mobile phone usage has been increased dramatically which could affect the health of the people. India has the second largest number of mobile phone users. However there are only few studies conducted in India to assess its effects on health. To determine the prevalence and pattern of mobile phone usage and to assess the relationship between certain selected health problems and mobile phone usage among adults. Community-based cross-sectional study was conducted in Kottakuppam, a town panchayat in Villupuram district of Coastal Tamil Nadu, Southern India. It is a semi-urban area with a population of about 16,000. Majority of the residents are Muslim by religion and belong to different socio economic status. The study was approved by the Institutional Ethics Committee. A total of 2121 study participants were interviewed by the pre-final medical students through house-to-house survey using a pretested structured questionnaire. The questionnaire included the variables such as socio demographic profile, mobile phone usage and pattern, selected health problems, perceived benefits and threats and blood pressure. Selected health problems included headache, earache, neck pain, tinnitus, painful fingers, restlessness, morning tiredness, tingling fingers, fatigue, eye symptoms, sleep disturbance and hypertension. Only 2054 were included for data analysis using SPSS 17 version. Proportions were calculated. Chi-square test was used to measure the p-value. The p-value < 0.05 was considered as statistically significant. The prevalence of mobile phone usage was 70%. Calling facility (94.2%) was used more than the SMS (67.6%). Health problems like headache, earache, tinnitus, painful fingers and restlessness etc., were found to be positively associated with mobile phone usage. There was negative association between hypertension and mobile phone usage. The prevalence of mobile phone usage was high. There was significant association between selected health problems and mobile phone usage. In future, higher studies are required to confirm our findings.

  6. Win–Win strategies to promote air pollutant control policies and non-fossil energy target regulation in China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lining; Patel, Pralit L.; Yu, Sha

    The rapid growth of energy consumption in China has led to increased emissions of air pollutants. As a response, in its 12th Five Year Plan the Chinese government proposed mitigation targets for SO2 and NOx emissions. Herein we have investigated mitigation measures taken in different sectors and their corresponding impacts on the energy system. Additionally, as non-fossil energy development has gained traction in addressing energy and environmental challenges in China, we further investigated the impact of non-fossil energy development on air pollutant emissions, and then explored interactions and co-benefits between these two types of policies. An extended Global Change Assessmentmore » Model (GCAM) was used in this study, which includes an additional air pollutant emissions control module coupling multiple end-of-pipe (EOP) control technologies with energy technologies, as well as more detailed end-use sectors in China. We find that implementing EOP control technologies would reduce air pollution in the near future, but with little room left to implement these EOP technologies, other cleaner and more efficient technologies are also effective. These technologies would reduce final energy consumption, increase electricity’s share in final energy, and increase the share of non-fossil fuels in primary energy and electricity consumption. Increasing non-fossil energy usage at China’s proposed adoption rate would in turn also reduce SO2 and NOx emissions, however, the reductions from this policy alone still lag behind the targeted requirements of air pollutant reduction. Fortunately, a combination of air pollutant controls and non-fossil energy development could synergistically help realize the respective individual targets, and would result in lower costs than would addressing these issues separately.« less

  7. Potential of Using Solar Energy for Drinking Water Treatment Plant

    NASA Astrophysics Data System (ADS)

    Bukhary, S. S.; Batista, J.; Ahmad, S.

    2016-12-01

    Where water is essential to energy generation, energy usage is integral to life cycle processes of water extraction, treatment, distribution and disposal. Increasing population, climate change and greenhouse gas production challenges the water industry for energy conservation of the various water-related operations as well as limiting the associated carbon emissions. One of the ways to accomplish this is by incorporating renewable energy into the water sector. Treatment of drinking water, an important part of water life cycle processes, is vital for the health of any community. This study explores the feasibility of using solar energy for a drinking water treatment plant (DWTP) with the long-term goal of energy independence and sustainability. A 10 MGD groundwater DWTP in southwestern US was selected, using the treatment processes of coagulation, filtration and chlorination. Energy consumption in units of kWh/day and kWh/MG for each unit process was separately determined using industry accepted design criteria. Associated carbon emissions were evaluated in units of CO2 eq/MG. Based on the energy consumption and the existing real estate holdings, the DWTP was sized for distributed solar. Results showed that overall the motors used to operate the pumps including the groundwater intake pumps were the largest consumers of energy. Enough land was available around DWTP to deploy distributed solar. Results also showed that solar photovoltaics could potentially be used to meet the energy demands of the selected DWTP, but warrant the use of a large storage capacity, and thus increased costs. Carbon emissions related to solar based design were negligible compared to the original case. For future, this study can be used to analyze unit processes of other DWTP based on energy consumption, as well as for incorporating sustainability into the DWTP design.

  8. Social network analyzer on the example of Twitter

    NASA Astrophysics Data System (ADS)

    Gorodetskaia, Mariia; Khruslova, Diana

    2017-09-01

    Social networks are powerful sources of data due to their popularity. Twitter is one of the networks providing a lot of data. There is need to collect this data for future usage from linguistics to SMM and marketing. The report examines the existing software solutions and provides new ones. The study includes information about the software developed. Some future features are listed.

  9. Blind Optimism: A Cross-Cultural Study of Students' Temporal Constructs and Their Schooling Engagements

    ERIC Educational Resources Information Center

    Rossatto, Cesar Augusto

    2004-01-01

    This article examines students' perceptions and usage of time, their sense of optimism or lack of it, especially related to schooling. Positionality, or perceptions about life and projections of the future, has great impact on students' success in school. How they interpret the past, live in the present and foresee the future is significantly…

  10. A Framework for Understanding and Generating Integrated Solutions for Residential Peak Energy Demand

    PubMed Central

    Buys, Laurie; Vine, Desley; Ledwich, Gerard; Bell, John; Mengersen, Kerrie; Morris, Peter; Lewis, Jim

    2015-01-01

    Supplying peak energy demand in a cost effective, reliable manner is a critical focus for utilities internationally. Successfully addressing peak energy concerns requires understanding of all the factors that affect electricity demand especially at peak times. This paper is based on past attempts of proposing models designed to aid our understanding of the influences on residential peak energy demand in a systematic and comprehensive way. Our model has been developed through a group model building process as a systems framework of the problem situation to model the complexity within and between systems and indicate how changes in one element might flow on to others. It is comprised of themes (social, technical and change management options) networked together in a way that captures their influence and association with each other and also their influence, association and impact on appliance usage and residential peak energy demand. The real value of the model is in creating awareness, understanding and insight into the complexity of residential peak energy demand and in working with this complexity to identify and integrate the social, technical and change management option themes and their impact on appliance usage and residential energy demand at peak times. PMID:25807384

  11. A framework for understanding and generating integrated solutions for residential peak energy demand.

    PubMed

    Buys, Laurie; Vine, Desley; Ledwich, Gerard; Bell, John; Mengersen, Kerrie; Morris, Peter; Lewis, Jim

    2015-01-01

    Supplying peak energy demand in a cost effective, reliable manner is a critical focus for utilities internationally. Successfully addressing peak energy concerns requires understanding of all the factors that affect electricity demand especially at peak times. This paper is based on past attempts of proposing models designed to aid our understanding of the influences on residential peak energy demand in a systematic and comprehensive way. Our model has been developed through a group model building process as a systems framework of the problem situation to model the complexity within and between systems and indicate how changes in one element might flow on to others. It is comprised of themes (social, technical and change management options) networked together in a way that captures their influence and association with each other and also their influence, association and impact on appliance usage and residential peak energy demand. The real value of the model is in creating awareness, understanding and insight into the complexity of residential peak energy demand and in working with this complexity to identify and integrate the social, technical and change management option themes and their impact on appliance usage and residential energy demand at peak times.

  12. The high societal costs of childhood conduct problems: evidence from administrative records up to age 38 in a longitudinal birth cohort.

    PubMed

    Rivenbark, Joshua G; Odgers, Candice L; Caspi, Avshalom; Harrington, HonaLee; Hogan, Sean; Houts, Renate M; Poulton, Richie; Moffitt, Terrie E

    2018-06-01

    Children with conduct problems that persist into adulthood are at increased risk for future behavioral, health, and social problems. However, the longer term public service usage among these children has not been fully documented. To aid public health and intervention planning, adult service usage across criminal justice, health care, and social welfare domains is compared among all individuals from a representative cohort who followed different conduct problem trajectories from childhood into adulthood. Participants are from the Dunedin Multidisciplinary Health and Development Study, a prospective, representative cohort of consecutive births (N = 1,037) from April 1972 to March 1973 in Dunedin, New Zealand. Regression analyses were used to compare levels of public service usage up to age 38, gathered via administrative and electronic medical records, between participants who displayed distinct subtypes of childhood conduct problems (low, childhood-limited, adolescent-onset, and life-course persistent). Children exhibiting life-course persistent conduct problems used significantly more services as adults than those with low levels of childhood conduct problems. Although this group comprised only 9.0% of the population, they accounted for 53.3% of all convictions, 15.7% of emergency department visits, 20.5% of prescription fills, 13.1% of injury claims, and 24.7% of welfare benefit months. Half of this group (50.0%) also accrued high service use across all three domains of criminal justice, health, and social welfare services, as compared to only 11.3% of those with low conduct problems (OR = 7.27, 95% CI = 4.42-12.0). Conduct problems in childhood signal high future costs in terms of service utilization across multiple sectors. Future evaluations of interventions aimed at conduct problems should also track potential reductions in health burden and service usage that stretch into midlife. © 2017 Association for Child and Adolescent Mental Health.

  13. Energy Conservation in New Building Design: An Impact Assessment of ASHRAE Standard 90-75. Conservation and Environment Buildings Programs. Conservation Number 43B.

    ERIC Educational Resources Information Center

    Federal Energy Administration, Washington, DC.

    The American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE), has developed a document governing energy usage in all types of new construction: ASHRAE Standard 90-75: Energy Conservation in New Building Design (ASHRAE 90). To lay the foundation for an evaluation of ASHRAE 90, the Federal Energy Administration (FEA)…

  14. Operating Dedicated Data Centers - Is It Cost-Effective?

    NASA Astrophysics Data System (ADS)

    Ernst, M.; Hogue, R.; Hollowell, C.; Strecker-Kellog, W.; Wong, A.; Zaytsev, A.

    2014-06-01

    The advent of cloud computing centres such as Amazon's EC2 and Google's Computing Engine has elicited comparisons with dedicated computing clusters. Discussions on appropriate usage of cloud resources (both academic and commercial) and costs have ensued. This presentation discusses a detailed analysis of the costs of operating and maintaining the RACF (RHIC and ATLAS Computing Facility) compute cluster at Brookhaven National Lab and compares them with the cost of cloud computing resources under various usage scenarios. An extrapolation of likely future cost effectiveness of dedicated computing resources is also presented.

  15. Energy Awareness and Scheduling in Mobile Devices and High End Computing

    ERIC Educational Resources Information Center

    Pawaskar, Sachin S.

    2013-01-01

    In the context of the big picture as energy demands rise due to growing economies and growing populations, there will be greater emphasis on sustainable supply, conservation, and efficient usage of this vital resource. Even at a smaller level, the need for minimizing energy consumption continues to be compelling in embedded, mobile, and server…

  16. Challenge Students to Design an Energy-Efficient Home

    ERIC Educational Resources Information Center

    Griffith, Jack

    2008-01-01

    This article presents an activity that gives students a practical understanding of how much energy the average home consumes and wastes, and shows how the construction technologies used in home design affect overall energy usage. In this activity, students will outline the cost of a home's electrical system, give a breakdown of how much power the…

  17. Textiles & Clothing Curriculum Guide. Energy and the Family.

    ERIC Educational Resources Information Center

    Davidson, Jane S.; Morris, Carol

    This curriculum guide on textiles and clothing, covering one of the five content areas of the Energy and Family Curriculum Guide, has been designed to provide learning experiences and identify resources that can be used to develop units of study related to energy usage and conservation. The guide is intended for use in comprehensive courses of…

  18. Housing & Home Furnishings Curriculum Guide. Energy and the Family.

    ERIC Educational Resources Information Center

    Davidson, Jane S.; Morris, Carol

    This curriculum guide on housing and home furnishings, covering one of the five content areas of the Energy and the Family Curriculum Guide, has been designed to provide learning experiences and identify resources that can be used to develop units of study related to energy usage and conservation. The guide is intended for use in comprehensive…

  19. Evaluation of the "Lose Your Excuse" Public Service Advertising Campaign for Tweens to Save Energy

    ERIC Educational Resources Information Center

    Bertrand, Jane T.; Goldman, Patty; Zhivan, Natalia; Agyeman, Yaw; Barber, Erin

    2011-01-01

    This study evaluates the 2008-2009 "Lose your Excuse" public service advertising (PSA) campaign on energy efficiency targeting 8- to 12-year-olds, intended to increase knowledge, foster proactive attitudes, and change energy usage behaviors. Baseline and two follow-up surveys were conducted with online samples representative of the national…

  20. Biomass energy : the new frontier

    Treesearch

    John I. Zerbe

    2006-01-01

    We can have the greatest direct impact on petroleum and natural gas fuel usage by burning or gasifying wood for space heat, process energy and power. One alternative source that is available and underused is surplus wood. Certainly wood that is suitable for use in more valuable products should not be diverted to energy use that provides less income; however, other wood...

  1. Final Report: Hydrogen Production Pathways Cost Analysis (2013 – 2016)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James, Brian David; DeSantis, Daniel Allan; Saur, Genevieve

    This report summarizes work conducted under a three year Department of Energy (DOE) funded project to Strategic Analysis, Inc. (SA) to analyze multiple hydrogen (H 2) production technologies and project their corresponding levelized production cost of H 2. The analysis was conducted using the H2A Hydrogen Analysis Tool developed by the DOE and National Renewable Energy Laboratory (NREL). The project was led by SA but conducted in close collaboration with the NREL and Argonne National Laboratory (ANL). In-depth techno-economic analysis (TEA) of five different H 2 production methods was conducted. These TEAs developed projections for capital costs, fuel/feedstock usage, energymore » usage, indirect capital costs, land usage, labor requirements, and other parameters, for each H 2 production pathway, and use the resulting cost and system parameters as inputs into the H2A discounted cash flow model to project the production cost of H 2 ($/kgH 2). Five technologies were analyzed as part of the project and are summarized in this report: Proton Exchange Membrane technology (PEM), High temperature solid oxide electrolysis cell technology (SOEC), Dark fermentation of biomass for H 2 production, H 2 production via Monolithic Piston-Type Reactors with rapid swing reforming and regeneration reactions, and Reformer-Electrolyzer-Purifier (REP) technology developed by Fuel Cell Energy, Inc. (FCE).« less

  2. Analysis of a Concentrated Solar Thermophotovoltaic System with Thermal Energy Storage

    NASA Astrophysics Data System (ADS)

    Seyf, Hamid Reza; Henry, Asegun

    2017-01-01

    We analyzed a high temperature concentrated solar thermophotovoltaic (TPV) system with thermal energy storage (TES), which is enabled by the potential usage of liquid metal as a high temperature heat transfer fluid. The system concept combines the great advantages of TES with the potential for low cost and high performance derived from photovoltaic cells fabricated on reusable substrates, with a high reflectivity back reflector for photon recycling. The TES makes the electricity produced dispatchable, and thus the system studied should be compared to technologies such as concentrated solar power (CSP) with TES (e.g., using a turbine) or PV with electrochemical batteries, instead of direct and intermittent electricity generation from flat plate PV alone. Thus, the addition of TES places the system in a different class than has previously been considered and based on the model results, appears worthy of increased attention. The system level analysis presented identifies important cell level parameters that have the greatest impact on the overall system performance, and as a result can help to set the priorities for future TPV cell development.

  3. Analysis of a Concentrated Solar Thermophotovoltaic System with Thermal Energy Storage

    NASA Astrophysics Data System (ADS)

    Seyf, Hamid Reza; Henry, Asegun

    We analyzed a high temperature concentrated solar thermophotovoltaic (TPV) system with thermal energy storage (TES), which is enabled by the potential usage of liquid metal as a high temperature heat transfer fluid. The system concept combines the great advantages of TES with the potential for low cost and high performance derived from photovoltaic cells fabricated on reusable substrates, with a high reflectivity back reflector for photon recycling. The TES makes the electricity produced dispatchable, and thus the system studied should be compared to technologies such as concentrated solar power (CSP) with TES (e.g., using a turbine) or PV with electrochemical batteries, instead of direct and intermittent electricity generation from flat plate PV alone. Thus, the addition of TES places the system in a different class than has previously been considered and based on the model results, appears worthy of increased attention. The system level analysis presented identifies important cell level parameters that have the greatest impact on the overall system performance, and as a result can help to set the priorities for future TPV cell development.

  4. Radiation chemistry for modern nuclear energy development

    NASA Astrophysics Data System (ADS)

    Chmielewski, Andrzej G.; Szołucha, Monika M.

    2016-07-01

    Radiation chemistry plays a significant role in modern nuclear energy development. Pioneering research in nuclear science, for example the development of generation IV nuclear reactors, cannot be pursued without chemical solutions. Present issues related to light water reactors concern radiolysis of water in the primary circuit; long-term storage of spent nuclear fuel; radiation effects on cables and wire insulation, and on ion exchangers used for water purification; as well as the procedures of radioactive waste reprocessing and storage. Radiation effects on materials and enhanced corrosion are crucial in current (II/III/III+) and future (IV) generation reactors, and in waste management, deep geological disposal and spent fuel reprocessing. The new generation of reactors (III+ and IV) impose new challenges for radiation chemists due to their new conditions of operation and the usage of new types of coolant. In the case of the supercritical water-cooled reactor (SCWR), water chemistry control may be the key factor in preventing corrosion of reactor structural materials. This paper mainly focuses on radiation effects on long-term performance and safety in the development of nuclear power plants.

  5. Carrier transfer in vertically stacked quantum ring-quantum dot chains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazur, Yu. I., E-mail: ymazur@uark.edu; Dorogan, V. G.; Benamara, M.

    2015-04-21

    The interplay between structural properties and charge transfer in self-assembled quantum ring (QR) chains grown by molecular beam epitaxy on top of an InGaAs/GaAs quantum dot (QD) superlattice template is analyzed and characterized. The QDs and QRs are vertically stacked and laterally coupled as well as aligned within each layer due to the strain field distributions that governs the ordering. The strong interdot coupling influences the carrier transfer both along as well as between chains in the ring layer and dot template structures. A qualitative contrast between different dynamic models has been developed. By combining temperature and excitation intensity effects,more » the tuning of the photoluminescence gain for either the QR or the QD mode is attained. The information obtained here about relaxation parameters, energy scheme, interlayer and interdot coupling resulting in creation of 1D structures is very important for the usage of such specific QR–QD systems for applied purposes such as lasing, detection, and energy-harvesting technology of future solar panels.« less

  6. Energy optimization system

    DOEpatents

    Zhou, Zhi; de Bedout, Juan Manuel; Kern, John Michael; Biyik, Emrah; Chandra, Ramu Sharat

    2013-01-22

    A system for optimizing customer utility usage in a utility network of customer sites, each having one or more utility devices, where customer site is communicated between each of the customer sites and an optimization server having software for optimizing customer utility usage over one or more networks, including private and public networks. A customer site model for each of the customer sites is generated based upon the customer site information, and the customer utility usage is optimized based upon the customer site information and the customer site model. The optimization server can be hosted by an external source or within the customer site. In addition, the optimization processing can be partitioned between the customer site and an external source.

  7. Security in Wireless Sensor Networks Employing MACGSP6

    ERIC Educational Resources Information Center

    Nitipaichit, Yuttasart

    2010-01-01

    Wireless Sensor Networks (WSNs) have unique characteristics which constrain them; including small energy stores, limited computation, and short range communication capability. Most traditional security algorithms use cryptographic primitives such as Public-key cryptography and are not optimized for energy usage. Employing these algorithms for the…

  8. Foresee: A user-centric home energy management system for energy efficiency and demand response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Xin; Baker, Kyri A.; Christensen, Dane T.

    This paper presents foresee, a user-centric home energy management system that can help optimize how a home operates to concurrently meet users' needs, achieve energy efficiency and commensurate utility cost savings, and reliably deliver grid services based on utility signals. Foresee is built on a multiobjective model predictive control framework, wherein the objectives consist of energy cost, thermal comfort, user convenience, and carbon emission. Foresee learns user preferences on different objectives and acts on their behalf to operate building equipment, such as home appliances, photovoltaic systems, and battery storage. In this work, machine-learning algorithms were used to derive data-driven appliancemore » models and usage patterns to predict the home's future energy consumption. This approach enables highly accurate predictions of comfort needs, energy costs, environmental impacts, and grid service availability. Simulation studies were performed on field data from a residential building stock data set collected in the Pacific Northwest. Results indicated that foresee generated up to 7.6% whole-home energy savings without requiring substantial behavioral changes. When responding to demand response events, foresee was able to provide load forecasts upon receipt of event notifications and delivered the committed demand response services with 10% or fewer errors. Foresee fully utilized the potential of the battery storage and controllable building loads and delivered up to 7.0-kW load reduction and 13.5-kW load increase. As a result, these benefits are provided while maintaining the occupants' thermal comfort or convenience in using their appliances.« less

  9. Foresee: A user-centric home energy management system for energy efficiency and demand response

    DOE PAGES

    Jin, Xin; Baker, Kyri A.; Christensen, Dane T.; ...

    2017-08-23

    This paper presents foresee, a user-centric home energy management system that can help optimize how a home operates to concurrently meet users' needs, achieve energy efficiency and commensurate utility cost savings, and reliably deliver grid services based on utility signals. Foresee is built on a multiobjective model predictive control framework, wherein the objectives consist of energy cost, thermal comfort, user convenience, and carbon emission. Foresee learns user preferences on different objectives and acts on their behalf to operate building equipment, such as home appliances, photovoltaic systems, and battery storage. In this work, machine-learning algorithms were used to derive data-driven appliancemore » models and usage patterns to predict the home's future energy consumption. This approach enables highly accurate predictions of comfort needs, energy costs, environmental impacts, and grid service availability. Simulation studies were performed on field data from a residential building stock data set collected in the Pacific Northwest. Results indicated that foresee generated up to 7.6% whole-home energy savings without requiring substantial behavioral changes. When responding to demand response events, foresee was able to provide load forecasts upon receipt of event notifications and delivered the committed demand response services with 10% or fewer errors. Foresee fully utilized the potential of the battery storage and controllable building loads and delivered up to 7.0-kW load reduction and 13.5-kW load increase. As a result, these benefits are provided while maintaining the occupants' thermal comfort or convenience in using their appliances.« less

  10. Energy Management of the Multi-Mission Space Exploration Vehicle Using a Goal-Oriented Control System

    NASA Technical Reports Server (NTRS)

    Braman, Julia M. B.; Wagner, David A.

    2010-01-01

    Safe human exploration in space missions requires careful management of limited resources such as breathable air and stored electrical energy. Daily activities for astronauts must be carefully planned with respect to such resources, and usage must be monitored as activities proceed to ensure that they can be completed while maintaining safe resource margins. Such planning and monitoring can be complex because they depend on models of resource usage, the activities being planned, and uncertainties. This paper describes a system - and the technology behind it - for energy management of the NASA-Johnson Space Center's Multi-Mission Space Exploration Vehicles (SEV), that provides, in an onboard advisory mode, situational awareness to astronauts and real-time guidance to mission operators. This new capability was evaluated during this year's Desert RATS (Research and Technology Studies) planetary exploration analog test in Arizona. This software aided ground operators and crew members in modifying the day s activities based on the real-time execution of the plan and on energy data received from the rovers.

  11. Development and evaluation of a prototype concentrating solar collector with thermocline based thermal energy storage for residential thermal usage

    DOE PAGES

    Kumar, Vinod; Afrin, Samia; Ortega, Jesus; ...

    2013-09-01

    A prototype of a concentrating solar collector (CSC) receiver was designed, built, and evaluated on-sun at the University of Texas at El Paso in El Paso, TX. This prototype receiver consists of two parabolic trough-reflectors but, in principle, the design can be efficiently extended to multiple units for achieving a higher temperature throughput. Each reflector has a vacuum tube collector at the focal point of the trough. The solar collector system was combined with a single-tank thermocline thermal energy storage (TES) for off-solar thermal usage. The main goal of this study is to develop an advanced solar hot water systemmore » for most residential applications. The focus of this study is to investigate the feasibility and performance of the solar thermal system by employing the recent advancement in the TES—a thermocline based TES—system for the concentrating solar power technologies developed by the Sandia National Laboratories and National Renewable Energy Laboratories for electricity production. A CSC when combined with TES has potential to provide uninterrupted thermal energy for most residential usages. This paper presents a detailed description of prototype design and materials required. The thermal energy storage tank utilizes an insulated 170 l (45 gal) galvanized steel tank. In order to maintain thermocline in the TES tank, with hot water on top and cold water at the bottom, two plate distributors are installed in the tank. The data showed a significant enhancement in thermal energy generation. This thermocline based single tank presented a thermal energy storage potential for at least three days (with diminishing storage capacity) that test were performed. The whole prototype was made for approximately USD 355 (excludes any labor costs) and hence also has strong potential for supplying clean thermal energy in most developing countries. As a result, tests of the prototype were conducted in November 2011.« less

  12. TEP Power Partners Project [Tucson Electric Power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2014-02-06

    The Arizona Governor’s Office of Energy Policy, in partnership with Tucson Electric Power (TEP), Tendril, and Next Phase Energy (NPE), formed the TEP Power Partners pilot project to demonstrate how residential customers could access their energy usage data and third party applications using data obtained from an Automatic Meter Reading (AMR) network. The project applied for and was awarded a Smart Grid Data Access grant through the U.S. Department of Energy. The project participants’ goal for Phase I is to actively engage 1,700 residential customers to demonstrate sustained participation, reduction in energy usage (kWh) and cost ($), and measure relatedmore » aspects of customer satisfaction. This Demonstration report presents a summary of the findings, effectiveness, and customer satisfaction with the 15-month TEP Power Partners pilot project. The objective of the program is to provide residential customers with energy consumption data from AMR metering and empower these participants to better manage their electricity use. The pilot recruitment goals included migrating 700 existing customers from the completed Power Partners Demand Response Load Control Project (DRLC), and enrolling 1,000 new participants. Upon conclusion of the project on November 19, 2013; 1,390 Home Area Networks (HANs) were registered; 797 new participants installed a HAN; Survey respondents’ are satisfied with the program and found value with a variety of specific program components; Survey respondents report feeling greater control over their energy usage and report taking energy savings actions in their homes after participating in the program; On average, 43 % of the participants returned to the web portal monthly and 15% returned weekly; and An impact evaluation was completed by Opinion Dynamics and found average participant savings for the treatment period1 to be 2.3% of their household use during this period.2 In total, the program saved 163 MWh in the treatment period of 2013.« less

  13. An intertemporal decision framework for electrochemical energy storage management

    NASA Astrophysics Data System (ADS)

    He, Guannan; Chen, Qixin; Moutis, Panayiotis; Kar, Soummya; Whitacre, Jay F.

    2018-05-01

    Dispatchable energy storage is necessary to enable renewable-based power systems that have zero or very low carbon emissions. The inherent degradation behaviour of electrochemical energy storage (EES) is a major concern for both EES operational decisions and EES economic assessments. Here, we propose a decision framework that addresses the intertemporal trade-offs in terms of EES degradation by deriving, implementing and optimizing two metrics: the marginal benefit of usage and the average benefit of usage. These metrics are independent of the capital cost of the EES system, and, as such, separate the value of EES use from the initial cost, which provides a different perspective on storage valuation and operation. Our framework is proved to produce the optimal solution for EES life-cycle profit maximization. We show that the proposed framework offers effective ways to assess the economic values of EES, to make investment decisions for various applications and to inform related subsidy policies.

  14. Integrated Modeling of Optical Systems (IMOS): An Assessment and Future Directions

    NASA Technical Reports Server (NTRS)

    Moore, Gregory; Broduer, Steve (Technical Monitor)

    2001-01-01

    Integrated Modeling of Optical Systems (IMOS) is a finite element-based code combining structural, thermal, and optical ray-tracing capabilities in a single environment for analysis of space-based optical systems. We'll present some recent examples of IMOS usage and discuss future development directions. Due to increasing model sizes and a greater emphasis on multidisciplinary analysis and design, much of the anticipated future work will be in the areas of improved architecture, numerics, and overall performance and analysis integration.

  15. Words vs. deeds: Americans' energy concerns and implementation of green energy policies

    NASA Astrophysics Data System (ADS)

    Brinker, Garrett C.

    As the effects of climate change become increasingly clear, nations, international organizations, and corporations are working together to help mitigate these negative effects before they become irreversible. The United States, as the world's largest emitter per capita, has a responsibility to take quick and decisive action to decrease carbon emissions. And while an overwhelming majority of Americans believe that green energy policies are the right step forward, few have taken meaningful steps to actually implement these policies. Green and energy efficient technologies such as hybrid and electric cars, smart meters, and solar panels---technologies that would reduce our carbon footprint---are currently purchased or used by very few households. There is a clear gap between our words and deeds. Using the University of Texas at Austin Energy Poll dataset, this paper examines this gap and analyzes how income may influence what people say, versus how they act, seeking to better understand how income influences peoples' energy behaviors. Previous literature suggests that income has proven to be an inconsistent measure of concern for energy use. Through two OLS models, this paper finds that income is negatively correlated with Americans' concern for energy usage, while finding that there is a positive correlation between income and Americans' implementation of energy efficient technologies. Further, there is a nonlinear relationship between income groups and how Americans both think about their energy usage and actually implement more energy efficient measures.

  16. Energy Efficient Storage and Transfer of Cryogens

    NASA Technical Reports Server (NTRS)

    Fesmire, James E.

    2013-01-01

    Cryogenics is globally linked to energy generation, storage, and usage. Thermal insulation systems research and development is an enabling part of NASA's technology goals for Space Launch and Exploration. New thermal testing methodologies and materials are being transferred to industry for a wide range of commercial applications.

  17. Collection and dissemination of thermal energy storage system information for the pulp and paper industry

    NASA Technical Reports Server (NTRS)

    Edde, H.

    1981-01-01

    The collection and dissemination of thermal energy storage (TES) system technology for the pulp and paper industry with the intent of reducing fossil fuel usage is discussed. The study plan is described and a description presented of example TES systems.

  18. Senior High School Students' Preference and Reasoning Modes about Nuclear Energy Use.

    ERIC Educational Resources Information Center

    Yang, Fang-Ying; Anderson, O. Roger

    2003-01-01

    Examines senior high school students' cognitive orientation toward scientific or social information, designated as information preference, and associated preferential reasoning modes when presented with an environmental issue concerning nuclear energy usage. Investigates the association of information preference variable with academic and personal…

  19. Development of a Short-Duration Drive Cycle to Represent Long-Term Measured Drive Cycle Data: Evaluation of Truck Efficiency Technologies in Class 8 Tractor Trailers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaClair, Tim; Gao, Zhiming; Fu, Joshua

    Quantifying the fuel savings and emissions reductions that can be achieved from truck fuel efficiency technologies for a fleet's specific usage allows the fleet to select a combination of technologies that will yield the greatest operational efficiency and profitability. An accurate characterization of usage for the fleet is critical for such an evaluation; however, short-term measured drive cycle data do not generally reflect overall usage very effectively. This study presents a detailed analysis of vehicle usage in a commercial vehicle fleet and demonstrates the development of a short-duration synthetic drive cycle with measured drive cycle data collected over an extendedmore » period of time. The approach matched statistical measures of the vehicle speed with acceleration history and integrated measured grade data to develop a compressed drive cycle that accurately represents total usage. Drive cycle measurements obtained during a full year from six tractor trailers in normal operations in a less-than-truckload carrier were analyzed to develop a synthetic drive cycle. The vehicle mass was also estimated to account for the variation of loads that the fleet experienced. These drive cycle and mass data were analyzed with a tractive energy analysis to quantify the benefits in terms of fuel efficiency and reduced carbon dioxide emissions that can be achieved on Class 8 tractor trailers by using advanced efficiency technologies, either individually or in combination. Although differences exist between Class 8 tractor trailer fleets, this study provides valuable insight into the energy and emissions reduction potential that various technologies can bring in this important trucking application. Finally, the methodology employed for generating the synthetic drive cycle serves as a rigorous approach to develop an accurate usage characterization that can be used to effectively compress large quantities of drive cycle data.« less

  20. Development of a Short-Duration Drive Cycle to Represent Long-Term Measured Drive Cycle Data: Evaluation of Truck Efficiency Technologies in Class 8 Tractor Trailers

    DOE PAGES

    LaClair, Tim; Gao, Zhiming; Fu, Joshua; ...

    2014-12-01

    Quantifying the fuel savings and emissions reductions that can be achieved from truck fuel efficiency technologies for a fleet's specific usage allows the fleet to select a combination of technologies that will yield the greatest operational efficiency and profitability. An accurate characterization of usage for the fleet is critical for such an evaluation; however, short-term measured drive cycle data do not generally reflect overall usage very effectively. This study presents a detailed analysis of vehicle usage in a commercial vehicle fleet and demonstrates the development of a short-duration synthetic drive cycle with measured drive cycle data collected over an extendedmore » period of time. The approach matched statistical measures of the vehicle speed with acceleration history and integrated measured grade data to develop a compressed drive cycle that accurately represents total usage. Drive cycle measurements obtained during a full year from six tractor trailers in normal operations in a less-than-truckload carrier were analyzed to develop a synthetic drive cycle. The vehicle mass was also estimated to account for the variation of loads that the fleet experienced. These drive cycle and mass data were analyzed with a tractive energy analysis to quantify the benefits in terms of fuel efficiency and reduced carbon dioxide emissions that can be achieved on Class 8 tractor trailers by using advanced efficiency technologies, either individually or in combination. Although differences exist between Class 8 tractor trailer fleets, this study provides valuable insight into the energy and emissions reduction potential that various technologies can bring in this important trucking application. Finally, the methodology employed for generating the synthetic drive cycle serves as a rigorous approach to develop an accurate usage characterization that can be used to effectively compress large quantities of drive cycle data.« less

  1. Study of Manpower Requirements by Occupation for Alternative Technologies in the Energy-Related Industries, 1970-1990. Volumes I, IIA, and III.

    ERIC Educational Resources Information Center

    Gutmanis, Ivars; And Others

    The report presents the methodology used by the National Planning Association (NPA), under contract to the Federal Energy Administration (FEA), to estimate direct labor usage coefficients in some sixty different occupational categories involved in construction, operation, and maintenance of energy facilities. Volume 1 presents direct labor usage…

  2. Cars and Kinetic Energy--Some Simple Physics with Real-World Relevance

    ERIC Educational Resources Information Center

    Parthasarathy, Raghuveer

    2012-01-01

    Understanding energy usage is crucial to understanding modern civilization, as well as many of the challenges it faces. Energy-related issues also offer real-world examples of important physical concepts, and as such have been the focus of several articles in "The Physics Teacher" in the past few decades (e.g., Refs. 1-5, noted further below).…

  3. The incorrect usage of singular spectral analysis and discrete wavelet transform in hybrid models to predict hydrological time series

    NASA Astrophysics Data System (ADS)

    Du, Kongchang; Zhao, Ying; Lei, Jiaqiang

    2017-09-01

    In hydrological time series prediction, singular spectrum analysis (SSA) and discrete wavelet transform (DWT) are widely used as preprocessing techniques for artificial neural network (ANN) and support vector machine (SVM) predictors. These hybrid or ensemble models seem to largely reduce the prediction error. In current literature researchers apply these techniques to the whole observed time series and then obtain a set of reconstructed or decomposed time series as inputs to ANN or SVM. However, through two comparative experiments and mathematical deduction we found the usage of SSA and DWT in building hybrid models is incorrect. Since SSA and DWT adopt 'future' values to perform the calculation, the series generated by SSA reconstruction or DWT decomposition contain information of 'future' values. These hybrid models caused incorrect 'high' prediction performance and may cause large errors in practice.

  4. Energy on the Home Front

    NASA Astrophysics Data System (ADS)

    Murphy, Thomas W.

    2011-11-01

    This article explores a variety of ways to measure, adjust, and augment home energy usage. Particular examples of using electricity and gas utility meters, power/energy meters for individual devices, whole-home energy monitoring, infrared cameras, and thermal measurements are discussed—leading to a factor-of-four reduction in home energy use in the case discussed. The net efficiency performance of a stand-alone photovoltaic system is also presented. Ideas for reducing one's energy/carbon footprint both within the home and in the larger community are quantitatively evaluated.

  5. Smart energy management system

    NASA Astrophysics Data System (ADS)

    Desai, Aniruddha; Singh, Jugdutt

    2010-04-01

    Peak and average energy usage in domestic and industrial environments is growing rapidly and absence of detailed energy consumption metrics is making systematic reduction of energy usage very difficult. Smart energy management system aims at providing a cost-effective solution for managing soaring energy consumption and its impact on green house gas emissions and climate change. The solution is based on seamless integration of existing wired and wireless communication technologies combined with smart context-aware software which offers a complete solution for automation of energy measurement and device control. The persuasive software presents users with easy-to-assimilate visual cues identifying problem areas and time periods and encourages a behavioural change to conserve energy. The system allows analysis of real-time/statistical consumption data with the ability to drill down into detailed analysis of power consumption, CO2 emissions and cost. The system generates intelligent projections and suggests potential methods (e.g. reducing standby, tuning heating/cooling temperature, etc.) of reducing energy consumption. The user interface is accessible using web enabled devices such as PDAs, PCs, etc. or using SMS, email, and instant messaging. Successful real-world trial of the system has demonstrated the potential to save 20 to 30% energy consumption on an average. Low cost of deployment and the ability to easily manage consumption from various web enabled devices offers gives this system a high penetration and impact capability offering a sustainable solution to act on climate change today.

  6. Multi-level analysis in information systems research: the case of enterprise resource planning system usage in China

    NASA Astrophysics Data System (ADS)

    Sun, Yuan; Bhattacherjee, Anol

    2011-11-01

    Information technology (IT) usage within organisations is a multi-level phenomenon that is influenced by individual-level and organisational-level variables. Yet, current theories, such as the unified theory of acceptance and use of technology, describe IT usage as solely an individual-level phenomenon. This article postulates a model of organisational IT usage that integrates salient organisational-level variables such as user training, top management support and technical support within an individual-level model to postulate a multi-level model of IT usage. The multi-level model was then empirically validated using multi-level data collected from 128 end users and 26 managers in 26 firms in China regarding their use of enterprise resource planning systems and analysed using the multi-level structural equation modelling (MSEM) technique. We demonstrate the utility of MSEM analysis of multi-level data relative to the more common structural equation modelling analysis of single-level data and show how single-level data can be aggregated to approximate multi-level analysis when multi-level data collection is not possible. We hope that this article will motivate future scholars to employ multi-level data and multi-level analysis for understanding organisational phenomena that are truly multi-level in nature.

  7. Applicability of the "Frame of Reference" approach for environmental monitoring of offshore renewable energy projects.

    PubMed

    Garel, Erwan; Rey, Cibran Camba; Ferreira, Oscar; van Koningsveld, Mark

    2014-08-01

    This paper assesses the applicability of the Frame of Reference (FoR) approach for the environmental monitoring of large-scale offshore Marine Renewable Energy (MRE) projects. The focus is on projects harvesting energy from winds, waves and currents. Environmental concerns induced by MRE projects are reported based on a classification scheme identifying stressors, receptors, effects and impacts. Although the potential effects of stressors on most receptors are identified, there are large knowledge gaps regarding the corresponding (positive and negative) impacts. In that context, the development of offshore MRE requires the implementation of fit-for-purpose monitoring activities aimed at environmental protection and knowledge development. Taking European legislation as an example, it is suggested to adopt standardized monitoring protocols for the enhanced usage and utility of environmental indicators. Towards this objective, the use of the FoR approach is advocated since it provides guidance for the definition and use of coherent set of environmental state indicators. After a description of this framework, various examples of applications are provided considering a virtual MRE project located in European waters. Finally, some conclusions and recommendations are provided for the successful implementation of the FoR approach and for future studies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Simulation of orientational coherent effects via Geant4

    NASA Astrophysics Data System (ADS)

    Bagli, E.; Asai, M.; Brandt, D.; Dotti, A.; Guidi, V.; Verderi, M.; Wright, D.

    2017-10-01

    Simulation of orientational coherent effects via Geant4 beam manipulation of high-and very-high-energy particle beams is a hot topic in accelerator physics. Coherent effects of ultra-relativistic particles in bent crystals allow the steering of particle trajectories thanks to the strong electrical field generated between atomic planes. Recently, a collimation experiment with bent crystals was carried out at the CERN-LHC, paving the way to the usage of such technology in current and future accelerators. Geant4 is a widely used object-oriented tool-kit for the Monte Carlo simulation of the interaction of particles with matter in high-energy physics. Moreover, its areas of application include also nuclear and accelerator physics, as well as studies in medical and space science. We present the first Geant4 extension for the simulation of orientational effects in straight and bent crystals for high energy charged particles. The model allows the manipulation of particle trajectories by means of straight and bent crystals and the scaling of the cross sections of hadronic and electromagnetic processes for channeled particles. Based on such a model, an extension of the Geant4 toolkit has been developed. The code and the model have been validated by comparison with published experimental data regarding the deflection efficiency via channeling and the variation of the rate of inelastic nuclear interactions.

  9. Conveyor belt care.

    PubMed

    1989-07-08

    Nurses, doctors, politicians and public have reacted to the prospect of high-volume hospital bed usage - conveyor belt care - by warning of a future-shock scenario of 'pro[Illegible Word] pea' patients whipped through dehumanising hospital treatment and promptly dumped crutchless into the community.

  10. Future Data Communication Architectures for Safety Critical Aircraft Cabin Systems

    NASA Astrophysics Data System (ADS)

    Berkhahn, Sven-Olaf

    2012-05-01

    The cabin of modern aircraft is subject to increasing demands for fast reconfiguration and hence flexibility. These demands require studies for new network architectures and technologies of the electronic cabin systems, which consider also weight and cost reductions as well as safety constraints. Two major approaches are in consideration to reduce the complex and heavy wiring harness: the usage of a so called hybrid data bus technology, which enables the common usage of the same data bus for several electronic cabin systems with different safety and security requirements and the application of wireless data transfer technologies for electronic cabin systems.

  11. Cloud@Home: A New Enhanced Computing Paradigm

    NASA Astrophysics Data System (ADS)

    Distefano, Salvatore; Cunsolo, Vincenzo D.; Puliafito, Antonio; Scarpa, Marco

    Cloud computing is a distributed computing paradigm that mixes aspects of Grid computing, ("… hardware and software infrastructure that provides dependable, consistent, pervasive, and inexpensive access to high-end computational capabilities" (Foster, 2002)) Internet Computing ("…a computing platform geographically distributed across the Internet" (Milenkovic et al., 2003)), Utility computing ("a collection of technologies and business practices that enables computing to be delivered seamlessly and reliably across multiple computers, ... available as needed and billed according to usage, much like water and electricity are today" (Ross & Westerman, 2004)) Autonomic computing ("computing systems that can manage themselves given high-level objectives from administrators" (Kephart & Chess, 2003)), Edge computing ("… provides a generic template facility for any type of application to spread its execution across a dedicated grid, balancing the load …" Davis, Parikh, & Weihl, 2004) and Green computing (a new frontier of Ethical computing1 starting from the assumption that in next future energy costs will be related to the environment pollution).

  12. Medium Duty ARRA Data Reporting and Analysis; NREL (National Renewable Energy Laboratory)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, Kenneth; Duran, Adam; Ragatz, Adam

    Medium-duty (MD) electric vehicle (EV) data collection and analysis will help drive design, purchase, and research investments. Over 4 million miles and 160,000 driving days of EV driving data were collected under this project. Publicly available data help drive technology research, development, and deployment. Feeding the vocational database for future analysis will lead to a better understanding of usage and will result in better design optimization and technology implementation. The performance of a vehicle varies with drive cycle and cargo load - MD vehicles are 'multi-functional.' Environment and accessory loads affect vehicle range and in turn add cost by addingmore » battery capacity. MD EV vehicles can function in vocations traditionally serviced by gasoline or diesel vehicles. Facility implications (i.e., demand charges) need to be understood as part of site-based analysis for EV implementation.« less

  13. Education Program on Fossil Resources Including Coal

    NASA Astrophysics Data System (ADS)

    Usami, Masahiro

    Fossil fuels including coal play a key role as crucial energies in contributing to economic development in Asia. On the other hand, its limited quantity and the environmental problems causing from its usage have become a serious global issue and a countermeasure to solve such problems is very much demanded. Along with the pursuit of sustainable development, environmentally-friendly use of highly efficient fossil resources should be therefore, accompanied. Kyushu-university‧s sophisticated research through long years of accumulated experience on the fossil resources and environmental sectors together with the advanced large-scale commercial and empirical equipments will enable us to foster cooperative research and provide internship program for the future researchers. Then, this program is executed as a consignment business from the Ministry of Economy, Trade and Industry from 2007 fiscal year to 2009 fiscal year. The lecture that uses the textbooks developed by this program is scheduled to be started a course in fiscal year 2010.

  14. Meeting the Energy Challenges of the 1990s. Experts Define the Key Policy Issues.

    DTIC Science & Technology

    1992-03-01

    Forecast of Low Emission Fuel Usage-Liquid 79 Fuels Figure 2.10: Forecast of Low Emission Fuel Usage- 81 Gaseous Fuels Figure 2.11: Global Warming From...environmental problems caused by acid rain, smog, and global warming , he said. According to Mr. Lovins, utilities as well as their customers benefit from...made in relation to these effects. The panel- ists addressed the links between global warming and the fossil fuels that now produce nearly 90 percent

  15. CO2 laser arthroscopy-through the arthroscope

    NASA Astrophysics Data System (ADS)

    Garrick, James G.

    1990-06-01

    Orthopedists have been among the last of the specialists to utilize lasers in surgery. Even today, laser usage in orthopedics is almost exclusively limited to arthroscopy procedures. Although other types of lasers have been approved for use in orthopedics, nearly all laser-assisted arthroscopic procedures have involved the carbon dioxide laser in the knee. These techniques involve skills and problems not previously encountered. In an attempt to simplify the usage and circumvent some of the problems, we describe a means of laser energy delivery through the arthroscope.

  16. Mobile Phone Usage and its Health Effects Among Adults in a Semi-Urban Area of Southern India

    PubMed Central

    Abraham, Sherin Billy; Kanimozhy, K.; Prasad, R. Vishnu; Singh, Zile; Purty, Anil J.

    2016-01-01

    Introduction Worldwide, mobile phone usage has been increased dramatically which could affect the health of the people. India has the second largest number of mobile phone users. However there are only few studies conducted in India to assess its effects on health. Aim To determine the prevalence and pattern of mobile phone usage and to assess the relationship between certain selected health problems and mobile phone usage among adults. Settings and Design Community-based cross-sectional study was conducted in Kottakuppam, a town panchayat in Villupuram district of Coastal Tamil Nadu, Southern India. It is a semi-urban area with a population of about 16,000. Majority of the residents are Muslim by religion and belong to different socio economic status. Materials and Methods The study was approved by the Institutional Ethics Committee. A total of 2121 study participants were interviewed by the pre-final medical students through house-to-house survey using a pretested structured questionnaire. The questionnaire included the variables such as socio demographic profile, mobile phone usage and pattern, selected health problems, perceived benefits and threats and blood pressure. Selected health problems included headache, earache, neck pain, tinnitus, painful fingers, restlessness, morning tiredness, tingling fingers, fatigue, eye symptoms, sleep disturbance and hypertension. Statistical Analysis Used Only 2054 were included for data analysis using SPSS 17 version. Proportions were calculated. Chi-square test was used to measure the p-value. The p-value < 0.05 was considered as statistically significant. Results The prevalence of mobile phone usage was 70%. Calling facility (94.2%) was used more than the SMS (67.6%). Health problems like headache, earache, tinnitus, painful fingers and restlessness etc., were found to be positively associated with mobile phone usage. There was negative association between hypertension and mobile phone usage. Conclusion The prevalence of mobile phone usage was high. There was significant association between selected health problems and mobile phone usage. In future, higher studies are required to confirm our findings. PMID:26894095

  17. EVALUATION OF THE EFFECTIVENESS OF TRUCK EFFICIENCY TECHNOLOGIES IN CLASS 8 TRACTOR-TRAILERS BASED ON A TRACTIVE ENERGY ANALYSIS USING MEASURED DRIVE CYCLE DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaClair, Tim J; Gao, Zhiming; Fu, Joshua S.

    2014-01-01

    Quantifying the fuel savings that can be achieved from different truck fuel efficiency technologies for a fleet s specific usage allows the fleet to select the combination of technologies that will yield the greatest operational efficiency and profitability. This paper presents an analysis of vehicle usage in a commercial vehicle fleet and an assessment of advanced efficiency technologies using an analysis of measured drive cycle data for a class 8 regional commercial shipping fleet. Drive cycle measurements during a period of a full year from six tractor-trailers in normal operations in a less-than-truckload (LTL) carrier were analyzed to develop amore » characteristic drive cycle that is highly representative of the fleet s usage. The vehicle mass was also estimated to account for the variation of loads that the fleet experienced. The drive cycle and mass data were analyzed using a tractive energy analysis to quantify the fuel efficiency and CO2 emissions benefits that can be achieved on class 8 tractor-trailers when using advanced efficiency technologies, either individually or in combination. Although differences exist among class 8 tractor-trailer fleets, this study provides valuable insight into the energy and emissions reduction potential that various technologies can bring in this important trucking application.« less

  18. Awareness and Misconceptions of High School Students about Renewable Energy Resources and Applications: Turkey Case

    ERIC Educational Resources Information Center

    Tortop, Hasan Said

    2012-01-01

    Turkey is the one of the countries in the world which has potential of renewable energy resource because of its geographical position. However, being usage of renewable energy resources and applications (RERAs) is low, it shows that awareness and consciousness of RERAs is very low too. Education must play a key role in growing out of an energy…

  19. Study of the Potential Energy Consumption Impacts of Connected and Automated Vehicles

    EIA Publications

    2017-01-01

    A new study commissioned by the U.S. Energy Information Administration, finds that the introduction of connected and automated vehicle technologies have the potential to affect vehicle energy consumption, travel, usage, vehicle design and attributes, and personal ownership rates. Rate of technology development, consumer acceptance, and regulatory support and oversight will affect the rate of market penetration of these vehicle technologies.

  20. Analysis of Non-Tactical Vehicle Utilization at Fort Carson Colorado

    DTIC Science & Technology

    2012-01-01

    regenerative braking energy recovery. The mass of the vehicles monitored in this study was not known. However, some useful information may be... regenerative energy recovery potential for specific duty cycles was also quantified through a cumulative assessment of the number and severity of deceleration...extracted on usage time, distance, vehicle speed and geographic location in order to compare vehicle driving profiles. The regenerative energy recovery

  1. Improved Planning and Programming for Energy Efficient New Army Facilities

    DTIC Science & Technology

    1988-10-01

    setpoints to occupant comfort must be considered carefully. Cutting off the HVAC system to the bedrooms during the day produced only small savings...functions of a building and minimizing the energy usage through optimization . It includes thermostats, time switches, programmable con- trollers...microprocessor systems, computers, and sensing devices that are linked with control and power components to manage energy use. This system optimizes load

  2. Waste to Energy at SUNY Cobleskill

    DTIC Science & Technology

    2011-05-10

    Overview on Army Net Zero Concepts • Gasification Intro. • SUNY Cobleskill Center for Environmental Science and Technology. • TURNW2E™ Gasification ...5 GASIFICATION A TECHNOLOGY 2-fer • Waste Reduction • Reduced Logistics for Waste Transportation • Reduced environmental and personnel impact... GASIFICATION Ash ENERGYWaste T ~ 800oC Partial Combustion O/C ~1/3 • Energy Production • Reduced Fuel Usage for transportation • Increased Energy

  3. Tungsten Deposition on Graphite using Plasma Enhanced Chemical Vapour Deposition.

    NASA Astrophysics Data System (ADS)

    Sharma, Uttam; Chauhan, Sachin S.; Sharma, Jayshree; Sanyasi, A. K.; Ghosh, J.; Choudhary, K. K.; Ghosh, S. K.

    2016-10-01

    The tokamak concept is the frontrunner for achieving controlled thermonuclear reaction on earth, an environment friendly way to solve future energy crisis. Although much progress has been made in controlling the heated fusion plasmas (temperature ∼ 150 million degrees) in tokamaks, technological issues related to plasma wall interaction topic still need focused attention. In future, reactor grade tokamak operational scenarios, the reactor wall and target plates are expected to experience a heat load of 10 MW/m2 and even more during the unfortunate events of ELM's and disruptions. Tungsten remains a suitable choice for the wall and target plates. It can withstand high temperatures, its ductile to brittle temperature is fairly low and it has low sputtering yield and low fuel retention capabilities. However, it is difficult to machine tungsten and hence usages of tungsten coated surfaces are mostly desirable. To produce tungsten coated graphite tiles for the above-mentioned purpose, a coating reactor has been designed, developed and made operational at the SVITS, Indore. Tungsten coating on graphite has been attempted and successfully carried out by using radio frequency induced plasma enhanced chemical vapour deposition (rf -PECVD) for the first time in India. Tungsten hexa-fluoride has been used as a pre-cursor gas. Energy Dispersive X-ray spectroscopy (EDS) clearly showed the presence of tungsten coating on the graphite samples. This paper presents the details of successful operation and achievement of tungsten coating in the reactor at SVITS.

  4. ZnO transparent conductive oxide for thin film silicon solar cells

    NASA Astrophysics Data System (ADS)

    Söderström, T.; Dominé, D.; Feltrin, A.; Despeisse, M.; Meillaud, F.; Bugnon, G.; Boccard, M.; Cuony, P.; Haug, F.-J.; Faÿ, S.; Nicolay, S.; Ballif, C.

    2010-03-01

    There is general agreement that the future production of electric energy has to be renewable and sustainable in the long term. Photovoltaic (PV) is booming with more than 7GW produced in 2008 and will therefore play an important role in the future electricity supply mix. Currently, crystalline silicon (c-Si) dominates the market with a share of about 90%. Reducing the cost per watt peak and energy pay back time of PV was the major concern of the last decade and remains the main challenge today. For that, thin film silicon solar cells has a strong potential because it allies the strength of c-Si (i.e. durability, abundancy, non toxicity) together with reduced material usage, lower temperature processes and monolithic interconnection. One of the technological key points is the transparent conductive oxide (TCO) used for front contact, barrier layer or intermediate reflector. In this paper, we report on the versatility of ZnO grown by low pressure chemical vapor deposition (ZnO LP-CVD) and its application in thin film silicon solar cells. In particular, we focus on the transparency, the morphology of the textured surface and its effects on the light in-coupling for micromorph tandem cells in both the substrate (n-i-p) and superstrate (p-i-n) configurations. The stabilized efficiencies achieved in Neuchâtel are 11.2% and 9.8% for p-i-n (without ARC) and n-i-p (plastic substrate), respectively.

  5. Mitochondrial Energy and Redox Signaling in Plants

    PubMed Central

    Schwarzländer, Markus

    2013-01-01

    Abstract Significance: For a plant to grow and develop, energy and appropriate building blocks are a fundamental requirement. Mitochondrial respiration is a vital source for both. The delicate redox processes that make up respiration are affected by the plant's changing environment. Therefore, mitochondrial regulation is critically important to maintain cellular homeostasis. This involves sensing signals from changes in mitochondrial physiology, transducing this information, and mounting tailored responses, by either adjusting mitochondrial and cellular functions directly or reprogramming gene expression. Recent Advances: Retrograde (RTG) signaling, by which mitochondrial signals control nuclear gene expression, has been a field of very active research in recent years. Nevertheless, no mitochondrial RTG-signaling pathway is yet understood in plants. This review summarizes recent advances toward elucidating redox processes and other bioenergetic factors as a part of RTG signaling of plant mitochondria. Critical Issues: Novel insights into mitochondrial physiology and redox-regulation provide a framework of upstream signaling. On the other end, downstream responses to modified mitochondrial function have become available, including transcriptomic data and mitochondrial phenotypes, revealing processes in the plant that are under mitochondrial control. Future Directions: Drawing parallels to chloroplast signaling and mitochondrial signaling in animal systems allows to bridge gaps in the current understanding and to deduce promising directions for future research. It is proposed that targeted usage of new technical approaches, such as quantitative in vivo imaging, will provide novel leverage to the dissection of plant mitochondrial signaling. Antioxid. Redox Signal. 18, 2122–2144. PMID:23234467

  6. Facility Energy Decision System (FEDS) Assessment Report for US Army Garrison, Japan - Honshu Installations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kora, Angela R.; Brown, Daryl R.; Dixon, Douglas R.

    2010-03-09

    This report documents an assessment was performed by a team of engineers from Pacific Northwest National Laboratory (PNNL) under contract to the Installation Management Command (IMCOM) Pacific Region Office (PARO). The effort used the Facility Energy Decision System (FEDS) model to determine how energy is consumed at five U.S. Army Garrison-Japan (USAG-J) installations in the Honshu area, identify the most cost-effective energy retrofit measures, and calculate the potential energy and cost savings.

  7. Water and Land Use Efficiency in Current and Potential Future US Corn and Brazilian Sugarcane Ethanol Systems

    NASA Astrophysics Data System (ADS)

    Warner, E. S.; Zhang, Y.; Newmark, R. L.

    2012-12-01

    Biofuels represent an opportunity for domestic fuel production from renewable energy sources with potential environmental and social benefits such as reducing greenhouse gas (GHG) and promoting rural development. However, as demand for biofuel continues to increase worldwide, concerns about land competition between food and fuel, excessive water usage and other unintended environmental consequences have grown. Through a comparative study between US corn ethanol and Brazilian sugarcane ethanol, we examine the energy, land, water and GHG performance of the two largest industrial fuel ethanol production systems in the world. Our comparisons include current and potential future systems with improved agronomic practices, crop yields, ethanol conversion processes, and utilization of agricultural residues. Our results suggest that the average water footprints of US corn ethanol and Brazilian sugarcane ethanol are fairly close (108 and 110 m3/GJ of ethanol, respectively) while the variations can range from 50 to 250 m3/GJ for sugarcane ethanol and 50 to380 m3/GJ for corn ethanol. Results emphasize the need to examine the water footprint within the context of local and regional climatic variability, water availability, competing uses (e.g. agricultural, industrial, and municipal water needs) and other ecosystem constraints. Research is under way (at the National Renewable Energy Laboratory and other institutions) to develop models to analyze water supply and demand at the watershed-scale for current and future biomass production, and to understand the tradeoffs among water supply, demand and quality due to more intensive agricultural practices and expansion of biofuels. Land use efficiency metrics, with regards to life cycle GHG emissions (without land use change) savings through gasoline displacement with ethanol, illustrate the progression of the biofuel industry and the importance of maximizing bioenergy production by utilizing both the crops and the residues. A recent average sugarcane ethanol system producing ethanol and electricity can save about 13 Mg CO2eq/ha of land compared to 12 in the early 2000s, while a recent average corn ethanol system saves about 6.2 Mg CO2eq/ha compared to near zero GHG savings in the early 2000s. The net energy balance (i.e., energy produced minus energy consumed) per ha for a recent average sugarcane ethanol system producing both ethanol and electricity is about 160 GJ/ha compared to 140 GJ/ha in early 2000s, while the recent average corn ethanol system achieves a net energy production of about 90 GJ/ha compares to only 30 GJ/ha in the early 2000s. The land use efficiency of corn and sugarcane ethanol systems, especially future systems, can vary depending on factors such as the assumed technologies, the suite of co-products produced, field practices, and technological learning. For example, projected future (2020) advanced sugarcane ethanol systems could save 22 Mg CO2eq/ha while an advanced corn ethanol system using integrated gasification of corn stover for electricity production could save 9.3Mg CO2eq/ha. Future advanced sugarcane ethanol systems could produce 210 GJ of net energy/ha while an advanced corn ethanol system using integrated gasification of corn stover for electricity production could achieve 110 GJ/ha.

  8. U. S. research safety vehicle (RSV) phase I program. Volume III. RSV characteristics and performance specifications. Final report, Jan 1974--Apr 1975

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andon, J.; Dodson, E.; Khadilkar, A.

    1975-06-01

    Current passenger car usage patterns and factors influencing usage are analyzed and projections of usage patterns in the mid-1980's are made. Current available data on six categories of vehicle accidents are analyzed and projections made of national accident patterns in the mid-80's; the effect of potential reductions in these projections as a result of safety programs and other factors related to driving safety are estimated. Based on the usage and accident projections, the characteristics of an RSV (weighing under 3,000 lbs C.W.) for operation in the mid-1980 traffic environment are described. A recommended set of specifications for the RSV aremore » developed considering the potential safety payoff accruing to an increased level of safety performance, the need for energy conservation, availability of material resources, and changes in vehicle mix. (An executive summary of this report is presented in Volume I).« less

  9. Hormone replacement therapy in the developing countries.

    PubMed

    Oei, P L; Ratnam, S S

    1998-05-01

    The sales data of oestrogen replacement products for 8 developing countries from 1993 to 1995 were analyzed. The data from Malaysia, Pakistan, Taiwan, Thailand, Indonesia, Philippines and South Korea showed the increasing use of oestrogen replacement products. The total usage however varied widely, from only US$11,153 (Philippines in 1993) to as much as US$6,306,717 (Taiwan in 1995). In Singapore, where oestrogen replacement is an accepted and established form of therapy for the postmenopausal woman, there has been an increase in the usage of the nonoestrogen replacement products. There are multiple reasons for the increasing sales of hormone replacement products in the developing countries and these are explored in this article. In some of the developing countries, for example China and India, hormone replacement therapy has just been introduced. However, in those developing countries in which hormone replacement therapy is already available, sales figures show increasing usage. The future augurs well for hormone replacement therapy.

  10. An intelligent switch with back-propagation neural network based hybrid power system

    NASA Astrophysics Data System (ADS)

    Perdana, R. H. Y.; Fibriana, F.

    2018-03-01

    The consumption of conventional energy such as fossil fuels plays the critical role in the global warming issues. The carbon dioxide, methane, nitrous oxide, etc. could lead the greenhouse effects and change the climate pattern. In fact, 77% of the electrical energy is generated from fossil fuels combustion. Therefore, it is necessary to use the renewable energy sources for reducing the conventional energy consumption regarding electricity generation. This paper presents an intelligent switch to combine both energy resources, i.e., the solar panels as the renewable energy with the conventional energy from the State Electricity Enterprise (PLN). The artificial intelligence technology with the back-propagation neural network was designed to control the flow of energy that is distributed dynamically based on renewable energy generation. By the continuous monitoring on each load and source, the dynamic pattern of the intelligent switch was better than the conventional switching method. The first experimental results for 60 W solar panels showed the standard deviation of the trial at 0.7 and standard deviation of the experiment at 0.28. The second operation for a 900 W of solar panel obtained the standard deviation of the trial at 0.05 and 0.18 for the standard deviation of the experiment. Moreover, the accuracy reached 83% using this method. By the combination of the back-propagation neural network with the observation of energy usage of the load using wireless sensor network, each load can be evenly distributed and will impact on the reduction of conventional energy usage.

  11. Electronic Reserve--A Staff Development Opportunity.

    ERIC Educational Resources Information Center

    Smith, Robyn

    1997-01-01

    The Queensland University of Technology (QUT) Library's experience in developing an electronic reserve service is offered as a case study. Discussion includes the limited access service, technical components, academic community support, lending staff training, usage, copyright, and future scenarios and solutions. (AEF)

  12. Energy Information Abstracts Annual 1988. Volume 13.

    ERIC Educational Resources Information Center

    Yuster, Leigh C., Ed.; And Others

    This publication is a compilation of information and resource material concerning energy for the year 1988. The first section details the coverage and usage of this volume. Section 2 contains a review of events in 1988, a compilation of statistical information, an article concerning coal flyash utilization, and a listing of conferences and events…

  13. 77 FR 33106 - Energy Conservation Program: Test Procedure for Microwave Ovens

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-05

    ... due to the different masses and shapes of the potatoes. DOE observed, similar to the tests for... consumer use, (2) the repeatability of energy use measurements using different food loads, and (3) consumer... ``normal usage'' and the water temperature rise of 50 degrees Celsius ([deg]C) achieves eating temperature...

  14. Potential for Knowledge in Action? An Analysis of Korean Green Energy Related K3-12 Curriculum and Texts

    ERIC Educational Resources Information Center

    Gress, Douglas R.; Shin, Jungyeop

    2017-01-01

    While understanding green energy development and what drives it are important, there is increasing consensus that sustainability transitions concerning usage need to be viewed in terms of the place specific contexts, including education, that critically mold them. In order to "support" sustainability transitions, information and…

  15. Kansas Department of Transportation enterprise energy and carbon accounting and utility usage research phase 2B : improving energy and fuel efficiencies in KDOT operations.

    DOT National Transportation Integrated Search

    2014-01-01

    Reducing the environmental impact of facilities and operations has become an important function for many organizations. In many : cases, such as utility and fuel use, reducing these impacts can also be coupled to financial savings. The Kansas Departm...

  16. 76 FR 33768 - Proposed Information Collection Activity; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-09

    ... inability to pay energy bills; (3) increase the efficiency of energy usage by low-income families, helping... hours Total burden respondents respondent per response hours REACH Model Plan 51 1 72 3,672 Estimated Total Annual Burden Hours: 3,672. In compliance with the requirements of Section 3506(c)(2)(A) of the...

  17. Energy Research

    ERIC Educational Resources Information Center

    Group of Eight (NJ1), 2010

    2010-01-01

    The Group of Eight (Go8) is a coalition of leading Australian universities, intensive in research and comprehensive in general and professional education. The Go8 member universities recognise that the issue of energy usage and transformation is one of vital importance not only to Australia but to the world as a whole. The universities aim to make…

  18. "Simplify, Simplify."

    ERIC Educational Resources Information Center

    Stump, William P.

    1983-01-01

    An integrated electronic system combines individual monitoring and control functions into one economical unit that earns a rapid payback by automatically managing and controlling energy usage, building systems, and security and maintenance tasks. (MLF)

  19. Quantifying a cellular automata simulation of electric vehicles

    NASA Astrophysics Data System (ADS)

    Hill, Graeme; Bell, Margaret; Blythe, Phil

    2014-12-01

    Within this work the Nagel-Schreckenberg (NS) cellular automata is used to simulate a basic cyclic road network. Results from SwitchEV, a real world Electric Vehicle trial which has collected more than two years of detailed electric vehicle data, are used to quantify the results of the NS automata, demonstrating similar power consumption behavior to that observed in the experimental results. In particular the efficiency of the electric vehicles reduces as the vehicle density increases, due in part to the reduced efficiency of EVs at low speeds, but also due to the energy consumption inherent in changing speeds. Further work shows the results from introducing spatially restricted speed restriction. In general it can be seen that induced congestion from spatially transient events propagates back through the road network and alters the energy and efficiency profile of the simulated vehicles, both before and after the speed restriction. Vehicles upstream from the restriction show a reduced energy usage and an increased efficiency, and vehicles downstream show an initial large increase in energy usage as they accelerate away from the speed restriction.

  20. Energy and environmental evaluation of combined cooling heating and power system

    NASA Astrophysics Data System (ADS)

    Bugaj, Andrzej

    2017-11-01

    The paper addresses issues involving problems of implementing combined cooling, heating and power (CCHP) system to industrial facility with well-defined demand profiles of cooling, heating and electricity. The application of CCHP system in this particular industrial facility is being evaluated by comparison with the reference system that consists of three conventional methods of energy supply: (a) electricity from external grid, (b) heat from gas-fired boilers and (c) cooling from vapour compression chillers run by electricity from the grid. The CCHP system scenario is based on the combined heat and power (CHP) plant with gas turbine-compressor arrangement and water/lithium bromide absorption chiller of a single-effect type. Those two scenarios are analysed in terms of annual primary energy usage as well as emissions of CO2. The results of the analysis show an extent of primary energy savings of the CCHP system in comparison with the reference system. Furthermore, the environmental impact of the CCHP usage, in the form of greenhouse gases emission reductions, compares quite favourably with the reference conventional option.

  1. Energy and Water Resources in a Changing Climate: Towards Adaptation Options in Colorado and the Western US

    NASA Astrophysics Data System (ADS)

    Averyt, K. B.; Pulwarty, R. S.; Udall, B.

    2008-12-01

    Greater energy demands are driving development of domestic energy resources and advancement of fossil- fuel independent energy technologies. However, water is necessary for most energy production. Greenhouse gas emissions are increasing global temperatures, impacting the quality and quantity of water resources. Warming temperatures are also altering the timing and nature of energy demand. As water is necessary for energy production, and energy is needed for the water supply, climate change will further exacerbate the interplay between these two sectors and create additional challenges in adaptive planning. The geology of Colorado is such that it has both carbon (oil shale, coal, coal-bed methane) and non-fossil-fuel (geothermal, winds) energy resources. There is an increasing need to develop these resources, but the impact on the region's water supply is often neglected, as is the energy required to support the water infrastructure. The Western US is prone to drought, and Colorado has experienced periodic drought throughout the observational record. Temperatures in Colorado have risen by about 1°C in the past 30 years, and are projected to increase an additional 2°C by 2050. Precipitation is highly variable and will continue to be in the future, but more severe and persistent droughts are anticipated. To investigate the impact of climate change on the energy-water nexus, in order to evaluate the information necessary to undertake more comprehensive regional impact and adaptation studies, the energy intensity of Colorado's water systems, and water usage by energy sector, are presented. The interdependence of water and energy necessitates that scientists work with decision-makers and consider both sectors when developing climate adaptation strategies. This work represents initial efforts towards a more comprehensive, collaborative analysis of climate change impacts on water and energy supply in support of adaptive management approaches in the Western US.

  2. Land, energy and water: the constraints governing ideal U.S. population size.

    PubMed

    Pimental, D; Pimental, M

    1990-01-01

    This document examines the constraints that are placed on US prosperity with increasing land, energy, and water usage. The report compares China and America and suggests that, if the US is not careful, our situation is headed toward the lack of prosperity found in China. US population is 246.1 million and we produce 47 times more goods and services (per capita) than the 1.1 billion people of China. This may be due to overpopulation contributing to diminished resources, food, natural forests, and increased erosion of the soil. Most of the resources we are currently using cannot be renewed after the next 100 years. Land area is diminishing, soil is eroding faster than replacement rates, 3 kcal of fossil fuel is expended to produce 1 kcal of food, natural gas is being depleted, oil supplies are limited to a 16 year supply, and groundwater is used faster than it can be replaced. Pollution (air, water, and soil) threatens these natural resources even more. The US must concentrate on the conversion from fossil fuel energy to solar energy, although much land is needed for solar energy systems. We may be able to increase our solar energy output 3-10 without affecting agriculture, and future fusion techniques may alleviate some of the fossil fuel pressures. Livestock manures could be used as fertilizers more often in order to decrease the waste of oil when synthetic fertilizers and pesticides are used. The ideal US population should be maintained at 40-100 million if we want to retain our current standard of living.

  3. High energy collisions on tandem time-of-flight mass spectrometers†

    PubMed Central

    Cotter, Robert J.

    2013-01-01

    Long before the introduction of matrix-assisted laser desorption (MALDI), electrospray ionization (ESI), Orbitraps and any of the other tools that are now used ubiquitously for proteomics and metabolomics, the highest performance mass spectrometers were sector instruments, providing high resolution mass measurements by combining an electrostatic energy analyzer (E) with a high field magnet (B). In its heyday, the four sector mass spectrometer (or EBEB) was the crown jewel, providing the highest performance tandem mass spectrometry using single, high energy collisions to induce fragmentation. During a time in which quadrupole and tandem triple quadrupole instruments were also enjoying increased usage and popularity, there were nonetheless some clear advantages for sectors over their low collision energy counterparts. Time-of-flight mass spectrometers are high voltage, high vacuum instruments that have much in common with sectors and have inspired the development of tandem instruments exploiting single high energy collisions. In this retrospective we recount our own journey to produce high performance time-of-flights and tandems, describing the basic theory, problems and the advantages for such instruments. An experiment testing impulse collision theory (ICT) underscores the similarities with sector mass spectrometers where this concept was first developed. Applications provide examples of more extensive fragmentation, side chain cleavages and charge-remote fragmentation, also characteristic of high energy sector mass spectrometers. Moreover, the so-called curved-field reflectron has enabled the design of instruments that are simpler, collect and focus all of the ions, and may provide the future technology for the clinic, for tissue imaging and the characterization of microorganisms. PMID:23519928

  4. Preliminary Study of Perception and Consumer Behaviour Towards Energy Saving for Household Appliances: A Case of Makassar

    NASA Astrophysics Data System (ADS)

    Syam Akil, Yusri; Mangngenre, Saiful; Mawar, Sri; Amar, Kifayah

    2018-03-01

    Electricity load has tendency to increase over the time. Therefore, efforts to maintain a balance between electricity supply and demand such as increasing energy saving related to the use of home electricity appliances are urgently needed. In general, one of the household appliances which consumes relatively high electricity energy is refrigerator. The purpose of this study is to analyze residential consumers perceptions and their behaviours about electricity energy saving in relation to the usage of household appliances in Makassar, Indonesia particularly for refrigerator. Moreover, typical relationship between perceptions and consumers behaviours is also analyzed by composed two regression models, namely model for usage behaviour (UREFm model) and model for habitual behaviour (HREFm model) by using general perception, specific perception, and external factors as explanation variables. To collect data, a questionnaire was designed for survey which involved 40 respondents as a preliminary study and then statistical tests including regression analysis were applied to analyze usable data. The target of respondent was an owner of a house in Makassar with installed power capacity at least 900 VA. Reliability test shown that all items in the developed questionnaire can be used for main survey as obtained Cronbach’s alpha values were above 0.6. Evaluation for consumers perceptions on energy saving in relation to demographic aspect using mean and Standard Deviation values indicated some significant differences. Other results regarding regression analysis shown that both composed models were well validated and had quite good fitness degree with adjusted R-squared values around 49.31% for UREFm model and 80.90% for HREFm model. Among considered variables, specific perception, and external factors were found have significant influence to the usage and habitual behaviours of consumers as confirmed by their p-values in each model below 0.05. Findings of this research can be used as a reference in developing programs for residential consumers such as electricity energy conservation program.

  5. Biomedical waste management in Ayurveda hospitals - current practices & future prospectives.

    PubMed

    Rajan, Renju; Robin, Delvin T; M, Vandanarani

    2018-03-16

    Biomedical waste management is an integral part of traditional and contemporary system of health care. The paper focuses on the identification and classification of biomedical wastes in Ayurvedic hospitals, current practices of its management in Ayurveda hospitals and its future prospective. Databases like PubMed (1975-2017 Feb), Scopus (1960-2017), AYUSH Portal, DOAJ, DHARA and Google scholar were searched. We used the medical subject headings 'biomedical waste' and 'health care waste' for identification and classification. The terms 'biomedical waste management', 'health care waste management' alone and combined with 'Ayurveda' or 'Ayurvedic' for current practices and recent advances in the treatment of these wastes were used. We made a humble attempt to categorize the biomedical wastes from Ayurvedic hospitals as the available data about its grouping is very scarce. Proper biomedical waste management is the mainstay of hospital cleanliness, hospital hygiene and maintenance activities. Current disposal techniques adopted for Ayurveda biomedical wastes are - sewage/drains, incineration and land fill. But these methods are having some merits as well as demerits. Our review has identified a number of interesting areas for future research such as the logical application of bioremediation techniques in biomedical waste management and the usage of effective micro-organisms and solar energy in waste disposal. Copyright © 2017 Transdisciplinary University, Bangalore and World Ayurveda Foundation. Published by Elsevier B.V. All rights reserved.

  6. Investigating power capping toward energy-efficient scientific applications: Investigating Power Capping toward Energy-Efficient Scientific Applications

    DOE PAGES

    Haidar, Azzam; Jagode, Heike; Vaccaro, Phil; ...

    2018-03-22

    The emergence of power efficiency as a primary constraint in processor and system design poses new challenges concerning power and energy awareness for numerical libraries and scientific applications. Power consumption also plays a major role in the design of data centers, which may house petascale or exascale-level computing systems. At these extreme scales, understanding and improving the energy efficiency of numerical libraries and their related applications becomes a crucial part of the successful implementation and operation of the computing system. In this paper, we study and investigate the practice of controlling a compute system's power usage, and we explore howmore » different power caps affect the performance of numerical algorithms with different computational intensities. Further, we determine the impact, in terms of performance and energy usage, that these caps have on a system running scientific applications. This analysis will enable us to characterize the types of algorithms that benefit most from these power management schemes. Our experiments are performed using a set of representative kernels and several popular scientific benchmarks. Lastly, we quantify a number of power and performance measurements and draw observations and conclusions that can be viewed as a roadmap to achieving energy efficiency in the design and execution of scientific algorithms.« less

  7. Investigating power capping toward energy-efficient scientific applications: Investigating Power Capping toward Energy-Efficient Scientific Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haidar, Azzam; Jagode, Heike; Vaccaro, Phil

    The emergence of power efficiency as a primary constraint in processor and system design poses new challenges concerning power and energy awareness for numerical libraries and scientific applications. Power consumption also plays a major role in the design of data centers, which may house petascale or exascale-level computing systems. At these extreme scales, understanding and improving the energy efficiency of numerical libraries and their related applications becomes a crucial part of the successful implementation and operation of the computing system. In this paper, we study and investigate the practice of controlling a compute system's power usage, and we explore howmore » different power caps affect the performance of numerical algorithms with different computational intensities. Further, we determine the impact, in terms of performance and energy usage, that these caps have on a system running scientific applications. This analysis will enable us to characterize the types of algorithms that benefit most from these power management schemes. Our experiments are performed using a set of representative kernels and several popular scientific benchmarks. Lastly, we quantify a number of power and performance measurements and draw observations and conclusions that can be viewed as a roadmap to achieving energy efficiency in the design and execution of scientific algorithms.« less

  8. Computer usage and national energy consumption: Results from a field-metering study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desroches, Louis-Benoit; Fuchs, Heidi; Greenblatt, Jeffery

    The electricity consumption of miscellaneous electronic loads (MELs) in the home has grown in recent years, and is expected to continue rising. Consumer electronics, in particular, are characterized by swift technological innovation, with varying impacts on energy use. Desktop and laptop computers make up a significant share of MELs electricity consumption, but their national energy use is difficult to estimate, given uncertainties around shifting user behavior. This report analyzes usage data from 64 computers (45 desktop, 11 laptop, and 8 unknown) collected in 2012 as part of a larger field monitoring effort of 880 households in the San Francisco Baymore » Area, and compares our results to recent values from the literature. We find that desktop computers are used for an average of 7.3 hours per day (median = 4.2 h/d), while laptops are used for a mean 4.8 hours per day (median = 2.1 h/d). The results for laptops are likely underestimated since they can be charged in other, unmetered outlets. Average unit annual energy consumption (AEC) for desktops is estimated to be 194 kWh/yr (median = 125 kWh/yr), and for laptops 75 kWh/yr (median = 31 kWh/yr). We estimate national annual energy consumption for desktop computers to be 20 TWh. National annual energy use for laptops is estimated to be 11 TWh, markedly higher than previous estimates, likely reflective of laptops drawing more power in On mode in addition to greater market penetration. This result for laptops, however, carries relatively higher uncertainty compared to desktops. Different study methodologies and definitions, changing usage patterns, and uncertainty about how consumers use computers must be considered when interpreting our results with respect to existing analyses. Finally, as energy consumption in On mode is predominant, we outline several energy savings opportunities: improved power management (defaulting to low-power modes after periods of inactivity as well as power scaling), matching the rated power of power supplies to computing needs, and improving the efficiency of individual components.« less

  9. The relationship between areca nut usage and heart rate in lactating Bangladeshis.

    PubMed

    Vinoy, S; Mascie-Taylor, C G N; Rosetta, L

    2002-01-01

    The betel-nut quid, a piece of areca nut chewed alone or mixed with tobacco and slaked lime wrapped in betel vine leaf, is widely used in Asian populations as a stimulant (due to the cholinergic agent, arecoline) or as a relaxant (due to arecaidine and guvacine). This study, which formed part of a larger project assessing the effect of energy expenditure on the duration of post-partum amenorrhoea, provided the opportunity to assess the role of chronic areca nut usage on heart rate and oxygen consumption during resting periods and during graded stepping tests. The mothers (n = 47), all of whom were lactating, were aged between 19 and 39, of low nutritional status and anaemic and they all chewed betel quid daily. Moderate users of betel quid (defined as more than 3 times a day) were found, on average, to have a significantly lower heart rate at rest and during exercise than low betel quid users (less than 3 times a day) but there was no modification in oxygen consumption. Chronic betel quid use does not seem to affect the assessment of 24h energy expenditure provided that subjects are denied access to betel nut usage before and during calibration.

  10. Urine separating sewage systems--environmental effects and resource usage.

    PubMed

    Jönsson, H

    2002-01-01

    Effects of urine separation on the environment and resource usage were estimated using the simulation package ORWARE. Measurements on the urine-separating system in the housing district Palsternackan in Stockholm and on the fertilising effect of the urine were used in the simulations. The tenants were at home 65% of the time and separated 65% of the urine. Under these conditions, urine separation decreased the waterborne emissions of nitrogen and phosphorus by 55% and 33% respectively. Compared to the conventional system, urine separation increased the flow from the wastewater system to agriculture of plant-available nitrogen by a factor of 28, phosphorus by a factor of 1.35 and potassium by a factor of 23. Urine is a well-balanced complete fertiliser with very low concentrations of heavy metals. Urine separation conserved energy as long as the urine was transported distances shorter than 221 km to the field with a truck and trailer. If all the urine had been separated and transported only 1 km, the energy saving would have been 36%. In this and in previous studies, urine separation proved to be an improvement over the conventional system as regards environmental effects and resource usage.

  11. The Rising Tide of Estuary English: The Changing Nature of Oral British Business Communication.

    ERIC Educational Resources Information Center

    Scott, James Calvert

    1995-01-01

    Defines "Estuary English," a fast-growing accent of British English that is spreading across England. Discusses its usage in the British business community; its acceptability and future; and its implications for business communicators, teachers, and consultants. (SR)

  12. Trends in mechanical fasteners. [considering optimum metric fastener system

    NASA Technical Reports Server (NTRS)

    Levy, J. B.

    1972-01-01

    Some of the specialty fasteners which are enjoying increasing usage are: thread rolling screws, self drilling and tapping screws, locking screws, tamperproof fasteners, and flanged bolts and nuts. The development of an optimum metric fastener system is recommended for future fastener manufacturing.

  13. pmx Webserver: A User Friendly Interface for Alchemistry.

    PubMed

    Gapsys, Vytautas; de Groot, Bert L

    2017-02-27

    With the increase of available computational power and improvements in simulation algorithms, alchemical molecular dynamics based free energy calculations have developed into routine usage. To further facilitate the usability of alchemical methods for amino acid mutations, we have developed a web based infrastructure for obtaining hybrid protein structures and topologies. The presented webserver allows amino acid mutation selection in five contemporary molecular mechanics force fields. In addition, a complete mutation scan with a user defined amino acid is supported. The output generated by the webserver is directly compatible with the Gromacs molecular dynamics engine and can be used with any of the alchemical free energy calculation setup. Furthermore, we present a database of input files and precalculated free energy differences for tripeptides approximating a disordered state of a protein, of particular use for protein stability studies. Finally, the usage of the webserver and its output is exemplified by performing an alanine scan and investigating thermodynamic stability of the Trp cage mini protein. The webserver is accessible at http://pmx.mpibpc.mpg.de.

  14. Modeling of a data exchange process in the Automatic Process Control System on the base of the universal SCADA-system

    NASA Astrophysics Data System (ADS)

    Topolskiy, D.; Topolskiy, N.; Solomin, E.; Topolskaya, I.

    2016-04-01

    In the present paper the authors discuss some ways of solving energy saving problems in mechanical engineering. In authors' opinion one of the ways of solving this problem is integrated modernization of power engineering objects of mechanical engineering companies, which should be intended for the energy supply control efficiency increase and electric energy commercial accounting improvement. The author have proposed the usage of digital current and voltage transformers for these purposes. To check the compliance of this equipment with the IEC 61850 International Standard, we have built a mathematic model of the data exchange process between measuring transformers and a universal SCADA-system. The results of modeling show that the discussed equipment corresponds to the mentioned Standard requirements and the usage of the universal SCADA-system for these purposes is preferable and economically reasonable. In modeling the authors have used the following software: MasterScada, Master OPC_DI_61850, OPNET.

  15. Pawnee Nation Energy Option Analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matlock, M.; Kersey, K.; Riding In, C.

    2009-07-31

    In 2003, the Pawnee Nation leadership identified the need for the tribe to comprehensively address its energy issues. During a strategic energy planning workshop a general framework was laid out and the Pawnee Nation Energy Task Force was created to work toward further development of the tribe’s energy vision. The overarching goals of the “first steps” project were to identify the most appropriate focus for its strategic energy initiatives going forward, and to provide information necessary to take the next steps in pursuit of the “best fit” energy options. Based on the request of Pawnee Nation’s Energy Task Force themore » research team, consisting Tribal personnel and Summit Blue Consulting, focused on a review of renewable energy resource development potential, funding sources and utility organizational along with energy savings options. Elements of the energy demand forecasting and characterization and demand side options review remained in the scope of work, but were only addressed at a high level. Description of Activities Performed Renewable Energy Resource Development Potential The research team reviewed existing data pertaining to the availability of biomass (focusing on woody biomass, agricultural biomass/bio-energy crops, and methane capture), solar, wind and hydropower resources on the Pawnee-owned lands. Using these data, combined with assumptions about costs and revenue streams, the research team performed preliminary feasibility assessments for each resource category. The research team also reviewed available funding resources and made recommendations to Pawnee Nation highlighting those resources with the greatest potential for financially-viable development, both in the near-term and over a longer time horizon. Energy Efficiency Options While this was not a major focus of the project, the research team highlighted common strategies for reducing energy use in buildings. The team also discussed the benefits of adopting a building energy code and introduced two model energy codes Pawnee Nation should consider for adoption. Summary of Current and Expected Future Electricity Usage The research team provided a summary overview of electricity usage patterns in current buildings and included discussion of known plans for new construction. Utility Options Review Pawnee Nation electric utility options were analyzed through a four-phase process, which included: 1) summarizing the relevant utility background information; 2) gathering relevant utility assessment data; 3) developing a set of realistic Pawnee electric utility service options, and 4) analyzing the various Pawnee electric utility service options for the Pawnee Energy Team’s consideration. III. Findings and Recommendations Due to a lack of financial incentives for renewable energy, particularly at the state level, combined mediocre renewable energy resources, renewable energy development opportunities are limited for Pawnee Nation. However, near-term potential exists for development of solar hot water at the gym, and an exterior wood-fired boiler system at the tribe’s main administrative building. Pawnee Nation should also explore options for developing LFGTE resources in collaboration with the City of Pawnee. Significant potential may also exist for development of bio-energy resources within the next decade. Pawnee Nation representatives should closely monitor market developments in the bio-energy industry, establish contacts with research institutions with which the tribe could potentially partner in grant-funded research initiatives. In addition, a substantial effort by the Kaw and Cherokee tribes is underway to pursue wind development at the Chilocco School Site in northern Oklahoma where Pawnee is a joint landowner. Pawnee Nation representatives should become actively involved in these development discussions and should explore the potential for joint investment in wind development at the Chilocco site.« less

  16. Geothermal Academy: Focus Center for Data Collection, Analysis, and Dissemination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakagawa, Masami, Ph.D.; Fujiono, Hendro, Ph.D.; McCartney, John S., Ph.D.

    2011-10-31

    Geothermal Academy: A Pathway for Confirmation of Ground-Source Heat Pumps in the United States. In 2008, Oak Ridge National Laboratory issued a report on geothermal heats pumps (GHPs) focused on the market status, barriers to adoption, and actions to overcome these barriers (Hughes 2008). Of the barriers raised in this report, of the most pressing is the lack of performance and energy usage data for GHPs. Further, an associated barrier is a lack of a fair comparison of the energy usage of conventional heating and cooling systems for the same building. Because of these barriers, we are not able tomore » say how much energy is used by well-designed GHP systems on a long-term basis, nor are we able to say how better their energy usage is compared to conventional systems. The need for a fair comparison with conventional systems is particularly relevant as modern versions of conventional air conditioners, gas furnaces, and boilers have also incorporated energy saving technologies. As a first step to address this barrier, the Geothermal Academy has developed a framework for data collection. This framework has already been applied to several geothermal installations in Colorado (Nakagawa etal. 2010). The framework classifies data into different categories based on the relevance of the dat to understanding the energy consumption of a GHP system. The categories are: direct energy consumption data, heat exchange performance data, and GHP design parameter data. The main recommendation of this project is to include a minimal data collection system on each heat pump installed in the U.S., capable of measuring the electrical energy consumed, the entering/exiting fluid temperatures, and circulation rates. This is a viable and cost effective solution which will provide performance data, as data collection systems are only a fraction of the cost of a GHP unit and modern GHP units already incorporate sensors to monitor energy usage and the entering and exiting fluid temperatures. Specifically, these sensors are used to control the GHP unit to provide the heat exchange required to provide a desired temperature within a building. Accordingly, it is straightforward for this operational data to be collected to start building a database of GHP performance such that can provide statistically relevant comparison with other heating and cooling systems. In addition to collecting the data, such a system could be easily implemented with a wireless transmitter so that data could be sent to a home PC where it could be transmitted to a central database. Display of the data on a user's PC would provide feedback on the performance of their system which could perhaps refine their use of the system to reach their personal energy goals. Although a system such as that described above has yet to be incorporated directly into commercial GHP systems, it is straightforward and inexpensive to outfit a GHP with a data acquisition system and supplemental sensors. A secondary recommendation is to consider funding a pilot effort that will collect the energy and performance time series data from a representative sample of installations. A preliminary pilot effort was undertaken by the Geothermal Academy at a middle school in Ft. Collins, Colorado, which demonstrated the feasibility and ease of such an effort. A full-scale pilot effort would be most suited to evaluate the performance of GHP installations in different climate settings, preferably focusing on residential, commercial, and public buildings. If a full-scale pilot effort were to be undertaken, it is recommended to also identify large buildings which may incorporate a back-up conventional heating and cooling system in order to provide statistically relevant comparison data to assess the improvement in GHP energy usage over other heating and cooling technologies. Such a data collection system would provide several benefits to the different sectors of society (consumers, installers, policy makers, researchers, utility companies, government regulators) which are concerned with GHP technology and implementation.« less

  17. Evaluation of Miscellaneous and Electronic Device Energy Use in Hospitals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, Douglas R.; Lanzisera, Steven M.; Lai, Judy

    2012-09-01

    Miscellaneous and electronic loads (MELs) consume about one-thirdof the primary energy used in US buildings, and their energy use is increasing faster than other end-uses. In healthcare facilities, 30percent of the annual electricity was used by MELs in 2008. This paper presents methods and challenges for estimating medical MELs energy consumption along with estimates of energy use in a hospital by combining device-level metered data with inventories and usage information. An important finding is that common, small devices consume large amounts of energy in aggregate and should not be ignored when trying to address hospital energy use.

  18. Codon usage and expression level of human mitochondrial 13 protein coding genes across six continents.

    PubMed

    Chakraborty, Supriyo; Uddin, Arif; Mazumder, Tarikul Huda; Choudhury, Monisha Nath; Malakar, Arup Kumar; Paul, Prosenjit; Halder, Binata; Deka, Himangshu; Mazumder, Gulshana Akthar; Barbhuiya, Riazul Ahmed; Barbhuiya, Masuk Ahmed; Devi, Warepam Jesmi

    2017-12-02

    The study of codon usage coupled with phylogenetic analysis is an important tool to understand the genetic and evolutionary relationship of a gene. The 13 protein coding genes of human mitochondria are involved in electron transport chain for the generation of energy currency (ATP). However, no work has yet been reported on the codon usage of the mitochondrial protein coding genes across six continents. To understand the patterns of codon usage in mitochondrial genes across six different continents, we used bioinformatic analyses to analyze the protein coding genes. The codon usage bias was low as revealed from high ENC value. Correlation between codon usage and GC3 suggested that all the codons ending with G/C were positively correlated with GC3 but vice versa for A/T ending codons with the exception of ND4L and ND5 genes. Neutrality plot revealed that for the genes ATP6, COI, COIII, CYB, ND4 and ND4L, natural selection might have played a major role while mutation pressure might have played a dominant role in the codon usage bias of ATP8, COII, ND1, ND2, ND3, ND5 and ND6 genes. Phylogenetic analysis indicated that evolutionary relationships in each of 13 protein coding genes of human mitochondria were different across six continents and further suggested that geographical distance was an important factor for the origin and evolution of 13 protein coding genes of human mitochondria. Copyright © 2017 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  19. Factors associated with mobile health information seeking among Singaporean women.

    PubMed

    Chang, Leanne; Chiuan Yen, Ching; Xue, Lishan; Choo Tai, Bee; Chuan Chan, Hock; Been-Lirn Duh, Henry; Choolani, Mahesh

    2017-01-01

    This study examined effects of age and social psychological factors on women's willingness to be mobile health information seekers. A national survey of 1,878 Singaporean women was conducted to obtain information on women's mobile phone usage, experiences of health information seeking, and appraisals of using mobile phones to seek health information. Results showed that young, middle-aged, and older women exhibited distinct mobile phone usage behaviors, health information-seeking patterns, and assessments of mobile health information seeking. Factors that accounted for their mobile information-seeking intention also varied. Data reported in this study provide insights into mobile health interventions in the future.

  20. Pressure redistribution devices: what works, at what cost and what's next?

    PubMed

    Clancy, Michael J

    2013-08-01

    This article discusses the development and usage of pressure redistribution devices (PRDs) and their impact on the prevention and treatment of pressure ulcers within the NHS. The article outlines the history of the development of these devices and discusses the reasons for a lack of substantial evidence in support of the use of these devices, their impact on the NHS on cost and perceived outcome. The article describes the typical usage profile in a 500 bed NHS hospital and concludes with a view as to how that may change in the future. Copyright © 2013 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.

  1. ATC contingency operations in the en-route flight regime

    NASA Technical Reports Server (NTRS)

    Lyman, E. G.

    1981-01-01

    Air traffic control (ATC) operations were examined to learn what factors of controller performance should be given consideration in the design and development of future automation systems enhancing ATC. Contingencies were of two types: those constraining airspace usage or traffic flow (i.e., weather); and those related to system and equipment usage (i.e., radar/radio status). Examination of controller response to contingencies and workload pressures showed differing effects on controller allocations of effort among the three primary function of planning, monitoring, and informaton transfer. Automation advancements oriented towards aiding the controller in performing monitoring tasks may offer the most substantial safety benefit.

  2. Impact of remote sensing upon the planning, management and development of water resources. Summary of computers and computer growth trends for hydrologic modeling and the input of ERTS image data processing load

    NASA Technical Reports Server (NTRS)

    Castruccio, P. A.; Loats, H. L., Jr.

    1975-01-01

    An analysis of current computer usage by major water resources users was made to determine the trends of usage and costs for the principal hydrologic users/models. The laws and empirical relationships governing the growth of the data processing loads were described and applied to project the future data loads. Data loads for ERTS CCT image processing were computed and projected through the 1985 era. The analysis showns significant impact due to the utilization and processing of ERTS CCT's data.

  3. Proceedings of the ERDC-CERL Net Zero Energy (NZE) Installation and Deployed Bases Workshop Held in Colorado Springs, CO. on 3-4 Feb 2009

    DTIC Science & Technology

    2009-06-01

    energy demand is projected to outgrow afford- able supplies even after accounting for the impact of anticipated energy efficiency and management ... management . The purpose of that change would be to facilitate development of a suite of ultra-low- energy solutions that would approach NZE usage by...enabling real-time op- timization of power supply, demand, and storage management for Army facilities, emplacements, or fixed installations of any

  4. The energy cane alternative

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexander, A.G.

    This book reviews the conceptual and theoretical background of Saccharum botany, which underlies the growing of cane as a total growth commodity. Management details are provided for energy cane planting, cultivation, harvest, and postharvest operations. Chapters on energy cane utilization stress new developments in lignocellulose conversion plus alternative options for fermentable solids usage. Chapters are also included for the management of alternative grasses to supplement energy cane, and the breeding of new hybrid canes with high biomass attributes at the intergeneric and interspecific levels.

  5. Books on Atomic Energy for Adults and Children, Understanding the Atom Series.

    ERIC Educational Resources Information Center

    Atomic Energy Commission, Oak Ridge, TN. Div. of Technical Information.

    This booklet in the "Understanding the Atom" series includes annotated bibliographies for children (grade level indicated) and adults. Over 100 basic books on atomic energy and closely related subjects are alphabetized by title and an author index. A list of publisher addresses are included. A brief introduction to library usage is given. The…

  6. Outlook for Biomass Ethanol Production and Demand

    EIA Publications

    2000-01-01

    This paper presents a midterm forecast for biomass ethanol production under three different technology cases for the period 2000 to 2020, based on projections developed from the Energy Information Administration's National Energy Modeling System. An overview of cellulose conversion technology and various feedstock options and a brief history of ethanol usage in the United States are also presented.

  7. Kansas Department of Transportation enterprise energy and carbon accounting and utility usage research phase 2B : improving energy and fuel efficiencies in KDOT operations, [technical summary].

    DOT National Transportation Integrated Search

    2014-01-01

    Reducing the environmental impact of facilities and operations has become an important function for many organizations. In many cases, such as utility and fuel use, reducing these impacts can also be coupled to financial savings. The Kansas Departmen...

  8. Energy survey study and report of hospitals in Chicago: Saint Anthony Hospital: Appendix A: Part 2, Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-08-01

    This study is part of a three-phased demonstration program to reduce energy consumption in hospitals through practical life-cycle/cost-effective modifications and alterations. Funds for the demonstration program are being provided by the American Hospital Association (AHA), the Department of Energy (DOE), and the Department of Health and Human Services (DHHS). A thorough study and evaluation of all building systems is made to identify the most cost effective approaches to energy conservation. The primary objective of the study is to investigate and analyze energy usage of the facility and to identify all life cycle, cost-effective changes required to effect a reduction inmore » energy consumption. On November 2, 1987, Consulting Consortium, Inc., was instructed to proceed with this analysis. Initial meetings were arranged with the hospital administrators to convey the purpose of the study and to request utility billing data, small scale floor plans of the facility, and to arrange for engineering walk-through surveys. The survey at St. Anthony was initiated on December 8, 1987. This report summarizes the findings together with data and information gathered during the course of that visit and other subsequent visits. This report describes the architectural, mechanical and electrical systems of the Saint Anthony Hospital. In addition, an analysis of the base year energy usage as derived from utility bills and statement of the current energy consumption trends for the hospital, and a list of recommendations for reducing energy consumption is included.« less

  9. The Effect of Technological Devices on Cervical Lordosis.

    PubMed

    Öğrenci, Ahmet; Koban, Orkun; Yaman, Onur; Dalbayrak, Sedat; Yılmaz, Mesut

    2018-03-15

    There is a need for cervical flexion and even cervical hyperflexion for the use of technological devices, especially mobile phones. We investigated the effect of this use on the cervical lordosis angle. A group of 156 patients who applied with only neck pain between 2013-2016 and had no additional problems were included. Patients are specifically questioned about mobile phone, tablet, and other devices usage. The value obtained by multiplying the year of usage and the average usage (hour) in daily life was determined as the total usage value (an average hour per day x year: hy). Cervical lordosis angles were statistically compared with the total time of use. In the general ROC analysis, the cut-off value was found to be 20.5 hy. When the cut-off value is tested, the overall accuracy is very good with 72.4%. The true estimate of true risk and non-risk is quite high. The ROC analysis is statistically significant. The use of computing devices, especially mobile telephones, and the increase in the flexion of the cervical spine indicate that cervical vertebral problems will increase even in younger people in future. Also, to using with attention at this point, ergonomic devices must also be developed.

  10. Maintaining respect and fairness in the usage of stored shared specimens

    PubMed Central

    2013-01-01

    Background Every year, research specimens are shipped from one institution to another as well as across national boundaries. A significant proportion of specimens move from poor to rich countries. Concerns are always raised on the future usage of the stored specimens shipped to research insitutions from developing countries. Creating awareness of the processes is required in all sectors involved in biomedical research. To maintain fairness and respect in sharing biomedical specimens and reserch products requires safeguarding by Ethics Review Committees in both provider and recepient institutions. Training in basic ethical principles in research is required to all sectors involved in biomedical research so as to level up the research playing field. Discussion By agreeing to provide specimens, individuals and communities from whom samples are collected would have placed their trust and all ensuing up-keep of the specimens to the researchers. In most collaborative set-up, laid down material transfer agreements are negotiated and signed before the shipment of specimens. Researchers, research ethics committees (RECs) and institutions in the countries of origin are supposed to serve as overseers of the specimens. There is need to advocate for honesty in sample handling and sharing, and also need to oversee any written commitments by researchers, RECs and institutions at source as well as in recipient institution. Commitments from source RECs and Institutional Review Boards (IRBs) and in the receiving institution on overseeing the future usage of stored specimens are required; including the ultimate confirmation abiding by the agreement. Training in ethical issues pertaining to sample handling and biomedical research in general is essential at all levels of academic pursuit. While sharing of biological specimens and research data demands honesty and oversight by ethical regulatory agents from both institutions in developing country and recepient institutions in developed countries. Concluding summary Archiving of biological specimens requires reconsideration for the future of biomedical findings and scientific break-throughs. Biomedical ethical regulations still need to established clear viable regulations that have vision for the future of science through shared and archived samples. This discussion covers and proposes essential points that need to be considered in view of future generations and scientific break-throughs. The discussion is based on the experience of working in resource-limited settings, the local regulatory laws and the need to refine research regulations governing sharing and storage of specimens for the future of science. PMID:24565022

  11. Maintaining respect and fairness in the usage of stored shared specimens.

    PubMed

    Mduluza, Takafira; Midzi, Nicholas; Duruza, Donold; Ndebele, Paul

    2013-01-01

    Every year, research specimens are shipped from one institution to another as well as across national boundaries. A significant proportion of specimens move from poor to rich countries. Concerns are always raised on the future usage of the stored specimens shipped to research institutions from developing countries. Creating awareness of the processes is required in all sectors involved in biomedical research. To maintain fairness and respect in sharing biomedical specimens and research products requires safeguarding by Ethics Review Committees in both provider and recipient institutions. Training in basic ethical principles in research is required to all sectors involved in biomedical research so as to level up the research playing field. By agreeing to provide specimens, individuals and communities from whom samples are collected would have placed their trust and all ensuing up-keep of the specimens to the researchers. In most collaborative set-up, laid down material transfer agreements are negotiated and signed before the shipment of specimens. Researchers, research ethics committees (RECs) and institutions in the countries of origin are supposed to serve as overseers of the specimens. There is need to advocate for honesty in sample handling and sharing, and also need to oversee any written commitments by researchers, RECs and institutions at source as well as in recipient institution. Commitments from source RECs and Institutional Review Boards (IRBs) and in the receiving institution on overseeing the future usage of stored specimens are required; including the ultimate confirmation abiding by the agreement. Training in ethical issues pertaining to sample handling and biomedical research in general is essential at all levels of academic pursuit. While sharing of biological specimens and research data demands honesty and oversight by ethical regulatory agents from both institutions in developing country and recipient institutions in developed countries. Archiving of biological specimens requires reconsideration for the future of biomedical findings and scientific break-throughs. Biomedical ethical regulations still need to established clear viable regulations that have vision for the future of science through shared and archived samples. This discussion covers and proposes essential points that need to be considered in view of future generations and scientific break-throughs. The discussion is based on the experience of working in resource-limited settings, the local regulatory laws and the need to refine research regulations governing sharing and storage of specimens for the future of science.

  12. Electroosmosis remediation of DNAPLS in low permeability soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, S V.

    1996-08-01

    Electroosmosis is the movement of water through a soil matrix induced by a direct current (DC) electric field. The technique has been used since the 1930s for dewatering and stabilizing fine-grained soils. More recently, electroosmosis has been considered as an in-situ method for soil remediation in which water is injected into the soil at the anode region to flush the contaminants to the cathode side for further treatment or disposal. The major advantage of electroosmosis is its inherent ability to move water uniformly through clayey, silty soils at 100 to 1000 times faster than attainable by hydraulic means, and withmore » very low energy usage. Drawbacks of electroosmosis as a stand-alone technology include slow speed, reliance on solubilizing the contaminants into the groundwater for removal, potentially an unstable process for long term operation, and necessary additional treatment and disposal of the collected liquid. Possible remediation applications of electroosmosis for DNAPLs would be primarily in the removal of residual DNAPLs in the soil pores by electroosmotic flushing. The future of electroosmosis as a broad remedial method lies in how well it can be coupled with complementary technologies. Examples include combining electroosmosis with vacuum extraction, with surfactant usage to deal with non-aqueous phase liquids (NAPLs) through enhanced solubilization or mobilization, with permeability enhancing methods (hydrofracturing, pneumatic fracturing, etc.) to create recovery zones, and with in-situ degradation zones to eliminate aboveground treatment. 33 refs., 1 fig., 1 tab.« less

  13. David Meets Goliath on the Information Superhighway: Venezuela in the Context of the Electronic Communication Networks.

    ERIC Educational Resources Information Center

    Sanchez-Vegas, Saadia

    1995-01-01

    Discusses Venezuela's information and communications technology infrastructure and usage patterns; examines future networking plans; and addresses political and economic considerations linked to the information and technology problems in Venezuela and in Latin America in general. (LRW)

  14. Online 1990.

    ERIC Educational Resources Information Center

    Goldstein, Morris

    This paper examines the co-existence of online and CD-ROM technologies in terms of their existing pricing structures, marketing strategies, functionality, and future roles. "Fixed Price Unlimited Usage" (FPUU) pricing and flat-rate pricing are discussed as viable alternatives to current pricing practices. In addition, it is argued that the…

  15. Empowering Future Educators through Environmental Sustainability

    ERIC Educational Resources Information Center

    Latz, Amanda O.; Bolin, Jocelyn H.; Quick, Marilynn; Jones, Ruth; Chapman, Austin

    2015-01-01

    Purpose: The purpose of this paper is to provide information regarding the ways in which the authors' College's faculty use paper within their pedagogical practice. A related purpose was to ascertain faculty interest in professional development initiatives related to reducing paper usage through technological affordances.…

  16. Current situation and future usage of anticancer drug databases.

    PubMed

    Wang, Hongzhi; Yin, Yuanyuan; Wang, Peiqi; Xiong, Chenyu; Huang, Lingyu; Li, Sijia; Li, Xinyi; Fu, Leilei

    2016-07-01

    Cancer is a deadly disease with increasing incidence and mortality rates and affects the life quality of millions of people per year. The past 15 years have witnessed the rapid development of targeted therapy for cancer treatment, with numerous anticancer drugs, drug targets and related gene mutations been identified. The demand for better anticancer drugs and the advances in database technologies have propelled the development of databases related to anticancer drugs. These databases provide systematic collections of integrative information either directly on anticancer drugs or on a specific type of anticancer drugs with their own emphases on different aspects, such as drug-target interactions, the relationship between mutations in drug targets and drug resistance/sensitivity, drug-drug interactions, natural products with anticancer activity, anticancer peptides, synthetic lethality pairs and histone deacetylase inhibitors. We focus on a holistic view of the current situation and future usage of databases related to anticancer drugs and further discuss their strengths and weaknesses, in the hope of facilitating the discovery of new anticancer drugs with better clinical outcomes.

  17. Broadband Satellite Technologies and Markets Assessed

    NASA Technical Reports Server (NTRS)

    Wallett, Thomas M.

    1999-01-01

    The current usage of broadband (data rate greater than 64 kilobits per second (kbs)) for multimedia network computer applications is increasing, and the need for network communications technologies and systems to support this use is also growing. Satellite technology will likely be an important part of the National Information Infrastructure (NII) and the Global Information Infrastructure (GII) in the next decade. Several candidate communications technologies that may be used to carry a portion of the increased data traffic have been reviewed, and estimates of the future demand for satellite capacity have been made. A study was conducted by the NASA Lewis Research Center to assess the satellite addressable markets for broadband applications. This study effort included four specific milestones: (1) assess the changing nature of broadband applications and their usage, (2) assess broadband satellite and terrestrial technologies, (3) estimate the size of the global satellite addressable market from 2000 to 2010, and (4) identify how the impact of future technology developments could increase the utility of satellite-based transport to serve this market.

  18. Research on Social Networking Sites and Social Support from 2004 to 2015: A Narrative Review and Directions for Future Research.

    PubMed

    Meng, Jingbo; Martinez, Lourdes; Holmstrom, Amanda; Chung, Minwoong; Cox, Jeff

    2017-01-01

    The article presents a narrative review of scholarship on social support through social networking sites (SNSs) published from 2004 to 2015. By searching keywords related to social support and SNSs in major databases for social sciences, we identified and content analyzed directly relevant articles (N = 88). The article summarizes the prevalence of theory usage; the function of theory usage (e.g., testing a theory, developing a theory); major theories referenced; and methodologies, including research designs, measurement, and the roles of social support and SNS examined in this literature. It also reports four themes identified across the studies, indicating the trends in the current research. Based on the review, the article presents a discussion about study sites, conceptualization of social support, theoretical coherence, the role of social networks, and the dynamic relationships between SNS use and social support, which points out potential avenues for shaping a future research agenda.

  19. Homophily of Vocabulary Usage: Beneficial Effects of Vocabulary Similarity on Online Health Communities Participation

    PubMed Central

    Park, Albert; Hartzler, Andrea L.; Huh, Jina; McDonald, David W.; Pratt, Wanda

    2015-01-01

    Online health communities provide popular platforms for individuals to exchange psychosocial support and form ties. Although regular active participation (i.e., posting to interact with other members) in online health communities can provide important benefits, sustained active participation remains challenging for these communities. Leveraging previous literature on homophily (i.e., “love of those who are like themselves”), we examined the relationship between vocabulary similarity (i.e., homophily of word usage) of thread posts and members’ future interaction in online health communities. We quantitatively measured vocabulary similarity by calculating, in a vector space model, cosine similarity between the original post and the first reply in 20,499 threads. Our findings across five online health communities suggest that vocabulary similarity is a significant predictor of members’ future interaction in online health communities. These findings carry practical implications for facilitating and sustaining online community participation through beneficial effects of homophily in the vocabulary of essential peer support. PMID:26958240

  20. 16 CFR 305.21 - Test data records.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... each basic model, or the light output, energy usage, correlated color temperature, and life ratings and, for fluorescent lamps, the color rendering index, for each basic model or lamp type were derived. [52...

  1. Distributed event-triggered consensus strategy for multi-agent systems under limited resources

    NASA Astrophysics Data System (ADS)

    Noorbakhsh, S. Mohammad; Ghaisari, Jafar

    2016-01-01

    The paper proposes a distributed structure to address an event-triggered consensus problem for multi-agent systems which aims at concurrent reduction in inter-agent communication, control input actuation and energy consumption. Following the proposed approach, asymptotic convergence of all agents to consensus requires that each agent broadcasts its sampled-state to the neighbours and updates its control input only at its own triggering instants, unlike the existing related works. Obviously, it decreases the network bandwidth usage, sensor energy consumption, computation resources usage and actuator wears. As a result, it facilitates the implementation of the proposed consensus protocol in the real-world applications with limited resources. The stability of the closed-loop system under an event-based protocol is proved analytically. Some numerical results are presented which confirm the analytical discussion on the effectiveness of the proposed design.

  2. An Influence Analysis of Dissuading Nation States from Producing and Proliferating Weapons of Mass Destruction (WMD)

    DTIC Science & Technology

    2011-03-01

    author and do not reflect the official policy or position of the Department of Defense or the U.S. Government. IRB Protocol number ______N/A__________...18 5. Lead Up to the Fission Device Test 1974 .........................................22 6. Maintaining Nuclear Policy 1974-1998...out to produce nuclear energy for research and civilian energy consumption. Its government maintained a policy of peace nuclear energy usage unless

  3. DOE Zero Energy Ready Home Case Study: Greenhill Contracting, Inc., Hickory Ridge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pacific Northwest National Laboratory

    Greenhill Contracting built this 3,912-ft2 house in Gardiner, New York, to the high-performance criteria of the DOE Zero Energy Ready Home (ZERH) program. A highly efficient air-source heat pump heats and cools the home’s interior, while the roof-mounted photovoltaic system offsets electricity usage to cut energy bills to nearly zero. Many months the home owners see a credit on their utility bill.

  4. Assessment of On-Site Power Opportunities in the Industrial Sector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryson, T.

    2001-10-08

    The purpose of this report is to identify the potential for on-site power generation in the U.S. industrial sector with emphasis on nine industrial groups called the ''Industries of the Future'' (IOFs) by the U.S. Department of Energy (DOE). Through its Office of Industrial Technologies (OIT), the DOE has teamed with the IOFs to develop collaborative strategies for improving productivity, global competitiveness, energy usage and environmental performance. Total purchases for electricity and steam for the IOFs are in excess of $27 billion annually. Energy-related costs are very significant for these industries. The nine industrial groups are (1) Agriculture (SIC 1);more » (2) Forest products; (3) Lumber and wood products (SIC 24); (4) Paper and allied products (SIC 26); (5) Mining (SIC 11, 12, 14); (6) Glass (SIC 32); (7) Petroleum (SIC 29); (8) Chemicals (SIC 28); and (9) Metals (SIC 33): Steel, Aluminum, and Metal casting. Although not currently part of the IOF program, the food industry is included in this report because of its close relationship to the agricultural industry and its success with on-site power generation. On-site generation provides an alternative means to reduce energy costs, comply with environmental regulations, and ensure a reliable power supply. On-site generation can ease congestion in the local utility's electric grid. Electric market restructuring is exacerbating the price premium for peak electricity use and for reliability, creating considerable market interest in on-site generation.« less

  5. Molecular Dynamics Simulation of Hydrogen Trapping on Sigma 5 Tungsten Grain Boundaries

    NASA Astrophysics Data System (ADS)

    Al-Shalash, Aws Mohammed Taha

    Tungsten as a plasma facing material is the predominant contender for future Tokamak reactor environments. The interaction between the plasma particles and tungsten is crucial to be studied for successful usage and design of tungsten in the plasma facing components ensuring the reliability and longevity of the fusion reactors. The bombardment of the sigma 5 polycrystalline tungsten was modeled using the molecular dynamics simulation through the large-scale atomic/molecular massively parallel simulator (LAMMPS) code and Tersoff type interatomic potential. By simulating the operational conditions of the Tokamak reactors, the hydrogen trapping rate, implantation distribution, and bubble formation was investigated at various temperatures (300-1200 K) and various hydrogen incident energy (20-100 eV). The substrate's temperature increases the deflected H atoms, and increases the penetration depth for the ones that go through. As well, the lower temperature tungsten substrates retain more H atoms. Increasing the bombarded hydrogen's energy increases the trapping and retention rate and the depth of penetration. Another experiments were conducted to determine whether the Sigma5 grain boundary's (GB) location affects the trapping profiles in H. The findings are ranges from small effect on deflection rates at low H energies to no effect at high H energies. However, there is a considerable effect on shifting the trapping depth profile upward toward the surface when raising the GB closer to the surface. Hydrogen atoms are highly mobile on tungsten substrate, yet no bubble formation was witnessed.

  6. Materials Control for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Ferguson, Michael

    2005-01-01

    The distant future of mankind and the ultimate survivability of the human race, as it is known today, will depend on mans' ability to break earthly bonds and establish new territorial positions throughout the universe. Man must therefore be positioned to not only travel to, but also, to readily adapt to numerous and varying environments. For this mass migration across the galaxies nothing is as import to the human race as is NASA's future missions into Low Earth Orbit (LEO), to the moon, and/or Mars. These missions will form the building blocks to eternity for mankind. From these missions, NASA will develop the foundations for these building blocks based on sound engineering and scientific principles, both known and yet to be discovered. The integrity of the program will lead to development, tracking and control of the most basic elements of hardware production: That being development and control of applications of space flight materials. Choosing the right material for design purposes involves many considerations, such as governmental regulations associated with manufacturing operations, both safety of usage and of manufacturing, general material usage requirements, material longevity and performance requirements, material interfacing compatibility and material usage environments. Material performance is subject to environmental considerations in as much as a given material may perform exceptionally well at standard temperatures and pressures while performing poorly under non-standard conditions. These concerns may be found true for materials relative to the extreme temperatures and vacuum gradients of high altitude usage. The only way to assure that flight worthy materials are used in design is through testing. However, as with all testing, it requires both time on schedule and cost to the operation. One alternative to this high cost testing approach is to rely on a materials control system established by NASA. The NASA community relies on the MAPTIS materials control system founded at MSFC and supported by the other NASA Centers. This system is a data bank of all materials used in space flight operations. These materials are rated for several characteristics that are common concerns in high altitude or deep space usage: Odor, off gassing, material fluid compatibility, toxicity, corrosion susceptibility, stress corrosion susceptibility, etc.

  7. Managing time-substitutable electricity usage using dynamic controls

    DOEpatents

    Ghosh, Soumyadip; Hosking, Jonathan R.; Natarajan, Ramesh; Subramaniam, Shivaram; Zhang, Xiaoxuan

    2017-02-07

    A predictive-control approach allows an electricity provider to monitor and proactively manage peak and off-peak residential intra-day electricity usage in an emerging smart energy grid using time-dependent dynamic pricing incentives. The daily load is modeled as time-shifted, but cost-differentiated and substitutable, copies of the continuously-consumed electricity resource, and a consumer-choice prediction model is constructed to forecast the corresponding intra-day shares of total daily load according to this model. This is embedded within an optimization framework for managing the daily electricity usage. A series of transformations are employed, including the reformulation-linearization technique (RLT) to obtain a Mixed-Integer Programming (MIP) model representation of the resulting nonlinear optimization problem. In addition, various regulatory and pricing constraints are incorporated in conjunction with the specified profit and capacity utilization objectives.

  8. Managing time-substitutable electricity usage using dynamic controls

    DOEpatents

    Ghosh, Soumyadip; Hosking, Jonathan R.; Natarajan, Ramesh; Subramaniam, Shivaram; Zhang, Xiaoxuan

    2017-02-21

    A predictive-control approach allows an electricity provider to monitor and proactively manage peak and off-peak residential intra-day electricity usage in an emerging smart energy grid using time-dependent dynamic pricing incentives. The daily load is modeled as time-shifted, but cost-differentiated and substitutable, copies of the continuously-consumed electricity resource, and a consumer-choice prediction model is constructed to forecast the corresponding intra-day shares of total daily load according to this model. This is embedded within an optimization framework for managing the daily electricity usage. A series of transformations are employed, including the reformulation-linearization technique (RLT) to obtain a Mixed-Integer Programming (MIP) model representation of the resulting nonlinear optimization problem. In addition, various regulatory and pricing constraints are incorporated in conjunction with the specified profit and capacity utilization objectives.

  9. Chapter Two – Separations Versus Sustainability: There is No ...

    EPA Pesticide Factsheets

    Separation operations in chemical processes are generally “uphill” tasks—defying natural tendencies. Historically, such separations have been accomplished by applying generous portions of fossil energy and materials, leaving behind a large environmental footprint. In this chapter, progress in reducing this footprint will be discussed with examples in biofuel production, desalination, and carbon dioxide capture. Industrial separation processes have a significant energy and environmental footprint. Sizeable reductions in energy usage could be achieved by replacing energy-intensive processes like distillation with low-energy separation systems such as membranes, extraction, sorption, or synergistic hybrid systems of low- and high-energy systems.

  10. An overview of US energy options: Supply- and demand-side history and prospects

    NASA Technical Reports Server (NTRS)

    Hirshberg, A. S.

    1977-01-01

    An overview was provided of nonsolar energy policy options available to the United States until solar energy conversion and utilization devices can produce power at a cost competitive with that obtained from fossil fuels. The economics of the development of new fossil fuel sources and of mandatory conservation measures in energy usage were clarified in the context of the historic annual rate of increase in U.S. energy demand. An attempt was made to compare the costs and relative efficiencies of energy obtainable from various sources by correlating the many confusing measurement units in current use.

  11. Energy supply and demand modeling. (Latest citations from the NTIS bibliographic database). Published Search

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-01-01

    The bibliography contains citations concerning the use of mathematical models in trend analysis and forecasting of energy supply and demand factors. Models are presented for the industrial, transportation, and residential sectors. Aspects of long term energy strategies and markets are discussed at the global, national, state, and regional levels. Energy demand and pricing, and econometrics of energy, are explored for electric utilities and natural resources, such as coal, oil, and natural gas. Energy resources are modeled both for fuel usage and for reserves. (Contains 250 citations and includes a subject term index and title list.)

  12. Energy supply and demand modeling. (Latest citations from the NTIS data base). Published Search

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-10-01

    The bibliography contains citations concerning the use of mathematical models in trend analysis and forecasting of energy supply and demand factors. Models are presented for the industrial, transportation, and residential sectors. Aspects of long term energy strategies and markets are discussed at the global, national, state, and regional levels. Energy demand and pricing, and econometrics of energy, are explored for electric utilities and natural resources, such as coal, oil, and natural gas. Energy resources are modeled both for fuel usage and for reserves. (Contains 250 citations and includes a subject term index and title list.)

  13. Energy supply and demand modeling. (Latest citations from the NTIS bibliographic database). Published Search

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-12-01

    The bibliography contains citations concerning the use of mathematical models in trend analysis and forecasting of energy supply and demand factors. Models are presented for the industrial, transportation, and residential sectors. Aspects of long term energy strategies and markets are discussed at the global, national, state, and regional levels. Energy demand and pricing, and econometrics of energy, are explored for electric utilities and natural resources, such as coal, oil, and natural gas. Energy resources are modeled both for fuel usage and for reserves. (Contains 250 citations and includes a subject term index and title list.)

  14. Technology and Its Use in Education: Present Roles and Future Prospects

    ERIC Educational Resources Information Center

    Courville, Keith

    2011-01-01

    (Purpose) This article describes two current trends in Educational Technology: distributed learning and electronic databases. (Findings) Topics addressed in this paper include: (1) distributed learning as a means of professional development; (2) distributed learning for content visualization; (3) usage of distributed learning for educational…

  15. An Observation on Shelving Practice

    ERIC Educational Resources Information Center

    Stevens, Norman D.

    1978-01-01

    The Molesworth Institute conducted a year long experiment on the shelving practices of two academic libraries of comparable size, with similar user populations. Results show that the practice of leaving the middle two shelves empty for future expansion cannot be recommended. Measurements include accumulation of dirt; usage; and incidents of…

  16. Estimating caffeine intake from energy drinks and dietary supplements in the United States

    PubMed Central

    Bailey, Regan L; Saldanha, Leila G; Gahche, Jaime J; Dwyer, Johanna T

    2014-01-01

    No consistent definition exists for energy products in the United States. These products have been marketed and sold as beverages (conventional foods), energy shots (dietary supplements), and in pill or tablet form. Recently, the number of available products has surged, and formulations have changed to include caffeine. To help characterize the use of caffeine-containing energy products in the United States, three sources of data were analyzed: sales data, data from federal sources, and reports from the Drug Abuse Warning Network. These data indicate that sales of caffeine-containing energy products and emergency room visits involving their consumption appear to be increasing over time. Data from the National Health and Nutrition Examination Survey (NHANES) 2007–2010 indicate that 2.7% [standard error (SE) 0.2%] of the US population ≥1 year of age used a caffeine-containing energy product, providing approximately 150–200 mg/day of caffeine per day in addition to caffeine from traditional sources like coffee, tea, and colas. The highest usage of these products was among males between the ages of 19 and 30 years (7.6%, SE 1.0). Although the prevalence of caffeine-containing energy product use remains low overall in the US population, certain subgroups appear to be using these products in larger amounts. Several challenges remain in determining the level of caffeine exposure from and accurate usage patterns of caffeine-containing energy products. PMID:25293539

  17. Correlation of classroom typologies to lighting energy performance of academic building in warm-humid climate (case study: ITS Campus Sukolilo Surabaya)

    NASA Astrophysics Data System (ADS)

    Ekasiwi, S. N. N.; Antaryama, I. G. N.; Krisdianto, J.; Ulum, M. S.

    2018-03-01

    Classrooms in educational buildings require certain lighting requirements to serve teaching and learning activities during daytime. The most typical design is double sided opening in order to get good daylight distribution in the classroom. Using artificial light is essential to contribute the worse daylight condition. A short observation indicates that during the lecture time the light turned on, even in the daytime. That might result in wasting electrical energy. The aim of the study is to examine the type of classroom, which perform comfortable lighting environment as well as saving energy. This paper reports preliminary results of the study obtained from field observation and measurements. The use of energy and usage pattern of artificial lighting during the lecture is recorded and then the data evaluated to see the suitability of existing energy use to building energy standards. The daylighting design aspects have to be the first consideration. However, the similarity in WWR of the classroom, the Daylight Factor (DF) may differ. It depends on the room depth. The similarity of the increase of WWR and Ratio of openings to floor area do not directly correspond to the increase of DF. The outdoor condition of larger daylight access and the room depth are the influencing factors. Despite the similarity of physical type, usage pattern of the classroom imply the use of electrical energy for lighting. The results indicate the factors influencing lighting energy performance in correlation to their typologies

  18. Comparative evolutionary genomics of Corynebacterium with special reference to codon and amino acid usage diversities.

    PubMed

    Pal, Shilpee; Sarkar, Indrani; Roy, Ayan; Mohapatra, Pradeep K Das; Mondal, Keshab C; Sen, Arnab

    2018-02-01

    The present study has been aimed to the comparative analysis of high GC composition containing Corynebacterium genomes and their evolutionary study by exploring codon and amino acid usage patterns. Phylogenetic study by MLSA approach, indel analysis and BLAST matrix differentiated Corynebacterium species in pathogenic and non-pathogenic clusters. Correspondence analysis on synonymous codon usage reveals that, gene length, optimal codon frequencies and tRNA abundance affect the gene expression of Corynebacterium. Most of the optimal codons as well as translationally optimal codons are C ending i.e. RNY (R-purine, N-any nucleotide base, and Y-pyrimidine) and reveal translational selection pressure on codon bias of Corynebacterium. Amino acid usage is affected by hydrophobicity, aromaticity, protein energy cost, etc. Highly expressed genes followed the cost minimization hypothesis and are less diverged at their synonymous positions of codons. Functional analysis of core genes shows significant difference in pathogenic and non-pathogenic Corynebacterium. The study reveals close relationship between non-pathogenic and opportunistic pathogenic Corynebaterium as well as between molecular evolution and survival niches of the organism.

  19. Oil County Traffic Safety Survey, 2012

    DOT National Transportation Integrated Search

    2012-09-01

    Over time, road usage in western North Dakota has changed. Interstate, highway, and low-volume unpaved roads have been used with greater frequency because of increased agricultural production and a growing energy sector. This evolution is especially ...

  20. Informing Regional Water-Energy-Food Nexus with System Analysis and Interactive Visualizations

    NASA Astrophysics Data System (ADS)

    Yang, Y. C. E.; Wi, S.

    2016-12-01

    Communicating scientific results to non-technical practitioners is challenging due to their differing interests, concerns and agendas. It is further complicated by the growing number of relevant factors that need to be considered, such as climate change and demographic dynamic. Visualization is an effective method for the scientific community to disseminate results, and it represents an opportunity for the future of water resources systems analysis (WRSA). This study demonstrates an intuitive way to communicate WRSA results to practitioners using interactive web-based visualization tools developed by the JavaScript library: Data-Driven Documents (D3) with a case study in Great Ruaha River of Tanzania. The decreasing trend of streamflow during the last decades in the region highlights the need of assessing the water usage competition between agricultural production, energy generation, and ecosystem service. Our team conduct the advance water resources systems analysis to inform policy that will affect the water-energy-food nexus. Modeling results are presented in the web-based visualization tools and allow non-technical practitioners to brush the graph directly (e. g. Figure 1). The WRSA suggests that no single measure can completely resolve the water competition. A combination of measures, each of which is acceptable from a social and economic perspective, and accepting that zero flows cannot be totally eliminated during dry years in the wetland, are likely to be the best way forward.

  1. The Design and Development of a Curriculum in Energy Conservation to Train Secondary and Post-Secondary Vocational Students.

    ERIC Educational Resources Information Center

    Orsak, Charles; Green, C. Paul

    Designed for practical hands-on secondary and postsecondary vocational programs and adult/continuing education programs, this eleven-module curriculum was developed to equip both male and female students with the capabilities to identify, monitor, manage, and curb energy usage in their daily lives and vocational pursuits. It is intended for use as…

  2. Scalable tuning of building models to hourly data

    DOE PAGES

    Garrett, Aaron; New, Joshua Ryan

    2015-03-31

    Energy models of existing buildings are unreliable unless calibrated so they correlate well with actual energy usage. Manual tuning requires a skilled professional, is prohibitively expensive for small projects, imperfect, non-repeatable, non-transferable, and not scalable to the dozens of sensor channels that smart meters, smart appliances, and cheap/ubiquitous sensors are beginning to make available today. A scalable, automated methodology is needed to quickly and intelligently calibrate building energy models to all available data, increase the usefulness of those models, and facilitate speed-and-scale penetration of simulation-based capabilities into the marketplace for actualized energy savings. The "Autotune'' project is a novel, model-agnosticmore » methodology which leverages supercomputing, large simulation ensembles, and big data mining with multiple machine learning algorithms to allow automatic calibration of simulations that match measured experimental data in a way that is deployable on commodity hardware. This paper shares several methodologies employed to reduce the combinatorial complexity to a computationally tractable search problem for hundreds of input parameters. Furthermore, accuracy metrics are provided which quantify model error to measured data for either monthly or hourly electrical usage from a highly-instrumented, emulated-occupancy research home.« less

  3. A miniature batteryless health and usage monitoring system based on hybrid energy harvesting

    NASA Astrophysics Data System (ADS)

    Huang, Chenling; Chakrabartty, Shantanu

    2011-04-01

    The cost and size of the state-of-the-art health and usage monitoring systems (HUMS) are determined by capacity of on-board energy storage which limits their large scale deployment. In this paper, we present a miniature low-cost mechanical HUMS integrated circuit (IC) based on the concept of hybrid energy harvesting where continuous monitoring is achieved by self-powering, where as the programming, localization and communication with the sensor is achieved using remote RF powering. The self-powered component of the proposed HUMS is based on our previous result which used a controllable hot electron injection on floatinggate transistor as an ultra-low power signal processor. We show that the HUMS IC can seamlessly switch between different energy harvesting modes based on the availability of ambient RF power and that the configuration, programming and communication functions can be remotely performed without physically accessing the HUMS device. All the measured results presented in this paper have been obtained from prototypes fabricated in a 0.5 micron standard CMOS process and the entire system has been successfully integrated on a 1.5cm x 1.5cm package.

  4. Fire intensity, fire severity and burn severity: A brief review and suggested usage

    USGS Publications Warehouse

    Keeley, J.E.

    2009-01-01

    Several recent papers have suggested replacing the terminology of fire intensity and fire severity. Part of the problem with fire intensity is that it is sometimes used incorrectly to describe fire effects, when in fact it is justifiably restricted to measures of energy output. Increasingly, the term has created confusion because some authors have restricted its usage to a single measure of energy output referred to as fireline intensity. This metric is most useful in understanding fire behavior in forests, but is too narrow to fully capture the multitude of ways fire energy affects ecosystems. Fire intensity represents the energy released during various phases of a fire, and different metrics such as reaction intensity, fireline intensity, temperature, heating duration and radiant energy are useful for different purposes. Fire severity, and the related term burn severity, have created considerable confusion because of recent changes in their usage. Some authors have justified this by contending that fire severity is defined broadly as ecosystem impacts from fire and thus is open to individual interpretation. However, empirical studies have defined fire severity operationally as the loss of or change in organic matter aboveground and belowground, although the precise metric varies with management needs. Confusion arises because fire or burn severity is sometimes defined so that it also includes ecosystem responses. Ecosystem responses include soil erosion, vegetation regeneration, restoration of community structure, faunal recolonization, and a plethora of related response variables. Although some ecosystem responses are correlated with measures of fire or burn severity, many important ecosystem processes have either not been demonstrated to be predicted by severity indices or have been shown in some vegetation types to be unrelated to severity. This is a critical issue because fire or burn severity are readily measurable parameters, both on the ground and with remote sensing, yet ecosystem responses are of most interest to resource managers.

  5. A Study of Airbase Facility/Utility Energy R and D Requirements

    DTIC Science & Technology

    1992-04-01

    facility/utility energy requirements for system implementations, modifications, or deletions were collected, entered into the database, and compared with...BASE_________ ENERGY LOS1 %) 200 MBtu TOTAL COSTS 100 Motu ELECTRIC 100 Motu THERMAL337 Motu ,, OF1FUEL 100 MBtu OF(10 11 PURCHASED S 1800.00 ELECTRIC...this page. Usage Data = *.BTU I. Correct spelling of Base name and Command 2. Macro does the following: Inserts or deletes columns or rows so that D4

  6. Usage of Electric Vehicle Supply Equipment Along the Corridors between the EV Project Major Cities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mindy Kirkpatrick

    The report explains how the EVSE are being used along the corridors between the EV Project cities. The EV Project consists of a nationwide collaboration between Idaho National Laboratory (INL), ECOtality North America, Nissan, General Motors, and more than 40 other city, regional and state governments, and electric utilities. The purpose of the EV Project is to demonstrate the deployment and use of approximately 14,000 Level II (208-240V) electric vehicle supply equipment (EVSE) and 300 fast chargers in 16 major cities. This research investigates the usage of all currently installed EV Project commercial EVSE along major interstate corridors. ESRI ArcMapmore » software products are utilized to create geographic EVSE data layers for analysis and visualization of commercial EVSE usage. This research locates the crucial interstate corridors lacking sufficient commercial EVSE and targets locations for future commercial EVSE placement. The results and methods introduced in this research will be used by INL for the duration of the EV Project.« less

  7. Liquid nitrogen historical and current usage of the central helium liquefier at SNS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neustadt, Thomas S.; Kim, Sang-Ho; Howell, Matthew P.

    The main cryogenic system for the Spallation Neutron Source (SNS) is comprised of a 4-K cold box, a 2-K cold box, six warm compressors, and ancillary support equipment. This system has been cold and operating with little disruption since 2005. Design and operation of liquid nitrogen (LN2) supplied from a single 20,000-gallon supply Dewar will be discussed. LN2 used to precool the 4-K cold box heat exchanger started to increase around 2011. LN2 Consumption during 2012 and 2013 was almost double the nominal usage rate. Studies of this data, plant parameter changes to respond to this information, and current interpretationsmore » are detailed in this paper. The usage rate of LN2 returned to normal in late 2013 and remained there until recent additional changes. Future study plans to understand potential causes of this including contamination migration within the 4-K cold box will also be addressed.« less

  8. Putting Educational Forecasts into Perspective: A Guide for Decisionmakers.

    ERIC Educational Resources Information Center

    Dede, Christopher; Kierstead, Fred

    This paper focuses on how educational decision-makers can make use of futures research through a better understanding of forecasters' perspectives. Eight problems in communicating that are significant in contributing to poor usage of forecasts by educational decision-makers are: (1) overuse of jargon, (2) preoccupation with technological…

  9. A Green Touch for the Future of Distance Education

    ERIC Educational Resources Information Center

    Gundogan, M. Banu; Eby, Gulsun

    2012-01-01

    This paper aims to draw attention to the sustainability of distance learning in terms of the design process based on learner characteristics and technology usage. Distance learning has become a cyberized system owing its presence to developments in digital technologies. Technological developments solve some immediate problems but also have the…

  10. Biochar: What is the future for industrial production and world usage?

    USDA-ARS?s Scientific Manuscript database

    Biochar has gained world attention as a soil amendment to increase carbon sequestration, improve fertility levels and bolster soil water retention. Unfortunately, the amount of biochar needed for field application rates to achieve these results can be in the tons per hectare range. There is concer...

  11. THE COMPUTER AND THE ARCHITECTURAL PROFESSION.

    ERIC Educational Resources Information Center

    HAVILAND, DAVID S.

    THE ROLE OF ADVANCING TECHNOLOGY IN THE FIELD OF ARCHITECTURE IS DISCUSSED IN THIS REPORT. PROBLEMS IN COMMUNICATION AND THE DESIGN PROCESS ARE IDENTIFIED. ADVANTAGES AND DISADVANTAGES OF COMPUTERS ARE MENTIONED IN RELATION TO MAN AND MACHINE INTERACTION. PRESENT AND FUTURE IMPLICATIONS OF COMPUTER USAGE ARE IDENTIFIED AND DISCUSSED WITH RESPECT…

  12. The Internet and the Independence of Individuals with Disabilities.

    ERIC Educational Resources Information Center

    Grimaldi, Caroline; Goette, Tanya

    1999-01-01

    This study examined the role of the Internet and its usage on the level of perceived independence among people with physical disabilities. Discusses independence, perceived control, psychological self-reliance, adaptive technology, hypotheses tested, and future directions. A copy of one of the questionnaires used is appended. (Author/LRW)

  13. Implementation of Precision Verification Solvents on the External Tank

    NASA Technical Reports Server (NTRS)

    Campbell, M.

    1998-01-01

    This paper presents the Implementation of Precision Verification Solvents on the External Tank. The topics include: 1) Background; 2) Solvent Usages; 3) TCE (Trichloroethylene) Reduction; 4) Solvent Replacement Studies; 5) Implementation; 6) Problems Occuring During Implementation; and 7) Future Work. This paper is presented in viewgraph form.

  14. Technology and Textbooks: The Future

    ERIC Educational Resources Information Center

    Baglione, Stephen L.; Sullivan, Kevin

    2016-01-01

    This article describes two separate studies: a survey of students' textbook perceptions, purchases, and usage for e-textbooks and print textbooks and a conjoint analysis on e-textbook attributes. Print textbooks were perceived as easier to read, understand, and navigate, whereas e-textbooks were perceived to be cheaper. Students were willing to…

  15. Charting Missouri's Library Future into the New Century.

    ERIC Educational Resources Information Center

    Matson, Madeline, Ed.

    Libraries offer Missourians of all ages educational and cultural opportunities unsurpassed by any other governmental institution or community agency. Missourians value their libraries, as demonstrated by high usage, approval of library tax levies across the state, and increased demand for library services. This plan provides direction for the…

  16. Technology and Adolescents: Perspectives on the Things to Come

    ERIC Educational Resources Information Center

    Katz, Raul L.; Felix, Max; Gubernick, Madlen

    2014-01-01

    Assuming that, given the processes of technology diffusion, adolescent behavior forecasts future consumption of digital information, it would seem pertinent to study the characteristics of teenager technology use. This research asks: What are the key patterns regarding the use of technology platforms by teenagers? Is technology usage among…

  17. Stents for colorectal obstruction: Past, present, and future

    PubMed Central

    Kim, Eui Joo; Kim, Yoon Jae

    2016-01-01

    Since the development of uncovered self-expanding metal stents (SEMS) in the 1990s, endoscopic stents have evolved dramatically. Application of new materials and new designs has expanded the indications for enteral SEMS. At present, enteral stents are considered the first-line modality for palliative care, and numerous types of enteral stents are under development for extended clinical usage, beyond a merely palliative purpose. Herein, we will discuss the current status and the future development of lower enteral stents. PMID:26811630

  18. The Interaction of Decision Aid Usage, Training Methodology, and Personality Construct on Decision Making Among Dyadic Air Crews in a Military Environment

    DTIC Science & Technology

    2003-04-01

    34action orientetion ". T^ks concerned pre-flight safety assessments for military combat aircraft and were performed 1^ Army Cobra aviators. Dependent...evaluations are vital during future assessments of team performance and especially for modeling purposes, as the literature lacks empirical...a similar scale, and then assign probabilities to likelihood’s for these in the future . Once completed, one can multiply expected feature values of

  19. A Critical Review on Slotted Design for Propellers

    NASA Astrophysics Data System (ADS)

    Seeni, A.; Rajendran, P.; Kutty, H. A.

    2018-05-01

    The usage of slots has gained renewed interest in aerospace particularly on propeller design. Most of the works have focused on improving the aerodynamic performance and efficiency. Modern research on propeller design aims to design propellers with high thrust performance under low torque conditions without any weight penalty. This paper aims to review recent studies made in slotted designs of aerospace structures as well as other applications such as wind turbines. A review on the usage of slots is performed in order to understand the state-of-the-art in current technology. A review of the various studies has been made and general recommendations are provided in order to perform future research in propeller design.

  20. Our plastic age.

    PubMed

    Thompson, Richard C; Swan, Shanna H; Moore, Charles J; vom Saal, Frederick S

    2009-07-27

    Within the last few decades, plastics have revolutionized our daily lives. Globally we use in excess of 260 million tonnes of plastic per annum, accounting for approximately 8 per cent of world oil production. In this Theme Issue of Philosophical Transactions of the Royal Society, we describe current and future trends in usage, together with the many benefits that plastics bring to society. At the same time, we examine the environmental consequences resulting from the accumulation of waste plastic, the effects of plastic debris on wildlife and concerns for human health that arise from the production, usage and disposal of plastics. Finally, we consider some possible solutions to these problems together with the research and policy priorities necessary for their implementation.

  1. NASA Past, Present, and Future: The Use of Commercial Off The Shelf (COTS) Electronics in Space

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; Guertin, Steven M.

    2017-01-01

    NASA has a long history of using commercial grade electronics in space. In this presentation we will provide a brief history of NASA's trends and approaches to commercial grade electronics focusing on processing and memory systems. This will include providing summary information on the space hazards to electronics as well as NASA mission trade space. We will also discuss developing recommendations for risk management approaches to Electrical, Electronic and Electromechanical (EEE) parts usage in space. Two examples will be provided focusing on a near-earth Polar-orbiting spacecraft as well as a mission to Mars. The final portion will discuss emerging trends impacting usage.

  2. NASA C-17 Usage Overview

    NASA Technical Reports Server (NTRS)

    Miller, Christopher R.

    2008-01-01

    The usage and integrated vehicle health management of the NASA C-17. Propulsion health management flight objectives for the aircraft include mapping of the High Pressure Compressor in order to calibrate a Pratt and Whitney engine model and the fusion of data collected from existing sensors and signals to develop models, analysis methods and information fusion algorithms. An additional health manage flight objective is to demonstrate that the Commercial Modular Aero-Propulsion Systems Simulation engine model can successfully execute in real time onboard the C-17 T-1 aircraft using engine and aircraft flight data as inputs. Future work will address aircraft durability and aging, airframe health management, and propulsion health management research in the areas of gas path and engine vibration.

  3. Our plastic age

    PubMed Central

    Thompson, Richard C.; Swan, Shanna H.; Moore, Charles J.; vom Saal, Frederick S.

    2009-01-01

    Within the last few decades, plastics have revolutionized our daily lives. Globally we use in excess of 260 million tonnes of plastic per annum, accounting for approximately 8 per cent of world oil production. In this Theme Issue of Philosophical Transactions of the Royal Society, we describe current and future trends in usage, together with the many benefits that plastics bring to society. At the same time, we examine the environmental consequences resulting from the accumulation of waste plastic, the effects of plastic debris on wildlife and concerns for human health that arise from the production, usage and disposal of plastics. Finally, we consider some possible solutions to these problems together with the research and policy priorities necessary for their implementation. PMID:19528049

  4. Insect repellent plants traditional usage practices in the Ethiopian malaria epidemic-prone setting: an ethnobotanical survey

    PubMed Central

    2014-01-01

    Background The usage of insect repellent plants (IRPs) is one of the centuries-old practices in Africa. In Ethiopia, malaria remains a leading cause of morbidity and mortality, subsequently the majority of people have a tendency to apply various plants as repellents to reduce or interrupt the biting activity of insects. Accordingly, this survey was undertaken to document and evaluate knowledge and usage practices of the local inhabitants on IRPs in the malaria epidemic-prone setting of Ethiopia. Methods Ethnobotanical survey was conducted between January and May 2013. Selected 309 household members were interviewed by administering pre-tested questionnaire on knowledge and usage practices of repellent plants, in Bechobore Kebele, Jimma Zone, Ethiopia. Results Overall, 70.2% (217/309) and 91.8% (199/217) of the respondents have had ample awareness and usage practices of repellent plants, respectively. Informants cited about twenty-two plant species as repellents and also indicated that these plants are useful(85.5%), accessible(86.8%), and affordable(83.9%) too. Residents mainly applying dried leaves [93.9% (187/199)] by means of burning/smouldering [98.9% (197/199)] with the traditional charcoal stove to repel insects, primarily mosquitoes. About 52.8% (105/199) of the informants using aproximately15g of dried plant-materials every day. A Chi-square analysis shows statistically a significant link between the knowledge on repellent plants and gender as well as average monthly income although not with the age of the respondents. Nevertheless, the repellent plant usage custom was not significantly associated with gender, monthly income, and age of the informants. Conclusion Though most of the people have had an adequate awareness still a sizable faction of society suffers with deprivation of IRPs knowledge and usage practices. Therefore, this study calls for more surveys to conserve the existing indigenous knowledge and cultural practices. It could lay the first stone to develop the next generation cost-effective vector control tools in the near future. PMID:24521138

  5. Insect repellent plants traditional usage practices in the Ethiopian malaria epidemic-prone setting: an ethnobotanical survey.

    PubMed

    Karunamoorthi, Kaliyaperumal; Hailu, Teklu

    2014-02-12

    The usage of insect repellent plants (IRPs) is one of the centuries-old practices in Africa. In Ethiopia, malaria remains a leading cause of morbidity and mortality, subsequently the majority of people have a tendency to apply various plants as repellents to reduce or interrupt the biting activity of insects. Accordingly, this survey was undertaken to document and evaluate knowledge and usage practices of the local inhabitants on IRPs in the malaria epidemic-prone setting of Ethiopia. Ethnobotanical survey was conducted between January and May 2013. Selected 309 household members were interviewed by administering pre-tested questionnaire on knowledge and usage practices of repellent plants, in Bechobore Kebele, Jimma Zone, Ethiopia. Overall, 70.2% (217/309) and 91.8% (199/217) of the respondents have had ample awareness and usage practices of repellent plants, respectively. Informants cited about twenty-two plant species as repellents and also indicated that these plants are useful(85.5%), accessible(86.8%), and affordable(83.9%) too. Residents mainly applying dried leaves [93.9% (187/199)] by means of burning/smouldering [98.9% (197/199)] with the traditional charcoal stove to repel insects, primarily mosquitoes. About 52.8% (105/199) of the informants using approximately 15g of dried plant-materials every day. A Chi-square analysis shows statistically a significant link between the knowledge on repellent plants and gender as well as average monthly income although not with the age of the respondents. Nevertheless, the repellent plant usage custom was not significantly associated with gender, monthly income, and age of the informants. Though most of the people have had an adequate awareness still a sizable faction of society suffers with deprivation of IRPs knowledge and usage practices. Therefore, this study calls for more surveys to conserve the existing indigenous knowledge and cultural practices. It could lay the first stone to develop the next generation cost-effective vector control tools in the near future.

  6. Prevalence of mobile phones and factors influencing usage by caregivers of young children in daily life and for health care in rural China: a mixed methods study.

    PubMed

    van Velthoven, Michelle Helena; Li, Ye; Wang, Wei; Chen, Li; Du, Xiaozhen; Wu, Qiong; Zhang, Yanfeng; Rudan, Igor; Car, Josip

    2015-01-01

    To capitalise on mHealth, we need to understand the use of mobile phones both in daily life and for health care. To assess the prevalence and factors that influence usage of mobile phones by caregivers of young children. A mixed methods approach was used, whereby a survey (N=1854) and semi-structured interviews (N=17) were conducted concurrently. The quantitative and qualitative data obtained were compared and integrated. Participants were caregivers of young children in Zhao County, Hebei Province, China. Four main themes were found: (i) trends in mobile phone ownership; (ii) usage of mobile phone functions; (iii) factors influencing replying to text messages; and (iv) uses of mobile phones for health care. The majority of 1,854 survey participants (1,620; 87.4%) used mobile phones, but usage was much higher among mothers (1,433; 92.6%) and fathers (41; 100.0%) compared to grandparents (142; 54.6%). Parents were able to send text messages, grandparents often not. Factors influencing the decision to reply to text messages in daily life were checking the mobile phone, trusting the sender, emotion or feeling when receiving a text message, the importance of replying and ease of use of text messages. Of 1,620 survey participants who used a mobile phone, about one in four (432; 26.7%) had used it for health care in the past three months and most (1,110; 93.5%) of 1,187 who had not wished to use their phone to receive health information. We found that usage of mobile phones is high, several factors influencing usage and an interest of caregivers to use phones for health care in Zhao County, rural China, which can be used to inform studies in settings with similar characteristics. Future work needs to assess factors influencing mobile phone usage in-depth to optimize experiences of users for specific mHealth-based interventions.

  7. Valuation of Water and Emissions in Energy Systems

    EPA Science Inventory

    Price incentives and economic penalties (monetization) are common approaches to control water usage and total direct greenhouse gas emissions (externalities) of industrial systems. We argue that homogenous pricing of externalities provides limited flexibility for mitigating envir...

  8. Modeling the Urban Boundary and Canopy Layers

    EPA Science Inventory

    Today, we are confronted with increasingly more sophisticated application requirements for urban modeling. These include those that address emergency response to acute exposures from toxic releases, health exposure assessments from adverse air quality, energy usage, and character...

  9. What to Do until the Microprocesser Arrives.

    ERIC Educational Resources Information Center

    Barzilla, Frank

    1983-01-01

    Advises administrators how to develop an energy master plan and how to reduce the usage of heating, ventilating, and air conditioning (HVAC) systems by means of a time clock, thermostat, and a scheduled preventive maintenance program. (MLF)

  10. Flexible Residential Smart Grid Simulation Framework

    NASA Astrophysics Data System (ADS)

    Xiang, Wang

    Different scheduling and coordination algorithms controlling household appliances' operations can potentially lead to energy consumption reduction and/or load balancing in conjunction with different electricity pricing methods used in smart grid programs. In order to easily implement different algorithms and evaluate their efficiency against other ideas, a flexible simulation framework is desirable in both research and business fields. However, such a platform is currently lacking or underdeveloped. In this thesis, we provide a simulation framework to focus on demand side residential energy consumption coordination in response to different pricing methods. This simulation framework, equipped with an appliance consumption library using realistic values, aims to closely represent the average usage of different types of appliances. The simulation results of traditional usage yield close matching values compared to surveyed real life consumption records. Several sample coordination algorithms, pricing schemes, and communication scenarios are also implemented to illustrate the use of the simulation framework.

  11. Vibration control in statically indeterminate adaptive truss structures

    NASA Technical Reports Server (NTRS)

    Baycan, C. M.; Utku, Senol; Wada, Ben K.

    1993-01-01

    In this work vibration control of statically indeterminate adaptive truss structures is investigated. Here, the actuators (i.e., length adjusting devices) that are used for vibration control, work against the axial forces caused by the inertial forces. In statically determinate adaptive trusses no axial force is induced by the actuation. The control problem in statically indeterminate trusses may be dominated by the actuation-induced axial element forces. The creation of actuation-induced axial forces puts the system to a higher energy state, thus aggravates the controls. It is shown that by the usage of sufficient number of slave actuators in addition to the actual control actuators, the actuation-induced axial element forces can be nullified, and the control problem of the statically indeterminate adaptive truss problem is reduced to that of a statically determinate one. It is also shown that the usage of slave actuators saves a great amount of control energy and provides robustness for the controls.

  12. Avoidance of wind farms by harbour seals is limited to pile driving activities.

    PubMed

    Russell, Debbie J F; Hastie, Gordon D; Thompson, David; Janik, Vincent M; Hammond, Philip S; Scott-Hayward, Lindesay A S; Matthiopoulos, Jason; Jones, Esther L; McConnell, Bernie J

    2016-12-01

    As part of global efforts to reduce dependence on carbon-based energy sources there has been a rapid increase in the installation of renewable energy devices. The installation and operation of these devices can result in conflicts with wildlife. In the marine environment, mammals may avoid wind farms that are under construction or operating. Such avoidance may lead to more time spent travelling or displacement from key habitats. A paucity of data on at-sea movements of marine mammals around wind farms limits our understanding of the nature of their potential impacts.Here, we present the results of a telemetry study on harbour seals Phoca vitulina in The Wash, south-east England, an area where wind farms are being constructed using impact pile driving. We investigated whether seals avoid wind farms during operation, construction in its entirety, or during piling activity. The study was carried out using historical telemetry data collected prior to any wind farm development and telemetry data collected in 2012 during the construction of one wind farm and the operation of another.Within an operational wind farm, there was a close-to-significant increase in seal usage compared to prior to wind farm development. However, the wind farm was at the edge of a large area of increased usage, so the presence of the wind farm was unlikely to be the cause.There was no significant displacement during construction as a whole. However, during piling, seal usage (abundance) was significantly reduced up to 25 km from the piling activity; within 25 km of the centre of the wind farm, there was a 19 to 83% (95% confidence intervals) decrease in usage compared to during breaks in piling, equating to a mean estimated displacement of 440 individuals. This amounts to significant displacement starting from predicted received levels of between 166 and 178 dB re 1 μPa (p-p) . Displacement was limited to piling activity; within 2 h of cessation of pile driving, seals were distributed as per the non-piling scenario. Synthesis and applications . Our spatial and temporal quantification of avoidance of wind farms by harbour seals is critical to reduce uncertainty and increase robustness in environmental impact assessments of future developments. Specifically, the results will allow policymakers to produce industry guidance on the likelihood of displacement of seals in response to pile driving; the relationship between sound levels and avoidance rates; and the duration of any avoidance, thus allowing far more accurate environmental assessments to be carried out during the consenting process. Further, our results can be used to inform mitigation strategies in terms of both the sound levels likely to cause displacement and what temporal patterns of piling would minimize the magnitude of the energetic impacts of displacement.

  13. Prediction and characterization of application power use in a high-performance computing environment

    DOE PAGES

    Bugbee, Bruce; Phillips, Caleb; Egan, Hilary; ...

    2017-02-27

    Power use in data centers and high-performance computing (HPC) facilities has grown in tandem with increases in the size and number of these facilities. Substantial innovation is needed to enable meaningful reduction in energy footprints in leadership-class HPC systems. In this paper, we focus on characterizing and investigating application-level power usage. We demonstrate potential methods for predicting power usage based on a priori and in situ characteristics. Lastly, we highlight a potential use case of this method through a simulated power-aware scheduler using historical jobs from a real scientific HPC system.

  14. Energy Efficiency I: Automobiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Peter M.

    Most of us probably are not aware of all that's going on to improve the efficiency of energy usage in vehicles, residential climate control, manufacturing, and power management. The bulk of the energy consumption in the US during 2000 was apportioned as 34% for residential and commercial uses, 36.5% for industrial uses, and 26% for transportation. Automobiles in particular are the focus of intense energy conservation efforts. Only a surprising 25% of the fuel consumed by an automobile is converted to useful shalf work. The rest goes to the exhaust gases, coolant, friction and wear.

  15. Regulation of international energy markets: Economic effects of political actions

    NASA Astrophysics Data System (ADS)

    Shcherbakova, Anastasia V.

    Recent increases in volatility of energy prices have led many governments to reevaluate their regard of national energy reserves and reconsider future exploration, production, and consumption patterns. The flurry of activity that has been generated by such price volatility has included large-scale nationalizations of energy sectors, unilateral renegotiations of foreign energy development contracts, and expropriations of resources from foreign energy firms on one hand, and on the other hand more rapid energy sector liberalization, intensified search for and development of renewable fuels and technologies, and development of incentives for increased energy efficiency and conservation. The aim of this dissertation is to examine and quantify the extent of positive and negative effects that have resulted from some of these activities. The first chapter focuses on quantifying the effect that nationalistic sentiment has had on economic attractiveness of energy sectors during the decade prior to the recent global economic crisis, as measured by foreign direct investment (FDI) inflows. Empirical results demonstrate that both political and economic conditions play an important role in investors' decisions. A combination of investment friendliness, corruption levels, and democracy all help to explain the trends in energy-sector investment levels over time in my sample countries, although differences in the types of corruption existing in these nations do not. Investment levels, in turn, appear to influence future levels of oil production, underscoring the significance of good investment policies for future success of energy sectors. Chapter two considers the response of energy stock prices to severe regulatory actions. It employs an event study framework to examine causal effects of critical informational announcements (i.e. events of expropriation and nationalization) on daily returns and cumulative losses in firm value of energy corporations. Results show that a firm's participation in a regulated market results in an average decline in its stock returns of up to 50 basis points per day, and a cumulative loss of more than 3.5% of its market value. Negative shocks to securities returns persist for at least two months. Participation in a regulated market, however, is not always unfavorable, as involved firms not directly targeted by regulatory action appear to gain sizable risk premiums. Additional evidence suggests that, although there is no direct linear relationship between firm size and effect magnitude, large firms tend to be hurt more in the short term, while small firms suffer bigger declines in returns over a longer time period. The last chapter turns to global electricity sectors to examine the development of Demand Response (DR) programs, which have become popular means of addressing the sector's central market failure of pricing below marginal generation cost. DR programs incorporate demand signals into retail electricity rates, and have the potential to effectively and inexpensively improve grid reliability and increase end-use efficiency. However, DR faces many challenges, arguably the most important of which is a general lack of information among consumers regarding usage levels and existence of alternative providers and rate plans. Financial considerations, lack of access to technological infrastructure, and misaligned producer incentives also play an important role in DR's limited success.

  16. Electric Energy Management in the Smart Home: Perspectives on Enabling Technologies and Consumer Behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zipperer, Adam; Aloise-Young, Patricia A.; Suryanarayanan, Siddharth

    2013-11-01

    Smart homes hold the potential for increasing energy efficiency, decreasing costs of energy use, decreasing the carbon footprint by including renewable resources, and transforming the role of the occupant. At the crux of the smart home is an efficient electric energy management system that is enabled by emerging technologies in the electric grid and consumer electronics. This article presents a discussion of the state-of-the-art in electricity management in smart homes, the various enabling technologies that will accelerate this concept, and topics around consumer behavior with respect to energy usage.

  17. Electric Energy Management in the Smart Home: Perspectives on Enabling Technologies and Consumer Behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zipperer, A.; Aloise-Young, P. A.; Suryanarayanan, S.

    2013-08-01

    Smart homes hold the potential for increasing energy efficiency, decreasing costs of energy use, decreasing the carbon footprint by including renewable resources, and trans-forming the role of the occupant. At the crux of the smart home is an efficient electric energy management system that is enabled by emerging technologies in the electricity grid and consumer electronics. This article presents a discussion of the state-of-the-art in electricity management in smart homes, the various enabling technologies that will accelerate this concept, and topics around consumer behavior with respect to energy usage.

  18. Cap-proximal nucleotides via differential eIF4E binding and alternative promoter usage mediate translational response to energy stress.

    PubMed

    Tamarkin-Ben-Harush, Ana; Vasseur, Jean-Jacques; Debart, Françoise; Ulitsky, Igor; Dikstein, Rivka

    2017-02-08

    Transcription start-site (TSS) selection and alternative promoter (AP) usage contribute to gene expression complexity but little is known about their impact on translation. Here we performed TSS mapping of the translatome following energy stress. Assessing the contribution of cap-proximal TSS nucleotides, we found dramatic effect on translation only upon stress. As eIF4E levels were reduced, we determined its binding to capped-RNAs with different initiating nucleotides and found the lowest affinity to 5'cytidine in correlation with the translational stress-response. In addition, the number of differentially translated APs was elevated following stress. These include novel glucose starvation-induced downstream transcripts for the translation regulators eIF4A and Pabp, which are also translationally-induced despite general translational inhibition. The resultant eIF4A protein is N-terminally truncated and acts as eIF4A inhibitor. The induced Pabp isoform has shorter 5'UTR removing an auto-inhibitory element. Our findings uncovered several levels of coordination of transcription and translation responses to energy stress.

  19. Study on load forecasting to data centers of high power density based on power usage effectiveness

    NASA Astrophysics Data System (ADS)

    Zhou, C. C.; Zhang, F.; Yuan, Z.; Zhou, L. M.; Wang, F. M.; Li, W.; Yang, J. H.

    2016-08-01

    There is usually considerable energy consumption in data centers. Load forecasting to data centers is in favor of formulating regional load density indexes and of great benefit to getting regional spatial load forecasting more accurately. The building structure and the other influential factors, i.e. equipment, geographic and climatic conditions, are considered for the data centers, and a method to forecast the load of the data centers based on power usage effectiveness is proposed. The cooling capacity of a data center and the index of the power usage effectiveness are used to forecast the power load of the data center in the method. The cooling capacity is obtained by calculating the heat load of the data center. The index is estimated using the group decision-making method of mixed language information. An example is given to prove the applicability and accuracy of this method.

  20. Segmentation of Natural Gas Customers in Industrial Sector Using Self-Organizing Map (SOM) Method

    NASA Astrophysics Data System (ADS)

    Masbar Rus, A. M.; Pramudita, R.; Surjandari, I.

    2018-03-01

    The usage of the natural gas which is non-renewable energy, needs to be more efficient. Therefore, customer segmentation becomes necessary to set up a marketing strategy to be right on target or to determine an appropriate fee. This research was conducted at PT PGN using one of data mining method, i.e. Self-Organizing Map (SOM). The clustering process is based on the characteristic of its customers as a reference to create the customer segmentation of natural gas customers. The input variables of this research are variable of area, type of customer, the industrial sector, the average usage, standard deviation of the usage, and the total deviation. As a result, 37 cluster and 9 segment from 838 customer data are formed. These 9 segments then employed to illustrate the general characteristic of the natural gas customer of PT PGN.

  1. Thermal storage system flops at Illinois State office building

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ponczak, G.

    1986-02-03

    A thermal storage and electric resistive heating system in the new State of Illinois building in Chicago has used about 65% more electricity in its first year of operation than building designers originally predicted, according to state government sources. The state proposes to spend about $2 million to fine tune the system this year. Total first year electricity usage for the all-electric, 1.15 million square foot building was expected to be 18.7 million kilowatt hours (kWh). But according to recent energy bills, actual usage for the first year of operation, ending in December, was 31 million kWh, a usage overrunmore » that has cost the state of Illinois an extra $500,000. Some industry sources blame the thermal storage system and the electric heat system, which were untried when proposed in 1980, for much of the overrun, while others blame the building design.« less

  2. Formation of readiness for future physics teachers by using interactive learning tools

    NASA Astrophysics Data System (ADS)

    Kulikova, N. U.; Danilchuk, E. V.; Zhidkova, A. V.

    2017-01-01

    In this article we give the reviewing of approaches to the preparedness of future physics teachers for the usage of interactive means of education as an important part of their professional activity. We discuss the key concepts such as interactivity, an interactive dialogue, and interactive means of education. The conception of interactive means of education as a tool of teachers' professional activity, which provides a way for the students to intensify their learning in class by using interactive tools and electronic educational resources, is validated. Furthermore, it is proved that interactive means of education allow the students to intensify their learning in the course of an interactive dialogue by means of organization different types of feedback in electronic educational resources (the program behavior depending on a user actions in the form of comments, prompts, elements of arrangement of objects, etc, the control and correction of students' actions by the program, providing with recommendations for further learning, carrying out constant access to reference information, etc), involving in different types of educational activity (modeling, investigation, etc), self-selection of time, speed, content of learning, complexity and priority of the usage of educational information on the screen, etc. By training students - future teachers of physics authors consider technological aspects, methodical features and examples of creation of these resources for physics lesson.

  3. 20∶60∶20 - Differences in Energy Behaviour and Conservation between and within Households with Electricity Monitors

    PubMed Central

    Murtagh, Niamh; Gatersleben, Birgitta; Uzzell, David

    2014-01-01

    The introduction of electricity monitors (in-home displays; IHDs), which show accurate and up-to-the-minute energy usage, is expected to lead to reduction in consumption. Studies of feedback on domestic electricity use have generally supported this view. However, such studies also demonstrate wide variation between households. Examining the heterogeneity of responses is essential for understanding the actual and potential effectiveness of IHDs and in order to target interventions effectively. To explore differences between households' responses to IHDs, we conducted a qualitative study with 21 households who had an IHD for more than six months. Of the 21, only four households continued to refer to the IHD and the findings suggest that attempts to reduce energy consumption were situated in wider social and physical contexts. Further, the participants demonstrated energy saving behaviour before and outside of IHD usage. The patterns of energy behaviours and attempts at electricity conservation could best be understood by categorising the households into three types: the Monitor Enthusiasts (20%), the Aspiring Energy Savers (60%) and the Energy Non-Engaged (20%). The factors of importance in energy behaviour differed between the categories. Financial savings contributed to efforts to reduce energy use but only up to boundaries which varied considerably between households. Social practices and social relationships appeared to constrain what actions households were prepared to undertake, illuminating aspects of inter-household variation. Within the household, all energy users were not equal and we found that women were particularly influential on energy use through their primary responsibility for domestic labour on behalf of the household. The implications of the findings for environmental campaigning are discussed. PMID:24642946

  4. 20:60:20--differences in energy behaviour and conservation between and within households with electricity monitors.

    PubMed

    Murtagh, Niamh; Gatersleben, Birgitta; Uzzell, David

    2014-01-01

    The introduction of electricity monitors (in-home displays; IHDs), which show accurate and up-to-the-minute energy usage, is expected to lead to reduction in consumption. Studies of feedback on domestic electricity use have generally supported this view. However, such studies also demonstrate wide variation between households. Examining the heterogeneity of responses is essential for understanding the actual and potential effectiveness of IHDs and in order to target interventions effectively. To explore differences between households' responses to IHDs, we conducted a qualitative study with 21 households who had an IHD for more than six months. Of the 21, only four households continued to refer to the IHD and the findings suggest that attempts to reduce energy consumption were situated in wider social and physical contexts. Further, the participants demonstrated energy saving behaviour before and outside of IHD usage. The patterns of energy behaviours and attempts at electricity conservation could best be understood by categorising the households into three types: the Monitor Enthusiasts (20%), the Aspiring Energy Savers (60%) and the Energy Non-Engaged (20%). The factors of importance in energy behaviour differed between the categories. Financial savings contributed to efforts to reduce energy use but only up to boundaries which varied considerably between households. Social practices and social relationships appeared to constrain what actions households were prepared to undertake, illuminating aspects of inter-household variation. Within the household, all energy users were not equal and we found that women were particularly influential on energy use through their primary responsibility for domestic labour on behalf of the household. The implications of the findings for environmental campaigning are discussed.

  5. Role of the Freight Sector in Future Climate Change Mitigation Scenarios

    DOE PAGES

    Muratori, Matteo; Smith, Steven J.; Kyle, Page; ...

    2017-02-27

    The freight sector's role is examined using the Global Change Assessment Model (GCAM) for a range of climate change mitigation scenarios and future freight demand assumptions. Energy usage and CO 2 emissions from freight have historically grown with a correlation to GDP, and there is limited evidence of near-term global decoupling of freight demand from GDP. Over the 21 st century, greenhouse gas (GHG) emissions from freight are projected to grow faster than passenger transportation or other major end-use sectors, with the magnitude of growth dependent on the assumed extent of long-term decoupling. In climate change mitigation scenarios that applymore » a price to GHG emissions, mitigation of freight emissions (including the effects of demand elasticity, mode and technology shifting, and fuel substitution) is more limited than for other demand sectors. In such scenarios, shifting to less-emitting transportation modes and technologies is projected to play a relatively small role in reducing freight emissions in GCAM. Finally, by contrast, changes in the supply chain of liquid fuels that reduce the fuel carbon intensity, especially deriving from large-scale use of biofuels coupled to carbon capture and storage technologies, are responsible for the majority of freight emissions mitigation, followed by price-induced reduction in freight demand services.« less

  6. Role of the Freight Sector in Future Climate Change Mitigation Scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muratori, Matteo; Smith, Steven J.; Kyle, Page

    The freight sector's role is examined using the Global Change Assessment Model (GCAM) for a range of climate change mitigation scenarios and future freight demand assumptions. Energy usage and CO 2 emissions from freight have historically grown with a correlation to GDP, and there is limited evidence of near-term global decoupling of freight demand from GDP. Over the 21 st century, greenhouse gas (GHG) emissions from freight are projected to grow faster than passenger transportation or other major end-use sectors, with the magnitude of growth dependent on the assumed extent of long-term decoupling. In climate change mitigation scenarios that applymore » a price to GHG emissions, mitigation of freight emissions (including the effects of demand elasticity, mode and technology shifting, and fuel substitution) is more limited than for other demand sectors. In such scenarios, shifting to less-emitting transportation modes and technologies is projected to play a relatively small role in reducing freight emissions in GCAM. Finally, by contrast, changes in the supply chain of liquid fuels that reduce the fuel carbon intensity, especially deriving from large-scale use of biofuels coupled to carbon capture and storage technologies, are responsible for the majority of freight emissions mitigation, followed by price-induced reduction in freight demand services.« less

  7. Role of the Freight Sector in Future Climate Change Mitigation Scenarios.

    PubMed

    Muratori, Matteo; Smith, Steven J; Kyle, Page; Link, Robert; Mignone, Bryan K; Kheshgi, Haroon S

    2017-03-21

    The freight sector's role is examined using the Global Change Assessment Model (GCAM) for a range of climate change mitigation scenarios and future freight demand assumptions. Energy usage and CO 2 emissions from freight have historically grown with a correlation to GDP, and there is limited evidence of near-term global decoupling of freight demand from GDP. Over the 21 st century, greenhouse gas (GHG) emissions from freight are projected to grow faster than passenger transportation or other major end-use sectors, with the magnitude of growth dependent on the assumed extent of long-term decoupling. In climate change mitigation scenarios that apply a price to GHG emissions, mitigation of freight emissions (including the effects of demand elasticity, mode and technology shifting, and fuel substitution) is more limited than for other demand sectors. In such scenarios, shifting to less-emitting transportation modes and technologies is projected to play a relatively small role in reducing freight emissions in GCAM. By contrast, changes in the supply chain of liquid fuels that reduce the fuel carbon intensity, especially deriving from large-scale use of biofuels coupled to carbon capture and storage technologies, are responsible for the majority of freight emissions mitigation, followed by price-induced reduction in freight demand services.

  8. Environmental impact assessment using a GSR tool for a landfarming case in South Korea.

    PubMed

    Lim, Hyeongseok; Kwon, Ip-Sae; Lee, Hanuk; Park, Jae-Woo

    2016-04-01

    An environmental impact assessment of a landfarming process, which was performed at an actual petroleum-contaminated site, was conducted using a green and sustainable remediation (GSR) tool in this study. The landfarming process was divided into four stages: site preparation, installation, system operation, and system dismantling/waste disposal. The environmental footprints of greenhouse gas (GHG) emissions, water consumption, total energy usage, and air pollutants (SOx, NOx, and PM10) were analyzed. GHG emissions and water consumption were approximately 276 metric tons and 7.90E + 05 gal, respectively, in stage III, where they were the highest due to the consumables and equipment use in the system operation. Total energy usage had the highest value of 1.54E + 03 MMBTU in stage II due to material production. The SOx and NOx emissions primarily occurred in stages I and II due to energy usage. The PM10 was mostly emitted in stages I and III and was associated with heavy use of equipment. To reduce the environmental footprints, biodiesel and sunlight were suggested as alternatives in this study. The GHG and SOx emissions decreased to 1.7 and 4.4E-04 metric tons, respectively, on the basis of total emissions with a 1 % increase in biodiesel content, but the NOx emissions increased to 5.6E-03 metric tons. If sunlight was used instead of electricity, the GHG and NOx emissions could be reduced by as much as 79 and 84 %, respectively, and the SOx emissions could also be reduced.

  9. NCI at Frederick Team Receives 2014 HHS Green Champions Award | Poster

    Cancer.gov

    A team of NCI and Leidos Biomedical Research employees at NCI at Frederick received the Energy and Fleet Management Award, one of the 2014 Department of Health and Human Services (HHS) Green Champions Awards, for comparing the costs and energy usage of two -80°C freezer technologies. This was the first scientific study to be jointly conducted by Leidos Biomedical Research’s

  10. Solar power for energy sustainability and environmental friendliness of Curtin University Sarawak

    NASA Astrophysics Data System (ADS)

    Palanichamy, C.; Goh, Alvin

    2016-03-01

    The demand on electrical energy is rapidly increasing. Everything around us requires electrical energy either during its production or usage stage. Sustainability has become the main concern nowadays as the availability of fossil fuels is limited. As renewable energy is the path-way to energy sustainability and environmental friendly environment, this paper proposes a solar power system for Curtin University Sarawak to reduce its electricity consumption and greenhouse gas emissions. The proposed 208 kW solar system saves an energy consumption of more than 380,000 kWh per year, and a CO2 offset by 285 Tons per year

  11. Cherenkov and scintillation light separation on the CheSS experiment

    NASA Astrophysics Data System (ADS)

    Caravaca, Javier; Land, Benjamin; Descamps, Freija; Orebi Gann, Gabriel D.

    2016-09-01

    Separation of the scintillation and Cherenkov light produced in liquid scintillators enables outstanding capabilities for future particle detectors, the most relevant being: particle directionality information in a low energy threshold detector and improved particle identification. The CheSS experiment uses an array of small, fast photomultipliers (PMTs) and state-of-the-art electronics to demonstrate the reconstruction of a Cherenkov ring in liquid scintillator using two techniques: based on the photon density and using the photon hit time information. A charged particle ionizing a scintillation medium produces a prompt Cherenkov cone and late isotropic scintillation light, typically delayed by several ns. The fast response of our PMTs and DAQ provides a precision well below the ns level, making possible the time separation. Furthermore, the usage of the new developed water-based liquid scintillators (WbLS) enhances the separation since it allows tuning of the Cherenkov/Scintillation ratio. Latest results on the separation for pure liquid scintillators and WbLS will be presented.

  12. The NIFFTE Data Acquisition System

    NASA Astrophysics Data System (ADS)

    Qu, Hai; Niffte Collaboration

    2011-10-01

    The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) will employ a novel, high granularity, pressurized Time Projection Chamber to measure fission cross-sections of the major actinides to high precision over a wide incident neutron energy range. These results will improve nuclear data accuracy and benefit the fuel cycle in the future. The NIFFTE data acquisition system (DAQ) has been designed and implemented on the prototype TPC. Lessons learned from engineering runs have been incorporated into some design changes that are being implemented before the next run cycle. A fully instrumented sextant of EtherDAQ cards (16 sectors, 496 channels) will be used for the next run cycle. The Maximum Integrated Data Acquisition System (MIDAS) has been chosen and customized to configure and run the experiment. It also meets the requirement for remote control and monitoring of the system. The integration of the MIDAS online database with the persistent PostgreSQL database has been implemented for experiment usage. The detailed design and current status of the DAQ system will be presented.

  13. Pulse shape discrimination performance of inverted coaxial Ge detectors

    NASA Astrophysics Data System (ADS)

    Domula, A.; Hult, M.; Kermaïdic, Y.; Marissens, G.; Schwingenheuer, B.; Wester, T.; Zuber, K.

    2018-05-01

    We report on the characterization of two inverted coaxial Ge detectors in the context of being employed in future 76Ge neutrinoless double beta (0 νββ) decay experiments. It is an advantage that such detectors can be produced with bigger Ge mass as compared to the planar Broad Energy Ge (BEGe) or p-type Point Contact (PPC) detectors that are currently used in the GERDA and MAJORANA DEMONSTRATOR 0 νββ decay experiments respectively. This will result in a lower background for the search of 0 νββ decay due to a reduction of detector surface to volume ratio, cables, electronics and holders which are dominating nearby radioactive sources. The measured resolution near the 76Ge Q-value at 2039 keV is 2.3 keV FWHM and their pulse-shape discrimination of background events are similar to BEGe and PPC detectors. It is concluded that this type of Ge-detector is suitable for usage in 76Ge 0 νββ decay experiments.

  14. MMAPDNG: A new, fast code backed by a memory-mapped database for simulating delayed γ-ray emission with MCNPX package

    NASA Astrophysics Data System (ADS)

    Lou, Tak Pui; Ludewigt, Bernhard

    2015-09-01

    The simulation of the emission of beta-delayed gamma rays following nuclear fission and the calculation of time-dependent energy spectra is a computational challenge. The widely used radiation transport code MCNPX includes a delayed gamma-ray routine that is inefficient and not suitable for simulating complex problems. This paper describes the code "MMAPDNG" (Memory-Mapped Delayed Neutron and Gamma), an optimized delayed gamma module written in C, discusses usage and merits of the code, and presents results. The approach is based on storing required Fission Product Yield (FPY) data, decay data, and delayed particle data in a memory-mapped file. When compared to the original delayed gamma-ray code in MCNPX, memory utilization is reduced by two orders of magnitude and the ray sampling is sped up by three orders of magnitude. Other delayed particles such as neutrons and electrons can be implemented in future versions of MMAPDNG code using its existing framework.

  15. The Effect of Timing and Frequency of Push Notifications on Usage of a Smartphone-Based Stress Management Intervention: An Exploratory Trial.

    PubMed

    Morrison, Leanne G; Hargood, Charlie; Pejovic, Veljko; Geraghty, Adam W A; Lloyd, Scott; Goodman, Natalie; Michaelides, Danius T; Weston, Anna; Musolesi, Mirco; Weal, Mark J; Yardley, Lucy

    2017-01-01

    Push notifications offer a promising strategy for enhancing engagement with smartphone-based health interventions. Intelligent sensor-driven machine learning models may improve the timeliness of notifications by adapting delivery to a user's current context (e.g. location). This exploratory mixed-methods study examined the potential impact of timing and frequency on notification response and usage of Healthy Mind, a smartphone-based stress management intervention. 77 participants were randomised to use one of three versions of Healthy Mind that provided: intelligent notifications; daily notifications within pre-defined time frames; or occasional notifications within pre-defined time frames. Notification response and Healthy Mind usage were automatically recorded. Telephone interviews explored participants' experiences of using Healthy Mind. Participants in the intelligent and daily conditions viewed (d = .47, .44 respectively) and actioned (d = .50, .43 respectively) more notifications compared to the occasional group. Notification group had no meaningful effects on percentage of notifications viewed or usage of Healthy Mind. No meaningful differences were indicated between the intelligent and non-intelligent groups. Our findings suggest that frequent notifications may encourage greater exposure to intervention content without deterring engagement, but adaptive tailoring of notification timing does not always enhance their use. Hypotheses generated from this study require testing in future work. ISRCTN67177737.

  16. The Effect of Technological Devices on Cervical Lordosis

    PubMed Central

    Öğrenci, Ahmet; Koban, Orkun; Yaman, Onur; Dalbayrak, Sedat; Yılmaz, Mesut

    2018-01-01

    PURPOSE: There is a need for cervical flexion and even cervical hyperflexion for the use of technological devices, especially mobile phones. We investigated the effect of this use on the cervical lordosis angle. MATERIAL AND METHODS: A group of 156 patients who applied with only neck pain between 2013–2016 and had no additional problems were included. Patients are specifically questioned about mobile phone, tablet, and other devices usage. The value obtained by multiplying the year of usage and the average usage (hour) in daily life was determined as the total usage value (an average hour per day x year: hy). Cervical lordosis angles were statistically compared with the total time of use. RESULTS: In the general ROC analysis, the cut-off value was found to be 20.5 hy. When the cut-off value is tested, the overall accuracy is very good with 72.4%. The true estimate of true risk and non-risk is quite high. The ROC analysis is statistically significant. CONCLUSION: The use of computing devices, especially mobile telephones, and the increase in the flexion of the cervical spine indicate that cervical vertebral problems will increase even in younger people in future. Also, to using with attention at this point, ergonomic devices must also be developed. PMID:29610602

  17. High Capacity Cathode Materials for Next Generation Energy Storage

    NASA Astrophysics Data System (ADS)

    Papandrea, Benjamin John

    Energy storage devices are of increasing importance for applications in mobile electronics, hybrid electric vehicles, and can also play a critical role in renewable energy harvesting, conversion and storage. Since its commercial inception in the 1990's, the lithium-ion battery represents the dominant energy storage technology for mobile power supply today. However, the total capacity of lithium-ion batteries is largely limited by the theoretical capacities of the cathode materials such as LiCoO2 (272 mAh g-1), and LiFePO4 (170 mAh g-1), and cannot satisfy the increasing consumer demand, thus new cathode materials with higher capacities must be explored. Two of the most promising cathode materials with significantly larger theoretical capacities are sulfur (1675 mAh g-1) and air, specifically the oxygen (3840 mAh g-1). However, the usage of either of these cathodic materials is plagued with numerous issues that must be overcome before their commercialization. In the first part of my dissertation, we investigated the usage of a three-dimensional graphene membrane for a high energy density lithium-air (Li-Air) battery in ambient condition. One of the issues with Li-Air batteries is the many side reaction that can occur during discharge in ambient condition, especially with water vapor. Using a hydrophobic tortuous three-dimensional graphene membrane we are able to inhibit the diffusion of water vapor and create a lithium-air battery that cycles over 2000 times with a capacity limited at 140 mAh g-1, over 100 cycles with a capacity limited at 1425 mAh g-1, and over 20 cycles at the high capacity of 5700 mAh g-1. In the second part of my dissertation, we investigate the usage of a three-dimensional graphene aerogel to maximize the loading of sulfur to create a freestanding electrode with high capacity for a lithium-sulfur (Li-S) battery. We demonstrated that our three-dimensional graphene aerogel could sustain a loading of 95% by weight, and we achieved a capacity of 969 mAh g-1 normalized by the entire electrode with a 90% sulfur loading. In the third and final part of my dissertation, we investigate the usage of catalysts for both Li-Air, and Li-S batteries. We demonstrate how different noble metal configurations are optimal for Li-Air batteries, showcase how different metals effect the sulfur reduction reaction, and how both Pt and Mn increase the capacity of Li-S battery by interacting with the sulfur redox reactions intermediate species.

  18. Energy optimization analysis of the more electric aircraft

    NASA Astrophysics Data System (ADS)

    Liu, Yitao; Deng, Junxiang; Liu, Chao; Li, Sen

    2018-02-01

    The More Electric Aircraft (MEA) underlines the utilization of the electrical power to drive the non-propulsive aircraft systems. The critical features of the MEA including no-bleed engine architecture and advanced electrical system are introduced. Energy and exergy analysis is conducted for the MEA, and comparison of the effectiveness and efficiency of the energy usage between conventional aircraft and the MEA is conducted. The results indicate that one of the advantages of the MEA architecture is the greater efficiency gained in terms of reduced fuel consumption.

  19. Global warming and air transport : meeting the challenge of sustainable growth

    DOT National Transportation Integrated Search

    2009-04-01

    Aviation impacts community noise footprints, air quality, water quality, energy usage and availability, and the global climate. Trends show environmental impacts from aircraft noise and aviation emissions will be a critical constraint on capacity gro...

  20. One Employer's Viewpoint: What Does Our Future Geoscience Workforce Need to Do and Why Will Workforce Diversity Be Key?

    NASA Astrophysics Data System (ADS)

    Loudin, M. G.; Summa, L. L.

    2007-12-01

    Global economic growth will continue to result in rising demand for energy, with estimates of 50 percent growth in the world's energy usage by 2030 being commonplace. This challenge to energy producers is compounded by the natural production declines associated with existing oil and gas fields, and so the demands on our future workforce will be extraordinary. There is little doubt that the oil and gas resources we will be utilizing in the future will come from different geographies, will be sourced from different geological systems, and will be the result of using different, more complex technological approaches. Relative growth in production outside of North America and Europe means that there will generally be a premium on students from outside these areas. It also means that an even greater appreciation of non-Western cultures is in order, for employers, faculties, and students. We are already seeing a significant shift in the geological systems that host our resources and this shift is likely permanent. Carbonate systems have become much more important, as have structurally complex terranes, but these changes pale in comparison to an increasing reliance on low permeability, resource-bearing rocks that were not even considered as potential reservoirs 10 years ago. There will doubtless be new tools and measurements which will help us succeed in this new environment, but the most valuable approaches will involve bold, integrated, systemic hypotheses at basinal and planetary scales. The recent publication of global controls on carbonate rock formation represents an early example of such an approach. To generate bold new hypotheses, it is crucial that the scientific community not engage in "groupthink." We think that organizations that promote diversity in ideas and approaches will benefit most, and a diverse workforce is the best guarantor of diverse ideas. Against this background, energy and mineral companies are facing enormous changes in their workforces as the baby-boomer generation gives way to Generations X and Y. This certainly presents challenges to our ability to recruit and develop new talent, but it also presents unprecedented opportunities to increase workforce diversity. Using a global approach to hiring Geoscientists, we are making significant progress in achieving greater diversity with respect to gender, under-represented groups, cultural origins, and skills. Nevertheless, given the enormity of the task, we are intensely interested in a dialogue with academia on ways to increase students' diversity as well as their abilities to conceive the bold, integrated, systemic hypotheses that we will need to keep pace with global energy demand.

  1. Ethical guidelines, animal profile, various animal models used in periodontal research with alternatives and future perspectives.

    PubMed

    Pasupuleti, Mohan Kumar; Molahally, Subramanya Shetty; Salwaji, Supraja

    2016-01-01

    Laboratory animal models serve as a facilitator to investigate the etiopathogenesis of periodontal disease, are used to know the efficacy of reconstructive and regenerative procedures, and are also helpful in evaluation of newer therapeutic techniques including laser and implant therapies prior to application in the human beings. The aim of this review is to know the different animal models used in various specialties of dental research and to know the ethical guidelines prior to the usage of experimental models with main emphasis on how to refine, replace, and reduce the number of animal models usage in the laboratory. An online search for experimental animal models used in dental research was performed using MEDLINE/PubMed database. Publications from 2009 to May 2013 in the specialty of periodontics were included in writing this review. A total of 652 references were published in PubMed/MEDLINE databases based on the search terms used. Out of 245 studies, 241 were related to the periodontal research published in English from 2009 to 2013. Relevant papers were chosen according to the inclusion and exclusion criteria. After extensive electronic and hand search on animal models, it has been observed that various animal models were used in dental research. Search on animal models used for dental research purpose revealed that various animals such as rats, mice, guinea pigs, rabbit, beagle dogs, goats, and nonhuman primates were extensively used. However, with the new advancement of ex vivo animal models, it has become easy to investigate disease pathogenesis and to test the efficacy of newer therapeutic modalities with the reduced usage of animal models. This review summarized the large amount of literature on animal models used in periodontal research with main emphasis on ethical guidelines and on reducing the animal model usage in future perspective.

  2. Ethical guidelines, animal profile, various animal models used in periodontal research with alternatives and future perspectives

    PubMed Central

    Pasupuleti, Mohan Kumar; Molahally, Subramanya Shetty; Salwaji, Supraja

    2016-01-01

    Laboratory animal models serve as a facilitator to investigate the etiopathogenesis of periodontal disease, are used to know the efficacy of reconstructive and regenerative procedures, and are also helpful in evaluation of newer therapeutic techniques including laser and implant therapies prior to application in the human beings. The aim of this review is to know the different animal models used in various specialties of dental research and to know the ethical guidelines prior to the usage of experimental models with main emphasis on how to refine, replace, and reduce the number of animal models usage in the laboratory. An online search for experimental animal models used in dental research was performed using MEDLINE/PubMed database. Publications from 2009 to May 2013 in the specialty of periodontics were included in writing this review. A total of 652 references were published in PubMed/MEDLINE databases based on the search terms used. Out of 245 studies, 241 were related to the periodontal research published in English from 2009 to 2013. Relevant papers were chosen according to the inclusion and exclusion criteria. After extensive electronic and hand search on animal models, it has been observed that various animal models were used in dental research. Search on animal models used for dental research purpose revealed that various animals such as rats, mice, guinea pigs, rabbit, beagle dogs, goats, and nonhuman primates were extensively used. However, with the new advancement of ex vivo animal models, it has become easy to investigate disease pathogenesis and to test the efficacy of newer therapeutic modalities with the reduced usage of animal models. This review summarized the large amount of literature on animal models used in periodontal research with main emphasis on ethical guidelines and on reducing the animal model usage in future perspective. PMID:28298815

  3. Introductory Physics Students' Physics and Mathematics Epistemologies

    NASA Astrophysics Data System (ADS)

    Scanlon, Erin M.

    The purpose of this three study dissertation is to investigate why students are enrolled in introductory physics courses experience difficulties in being successful; one possible source of their difficulties is related to their epistemology. In order to investigate students' epistemologies about mathematics and physics, students were observed solving physics problems in groups during a laboratory course (study 1) and while solving physics and mathematics problems individually during office-hour sessions (study 2). The Epistemological Resources theoretical framework was employed (Hammer & Elby, 2002). Using emergent and a priori epistemological resource operationalizations (Jones, 2015), 25 distinct epistemological resources were identified in study 1. Differences in physics epistemological resource usage between students of varying academic background (as measured by their number of previously completed mathematics and science classes were identified. By employing an external (Jones, 2015) and internal (Scanlon, 2016) a priori epistemological resource coding scheme, a total of 17 distinct epistemological resources were identified in study 2. The data were sampled to compare the mathematics and physics epistemological resource usage of participants with consistent and inconsistent sign usage in an energy conservation physics problem in order to provide a meaningful context for discussion. Participants of the same sign usage group employed epistemological resources similarly. Conversely, participants in different groups had significantly different physics epistemological resource usage patterns. Finally, student epistemological resource usage patterns from the first two studies were compared to course outcomes in order to determine implications for practice (study 3). Educators must be aware of and address the epistemological underpinnings of students' difficulties in introductory physics courses.

  4. Livestock Production in the UK in the 21st Century: A Perfect Storm Averted?

    PubMed Central

    Wathes, Christopher M.; Buller, Henry; Maggs, Heather; Campbell, Madeleine L.

    2013-01-01

    Simple Summary The global rise in demand for animal products for human consumption may well have an increasingly significant impact upon the natural environment, human health and the lives of farmed animals. This paper reviews some of the evidence for that impact and the future trajectories for livestock farming that it may well entail. Abstract There is a school of thought that future demand for meat and other farm animal products is unsustainable for several reasons, including greenhouse gas emissions, especially from ruminants; standards of farm animal health and welfare, especially when farm animals are kept intensively; efficiency of conversion by livestock of solar energy into (human) food, particularly by pigs and poultry; water availability and usage for all types of agricultural production, including livestock; and human health and consumption of meat, eggs and milk. Demand for meat is forecast to rise as a result of global population growth and increasing affluence. These issues buttress an impending perfect storm of food shortages, scarce water and insufficient energy, which is likely to coincide with global population reaching about 9 billion people in 2030 (pace Beddington). This paper examines global demand for animal products, the narrative of ‘sustainable intensification’ and the implications of each for the future of farm animal welfare. In the UK, we suggest that, though non-ruminant farming may become unsustainable, ruminant agriculture will continue to prosper because cows, sheep and goats utilize grass and other herbage that cannot be consumed directly by humans, especially on land that is unsuitable for other purposes. However, the demand for meat and other livestock-based food is often for pork, eggs and chicken from grain-fed pigs and poultry. The consequences of such a perfect storm are beginning to be incorporated in long-term business planning by retailers and others. Nevertheless, marketing sustainable animal produce will require considerable innovation and flair in public and private policies if marketing messages are to be optimized and consumer behaviour modified. PMID:26479522

  5. Estimating caffeine intake from energy drinks and dietary supplements in the United States.

    PubMed

    Bailey, Regan L; Saldanha, Leila G; Gahche, Jaime J; Dwyer, Johanna T

    2014-10-01

    No consistent definition exists for energy products in the United States. These products have been marketed and sold as beverages (conventional foods), energy shots (dietary supplements), and in pill or tablet form. Recently, the number of available products has surged, and formulations have changed to include caffeine. To help characterize the use of caffeine-containing energy products in the United States, three sources of data were analyzed: sales data, data from federal sources, and reports from the Drug Abuse Warning Network. These data indicate that sales of caffeine-containing energy products and emergency room visits involving their consumption appear to be increasing over time. Data from the National Health and Nutrition Examination Survey (NHANES) 2007-2010 indicate that 2.7% [standard error (SE) 0.2%] of the US population ≥1 year of age used a caffeine-containing energy product, providing approximately 150-200 mg/day of caffeine per day in addition to caffeine from traditional sources like coffee, tea, and colas. The highest usage of these products was among males between the ages of 19 and 30 years (7.6%, SE 1.0). Although the prevalence of caffeine-containing energy product use remains low overall in the US population, certain subgroups appear to be using these products in larger amounts. Several challenges remain in determining the level of caffeine exposure from and accurate usage patterns of caffeine-containing energy products. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  6. Insights from Smart Meters. Ramp-up, dependability, and short-term persistence of savings from Home Energy Reports

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Todd, Annika; Perry, Michael; Smith, Brian

    Smart meters, smart thermostats, and other new technologies provide previously unavailable high-frequency and location-specific energy usage data. Many utilities are now able to capture real-time, customer specific hourly interval usage data for a large proportion of their residential and small commercial customers. These vast, constantly growing streams of rich data (or, “big data”) have the potential to provide novel insights into key policy questions about how people make energy decisions. The richness and granularity of these data enable many types of creative and cutting-edge analytics. Technically sophisticated and rigorous statistical techniques can be used to pull useful insights out ofmore » this high-frequency, human-focused data. In this series, we call this “behavior analytics.” This kind of analytics has the potential to provide tremendous value to a wide range of energy programs. For example, disaggregated and heterogeneous information about actual energy use allows energy efficiency (EE) and/or demand response (DR) program implementers to target specific programs to specific households; enables evaluation, measurement and verification (EM&V) of energy efficiency programs to be performed on a much shorter time horizon than was previously possible; and may provide better insights into the energy and peak hour savings associated with EE and DR programs (e.g., behavior-based (BB) programs). The goal of this series is to enable evidence-based and data-driven decision making by policy makers and industry stakeholders, including program planners, program administrators, utilities, state regulatory agencies, and evaluators. We focus on research findings that are immediately relevant.« less

  7. Energy consumption estimation of an OMAP-based Android operating system

    NASA Astrophysics Data System (ADS)

    González, Gabriel; Juárez, Eduardo; Castro, Juan José; Sanz, César

    2011-05-01

    System-level energy optimization of battery-powered multimedia embedded systems has recently become a design goal. The poor operational time of multimedia terminals makes computationally demanding applications impractical in real scenarios. For instance, the so-called smart-phones are currently unable to remain in operation longer than several hours. The OMAP3530 processor basically consists of two processing cores, a General Purpose Processor (GPP) and a Digital Signal Processor (DSP). The former, an ARM Cortex-A8 processor, is aimed to run a generic Operating System (OS) while the latter, a DSP core based on the C64x+, has architecture optimized for video processing. The BeagleBoard, a commercial prototyping board based on the OMAP processor, has been used to test the Android Operating System and measure its performance. The board has 128 MB of SDRAM external memory, 256 MB of Flash external memory and several interfaces. Note that the clock frequency of the ARM and DSP OMAP cores is 600 MHz and 430 MHz, respectively. This paper describes the energy consumption estimation of the processes and multimedia applications of an Android v1.6 (Donut) OS on the OMAP3530-Based BeagleBoard. In addition, tools to communicate the two processing cores have been employed. A test-bench to profile the OS resource usage has been developed. As far as the energy estimates concern, the OMAP processor energy consumption model provided by the manufacturer has been used. The model is basically divided in two energy components. The former, the baseline core energy, describes the energy consumption that is independent of any chip activity. The latter, the module active energy, describes the energy consumed by the active modules depending on resource usage.

  8. The influence of biomass energy consumption on CO2 emissions: a wavelet coherence approach.

    PubMed

    Bilgili, Faik; Öztürk, İlhan; Koçak, Emrah; Bulut, Ümit; Pamuk, Yalçın; Muğaloğlu, Erhan; Bağlıtaş, Hayriye H

    2016-10-01

    In terms of today, one may argue, throughout observations from energy literature papers, that (i) one of the main contributors of the global warming is carbon dioxide emissions, (ii) the fossil fuel energy usage greatly contributes to the carbon dioxide emissions, and (iii) the simulations from energy models attract the attention of policy makers to renewable energy as alternative energy source to mitigate the carbon dioxide emissions. Although there appears to be intensive renewable energy works in the related literature regarding renewables' efficiency/impact on environmental quality, a researcher might still need to follow further studies to review the significance of renewables in the environment since (i) the existing seminal papers employ time series models and/or panel data models or some other statistical observation to detect the role of renewables in the environment and (ii) existing papers consider mostly aggregated renewable energy source rather than examining the major component(s) of aggregated renewables. This paper attempted to examine clearly the impact of biomass on carbon dioxide emissions in detail through time series and frequency analyses. Hence, the paper follows wavelet coherence analyses. The data covers the US monthly observations ranging from 1984:1 to 2015 for the variables of total energy carbon dioxide emissions, biomass energy consumption, coal consumption, petroleum consumption, and natural gas consumption. The paper thus, throughout wavelet coherence and wavelet partial coherence analyses, observes frequency properties as well as time series properties of relevant variables to reveal the possible significant influence of biomass usage on the emissions in the USA in both the short-term and the long-term cycles. The paper also reveals, finally, that the biomass consumption mitigates CO2 emissions in the long run cycles after the year 2005 in the USA.

  9. Residual heat of laparoscopic energy devices: how long must the surgeon wait to touch additional tissue?

    PubMed

    Govekar, Henry R; Robinson, Thomas N; Stiegmann, Greg V; McGreevy, Francis T

    2011-11-01

    Energy devices are essential laparoscopic tools. Residual heat is defined as the increased instrument temperature after energy activation is completed. This study aimed to determine the length of time a surgeon needs to wait before touching other tissue using four common laparoscopic energy sources. Thermal imaging quantified instrument and tissue temperature ex vivo using monopolar coagulation, argon beam coagulation, ultrasonic dissection, and bipolar tissue fusion devices. To simulate realistic operative usage, each instrument was activated for 5 s four consecutive times with 5 s pauses between fires. Thermal conductivity to bovine liver tissue was measured 2.5, 5, 10, and 20 s after final activation. The maximum increase in instrument tip temperature was 172 ± 63°C for the ultrasonic dissection, 81 ± 18°C for the monopolar coagulation, 46 ± 19°C for the bipolar tissue fusion, and 1 ± 1°C for the argon beam coagulation (P < 0.05 for all comparisons). Touching the instrument tip to tissue at four intervals after the final activation (2.5, 5, 10, and 20 s) found that ultrasonic energy raised the tissue temperature higher (maximum change, 58°C) than the other three energy devices at all four time points (P < 0.05). Ultrasonic energy instruments have greater residual heat than monopolar electrosurgery, bipolar tissue fusion, and argon beam. The ultrasonic energy instrument tips heated tissue more than 20°C from baseline even 20 s after activation; whereas all the other energy sources raised the tissue temperature less than 20°C by 5 s. These practical findings may alter a surgeon's usage of these common energy devices.

  10. A National Survey of the Public's Attitudes Toward Computers.

    ERIC Educational Resources Information Center

    American Federation of Information Processing Societies, Montvale, NJ.

    The general public's attitudes towards continually expanding computer usage is frequently speculated about but is far from understood. This study is aimed at providing objective data on the public's attitudes towards computers, their uses, their perceived impact on the American economy as well as on the individual, and their future uses. The…

  11. Using Web-Based Technologies and Tools in Future Choreographers' Training: British Experience

    ERIC Educational Resources Information Center

    Bidyuk, Dmytro

    2016-01-01

    In the paper the problem of using effective web-based technologies and tools in teaching choreography in British higher education institutions has been discussed. Researches on the usage of web-based technologies and tools for practical dance courses in choreographers' professional training at British higher education institutions by such British…

  12. Processor Emulator with Benchmark Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lloyd, G. Scott; Pearce, Roger; Gokhale, Maya

    2015-11-13

    A processor emulator and a suite of benchmark applications have been developed to assist in characterizing the performance of data-centric workloads on current and future computer architectures. Some of the applications have been collected from other open source projects. For more details on the emulator and an example of its usage, see reference [1].

  13. Calibration of a crop model to irrigated water use using a genetic algorithm

    USDA-ARS?s Scientific Manuscript database

    Near-term consumption of groundwater for irrigated agriculture in the High Plains Aquifer supports a dynamic bio-socio-economic system, all parts of which will be impacted by a future transition to sustainable usage that matches natural recharge rates. Plants are the foundation of this system and so...

  14. Future Scenarios Regarding Tablet Computer Usage in Education and Writing

    ERIC Educational Resources Information Center

    Karadag, Ruhan; Kayabasi, Bekir

    2013-01-01

    Today, one of the most important sources forcing the educational institutions to alteration is the developments in informatics and communication technologies. Among these alterations, the internet and the tablet computers, which may cause a vital transformation in the history of education, are of importance. Making assumptions, based on today,…

  15. Robotics: A Bridge for Education and Technology.

    ERIC Educational Resources Information Center

    Warnat, Winifred I.

    Robotics (robot usage) is discussed from a historical perspective with regard to its role in employment and education. Part 1 examines the transition from an industrial to an information society and speculates what the future might hold, particularly in terms of employment. Part 2 gives a historical overview of the robotics industry and discusses…

  16. Does Educational Level Matter in Adopting Online Education? A Malaysian Perspective

    ERIC Educational Resources Information Center

    Haghshenas, Hanif; Chatroudi, Ehsan Aminaei; Njeje, Fredy Anthony

    2012-01-01

    Having applied Unified Theory of Acceptance and Use of Technology (UTAUT) to predict intention and future usage behavior, the moderating effect of educational level was added to the model in moderating the relationship between variables. Also, despite past studies, Effort Expectancy had a higher beta than Performance Expectancy, while Social…

  17. Hero or Has-Been: Is There a Future for Altruism in Medical Education?

    ERIC Educational Resources Information Center

    Bishop, Jeffrey P.; Rees, Charlotte E.

    2007-01-01

    The term "altruism" is often used without definition, leading to contradictions in what we expect from medical students. In this reflection paper, we critique the concept of "altruism" from the perspective of moral philosophy and social psychology and challenge its unquestioned usage within the medical education literature,…

  18. Popularity Prediction Tool for ATLAS Distributed Data Management

    NASA Astrophysics Data System (ADS)

    Beermann, T.; Maettig, P.; Stewart, G.; Lassnig, M.; Garonne, V.; Barisits, M.; Vigne, R.; Serfon, C.; Goossens, L.; Nairz, A.; Molfetas, A.; Atlas Collaboration

    2014-06-01

    This paper describes a popularity prediction tool for data-intensive data management systems, such as ATLAS distributed data management (DDM). It is fed by the DDM popularity system, which produces historical reports about ATLAS data usage, providing information about files, datasets, users and sites where data was accessed. The tool described in this contribution uses this historical information to make a prediction about the future popularity of data. It finds trends in the usage of data using a set of neural networks and a set of input parameters and predicts the number of accesses in the near term future. This information can then be used in a second step to improve the distribution of replicas at sites, taking into account the cost of creating new replicas (bandwidth and load on the storage system) compared to gain of having new ones (faster access of data for analysis). To evaluate the benefit of the redistribution a grid simulator is introduced that is able replay real workload on different data distributions. This article describes the popularity prediction method and the simulator that is used to evaluate the redistribution.

  19. Measuring and Understanding the Energy Use Signatures of a Bank Building

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, YuLong; Liu, Bing; Athalye, Rahul A.

    The Pacific Northwest National Laboratory measured and analyzed the energy end-use patterns in a bank building located in the north-eastern United States. This work was performed in collaboration with PNC Financial Service Group under the US DOE’s Commercial Building Partnerships Program. This paper presents the metering study and the results of the metered data analysis. It provides a benchmark for the energy use of different bank-related equipments. The paper also reveals the importance of metering in fully understanding building loads and indentifying opportunities for energy efficiency improvements that will have impacts across PNC’s portfolio of buildings and were crucial tomore » reducing receptacle loads in the design of a net-zero bank branches. PNNL worked with PNC to meter a 4,000 ft2 bank branch in the state of Pennsylvania. 71 electrical circuits were monitored and 25 stand-alone watt-hour meters were installed at the bank. These meters monitored the consumption of all interior and exterior lighting, receptacle loads, service water heating, and the HVAC rooftop unit at a 5-minute sampling interval from November 2009 to November 2010. A total of over 8 million data records were generated, which were then analyzed to produce the end-use patterns, daily usage profiles, rooftop unit usage cycles, and inputs for calibrating the energy model of the building.« less

  20. Septics by the Sea.

    ERIC Educational Resources Information Center

    Dix, Stephen, Ed.

    1993-01-01

    Discusses benefits of alternative sewage technologies: (1) clean effluent; (2) less energy utilization than treatment plants; (3) reduced chemical usage; and (4) lower cost. Describes how four communities in Illinois, California, Alaska, and Wisconsin opted for alternative treatment systems. Provides information about the Environmental Protection…

  1. Connected vehicle applications for adaptive overhead lighting (on-demand lighting) : final research report.

    DOT National Transportation Integrated Search

    2016-07-01

    The Virginia Tech Transportation Institute (VTTI) has developed an on-demand roadway lighting : system and has tested the systems effect on driver visual performance. On-demand roadway : lighting can dramatically reduce energy usage while maintain...

  2. Considering the total cost of electricity from sunlight and the alternatives

    DOE PAGES

    none,

    2015-04-15

    Photovoltaic (PV) electricity generation has grown to about 17 GW in the United States, corresponding to one tenth of the global capacity. Most deployment in the country has happened during the last 6 years. Reflecting back, in early 2008 this author and his collaborators James Mason and Ken Zweibel, published in Scientific American and in Energy Policy a Solar Grand Plan demonstrating the feasibility of renewable energy in providing 69% of the United States electricity demand by 2050, while reducing CO2 emissions by 60% from 2005 levels; the PV contribution to this plan was assessed to be 250 GW bymore » 2030 and 2900 GW by 2050 [1]. The DOE's more detailed SunShot vision study, released in 2012, showed the possibility of having 300 GW of PV installed in the United States by 2030, and 630 GW by 2050. Assessing the sustainability of such rapid growth of photovoltaics necessitates undertaking a careful analysis because PV markets largely are enabled by its promise to produce reliable electricity with minimum environmental burdens. Measurable aspects of sustainability include cost, resource availability, and environmental impact. The question of cost concerns the affordability of solar energy compared to other energy sources throughout the world. Environmental impacts include local-, regional-, and global-effects, as well as the usage of land and water, which must be considered in a comparable context over a long time, multigenerational horizon. As a result, the availability of material resources matters to current and future-generations under the constraint of affordability.« less

  3. Analysis of possible future atmospheric retention of fossil fuel CO/sub 2/

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edmonds, J.A.; Reilly, J.; Trabalka, J.R.

    1984-09-01

    This report investigates the likely rates and the potential range of future CO/sub 2/ emissions, combined with knowledge of the global cycle of carbon, to estimate a possible range of future atmospheric CO/sub 2/ concentrations through the year 2075. Historic fossil fuel usage to the present, growing at a rate of 4.5% per year until 1973 and at a slower rate of 1.9% after 1973, was combined with three scenarios of projected emissions growth ranging from approximately 0.2 to 2.8% per year to provide annual CO/sub 2/ emissions data for two different carbon cycle models. The emissions scenarios were constructedmore » using an energy-economic model and by varying key parameters within the bounds of currently expected future values. The extreme values for CO/sub 2/ emissions in the year 2075 are 6.8 x 10/sup 15/ and 91 x 10/sup 15/ g C year/sup -1/. Carbon cycle model simulations used a range of year - 1800 preindustrial atmospheric concentrations of 245 to 292 ppM CO/sub 2/ and three scenarios of bioshere conversion as additional atmospheric CO/sub 2/ source terms. These simulations yield a range of possible atmospheric CO/sub 2/ concentrations in year 2075 of approximately 500 to 1500 ppM, with a median of about 700 ppM. The time at which atmospheric CO/sub 2/ would potentially double from the preindustrial level ranges from year 2025 to >2075. The practical, programmatic value of this forecast exercise is that it forces quantitative definition of the assumptions, and the uncertainties therein, which form the basis of our understanding of the natural biogeochemical cycle of carbon and both historic and future human influences on the dynamics of the global cycle. Assumptions about the possible range of future atmospheric CO/sub 2/ levels provide a basis on which to evaluate the implications of these changes on climate and the biosphere. 44 references, 17 figures, 21 tables.« less

  4. Effects of a Transition to a Hydrogen Economy on Employment in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tolley, George S.; Jones, Donald W. Mintz, Marianne M.; Smith, Barton A.

    2008-07-01

    The U.S. Department of Energy report, Effects of a Transition to a Hydrogen Economy on Employment in the United States Report to Congress, estimates the effects on employment of a U.S. economy transformation to hydrogen between 2020 and 2050. The report includes study results on employment impacts from hydrogen market expansion in the transportation, stationary, and portable power sectors and highlights possible skill and education needs. This study is in response to Section 1820 of the Energy Policy Act of 2005 (Public Law 109-58) (EPACT). Section 1820, “Overall Employment in a Hydrogen Economy,” requires the Secretary of Energy to carrymore » out a study of the effects of a transition to a hydrogen economy on several employment [types] in the United States. As required by Section 1820, the present report considers: • Replacement effects of new goods and services • International competition • Workforce training requirements • Multiple possible fuel cycles, including usage of raw materials • Rates of market penetration of technologies • Regional variations based on geography • Specific recommendations of the study Both the Administration’s National Energy Policy and the Department’s Strategic Plan call for reducing U.S. reliance on imported oil and reducing greenhouse gas emissions. The National Energy Policy also acknowledges the need to increase energy supplies and use more energy-efficient technologies and practices. President Bush proposed in his January 2003 State of the Union Address to advance research on hydrogen so that it has the potential to play a major role in America’s future energy system. Consistent with these aims, EPACT 2005 authorizes a research, development, and demonstration program for hydrogen and fuel cell technology. Projected results for the national employment impacts, projections of the job creation and job replacement underlying the total employment changes, training implications, regional employment impacts and the employment impacts of a hydrogen transformation on international competitiveness are investigated and reported.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coleman, Andrena

    The Ida H. Goode Gymnasium was constructed in 1964 to serve as a focal point for academics, student recreation, and health and wellness activities. This 38,000 SF building contains a gymnasium with a stage, swimming pool, eight classrooms, a weight room, six offices and auxiliary spaces for the athletic programs. The gym is located on a 4-acre greenfield, which is slated for improvement and enhancement to future athletics program at Bennett College. The available funding for this project was used to weatherize the envelope of the gymnasium, installation of a new energy-efficient mechanical system, and a retrofit of the existingmore » lighting systems in the building’s interior. The envelope weatherization was completed without disturbing the building’s historic preservation eligibility. The existing heating system was replaced with a new high efficiency condensing system. The new heating system also includes a new Building Automation System which provides additional monitoring. Proper usage of this system will provide additional energy savings. Most of the existing interior lighting fixtures and bulbs were replaced with new LED and high efficiency T-8 bulbs and fixtures. Occupancy sensors were installed in applicable areas. The Ida Goode Gymnasium should experience high electricity and natural gas savings as well as operational/maintenance efficiency increases. The aesthetics of the building was maintained and the overall safety was improved.« less

  6. Recent developments in drying of food products

    NASA Astrophysics Data System (ADS)

    Valarmathi, T. N.; Sekar, S.; Purushothaman, M.; Sekar, S. D.; Rama Sharath Reddy, Maddela; Reddy, Kancham Reddy Naveen Kumar

    2017-05-01

    Drying is a dehydration process to preserve agricultural products for long period usage. The most common and cheapest method is open sun drying in which the products are simply laid on ground, road, mats, roof, etc. But the open sun drying has some disadvantages like dependent on good weather, contamination by dust, birds and animals consume a considerable quantity, slow drying rate and damages due to strong winds and rain. To overcome these difficulties solar dryers are developed with closed environment for drying agricultural products effectively. To obtain good quality food with reduced energy consumption, selection of appropriate drying process and proper input parameters is essential. In recent years several researchers across the world have developed new drying systems for improving the product quality, increasing the drying rate, decreasing the energy consumption, etc. Some of the new systems are fluidized bed, vibrated fluidized bed, desiccant, microwave, vacuum, freeze, infrared, intermittent, electro hydrodynamic and hybrid dryers. In this review the most recent progress in the field of drying of agricultural food products such as new methods, new products and modeling and optimization techniques has been presented. Challenges and future directions are also highlighted. The review will be useful for new researchers entering into this ever needed and ever growing field of engineering.

  7. Energy Conservation: Heating Navy Hangars

    DTIC Science & Technology

    1984-07-01

    temperature, IF Tf Inside air temperature 1 foot above the floor, OF T. Inside design temperature, IF To Hot water temperature setpoint , OF TON Chiller ...systems capable of optimizing energy usage base-wide. An add-on to an existing large scale EMCS is probably the first preference, followed by single...the building comfort conditions are met during hours of building occupancy. 2. Optimized Start/Stop turns on equipment at the latest possible time and

  8. Do Heat Pump Clothes Dryers Make Sense for the U.S. Market

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyers, Steve; Franco, Victor; Lekov, Alex

    Heat pump clothes dryers (HPCDs) can be as much as 50percent more energy-efficient than conventional electric resistance clothes dryers, and therefore have the potential to save substantial amounts of electricity. While not currently available in the U.S., there are manufacturers in Europe and Japan that produce units for those markets. Drawing on analysis conducted for the U.S. Department of Energy's (DOE) current rulemaking on amended standards for clothes dryers, this paper evaluates the cost-effectiveness of HPCDs in American homes, as well as the national impact analysis for different market share scenarios. In order to get an accurate measurement of realmore » energy savings potential, the paper offers a new energy use calculation methodology that takes into account the most current data on clothes washer cycles, clothes dryer usage frequency, remaining moisture content, and load weight per cycle, which is very different from current test procedure values. Using the above methodology along with product cost estimates developed by DOE, the paper presents the results of a life-cycle cost analysis of the adoption of HPCDs in a representative sample of American homes. The results show that HPCDs have positive economic benefits only for households with high clothes dryer usage or for households with high electricity prices and moderately high utilization.« less

  9. Impact of remote sensing upon the planning, management, and development of water resources

    NASA Technical Reports Server (NTRS)

    Castruccio, P. A.; Loats, H. L.; Fowler, T. R.; Frech, S. L.

    1975-01-01

    Principal water resources users were surveyed to determine the impact of remote data streams on hydrologic computer models. Analysis of responses demonstrated that: most water resources effort suitable to remote sensing inputs is conducted through federal agencies or through federally stimulated research; and, most hydrologic models suitable to remote sensing data are federally developed. Computer usage by major water resources users was analyzed to determine the trends of usage and costs for the principal hydrologic users/models. The laws and empirical relationships governing the growth of the data processing loads were described and applied to project the future data loads. Data loads for ERTS CCT image processing were computed and projected through the 1985 era.

  10. Katome: de novo DNA assembler implemented in rust

    NASA Astrophysics Data System (ADS)

    Neumann, Łukasz; Nowak, Robert M.; Kuśmirek, Wiktor

    2017-08-01

    Katome is a new de novo sequence assembler written in the Rust programming language, designed with respect to future parallelization of the algorithms, run time and memory usage optimization. The application uses new algorithms for the correct assembly of repetitive sequences. Performance and quality tests were performed on various data, comparing the new application to `dnaasm', `ABySS' and `Velvet' genome assemblers. Quality tests indicate that the new assembler creates more contigs than well-established solutions, but the contigs have better quality with regard to mismatches per 100kbp and indels per 100kbp. Additionally, benchmarks indicate that the Rust-based implementation outperforms `dnaasm', `ABySS' and `Velvet' assemblers, written in C++, in terms of assembly time. Lower memory usage in comparison to `dnaasm' is observed.

  11. Recovery of Utility Fixed Costs: Utility, Consumer, Environmental and Economist Perspectives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, Lisa; Hemphill, Ross; Howat, John

    Utilities recover costs for providing electric service to retail customers through a combination of rate components that together comprise customers’ monthly electric bills. Rates and rate designs are set by state regulators and vary by jurisdiction, utility and customer class. In addition to the fundamental tenet of setting fair and reasonable rates, rate design balances economic efficiency, equity and fairness, customer satisfaction, utility revenue stability, and customer price and bill stability.1 At the most basic level, retail electricity bills in the United States typically include a fixed monthly customer charge — a set dollar amount regardless of energy usage —more » and a volumetric energy charge for each kilowatt-hour consumed.2 The energy charge may be flat across all hours, vary by usage level (for example, higher rates at higher levels of usage), or vary based on time of consumption.3 While some utility costs, such as fuel costs, clearly vary according to electricity usage, other costs are “fixed” over the short run — generally, those that do not vary over the course of a year. Depending on your point of view, and whether the state’s electricity industry has been restructured or remains vertically integrated, the set of costs that are “fixed” may be quite limited. Or the set may extend to all capacity costs for generation, transmission and distribution. In the long run, all costs are variable. In the context of flat or declining loads in some regions, utilities are proposing a variety of changes to retail rate designs, particularly for residential customers, to recover fixed costs. In this report, authors representing utility (Chapter 1), consumer (Chapter 2), environmentalist (Chapter 3) and economist (Chapter 4) perspectives discuss fixed costs for electric utilities and set out their principles for recovering those costs. The table on the next page summarizes each author’s relative preferences for various options for fixed cost recovery, some of which may be used in combination.4 The specific design of any ratemaking option matters crucially, so a general preference for a given option does not indicate support for any particular application.« less

  12. Big data modeling to predict platelet usage and minimize wastage in a tertiary care system.

    PubMed

    Guan, Leying; Tian, Xiaoying; Gombar, Saurabh; Zemek, Allison J; Krishnan, Gomathi; Scott, Robert; Narasimhan, Balasubramanian; Tibshirani, Robert J; Pham, Tho D

    2017-10-24

    Maintaining a robust blood product supply is an essential requirement to guarantee optimal patient care in modern health care systems. However, daily blood product use is difficult to anticipate. Platelet products are the most variable in daily usage, have short shelf lives, and are also the most expensive to produce, test, and store. Due to the combination of absolute need, uncertain daily demand, and short shelf life, platelet products are frequently wasted due to expiration. Our aim is to build and validate a statistical model to forecast future platelet demand and thereby reduce wastage. We have investigated platelet usage patterns at our institution, and specifically interrogated the relationship between platelet usage and aggregated hospital-wide patient data over a recent consecutive 29-mo period. Using a convex statistical formulation, we have found that platelet usage is highly dependent on weekday/weekend pattern, number of patients with various abnormal complete blood count measurements, and location-specific hospital census data. We incorporated these relationships in a mathematical model to guide collection and ordering strategy. This model minimizes waste due to expiration while avoiding shortages; the number of remaining platelet units at the end of any day stays above 10 in our model during the same period. Compared with historical expiration rates during the same period, our model reduces the expiration rate from 10.5 to 3.2%. Extrapolating our results to the ∼2 million units of platelets transfused annually within the United States, if implemented successfully, our model can potentially save ∼80 million dollars in health care costs.

  13. Who Uses eConsult? Investigating Physician Characteristics Associated with Usage (and Nonusage).

    PubMed

    Bilodeau, Howard; Deri Armstrong, Catherine; Keely, Erin; Liddy, Clare

    2017-12-18

    The Champlain BASE™ eConsult Service was developed in a Local Health Integration Network (LHIN) in Ontario, Canada in 2010 to reduce wait times and improve access to specialist care. The service allows primary care providers to receive advice from specialists via a secure electronic platform without necessarily requiring a face-to-face consultation. As of 2015, over half of the LHIN's family physicians were registered and trained to use the service. However, 24% of registrants never went on to submit a case. The purpose of this study is to examine the demographic characteristics associated with usage. Usage data for the pool of physicians registered between January 1, 2011 and September 30, 2015 were linked to physician characteristics retrieved from the College of Physicians and Surgeons of Ontario database. Probit regressions were estimated to determine characteristics associated with usage. Neither sex, being an international medical school graduate-documented predictors of electronic medical records adoption-nor proximity to specialists were found to explain usage. Only length of time in practice was found to be predictive. Being out of medical school an additional 10 years was estimated to decrease the probability of ever using eConsult by five percentage points (p < 0.01). Lower use by veteran physicians may reflect their lower need for services like eConsult given their well-established specialist networks, or their greater confidence in practicing medicine. Future work should explore the reasons and barriers for not registering, or not using eConsult, with an aim toward increasing the appropriate use of this cost-effective and innovative service.

  14. Artificial limb representation in amputees

    PubMed Central

    van den Heiligenberg, Fiona M Z; Orlov, Tanya; Macdonald, Scott N; Duff, Eugene P; Henderson Slater, David; Beckmann, Christian F; Johansen-Berg, Heidi; Culham, Jody C; Makin, Tamar R

    2018-01-01

    Abstract The human brain contains multiple hand-selective areas, in both the sensorimotor and visual systems. Could our brain repurpose neural resources, originally developed for supporting hand function, to represent and control artificial limbs? We studied individuals with congenital or acquired hand-loss (hereafter one-handers) using functional MRI. We show that the more one-handers use an artificial limb (prosthesis) in their everyday life, the stronger visual hand-selective areas in the lateral occipitotemporal cortex respond to prosthesis images. This was found even when one-handers were presented with images of active prostheses that share the functionality of the hand but not necessarily its visual features (e.g. a ‘hook’ prosthesis). Further, we show that daily prosthesis usage determines large-scale inter-network communication across hand-selective areas. This was demonstrated by increased resting state functional connectivity between visual and sensorimotor hand-selective areas, proportional to the intensiveness of everyday prosthesis usage. Further analysis revealed a 3-fold coupling between prosthesis activity, visuomotor connectivity and usage, suggesting a possible role for the motor system in shaping use-dependent representation in visual hand-selective areas, and/or vice versa. Moreover, able-bodied control participants who routinely observe prosthesis usage (albeit less intensively than the prosthesis users) showed significantly weaker associations between degree of prosthesis observation and visual cortex activity or connectivity. Together, our findings suggest that altered daily motor behaviour facilitates prosthesis-related visual processing and shapes communication across hand-selective areas. This neurophysiological substrate for prosthesis embodiment may inspire rehabilitation approaches to improve usage of existing substitutionary devices and aid implementation of future assistive and augmentative technologies. PMID:29534154

  15. Artificial limb representation in amputees.

    PubMed

    van den Heiligenberg, Fiona M Z; Orlov, Tanya; Macdonald, Scott N; Duff, Eugene P; Henderson Slater, David; Beckmann, Christian F; Johansen-Berg, Heidi; Culham, Jody C; Makin, Tamar R

    2018-05-01

    The human brain contains multiple hand-selective areas, in both the sensorimotor and visual systems. Could our brain repurpose neural resources, originally developed for supporting hand function, to represent and control artificial limbs? We studied individuals with congenital or acquired hand-loss (hereafter one-handers) using functional MRI. We show that the more one-handers use an artificial limb (prosthesis) in their everyday life, the stronger visual hand-selective areas in the lateral occipitotemporal cortex respond to prosthesis images. This was found even when one-handers were presented with images of active prostheses that share the functionality of the hand but not necessarily its visual features (e.g. a 'hook' prosthesis). Further, we show that daily prosthesis usage determines large-scale inter-network communication across hand-selective areas. This was demonstrated by increased resting state functional connectivity between visual and sensorimotor hand-selective areas, proportional to the intensiveness of everyday prosthesis usage. Further analysis revealed a 3-fold coupling between prosthesis activity, visuomotor connectivity and usage, suggesting a possible role for the motor system in shaping use-dependent representation in visual hand-selective areas, and/or vice versa. Moreover, able-bodied control participants who routinely observe prosthesis usage (albeit less intensively than the prosthesis users) showed significantly weaker associations between degree of prosthesis observation and visual cortex activity or connectivity. Together, our findings suggest that altered daily motor behaviour facilitates prosthesis-related visual processing and shapes communication across hand-selective areas. This neurophysiological substrate for prosthesis embodiment may inspire rehabilitation approaches to improve usage of existing substitutionary devices and aid implementation of future assistive and augmentative technologies.

  16. Management of Energy Consumption on Cluster Based Routing Protocol for MANET

    NASA Astrophysics Data System (ADS)

    Hosseini-Seno, Seyed-Amin; Wan, Tat-Chee; Budiarto, Rahmat; Yamada, Masashi

    The usage of light-weight mobile devices is increasing rapidly, leading to demand for more telecommunication services. Consequently, mobile ad hoc networks and their applications have become feasible with the proliferation of light-weight mobile devices. Many protocols have been developed to handle service discovery and routing in ad hoc networks. However, the majority of them did not consider one critical aspect of this type of network, which is the limited of available energy in each node. Cluster Based Routing Protocol (CBRP) is a robust/scalable routing protocol for Mobile Ad hoc Networks (MANETs) and superior to existing protocols such as Ad hoc On-demand Distance Vector (AODV) in terms of throughput and overhead. Therefore, based on this strength, methods to increase the efficiency of energy usage are incorporated into CBRP in this work. In order to increase the stability (in term of life-time) of the network and to decrease the energy consumption of inter-cluster gateway nodes, an Enhanced Gateway Cluster Based Routing Protocol (EGCBRP) is proposed. Three methods have been introduced by EGCBRP as enhancements to the CBRP: improving the election of cluster Heads (CHs) in CBRP which is based on the maximum available energy level, implementing load balancing for inter-cluster traffic using multiple gateways, and implementing sleep state for gateway nodes to further save the energy. Furthermore, we propose an Energy Efficient Cluster Based Routing Protocol (EECBRP) which extends the EGCBRP sleep state concept into all idle member nodes, excluding the active nodes in all clusters. The experiment results show that the EGCBRP decreases the overall energy consumption of the gateway nodes up to 10% and the EECBRP reduces the energy consumption of the member nodes up to 60%, both of which in turn contribute to stabilizing the network.

  17. New Hampshire Carbon Challenge: Reducing Residential Energy Use and Greenhouse Gas Emissions

    NASA Astrophysics Data System (ADS)

    Schloss, A. L.; Bartlett, D.; Blaha, D.; Skoglund, C.; Dundorf, J.; Froburg, E.; Pasinella, B.

    2007-12-01

    The New Hampshire Carbon Challenge is an initiative of the Institute for the Study of Earth, Oceans and Space at the University of New Hampshire. Our goal is to educate New Hampshire residents about climate change and also encourage them to reduce their household greenhouse gas emissions by 10,000 pounds. The Northeast region is undergoing climate changes consistent with those expected due to increasing levels of CO2 in the atmosphere, while also contributing to climate change as the world's seventh largest source of CO2 emissions. In the USA, approximately 40 percent of CO2 emissions from fossil fuel combustion come from residential energy consumption for space heating, electricity usage, and transportation. Homeowners typically are not aware that modest energy reductions can result in significant carbon savings. Most campaigns that raise awareness of climate change and residential energy usage disseminate information to consumers through newspaper articles, brochures, websites, or other traditional means of communication. These information-only campaigns have not been very effective in changing residential energy consumption. Bombarded with information in their daily lives, the public has become quite adept at tuning most of it out. When much of the information they receive about climate change is confusing and contradictory, residents have even less incentive to change their behavior. The Challenge is unique in that it couples accurate information about climate change with concrete actions homeowners can take to reduce their carbon emissions. Our strategy is to utilize the tools of Community Based Social Marketing, which has been shown to be effective in changing behavior, and also to leverage existing networks including the NH Department of Environmental Services, UNH Cooperative Extension, faith-based communities, municipal energy committees and Climate Project volunteers, to effectively reach residents throughout the state. The response to our program has been very positive. We gave 74 presentations to 4000 NH residents since the program was launched in October 2006. We are currently developing web-based tools tailored to New Hampshire residents that will enable them to track reductions in their energy usage and connect those reductions to reduced emissions, and will provide us feedback as to which actions households are willing to take. This type of information exchange is essential in creating and sustaining an effective and scientifically accurate public outreach campaign.

  18. Energy consumption analysis of the Venus Deep Space Station (DSS-13)

    NASA Technical Reports Server (NTRS)

    Hayes, N. V.

    1983-01-01

    This report continues the energy consumption analysis and verification study of the tracking stations of the Goldstone Deep Space Communications Complex, and presents an audit of the Venus Deep Space Station (DSS 13). Due to the non-continuous radioastronomy research and development operations at the station, estimations of energy usage were employed in the energy consumption simulation of both the 9-meter and 26-meter antenna buildings. A 17.9% decrease in station energy consumption was experienced over the 1979-1981 years under study. A comparison of the ECP computer simulations and the station's main watt-hour meter readings showed good agreement.

  19. Commercial Buildings Energy Consumption Survey (CBECS)

    EIA Publications

    2028-01-01

    The Commercial Buildings Energy Consumption Survey (CBECS) is a national sample survey that collects information on the stock of U.S. commercial buildings, including their energy-related building characteristics and energy usage data (consumption and expenditures). Commercial buildings include all buildings in which at least half of the floorspace is used for a purpose that is not residential, industrial, or agricultural. By this definition, CBECS includes building types that might not traditionally be considered commercial, such as schools, hospitals, correctional institutions, and buildings used for religious worship, in addition to traditional commercial buildings such as stores, restaurants, warehouses, and office buildings.

  20. Recent advances in fluidized bed drying

    NASA Astrophysics Data System (ADS)

    Haron, N. S.; Zakaria, J. H.; Mohideen Batcha, M. F.

    2017-09-01

    Fluidized bed drying are very well known to yield high heat and mass transfer and hence adopted to many industrial drying processes particularly agricultural products. In this paper, recent advances in fluidized bed drying were reviewed and focus is given to the drying related to the usage of Computational Fluid Dynamics (CFD). It can be seen that usage of modern computational tools such as CFD helps to optimize the fluidized bed dryer design and operation for lower energy consumption and thus better thermal efficiency. Among agricultural products that were reviewed in this paper were oil palm frond, wheat grains, olive pomace, coconut, pepper corn and millet.

Top