NASA Technical Reports Server (NTRS)
Ryan, John J.; Bosworth, John T.; Burken, John J.; Suh, Peter M.
2014-01-01
The X-56 Multi-Utility Technology Testbed aircraft system is a versatile experimental research flight platform. The system was primarily designed to investigate active control of lightweight flexible structures, but is reconfigurable and capable of hosting a wide breadth of research. Current research includes flight experimentation of a Lockheed Martin designed active control flutter suppression system. Future research plans continue experimentation with alternative control systems, explore the use of novel sensor systems, and experiments with the use of novel control effectors. This paper describes the aircraft system, current research efforts designed around the system, and future planned research efforts that will be hosted on the aircraft system.
Behavioral Assessment of Listening Effort Using a Dual-Task Paradigm.
Gagné, Jean-Pierre; Besser, Jana; Lemke, Ulrike
2017-01-01
Published investigations ( n = 29) in which a dual-task experimental paradigm was employed to measure listening effort during speech understanding in younger and older adults were reviewed. A summary of the main findings reported in the articles is provided with respect to the participants' age-group and hearing status. Effects of different signal characteristics, such as the test modality, on dual-task outcomes are evaluated, and associations with cognitive abilities and self-report measures of listening effort are described. Then, several procedural issues associated with the use of dual-task experiment paradigms are discussed. Finally, some issues that warrant future research are addressed. The review revealed large variability in the dual-task experimental paradigms that have been used to measure the listening effort expended during speech understanding. The differences in experimental procedures used across studies make it difficult to draw firm conclusions concerning the optimal choice of dual-task paradigm or the sensitivity of specific paradigms to different types of experimental manipulations. In general, the analysis confirmed that dual-task paradigms have been used successfully to measure differences in effort under different experimental conditions, in both younger and older adults. Several research questions that warrant further investigation in order to better understand and characterize the intricacies of dual-task paradigms were identified.
Behavioral Assessment of Listening Effort Using a Dual-Task Paradigm
Besser, Jana; Lemke, Ulrike
2017-01-01
Published investigations (n = 29) in which a dual-task experimental paradigm was employed to measure listening effort during speech understanding in younger and older adults were reviewed. A summary of the main findings reported in the articles is provided with respect to the participants’ age-group and hearing status. Effects of different signal characteristics, such as the test modality, on dual-task outcomes are evaluated, and associations with cognitive abilities and self-report measures of listening effort are described. Then, several procedural issues associated with the use of dual-task experiment paradigms are discussed. Finally, some issues that warrant future research are addressed. The review revealed large variability in the dual-task experimental paradigms that have been used to measure the listening effort expended during speech understanding. The differences in experimental procedures used across studies make it difficult to draw firm conclusions concerning the optimal choice of dual-task paradigm or the sensitivity of specific paradigms to different types of experimental manipulations. In general, the analysis confirmed that dual-task paradigms have been used successfully to measure differences in effort under different experimental conditions, in both younger and older adults. Several research questions that warrant further investigation in order to better understand and characterize the intricacies of dual-task paradigms were identified. PMID:28091178
Experimental uncertainty survey and assessment. [Space Shuttle Main Engine testing
NASA Technical Reports Server (NTRS)
Coleman, Hugh W.
1992-01-01
An uncertainty analysis and assessment of the specific impulse determination during Space Shuttle Main Engine testing is reported. It is concluded that in planning and designing tests and in interpreting the results of tests, the bias and precision components of experimental uncertainty should be considered separately. Recommendations for future research efforts are presented.
NASA Technical Reports Server (NTRS)
Cognata, Thomas; Leimkuehler, Thomas; Ramaswamy, Balasubramaniam; Nayagam, Vedha; Hasan, Mohammad; Stephan, Ryan
2011-01-01
Water affords manifold benefits for human space exploration. Its properties make it useful for the storage of thermal energy as a Phase Change Material (PCM) in thermal control systems, in radiation shielding against Solar Particle Events (SPE) for the protection of crew members, and it is indisputably necessary for human life support. This paper envisions a single application for water which addresses these benefits for future exploration support vehicles and it describes recent experimental and modeling work that has been performed in order to arrive at a description of the thermal behavior of such a system. Experimental units have been developed and tested which permit the evaluation of the many parameters of design for such a system with emphasis on the latent energy content, temperature rise, mass, and interstitial material geometry. The experimental results are used to develop a robust and well correlated model which is intended to guide future design efforts toward the multi-purposed water PCM heat exchanger envisioned.
Development and Experimental Application of International Affairs Indicators. Volume A
1974-06-01
DEVELOPMENT ’^EXPERIMENTAL APPttcATION OF INTERNATIONAL AFFAIRS INDICATORS Volume A Final Report e June 1974 US I Sponsored by: Defense Advanced...intelligence communities were designed, techniques for estimating the future were developed and tested, and the techniques and indicators were applied to the...past year’s effort is that the intelligence community has become increasingly aware of the potential use- fulness of quantitative indicators. The
Developing Wide-Field Spatio-Spectral Interferometry for Far-Infrared Space Applications
NASA Technical Reports Server (NTRS)
Leisawitz, David; Bolcar, Matthew R.; Lyon, Richard G.; Maher, Stephen F.; Memarsadeghi, Nargess; Rinehart, Stephen A.; Sinukoff, Evan J.
2012-01-01
Interferometry is an affordable way to bring the benefits of high resolution to space far-IR astrophysics. We summarize an ongoing effort to develop and learn the practical limitations of an interferometric technique that will enable the acquisition of high-resolution far-IR integral field spectroscopic data with a single instrument in a future space-based interferometer. This technique was central to the Space Infrared Interferometric Telescope (SPIRIT) and Submillimeter Probe of the Evolution of Cosmic Structure (SPECS) space mission design concepts, and it will first be used on the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII). Our experimental approach combines data from a laboratory optical interferometer (the Wide-field Imaging Interferometry Testbed, WIIT), computational optical system modeling, and spatio-spectral synthesis algorithm development. We summarize recent experimental results and future plans.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biancardi, F.R.; Michels, H.H.; Sienel, T.H.
1996-10-01
The purpose of this program was to conduct experimental and analytical efforts to determine lubricant circulation characteristics of new HFC/POE pairs and HFC/mineral oil pairs in a representative central residential HVAC system and to compare their behavior with the traditional HCFC-22/mineral oil (refrigerant/lubricant) pair. A dynamic test facility was designed and built to conduct the experimental efforts. This facility provided a unique capability to visually and physically measure oil circulation rates, on-line, in operating systems. A unique on-line ultraviolet-based measurement device was used to obtain detailed data on the rate and level of lubricant oil circulated within the operating heatmore » pump system. The experimental and analytical data developed during the program are presented as a function of vapor velocity, refrigerant/lubricant viscosity, system features and equipment. Both visual observations and instrumentation were used to understand ``worst case`` oil circulation situations. This report is presented in two volumes. Volume 1 contains a complete description of the program scope, objective, test results summary, conclusions, description of test facility and recommendations for future effort. Volume 2 contains all of the program test data essentially as taken from the laboratory dynamic test facility during the sequence of runs.« less
Schooling as a Knowledge System: Lessons from Cramim Experimental School
ERIC Educational Resources Information Center
Chen, David
2010-01-01
This article describes an experiment utilizing a research and development strategy to design and implement an innovative school for the future. The development of Cramim Elementary School was a joint effort of researchers from Tel-Aviv University and the staff of the school. The design stage involved constructing a new theoretical framework that…
A review of nuclear thermal propulsion carbide fuel corrosion and key issues
NASA Technical Reports Server (NTRS)
Pelaccio, Dennis G.; El-Genk, Mohamed S.
1994-01-01
Corrosion (mass loss) of carbide nuclear fuels due to their exposure to hot hydrogen in nuclear thermal propulsion engine systems greatly impacts the performance, thrust-to-weight and life of such systems. This report provides an overview of key issues and processes associated with the corrosion of carbide materials. Additionally, past pertinent development reactor test observations, as well as related experimental work and analysis modeling efforts are reviewed. At the conclusion, recommendations are presented, which provide the foundation for future corrosion modeling and verification efforts.
A Review of Research on Impulsive Loading of Marine Composites
NASA Astrophysics Data System (ADS)
Porfiri, Maurizio; Gupta, Nikhil
Impulsive loading conditions, such as those produced by blast waves, are being increasingly recognized as relevant in marine applications. Significant research efforts are directed towards understanding the impulsive loading response of traditional naval materials, such as aluminum and steel, and advanced composites, such as laminates and sandwich structures. Several analytical studies are directed towards establishing predictive models for structural response and failure of marine structures under blast loading. In addition, experimental research efforts are focused on characterizing structural response to blast loading. The aim of this review is to provide a general overview of the state of the art on analytical and experimental studies in this field that can serve as a guideline for future research directions. Reported studies cover the Office of Naval Research-Solid Mechanics Program sponsored research along with other worldwide research efforts of relevance to marine applications. These studies have contributed to developing a fundamental knowledge of the mechanics of advanced materials subjected to impulsive loading, which is of interest to all Department of Defense branches.
Duct flow nonuniformities study for space shuttle main engine
NASA Technical Reports Server (NTRS)
Thoenes, J.
1985-01-01
To improve the Space Shuttle Main Engine (SSME) design and for future use in the development of generation rocket engines, a combined experimental/analytical study was undertaken with the goals of first, establishing an experimental data base for the flow conditions in the SSME high pressure fuel turbopump (HPFTP) hot gas manifold (HGM) and, second, setting up a computer model of the SSME HGM flow field. Using the test data to verify the computer model it should be possible in the future to computationally scan contemplated advanced design configurations and limit costly testing to the most promising design. The effort of establishing and using the computer model is detailed. The comparison of computational results and experimental data observed clearly demonstrate that computational fluid mechanics (CFD) techniques can be used successfully to predict the gross features of three dimensional fluid flow through configurations as intricate as the SSME turbopump hot gas manifold.
Nuclear-bound quarkonia and heavy-flavor hadrons
NASA Astrophysics Data System (ADS)
Krein, G.; Thomas, A. W.; Tsushima, K.
2018-05-01
In our quest to win a deeper understanding of how QCD actually works, the study of the binding of heavy quarkonia and heavy-flavor hadrons to atomic nuclei offers enormous promise. Modern experimental facilities such as FAIR, Jefferson Lab at 12 GeV and J-PARC offer exciting new experimental opportunities to study such systems. These experimental advances are complemented by new theoretical approaches and predictions, which will both guide these experimental efforts and be informed and improved by them. This review will outline the main theoretical approaches, beginning with QCD itself, summarize recent theoretical predictions and relate them both to past experiments and those from which we may expect results in the near future.
Future prospects of baryon istability search in p-decay and n n(bar) oscillation experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ball, S.J.; Kamyshkov, Y.A.
1996-11-01
These proceedings contain thirty-one papers which review both the theoretical and the experimental status and near future of baryon instability research. Baryon instability is investigated from the vantage point of supersymmetric and unified theories. The interplay between baryogenesis and antimatter is examined. Double beta decay experiments are discussed. The huge Icarus experiment is described with its proton decay capabilities. Neutron-antineutron oscillations investigations are presented, especially efforts with ultra-cold neutrons. Individual papers are indexed separately on the Energy Data Base.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amber Shrivastava; Brian Williams; Ali S. Siahpush
2014-06-01
There have been significant efforts by the heat transfer community to investigate the melting phenomenon of materials. These efforts have included the analytical development of equations to represent melting, numerical development of computer codes to assist in modeling the phenomena, and collection of experimental data. The understanding of the melting phenomenon has application in several areas of interest, for example, the melting of a Phase Change Material (PCM) used as a thermal storage medium as well as the melting of the fuel bundle in a nuclear power plant during an accident scenario. The objective of this research is two-fold. Firstmore » a numerical investigation, using computational fluid dynamics (CFD), of melting with internal heat generation for a vertical cylindrical geometry is presented. Second, to the best of authors knowledge, there are very limited number of engineering experimental results available for the case of melting with Internal Heat Generation (IHG). An experiment was performed to produce such data using resistive, or Joule, heating as the IHG mechanism. The numerical results are compared against the experimental results and showed favorable correlation. Uncertainties in the numerical and experimental analysis are discussed. Based on the numerical and experimental analysis, recommendations are made for future work.« less
High efficiency silicon solar cell review
NASA Technical Reports Server (NTRS)
Godlewski, M. P. (Editor)
1975-01-01
An overview is presented of the current research and development efforts to improve the performance of the silicon solar cell. The 24 papers presented reviewed experimental and analytic modeling work which emphasizes the improvment of conversion efficiency and the reduction of manufacturing costs. A summary is given of the round-table discussion, in which the near- and far-term directions of future efficiency improvements were discussed.
Icing Test Results on an Advanced Two-Dimensional High-Lift Multi-Element Airfoil
NASA Technical Reports Server (NTRS)
Shin, Jaiwon; Wilcox, Peter; Chin, Vincent; Sheldon, David
1994-01-01
An experimental study has been conducted to investigate ice accretions on a high-lift, multi-element airfoil in the Icing Research Tunnel at the NASA Lewis Research Center. The airfoil is representative of an advanced transport wing design. The experimental work was conducted as part of a cooperative program between McDonnell Douglas Aerospace and the NASA Lewis Research Center to improve current understanding of ice accretion characteristics on the multi-element airfoil. The experimental effort also provided ice shapes for future aerodynamic tests at flight Reynolds numbers to ascertain high-lift performance effects. Ice shapes documented for a landing configuration over a variety of icing conditions are presented along with analyses.
Ongoing Fixed Wing Research within the NASA Langley Aeroelasticity Branch
NASA Technical Reports Server (NTRS)
Bartels, Robert; Chwalowski, Pawel; Funk, Christie; Heeg, Jennifer; Hur, Jiyoung; Sanetrik, Mark; Scott, Robert; Silva, Walter; Stanford, Bret; Wiseman, Carol
2015-01-01
The NASA Langley Aeroelasticity Branch is involved in a number of research programs related to fixed wing aeroelasticity and aeroservoelasticity. These ongoing efforts are summarized here, and include aeroelastic tailoring of subsonic transport wing structures, experimental and numerical assessment of truss-braced wing flutter and limit cycle oscillations, and numerical modeling of high speed civil transport configurations. Efforts devoted to verification, validation, and uncertainty quantification of aeroelastic physics in a workshop setting are also discussed. The feasibility of certain future civil transport configurations will depend on the ability to understand and control complex aeroelastic phenomena, a goal that the Aeroelasticity Branch is well-positioned to contribute through these programs.
Non-Hermitian physics and PT symmetry
NASA Astrophysics Data System (ADS)
El-Ganainy, Ramy; Makris, Konstantinos G.; Khajavikhan, Mercedeh; Musslimani, Ziad H.; Rotter, Stefan; Christodoulides, Demetrios N.
2018-01-01
In recent years, notions drawn from non-Hermitian physics and parity-time (PT) symmetry have attracted considerable attention. In particular, the realization that the interplay between gain and loss can lead to entirely new and unexpected features has initiated an intense research effort to explore non-Hermitian systems both theoretically and experimentally. Here we review recent progress in this emerging field, and provide an outlook to future directions and developments.
Air Force Space Situational Awareness
2018-03-13
knowledge sharing vital to innovation. CyberWorx deliberately reaches across specialties to bring diverse perspectives to a problem in a non -threatening...design sprint to lay out a fast, viable path forward for the AF to enable better experimentation and unity of efforts toward the future. Participants in...in industry and even in their personal lives. CyberWorx was asked to address the challenges of incorporating non - traditional (open source, academic
Public Service Communication Satellite Program
NASA Technical Reports Server (NTRS)
Brown, J. P.
1977-01-01
The proposed NASA Public Service Communication Satellite Program consists of four different activities designed to fulfill the needs of public service sector. These are: interaction with the users, experimentation with existing satellites, development of a limited capability satellite for the earliest possible launch, and initiation of an R&D program to develop the greatly increased capability that future systems will require. This paper will discuss NASA efforts in each of these areas.
Behavioral and physiological responses to male handicap in chick-rearing black-legged kittiwakes
Leclaire, S.; Bourret, V.; Wagner, R.H.; Hatch, Shyla A.; Helfenstein, F.; Chastel, O.; Danchin, E.
2011-01-01
Parental investment entails a trade-off between the benefits of effort in current offspring and the costs to future reproduction. Long-lived species are predicted to be reluctant to increase parental effort to avoid affecting their survival. We tested this hypothesis in black-legged kittiwakes Rissa tridactyla by clipping flight feathers of experimental males at the beginning of the chick-rearing period. We analyzed the consequences of this handicap on feeding and attendance behavior, body condition, integument coloration, and circulating levels of corticosterone and prolactin in handicapped males and their mates in comparison to unmanipulated controls. Chicks in both groups were compared in terms of aggressive behavior, growth, and mortality. Handicapped males lost more mass, had less bright integuments, and attended the nest less often than controls. Nevertheless, they fed their chicks at the same rate and had similar corticosterone and prolactin levels. Compared with control females, females mated with handicapped males showed a lower provisioning rate and higher nest attendance in the first days after manipulation. Their lower feeding rate probably triggered the increased sibling aggression and mortality observed in experimental broods. Our findings suggest that experimental females adaptively adjusted their effort to their mate's perceived quality or that their provisioning was constrained by their higher nest attendance. Overall, our results suggest that kittiwake males can decrease their condition for the sake of their chicks, which seems to contradict the hypothesis that kittiwakes should be reluctant to increase parental effort to avoid affecting their survival. ?? 2011 The Author. Published by Oxford University Press on behalf of the International Society for Behavioral Ecology. All rights reserved.
Goals and Status of the NASA Juncture Flow Experiment
NASA Technical Reports Server (NTRS)
Rumsey, Christopher L.; Morrison, Joseph H.
2016-01-01
The NASA Juncture Flow experiment is a new effort whose focus is attaining validation data in the juncture region of a wing-body configuration. The experiment is designed specifically for the purpose of CFD validation. Current turbulence models routinely employed by Reynolds-averaged Navier-Stokes CFD are inconsistent in their prediction of corner flow separation in aircraft juncture regions, so experimental data in the near-wall region of such a configuration will be useful both for assessment as well as for turbulence model improvement. This paper summarizes the Juncture Flow effort to date, including preliminary risk-reduction experiments already conducted and planned future experiments. The requirements and challenges associated with conducting a quality validation test are discussed.
Computer-aided injection molding system
NASA Astrophysics Data System (ADS)
Wang, K. K.; Shen, S. F.; Cohen, C.; Hieber, C. A.; Isayev, A. I.
1982-10-01
Achievements are reported in cavity-filling simulation, modeling viscoelastic effects, measuring and predicting frozen-in birefringence in molded parts, measuring residual stresses and associated mechanical properties of molded parts, and developing an interactive mold-assembly design program and an automatic NC maching data generation and verification program. The Cornell Injection Molding Program (CIMP) consortium is discussed as are computer user manuals that have been published by the consortium. Major tasks which should be addressed in future efforts are listed, including: (1) predict and experimentally determine the post-fillin behavior of thermoplastics; (2) simulate and experimentally investigate the injection molding of thermosets and filled materials; and (3) further investigate residual stresses, orientation and mechanical properties.
High efficiency IR supercontinuum generation and applications: a review
NASA Astrophysics Data System (ADS)
Yin, Shizhuo; Ruffin, Paul; Brantley, Christina; Edwards, Eugene; Cheng, Jiping; Yao, Jimmy; Luo, Claire
2011-10-01
In this paper, we have reviewed our recent works on IR supercontinuum generation (SCG) and its applications. First, we provide a brief review on the physical mechanism of the supercontinuum generation and our previous works in this field. Second, the transmission characteristics of a new type of IR fibers is presented. Furthermore, the SCG generation in this new type of optical fiber is experimentally demonstrated. Finally, the suggestion for the future effort is discussed.
Experimental Results for Titan Aerobot Thermo-Mechanical Subsystem Development
NASA Technical Reports Server (NTRS)
Hall, Jeffrey L.; Jones, J. A.; Kerzhanovich, V. V.; Lachenmeier, T.; Mahr, P.; Pauken, M.; Plett, G. A.; Smith, L.; VanLuvender, M. L.; Yavrouian, A. H.
2006-01-01
This paper describes experimental results from a development program focused in maturing Titan aerobot technology in the areas of mechanical and thermal subsystems. Results from four key activities are described: first, a cryogenic balloon materials development program involving coupon and cylinder tests and culminating in the fabrication and testing of an inflated 4.6 m long prototype blimp at 93 K; second, a combined lab experiment and numerical simulation effort to assess potential problems resulting from radioisotope thermal generator waste heat generation near an inflated blimp; third, an aerial deployment and inflation development program consisting of laboratory and helicopter drop tests on a near full scale (11 m long) prototype blimp; and fourth, a proof of concept experiment demonstrating the viability of using a mechanically steerable high gain antenna on a floating blimp to perform direct to Earth telecommunications from Titan. The paper provides details on all of these successful activities and discusses their impact on the overall effort to produce mature systems technology for future Titan aerobot missions.
Tyc, Vida L.; Wilson, Stephanie J.; Nelms, Jenna; Hudson, Melissa M.; Wu, Shengjie; Xiong, Xiaoping; Hinds, Pamela S.
2011-01-01
Introduction The present study examines behavioral and psychosocial factors associated with smoking intentions and experimentation among adolescent survivors of pediatric cancer. Methods Adolescent survivors of brain tumor and acute lymphoblastic leukemia (n=99) provided information about their smoking histories and their intentions to smoke in the future. Behavior rating scales were completed by survivors, parents, and teachers. Results Past experimentation with smoking and higher levels of self-reported aggression were associated with intentions to smoke in the future (OR=4.18, 95%CI 1.02–17.04, and OR=1.08, 95% CI 1.01–1.15, respectively), while teacher-ratings of inattention in the classroom were negatively associated with intentions to smoke (OR=0.94, 95% CI.88–.99), all p<.05. Experimentation with smoking was more likely among older survivors (OR=1.76, 95% CI 1.16–2.66, p<.01) and those whose parents had divorced (OR=4.40, 95% CI 1.21–16.06, p<.05). Discussion A concerning minority of adolescent survivors have clear intentions to smoke, a behavior that adds to their overall health risk. Smoking intentions and experimentation are important precursors to regular smoking. Prevention efforts are needed to interrupt the progression from intentions and experimentation to established smoking and nicotine dependence in this medically vulnerable population. Implications for cancer survivors Assessment of an adolescent’s history of parental divorce, past experimentation with smoking, and aggressive behavior will identify those survivors who are likely to consider smoking in the future. Screening for these characteristics will allow clinicians to be more vigilant in health promotion. PMID:20922493
NASA Technical Reports Server (NTRS)
Stefanescu, D. M.; Catalina, A. V.; Juretzko, Frank R.; Sen, Subhayu; Curreri, P. A.
2003-01-01
The objective of the work on Particle Engulfment and Pushing by Solidifying Interfaces (PEP) include: 1) to obtain fundamental understanding of the physics of particle pushing and engulfment, 2) to develop mathematical models to describe the phenomenon, and 3) to perform critical experiments in the microgravity environment of space to provide benchmark data for model validation. Successful completion of this project will yield vital information relevant to a diverse area of terrestrial applications. With PEP being a long term research effort, this report will focus on advances in the theoretical treatment of the solid/liquid interface interaction with an approaching particle, experimental validation of some aspects of the developed models, and the experimental design aspects of future experiments to be performed on board the International Space Station.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Judith Alice; Long, Kevin Nicholas
2018-05-01
Sylgard® 184/Glass Microballoon (GMB) potting material is currently used in many NW systems. Analysts need a macroscale constitutive model that can predict material behavior under complex loading and damage evolution. To address this need, ongoing modeling and experimental efforts have focused on study of damage evolution in these materials. Micromechanical finite element simulations that resolve individual GMB and matrix components promote discovery and better understanding of the material behavior. With these simulations, we can study the role of the GMB volume fraction, time-dependent damage, behavior under confined vs. unconfined compression, and the effects of partial damage. These simulations are challengingmore » and push the boundaries of capability even with the high performance computing tools available at Sandia. We summarize the major challenges and the current state of this modeling effort, as an exemplar of micromechanical modeling needs that can motivate advances in future computing efforts.« less
Integrated simulations for fusion research in the 2030's time frame (white paper outline)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedman, Alex; LoDestro, Lynda L.; Parker, Jeffrey B.
This white paper presents the rationale for developing a community-wide capability for whole-device modeling, and advocates for an effort with the expectation of persistence: a long-term programmatic commitment, and support for community efforts. Statement of 2030 goal (two suggestions): (a) Robust integrated simulation tools to aid real-time experimental discharges and reactor designs by employing a hierarchy in fidelity of physics models. (b) To produce by the early 2030s a capability for validated, predictive simulation via integration of a suite of physics models from moderate through high fidelity, to understand and plan full plasma discharges, aid in data interpretation, carry outmore » discovery science, and optimize future machine designs. We can achieve this goal via a focused effort to extend current scientific capabilities and rigorously integrate simulations of disparate physics into a comprehensive set of workflows.« less
2015-09-21
this framework, MIT LL carried out a one-year proof- of-concept study to determine the capabilities and challenges in the detection of anomalies in...extremely large graphs [5]. Under this effort, two real datasets were considered, and algorithms for data modeling and anomaly detection were developed...is required in a well-defined experimental framework for the detection of anomalies in very large graphs. This study is intended to inform future
NASA Astrophysics Data System (ADS)
Boutard, Jean-Louis; Dudarev, Sergei; Rieth, Michael
2011-10-01
EFDA Fusion Materials Topical Group was established at the end of 2007 to coordinate the EU effort on the development of structural and protection materials able to withstand the very demanding operating conditions of a future DEMO power plant. Focusing on a selection of well identified materials issues, including the behaviour of Reduced Activation Ferritic-Martensitic steels, and W-alloys under the foreseen operation conditions in a future DEMO, this paper describes recent advances in physical modelling and experimental validation, contributing to the definition of chemical composition and microstructure of materials with improved in-service stability at high temperature, high neutron flux and intense ion bombardment.
Validating Inertial Confinement Fusion (ICF) predictive capability using perturbed capsules
NASA Astrophysics Data System (ADS)
Schmitt, Mark; Magelssen, Glenn; Tregillis, Ian; Hsu, Scott; Bradley, Paul; Dodd, Evan; Cobble, James; Flippo, Kirk; Offerman, Dustin; Obrey, Kimberly; Wang, Yi-Ming; Watt, Robert; Wilke, Mark; Wysocki, Frederick; Batha, Steven
2009-11-01
Achieving ignition on NIF is a monumental step on the path toward utilizing fusion as a controlled energy source. Obtaining robust ignition requires accurate ICF models to predict the degradation of ignition caused by heterogeneities in capsule construction and irradiation. LANL has embarked on a project to induce controlled defects in capsules to validate our ability to predict their effects on fusion burn. These efforts include the validation of feature-driven hydrodynamics and mix in a convergent geometry. This capability is needed to determine the performance of capsules imploded under less-than-optimum conditions on future IFE facilities. LANL's recently initiated Defect Implosion Experiments (DIME) conducted at Rochester's Omega facility are providing input for these efforts. Recent simulation and experimental results will be shown.
The NASA/National Space Science Data Center trapped radiation environment model program, 1964 - 1991
NASA Technical Reports Server (NTRS)
Vette, James I.
1991-01-01
The major effort that NASA, initially with the help of the United States Air Force (USAF), carried out for 27 years to synthesize the experimental and theoretical results of space research related to energetic charged particles into a quantitative description of the terrestrial trapped radiation environment in the form of model environments is detailed. The effort is called the Trapped Radiation Environment Modeling Program (TREMP). In chapter 2 the historical background leading to the establishment of this program is given. Also, the purpose of this modeling program as established by the founders of the program is discussed. This is followed in chapter 3 by the philosophy and approach that was applied in this program throughout its lifetime. As will be seen, this philosophy led to the continuation of the program long after it would have expired. The highlights of the accomplishments are presented in chapter 4. A view to future possible efforts in this arena is given in chapter 5, mainly to pass on to future workers the differences that are perceived from these many years of experience. Chapter 6 is an appendix that details the chronology of the development of TREMP. Finally, the references, which document the work accomplished over these years, are presented in chapter 7.
1976-07-01
experimental operations, one assesses the realibility of his data in terms of its repeatability. In fact, during the present experiments an effort was... Data Handler Documentation, lIT Research Institute, September 1974 9. Brindley, A.E., et al, Analysis , Test and Evaluation Support to the USAF Advanced...surface above the building foundation level. A.6.3 SURVEYING TECHNIQUE. ACCUKACY, FUTURE USLU An accuracy analysis was not run on the survey data , but
Political impediments to a tobacco endgame
Rabe, Barry George
2013-01-01
Any serious consideration of exploring a tobacco endgame in the USA must build upon the enviable track record of reducing tobacco use through a mixture of federal and state policies. This foundation may pose particular challenges in approaching an endgame, including questions of national political feasibility, public support, limitations of sub-federal experimentation and recruitment of future political champions. Advocates must demonstrate a compelling need for a dramatic expansion beyond existing efforts, amid competition from alternative issues and little apparent public appetite for such an initiative. PMID:23591512
NASA Technical Reports Server (NTRS)
Aydelott, J. C.; Rudland, R. S.
1985-01-01
The NASA Lewis Research Center is responsible for the planning and execution of a scientific program which will provide advance in space cryogenic fluid management technology. A number of future space missions were identified that require or could benefit from this technology. These fluid management technology needs were prioritized and a shuttle attached reuseable test bed, the cryogenic fluid management facility (CFMF), is being designed to provide the experimental data necessary for the technology development effort.
Computational and experimental analysis of the flow in an annular centrifugal contactor
NASA Astrophysics Data System (ADS)
Wardle, Kent E.
The annular centrifugal contactor has been developed for solvent extraction processes for recycling used nuclear fuel. The compact size and high efficiency of these contactors have made them the choice for advanced reprocessing schemes and a key equipment for a proposed future advanced fuel cycle facility. While a sufficient base of experience exists to facilitate successful operation of current contactor technology, a more complete understanding of the fluid flow within the contactor would enable further advancements in design and operation of future units and greater confidence for use of such contactors in a variety of other solvent extraction applications. This research effort has coupled computational fluid dynamics modeling with a variety of experimental measurements and observations to provide a valid detailed analysis of the flow within the centrifugal contactor. CFD modeling of the free surface flow in the annular mixing zone using the Volume of Fluid (VOF) volume tracking method combined with Large Eddy Simulation (LES) of turbulence was found to have very good agreement with the experimental measurements and observations. A detailed study of the flow and mixing for different housing vane geometries was performed and it was found that the four straight mixing vane geometry had greater mixing for the flow rate simulated and more predictable operation over a range of low to moderate flow rates. The separation zone was also modeled providing a useful description of the flow in this region and identifying critical design features. It is anticipated that this work will form a foundation for additional efforts at improving the design and operation of centrifugal contactors and provide a framework for progress towards simulation of solvent extraction processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayer, Carl R.
Al-SiC nanolaminate composites show promise as high performance coating materials due to their combination of strength and toughness. Although a significant amount of modeling effort has been focused on materials with an idealized flat nanostructure, experimentally these materials exhibit complex undulating layer geometries. This work utilizes FIB tomography to characterize this nanostructure in 3D and finite element modeling to determine the effect that this complex structure has on the mechanical behavior of these materials. A sufficiently large volume was characterized such that a 1 × 2 μm micropillar could be generated from the dataset and compared directly to experimental results.more » The mechanical response from this nanostructure was then compared to pillar models using simplified structures with perfectly flat layers, layers with sinusoidal waviness, and layers with arc segment waviness. The arc segment based layer geometry showed the best agreement with the experimentally determined structure, indicating it would be the most appropriate geometry for future modeling efforts. - Highlights: •FIB tomography was used to determine the structure of an Al-SiC nanolaminate in 3D. •FEM was used to compare the deformation of the nanostructure to experimental results. •Idealized structures from literature were compared to the FIB determined structure. •Arc segment based structures approximated the FIB determined structure most closely.« less
Data Preservation in High Energy Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mount, Richard; Brooks, Travis; /SLAC
2012-04-03
Data from high-energy physics (HEP) experiments are collected with significant financial and human effort and are mostly unique. At the same time, HEP has no coherent strategy for data preservation and re-use. An inter-experimental Study Group on HEP data preservation and long-term analysis was convened at the end of 2008 and held two workshops, at DESY (January 2009) and SLAC (May 2009). This document is an intermediate report to the International Committee for Future Accelerators (ICFA) of the reflections of this Study Group. Large data sets accumulated during many years of detector operation at particle accelerators are the heritage ofmore » experimental HEP. These data sets offer unique opportunities for future scientific studies, sometimes long after the shut-down of the actual experiments: new theoretical input; new experimental results and analysis techniques; the quest for high-sensitivity combined analyses; the necessity of cross checks. In many cases, HEP data sets are unique; they cannot and most likely will not be superseded by data from newer generations of experiments. Once lost, or in an unusable state, HEP data samples cannot be reasonably recovered. The cost of conserving this heritage through a collaborative, target-oriented long-term data preservation program would be small, compared to the costs of past experimental projects or to the efforts to re-do experiments. However, this cost is not negligible, especially for collaborations close or past their end-date. The preservation of HEP data would provide today's collaborations with a secure way to complete their data analysis and enable them to seize new scientific opportunities in the coming years. The HEP community will benefit from preserved data samples through reanalysis, combination, education and outreach. Funding agencies would receive more scientific return, and a positive image, from their initial investment leading to the production and the first analysis of preserved data.« less
Frontiers in research on biodiversity and disease.
Johnson, Pieter T J; Ostfeld, Richard S; Keesing, Felicia
2015-10-01
Global losses of biodiversity have galvanised efforts to understand how changes to communities affect ecological processes, including transmission of infectious pathogens. Here, we review recent research on diversity-disease relationships and identify future priorities. Growing evidence from experimental, observational and modelling studies indicates that biodiversity changes alter infection for a range of pathogens and through diverse mechanisms. Drawing upon lessons from the community ecology of free-living organisms, we illustrate how recent advances from biodiversity research generally can provide necessary theoretical foundations, inform experimental designs, and guide future research at the interface between infectious disease risk and changing ecological communities. Dilution effects are expected when ecological communities are nested and interactions between the pathogen and the most competent host group(s) persist or increase as biodiversity declines. To move beyond polarising debates about the generality of diversity effects and develop a predictive framework, we emphasise the need to identify how the effects of diversity vary with temporal and spatial scale, to explore how realistic patterns of community assembly affect transmission, and to use experimental studies to consider mechanisms beyond simple changes in host richness, including shifts in trophic structure, functional diversity and symbiont composition. © 2015 John Wiley & Sons Ltd/CNRS.
Frontiers in research on biodiversity and disease
Johnson, Pieter T. J.; Ostfeld, Richard S.; Keesing, Felicia
2016-01-01
Global losses of biodiversity have galvanised efforts to understand how changes to communities affect ecological processes, including transmission of infectious pathogens. Here, we review recent research on diversity–disease relationships and identify future priorities. Growing evidence from experimental, observational and modelling studies indicates that biodiversity changes alter infection for a range of pathogens and through diverse mechanisms. Drawing upon lessons from the community ecology of free-living organisms, we illustrate how recent advances from biodiversity research generally can provide necessary theoretical foundations, inform experimental designs, and guide future research at the interface between infectious disease risk and changing ecological communities. Dilution effects are expected when ecological communities are nested and interactions between the pathogen and the most competent host group(s) persist or increase as biodiversity declines. To move beyond polarising debates about the generality of diversity effects and develop a predictive framework, we emphasise the need to identify how the effects of diversity vary with temporal and spatial scale, to explore how realistic patterns of community assembly affect transmission, and to use experimental studies to consider mechanisms beyond simple changes in host richness, including shifts in trophic structure, functional diversity and symbiont composition. PMID:26261049
Ein-Gar, Danit; Steinhart, Yael
2017-01-01
Self-efficacy constitutes a key factor that influences people's inclination to engage in effortful tasks. In this study, we focus on an interesting interplay between two prominent factors known to influence engagement in effortful tasks: the timing of the task (i.e., whether the task is scheduled to take place in the near or distant future) and individuals' levels of self-control. Across three studies, we show that these two factors have an interacting effect on self-efficacy. Low self-control (LSC) individuals report higher self-efficacy for distant-future effortful tasks than for near-future tasks, whereas high self-control (HSC) individuals report higher self-efficacy for near-future tasks than for distant future tasks. We further demonstrate how self-efficacy then molds individuals' willingness to engage in those effortful tasks. Given that a particular task may comprise effortful aspects alongside more enjoyable aspects, we show that the effects we observe emerge with regard to a task whose effortful aspects are salient and that the effects are eliminated when the enjoyable aspects of that same task are highlighted. PMID:29075225
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dumitrescu, Eugene; Humble, Travis S.
The accurate and reliable characterization of quantum dynamical processes underlies efforts to validate quantum technologies, where discrimination between competing models of observed behaviors inform efforts to fabricate and operate qubit devices. We present a protocol for quantum channel discrimination that leverages advances in direct characterization of quantum dynamics (DCQD) codes. We demonstrate that DCQD codes enable selective process tomography to improve discrimination between entangling and correlated quantum dynamics. Numerical simulations show selective process tomography requires only a few measurement configurations to achieve a low false alarm rate and that the DCQD encoding improves the resilience of the protocol to hiddenmore » sources of noise. Lastly, our results show that selective process tomography with DCQD codes is useful for efficiently distinguishing sources of correlated crosstalk from uncorrelated noise in current and future experimental platforms.« less
Dynamic Impact Testing and Model Development in Support of NASA's Advanced Composites Program
NASA Technical Reports Server (NTRS)
Melis, Matthew E.; Pereira, J. Michael; Goldberg, Robert; Rassaian, Mostafa
2018-01-01
The purpose of this paper is to provide an executive overview of the HEDI effort for NASA's Advanced Composites Program and establish the foundation for the remaining papers to follow in the 2018 SciTech special session NASA ACC High Energy Dynamic Impact. The paper summarizes the work done for the Advanced Composites Program to advance our understanding of the behavior of composite materials during high energy impact events and to advance the ability of analytical tools to provide predictive simulations. The experimental program carried out at GRC is summarized and a status on the current development state for MAT213 will be provided. Future work will be discussed as the HEDI effort transitions from fundamental analysis and testing to investigating sub-component structural concept response to impact events.
2017 Topical Workshop on Electronics for Particle Physics
NASA Astrophysics Data System (ADS)
2017-09-01
The workshop will cover all aspects of electronics for particle physics experiments, and accelerator instrumentation of general interest to users. LHC experiments (and their operational experience) will remain a focus of the meeting but a strong emphasis on R&D for future experimentation will be maintained, such as SLHC, CLIC, ILC, neutrino facilities as well as other particle and astroparticle physics experiments. The purpose of the workshop is: To present results and original concepts for electronic research and development relevant to experiments as well as accelerator and beam instrumentation at future facilities; To review the status of electronics for the LHC experiments; To identify and encourage common efforts for the development of electronics; To promote information exchange and collaboration in the relevant engineering and physics communities.
Respiratory neuroplasticity - Overview, significance and future directions.
Fuller, David D; Mitchell, Gordon S
2017-01-01
Neuroplasticity is an important property of the neural system controlling breathing. However, our appreciation for its importance is still relatively new, and we have much to learn concerning different forms of plasticity, their underlying mechanisms, and their biological and clinical significance. In this brief review, we discuss several well-studied models of respiratory plasticity, including plasticity initiated by inactivity in the respiratory system, intermittent and sustained hypoxia, and traumatic injury to the spinal cord. Other aspects of respiratory plasticity are considered in other contributions to this special edition of Experimental Neurology on respiratory plasticity. Finally, we conclude with discussions concerning the biological and clinical significance of respiratory motor plasticity, and areas in need of future research effort. Copyright © 2016. Published by Elsevier Inc.
Future Air Transportation System Breakout Series Report
NASA Technical Reports Server (NTRS)
2001-01-01
This presentation discusses: AvSTAR Future System Effort Critically important; Investment in the future; Need to follow a systems engineering process; and Efforts need to be worked in worldwide context
NASA Astrophysics Data System (ADS)
Smith, Arthur R.
2012-02-01
Future technological advances at the frontier of `elec'tronics will increasingly rely on the use of the spin property of the electron at ever smaller length scales. As a result, it is critical to make substantial efforts towards understanding and ultimately controlling spin and magnetism at the nanoscale. In SPIRE, the goal is to achieve these important scientific advancements through a unique combination of experimental and theoretical techniques, as well as complementary expertise and coherent efforts across three continents. The key experimental tool of choice is spin-polarized scanning tunneling microscopy -- the premier method for accessing the spin structure of surfaces and nanostructures with resolution down to the atomic scale. At the same time, atom and molecule deposition and manipulation schemes are added in order to both atomically engineer, and precisely investigate, novel nanoscale spin structures. These efforts are being applied to an array of physical systems, including single magnetic atomic layers, self-assembled 2-D molecular arrays, single adatoms and molecules, and alloyed spintronic materials. Efforts are aimed at exploring complex spin structures and phenomena occurring in these systems. At the same time, the problems are approached, and in some cases guided, by the use of leading theoretical tools, including analytical approaches such as renormalization group theory, and computational approaches such as first principles density functional theory. The scientific goals of the project are achieved by a collaborative effort with the international partners, engaging students at all levels who, through their research experiences both at home and abroad, gain international research outlooks as well as understandings of cultural differences, by working on intriguing problems of mutual interest. A novel scientific journalism internship program based at Ohio University furthers the project's broader impacts.
Sequential Design of Experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson-Cook, Christine Michaela
2017-06-30
A sequential design of experiments strategy is being developed and implemented that allows for adaptive learning based on incoming results as the experiment is being run. The plan is to incorporate these strategies for the NCCC and TCM experimental campaigns to be run in the coming months. This strategy for experimentation has the advantages of allowing new data collected during the experiment to inform future experimental runs based on their projected utility for a particular goal. For example, the current effort for the MEA capture system at NCCC plans to focus on maximally improving the quality of prediction of COmore » 2 capture efficiency as measured by the width of the confidence interval for the underlying response surface that is modeled as a function of 1) Flue Gas Flowrate [1000-3000] kg/hr; 2) CO 2 weight fraction [0.125-0.175]; 3) Lean solvent loading [0.1-0.3], and; 4) Lean solvent flowrate [3000-12000] kg/hr.« less
High Alpha Technology Program (HATP) ground test to flight comparisons
NASA Technical Reports Server (NTRS)
Hall, R. M.; Banks, D. W.; Fisher, David F.; Ghaffari, F.; Murri, D. G.; Ross, J. C.; Lanser, Wendy R.
1994-01-01
This status paper reviews the experimental ground test program of the High Alpha Technology Program (HATP). The reasons for conducting this ground test program had their origins during the 1970's when several difficulties were experienced during the development programs of both the F-18 and F-16. A careful assessment of ground test to flight correlations appeared to be important for reestablishing a high degree of confidence in our ground test methodology. The current paper will then focus on one aspect of the HATP program that is intended to improve the correlation between ground test and flight, high-alpha gritting. The importance of this work arises from the sensitivity of configurations with smooth-sided forebodies to Reynolds number. After giving examples of the effects of Reynolds number, the paper will highlight efforts at forebody gritting. Finally, the paper will conclude by summarizing the charter of the HATP Experimental Aerodynamics Working Group and future experimental testing plans.
NASA Technical Reports Server (NTRS)
Lerch, Bradley A.; Arnold, Steven M.
2014-01-01
In support of an effort on damage prognosis, the viscoelastic behavior of Ti-6Al-4V (Ti-6-4) was investigated. This report documents the experimental characterization of this titanium alloy. Various uniaxial tests were conducted to low load levels over the temperature range of 20 to 538 C to define tensile, creep, and relaxation behavior. A range of strain rates (6x10(exp -7) to 0.001/s) were used to document rate effects. All tests were designed to include an unloading portion, followed by a hold time at temperature to allow recovery to occur either at zero stress or strain. The titanium alloy was found to exhibit viscoelastic behavior below the "yield" point and over the entire range of temperatures (although at lower temperatures the magnitude is extremely small). These experimental data will be used for future characterization of a viscoelastic model.
Kehinde, Elijah O.
2013-01-01
The objective of this review article was to examine current and prospective developments in the scientific use of laboratory animals, and to find out whether or not there are still valid scientific benefits of and justification for animal experimentation. The PubMed and Web of Science databases were searched using the following key words: animal models, basic research, pharmaceutical research, toxicity testing, experimental surgery, surgical simulation, ethics, animal welfare, benign, malignant diseases. Important relevant reviews, original articles and references from 1970 to 2012 were reviewed for data on the use of experimental animals in the study of diseases. The use of laboratory animals in scientific research continues to generate intense public debate. Their use can be justified today in the following areas of research: basic scientific research, use of animals as models for human diseases, pharmaceutical research and development, toxicity testing and teaching of new surgical techniques. This is because there are inherent limitations in the use of alternatives such as in vitro studies, human clinical trials or computer simulation. However, there are problems of transferability of results obtained from animal research to humans. Efforts are on-going to find suitable alternatives to animal experimentation like cell and tissue culture and computer simulation. For the foreseeable future, it would appear that to enable scientists to have a more precise understanding of human disease, including its diagnosis, prognosis and therapeutic intervention, there will still be enough grounds to advocate animal experimentation. However, efforts must continue to minimize or eliminate the need for animal testing in scientific research as soon as possible. PMID:24217224
Kehinde, Elijah O
2013-01-01
The objective of this review article was to examine current and prospective developments in the scientific use of laboratory animals, and to find out whether or not there are still valid scientific benefits of and justification for animal experimentation. The PubMed and Web of Science databases were searched using the following key words: animal models, basic research, pharmaceutical research, toxicity testing, experimental surgery, surgical simulation, ethics, animal welfare, benign, malignant diseases. Important relevant reviews, original articles and references from 1970 to 2012 were reviewed for data on the use of experimental animals in the study of diseases. The use of laboratory animals in scientific research continues to generate intense public debate. Their use can be justified today in the following areas of research: basic scientific research, use of animals as models for human diseases, pharmaceutical research and development, toxicity testing and teaching of new surgical techniques. This is because there are inherent limitations in the use of alternatives such as in vitro studies, human clinical trials or computer simulation. However, there are problems of transferability of results obtained from animal research to humans. Efforts are on-going to find suitable alternatives to animal experimentation like cell and tissue culture and computer simulation. For the foreseeable future, it would appear that to enable scientists to have a more precise understanding of human disease, including its diagnosis, prognosis and therapeutic intervention, there will still be enough grounds to advocate animal experimentation. However, efforts must continue to minimize or eliminate the need for animal testing in scientific research as soon as possible. © 2013 S. Karger AG, Basel.
NASA Technical Reports Server (NTRS)
Pritchett, Amy R.; Hansman, R. John
1997-01-01
Efforts to increase airport capacity include studies of aircraft systems that would enable simultaneous approaches to closely spaced parallel runway in Instrument Meteorological Conditions (IMC). The time-critical nature of a parallel approach results in key design issues for current and future collision avoidance systems. Two part-task flight simulator studies have examined the procedural and display issues inherent in such a time-critical task, the interaction of the pilot with a collision avoidance system, and the alerting criteria and avoidance maneuvers preferred by subjects.
Review of NASA antiskid braking research
NASA Technical Reports Server (NTRS)
Tanner, J. A.
1982-01-01
NASA antiskid braking system research programs are reviewed. These programs include experimental studies of four antiskid systems on the Langley Landing Loads Track, flights tests with a DC-9 airplane, and computer simulation studies. Results from these research efforts include identification of factors contributing to degraded antiskid performance under adverse weather conditions, tire tread temperature measurements during antiskid braking on dry runway surfaces, and an assessment of the accuracy of various brake pressure-torque computer models. This information should lead to the development of better antiskid systems in the future.
Characterization of Stereo Vision Performance for Roving at the Lunar Poles
NASA Technical Reports Server (NTRS)
Wong, Uland; Nefian, Ara; Edwards, Larry; Furlong, Michael; Bouyssounouse, Xavier; To, Vinh; Deans, Matthew; Cannon, Howard; Fong, Terry
2016-01-01
Surface rover operations at the polar regions of airless bodies, particularly the Moon, are of particular interest to future NASA science missions such as Resource Prospector (RP). Polar optical conditions present challenges to conventional imaging techniques, with repercussions to driving, safeguarding and science. High dynamic range, long cast shadows, opposition and white out conditions are all significant factors in appearance. RP is currently undertaking an effort to characterize stereo vision performance in polar conditions through physical laboratory experimentation with regolith simulants, obstacle distributions and oblique lighting.
Discrimination of correlated and entangling quantum channels with selective process tomography
Dumitrescu, Eugene; Humble, Travis S.
2016-10-10
The accurate and reliable characterization of quantum dynamical processes underlies efforts to validate quantum technologies, where discrimination between competing models of observed behaviors inform efforts to fabricate and operate qubit devices. We present a protocol for quantum channel discrimination that leverages advances in direct characterization of quantum dynamics (DCQD) codes. We demonstrate that DCQD codes enable selective process tomography to improve discrimination between entangling and correlated quantum dynamics. Numerical simulations show selective process tomography requires only a few measurement configurations to achieve a low false alarm rate and that the DCQD encoding improves the resilience of the protocol to hiddenmore » sources of noise. Lastly, our results show that selective process tomography with DCQD codes is useful for efficiently distinguishing sources of correlated crosstalk from uncorrelated noise in current and future experimental platforms.« less
PPTOX III: environmental stressors in the developmental origins of disease--evidence and mechanisms.
Schug, Thaddeus T; Barouki, Robert; Gluckman, Peter D; Grandjean, Philippe; Hanson, Mark; Heindel, Jerold J
2013-02-01
Fetal and early postnatal development constitutes the most vulnerable time period of human life in regard to adverse effects of environmental hazards. Subtle effects during development can lead to functional deficits and increased disease risk later in life. The hypothesis stating that environmental exposures leads to altered programming and, thereby, to increased susceptibility to disease or dysfunction later in life has garnered much support from both experimental and epidemiological studies. Similar observations have been made on the long-term impact of nutritional unbalance during early development. In an effort to bridge the fields of nutritional and environmental developmental toxicity, the Society of Toxicology sponsored this work. This report summarizes novel findings in developmental toxicity as reported by select invited experts and meeting attendees. Recommendations for the application and improvement of current and future research efforts are also presented.
Continued Development and Validation of Methods for Spheromak Simulation
NASA Astrophysics Data System (ADS)
Benedett, Thomas
2015-11-01
The HIT-SI experiment has demonstrated stable sustainment of spheromaks; determining how the underlying physics extrapolate to larger, higher-temperature regimes is of prime importance in determining the viability of the inductively-driven spheromak. It is thus prudent to develop and validate a computational model that can be used to study current results and provide an intermediate step between theory and future experiments. A zero-beta Hall-MHD model has shown good agreement with experimental data at 14.5 kHz injector operation. Experimental observations at higher frequency, where the best performance is achieved, indicate pressure effects are important and likely required to attain quantitative agreement with simulations. Efforts to extend the existing validation to high frequency (~ 36-68 kHz) using an extended MHD model implemented in the PSI-TET arbitrary-geometry 3D MHD code will be presented. Results from verification of the PSI-TET extended MHD model using the GEM magnetic reconnection challenge will also be presented along with investigation of injector configurations for future SIHI experiments using Taylor state equilibrium calculations. Work supported by DoE.
The National Spallation Neutron Source (NSNS) Project
NASA Astrophysics Data System (ADS)
Appleton, Bill R.
1997-05-01
The need and justification for new sources and instrumentation in neutron science have been firmly established by numerous assessments since the early 1970s by the scientific community and the Department of Energy (DOE). In their 1996 budget, the DOE Office of Energy Research asked ORNL to lead the R&D and conceptual design effort for a next-generation spallation neutron source to be used for neutron scattering. To accomplish this, the NSNS collaboration involving five national laboratories (ANL, BNL, LANL, LBNL, and ORNL) has been formed. The NSNS reference design is for a 1-GeV linac and accumulator ring that delivers 1-MW proton beams in microsend pulses to a mercuty target; neutrons are produced by the spallation reaction, moderated, and guided into an experimental hall for neutron scattering. The design includes the necessary flexibility to upgrade the source in stages to significantly higher powers in the future and to expand the experimental capabilities. This talk will describe the origins at NSNS, the current funding status, progress on the technical design, user community input and the intended uses, and future prospects.
NASA Astrophysics Data System (ADS)
Wootten, A.; Dixon, K. W.; Lanzante, J. R.; Mcpherson, R. A.
2017-12-01
Empirical statistical downscaling (ESD) approaches attempt to refine global climate model (GCM) information via statistical relationships between observations and GCM simulations. The aim of such downscaling efforts is to create added-value climate projections by adding finer spatial detail and reducing biases. The results of statistical downscaling exercises are often used in impact assessments under the assumption that past performance provides an indicator of future results. Given prior research describing the danger of this assumption with regards to temperature, this study expands the perfect model experimental design from previous case studies to test the stationarity assumption with respect to precipitation. Assuming stationarity implies the performance of ESD methods are similar between the future projections and historical training. Case study results from four quantile-mapping based ESD methods demonstrate violations of the stationarity assumption for both central tendency and extremes of precipitation. These violations vary geographically and seasonally. For the four ESD methods tested the greatest challenges for downscaling of daily total precipitation projections occur in regions with limited precipitation and for extremes of precipitation along Southeast coastal regions. We conclude with a discussion of future expansion of the perfect model experimental design and the implications for improving ESD methods and providing guidance on the use of ESD techniques for impact assessments and decision-support.
A Review of Biorefinery Separations for Bioproduct Production via Thermocatalytic Processing.
Nguyen, Hannah; DeJaco, Robert F; Mittal, Nitish; Siepmann, J Ilja; Tsapatsis, Michael; Snyder, Mark A; Fan, Wei; Saha, Basudeb; Vlachos, Dionisios G
2017-06-07
With technological advancement of thermocatalytic processes for valorizing renewable biomass carbon, development of effective separation technologies for selective recovery of bioproducts from complex reaction media and their purification becomes essential. The high thermal sensitivity of biomass intermediates and their low volatility and high reactivity, along with the use of dilute solutions, make the bioproducts separations energy intensive and expensive. Novel separation techniques, including solvent extraction in biphasic systems and reactive adsorption using zeolite and carbon sorbents, membranes, and chromatography, have been developed. In parallel with experimental efforts, multiscale simulations have been reported for predicting solvent selection and adsorption separation. We discuss various separations that are potentially valuable to future biorefineries and the factors controlling separation performance. Particular emphasis is given to current gaps and opportunities for future development.
Marshall Space Flight Center's role in EASE/ACCESS mission management
NASA Technical Reports Server (NTRS)
Hawkins, Gerald W.
1987-01-01
The Marshall Space Flight Center (MSFC) Spacelab Payload Project Office was responsible for the mission management and development of several successful payloads. Two recent space construction experiments, the Experimental Assembly of Structures in Extravehicular Activity (EASE) and the Assembly Concept for Construction of Erectable Space Structures (ACCESS), were combined into a payload managed by the center. The Ease/ACCESS was flown aboard the Space Shuttle Mission 61-B. The EASE/ACCESS experiments were the first structures assembled in space, and the method used to manage this successful effort will be useful for future space construction missions. The MSFC mission management responsibilities for the EASE/ACCESS mission are addressed and how the lessons learned from the mission can be applied to future space construction projects are discussed.
Multi-component testing using HZ-PAN and AgZ-PAN Sorbents for OSPREY Model validation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garn, Troy G.; Greenhalgh, Mitchell; Lyon, Kevin L.
2015-04-01
In efforts to further develop the capability of the Off-gas SeParation and RecoverY (OSPREY) model, multi-component tests were completed using both HZ-PAN and AgZ-PAN sorbents. The primary purpose of this effort was to obtain multi-component xenon and krypton capacities for comparison to future OSPREY predicted multi-component capacities using previously acquired Langmuir equilibrium parameters determined from single component isotherms. Experimental capacities were determined for each sorbent using two feed gas compositions of 1000 ppmv xenon and 150 ppmv krypton in either a helium or air balance. Test temperatures were consistently held at 220 K and the gas flowrate was 50 sccm.more » Capacities were calculated from breakthrough curves using TableCurve® 2D software by Jandel Scientific. The HZ-PAN sorbent was tested in the custom designed cryostat while the AgZ-PAN was tested in a newly installed cooling apparatus. Previous modeling validation efforts indicated the OSPREY model can be used to effectively predict single component xenon and krypton capacities for both engineered form sorbents. Results indicated good agreement with the experimental and predicted capacity values for both krypton and xenon on the sorbents. Overall, the model predicted slightly elevated capacities for both gases which can be partially attributed to the estimation of the parameters and the uncertainty associated with the experimental measurements. Currently, OSPREY is configured such that one species adsorbs and one does not (i.e. krypton in helium). Modification of OSPREY code is currently being performed to incorporate multiple adsorbing species and non-ideal interactions of gas phase species with the sorbent and adsorbed phases. Once these modifications are complete, the sorbent capacities determined in the present work will be used to validate OSPREY multicomponent adsorption predictions.« less
Present understanding of MHD and heat transfer phenomena for liquid metal blankets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirillov, I.R.; Barleon, L.; Reed, C.B.
1994-12-31
Liquid metals (Li, Li17Pb83, Pb) are considered as coolants in many designs of fusion reactor blankets. To estimate their potential and to make an optimal design, one has to know the magnetohydrodynamic (MHD) and heat transfer characteristics of liquid metal flow in the magnetic field. Such flows with high characteristic parameter values (Hartmann number M and interaction parameter N) open up a relatively new field in Magnetohydrodynamics requiring both theoretical and experimental efforts. A review of experimental work done for the last ten years in different countries shows that there are some data on MHD/HT characteristics in straight channels ofmore » simple geometry under fusion reactor relevant conditions (M>>1, N>>1) and not enough data for complex flow geometries. Future efforts should be directed to investigation of MHD/HT in straight channels with perfect and imperfect electroinsulated walls, including those with controlled imperfections, and in channels of complex geometry. The experiments are not simple, since the fusion relevant conditions require facilities with magnetic fields at, or even higher than, 5-7 T in comparatively large volumes. International cooperation in constructing and operating these facilities may be of great help.« less
The Paucity Problem: Where Have All the Space Reactor Experiments Gone?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bess, John D.; Marshall, Margaret A.
2016-10-01
The Handbooks of the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPhEP) together contain a plethora of documented and evaluated experiments essential in the validation of nuclear data, neutronics codes, and modeling of various nuclear systems. Unfortunately, only a minute selection of handbook data (twelve evaluations) are of actual experimental facilities and mockups designed specifically for space nuclear research. There is a paucity problem, such that the multitude of space nuclear experimental activities performed in the past several decades have yet to be recovered and made available in such detail that themore » international community could benefit from these valuable historical research efforts. Those experiments represent extensive investments in infrastructure, expertise, and cost, as well as constitute significantly valuable resources of data supporting past, present, and future research activities. The ICSBEP and IRPhEP were established to identify and verify comprehensive sets of benchmark data; evaluate the data, including quantification of biases and uncertainties; compile the data and calculations in a standardized format; and formally document the effort into a single source of verified benchmark data. See full abstract in attached document.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chauvin, J.P.; Blaise, P.; Lyoussi, A.
2015-07-01
The French atomic and alternative energies -CEA- is strongly involved in research and development programs concerning the use of nuclear energy as a clean and reliable source of energy and consequently is working on the present and future generation of reactors on various topics such as ageing plant management, optimization of the plutonium stockpile, waste management and innovative systems exploration. Core physics studies are an essential part of this comprehensive R and D effort. In particular, the Zero Power Reactor (ZPR) of CEA: EOLE, MINERVE and MASURCA play an important role in the validation of neutron (as well photon) physicsmore » calculation tools (codes and nuclear data). The experimental programs defined in the CEA's ZPR facilities aim at improving the calculation routes by reducing the uncertainties of the experimental databases. They also provide accurate data on innovative systems in terms of new materials (moderating and decoupling materials) and new concepts (ADS, ABWR, new MTR (e.g. JHR), GENIV) involving new fuels, absorbers and coolant materials. Conducting such interesting experimental R and D programs is based on determining and measuring main parameters of phenomena of interest to qualify calculation tools and nuclear data 'libraries'. Determining these parameters relies on the use of numerous and different experimental techniques using specific and appropriate instrumentation and detection tools. Main ZPR experimental programs at CEA, their objectives and challenges will be presented and discussed. Future development and perspectives regarding ZPR reactors and associated programs will be also presented. (authors)« less
Nadeau, Christopher P.; Conway, Courtney J.
2015-01-01
Securing water for wetland restoration efforts will be increasingly difficult as human populations demand more water and climate change alters the hydrologic cycle. Minimizing water use at a restoration site could help justify water use to competing users, thereby increasing future water security. Moreover, optimizing water depth for focal species will increase habitat quality and the probability that the restoration is successful. We developed and validated spatial habitat models to optimize water depth within wetland restoration projects along the lower Colorado River intended to benefit California black rails (Laterallus jamaicensis coturniculus). We observed a 358% increase in the number of black rails detected in the year after manipulating water depth to maximize the amount of predicted black rail habitat in two wetlands. The number of black rail detections in our restoration sites was similar to those at our reference site. Implementing the optimal water depth in each wetland decreased water use while simultaneously increasing habitat suitability for the focal species. Our results also provide experimental confirmation of past descriptive accounts of black rail habitat preferences and provide explicit water depth recommendations for future wetland restoration efforts for this species of conservation concern; maintain surface water depths between saturated soil and 100 mm. Efforts to optimize water depth in restored wetlands around the world would likely increase the success of wetland restorations for the focal species while simultaneously minimizing and justifying water use.
Goldsborough, S. Scott; Hochgreb, Simone; Vanhove, Guillaume; ...
2017-07-10
Rapid compression machines (RCMs) are widely-used to acquire experimental insights into fuel autoignition and pollutant formation chemistry, especially at conditions relevant to current and future combustion technologies. RCM studies emphasize important experimental regimes, characterized by low- to intermediate-temperatures (600–1200 K) and moderate to high pressures (5–80 bar). At these conditions, which are directly relevant to modern combustion schemes including low temperature combustion (LTC) for internal combustion engines and dry low emissions (DLE) for gas turbine engines, combustion chemistry exhibits complex and experimentally challenging behaviors such as the chemistry attributed to cool flame behavior and the negative temperature coefficient regime. Challengesmore » for studying this regime include that experimental observations can be more sensitive to coupled physical-chemical processes leading to phenomena such as mixed deflagrative/autoignitive combustion. Experimental strategies which leverage the strengths of RCMs have been developed in recent years to make RCMs particularly well suited for elucidating LTC and DLE chemistry, as well as convolved physical-chemical processes. Specifically, this work presents a review of experimental and computational efforts applying RCMs to study autoignition phenomena, and the insights gained through these efforts. A brief history of RCM development is presented towards the steady improvement in design, characterization, instrumentation and data analysis. Novel experimental approaches and measurement techniques, coordinated with computational methods are described which have expanded the utility of RCMs beyond empirical studies of explosion limits to increasingly detailed understanding of autoignition chemistry and the role of physical-chemical interactions. Fundamental insight into the autoignition chemistry of specific fuels is described, demonstrating the extent of knowledge of low-temperature chemistry derived from RCM studies, from simple hydrocarbons to multi-component blends and full-boiling range fuels. In conclusion, emerging needs and further opportunities are suggested, including investigations of under-explored fuels and the implementation of increasingly higher fidelity diagnostics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldsborough, S. Scott; Hochgreb, Simone; Vanhove, Guillaume
Rapid compression machines (RCMs) are widely-used to acquire experimental insights into fuel autoignition and pollutant formation chemistry, especially at conditions relevant to current and future combustion technologies. RCM studies emphasize important experimental regimes, characterized by low- to intermediate-temperatures (600–1200 K) and moderate to high pressures (5–80 bar). At these conditions, which are directly relevant to modern combustion schemes including low temperature combustion (LTC) for internal combustion engines and dry low emissions (DLE) for gas turbine engines, combustion chemistry exhibits complex and experimentally challenging behaviors such as the chemistry attributed to cool flame behavior and the negative temperature coefficient regime. Challengesmore » for studying this regime include that experimental observations can be more sensitive to coupled physical-chemical processes leading to phenomena such as mixed deflagrative/autoignitive combustion. Experimental strategies which leverage the strengths of RCMs have been developed in recent years to make RCMs particularly well suited for elucidating LTC and DLE chemistry, as well as convolved physical-chemical processes. Specifically, this work presents a review of experimental and computational efforts applying RCMs to study autoignition phenomena, and the insights gained through these efforts. A brief history of RCM development is presented towards the steady improvement in design, characterization, instrumentation and data analysis. Novel experimental approaches and measurement techniques, coordinated with computational methods are described which have expanded the utility of RCMs beyond empirical studies of explosion limits to increasingly detailed understanding of autoignition chemistry and the role of physical-chemical interactions. Fundamental insight into the autoignition chemistry of specific fuels is described, demonstrating the extent of knowledge of low-temperature chemistry derived from RCM studies, from simple hydrocarbons to multi-component blends and full-boiling range fuels. In conclusion, emerging needs and further opportunities are suggested, including investigations of under-explored fuels and the implementation of increasingly higher fidelity diagnostics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akopov, Zaven; Amerio, Silvia; Asner, David
2013-03-27
Data from high-energy physics (HEP) experiments are collected with significant financial and human effort and are mostly unique. An inter-experimental study group on HEP data preservation and long-term analysis was convened as a panel of the International Committee for Future Accelerators (ICFA). The group was formed by large collider-based experiments and investigated the technical and organisational aspects of HEP data preservation. An intermediate report was released in November 2009 addressing the general issues of data preservation in HEP. This paper includes and extends the intermediate report. It provides an analysis of the research case for data preservation and a detailedmore » description of the various projects at experiment, laboratory and international levels. In addition, the paper provides a concrete proposal for an international organisation in charge of the data management and policies in high-energy physics.« less
Psychological Issues in Online Adaptive Task Allocation
NASA Technical Reports Server (NTRS)
Morris, N. M.; Rouse, W. B.; Ward, S. L.; Frey, P. R.
1984-01-01
Adaptive aiding is an idea that offers potential for improvement over many current approaches to aiding in human-computer systems. The expected return of tailoring the system to fit the user could be in the form of improved system performance and/or increased user satisfaction. Issues such as the manner in which information is shared between human and computer, the appropriate division of labor between them, and the level of autonomy of the aid are explored. A simulated visual search task was developed. Subjects are required to identify targets in a moving display while performing a compensatory sub-critical tracking task. By manipulating characteristics of the situation such as imposed task-related workload and effort required to communicate with the computer, it is possible to create conditions in which interaction with the computer would be more or less desirable. The results of preliminary research using this experimental scenario are presented, and future directions for this research effort are discussed.
Regeneratively cooled rocket engine for space storable propellants
NASA Technical Reports Server (NTRS)
Wagner, W. R.
1973-01-01
Analysis, design, fabrication, and test efforts were performed for the existing OF2/B2H6 regeneratively cooled lK (4448 N) thrust chamber to illustrate simultaneous B2H6 fuel and OF2 oxidizer cooling and to provide results for a gaseous propellant condition injected into the combustion chamber. Data derived from performance, thermal and flow measurements confirmed predictions derived from previous test work and from concurrent analytical study. Development data derived from the experimental study were indicated to be sufficient to develop a preflight thrust chamber demonstrator prototype for future space mission objectives.
Magnetism in icosahedral quasicrystals: current status and open questions
Goldman, Alan I.
2014-07-02
Progress in our understanding of the magnetic properties of R-containing icosahedral quasicrystals (R = rare earth element) from over 20 years of experimental effort is reviewed. This includes the much studied R-Mg-Zn and R-Mg-Cd ternary systems, as well as several magnetic quasicrystals that have been discovered and investigated more recently including Sc-Fe-Zn, R-Ag-In, Yb-Au-Al, the recently synthesized R-Cd binary quasicrystals, and their periodic approximants. In many ways, the magnetic properties among these quasicrystals are very similar. However, differences are observed that suggest new experiments and promising directions for future research.
A Unique Software System For Simulation-to-Flight Research
NASA Technical Reports Server (NTRS)
Chung, Victoria I.; Hutchinson, Brian K.
2001-01-01
"Simulation-to-Flight" is a research development concept to reduce costs and increase testing efficiency of future major aeronautical research efforts at NASA. The simulation-to-flight concept is achieved by using common software and hardware, procedures, and processes for both piloted-simulation and flight testing. This concept was applied to the design and development of two full-size transport simulators, a research system installed on a NASA B-757 airplane, and two supporting laboratories. This paper describes the software system that supports the simulation-to-flight facilities. Examples of various simulation-to-flight experimental applications were also provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raffray, A.R.; Meier, W.; Abdel-Khalik, S.
For thick liquid wall concepts, it is important to understand the different mechanisms affecting the chamber dynamics and the state of the chamber prior to each shot a compared with requirements from the driver and target. These include ablation mechanisms, vapor transport and control, possible aerosol formation, as well as protective jet behavior. This paper was motivated by a town meeting on this subject which helped identify the major issues, assess the latest results, review the capabilities of existing modeling and experimental facilities with respect to addressing remaining issues, and helping guide future analysis and R&D efforts; the paper coversmore » these exact points.« less
Dounskaia, Natalia; Shimansky, Yury
2016-06-01
Optimality criteria underlying organization of arm movements are often validated by testing their ability to adequately predict hand trajectories. However, kinematic redundancy of the arm allows production of the same hand trajectory through different joint coordination patterns. We therefore consider movement optimality at the level of joint coordination patterns. A review of studies of multi-joint movement control suggests that a 'trailing' pattern of joint control is consistently observed during which a single ('leading') joint is rotated actively and interaction torque produced by this joint is the primary contributor to the motion of the other ('trailing') joints. A tendency to use the trailing pattern whenever the kinematic redundancy is sufficient and increased utilization of this pattern during skillful movements suggests optimality of the trailing pattern. The goal of this study is to determine the cost function minimization of which predicts the trailing pattern. We show that extensive experimental testing of many known cost functions cannot successfully explain optimality of the trailing pattern. We therefore propose a novel cost function that represents neural effort for joint coordination. That effort is quantified as the cost of neural information processing required for joint coordination. We show that a tendency to reduce this 'neurocomputational' cost predicts the trailing pattern and that the theoretically developed predictions fully agree with the experimental findings on control of multi-joint movements. Implications for future research of the suggested interpretation of the trailing joint control pattern and the theory of joint coordination underlying it are discussed.
Extended-Range Forecasts at Climate Prediction Center: Current Status and Future Plans
NASA Astrophysics Data System (ADS)
Kumar, A.
2016-12-01
Motivated by a user need to provide forecast information on extended-range time-scales (i.e., weeks 2-4), in recent years Climate Prediction Center (CPC) has made considerable efforts towards developing and testing the feasibility for developing the required forecasts. The forecasts targeting this particular time-scale face a unique challenge in that while the forecast skill due to atmospheric initial conditions is small (because of rapid decay in the memory associated with the atmospheric initial conditions), short time averages for which forecasts are made do not benefit from skill associated with anomalous boundary conditions either. Despite these challenges, CPC has embarked on providing an experimental outlook for weeks 3-4 average. The talk will summarize the current status of CPC's current suite of extended-range forecast products, and further, will discuss some future plans.
Past Strategies and Future Directions for Identifying AMP-Activated Protein Kinase (AMPK) Modulators
Sinnett, Sarah E.; Brenman, Jay E.
2014-01-01
AMP-activated protein kinase (AMPK) is a promising therapeutic target for cancer, type II diabetes, and other illnesses characterized by abnormal energy utilization. During the last decade, numerous labs have published a range of methods for identifying novel AMPK modulators. The current understanding of AMPK structure and regulation, however, has propelled a paradigm shift in which many researchers now consider ADP to be an additional regulatory nucleotide of AMPK. How can the AMPK community apply this new understanding of AMPK signaling to translational research? Recent insights into AMPK structure, regulation, and holoenzyme-sensitive signaling may provide the hindsight needed to clearly evaluate the strengths and weaknesses of past AMPK drug discovery efforts. Improving future strategies for AMPK drug discovery will require pairing the current understanding of AMPK signaling with improved experimental designs. PMID:24583089
Development of N-version software samples for an experiment in software fault tolerance
NASA Technical Reports Server (NTRS)
Lauterbach, L.
1987-01-01
The report documents the task planning and software development phases of an effort to obtain twenty versions of code independently designed and developed from a common specification. These versions were created for use in future experiments in software fault tolerance, in continuation of the experimental series underway at the Systems Validation Methods Branch (SVMB) at NASA Langley Research Center. The 20 versions were developed under controlled conditions at four U.S. universities, by 20 teams of two researchers each. The versions process raw data from a modified Redundant Strapped Down Inertial Measurement Unit (RSDIMU). The specifications, and over 200 questions submitted by the developers concerning the specifications, are included as appendices to this report. Design documents, and design and code walkthrough reports for each version, were also obtained in this task for use in future studies.
Present understanding of MHD and heat transfer phenomena for liquid metal blankets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirillov, I.R.; Barleon, L.; Reed, C.B.
1994-07-01
A review of experimental work on magnetohydrodynamic (MHD) and heat transfer (HT) characteristics of liquid metal flows in fusion relevant conditions is presented. Experimental data on MHD flow pressure drop in straight channels of round and rectangular cross-section with electroconducting walls in a transverse magnetic field show good agreement with theoretical predictions, and simple engineering formulas are confirmed. Less data are available on velocity distribution and HT characteristics, and even less data are available for channels with electroinsulating walls or artificially made self-heating electroinsulating coatings. Some experiments show an interesting phenomena of HT increase in the presence of a transversemore » or axial magnetic field. For channels of complex geometry -- expansions, contractions, bends, and manifolds -- few experimental data are available. Future efforts should be directed toward investigation of MHD/HT in straight channels with perfect and nonperfect electroinsulated walls, including walls with controlled imperfections, and in channels of complex geometry. International cooperation in manufacturing and operating experimental facilities with magnetic fields at, or even higher than, 5--7 T with comparatively large volumes may be of great help.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Jeremy C.; Cheng, Xiaolin; Nickels, Jonathan D.
Understanding of cell membrane organization has evolved significantly from the classic fluid mosaic model. It is now recognized that biological membranes are highly organized structures, with differences in lipid compositions between inner and outer leaflets and in lateral structures within the bilayer plane, known as lipid rafts. These organizing principles are important for protein localization and function as well as cellular signaling. However, the mechanisms and biophysical basis of lipid raft formation, structure, dynamics and function are not clearly understood. One key question, which we focus on in this review, is how lateral organization and leaflet compositional asymmetry are coupled.more » Detailed information elucidating this question has been sparse because of the small size and transient nature of rafts and the experimental challenges in constructing asymmetric bilayers. Resolving this mystery will require advances in both experimentation and modeling. We discuss here the preparation of model systems along with experimental and computational approaches that have been applied in efforts to address this key question in membrane biology. Furthermore, we seek to place recent and future advances in experimental and computational techniques in context, providing insight into in-plane and transverse organization of biological membranes.« less
De la Cruz, Susan E W; Takekawa, John Y; Spragens, Kyle A; Yee, Julie; Golightly, Richard T; Massey, Greg; Henkel, Laird A; Scott Larsen, R; Ziccardi, Michael
2013-02-15
Birds are often the most numerous vertebrates damaged and rehabilitated in marine oil spills; however, the efficacy of avian rehabilitation is frequently debated and rarely examined experimentally. We compared survival of three radio-marked treatment groups, oiled, rehabilitated (ORHB), un-oiled, rehabilitated (RHB), and un-oiled, non-rehabilitated (CON), in an experimental approach to examine post-release survival of surf scoters (Melanitta perspicillata) following the 2007 M/V Cosco Busan spill in San Francisco Bay. Live encounter-dead recovery modeling indicated that survival differed among treatment groups and over time since release. The survival estimate (±SE) for ORHB was 0.143±0.107 compared to CON (0.498±0.168) and RHB groups (0.772±0.229), suggesting scoters tolerated the rehabilitation process itself well, but oiling resulted in markedly lower survival. Future efforts to understand the physiological effects of oil type and severity on scoters are needed to improve post-release survival of this species. Published by Elsevier Ltd.
De La Cruz, Susan E. W.; Takekawa, John Y.; Spragens, Kyle A.; Yee, Julie; Golightly, Richard T.; Massey, Greg; Henkel, Laird A.; Larsen, Scott; Ziccardi, Michael
2013-01-01
Birds are often the most numerous vertebrates damaged and rehabilitated in marine oil spills; however, the efficacy of avian rehabilitation is frequently debated and rarely examined experimentally. We compared survival of three radio-marked treatment groups, oiled, rehabilitated (ORHB), un-oiled, rehabilitated (RHB), and un-oiled, non-rehabilitated (CON), in an experimental approach to examine post-release survival of surf scoters (Melanitta perspicillata) following the 2007 M/V Cosco Busan spill in San Francisco Bay. Live encounter-dead recovery modeling indicated that survival differed among treatment groups and over time since release. The survival estimate (±SE) for ORHB was 0.143 ± 0.107 compared to CON (0.498 ± 0.168) and RHB groups (0.772 ± 0.229), suggesting scoters tolerated the rehabilitation process itself well, but oiling resulted in markedly lower survival. Future efforts to understand the physiological effects of oil type and severity on scoters are needed to improve post-release survival of this species.
Experimental Stage Separation Tool Development in NASA Langley's Aerothermodynamics Laboratory
NASA Technical Reports Server (NTRS)
Murphy, Kelly J.; Scallion, William I.
2005-01-01
As part of the research effort at NASA in support of the stage separation and ascent aerothermodynamics research program, proximity testing of a generic bimese wing-body configuration was conducted in NASA Langley's Aerothermodynamics Laboratory in the 20-Inch Mach 6 Air Tunnel. The objective of this work is the development of experimental tools and testing methodologies to apply to hypersonic stage separation problems for future multi-stage launch vehicle systems. Aerodynamic force and moment proximity data were generated at a nominal Mach number of 6 over a small range of angles of attack. The generic bimese configuration was tested in a belly-to-belly and back-to-belly orientation at 86 relative proximity locations. Over 800 aerodynamic proximity data points were taken to serve as a database for code validation. Longitudinal aerodynamic data generated in this test program show very good agreement with viscous computational predictions. Thus a framework has been established to study separation problems in the hypersonic regime using coordinated experimental and computational tools.
Precision experiments on mirror transitions at Notre Dame
NASA Astrophysics Data System (ADS)
Brodeur, Maxime; TwinSol Collaboration
2016-09-01
Thanks to extensive experimental efforts that led to a precise determination of important experimental quantities of superallowed pure Fermi transitions, we now have a very precise value for Vud that leads to a stringent test of the CKM matrix unitarity. Despite this achievement, measurements in other systems remain relevant as conflicting results could uncover unknown systematic effects or even new physics. One such system is the superallowed mixed transition, which can help refine theoretical corrections used for pure Fermi transitions and improve the accuracy of Vud. However, as a corrected Ft-value determination from these systems requires the more challenging determination of the Fermi Gamow-Teller mixing ratio, only five transitions, spreading from 19Ne to 37Ar, are currently fully characterized. To rectify the situation, an experimental program on precision experiment of mirror transitions that includes precision half-life measurements, and in the future, the determination of the Fermi Gamow-Teller mixing ratio, has started at the University of Notre Dame. This work is supported in part by the National Science Foundation.
Experimental observations of a complex, supersonic nozzle concept
NASA Astrophysics Data System (ADS)
Magstadt, Andrew; Berry, Matthew; Glauser, Mark; Ruscher, Christopher; Gogineni, Sivaram; Kiel, Barry; Skytop Turbulence Labs, Syracuse University Team; Spectral Energies, LLC. Team; Air Force Research Laboratory Team
2015-11-01
A complex nozzle concept, which fuses multiple canonical flows together, has been experimentally investigated via pressure, schlieren and PIV in the anechoic chamber at Syracuse University. Motivated by future engine designs of high-performance aircraft, the rectangular, supersonic jet under investigation has a single plane of symmetry, an additional shear layer (referred to as a wall jet) and an aft deck representative of airframe integration. Operating near a Reynolds number of 3 ×106 , the nozzle architecture creates an intricate flow field comprised of high turbulence levels, shocks, shear & boundary layers, and powerful corner vortices. Current data suggest that the wall jet, which is an order of magnitude less energetic than the core, has significant control authority over the acoustic power through some non-linear process. As sound is a direct product of turbulence, experimental and analytical efforts further explore this interesting phenomenon associated with the turbulent flow. The authors acknowledge the funding source, a SBIR Phase II project with Spectral Energies, LLC. and AFRL turbine engine branch under the direction of Dr. Barry Kiel.
Experimental Investigation of a Wing-in-Ground Effect Craft
Tofa, M. Mobassher; Ahmed, Yasser M.; Jamei, Saeed; Priyanto, Agoes; Rahimuddin
2014-01-01
The aerodynamic characteristics of the wing-in-ground effect (WIG) craft model that has a noble configuration of a compound wing was experimentally investigated and Universiti Teknologi Malaysia (UTM) wind tunnel with and without endplates. Lift and drag forces, pitching moment coefficients, and the centre of pressure were measured with respect to the ground clearance and the wing angle of attack. The ground effect and the existence of the endplates increase the wing lift-to-drag ratio at low ground clearance. The results of this research work show new proposed design of the WIG craft with compound wing and endplates, which can clearly increase the aerodynamic efficiency without compromising the longitudinal stability. The use of WIG craft is representing an ambitious technology that will help in reducing time, effort, and money of the conventional marine transportation in the future. PMID:24701170
Fully-kinetic Ion Simulation of Global Electrostatic Turbulent Transport in C-2U
NASA Astrophysics Data System (ADS)
Fulton, Daniel; Lau, Calvin; Bao, Jian; Lin, Zhihong; Tajima, Toshiki; TAE Team
2017-10-01
Understanding the nature of particle and energy transport in field-reversed configuration (FRC) plasmas is a crucial step towards an FRC-based fusion reactor. The C-2U device at Tri Alpha Energy (TAE) achieved macroscopically stable plasmas and electron energy confinement time which scaled favorably with electron temperature. This success led to experimental and theoretical investigation of turbulence in C-2U, including gyrokinetic ion simulations with the Gyrokinetic Toroidal Code (GTC). A primary objective of TAE's new C-2W device is to explore transport scaling in an extended parameter regime. In concert with the C-2W experimental campaign, numerical efforts have also been extended in A New Code (ANC) to use fully-kinetic (FK) ions and a Vlasov-Poisson field solver. Global FK ion simulations are presented. Future code development is also discussed.
Experimental investigation of a wing-in-ground effect craft.
Tofa, M Mobassher; Maimun, Adi; Ahmed, Yasser M; Jamei, Saeed; Priyanto, Agoes; Rahimuddin
2014-01-01
The aerodynamic characteristics of the wing-in-ground effect (WIG) craft model that has a noble configuration of a compound wing was experimentally investigated and Universiti Teknologi Malaysia (UTM) wind tunnel with and without endplates. Lift and drag forces, pitching moment coefficients, and the centre of pressure were measured with respect to the ground clearance and the wing angle of attack. The ground effect and the existence of the endplates increase the wing lift-to-drag ratio at low ground clearance. The results of this research work show new proposed design of the WIG craft with compound wing and endplates, which can clearly increase the aerodynamic efficiency without compromising the longitudinal stability. The use of WIG craft is representing an ambitious technology that will help in reducing time, effort, and money of the conventional marine transportation in the future.
How to make deposition of images a reality
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guss, J. Mitchell, E-mail: mitchell.guss@sydney.edu.au; McMahon, Brian; School of Molecular Bioscience, The University of Sydney, Sydney, NSW 2006
2014-10-01
An analysis is performed of the technical and financial challenges to be overcome if deposition of primary experimental data is to become routine. The IUCr Diffraction Data Deposition Working Group is investigating the rationale and policies for routine deposition of diffraction images (and other primary experimental data sets). An information-management framework is described that should inform policy directions, and some of the technical and other issues that need to be addressed in an effort to achieve such a goal are analysed. In the near future, routine data deposition could be encouraged at one of the growing number of institutional repositoriesmore » that accept data sets or at a generic data-publishing web repository service. To realise all of the potential benefits of depositing diffraction data, specialized archives would be preferable. Funding such an initiative will be challenging.« less
Twitter, Millennials, and Nursing Education Research.
Stephens, Teresa M; Gunther, Mary E
2016-01-01
This article reports the use of Twitter as an intervention delivery method in a multisite experimental nursing research study. A form of social networking, Twitter is considered a useful means of communication, particularly with millennials. This method was chosen based on current literature exploring the characteristics of millennial students. Ahern's Model of Adolescent Resilience served as the theoretical framework. Participants were 70 junior-level baccalaureate nursing students, ages 19-23, at two state-supported universities. Twitter was found to be a convenient, cost-effective, and enjoyable means of intervention delivery for the researcher. Participants in the experimental and control groups expressed positive feelings about the use of Twitter. The findings contribute to future efforts to use social media in nursing research and education to increase faculty-student engagement, promote critical reflection, provide social support, reinforce course content, and increase the sense of community.
Engineering Lipases: walking the fine line between activity and stability
NASA Astrophysics Data System (ADS)
Dasetty, Siva; Blenner, Mark A.; Sarupria, Sapna
2017-11-01
Lipases are enzymes that hydrolyze lipids and have several industrial applications. There is a tremendous effort in engineering the activity, specificity and stability of lipases to render them functional in a variety of environmental conditions. In this review, we discuss the recent experimental and simulation studies focused on engineering lipases. Experimentally, mutagenesis studies have demonstrated that the activity, stability, and specificity of lipases can be modulated by mutations. It has been particularly challenging however, to elucidate the underlying mechanisms through which these mutations affect the lipase properties. We summarize results from experiments and molecular simulations highlighting the emerging picture to this end. We end the review with suggestions for future research which underscores the delicate balance of various facets in the lipase that affect their activity and stability necessitating the consideration of the enzyme as a network of interactions.
REPORT OF RESEARCH ACCOMPLISHMENTS AND FUTURE GOALS HIGH ENERGY PHYSICS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wise, Mark B.; Kapustin, Anton N.; Schwarz, John Henry
Caltech High Energy Physics (HEP) has a broad program in both experimental and theoretical physics. We are known for our creativity and leadership. The future is uncertain and we strive to be involved in all the major areas of experimental and theoretical HEP physics so no matter where the important discoveries occur we are well positioned to play an important role. An outstanding group of postdoctoral scholars, graduate students, staff scientists, and technical and administrative personnel support our efforts in experimental and theoretical physics. The PI’s on this grant are involved in the following program of experimental and theoretical activities:more » I) EXPERIMENTAL PHYSICS Our CMS group, led by Harvey Newman and Maria Spiropulu, has played a key role in the discovery and interpretation of the Higgs boson and in searches for new physics. They have important hardware responsibilities in both ECAL and HCAL and are also involved in the upgrades needed for the High Luminosity LHC. Newman's group also develops and operates Grid-based computing, networking, and collaborative systems for CMS and the US HEP community. The charged lepton (Mu2e) and quark BaBar flavor physics group is led by David Hitlin and Frank Porter. On Mu2e they have been instrumental in the design of the calorimeter. Construction responsibilities include one third of the crystals and associated readout as well as the calibration system. They also will have responsibility for a major part of the online system software. Although data taking ceased in 2008 the Caltech BaBar group is active on several new forefront analyses. The neutrino group is led by Ryan Patterson. They are central to NOvA's core oscillation physics program, to calibration, and to detector readiness being responsible for the production and installation of 12,000 APD arrays. They have key roles in neutrino appearance and disappearance analysis in MINOS and MINOS+. Sunil Golwala leads the dark matter direct detection effort. Areas of activity include: CDMS II data analysis, contributions to SuperCDMS Soudan operations and analysis, R&D towards SuperCDMS SNOLAB, development of a novel screener for radiocontamination (the BetaCage), and development of new WIMP detector concepts. Ren-Yuan Zhu leads the HEP crystal laboratory for the advanced detector R&D effort. The crystal lab is involved in development of novel scintillating crystals and has proposed several crystal based detector concepts for future HEP experiments at the energy and intensity frontiers. Its current research effort is concentrated on development of fast crystal scintillators with good radiation hardness and low cost. II) THEORETICAL PHYSICS The main theme of Sergei Gukov's current research is the relation between the geometry of quantum group invariants and their categorification, on the one hand, and the physics of supersymmetric gauge theory and string theory, on the other. Anton Kapustin's research spans a variety of topics in non-perturbative Quantum Field Theory (QFT). His main areas of interest are supersymmetric gauge theories, non-perturbative dualities in QFT, disorder operators, Topological Quantum Field Theory, and non-relativistic QFT. He is also interested in the foundations and possible generalizations of Quantum Mechanics. Hirosi Ooguri's current research has two main components. One is to find exact results in Calabi-Yau compactification of string theory. Another is to explore applications of the AdS/CFT correspondence. He also plans to continue his project with Caltech postdoctoral fellows on BPS spectra of supersymmetric gauge theories in diverse dimensions. John Preskill works on quantum information science. This field may lead to important future technologies, and also lead to new understanding of issues in fundamental physics John Schwarz has been exploring a number of topics in superstring theory/M-theory, supersymmetric gauge theory, and their AdS/CFT relationships. Much of the motivation for these studies is the desire to gain a deeper understanding of superstring theory and M-theory. The research interests of Mark Wise span particle physics, cosmology and nuclear physics. His recent work has centered on extensions of the standard model where baryon number and lepton number are gauged and extensions of the standard model that have novel sources of baryon number violation and new sources of charged lepton flavor violation« less
Second language experience modulates word retrieval effort in bilinguals: evidence from pupillometry
Schmidtke, Jens
2014-01-01
Bilingual speakers often have less language experience compared to monolinguals as a result of speaking two languages and/or a later age of acquisition of the second language. This may result in weaker and less precise phonological representations of words in memory, which may cause greater retrieval effort during spoken word recognition. To gauge retrieval effort, the present study compared the effects of word frequency, neighborhood density (ND), and level of English experience by testing monolingual English speakers and native Spanish speakers who differed in their age of acquisition of English (early/late). In the experimental paradigm, participants heard English words and matched them to one of four pictures while the pupil size, an indication of cognitive effort, was recorded. Overall, both frequency and ND effects could be observed in the pupil response, indicating that lower frequency and higher ND were associated with greater retrieval effort. Bilingual speakers showed an overall delayed pupil response and a larger ND effect compared to the monolingual speakers. The frequency effect was the same in early bilinguals and monolinguals but was larger in late bilinguals. Within the group of bilingual speakers, higher English proficiency was associated with an earlier pupil response in addition to a smaller frequency and ND effect. These results suggest that greater retrieval effort associated with bilingualism may be a consequence of reduced language experience rather than constitute a categorical bilingual disadvantage. Future avenues for the use of pupillometry in the field of spoken word recognition are discussed. PMID:24600428
The Student Spaceflight Experiments Program: Access to the ISS for K-14 Students
NASA Astrophysics Data System (ADS)
Livengood, Timothy A.; Goldstein, J. J.; Vanhala, H. A. T.; Johnson, M.; Hulslander, M.
2012-10-01
The Student Spaceflight Experiments Program (SSEP) has flown 42 experiments to space, on behalf of students from middle school through community college, on 3 missions: each of the last 2 Space Shuttle flights, and the first SpaceX resupply flight to the International Space Station (ISS). SSEP plans 2 missions to the ISS per year for the foreseeable future, and is expanding the program to include 4-year undergraduate college students and home-schooled students. SSEP experiments have explored biological, chemical, and physical phenomena within self-contained enclosures developed by NanoRacks, currently in the form of MixStix Fluid Mixing Enclosures. Over 9000 students participated in the initial 3 missions of SSEP, directly experiencing the entire lifecycle of space science experimentation through community-wide participation in SSEP, taking research from a nascent idea through developing competitive research proposals, down-selecting to three proposals from each participating community and further selection of a single proposal for flight, actual space flight, sample recovery, analysis, and reporting. The National Air and Space Museum has hosted 2 National Conferences for SSEP student teams to report results in keeping with the model of professional research. Student teams have unflinchingly reported on success, failure, and groundbased efforts to develop proposals for future flight opportunities. Community participation extends outside the sciences and the immediate proposal efforts to include design competitions for mission patches (that also fly to space). Student experimenters have rallied around successful proposal teams to support a successful experiment on behalf of the entire community. SSEP is a project of the National Center for Earth and Space Science Education enabled through NanoRacks LLC, working in partnership with NASA under a Space Act Agreement as part of the utilization of the International Space Station as a National Laboratory.
NASA Technical Reports Server (NTRS)
Wickens, Christopher; Sebok, Angelia; Keller, John; Peters, Steve; Small, Ronald; Hutchins, Shaun; Algarin, Liana; Gore, Brian Francis; Hooey, Becky Lee; Foyle, David C.
2013-01-01
NextGen operations are associated with a variety of changes to the national airspace system (NAS) including changes to the allocation of roles and responsibilities among operators and automation, the use of new technologies and automation, additional information presented on the flight deck, and the entire concept of operations (ConOps). In the transition to NextGen airspace, aviation and air operations designers need to consider the implications of design or system changes on human performance and the potential for error. To ensure continued safety of the NAS, it will be necessary for researchers to evaluate design concepts and potential NextGen scenarios well before implementation. One approach for such evaluations is through human performance modeling. Human performance models (HPMs) provide effective tools for predicting and evaluating operator performance in systems. HPMs offer significant advantages over empirical, human-in-the-loop testing in that (1) they allow detailed analyses of systems that have not yet been built, (2) they offer great flexibility for extensive data collection, (3) they do not require experimental participants, and thus can offer cost and time savings. HPMs differ in their ability to predict performance and safety with NextGen procedures, equipment and ConOps. Models also vary in terms of how they approach human performance (e.g., some focus on cognitive processing, others focus on discrete tasks performed by a human, while others consider perceptual processes), and in terms of their associated validation efforts. The objectives of this research effort were to support the Federal Aviation Administration (FAA) in identifying HPMs that are appropriate for predicting pilot performance in NextGen operations, to provide guidance on how to evaluate the quality of different models, and to identify gaps in pilot performance modeling research, that could guide future research opportunities. This research effort is intended to help the FAA evaluate pilot modeling efforts and select the appropriate tools for future modeling efforts to predict pilot performance in NextGen operations.
NASA Technical Reports Server (NTRS)
Sallee, G. P.
1973-01-01
The advanced technology requirements for an advanced high speed commercial transport engine are presented. The results of the phase 3 effort cover the requirements and objectives for future aircraft propulsion systems. These requirements reflect the results of the Task 1 and 2 efforts and serve as a baseline for future evaluations, specification development efforts, contract/purchase agreements, and operational plans for future subsonic commercial engines. This report is divided into five major sections: (1) management objectives for commercial propulsion systems, (2) performance requirements for commercial transport propulsion systems, (3) design criteria for future transport engines, (4) design requirements for powerplant packages, and (5) testing.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-17
... Indoor Tanning among Young Adults to Inform Future Public Health Policy Efforts to Prevent Skin Cancer... Frequent Indoor Tanning among Young Adults to Inform Future Public Health Policy Efforts to Prevent Skin...
NASA Technical Reports Server (NTRS)
Campbell, Anthony B.; Nair, Satish S.; Miles, John B.; Iovine, John V.; Lin, Chin H.
1998-01-01
The present NASA space suit (the Shuttle EMU) is a self-contained environmental control system, providing life support, environmental protection, earth-like mobility, and communications. This study considers the thermal dynamics of the space suit as they relate to astronaut thermal comfort control. A detailed dynamic lumped capacitance thermal model of the present space suit is used to analyze the thermal dynamics of the suit with observations verified using experimental and flight data. Prior to using the model to define performance characteristics and limitations for the space suit, the model is first evaluated and improved. This evaluation includes determining the effect of various model parameters on model performance and quantifying various temperature prediction errors in terms of heat transfer and heat storage. The observations from this study are being utilized in two future design efforts, automatic thermal comfort control design for the present space suit and design of future space suit systems for Space Station, Lunar, and Martian missions.
Ocean acidification may aggravate social-ecological trade-offs in coastal fisheries.
Voss, Rudi; Quaas, Martin F; Schmidt, Jörn O; Kapaun, Ute
2015-01-01
Ocean Acidification (OA) will influence marine ecosystems by changing species abundance and composition. Major effects are described for calcifying organisms, which are significantly impacted by decreasing pH values. Direct effects on commercially important fish are less well studied. The early life stages of fish populations often lack internal regulatory mechanisms to withstand the effects of abnormal pH. Negative effects can be expected on growth, survival, and recruitment success. Here we study Norwegian coastal cod, one of the few stocks where such a negative effect was experimentally quantified, and develop a framework for coupling experimental data on OA effects to ecological-economic fisheries models. In this paper, we scale the observed physiological responses to the population level by using the experimentally determined mortality rates as part of the stock-recruitment relationship. We then use an ecological-economic optimization model, to explore the potential effect of rising CO2 concentration on ecological (stock size), economic (profits), consumer-related (harvest) and social (employment) indicators, with scenarios ranging from present day conditions up to extreme acidification. Under the assumptions of our model, yields and profits could largely be maintained under moderate OA by adapting future fishing mortality (and related effort) to changes owing to altered pH. This adaptation comes at the costs of reduced stock size and employment, however. Explicitly visualizing these ecological, economic and social tradeoffs will help in defining realistic future objectives. Our results can be generalized to any stressor (or stressor combination), which is decreasing recruitment success. The main findings of an aggravation of trade-offs will remain valid. This seems to be of special relevance for coastal stocks with limited options for migration to avoid unfavorable future conditions and subsequently for coastal fisheries, which are often small scale local fisheries with limited operational ranges.
Systematic dissemination of a preschool physical activity intervention to the control preschools
Howie, Erin K.; Brewer, Alisa E.; Brown, William H.; Saunders, Ruth P.; Pate, Russell R.
2016-01-01
For public health interventions to have a meaningful impact on public health, they must be disseminated to the wider population. Systematic planning and evaluation of dissemination efforts can aid translation from experimental trials to larger dissemination programs. The Study of Health and Activity in Preschool Environments (SHAPES) was a group-randomized intervention trial conducted in 16 preschools that successfully increased the physical activity of preschool age children. Following the completion of the research study protocol, the intervention was abbreviated, modified and implemented in four preschools who participated as control preschools in the original research study. The purposes of the current study were to describe the process of refining the intervention for dissemination to the control preschools, and to assess the acceptability of the resulting abbreviated intervention delivery. Five overarching behavioral objectives, informed by process evaluation, data from the original trial and collaboration with intervention teachers, were used to guide the implementation. Teachers in the dissemination classrooms reported high levels of acceptability, potential for sustainability of the program, and positive results in knowledge, skills, and child outcomes. Researchers can include a systematic approach to dissemination of effective intervention elements to the control participants in experimental studies to inform future dissemination efforts and begin to bridge the dissemination gap. PMID:27107302
Topical perspective on massive threading and parallelism.
Farber, Robert M
2011-09-01
Unquestionably computer architectures have undergone a recent and noteworthy paradigm shift that now delivers multi- and many-core systems with tens to many thousands of concurrent hardware processing elements per workstation or supercomputer node. GPGPU (General Purpose Graphics Processor Unit) technology in particular has attracted significant attention as new software development capabilities, namely CUDA (Compute Unified Device Architecture) and OpenCL™, have made it possible for students as well as small and large research organizations to achieve excellent speedup for many applications over more conventional computing architectures. The current scientific literature reflects this shift with numerous examples of GPGPU applications that have achieved one, two, and in some special cases, three-orders of magnitude increased computational performance through the use of massive threading to exploit parallelism. Multi-core architectures are also evolving quickly to exploit both massive-threading and massive-parallelism such as the 1.3 million threads Blue Waters supercomputer. The challenge confronting scientists in planning future experimental and theoretical research efforts--be they individual efforts with one computer or collaborative efforts proposing to use the largest supercomputers in the world is how to capitalize on these new massively threaded computational architectures--especially as not all computational problems will scale to massive parallelism. In particular, the costs associated with restructuring software (and potentially redesigning algorithms) to exploit the parallelism of these multi- and many-threaded machines must be considered along with application scalability and lifespan. This perspective is an overview of the current state of threading and parallelize with some insight into the future. Published by Elsevier Inc.
Integrated PK-PD and agent-based modeling in oncology.
Wang, Zhihui; Butner, Joseph D; Cristini, Vittorio; Deisboeck, Thomas S
2015-04-01
Mathematical modeling has become a valuable tool that strives to complement conventional biomedical research modalities in order to predict experimental outcome, generate new medical hypotheses, and optimize clinical therapies. Two specific approaches, pharmacokinetic-pharmacodynamic (PK-PD) modeling, and agent-based modeling (ABM), have been widely applied in cancer research. While they have made important contributions on their own (e.g., PK-PD in examining chemotherapy drug efficacy and resistance, and ABM in describing and predicting tumor growth and metastasis), only a few groups have started to combine both approaches together in an effort to gain more insights into the details of drug dynamics and the resulting impact on tumor growth. In this review, we focus our discussion on some of the most recent modeling studies building on a combined PK-PD and ABM approach that have generated experimentally testable hypotheses. Some future directions are also discussed.
Integrated PK-PD and Agent-Based Modeling in Oncology
Wang, Zhihui; Butner, Joseph D.; Cristini, Vittorio
2016-01-01
Mathematical modeling has become a valuable tool that strives to complement conventional biomedical research modalities in order to predict experimental outcome, generate new medical hypotheses, and optimize clinical therapies. Two specific approaches, pharmacokinetic-pharmacodynamic (PK-PD) modeling, and agent-based modeling (ABM), have been widely applied in cancer research. While they have made important contributions on their own (e.g., PK-PD in examining chemotherapy drug efficacy and resistance, and ABM in describing and predicting tumor growth and metastasis), only a few groups have started to combine both approaches together in an effort to gain more insights into the details of drug dynamics and the resulting impact on tumor growth. In this review, we focus our discussion on some of the most recent modeling studies building on a combined PK-PD and ABM approach that have generated experimentally testable hypotheses. Some future directions are also discussed. PMID:25588379
Fifty years of solid-phase extraction in water analysis--historical development and overview.
Liska, I
2000-07-14
The use of an appropriate sample handling technique is a must in an analysis of organic micropollutants in water. The efforts to use a solid phase for the recovery of analytes from a water matrix prior to their detection have a long history. Since the first experimental trials using activated carbon filters that were performed 50 years ago, solid-phase extraction (SPE) has become an established sample preparation technique. The initial experimental applications of SPE resulted in widespread use of this technique in current water analysis and also to adoption of SPE into standardized analytical methods. During the decades of its evolution, chromatographers became aware of the advantages of SPE and, despite many innovations that appeared in the last decade, new SPE developments are still expected in the future. A brief overview of 50 years of the history of the use of SPE in organic trace analysis of water is given in presented paper.
Recent experimental results of KSTAR RF heating and current drive
NASA Astrophysics Data System (ADS)
Wang, S. J.; Kim, J.; Jeong, J. H.; Kim, H. J.; Joung, M.; Bae, Y. S.; Kwak, J. G.
2015-12-01
The overview of KSTAR activities on ICRH, LHCD and ECH/CD including the last experimental results and future plan aiming for long-pulse high-beta plasma will be presented. Recently we achieved reasonable coupling of ICRF power to H-mode plasma through several efforts to increase system reliability. Power balance will be discussed on this experiment. LHCD is still struggling in the low power regime. Review of antenna spectrum for the higher coupling in H-mode plasma will be tried. ECH/CD provides 41 sec, 0.8 MW of heating power to support high-performance long-pulse discharge. Also, 170 GHz ECH system is integrated with the Plasma Control System (PCS) for the feedback controlling of NTM. Status and plan of ECH/CD will be discussed. Finally, helicon current drive is being prepared for the next stage of KSTAR operation. The hardware preparation and the calculation results of helicon current drive in KSTAR plasma will be discussed.
V/STOL and STOL ground effects and testing techniques
NASA Technical Reports Server (NTRS)
Kuhn, R. E.
1987-01-01
The ground effects associated with V/STOL operation were examined and an effort was made to develop the equipment and testing techniques needed for that understanding. Primary emphasis was on future experimental programs in the 40 x 80 and the 80 x 120 foot test sections and in the outdoor static test stand associated with these facilities. The commonly used experimental techniques are reviewed and data obtained by various techniques are compared with each other and with available estimating methods. These reviews and comparisons provide insight into the limitations of past studies and the testing techniques used and identify areas where additional work is needed. The understanding of the flow mechanics involved in hovering and in transition in and out of ground effect is discussed. The basic flow fields associated with hovering, transition and STOL operation of jet powered V/STOL aircraft are depicted.
Culture and Probability Judgment Accuracy: The Influence of Holistic Reasoning.
Lechuga, Julia; Wiebe, John S
2011-08-01
A well-established phenomenon in the judgment and decision-making tradition is the overconfidence one places in the amount of knowledge that one possesses. Overconfidence or probability judgment accuracy varies not only individually but also across cultures. However, research efforts to explain cross-cultural variations in the overconfidence phenomenon have seldom been made. In Study 1, the authors compared the probability judgment accuracy of U.S. Americans (N = 108) and Mexican participants (N = 100). In Study 2, they experimentally primed culture by randomly assigning English/Spanish bilingual Mexican Americans (N = 195) to response language. Results of both studies replicated the cross-cultural variation of probability judgment accuracy previously observed in other cultural groups. U.S. Americans displayed less overconfidence when compared to Mexicans. These results were then replicated in bilingual participants, when culture was experimentally manipulated with language priming. Holistic reasoning did not account for the cross-cultural variation of overconfidence. Suggestions for future studies are discussed.
Analysis of the Lenticular Jointed MARSIS Antenna Deployment
NASA Technical Reports Server (NTRS)
Mobrem, Mehran; Adams, Douglas S.
2006-01-01
This paper summarizes important milestones in a yearlong comprehensive effort which culminated in successful deployments of the MARSIS antenna booms in May and June of 2005. Experimentally measured straight section and hinge properties are incorporated into specialized modeling techniques that are used to simulate the boom lenticular joints. System level models are exercised to understand the boom deployment dynamics and spacecraft level implications. Discussion includes a comparison of ADAMS simulation results to measured flight data taken during the three boom deployments. Important parameters that govern lenticular joint behavior are outlined and a short summary of lessons learned and recommendations is included to better understand future applications of this technology.
A survey of keystroke dynamics biometrics.
Teh, Pin Shen; Teoh, Andrew Beng Jin; Yue, Shigang
2013-01-01
Research on keystroke dynamics biometrics has been increasing, especially in the last decade. The main motivation behind this effort is due to the fact that keystroke dynamics biometrics is economical and can be easily integrated into the existing computer security systems with minimal alteration and user intervention. Numerous studies have been conducted in terms of data acquisition devices, feature representations, classification methods, experimental protocols, and evaluations. However, an up-to-date extensive survey and evaluation is not yet available. The objective of this paper is to provide an insightful survey and comparison on keystroke dynamics biometrics research performed throughout the last three decades, as well as offering suggestions and possible future research directions.
The operant-respondent distinction: Future directions
Pear, Joseph J.; Eldridge, Gloria D.
1984-01-01
The operant-respondent distinction has provided a major organizing framework for the data generated through the experimental analysis of behavior. Problems have been encountered, however, in using it as an explanatory concept for such phenomena as avoidance and conditioned suppression. Data now exist that do not fit neatly into the framework. Moreover, the discovery of autoshaping has highlighted difficulties in isolating the two types of behavior and conditioning. Despite these problems, the operant-respondent framework remains the most successful paradigm currently available for organizing behavioral data. Research and theoretical efforts should therefore probably be directed to modifying the framework to account for disparate data. PMID:16812402
The Mechanical Properties of Nanowires
Wang, Shiliang; Shan, Zhiwei
2017-01-01
Applications of nanowires into future generation nanodevices require a complete understanding of the mechanical properties of the nanowires. A great research effort has been made in the past two decades to understand the deformation physics and mechanical behaviors of nanowires, and to interpret the discrepancies between experimental measurements and theoretical predictions. This review focused on the characterization and understanding of the mechanical properties of nanowires, including elasticity, plasticity, anelasticity and strength. As the results from the previous literature in this area appear inconsistent, a critical evaluation of the characterization techniques and methodologies were presented. In particular, the size effects of nanowires on the mechanical properties and their deformation mechanisms were discussed. PMID:28435775
Reusable Metallic Thermal Protection Systems Development
NASA Technical Reports Server (NTRS)
Blosser, Max L.; Martin, Carl J.; Daryabeigi, Kamran; Poteet, Carl C.
1998-01-01
Metallic thermal protection systems (TPS) are being developed to help meet the ambitious goals of future reusable launch vehicles. Recent metallic TPS development efforts at NASA Langley Research Center are described. Foil-gage metallic honeycomb coupons, representative of the outer surface of metallic TPS were subjected to low speed impact, hypervelocity impact, rain erosion, and subsequent arcjet exposure. TPS panels were subjected to thermal vacuum, acoustic, and hot gas flow testing. Results of the coupon and panel tests are presented. Experimental and analytical tools are being developed to characterize and improve internal insulations. Masses of metallic TPS and advanced ceramic tile and blanket TPS concepts are compared for a wide range of parameters.
Evaluation of experimental epoxy monomers
NASA Technical Reports Server (NTRS)
Hodges, W. T.; St.clair, T. L.; Pratt, J. R.; Ficklin, R.
1985-01-01
Future generation aircraft need higher performance polymer matrices to fully achieve the weight savings possible with composite materials. New resins are being formulated in an effort to understand basic polymer behavior and to develop improved resins. Some polymer/curing agent combinations that could be useful are difficult to process. In the area of epoxies, a major problem is that some components have physical properties which make them difficult to utilize as matrix resins. A previous study showed that the use of ultrasonic energy can be advantageous in the mixing of curing agents into a standard epoxy resin, such as MY 720 (Ciba-Geigy designation). This work is expanded to include three novel epoxides.
Continued study of NAVSTAR/GPS for general aviation
NASA Technical Reports Server (NTRS)
Alberts, R. D.; Ruedger, W. H.
1979-01-01
A conceptual approach for examining the full potential of Global Positioning Systems (GPS) for the general aviation community is presented. Aspects of an experimental program to demonstrate these concepts are discussed. The report concludes with the observation that the true potential of GPS can only be exploited by utilization in concert with a data link. The capability afforded by the combination of position location and reporting stimulates the concept of GPS providing the auxiliary functions of collision avoidance, and approach and landing guidance. A series of general recommendations for future NASA and civil community efforts in order to continue to support GPS for general aviation are included.
A study of Propfan propagation noise
NASA Technical Reports Server (NTRS)
Sim, Ben W.-C.; George, A. R.
1993-01-01
A study of Propfan far-field noise is carried out based on geometrical acoustics theory. The analysis traces the acoustic rays and ray tube areas carrying the acoustic disturbances to the far-field. Sound attenuation due to nonlinear steepening, atmospheric absorption and turbulence scattering are also investigated. A comparison of our prediction methodology with experimental acoustics measurement shows good agreement. Geometrical decay and atmospheric absorption are identified as the primary noise attenuating mechanisms. Nonlinear effects are negligible. It is determined that the acoustic footprints of advanced propellers are dominated by caustics. Details of the formation of these caustics may provide a basis for future noise minimization efforts.
Gigantic Dzyaloshinskii-Moriya interaction in the MnBi ultrathin films
NASA Astrophysics Data System (ADS)
Yu, Jie-Xiang; Zang, Jiadong; Zang's Team
The magnetic skyrmion, a swirling-like spin texture with nontrivial topology, is driven by strong Dzyaloshinskii-Moriya (DM) interaction originated from the spin-orbit coupling in inversion symmetry breaking systems. Here, based on first-principles calculations, we predict a new material, MnBi ultrathin film, with gigantic DM interactions. The ratio of the DM interaction to the Heisenberg exchange is about 0.3, exceeding any values reported so far. Its high Curie temperature, high coercivity, and large perpendicular magnetoanisotropy make MnBi a good candidate for future spintronics studies. Topologically nontrivial spin textures are emergent in this system. We expect further experimental efforts will be devoted into this systems.
Active controls: A look at analytical methods and associated tools
NASA Technical Reports Server (NTRS)
Newsom, J. R.; Adams, W. M., Jr.; Mukhopadhyay, V.; Tiffany, S. H.; Abel, I.
1984-01-01
A review of analytical methods and associated tools for active controls analysis and design problems is presented. Approaches employed to develop mathematical models suitable for control system analysis and/or design are discussed. Significant efforts have been expended to develop tools to generate the models from the standpoint of control system designers' needs and develop the tools necessary to analyze and design active control systems. Representative examples of these tools are discussed. Examples where results from the methods and tools have been compared with experimental data are also presented. Finally, a perspective on future trends in analysis and design methods is presented.
Prospects for future experiments to search for nucleon decay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ayres, D.S.; Heller, K.; LoSecco, J.
1982-01-01
We review the status of theoretical expectations and experimental searches for nucleon decay, and predict the sensitivities which could be reached by future experiments. For the immediate future, we concur with the conclusions of the 1982 Summer Workshop on Proton Decay Experiments: all detectors now in operation or construction will be relatively insensitive to some potentially important decay modes. Next-generation experiments must therefore be designed to search for these modes, and should be undertaken whether or not present experiments detect nucleon decay in other modes. These future experiments should be designed to push the lifetime limits on all decay modesmore » to the levels at which irreducible cosmic-ray neutrino-induced backgrounds become important. Since the technology for these next-generation experiments is available now, the timetable for starting work on them will be determined by funding constraints and not by the need for extensive development of detectors. Efforts to develop advanced detector techniques should also be pursued, in order to mount more sensitive searches than can be envisioned using current technology, or to provide the most precise measurements possible of the properties of the nucleon decay interaction if it should occur at a detectable rate.« less
Support for Training Effectiveness Assessment and Data Interoperability (STEADI)
2017-05-02
will guide future efforts of the services to broadly incorporate IPA concepts across the continuum of training . Throughout the course of this effort...data access issues for marksmanship training systems. In comparison to updating Pipeline, the registry also offered more flexibility, eased future...development would be required, SP2 offers a good starting point to accelerate development efforts and lower costs to ARL. Acting as the central glue
Carey, Rachel N.; McDermott, Daragh T.; Sarma, Kiran M.
2013-01-01
The existing empirical research exploring the impact of threat appeals on driver behavior has reported inconsistent findings. In an effort to provide an up-to-date synthesis of the experimental findings, meta-analytic techniques were employed to examine the impact of threat-based messages on fear arousal and on lab-based indices of driving behavior. Experimental studies (k = 13, N = 3044), conducted between 1990 and 2011, were included in the analyses. The aims of the current analysis were (a) to examine whether or not the experimental manipulations had a significant impact on evoked fear, (b) to examine the impact of threat appeals on three distinct indices of driving, and (c) to identify moderators and mediators of the relationship between fear and driving outcomes. Large effects emerged for the level of fear evoked, with experimental groups reporting increased fear arousal in comparison to control groups (r = .64, n = 619, p<.01). The effect of threat appeals on driving outcomes, however, was not significant (r = .03, p = .17). This analysis of the experimental literature indicates that threat appeals can lead to increased fear arousal, but do not appear to have the desired impact on driving behavior. We discuss these findings in the context of threat-based road safety campaigns and future directions for experimental research in this area. PMID:23690955
Carey, Rachel N; McDermott, Daragh T; Sarma, Kiran M
2013-01-01
The existing empirical research exploring the impact of threat appeals on driver behavior has reported inconsistent findings. In an effort to provide an up-to-date synthesis of the experimental findings, meta-analytic techniques were employed to examine the impact of threat-based messages on fear arousal and on lab-based indices of driving behavior. Experimental studies (k = 13, N = 3044), conducted between 1990 and 2011, were included in the analyses. The aims of the current analysis were (a) to examine whether or not the experimental manipulations had a significant impact on evoked fear, (b) to examine the impact of threat appeals on three distinct indices of driving, and (c) to identify moderators and mediators of the relationship between fear and driving outcomes. Large effects emerged for the level of fear evoked, with experimental groups reporting increased fear arousal in comparison to control groups (r = .64, n = 619, p<.01). The effect of threat appeals on driving outcomes, however, was not significant (r = .03, p = .17). This analysis of the experimental literature indicates that threat appeals can lead to increased fear arousal, but do not appear to have the desired impact on driving behavior. We discuss these findings in the context of threat-based road safety campaigns and future directions for experimental research in this area.
Kirschvink, Joseph L.; Winklhofer, Michael; Walker, Michael M.
2010-01-01
The first demonstrations of magnetic effects on the behaviour of migratory birds and homing pigeons in laboratory and field experiments, respectively, provided evidence for the longstanding hypothesis that animals such as birds that migrate and home over long distances would benefit from possession of a magnetic sense. Subsequent identification of at least two plausible biophysical mechanisms for magnetoreception in animals, one based on biogenic magnetite and another on radical-pair biochemical reactions, led to major efforts over recent decades to test predictions of the two models, as well as efforts to understand the ultrastructure and function of the possible magnetoreceptor cells. Unfortunately, progress in understanding the magnetic sense has been challenged by: (i) the availability of a relatively small number of techniques for analysing behavioural responses to magnetic fields by animals; (ii) difficulty in achieving reproducible results using the techniques; and (iii) difficulty in development and implementation of new techniques that might bring greater experimental power. As a consequence, laboratory and field techniques used to study the magnetic sense today remain substantially unchanged, despite the huge developments in technology and instrumentation since the techniques were developed in the 1950s. New methods developed for behavioural study of the magnetic sense over the last 30 years include the use of laboratory conditioning techniques and tracking devices based on transmission of radio signals to and from satellites. Here we consider methodological developments in the study of the magnetic sense and present suggestions for increasing the reproducibility and ease of interpretation of experimental studies. We recommend that future experiments invest more effort in automating control of experiments and data capture, control of stimulation and full blinding of experiments in the rare cases where automation is impossible. We also propose new experiments to confirm whether or not animals can detect magnetic fields using the radical-pair effect together with an alternate hypothesis that may explain the dependence on light of responses by animals to magnetic field stimuli. PMID:20071390
Parental conflict and blue egg coloration in a seabird
NASA Astrophysics Data System (ADS)
Morales, Judith; Torres, Roxana; Velando, Alberto
2010-02-01
When both parents provide offspring care, equal sharing of costly parental duties may enhance reproductive success. This is crucial for longlived species, where increased parental effort in current reproduction profoundly affects future reproduction. Indication of reproductive value or willingness to invest in reproduction may promote matching responses by mates, thus reducing the conflict over care. In birds with biparental care, blue-green eggshell color may function as a signal of reproductive value that affects parental effort, as predicted by the signaling hypothesis of blue-green eggshell coloration. However, this hypothesis has not been explored during incubation, when the potential stimulus of egg color is present, and has been little studied in longlived birds. We experimentally studied if egg color affected incubation patterns in the blue-footed booby, a longlived species with biparental care and blue eggs. We exchanged fresh eggs between nests of the same laying date and recorded parental incubation effort on the following 4 days. Although egg color did not affect male effort, original eggshell color was correlated with pair matching in incubation. Exchanged eggshell color did not affect incubation patterns. This suggests that biliverdin-based egg coloration reflects female quality features that are associated with pair incubation effort or that blue-footed boobies mate assortatively high-quality pairs incubating more colorful clutches. An intriguing possibility is that egg coloration facilitates an equal sharing of incubation, the signal being functional only during a short period close to laying. Results also suggest that indication of reproductive value reduces the conflict over care.
Lateral organization, bilayer asymmetry, and inter-leaflet coupling of biological membranes
Smith, Jeremy C.; Cheng, Xiaolin; Nickels, Jonathan D.
2015-07-29
Understanding of cell membrane organization has evolved significantly from the classic fluid mosaic model. It is now recognized that biological membranes are highly organized structures, with differences in lipid compositions between inner and outer leaflets and in lateral structures within the bilayer plane, known as lipid rafts. These organizing principles are important for protein localization and function as well as cellular signaling. However, the mechanisms and biophysical basis of lipid raft formation, structure, dynamics and function are not clearly understood. One key question, which we focus on in this review, is how lateral organization and leaflet compositional asymmetry are coupled.more » Detailed information elucidating this question has been sparse because of the small size and transient nature of rafts and the experimental challenges in constructing asymmetric bilayers. Resolving this mystery will require advances in both experimentation and modeling. We discuss here the preparation of model systems along with experimental and computational approaches that have been applied in efforts to address this key question in membrane biology. Furthermore, we seek to place recent and future advances in experimental and computational techniques in context, providing insight into in-plane and transverse organization of biological membranes.« less
Heart rate variability reflects self-regulatory strength, effort, and fatigue.
Segerstrom, Suzanne C; Nes, Lise Solberg
2007-03-01
Experimental research reliably demonstrates that self-regulatory deficits are a consequence of prior self-regulatory effort. However, in naturalistic settings, although people know that they are sometimes vulnerable to saying, eating, or doing the wrong thing, they cannot accurately gauge their capacity to self-regulate at any given time. Because self-regulation and autonomic regulation colocalize in the brain, an autonomic measure, heart rate variability (HRV), could provide an index of self-regulatory strength and activity. During an experimental manipulation of self-regulation (eating carrots or cookies), HRV was elevated during high self-regulatory effort (eat carrots, resist cookies) compared with low self-regulatory effort (eat cookies, resist carrots). The experimental manipulation and higher HRV at baseline independently predicted persistence at a subsequent anagram task. HRV appears to index self-regulatory strength and effort, making it possible to study these phenomena in the field as well as the lab.
How do feelings influence effort? An empirical study of entrepreneurs' affect and venture effort.
Foo, Maw-Der; Uy, Marilyn A; Baron, Robert A
2009-07-01
How do feelings influence the effort of entrepreneurs? To obtain data on this issue, the authors implemented experience sampling methodology in which 46 entrepreneurs used cell phones to provide reports on their affect, future temporal focus, and venture effort twice daily for 24 days. Drawing on the affect-as-information theory, the study found that entrepreneurs' negative affect directly predicts entrepreneurs' effort toward tasks that are required immediately. Results were consistent for within-day and next-day time lags. Extending the theory, the study found that positive affect predicts venture effort beyond what is immediately required and that this relationship is mediated by future temporal focus. The mediating effects were significant only for next-day outcomes. Implications of findings on the nature of the affect-effort relationship for different time lags are discussed.
LOX/LH2 vane pump for auxiliary propulsion systems
NASA Technical Reports Server (NTRS)
Hemminger, J. A.; Ulbricht, T. E.
1985-01-01
Positive displacement pumps offer potential efficiency advantages over centrifugal pumps for future low thrust space missions. Low flow rate applications, such as space station auxiliary propulsion or dedicated low thrust orbiter transfer vehicles, are typical of missions where low flow and high head rise challenge centrifugal pumps. The positive displacement vane pump for pumping of LOX and LH2 is investigated. This effort has included: (1) a testing program in which pump performance was investigated for differing pump clearances and for differing pump materials while pumping LN2, LOX, and LH2; and (2) an analysis effort, in which a comprehensive pump performance analysis computer code was developed and exercised. An overview of the theoretical framework of the performance analysis computer code is presented, along with a summary of analysis results. Experimental results are presented for pump operating in liquid nitrogen. Included are data on the effects on pump performance of pump clearance, speed, and pressure rise. Pump suction performance is also presented.
Borophene as a prototype for synthetic 2D materials development.
Mannix, Andrew J; Zhang, Zhuhua; Guisinger, Nathan P; Yakobson, Boris I; Hersam, Mark C
2018-06-01
The synthesis of 2D materials with no analogous bulk layered allotropes promises a substantial breadth of physical and chemical properties through the diverse structural options afforded by substrate-dependent epitaxy. However, despite the joint theoretical and experimental efforts to guide materials discovery, successful demonstrations of synthetic 2D materials have been rare. The recent synthesis of 2D boron polymorphs (that is, borophene) provides a notable example of such success. In this Perspective, we discuss recent progress and future opportunities for borophene research. Borophene combines unique mechanical properties with anisotropic metallicity, which complements the canon of conventional 2D materials. The multi-centre characteristics of boron-boron bonding lead to the formation of configurationally varied, vacancy-mediated structural motifs, providing unprecedented diversity in a mono-elemental 2D system with potential for electronic applications, chemical functionalization, materials synthesis and complex heterostructures. With its foundations in computationally guided synthesis, borophene can serve as a prototype for ongoing efforts to discover and exploit synthetic 2D materials.
Borophene as a prototype for synthetic 2D materials development
NASA Astrophysics Data System (ADS)
Mannix, Andrew J.; Zhang, Zhuhua; Guisinger, Nathan P.; Yakobson, Boris I.; Hersam, Mark C.
2018-06-01
The synthesis of 2D materials with no analogous bulk layered allotropes promises a substantial breadth of physical and chemical properties through the diverse structural options afforded by substrate-dependent epitaxy. However, despite the joint theoretical and experimental efforts to guide materials discovery, successful demonstrations of synthetic 2D materials have been rare. The recent synthesis of 2D boron polymorphs (that is, borophene) provides a notable example of such success. In this Perspective, we discuss recent progress and future opportunities for borophene research. Borophene combines unique mechanical properties with anisotropic metallicity, which complements the canon of conventional 2D materials. The multi-centre characteristics of boron-boron bonding lead to the formation of configurationally varied, vacancy-mediated structural motifs, providing unprecedented diversity in a mono-elemental 2D system with potential for electronic applications, chemical functionalization, materials synthesis and complex heterostructures. With its foundations in computationally guided synthesis, borophene can serve as a prototype for ongoing efforts to discover and exploit synthetic 2D materials.
Safety modelling and testing of lithium-ion batteries in electrified vehicles
NASA Astrophysics Data System (ADS)
Deng, Jie; Bae, Chulheung; Marcicki, James; Masias, Alvaro; Miller, Theodore
2018-04-01
To optimize the safety of batteries, it is important to understand their behaviours when subjected to abuse conditions. Most early efforts in battery safety modelling focused on either one battery cell or a single field of interest such as mechanical or thermal failure. These efforts may not completely reflect the failure of batteries in automotive applications, where various physical processes can take place in a large number of cells simultaneously. In this Perspective, we review modelling and testing approaches for battery safety under abuse conditions. We then propose a general framework for large-scale multi-physics modelling and experimental work to address safety issues of automotive batteries in real-world applications. In particular, we consider modelling coupled mechanical, electrical, electrochemical and thermal behaviours of batteries, and explore strategies to extend simulations to the battery module and pack level. Moreover, we evaluate safety test approaches for an entire range of automotive hardware sets from cell to pack. We also discuss challenges in building this framework and directions for its future development.
Advanced 3D Characterization and Reconstruction of Reactor Materials FY16 Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fromm, Bradley; Hauch, Benjamin; Sridharan, Kumar
2016-12-01
A coordinated effort to link advanced materials characterization methods and computational modeling approaches is critical to future success for understanding and predicting the behavior of reactor materials that operate at extreme conditions. The difficulty and expense of working with nuclear materials have inhibited the use of modern characterization techniques on this class of materials. Likewise, mesoscale simulation efforts have been impeded due to insufficient experimental data necessary for initialization and validation of the computer models. The objective of this research is to develop methods to integrate advanced materials characterization techniques developed for reactor materials with state-of-the-art mesoscale modeling and simulationmore » tools. Research to develop broad-ion beam sample preparation, high-resolution electron backscatter diffraction, and digital microstructure reconstruction techniques; and methods for integration of these techniques into mesoscale modeling tools are detailed. Results for both irradiated and un-irradiated reactor materials are presented for FY14 - FY16 and final remarks are provided.« less
The RAI DBS experiment with Olympus
NASA Astrophysics Data System (ADS)
Castelli, Enzo
The Italian broadcasting network (RAI) has studied the development of a national DBS service in an effort to outline a proposal for a space segment configuration compatible with development of new services, including HDTV. Proposals so far considered feature the integration of RAI's channel on Olympus in a future operational system and after extensive experimental use. Contents of the experimental program are discussed, and need for a broadcasting standard which considers projected introduction of HDTV is noted. The debate between RAI and consumer electronic industries on the use of broadcasting standards is outlined. The position of RAI in the context of HDTV and DBS is defined and the issue of determining the most effective transmission standard during the experimental stage is raised. It is pointed out that, in the absence of new production facilities for HDTV, the maximum quality which MAC will yield will be that of PAL since programs must be produced in PAL and then converted into MAC. Two alternatives for strategy on the use of broadcasting standards for DBS are offered. Finally, technical experiments and a market survey are discussed.
Remote experimental site concept development
NASA Astrophysics Data System (ADS)
Casper, Thomas A.; Meyer, William; Butner, David
1995-01-01
Scientific research is now often conducted on large and expensive experiments that utilize collaborative efforts on a national or international scale to explore physics and engineering issues. This is particularly true for the current US magnetic fusion energy program where collaboration on existing facilities has increased in importance and will form the basis for future efforts. As fusion energy research approaches reactor conditions, the trend is towards fewer large and expensive experimental facilities, leaving many major institutions without local experiments. Since the expertise of various groups is a valuable resource, it is important to integrate these teams into an overall scientific program. To sustain continued involvement in experiments, scientists are now often required to travel frequently, or to move their families, to the new large facilities. This problem is common to many other different fields of scientific research. The next-generation tokamaks, such as the Tokamak Physics Experiment (TPX) or the International Thermonuclear Experimental Reactor (ITER), will operate in steady-state or long pulse mode and produce fluxes of fusion reaction products sufficient to activate the surrounding structures. As a direct consequence, remote operation requiring robotics and video monitoring will become necessary, with only brief and limited access to the vessel area allowed. Even the on-site control room, data acquisition facilities, and work areas will be remotely located from the experiment, isolated by large biological barriers, and connected with fiber-optics. Current planning for the ITER experiment includes a network of control room facilities to be located in the countries of the four major international partners; USA, Russian Federation, Japan, and the European Community.
Characterization of Metalorganic Chemical Vapor Deposition
NASA Technical Reports Server (NTRS)
Jesser, W. A.
1998-01-01
A series of experimental and numerical investigations to develop a more complete understanding of the reactive fluid dynamics of chemical vapor deposition were conducted. In the experimental phases of the effort, a horizontal CVD reactor configuration was used for the growth of InP at UVA and for laser velocimetry measurements of the flow fields in the reactor at LaRC. This horizontal reactor configuration was developed for the growth of III-V semiconductors and has been used by our research group in the past to study the deposition of both GaAs and InP. While the ultimate resolution of many of the heat and mass transport issues will require access to a reduced-gravity environment, the series of groundbased research makes direct contributions to this area while attempting to answer the design questions for future experiments of how low must gravity be reduced and for how long must this gravity level be maintained to make the necessary measurements. It is hoped that the terrestrial experiments will be useful for the design of future microgravity experiments which likely will be designed to employ a core set of measurements for applications in the microgravity environment such as HOLOC, the Fluid Physics/Dynamics Facility, or the Schlieren photography, the Laser Imaging Velocimetry and the Laser Doppler Velocimetry instruments under development for the Advanced Fluids Experiment Module.
Numerical Modeling of Propellant Boil-Off in a Cryogenic Storage Tank
NASA Technical Reports Server (NTRS)
Majumdar, A. K.; Steadman, T. E.; Maroney, J. L.; Sass, J. P.; Fesmire, J. E.
2007-01-01
A numerical model to predict boil-off of stored propellant in large spherical cryogenic tanks has been developed. Accurate prediction of tank boil-off rates for different thermal insulation systems was the goal of this collaboration effort. The Generalized Fluid System Simulation Program, integrating flow analysis and conjugate heat transfer for solving complex fluid system problems, was used to create the model. Calculation of tank boil-off rate requires simultaneous simulation of heat transfer processes among liquid propellant, vapor ullage space, and tank structure. The reference tank for the boil-off model was the 850,000 gallon liquid hydrogen tank at Launch Complex 39B (LC- 39B) at Kennedy Space Center, which is under study for future infrastructure improvements to support the Constellation program. The methodology employed in the numerical model was validated using a sub-scale model and tank. Experimental test data from a 1/15th scale version of the LC-39B tank using both liquid hydrogen and liquid nitrogen were used to anchor the analytical predictions of the sub-scale model. Favorable correlations between sub-scale model and experimental test data have provided confidence in full-scale tank boil-off predictions. These methods are now being used in the preliminary design for other cases including future launch vehicles
NASA HRP Plans for Collaboration at the IBMP Ground-Based Experimental Facility (NEK)
NASA Technical Reports Server (NTRS)
Cromwell, Ronita L.
2016-01-01
NASA and IBMP are planning research collaborations using the IBMP Ground-based Experimental Facility (NEK). The NEK offers unique capabilities to study the effects of isolation on behavioral health and performance as it relates to spaceflight. The NEK is comprised of multiple interconnected modules that range in size from 50-250m(sup3). Modules can be included or excluded in a given mission allowing for flexibility of platform design. The NEK complex includes a Mission Control Center for communications and monitoring of crew members. In an effort to begin these collaborations, a 2-week mission is planned for 2017. In this mission, scientific studies will be conducted to assess facility capabilities in preparation for longer duration missions. A second follow-on 2-week mission may be planned for early in 2018. In future years, long duration missions of 4, 8 and 12 months are being considered. Missions will include scenarios that simulate for example, transit to and from asteroids, the moon, or other interplanetary travel. Mission operations will be structured to include stressors such as, high workloads, communication delays, and sleep deprivation. Studies completed at the NEK will support International Space Station expeditions, and future exploration missions. Topics studied will include communication, crew autonomy, cultural diversity, human factors, and medical capabilities.
Coggins,, Lewis G.; Yard, Michael D.; Pine, William E.
2011-01-01
The federally endangered humpback chub Gila cypha in the Colorado River within Grand Canyon is currently the focus of a multiyear program of ecosystem-level experimentation designed to improve native fish survival and promote population recovery as part of the Glen Canyon Dam Adaptive Management Program. A key element of this experiment was a 4-year effort to remove nonnative fishes from critical humpback chub habitat, thereby reducing potentially negative interactions between native and nonnative fishes. Over 36,500 fish from 15 species were captured in the mechanical removal reach during 2003–2006. The majority (64%) of the catch consisted of nonnative fish, including rainbow trout Oncorhynchus mykiss (19,020), fathead minnow Pimephales promelas (2,569), common carp Cyprinus carpio (802), and brown trout Salmo trutta (479). Native fish (13,268) constituted 36% of the total catch and included flannelmouth suckers Catostomus latipinnis (7,347), humpback chub (2,606), bluehead suckers Catostomus discobolus (2,243), and speckled dace Rhinichthys osculus (1,072). The contribution of rainbow trout to the overall species composition fell steadily throughout the study period from a high of approximately 90% in January 2003 to less than 10% in August 2006. Overall, the catch of nonnative fish exceeded 95% in January 2003 and fell to less than 50% after July 2005. Our results suggest that removal efforts were successful in rapidly shifting the fish community from one dominated numerically by nonnative species to one dominated by native species. Additionally, increases in juvenile native fish abundance within the removal reach suggest that removal efforts may have promoted greater survival and recruitment. However, drought-induced increases in river water temperature and a systemwide decrease in rainbow trout abundance concurrent with our experiment made it difficult to determine the cause of the apparent increase in juvenile native fish survival and recruitment. Experimental efforts continue and may be able to distinguish among these factors and to better inform future management actions.
A Survey of Keystroke Dynamics Biometrics
Yue, Shigang
2013-01-01
Research on keystroke dynamics biometrics has been increasing, especially in the last decade. The main motivation behind this effort is due to the fact that keystroke dynamics biometrics is economical and can be easily integrated into the existing computer security systems with minimal alteration and user intervention. Numerous studies have been conducted in terms of data acquisition devices, feature representations, classification methods, experimental protocols, and evaluations. However, an up-to-date extensive survey and evaluation is not yet available. The objective of this paper is to provide an insightful survey and comparison on keystroke dynamics biometrics research performed throughout the last three decades, as well as offering suggestions and possible future research directions. PMID:24298216
Computational modeling of epidermal cell fate determination systems.
Ryu, Kook Hui; Zheng, Xiaohua; Huang, Ling; Schiefelbein, John
2013-02-01
Cell fate decisions are of primary importance for plant development. Their simple 'either-or' outcome and dynamic nature has attracted the attention of computational modelers. Recent efforts have focused on modeling the determination of several epidermal cell types in the root and shoot of Arabidopsis where many molecular components have been defined. Results of integrated modeling and molecular biology experimentation in these systems have highlighted the importance of competitive positive and negative factors and interconnected feedback loops in generating flexible yet robust mechanisms for establishing distinct gene expression programs in neighboring cells. These models have proven useful in judging hypotheses and guiding future research. Copyright © 2012 Elsevier Ltd. All rights reserved.
How to make deposition of images a reality
Guss, J. Mitchell; McMahon, Brian
2014-01-01
The IUCr Diffraction Data Deposition Working Group is investigating the rationale and policies for routine deposition of diffraction images (and other primary experimental data sets). An information-management framework is described that should inform policy directions, and some of the technical and other issues that need to be addressed in an effort to achieve such a goal are analysed. In the near future, routine data deposition could be encouraged at one of the growing number of institutional repositories that accept data sets or at a generic data-publishing web repository service. To realise all of the potential benefits of depositing diffraction data, specialized archives would be preferable. Funding such an initiative will be challenging. PMID:25286838
Assessing Subjective Preferences for Future Fire Research
James B. Davis
1987-01-01
Methods are described for making comparative valuations of future fire (or any other) research efforts when the benefits that result from some of the efforts cannot be described in dollars. The process helps research managers and scientists set priorities by using the values and beliefs of skilled fire specialists. The objective is to insure coherent decisions...
NASA Astrophysics Data System (ADS)
Van Dyke, Melissa; Martin, James
2005-02-01
The NASA Marshall Space Flight Center's Early Flight Fission Test Facility (EFF-TF), provides a facility to experimentally evaluate nuclear reactor related thermal hydraulic issues through the use of non-nuclear testing. This facility provides a cost effective method to evaluate concepts/designs and support mitigation of developmental risk. Electrical resistance thermal simulators can be used to closely mimic the heat deposition of the fission process, providing axial and radial profiles. A number of experimental and design programs were underway in 2004 which include the following. Initial evaluation of the Department of Energy Los Alamos National Laboratory 19 module stainless steel/sodium heat pipe reactor with integral gas heat exchanger was operated at up to 17.5 kW of input power at core temperatures of 1000 K. A stainless steel sodium heat pipe module was placed through repeated freeze/thaw cyclic testing accumulating over 200 restarts to a temperature of 1000 K. Additionally, the design of a 37- pin stainless steel pumped sodium/potassium (NaK) loop was finalized and components procured. Ongoing testing at the EFF-TF is geared towards facilitating both research and development necessary to support future decisions regarding potential use of space nuclear systems for space exploration. All efforts are coordinated with DOE laboratories, industry, universities, and other NASA centers. This paper describes some of the 2004 efforts.
Strategic directions of computing at Fermilab
NASA Astrophysics Data System (ADS)
Wolbers, Stephen
1998-05-01
Fermilab computing has changed a great deal over the years, driven by the demands of the Fermilab experimental community to record and analyze larger and larger datasets, by the desire to take advantage of advances in computing hardware and software, and by the advances coming from the R&D efforts of the Fermilab Computing Division. The strategic directions of Fermilab Computing continue to be driven by the needs of the experimental program. The current fixed-target run will produce over 100 TBytes of raw data and systems must be in place to allow the timely analysis of the data. The collider run II, beginning in 1999, is projected to produce of order 1 PByte of data per year. There will be a major change in methodology and software language as the experiments move away from FORTRAN and into object-oriented languages. Increased use of automation and the reduction of operator-assisted tape mounts will be required to meet the needs of the large experiments and large data sets. Work will continue on higher-rate data acquisition systems for future experiments and projects. R&D projects will be pursued as necessary to provide software, tools, or systems which cannot be purchased or acquired elsewhere. A closer working relation with other high energy laboratories will be pursued to reduce duplication of effort and to allow effective collaboration on many aspects of HEP computing.
Jacobs, Shoshanah R; Elliott, Kyle Hamish; Gaston, Anthony J
2013-01-01
Life history theory predicts that parents will balance benefits from investment in current offspring against benefits from future reproductive investments. Long-lived organisms are therefore less likely to increase parental effort when environmental conditions deteriorate. To investigate the effect of decreased foraging capacity on parental behaviour of long-lived monogamous seabirds, we experimentally increased energy costs for chick-rearing thick-billed murres (Uria lomvia). Handicapped birds had lighter chicks and lower provisioning rates, supporting the prediction that long-lived animals would pass some of the costs of impaired foraging ability on to their offspring. Nonetheless, handicapped birds spent less time underwater, had longer inter-dive surface intervals, had lower body mass, showed lower resighting probabilities in subsequent years and consumed fewer risky prey items. Corticosterone levels were similar between control and handicapped birds. Apparently, adults shared some of the costs of impaired foraging, but those costs were not measurable in all metrics. Handicapped males had higher plasma neutral lipid concentrations (higher energy mobilisation) and their chicks exhibited lower growth rates than handicapped females, suggesting different sex-specific investment strategies. Unlike other studies of auks, partners did not compensate for handicapping, despite good foraging conditions for unhandicapped birds. In conclusion, parental murres and their offspring shared the costs of experimentally increased foraging constraints, with females investing more than males.
Jacobs, Shoshanah R.; Elliott, Kyle Hamish; Gaston, Anthony J.
2013-01-01
Life history theory predicts that parents will balance benefits from investment in current offspring against benefits from future reproductive investments. Long-lived organisms are therefore less likely to increase parental effort when environmental conditions deteriorate. To investigate the effect of decreased foraging capacity on parental behaviour of long-lived monogamous seabirds, we experimentally increased energy costs for chick-rearing thick-billed murres (Uria lomvia). Handicapped birds had lighter chicks and lower provisioning rates, supporting the prediction that long-lived animals would pass some of the costs of impaired foraging ability on to their offspring. Nonetheless, handicapped birds spent less time underwater, had longer inter-dive surface intervals, had lower body mass, showed lower resighting probabilities in subsequent years and consumed fewer risky prey items. Corticosterone levels were similar between control and handicapped birds. Apparently, adults shared some of the costs of impaired foraging, but those costs were not measurable in all metrics. Handicapped males had higher plasma neutral lipid concentrations (higher energy mobilisation) and their chicks exhibited lower growth rates than handicapped females, suggesting different sex-specific investment strategies. Unlike other studies of auks, partners did not compensate for handicapping, despite good foraging conditions for unhandicapped birds. In conclusion, parental murres and their offspring shared the costs of experimentally increased foraging constraints, with females investing more than males. PMID:23382921
Development of Large-Scale Spacecraft Fire Safety Experiments
NASA Technical Reports Server (NTRS)
Ruff, Gary A.; Urban, David; Fernandez-Pello, A. Carlos; T'ien, James S.; Torero, Jose L.; Legros, Guillaume; Eigenbrod, Christian; Smirnov, Nickolay; Fujita, Osamu; Cowlard, Adam J.;
2013-01-01
The status is presented of a spacecraft fire safety research project that is under development to reduce the uncertainty and risk in the design of spacecraft fire safety systems by testing at nearly full scale in low-gravity. Future crewed missions are expected to be more complex and longer in duration than previous exploration missions outside of low-earth orbit. This will increase the challenge of ensuring a fire-safe environment for the crew throughout the mission. Based on our fundamental uncertainty of the behavior of fires in low-gravity, the need for realistic scale testing at reduced gravity has been demonstrated. To address this gap in knowledge, a project has been established under the NASA Advanced Exploration Systems Program under the Human Exploration and Operations Mission directorate with the goal of substantially advancing our understanding of the spacecraft fire safety risk. Associated with the project is an international topical team of fire experts from other space agencies who conduct research that is integrated into the overall experiment design. The experiments are under development to be conducted in an Orbital Science Corporation Cygnus vehicle after it has undocked from the ISS. Although the experiment will need to meet rigorous safety requirements to ensure the carrier vehicle does not sustain damage, the absence of a crew removes the need for strict containment of combustion products. The tests will be fully automated with the data downlinked at the conclusion of the test before the Cygnus vehicle reenters the atmosphere. A computer modeling effort will complement the experimental effort. The international topical team is collaborating with the NASA team in the definition of the experiment requirements and performing supporting analysis, experimentation and technology development. The status of the overall experiment and the associated international technology development efforts are summarized.
Exploiting Science: Enhancing the Safety Training of Pilots to Reduce the Risk of Bird Strikes
NASA Astrophysics Data System (ADS)
Mendonca, Flavio A. C.
Analysis of bird strikes to aviation in the U.S. from 1990 to 2015 indicate that the successful mitigation efforts at airports, which must be sustained, have reduced incidents with damage and a negative effect-on-flight since 2000. However, such efforts have done little to reduce strikes outside the airport jurisdiction, such as occurred with US Airways Flight 1549 in 2009. There are basically three strategies to mitigate the risk of bird strikes: standards set by aviation authorities, technology, and actions by crewmembers. Pilots play an important role as stakeholders in the prevention of bird strikes, especially outside the airport environment. Thus, safety efforts require enhanced risk management and aeronautical decision-making training for flight crews. The purpose of this study was to determine if a safety training protocol could effectively enhance CFR Part 141 general aviation pilots' knowledge and skills to reduce the risk of bird strikes to aviation. Participants were recruited from the Purdue University professional flight program and from Purdue Aviation. The researcher of this study used a pretest posttest experimental design. Additionally, qualitative data were collected through open-ended questions in the pretest, posttest, and a follow-up survey questionnaire. The participants' pretest and posttest scores were analyzed using parametric and nonparametric tests. Results indicated a significant increase in the posttest scores of the experimental group. An investigation of qualitative data showed that the topic "safety management of bird hazards by pilots" is barely covered during the ground and flight training of pilots. Furthermore, qualitative data suggest a misperception of the safety culture tenets and a poor familiarity with the safety risk management process regarding bird hazards. Finally, the researcher presented recommendations for practice and future research.
Response surface methodology, often supported by factorial designs, is the classical experimental approach that is widely accepted for detecting and characterizing interactions among chemicals in a mixture. In an effort to reduce the experimental effort as the number of compound...
Matlaga, David P; Horvitz, Carol C
2015-03-01
• Sexual reproduction is often associated with a cost in terms of reduced survival, growth, or future reproduction. It has been proposed that plant size and the environment (availability of key resources) can sometimes lower or even nullify the cost of reproduction.• We address this issue experimentally with the Neotropical herb Goeppertia marantifolia, by manipulating sexual reproductive effort and measuring the demographic performance of plants and of their clonal offspring, in the context of natural variation in light availability.• Plants in the high-reproductive-effort treatment grew less between seasons but did not differ in their probability of flowering the second season or in inflorescence size compared with plants in the low-effort treatment. Reproductive effort of parent plants influenced the leaf area of their clonal offspring. Plants that invested less in sexual reproduction produced clonal offspring that were initially larger than those produced by plants that invested more in reproduction. The magnitude of this effect was greater in parent plants that received two seasons of the manipulated reproductive effort than in those that received a single season. The trade-off between reproductive modes dampened with time, leading to smaller differences in clonal offspring leaf area between treatments over time.• We found evidence of a cost of reproduction and trade-offs between reproductive modes, although the magnitude of these costs was small. However, we found no evidence of lower costs of reproduction for larger plants or for plants in higher-light environments over our 2-yr study period. © 2015 Botanical Society of America, Inc.
Concepts for Future Large Fire Modeling
A. P. Dimitrakopoulos; R. E. Martin
1987-01-01
A small number of fires escape initial attack suppression efforts and become large, but their effects are significant and disproportionate. In 1983, of 200,000 wildland fires in the United States, only 4,000 exceeded 100 acres. However, these escaped fires accounted for roughly 95 percent of wildfire-related costs and damages (Pyne, 1984). Thus, future research efforts...
ERIC Educational Resources Information Center
Holschuh, Jodi Patrick; Nist, Sherrie L.; Olejnik, Stephen
2001-01-01
Examines college students' attributions to failure in an introductory biology course. Determines how males and females viewed the attributions of ability, effort, and learning strategy use. Concludes that collectively, results indicate differences in patterns of responses between future goal and emotional items. Notes the importance for…
NASA Technical Reports Server (NTRS)
McCubbin, Francis M.; Zeigler, Ryan A.
2017-01-01
The Astromaterials Acquisition and Curation Office (henceforth referred to herein as NASA Curation Office) at NASA Johnson Space Center (JSC) is responsible for curating all of NASA's extraterrestrial samples. Under the governing document, NASA Policy Directive (NPD) 7100.10F JSC is charged with curation of all extraterrestrial material under NASA control, including future NASA missions. The Directive goes on to define Curation as including documentation, preservation, preparation, and distribution of samples for research, education, and public outreach. Here we briefly describe NASA's astromaterials collections and our ongoing efforts related to enhancing the utility of our current collections as well as our efforts to prepare for future sample return missions. We collectively refer to these efforts as advanced curation.
NASA Technical Reports Server (NTRS)
McCubbin, F. M.; Evans, C. A.; Fries, M. D.; Harrington, A. D.; Regberg, A. B.; Snead, C. J.; Zeigler, R. A.
2017-01-01
The Astromaterials Acquisition and Curation Office (henceforth referred to herein as NASA Curation Office) at NASA Johnson Space Center (JSC) is responsible for curating all of NASA's extraterrestrial samples. Under the governing document, NASA Policy Directive (NPD) 7100.10F JSC is charged with curation of all extraterrestrial material under NASA control, including future NASA missions. The Directive goes on to define Curation as including documentation, preservation, preparation, and distribution of samples for re-search, education, and public outreach. Here we briefly describe NASA's astromaterials collections and our ongoing efforts related to enhancing the utility of our current collections as well as our efforts to prepare for future sample return missions. We collectively refer to these efforts as advanced curation.
Hypersonic Experimental and Computational Capability, Improvement and Validation. Volume 2
NASA Technical Reports Server (NTRS)
Muylaert, Jean (Editor); Kumar, Ajay (Editor); Dujarric, Christian (Editor)
1998-01-01
The results of the phase 2 effort conducted under AGARD Working Group 18 on Hypersonic Experimental and Computational Capability, Improvement and Validation are presented in this report. The first volume, published in May 1996, mainly focused on the design methodology, plans and some initial results of experiments that had been conducted to serve as validation benchmarks. The current volume presents the detailed experimental and computational data base developed during this effort.
A brief randomized controlled intervention targeting parents improves grades during middle school.
Destin, Mesmin; Svoboda, Ryan C
2017-04-01
Despite a growing number of brief, psychosocial interventions that improve academic achievement, little research investigates how to leverage parents during such efforts. We designed and tested a randomized controlled intervention targeting parents to influence important discussions about the future and responses to academic difficulty experienced by their adolescent during eighth grade in the United States. We recruited experienced parents to convey the main messages of the intervention in a parent panel format. As expected, current parents who were randomly assigned to observe the parent panel subsequently planned to talk with their adolescents sooner about future opportunities and to respond more positively to experiences of academic difficulty than parents who were randomly assigned to a control group. The intervention also led to a significant increase in student grades, which was mediated by parents' responses to academic difficulty. We suggest an increase in experimental research that utilizes parents to influence student achievement. Copyright © 2017 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.
Status and Future Developments of SIRGAS
NASA Astrophysics Data System (ADS)
Fortes, L.; Lauría, E.; Brunini, C.; Amaya, W.; Sanchez, L.; Drewes, H.
2007-05-01
This paper presents the status and future developments of the SIRGAS (Geocentric Reference System for the Americas) project. Since its creation, in 1993, SIRGAS has coordinated two continental GPS campaigns in 1995 an 2000, responsible for the establishment of a very accurate 3D reference frame in the region. First focusing on South America, the project has expanded its scope to Latin America since 2001. Currently the maintenance of the SIRGAS reference frame is carried out through more than 80 continuous operating GNSS (Global Navigation Satellite System) stations available in the region, whose data is officially processed by the International GNSS Service (IGS) Regional Network Associate Analysis Centre for SIRGAS (IGS RNACC-SIR), functioning at the DGFI (Deutsches Geodatisches Forschungsinstitut), in Munich, to generate weekly coordinates and velocity information of each continuous GNSS station. Since October 2006, five additional experimental processing centers - located at the Brazilian Institute of Geography and Statistics (IBGE), National Institute of Statistics, Geography and Informatics of Mexico (INEGI), Military Geographic Institute of Argentina (IGM), University of La Plata (UNLP), Argentina, and Geographic Institute Agustín Codazzi, Colombia (IGAC) - have also been processing data from those stations in order to assume the official processing responsibility in near future. Many Latin American countries have already adopted SIRGAS as their new official reference system. Besides, efforts have been carried out in order to have the national geodetic networks of Central American countries connected to the SIRGAS reference frame, which will be accomplished by a GNSS campaign scheduled for the first semester of 2007. In terms of vertical datum, SIRGAS continues to coordinate with each member country all the necessary efforts towards making the geodetic leveling data available together with gravity information in order to support the computation of geopotential numbers, to be unified in a continental adjustment.
STREAM2016: Streaming Requirements, Experience, Applications and Middleware Workshop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fox, Geoffrey; Jha, Shantenu; Ramakrishnan, Lavanya
The Department of Energy (DOE) Office of Science (SC) facilities including accelerators, light sources and neutron sources and sensors that study, the environment, and the atmosphere, are producing streaming data that needs to be analyzed for next-generation scientific discoveries. There has been an explosion of new research and technologies for stream analytics arising from the academic and private sectors. However, there has been no corresponding effort in either documenting the critical research opportunities or building a community that can create and foster productive collaborations. The two-part workshop series, STREAM: Streaming Requirements, Experience, Applications and Middleware Workshop (STREAM2015 and STREAM2016), weremore » conducted to bring the community together and identify gaps and future efforts needed by both NSF and DOE. This report describes the discussions, outcomes and conclusions from STREAM2016: Streaming Requirements, Experience, Applications and Middleware Workshop, the second of these workshops held on March 22-23, 2016 in Tysons, VA. STREAM2016 focused on the Department of Energy (DOE) applications, computational and experimental facilities, as well software systems. Thus, the role of “streaming and steering” as a critical mode of connecting the experimental and computing facilities was pervasive through the workshop. Given the overlap in interests and challenges with industry, the workshop had significant presence from several innovative companies and major contributors. The requirements that drive the proposed research directions, identified in this report, show an important opportunity for building competitive research and development program around streaming data. These findings and recommendations are consistent with vision outlined in NRC Frontiers of Data and National Strategic Computing Initiative (NCSI) [1, 2]. The discussions from the workshop are captured as topic areas covered in this report's sections. The report discusses four research directions driven by current and future application requirements reflecting the areas identified as important by STREAM2016. These include (i) Algorithms, (ii) Programming Models, Languages and Runtime Systems (iii) Human-in-the-loop and Steering in Scientific Workflow and (iv) Facilities.« less
The Student Spaceflight Experiments Program: Access to the ISS for K-14 Students
NASA Astrophysics Data System (ADS)
Livengood, Timothy A.; Goldstein, J. J.; Hamel, S.; Manber, J.; Hulslander, M.
2013-10-01
The Student Spaceflight Experiments Program (SSEP) has flown 53 experiments to space, on behalf of students from middle school through community college, on 4 missions: each of the last 2 Space Shuttle flights, the first SpaceX demonstration flight to the International Space Station (ISS), and on SpaceX-1 to ISS. Two more missions to ISS have payloads flying in Fall 2013. SSEP plans 2 missions to the ISS per year for the foreseeable future, and is expanding the program to include 4-year undergraduate college students and home-schooled students. SSEP experiments have explored biological, chemical, and physical phenomena within self-contained enclosures developed by NanoRacks, currently in the form of MixStix Fluid Mixing Enclosures. 21,600 students participated in the initial 6 missions of SSEP, directly experiencing the entire lifecycle of space science experimentation through community-wide participation in SSEP, taking research from a nascent idea through developing competitive research proposals, down-selecting to three proposals from each participating community and further selection of a single proposal for flight, actual space flight, sample recovery, analysis, and reporting. The National Air and Space Museum has hosted 3 National Conferences for SSEP student teams to report results in keeping with the model of professional research. Student teams have unflinchingly reported on success, failure, and groundbased efforts to develop proposals for future flight opportunities. Community participation extends outside the sciences and the immediate proposal efforts to include design competitions for mission patches, which also fly to space. Student experimenters have rallied around successful proposal teams to support a successful experiment on behalf of the entire community. SSEP is a project of the National Center for Earth and Space Science Education enabled through NanoRacks LLC, working in partnership with NASA under a Space Act Agreement as part of the utilization of the International Space Station as a National Laboratory.
Influence of Sampling Effort on the Estimated Richness of Road-Killed Vertebrate Wildlife
NASA Astrophysics Data System (ADS)
Bager, Alex; da Rosa, Clarissa A.
2011-05-01
Road-killed mammals, birds, and reptiles were collected weekly from highways in southern Brazil in 2002 and 2005. The objective was to assess variation in estimates of road-kill impacts on species richness produced by different sampling efforts, and to provide information to aid in the experimental design of future sampling. Richness observed in weekly samples was compared with sampling for different periods. In each period, the list of road-killed species was evaluated based on estimates the community structure derived from weekly samplings, and by the presence of the ten species most subject to road mortality, and also of threatened species. Weekly samples were sufficient only for reptiles and mammals, considered separately. Richness estimated from the biweekly samples was equal to that found in the weekly samples, and gave satisfactory results for sampling the most abundant and threatened species. The ten most affected species showed constant road-mortality rates, independent of sampling interval, and also maintained their dominance structure. Birds required greater sampling effort. When the composition of road-killed species varies seasonally, it is necessary to take biweekly samples for a minimum of one year. Weekly or more-frequent sampling for periods longer than two years is necessary to provide a reliable estimate of total species richness.
Influence of sampling effort on the estimated richness of road-killed vertebrate wildlife.
Bager, Alex; da Rosa, Clarissa A
2011-05-01
Road-killed mammals, birds, and reptiles were collected weekly from highways in southern Brazil in 2002 and 2005. The objective was to assess variation in estimates of road-kill impacts on species richness produced by different sampling efforts, and to provide information to aid in the experimental design of future sampling. Richness observed in weekly samples was compared with sampling for different periods. In each period, the list of road-killed species was evaluated based on estimates the community structure derived from weekly samplings, and by the presence of the ten species most subject to road mortality, and also of threatened species. Weekly samples were sufficient only for reptiles and mammals, considered separately. Richness estimated from the biweekly samples was equal to that found in the weekly samples, and gave satisfactory results for sampling the most abundant and threatened species. The ten most affected species showed constant road-mortality rates, independent of sampling interval, and also maintained their dominance structure. Birds required greater sampling effort. When the composition of road-killed species varies seasonally, it is necessary to take biweekly samples for a minimum of one year. Weekly or more-frequent sampling for periods longer than two years is necessary to provide a reliable estimate of total species richness.
Lukowski, A F; Milojevich, H M
2017-03-01
Although group differences have been found between children with Down syndrome (DS) and typically developing (TD) children when considering sleep problems and temperament independently, none of the research conducted to date has examined sleep-temperament associations in children with DS. The present research was conducted to determine (1) whether the sleep problems experienced by children with DS are associated with temperament or (2) if the demonstrated relations between sleep and temperament differ from those that are observed in TD children. The present study included examination of relations between parent-reported sleep problems and temperament in 19 children with DS and 20 TD controls matched on developmental age. The results revealed group differences in temperament and sleep problems. Mediation models indicated that temperament (effortful control and inhibitory control) mediated the association between group and sleep problems; sleep problems also mediated the association between group and temperament (effortful and inhibitory control). Findings indicated that sleep problems may serve as both cause and consequence of variability in effortful and inhibitory control and provide insight as to future experimental studies that should be conducted to better elucidate these relations. © 2016 MENCAP and International Association of the Scientific Study of Intellectual and Developmental Disabilities and John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
INSTRUMENTATION DIVISION STAFF
To develop state-of-the-art instrumentation required for experimental research programs at BNL, and to maintain the expertise and facilities in specialized high technology areas essential for this work. Development of facilities is motivated by present BNL research programs and anticipated future directions of BNL research. The Division's research efforts also have a significant impact on programs throughout the world that rely on state-of-the-art radiation detectors and readout electronics. Our staff scientists are encouraged to: Become involved in challenging problems in collaborations with other scientists; Offer unique expertise in solving problems; and Develop new devices and instruments when not commercially available. Scientistsmore » from other BNL Departments are encouraged to bring problems and ideas directly to the Division staff members with the appropriate expertise. Division staff is encouraged to become involved with research problems in other Departments to advance the application of new ideas in instrumentation. The Division Head integrates these efforts when they evolve into larger projects, within available staff and budget resources, and defines the priorities and direction with concurrence of appropriate Laboratory program leaders. The Division Head also ensures that these efforts are accompanied by strict adherence to all ES and H regulatory mandates and policies of the Laboratory. The responsibility for safety and environmental protection is integrated with supervision of particular facilities and conduct of operations.« less
Methodology of Blade Unsteady Pressure Measurement in the NASA Transonic Flutter Cascade
NASA Technical Reports Server (NTRS)
Lepicovsky, J.; McFarland, E. R.; Capece, V. R.; Jett, T. A.; Senyitko, R. G.
2002-01-01
In this report the methodology adopted to measure unsteady pressures on blade surfaces in the NASA Transonic Flutter Cascade under conditions of simulated blade flutter is described. The previous work done in this cascade reported that the oscillating cascade produced waves, which for some interblade phase angles reflected off the wind tunnel walls back into the cascade, interfered with the cascade unsteady aerodynamics, and contaminated the acquired data. To alleviate the problems with data contamination due to the back wall interference, a method of influence coefficients was selected for the future unsteady work in this cascade. In this approach only one blade in the cascade is oscillated at a time. The majority of the report is concerned with the experimental technique used and the experimental data generated in the facility. The report presents a list of all test conditions for the small amplitude of blade oscillations, and shows examples of some of the results achieved. The report does not discuss data analysis procedures like ensemble averaging, frequency analysis, and unsteady blade loading diagrams reconstructed using the influence coefficient method. Finally, the report presents the lessons learned from this phase of the experimental effort, and suggests the improvements and directions of the experimental work for tests to be carried out for large oscillation amplitudes.
Probing flavor models with ^{ {76}}Ge-based experiments on neutrinoless double-β decay
NASA Astrophysics Data System (ADS)
Agostini, Matteo; Merle, Alexander; Zuber, Kai
2016-04-01
The physics impact of a staged approach for double-β decay experiments based on ^{ {76}}Ge is studied. The scenario considered relies on realistic time schedules envisioned by the Gerda and the Majorana collaborations, which are jointly working towards the realization of a future larger scale ^{ {76}}Ge experiment. Intermediate stages of the experiments are conceived to perform quasi background-free measurements, and different data sets can be reliably combined to maximize the physics outcome. The sensitivity for such a global analysis is presented, with focus on how neutrino flavor models can be probed already with preliminary phases of the experiments. The synergy between theory and experiment yields strong benefits for both sides: the model predictions can be used to sensibly plan the experimental stages, and results from intermediate stages can be used to constrain whole groups of theoretical scenarios. This strategy clearly generates added value to the experimental efforts, while at the same time it allows to achieve valuable physics results as early as possible.
NASA Astrophysics Data System (ADS)
Chan, V. S.; Wong, C. P. C.; McLean, A. G.; Luo, G. N.; Wirth, B. D.
2013-10-01
The Xolotl code under development by PSI-SciDAC will enhance predictive modeling capability of plasma-facing materials under burning plasma conditions. The availability and application of experimental data to compare to code-calculated observables are key requirements to validate the breadth and content of physics included in the model and ultimately gain confidence in its results. A dedicated effort has been in progress to collect and organize a) a database of relevant experiments and their publications as previously carried out at sample exposure facilities in US and Asian tokamaks (e.g., DIII-D DiMES, and EAST MAPES), b) diagnostic and surface analysis capabilities available at each device, and c) requirements for future experiments with code validation in mind. The content of this evolving database will serve as a significant resource for the plasma-material interaction (PMI) community. Work supported in part by the US Department of Energy under GA-DE-SC0008698, DE-AC52-07NA27344 and DE-AC05-00OR22725.
Enabling CSPA Operations Through Pilot Involvement in Longitudinal Approach Spacing
NASA Technical Reports Server (NTRS)
Battiste, Vernol (Technical Monitor); Pritchett, Amy
2003-01-01
Several major airports around the United States have, or plan to have, closely-spaced parallel runways. This project complemented current and previous research by examining the pilots ability to control their position longitudinally within their approach stream.This project s results considered spacing for separation from potential positions of wake vortices from the parallel approach. This preventive function could enable CSPA operations to very closely spaced runways. This work also considered how pilot involvement in longitudinal spacing could allow for more efficient traffic flow, by allowing pilots to keep their aircraft within tighter arrival slots then air traffic control (ATC) might be able to establish, and by maintaining space within the arrival stream for corresponding departure slots. To this end, this project conducted several research studies providing an analytic and computational basis for calculating appropriate aircraft spacings, experimental results from a piloted flight simulator test, and an experimental testbed for future simulator tests. The following sections summarize the results of these three efforts.
Recent experimental results of KSTAR RF heating and current drive
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, S. J., E-mail: sjwang@nfri.re.kr; Kim, J.; Jeong, J. H.
2015-12-10
The overview of KSTAR activities on ICRH, LHCD and ECH/CD including the last experimental results and future plan aiming for long-pulse high-beta plasma will be presented. Recently we achieved reasonable coupling of ICRF power to H-mode plasma through several efforts to increase system reliability. Power balance will be discussed on this experiment. LHCD is still struggling in the low power regime. Review of antenna spectrum for the higher coupling in H-mode plasma will be tried. ECH/CD provides 41 sec, 0.8 MW of heating power to support high-performance long-pulse discharge. Also, 170 GHz ECH system is integrated with the Plasma Control Systemmore » (PCS) for the feedback controlling of NTM. Status and plan of ECH/CD will be discussed. Finally, helicon current drive is being prepared for the next stage of KSTAR operation. The hardware preparation and the calculation results of helicon current drive in KSTAR plasma will be discussed.« less
NASA Astrophysics Data System (ADS)
Chen, Xinzhong; Lo, Chiu Fan Bowen; Zheng, William; Hu, Hai; Dai, Qing; Liu, Mengkun
2017-11-01
Over the last decade, scattering-type scanning near-field optical microscopy and spectroscopy have been widely used in nano-photonics and material research due to their fine spatial resolution and broad spectral range. A number of simplified analytical models have been proposed to quantitatively understand the tip-scattered near-field signal. However, a rigorous interpretation of the experimental results is still lacking at this stage. Numerical modelings, on the other hand, are mostly done by simulating the local electric field slightly above the sample surface, which only qualitatively represents the near-field signal rendered by the tip-sample interaction. In this work, we performed a more comprehensive numerical simulation which is based on realistic experimental parameters and signal extraction procedures. By directly comparing to the experiments as well as other simulation efforts, our methods offer a more accurate quantitative description of the near-field signal, paving the way for future studies of complex systems at the nanoscale.
Culture and Probability Judgment Accuracy: The Influence of Holistic Reasoning
Lechuga, Julia; Wiebe, John S.
2012-01-01
A well-established phenomenon in the judgment and decision-making tradition is the overconfidence one places in the amount of knowledge that one possesses. Overconfidence or probability judgment accuracy varies not only individually but also across cultures. However, research efforts to explain cross-cultural variations in the overconfidence phenomenon have seldom been made. In Study 1, the authors compared the probability judgment accuracy of U.S. Americans (N = 108) and Mexican participants (N = 100). In Study 2, they experimentally primed culture by randomly assigning English/Spanish bilingual Mexican Americans (N = 195) to response language. Results of both studies replicated the cross-cultural variation of probability judgment accuracy previously observed in other cultural groups. U.S. Americans displayed less overconfidence when compared to Mexicans. These results were then replicated in bilingual participants, when culture was experimentally manipulated with language priming. Holistic reasoning did not account for the cross-cultural variation of overconfidence. Suggestions for future studies are discussed. PMID:22879682
Future orientation: a construct with implications for adolescent health and wellbeing.
Johnson, Sarah R Lindstrom; Blum, Robert W; Cheng, Tina L
2014-01-01
Multidisciplinary research has supported a relationship between adolescent future orientation (the ability to set future goals and plans) and positive adolescent health and development outcomes. Many preventive strategies - for example, contracepting, exercising - are based on taking actions in the present to avoid unwanted or negative future consequences. However, research has been hampered by unclear and often divergent conceptualizations of the future orientation construct. The present paper aims to integrate previous conceptual and operational definitions into a conceptual framework that can inform programs and services for youth and efforts to evaluate future orientation as a target for intervention. Recommendations focus on furthering the study of the construct through measurement synthesis as well as studies of the normative development of future orientation. Also suggested is the need to pair environmental intervention strategies with individual level efforts to improve future orientation in order to maximize benefits.
Future Orientation: A Construct with Implications for Adolescent Health and Wellbeing
Lindstrom Johnson, Sarah; Blum, Robert W; Cheng, Tina L.
2016-01-01
Multi-disciplinary research has supported a relationship between adolescent future orientation (the ability to set future goals and plans) and positive adolescent health and development outcomes. Many preventive strategies—for example contracepting, exercising—are based on taking actions in the present to avoid unwanted or negative future consequences. However, research has been hampered by unclear and often divergent conceptualizations of the future orientation construct. The present paper aims to integrate previous conceptual and operational definitions into a conceptual framework that can inform programs and services for youth and efforts to evaluate future orientation as a target for intervention. Recommendations focus on furthering the study of the construct through measurement synthesis as well as studies of the normative development of future orientation. Also suggested is the need to pair environmental intervention strategies with individual level efforts to improve future orientation in order to maximize benefits. PMID:24523304
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schecker, Jay A
After a prolonged absence, the word 'nuclear' has returned to the lexicon of sustainable domestic energy resources. Due in no small part to its demonstrated reliability, nuclear power is poised to playa greater role in the nation's energy future, producing clean, carbon-neutral electricity and contributing even more to our energy security. To nuclear scientists, the resurgence presents an opportunity to inject new technologies into the industry to maximize the benefits that nuclear energy can provide. 'By developing new options for waste management and exploiting new materials to make key technological advances, we can significantly impact the use of nuclear energymore » in our future energy mix,' says Chris Stanek, a materials scientist at Los Alamos National Laboratory. Stanek approaches the big technology challenges by thinking way small, all the way down to the atoms. He and his colleagues are using cutting edge atomic-scale simulations to address a difficult aspect of nuclear waste -- predicting its behavior far into the future. Their research is part of a broader, coordinated effort on the part of the Laboratory to use its considerable experimental, theoretical, and computational capabilities to explore advanced materials central to not only waste issues, but to nuclear fuels as well.« less
Prediction of Liquid Slosh Damping Using a High Resolution CFD Tool
NASA Technical Reports Server (NTRS)
Yang, H. Q.; Purandare, Ravi; Peugeot, John; West, Jeff
2012-01-01
Propellant slosh is a potential source of disturbance critical to the stability of space vehicles. The slosh dynamics are typically represented by a mechanical model of a spring mass damper. This mechanical model is then included in the equation of motion of the entire vehicle for Guidance, Navigation and Control analysis. Our previous effort has demonstrated the soundness of a CFD approach in modeling the detailed fluid dynamics of tank slosh and the excellent accuracy in extracting mechanical properties (slosh natural frequency, slosh mass, and slosh mass center coordinates). For a practical partially-filled smooth wall propellant tank with a diameter of 1 meter, the damping ratio is as low as 0.0005 (or 0.05%). To accurately predict this very low damping value is a challenge for any CFD tool, as one must resolve a thin boundary layer near the wall and must minimize numerical damping. This work extends our previous effort to extract this challenging parameter from first principles: slosh damping for smooth wall and for ring baffle. First the experimental data correlated into the industry standard for smooth wall were used as the baseline validation. It is demonstrated that with proper grid resolution, CFD can indeed accurately predict low damping values from smooth walls for different tank sizes. The damping due to ring baffles at different depths from the free surface and for different sizes of tank was then simulated, and fairly good agreement with experimental correlation was observed. The study demonstrates that CFD technology can be applied to the design of future propellant tanks with complex configurations and with smooth walls or multiple baffles, where previous experimental data is not available.
NASA Technical Reports Server (NTRS)
Swickrath, Michael J.; Anderson, Molly; McMillin, Summer; Broerman, Craig
2010-01-01
Controlling carbon dioxide (CO2) and humidity levels in a spacesuit is critical to ensuring both the safety and comfort of an astronaut during extra-vehicular activity (EVA). Traditionally, this has been accomplished utilizing non-regenerative lithium hydroxide (LiOH) or regenerative metal oxide (MetOx) canisters which pose a significant weight burden. Although such technology enables air revitalization, the volume requirements to store the waste canisters as well as the mass to transport multiple units become prohibitive as mission durations increase. Consequently, motivation exists toward developing a fully regenerative technology for environmental control. The application of solid amine materials with vacuum swing adsorption technology has shown the capacity to control CO2 and concomitantly manage humidity levels through a fully regenerative cycle eliminating mission constraints imposed with non-regenerative technologies. Experimental results for full-size and sub-scale test articles have been collected and are described herein. In order to accelerate the developmental efforts, an axially-dispersed plug ow model with an accompanying energy balance has been established and correlated with the experimental data. The experimental and simulation results display good agreement for a variety of ow rates (110-170 SLM), replicated metabolic challenges (100-590 Watts), and atmosphere pressures under consideration for the spacesuit (248 and 760 mm Hg). The relationship between swing adsorption cycles for an outlet criterion of 6.0 mm Hg of CO2 partial pressure has been established for each metabolic challenge. In addition, variable metabolic profiles were imposed on the test articles in order to assess the ability of the technology to transition to new operational constraints. The advent of the model provides the capacity to apply computer-aided engineering practices to support the ongoing efforts to optimize and mature this technology for future application to space exploration.
Quality and safety in medical care: what does the future hold?
Liang, Bryan A; Mackey, Tim
2011-11-01
The rapid changes in health care policy, embracing quality and safety mandates, have culminated in programs and initiatives under the Patient Protection and Affordable Care Act. To review the context of, and anticipated quality and patient safety mandates for, delivery systems, incentives under health care reform, and models for future accountability for outcomes of care. Assessment of the provisions of Patient Protection and Affordable Care Act, other reform efforts, and reform initiatives focusing on future quality and safety provisions for health care providers. Health care reform and other efforts focus on consumerism in the context of price. Quality and safety efforts will be structured using financial incentives, best-practices research, and new delivery models that focus on reaching benchmarks while reducing costs. In addition, patient experience will be a key component of reimbursement, and a move toward "retail" approaches directed at the individual patient may supplant traditional "wholesale" efforts at attracting employers. Quality and safety have always been of prime importance in medicine. However, in the future, under health care reform and associated initiatives, a shift in the paradigm of medicine will integrate quality and safety measurement with financial incentives and a new emphasis on consumerism.
The future of dentistry: new challenges, new directions.
Sinkford, J. C.
1990-01-01
The challenge to our profession today is to improve the quality of oral health while overcoming both extrinsic and intrinsic factors which may adversely affect our progress toward this goal. The combined efforts of dental education, dental research, and dental practice will be needed to enable us to maintain the quality of our present system and to meet the myriad changes that will chart our new directions in the future. Our unified efforts can make a difference and, thereby, ensure a meaningful and productive future for dentistry in our country and throughout the world. Let us show the world that the future of dentistry matters to us and that we look to the future with great anticipation and optimism. PMID:2352286
Caffeine, sleep and wakefulness: implications of new understanding about withdrawal reversal.
James, Jack E; Keane, Michael A
2007-12-01
The broad aim of this review is to critically examine the implications of new understanding concerning caffeine withdrawal and withdrawal reversal in the context of research concerned with the effects of caffeine on sleep and wakefulness. A comprehensive search was conducted for relevant experimental studies in the PubMED and PsycINFO databases. Studies were assessed with particular reference to methodological adequacy for controlling against confounding due to caffeine withdrawal and withdrawal reversal. This assessment was used to clarify evidence of effects, highlight areas of ambiguity and derive recommendations for future research. It was found that researchers have generally failed to take account of the fact that habitual use of caffeine, even at moderate levels, leads to physical dependence evidenced by physiological, behavioural and subjective withdrawal effects during periods of abstinence. Consequently, there has been near-complete absence of adequate methodological controls against confounding due to reversal of withdrawal effects when caffeine is experimentally administered. The findings of what has been a substantial research effort to elucidate the effects of caffeine on sleep and wakefulness, undertaken over a period spanning decades, are ambiguous. Current shortcomings can be redressed by incorporating suitable controls in new experimental designs.
Proton beam characterization in the experimental room of the Trento Proton Therapy facility
NASA Astrophysics Data System (ADS)
Tommasino, F.; Rovituso, M.; Fabiano, S.; Piffer, S.; Manea, C.; Lorentini, S.; Lanzone, S.; Wang, Z.; Pasini, M.; Burger, W. J.; La Tessa, C.; Scifoni, E.; Schwarz, M.; Durante, M.
2017-10-01
As proton therapy is becoming an established treatment methodology for cancer patients, the number of proton centres is gradually growing worldwide. The economical effort for building these facilities is motivated by the clinical aspects, but might be also supported by the potential relevance for the research community. Experiments with high-energy protons are needed not only for medical physics applications, but represent also an essential part of activities dedicated to detector development, space research, radiation hardness tests, as well as of fundamental research in nuclear and particle physics. Here we present the characterization of the beam line installed in the experimental room of the Trento Proton Therapy Centre (Italy). Measurements of beam spot size and envelope, range verification and proton flux were performed in the energy range between 70 and 228 MeV. Methods for reducing the proton flux from typical treatments values of 106-109 particles/s down to 101-105 particles/s were also investigated. These data confirm that a proton beam produced in a clinical centre build by a commercial company can be exploited for a broad spectrum of experimental activities. The results presented here will be used as a reference for future experiments.
Shao, Yu-Yun; Hsu, Chih-Hung; Cheng, Ann-Lii
2015-01-01
Sorafenib is the current standard treatment for advanced hepatocellular carcinoma (HCC), but its efficacy is modest with low response rates and short response duration. Predictive biomarkers for sorafenib efficacy are necessary. However, efforts to determine biomarkers for sorafenib have led only to potential candidates rather than clinically useful predictors. Studies based on patient cohorts identified the potential of blood levels of angiopoietin-2, hepatocyte growth factor, insulin-like growth factor-1, and transforming growth factor-β1 for predicting sorafenib efficacy. Alpha-fetoprotein response, dynamic contrast-enhanced magnetic resonance imaging, and treatment-related side effects may serve as early surrogate markers. Novel approaches based on super-responders or experimental mouse models may provide new directions in biomarker research. These studies identified tumor amplification of FGF3/FGF4 or VEGFA and tumor expression of phospho-Mapk14 and phospho-Atf2 as possible predictive markers that await validation. A group effort that considers various prognostic factors and proper collection of tumor tissues before treatment is imperative for the success of future biomarker research in advanced HCC. PMID:26420960
NASA Technical Reports Server (NTRS)
Size, P.; Takeuchi, Esther S.
1993-01-01
The purpose of this contract is to evaluate parametrically the effects of various factors including the electrolyte type, electrolyte concentration, depolarizer type, and cell configuration on lithium cell electrical performance and safety. This effort shall allow for the selection and optimization of cell design for future NASA applications while maintaining close ties with WGL's continuous improvements in manufacturing processes and lithium cell design. Taguchi experimental design techniques are employed in this task, and allow for a maximum amount of information to be obtained while requiring significantly less cells than if a full factorial design were employed. Acceptance testing for this task is modeled after the NASA Document EP5-83-025, Revision C, for cell weights, OCV's and load voltages. The performance attributes that are studied in this effort are fresh capacity and start-up characteristics evaluated at two rates and two temperatures, shelf-life characteristics including start-up and capacity retention, and iterative microcalorimetry measurements. Abuse testing includes forced over discharge at two rates with and without diode protection, temperature tolerance testing, and shorting tests at three rates with the measurement of heat generated during shorting conditions.
Shao, Yu-Yun; Hsu, Chih-Hung; Cheng, Ann-Lii
2015-09-28
Sorafenib is the current standard treatment for advanced hepatocellular carcinoma (HCC), but its efficacy is modest with low response rates and short response duration. Predictive biomarkers for sorafenib efficacy are necessary. However, efforts to determine biomarkers for sorafenib have led only to potential candidates rather than clinically useful predictors. Studies based on patient cohorts identified the potential of blood levels of angiopoietin-2, hepatocyte growth factor, insulin-like growth factor-1, and transforming growth factor-β1 for predicting sorafenib efficacy. Alpha-fetoprotein response, dynamic contrast-enhanced magnetic resonance imaging, and treatment-related side effects may serve as early surrogate markers. Novel approaches based on super-responders or experimental mouse models may provide new directions in biomarker research. These studies identified tumor amplification of FGF3/FGF4 or VEGFA and tumor expression of phospho-Mapk14 and phospho-Atf2 as possible predictive markers that await validation. A group effort that considers various prognostic factors and proper collection of tumor tissues before treatment is imperative for the success of future biomarker research in advanced HCC.
NASA Technical Reports Server (NTRS)
Lawing, P. L.
1981-01-01
Four of the configurations investigated during a proposed NASA-Langley hypersonic research aircraft program were selected for phase-change-paint heat-transfer testing and forebody boundary layer pitot surveys. In anticipation of future hypersonic aircraft, both published and unpublished data and results are reviewed and presented with the purpose of providing a synoptic heat-transfer data base from the research effort. Engineering heat-transfer predictions are compared with experimental data on both a global and a local basis. The global predictions are shown to be sufficient for purposes of configuration development, and even the local predictions can be adequate when interpreted in light of the proper flow field. In that regard, cross flow in the forebody boundary layers was examined for significant heating and aerodynamic effect on the scramjet engines. A design philosophy which evolved from the research airplane effort is used to design a forebody shape that produces thin, uniform, forebody boundary layers on a hypersonic airbreathing missile. Finally, heating/boundary layer phenomena which are not predictable with state-of-the-art knowledge and techniques are shown and discussed.
Advances in computational design and analysis of airbreathing propulsion systems
NASA Technical Reports Server (NTRS)
Klineberg, John M.
1989-01-01
The development of commercial and military aircraft depends, to a large extent, on engine manufacturers being able to achieve significant increases in propulsion capability through improved component aerodynamics, materials, and structures. The recent history of propulsion has been marked by efforts to develop computational techniques that can speed up the propulsion design process and produce superior designs. The availability of powerful supercomputers, such as the NASA Numerical Aerodynamic Simulator, and the potential for even higher performance offered by parallel computer architectures, have opened the door to the use of multi-dimensional simulations to study complex physical phenomena in propulsion systems that have previously defied analysis or experimental observation. An overview of several NASA Lewis research efforts is provided that are contributing toward the long-range goal of a numerical test-cell for the integrated, multidisciplinary design, analysis, and optimization of propulsion systems. Specific examples in Internal Computational Fluid Mechanics, Computational Structural Mechanics, Computational Materials Science, and High Performance Computing are cited and described in terms of current capabilities, technical challenges, and future research directions.
Waveguide-coupled resonator filters on AlN on silicon
NASA Technical Reports Server (NTRS)
Liaw, H. M.; Cameron, T. P.; Hunt, W. D.; Hickernell, F. S.
1994-01-01
In the effort to continually reduce the size and cost of wireless communications products the level of integration has improved dramatically in recent years. In order to reduce future generations of wireless systems to single chip form, there is a need for on-chip filtering capabilities. In this paper, the first report of an experimental waveguide-coupled resonator filter for cellular radio applications is presented. Measured results indicate a typical insertion loss of 26 dB at a center frequency of 132 MHz using a 2 um AlN film on (001) less than 110 greater than Si. In addition, a laser probe analysis has been conducted and a theoretical analysis of the first order reflection coefficients is presented.
Bioimage informatics for experimental biology
Swedlow, Jason R.; Goldberg, Ilya G.; Eliceiri, Kevin W.
2012-01-01
Over the last twenty years there have been great advances in light microscopy with the result that multi-dimensional imaging has driven a revolution in modern biology. The development of new approaches of data acquisition are reportedly frequently, and yet the significant data management and analysis challenges presented by these new complex datasets remains largely unsolved. Like the well-developed field of genome bioinformatics, central repositories are and will be key resources, but there is a critical need for informatics tools in individual laboratories to help manage, share, visualize, and analyze image data. In this article we present the recent efforts by the bioimage informatics community to tackle these challenges and discuss our own vision for future development of bioimage informatics solution. PMID:19416072
NASA Technical Reports Server (NTRS)
2004-01-01
Biomedical research offers hope for a variety of medical problems, from diabetes to the replacement of damaged bone and tissues. Bioreactors, which are used to grow cells and tissue cultures, play a major role in such research and production efforts. The objective of the research was to define a way to differentiate between effects due to microgravity and those due to possible stress from non-optimal spaceflight conditions. These Jurkat cells, a human acute T-cell leukemia was obtained to evaluate three types of potential experimental stressors: a) Temperature elevation; b) Serum starvation; and c) Centrifugal force. The data from previous spaceflight experiments showed that actin filaments and cell shape are significantly different for the control. These normal cells serve as the baseline for future spaceflight experiments.
Development of a Reactor for the Extraction of Oxygen and Volatiles From Lunar Regolith
NASA Technical Reports Server (NTRS)
Kleinhenz, Julie; Yuan, Zengguang; Sacksteder, Kurt; Caruso, John
2009-01-01
The RESOLVE (Regolith and Environment Science, Oxygen and Lunar Volatiles Extraction) Project, aims to extract and quantify useful resources from lunar soil. The reactor developed for RESOLVE is a dual purpose system, designed to evolve both water, at 150 C and up to 80 psig, and oxygen, using hydrogen reduction at 900 C. A variety of laboratory tests were performed to verify its operation and to explore the properties of the analog site soil. The results were also applied to modeling efforts which are being used to estimate the apparent thermal properties of the soil. The experimental and numerical results, along with the analog site tests, will be used to evolve and optimize future reactor designs.
Status of Superheated Spray and Post Combustor Particulate Modeling for NCC
NASA Technical Reports Server (NTRS)
Liu, Nan-Suey; Raju, Suri; Wey, Thomas
2007-01-01
At supersonic cruise conditions, high fuel temperatures, coupled with low pressures in the combustor, create potential for superheated fuel injection leading to shorter fuel jet break-up time and reduced spray penetration. Another issue particularly important to the supersonic cruise is the aircraft emissions contributing to the climate change in the atmosphere. Needless to say, aircraft emissions in general also contribute to the air pollution in the neighborhood of airports. The objectives of the present efforts are to establish baseline for prediction methods and experimental data for (a) liquid fuel atomization and vaporization at superheated conditions and (b) particle sampling systems and laboratory or engine testing environments, as well as to document current capabilities and identify gaps for future research.
2004-04-15
Biomedical research offers hope for a variety of medical problems, from diabetes to the replacement of damaged bone and tissues. Bioreactors, which are used to grow cells and tissue cultures, play a major role in such research and production efforts. The objective of the research was to define a way to differentiate between effects due to microgravity and those due to possible stress from non-optimal spaceflight conditions. These Jurkat cells, a human acute T-cell leukemia was obtained to evaluate three types of potential experimental stressors: a) Temperature elevation; b) Serum starvation; and c) Centrifugal force. The data from previous spaceflight experiments showed that actin filaments and cell shape are significantly different for the control. These normal cells serve as the baseline for future spaceflight experiments.
Crystal Growth of Device Quality Gaas in Space
NASA Technical Reports Server (NTRS)
Gatos, H. C.
1985-01-01
The GaAs research evolves about these key thrust areas. The overall program combines: (1) studies of crystal growth on novel approaches to engineering of semiconductor material (i.e., GaAs and related compounds); (2) investigation and correlation of materials properties and electronic characteristics on a macro- and microscale; and (3) investigation of electronic properties and phenomena controlling device applications and device performance. This effort is aimed at the essential ground-based program which would insure successful experimentation with and eventually processing of GaAs in near zero gravity environment. It is believed that this program addresses in a unique way materials engineering aspects which bear directly on the future exploitation of the potential of GaAs and related materials in device and systems applications.
1983-02-01
blow-off stability and fractional conversion was evaluated for design of an experimental study of these phenomena. The apparatus designed will be...the development of an array of experimental methods and test strategies designed to unravel a complex process that is very difficult to observe directly...this effort of lead field theoretic analysis as a design basis has made that possible. The experimental phase of the effort has three major
2013-12-01
experimental studies and analyses performed and the resulting recommendations. Results from the present effort indicated that a minimum use limit of... experimental studies performed and the resulting recommendations regarding the minimum on-board use limit of FSII while maintaining safe operability...sumping. A detailed summary of the experimental efforts and results are provided in a separate report (Balster et al., 2010). For the ATCC
Using molecular simulation to explore the nanoscale dynamics of the plant kinome.
Moffett, Alexander S; Shukla, Diwakar
2018-03-09
Eukaryotic protein kinases (PKs) are a large family of proteins critical for cellular response to external signals, acting as molecular switches. PKs propagate biochemical signals by catalyzing phosphorylation of other proteins, including other PKs, which can undergo conformational changes upon phosphorylation and catalyze further phosphorylations. Although PKs have been studied thoroughly across the domains of life, the structures of these proteins are sparsely understood in numerous groups of organisms, including plants. In addition to efforts towards determining crystal structures of PKs, research on human PKs has incorporated molecular dynamics (MD) simulations to study the conformational dynamics underlying the switching of PK function. This approach of experimental structural biology coupled with computational biophysics has led to improved understanding of how PKs become catalytically active and why mutations cause pathological PK behavior, at spatial and temporal resolutions inaccessible to current experimental methods alone. In this review, we argue for the value of applying MD simulation to plant PKs. We review the basics of MD simulation methodology, the successes achieved through MD simulation in animal PKs, and current work on plant PKs using MD simulation. We conclude with a discussion of the future of MD simulations and plant PKs, arguing for the importance of molecular simulation in the future of plant PK research. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
Future challenges in communication for promoting ORT--an overview.
Dobe, M
2003-06-01
Oral rehydration therapy (ORT) is a cheap and simple intervention aimed to prevent mortality and morbidity associated with dehydration due to diarrhoea. ORT promotion strategies through programme communication, social mobilisation and social marketing, and advocacy efforts have yielded substantial improvement in the scenario. However, it has also taught us lessons and suggested changes in communication strategies to make the promotion efforts more effective in future.
NASA Astrophysics Data System (ADS)
Jaguemont, Joris; Omar, Noshin; Martel, François; Van den Bossche, Peter; Van Mierlo, Joeri
2017-11-01
In this paper, the development of a three-dimensional (3D) lithium titanium oxide (LTO) pouch cell is presented to first better comprehend its thermal behavior within electrified vehicle applications, but also to propose a strong modeling base for future thermal management system. Current 3D-thermal models are based on electrochemical reactions which are in need for elaborated meshing effort and long computational time. There lacks a fast electro-thermal model which can capture voltage, current and thermal distribution variation during the whole process. The proposed thermal model is a reduce-effort temperature simulation approach involving a 0D-electrical model accommodating a 3D-thermal model to exclude electrochemical processes. The thermal model is based on heat-transfer theory and its temperature distribution prediction incorporates internal conduction and heat generation effect as well as convection. In addition, experimental tests are conducted to validate the model. Results show that both the heat dissipation rate and surface temperature uniformity data are in agreement with simulation results, which satisfies the application requirements for electrified vehicles. Additionally, a LTO battery pack sizing and modeling is also designed, applied and displays a non-uniformity of the cells under driving operation. Ultimately, the model will serve as a basis for the future development of a thermal strategy for LTO cells that operate in a large temperature range, which is a strong contribution to the existing body of scientific literature.
Tanner, Kristine; Fujiki, Robert B; Dromey, Christopher; Merrill, Ray M; Robb, Whitney; Kendall, Katherine A; Hopkin, J Arden; Channell, Ron W; Sivasankar, M Preeti
2016-11-01
This study examined the effects of a laryngeal desiccation challenge and nebulized isotonic saline on voice production in young, healthy male singers and nonsingers. This is a prospective, double-blind, within-subjects experimental design. Participants included 10 male university-trained singers and 10 age-matched nonsingers (mean age, 21.8 years; range, 18-26 years) who underwent a 30-minute oral breathing laryngeal desiccation challenge using medical grade dry air (<1% relative humidity) on two occasions in consecutive weeks. After the challenge, participants received either 3 mL or 9 mL of nebulized isotonic saline (0.9% Na + Cl - ); order of administration was counterbalanced. Phonation threshold pressure (PTP), the cepstral spectral index of dysphonia (CSID) for sustained vowels and connected speech, and self-perceived vocal effort, mouth dryness, and throat dryness were measured at each recording (baseline, after challenge, and at 5, 35, and 65 minutes after treatment). Self-perceived effort and dryness measures increased (worsened) after desiccation challenge and decreased (improved) after nebulized treatment (P < 0.05). No consistent changes were observed for PTP or CSID over time. Overall, singers demonstrated significantly lower vocal effort and CSID as compared with nonsingers. Young, vocally healthy men may not experience physiologic changes in voice production associated with laryngeal desiccation and nebulized saline treatments; however, self-reported increases in vocal effort which are associated with dryness symptoms might improve with nebulized treatments. Future hydration research should consider age and sex variables. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
Pepper, Gillian V; Nettle, Daniel
2014-09-01
Socioeconomic gradients in health behavior are pervasive and well documented. Yet, there is little consensus on their causes. Behavioral ecological theory predicts that, if people of lower socioeconomic position (SEP) perceive greater personal extrinsic mortality risk than those of higher SEP, they should disinvest in their future health. We surveyed North American adults for reported effort in looking after health, perceived extrinsic and intrinsic mortality risks, and measures of SEP. We examined the relationships between these variables and found that lower subjective SEP predicted lower reported health effort. Lower subjective SEP was also associated with higher perceived extrinsic mortality risk, which in turn predicted lower reported health effort. The effect of subjective SEP on reported health effort was completely mediated by perceived extrinsic mortality risk. Our findings indicate that perceived extrinsic mortality risk may be a key factor underlying SEP gradients in motivation to invest in future health.
An overview of the Chemistry-Aerosol Mediterranean Experiment (ChArMEx)
NASA Astrophysics Data System (ADS)
Dulac, François
2014-05-01
The Chemistry-Aerosol Mediterranean Experiment (ChArMEx, http://charmex.lsce.ipsl.fr) is a French initiative of the MISTRALS meta-programme (Mediterranean Integrated Studies at Regional And Locals Scales, http://www.mistrals-home.org). It federates a great number of national and international cooperative research actions aiming at a scientific assessment of the present and future state of the atmospheric environment in the Mediterranean Basin, and of its impacts on the regional climate, air quality, and marine biogeochemistry. The target is short-lived particulate and gaseous tropospheric trace species which are the cause of poor air quality events, have two-way interactions with climate, or impact the marine biogeochemistry, in a context of strong regional anthropogenic and climatic pressures. The six ChArMEx work packages include Emissions, Chemical processes and ageing, Transport processes and air quality, Aerosol-radiation-climate interactions, Deposition, and Present and future variability and trends. For several years, efforts have been deployed in several countries to develop (i) a network of relevant stations for atmospheric chemistry at background sites on islands and continental coasts around the basin and (ii) several intensive field campaigns including the operation of surface supersites and various instrumented mobile platforms (large and ultra-light aircraft, sounding and drifting balloons, ZeroCO2 sailboat). This presentation is an attempt to provide an overview of the various experimental, remote sensing and modelling efforts produced and to highlight major findings, by referencing more detailed ChArMEx presentations given in this conference and recently published or submitted papers. During the first phase of the project experimental efforts have been mainly concentrated on the western basin. Plans for the 2nd phase of ChArMEx, more dedicated towards the eastern basin, will also be given. In particular we plan to develop monitoring activities at Cyprus and put more emphasis (i) on aerosol-cloud interactions in cooperation with the FP7/Environment project BACCHUS, (ii) the budget and transport of anthropogenic emissions from megacities, and (iii) processes at the air-sea interface with a proposal for a 1-month oceanographic cruise during a period of dust deposition events, joint with the biogeochemistry component of MISTRALS (project MERMEX: the Marine Ecosystem Response Mediterranean Experiment). Acknowledgements: ChArMEx activities involve about 50 institutes. FD expresses his gratitude to every contributing scientist. ChArMEx is supported by too many agencies for listing them all here. The main overall effort is from France, with ADEME, ANR, CNES, CNRS-INSU, the Collectivité Territoriale de Corse (incl. EU-FEDER funds), Météo-France, CEA and Ecole des Mines de Douai as the main funding agencies.
Data Acquisition and Mass Storage
NASA Astrophysics Data System (ADS)
Vande Vyvre, P.
2004-08-01
The experiments performed at supercolliders will constitute a new challenge in several disciplines of High Energy Physics and Information Technology. This will definitely be the case for data acquisition and mass storage. The microelectronics, communication, and computing industries are maintaining an exponential increase of the performance of their products. The market of commodity products remains the largest and the most competitive market of technology products. This constitutes a strong incentive to use these commodity products extensively as components to build the data acquisition and computing infrastructures of the future generation of experiments. The present generation of experiments in Europe and in the US already constitutes an important step in this direction. The experience acquired in the design and the construction of the present experiments has to be complemented by a large R&D effort executed with good awareness of industry developments. The future experiments will also be expected to follow major trends of our present world: deliver physics results faster and become more and more visible and accessible. The present evolution of the technologies and the burgeoning of GRID projects indicate that these trends will be made possible. This paper includes a brief overview of the technologies currently used for the different tasks of the experimental data chain: data acquisition, selection, storage, processing, and analysis. The major trends of the computing and networking technologies are then indicated with particular attention paid to their influence on the future experiments. Finally, the vision of future data acquisition and processing systems and their promise for future supercolliders is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fricke, A.L.; Zaman, A.A.; Stoy, M.O.
A wide variety of experimental techniques have been used in this work, and many of these have been developed completely or improved significantly in the course of the research done during this program. Therefore, it is appropriate to describe these techniques in detail as a reference for future workers so that the techniques can be used in future work with little additional effort or so that the results reported from this program can be compared better with future results from other work. In many cases, the techniques described are for specific analytical instruments. It is recognized that these may bemore » superseded by future developments and improvements in instrumentation if a complete description of techniques used successfully in the past on other instrumentation is available. The total pulping and liquor preparation research work performed included chip and white liquor preparation, digestion, pulp washing, liquor and wash recovery, liquor sampling, weak liquor concentration in two steps to about 45--50% solids with an intermediate soap skimming at about 140F and 27--30% solids, determination of pulp yield and Kappa number, determination of total liquor solids, and a check on the total material balance for pulping. All other research was performed either on a sample of the weak black liquor (the combined black liquor and washes from the digester) or on the skimmed liquor that had been concentrated.« less
The place of space technology in economic development: Reflections on present and future aspects
NASA Technical Reports Server (NTRS)
Lebeau, A.; Reuter, K. E.
1980-01-01
The effects of the development of satellite applications on the orientation of the space effort were examined. The gap between available and exploited technology, the impact of the current economic climate and future trends are discussed. Europe's low level of public funding for its space effort, in comparison to other space powers, and the dangers of complacency regarding Europe's competitiveness in the space market are illustrated. A proposal for the general direction which Europe's future strategy must take if European independence in this field is to be preserved is presented.
Measurement Requirements for Improved Modeling of Arcjet Facility Flows
NASA Technical Reports Server (NTRS)
Fletcher, Douglas G.
2000-01-01
Current efforts to develop new reusable launch vehicles and to pursue low-cost robotic planetary missions have led to a renewed interest in understanding arc-jet flows. Part of this renewed interest is concerned with improving the understanding of arc-jet test results and the potential use of available computational-fluid- dynamic (CFD) codes to aid in this effort. These CFD codes have been extensively developed and tested for application to nonequilibrium, hypersonic flow modeling. It is envisioned, perhaps naively, that the application of these CFD codes to the simulation of arc-jet flows would serve two purposes: first. the codes would help to characterize the nonequilibrium nature of the arc-jet flows; and second. arc-jet experiments could potentially be used to validate the flow models. These two objectives are, to some extent, mutually exclusive. However, the purpose of the present discussion is to address what role CFD codes can play in the current arc-jet flow characterization effort, and whether or not the simulation of arc-jet facility tests can be used to eva1uate some of the modeling that is used to formu1ate these codes. This presentation is organized into several sections. In the introductory section, the development of large-scale, constricted-arc test facilities within NASA is reviewed, and the current state of flow diagnostics using conventional instrumentation is summarized. The motivation for using CFD to simulate arc-jet flows is addressed in the next section, and the basic requirements for CFD models that would be used for these simulations are briefly discussed. This section is followed by a more detailed description of experimental measurements that are needed to initiate credible simulations and to evaluate their fidelity in the different flow regions of an arc-jet facility. Observations from a recent combined computational and experiment.al investigation of shock-layer flows in a large-scale arc-jet facility are then used to illustrate the current state of development of diagnostic instrumentation, CFD simulations, and general knowledge in the field of arc-jet characterization. Finally, the main points are summarized and recommendations for future efforts are given.
Analytical and experimental study of control effort associated with model reference adaptive control
NASA Technical Reports Server (NTRS)
Messer, R. S.; Haftka, R. T.; Cudney, H. H.
1992-01-01
Numerical simulation results presently obtained for the performance of model reference adaptive control (MRAC) are experimentally verified, with a view to accounting for differences between the plant and the reference model after the control function has been brought to bear. MRAC is both experimentally and analytically applied to a single-degree-of-freedom system, as well as analytically to a MIMO system having controlled differences between the reference model and the plant. The control effort is noted to be sensitive to differences between the plant and the reference model.
NASA Technical Reports Server (NTRS)
Palaszewski, Bryan
2012-01-01
The future exploration of the Solar System will require innovations in transportation and the use of entry, descent, and landing (EDL) systems at many planetary landing sites. The cost of space missions has always been prohibitive, and using the natural planetary and planet s moons atmosphere for entry, descent, and landing can reduce the cost, mass, and complexity of these missions. This paper will describe some of the EDL ideas for planetary entry and survey the overall technologies for EDL that may be attractive for future Solar System missions. Future EDL systems may include an inflatable decelerator for the initial atmospheric entry and an additional supersonic retro-propulsion (SRP) rocket system for the final soft landing. As part of those efforts, NASA began to conduct experiments to gather the experimental data to make informed decisions on the "best" EDL options. A model of a three engine retro-propulsion configuration with a 2.5 in. diameter sphere-cone aeroshell model was tested in the NASA Glenn 1- by 1-Foot Supersonic Wind Tunnel (SWT). The testing was conducted to identify potential blockage issues in the tunnel, and visualize the rocket flow and shock interactions during supersonic and hypersonic entry conditions. Earlier experimental testing of a 70 Viking-like (sphere-cone) aeroshell was conducted as a baseline for testing of a supersonic retro-propulsion system. This baseline testing defined the flow field around the aeroshell and from this comparative baseline data, retro-propulsion options will be assessed. Images and analyses from the SWT testing with 300- and 500-psia rocket engine chamber pressures are presented here. The rocket engine flow was simulated with a non-combusting flow of air.
Ebola vaccine development plan: ethics, concerns and proposed measures.
Folayan, Morenike Oluwatoyin; Yakubu, Aminu; Haire, Bridget; Peterson, Kristin
2016-02-08
The global interest in developing therapies for Ebola infection management and its prevention is laudable. However the plan to conduct an emergency immunization program specifically for healthcare workers using experimental vaccines raises some ethical concerns. This paper shares perspectives on these concerns and suggests how some of them may best be addressed. The recruitment of healthcare workers for Ebola vaccine research has challenges. It could result in coercion of initially dissenting healthcare workers to assist in the management of EVD infected persons due to mistaken beliefs that the vaccine offers protection. It could also affect equity and justice. For example, where people who are not skilled health care professionals but who provide care to patients infected with Ebola (such as in home care settings) are not prioritized for vaccination. The possibility of study participants contracting Ebola infection despite the use of experimental vaccine, and the standard of care they would receive, needs to be addressed clearly, transparently and formalized as part of the ethics review process. Future access to study products in view of current status of the TRIPS agreement needs to be addressed. Finally, broad stakeholder engagement at local, regional and international levels needs to be promoted using available communication channels to engage local, regional and international support. These same concerns are applicable for current and future epidemics. Successful Ebola vaccine development research requires concerted efforts at public dialogue to address misconceptions, equity and justice in participant selection, and honest discussions about risks, benefits and future access. Public dialogue about Ebola vaccine research plans is crucial and should be conducted by trusted locals and negotiated between communities, researchers and ethics committees in research study sites.
Curiosity predicts smoking experimentation independent of susceptibility in a US national sample.
Nodora, Jesse; Hartman, Sheri J; Strong, David R; Messer, Karen; Vera, Lisa E; White, Martha M; Portnoy, David B; Choiniere, Conrad J; Vullo, Genevieve C; Pierce, John P
2014-12-01
To improve smoking prevention efforts, better methods for identifying at-risk youth are needed. The widely used measure of susceptibility to smoking identifies at-risk adolescents; however, it correctly identifies only about one third of future smokers. Adding curiosity about smoking to this susceptibility index may allow us to identify a greater proportion of future smokers while they are still pre-teens. We use longitudinal data from a recent national study on parenting to prevent problem behaviors. Only oldest children between 10 and 13years of age were eligible. Participants were identified by RDD survey and followed for 6years. All baseline never smokers with at least one follow-up assessment were included (n=878). The association of curiosity about smoking with future smoking behavior was assessed. Then, curiosity was added to form an enhanced susceptibility index and sensitivity, specificity and positive predictive value were calculated. Among committed never smokers at baseline, those who were 'definitely not curious' were less likely to progress toward smoking than both those who were 'probably not curious' (ORadj=1.89; 95% CI=1.03-3.47) or 'probably/definitely curious' (ORadj=2.88; 95% CI=1.11-7.45). Incorporating curiosity into the susceptibility index increased the proportion identified as at-risk to smoke from 25.1% to 46.9%. The sensitivity (true positives) for this enhanced susceptibility index for both experimentation and established smoking increased from 37-40% to over 50%, although the positive predictive value did not improve. The addition of curiosity significantly improves the identification and classification of which adolescents will experiment with smoking or become established smokers. Copyright © 2014 Elsevier Ltd. All rights reserved.
Overview of NASA's Propulsion 21 Effort
NASA Technical Reports Server (NTRS)
Long-Davis, Mary Jo
2006-01-01
Propulsion 21 technologies contribute to reducing CO2 and NO(x) emissions and noise. Integrated Government/Industry/University research efforts have produced promising initial technical results. Graduate students from 5 partnering universities will benefit from this collaborative research--> educating the future engineering workforce. Phase 2 Efforts scheduled to be completed 3QFY06.
Yemets, Anatoliy V; Donchenko, Viktoriya I; Scrinick, Eugenia O
2018-01-01
Introduction: Experimental work is aimed at introducing theoretical and methodological foundations for the professional training of the future doctor. The aim: Identify the dynamics of quantitative and qualitative indicators of the readiness of a specialist in medicine. Materials and methods: The article presents the course and results of the experimental work of the conditions of forming the readiness of future specialists in medicine. Results: Our methodical bases for studying the disciplines of the general practice and specialized professional stage of experimental training of future physicians have been worked out. Conclusions: It is developed taking into account the peculiarities of future physician training of materials for various stages of experimental implementation in the educational process of higher medical educational institutions.
Evidence for baseline glucocorticoids as mediators of reproductive investment in a wild bird.
Love, Oliver P; Madliger, Christine L; Bourgeon, Sophie; Semeniuk, Christina A D; Williams, Tony D
2014-04-01
Determining the mechanisms that mediate investment decisions between current and future reproductive attempts is still a key goal of life-history studies. Since baseline levels of stress hormones (glucocorticoids - GCs) act as predictive and labile regulators of daily energetic balance in vertebrates they remain excellent candidates for mediating investment decisions both within and across reproductive attempts. Using free-living female European starlings (Sturnus vulgaris) we experimentally reduced investment in current reproduction (number of offspring raised in the first brood) to examine whether baseline corticosterone (CORT) acted as a hormonal mediator preparing individuals for a predictable increase in future investment (number of offspring raised in the second brood). Although treatment and control birds raised the same total amount of offspring across two broods, the experimental birds increased reproductive investment in second broods to compensate for the reduced investment in the first brood. Data on both mean and intra-individual changes in baseline CORT support the idea that an increase in baseline CORT between the incubation stages in treatment birds strongly predicted this increase in investment. Importantly, we measured the increase in baseline CORT during late incubation prior to the increase in energetic demand associated with increased reproductive investment in offspring, indicating that flexible within-individual changes in baseline GCs can act as a labile mechanism preparing individuals for predictable increases in reproductive investment. As such, our experimental results indicate that elevated baseline GCs can prepare individuals for investment in energetically expensive life-history stages, rather than simply being elevated as a consequence of increased effort or demand. This suggests that short-term preparative increases in baseline GCs benefit individuals by successfully allowing them to maximize fitness under varying environmental conditions. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Felton, A. J.; Smith, M. D.
2016-12-01
Heightened climatic variability due to atmospheric warming is forecast to increase the frequency and severity of climate extremes. In particular, changes to interannual variability in precipitation, characterized by increases in extreme wet and dry years, are likely to impact virtually all terrestrial ecosystem processes. However, to date experimental approaches have yet to explicitly test how ecosystem processes respond to multiple levels of climatic extremity, limiting our understanding of how ecosystems will respond to forecast increases in the magnitude of climate extremes. Here we report the results of a replicated regression experimental approach, in which we imposed 9 and 11 levels of growing season precipitation amount and extremity in mesic grassland during 2015 and 2016, respectively. Each level corresponded to a specific percentile of the long-term record, which produced a large gradient of soil moisture conditions that ranged from extreme wet to extreme dry. In both 2015 and 2016, asymptotic responses to water availability were observed for soil respiration. This asymmetry was driven in part by transitions between soil moisture versus temperature constraints on respiration as conditions became increasingly dry versus increasingly wet. In 2015, aboveground net primary production (ANPP) exhibited asymmetric responses to precipitation that largely mirrored those of soil respiration. In total, our results suggest that in this mesic ecosystem, these two carbon cycle processes were more sensitive to extreme drought than to extreme wet years. Future work will assess ANPP responses for 2016, soil nutrient supply and physiological responses of the dominant plant species. Future efforts are needed to compare our findings across a diverse array of ecosystem types, and in particular how the timing and magnitude of precipitation events may modify the response of ecosystem processes to increasing magnitudes of precipitation extremes.
Toward a complete theory for predicting inclusive deuteron breakup away from stability
NASA Astrophysics Data System (ADS)
Potel, G.; Perdikakis, G.; Carlson, B. V.; Atkinson, M. C.; Dickhoff, W. H.; Escher, J. E.; Hussein, M. S.; Lei, J.; Li, W.; Macchiavelli, A. O.; Moro, A. M.; Nunes, F. M.; Pain, S. D.; Rotureau, J.
2017-09-01
We present an account of the current status of the theoretical treatment of inclusive ( d, p) reactions in the breakup-fusion formalism, pointing to some applications and making the connection with current experimental capabilities. Three independent implementations of the reaction formalism have been recently developed, making use of different numerical strategies. The codes also originally relied on two different but equivalent representations, namely the prior (Udagawa-Tamura, UT) and the post (Ichimura-Austern-Vincent, IAV) representations. The different implementations have been benchmarked for the first time, and then applied to the Ca isotopic chain. The neutron-Ca propagator is described in the Dispersive Optical Model (DOM) framework, and the interplay between elastic breakup (EB) and non-elastic breakup (NEB) is studied for three Ca isotopes at two different bombarding energies. The accuracy of the description of different reaction observables is assessed by comparing with experimental data of ( d, p) on 40,48Ca. We discuss the predictions of the model for the extreme case of an isotope (60Ca) currently unavailable experimentally, though possibly available in future facilities (nominally within production reach at FRIB). We explore the use of ( d, p) reactions as surrogates for (n,γ ) processes, by using the formalism to describe the compound nucleus formation in a (d,pγ ) reaction as a function of excitation energy, spin, and parity. The subsequent decay is then computed within a Hauser-Feshbach formalism. Comparisons between the (d,pγ ) and (n,γ ) induced gamma decay spectra are discussed to inform efforts to infer neutron captures from (d,pγ ) reactions. Finally, we identify areas of opportunity for future developments, and discuss a possible path toward a predictive reaction theory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, Martin L.; Choi, C. L.; Hattrick-Simpers, J. R.
The Materials Genome Initiative, a national effort to introduce new materials into the market faster and at lower cost, has made significant progress in computational simulation and modeling of materials. To build on this progress, a large amount of experimental data for validating these models, and informing more sophisticated ones, will be required. High-throughput experimentation generates large volumes of experimental data using combinatorial materials synthesis and rapid measurement techniques, making it an ideal experimental complement to bring the Materials Genome Initiative vision to fruition. This paper reviews the state-of-the-art results, opportunities, and challenges in high-throughput experimentation for materials design. Asmore » a result, a major conclusion is that an effort to deploy a federated network of high-throughput experimental (synthesis and characterization) tools, which are integrated with a modern materials data infrastructure, is needed.« less
Green, Martin L.; Choi, C. L.; Hattrick-Simpers, J. R.; ...
2017-03-28
The Materials Genome Initiative, a national effort to introduce new materials into the market faster and at lower cost, has made significant progress in computational simulation and modeling of materials. To build on this progress, a large amount of experimental data for validating these models, and informing more sophisticated ones, will be required. High-throughput experimentation generates large volumes of experimental data using combinatorial materials synthesis and rapid measurement techniques, making it an ideal experimental complement to bring the Materials Genome Initiative vision to fruition. This paper reviews the state-of-the-art results, opportunities, and challenges in high-throughput experimentation for materials design. Asmore » a result, a major conclusion is that an effort to deploy a federated network of high-throughput experimental (synthesis and characterization) tools, which are integrated with a modern materials data infrastructure, is needed.« less
Folger, Christina L; Lee, Henry; Janousek, Christopher N.; Reusser, Deborah A.
2014-01-01
Climate change poses a serious threat to the tidal wetlands of the Pacific Northwest (PNW) region of the U.S. In response to this threat, scientists at the Western Ecology Division of the U.S. EPA at and the Western Fisheries Research Center of the U.S. Geological Survey, along with other partners, initiated a series of studies on the structure and vulnerability of tidal wetlands to climate change. One research thrust was to evaluate community structure of PNW marshes, experimentally assess the vulnerability of marsh plants to inundation and salinity stress (as would happen with sea level rise), and evaluate the utility of the National Wetland Inventory (NWI) classification system. Another research thrust was to develop tools that provide insights into possible impacts of climate change. This effort included enhancing the Sea Level Affecting Marshes Model (SLAMM) to predict the effects of sea level rise on submerged aquatic vegetation (Zostera marina) distributions, evaluating changes in river flow into coastal estuaries in response to precipitation changes, and synthesizing Pacific Coast estuary, watershed, and climate data in a downloadable tool. Because the research resulting from these efforts was published in multiple venues, we summarized them in this document. We anticipate that future research efforts by the U.S. EPA will continue with a focus on climate change impacts on a regional scale.
Technology Assessment for Future MILSATCOM Systems; An Update of the EHF Bands
1980-10-01
converging these efforts, the MSO has prepared a "Technology Development Program Plan" ( TDPP ). The TOPP defines a coordinated approach to the R&D...required to insure the availability of the technology necessary to support future systems. Some of the objectives of the TDPP are: to minimize...and TDPP have illuminated the need for technology development efforts directed toward minimizing the cost- risk and schedule-risk, and insuring the
A History of Aerospace Problems, Their Solutions, Their Lessons
NASA Technical Reports Server (NTRS)
Ryan, R. S.
1996-01-01
The positive aspect of problem occurrences is the opportunity for learning and a challenge for innovation. The learning aspect is not restricted to the solution period of the problem occurrence, but can become the beacon for problem prevention on future programs. Problems/failures serve as a point of departure for scaling to new designs. To ensure that problems/failures and their solutions guide the future programs, a concerted effort has been expended to study these problems, their solutions, their derived lessons learned, and projections for future programs. This includes identification of technology thrusts, process changes, codes development, etc. However, they must not become an excuse for adding layers upon layers of standards, criteria, and requirements, but must serve as guidelines that assist instead of stifling engineers. This report is an extension of prior efforts to accomplish this task. Although these efforts only scratch the surface, it is a beginning that others must complete.
Neutrino-nucleus cross sections for oscillation experiments
NASA Astrophysics Data System (ADS)
Katori, Teppei; Martini, Marco
2018-01-01
Neutrino oscillations physics is entering an era of high precision. In this context, accelerator-based neutrino experiments need a reduction in systematic errors to the level of a few percent. Today, one of the most important sources of systematic errors are neutrino-nucleus cross sections which, in the energy region of hundreds of MeV to a few GeV, are known to a precision not exceeding 20%. In this article we review the present experimental and theoretical knowledge of neutrino-nucleus interaction physics. After introducing neutrino-oscillation physics and accelerator-based neutrino experiments, we give an overview of general aspects of neutrino-nucleus cross sections, from both the theoretical and experimental point of view. Then, we focus on these cross sections in different reaction channels. We start with the quasi-elastic and quasi-elastic-like cross section, placing a special emphasis on the multinucleon emission channel, which has attracted a lot of attention in the last few years. We review the main aspects of the different microscopic models for this channel by discussing analogies and the differences among them. The discussion is always driven by a comparison with the experimental data. We then consider the one-pion production channel where agreement between data and theory remains highly unsatisfactory. We describe how to interpret pion data, and then analyze, in particular, the puzzle related to the difficulty of theoretical models and Monte Carlo to simultaneously describe MiniBooNE and MINERvA experimental results. Inclusive cross sections are also discussed, as well as the comparison between the {ν }μ and {ν }e cross sections, relevant for the charge-conjugation-parity violation experiments. The impact of nuclear effects on the reconstruction of neutrino energy and on the determination of the neutrino-oscillation parameters is also reviewed. Finally, we look to the future by discussing projects and efforts in relation to future detectors, beams, and analysis.
Saxena, Anupam; Lipson, Hod; Valero-Cuevas, Francisco J.
2012-01-01
In systems and computational biology, much effort is devoted to functional identification of systems and networks at the molecular-or cellular scale. However, similarly important networks exist at anatomical scales such as the tendon network of human fingers: the complex array of collagen fibers that transmits and distributes muscle forces to finger joints. This network is critical to the versatility of the human hand, and its function has been debated since at least the 16th century. Here, we experimentally infer the structure (both topology and parameter values) of this network through sparse interrogation with force inputs. A population of models representing this structure co-evolves in simulation with a population of informative future force inputs via the predator-prey estimation-exploration algorithm. Model fitness depends on their ability to explain experimental data, while the fitness of future force inputs depends on causing maximal functional discrepancy among current models. We validate our approach by inferring two known synthetic Latex networks, and one anatomical tendon network harvested from a cadaver's middle finger. We find that functionally similar but structurally diverse models can exist within a narrow range of the training set and cross-validation errors. For the Latex networks, models with low training set error [<4%] and resembling the known network have the smallest cross-validation errors [∼5%]. The low training set [<4%] and cross validation [<7.2%] errors for models for the cadaveric specimen demonstrate what, to our knowledge, is the first experimental inference of the functional structure of complex anatomical networks. This work expands current bioinformatics inference approaches by demonstrating that sparse, yet informative interrogation of biological specimens holds significant computational advantages in accurate and efficient inference over random testing, or assuming model topology and only inferring parameters values. These findings also hold clues to both our evolutionary history and the development of versatile machines. PMID:23144601
Saxena, Anupam; Lipson, Hod; Valero-Cuevas, Francisco J
2012-01-01
In systems and computational biology, much effort is devoted to functional identification of systems and networks at the molecular-or cellular scale. However, similarly important networks exist at anatomical scales such as the tendon network of human fingers: the complex array of collagen fibers that transmits and distributes muscle forces to finger joints. This network is critical to the versatility of the human hand, and its function has been debated since at least the 16(th) century. Here, we experimentally infer the structure (both topology and parameter values) of this network through sparse interrogation with force inputs. A population of models representing this structure co-evolves in simulation with a population of informative future force inputs via the predator-prey estimation-exploration algorithm. Model fitness depends on their ability to explain experimental data, while the fitness of future force inputs depends on causing maximal functional discrepancy among current models. We validate our approach by inferring two known synthetic Latex networks, and one anatomical tendon network harvested from a cadaver's middle finger. We find that functionally similar but structurally diverse models can exist within a narrow range of the training set and cross-validation errors. For the Latex networks, models with low training set error [<4%] and resembling the known network have the smallest cross-validation errors [∼5%]. The low training set [<4%] and cross validation [<7.2%] errors for models for the cadaveric specimen demonstrate what, to our knowledge, is the first experimental inference of the functional structure of complex anatomical networks. This work expands current bioinformatics inference approaches by demonstrating that sparse, yet informative interrogation of biological specimens holds significant computational advantages in accurate and efficient inference over random testing, or assuming model topology and only inferring parameters values. These findings also hold clues to both our evolutionary history and the development of versatile machines.
NASA Astrophysics Data System (ADS)
Michael, P. E.; Wilcox, C.; Tuck, G. N.; Hobday, A. J.; Strutton, P. G.
2017-06-01
Climate change is projected to continue shifting the distribution of marine species, leading to changes in local assemblages and different interactions with human activities. With regard to fisheries, understanding the relationship between fishing fleets, target species catch per unit effort (CPUE), and the environment enhances our ability to anticipate fisher response and is an essential step towards proactive management. Here, we explore the potential impact of climate change in the southern Indian Ocean by modelling Japanese and Taiwanese pelagic longline fleet dynamics. We quantify the mean and variability of target species CPUE and the relative value and cost of fishing in different areas. Using linear mixed models, we identify fleet-specific effort allocation strategies most related to observed effort and predict the future distribution of effort and tuna catch under climate change for 2063-2068. The Japanese fleet's strategy targets high-value species and minimizes the variability in CPUE of the primary target species. Conversely, the Taiwanese strategy indicated flexible targeting of a broad range of species, fishing in areas of high and low variability in catch, and minimizing costs. The projected future mean and variability in CPUE across species suggest a slight increase in CPUE in currently high CPUE areas for most species. The corresponding effort projections suggest a slight increase in Japanese effort in the western and eastern study area, and Taiwanese effort increasing east of Madagascar. This approach provides a useful method for managers to explore the impacts of different fishing and fleet management strategies for the future.
Data Movement Dominates: Advanced Memory Technology to Address the Real Exascale Power Problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bergman, Keren
Energy is the fundamental barrier to Exascale supercomputing and is dominated by the cost of moving data from one point to another, not computation. Similarly, performance is dominated by data movement, not computation. The solution to this problem requires three critical technologies: 3D integration, optical chip-to-chip communication, and a new communication model. The central goal of the Sandia led "Data Movement Dominates" project aimed to develop memory systems and new architectures based on these technologies that have the potential to lower the cost of local memory accesses by orders of magnitude and provide substantially more bandwidth. Only through these transformationalmore » advances can future systems reach the goals of Exascale computing with a manageable power budgets. The Sandia led team included co-PIs from Columbia University, Lawrence Berkeley Lab, and the University of Maryland. The Columbia effort of Data Movement Dominates focused on developing a physically accurate simulation environment and experimental verification for optically-connected memory (OCM) systems that can enable continued performance scaling through high-bandwidth capacity, energy-efficient bit-rate transparency, and time-of-flight latency. With OCM, memory device parallelism and total capacity can scale to match future high-performance computing requirements without sacrificing data-movement efficiency. When we consider systems with integrated photonics, links to memory can be seamlessly integrated with the interconnection network-in a sense, memory becomes a primary aspect of the interconnection network. At the core of the Columbia effort, toward expanding our understanding of OCM enabled computing we have created an integrated modeling and simulation environment that uniquely integrates the physical behavior of the optical layer. The PhoenxSim suite of design and software tools developed under this effort has enabled the co-design of and performance evaluation photonics-enabled OCM architectures on Exascale computing systems.« less
Development of a Strontium Magneto-Optical Trap for Probing Casimir-Polder Potentials
NASA Astrophysics Data System (ADS)
Martin, Paul J.
In recent years, cold atoms have been the centerpiece of many remarkably sensitive measurements, and much effort has been made to devise miniaturized quantum sensors and quantum information processing devices. At small distances, however, mechanical effects of the quantum vacuum begin to significantly impact the behavior of the cold-atom systems. A better understanding of how surface composition and geometry affect Casimir and Casimir-Polder potentials would benefit future engineering of small-scale devices. Unfortunately, theoretical solutions are limited and the number of experimental techniques that can accurately detect such short-range forces is relatively small. We believe the exemplary properties of atomic strontium--which have enabled unprecedented frequency metrology in optical lattice clocks--make it an ideal candidate for probing slight spectroscopic perturbations caused by vacuum fluctuations. To that end, we have constructed a magneto-optical trap for strontium to enable future study of atom-surface potentials, and the apparatus and proposed detection scheme are discussed herein. Of special note is a passively stable external-cavity diode laser we developed that is both affordable and competitive with high-end commercial options.
Knipfer, Christian; Hadlock, Tessa
2016-01-01
Peripheral nerve injury is a common clinical entity, which may arise due to traumatic, tumorous, or even iatrogenic injury in craniomaxillofacial surgery. Despite advances in biomaterials and techniques over the past several decades, reconstruction of nerve gaps remains a challenge. Autografts are the gold standard for nerve reconstruction. Using autografts, there is donor site morbidity, subsequent sensory deficit, and potential for neuroma development and infection. Moreover, the need for a second surgical site and limited availability of donor nerves remain a challenge. Thus, increasing efforts have been directed to develop artificial nerve guidance conduits (ANCs) as new methods to replace autografts in the future. Various synthetic conduit materials have been tested in vitro and in vivo, and several first- and second-generation conduits are FDA approved and available for purchase, while third-generation conduits still remain in experimental stages. This paper reviews the current treatment options, summarizes the published literature, and assesses future prospects for the repair of peripheral nerve injury in craniomaxillofacial surgery with a particular focus on facial nerve regeneration. PMID:27556032
Biomarkers in systemic lupus erythematosus: challenges and prospects for the future
Kao, Amy H.; Manzi, Susan; Ahearn, Joseph M.
2013-01-01
The search for lupus biomarkers to diagnose, monitor, stratify, and predict individual response to therapy is currently more intense than ever before. This effort is essential for several reasons. First, epidemic overdiagnosis and underdiagnosis of lupus, even by certified rheumatologists, leads to errors in therapy with concomitant side effects which may be more serious than the disease itself. Second, identification of lupus flares remains as much an art as it is a science. Third, the capacity to stratify patients so as to predict those who will develop specific patterns of organ involvement is not currently possible but would potentially lead to preventive therapeutic strategies. Fourth, only one new drug for the treatment of lupus has been approved by the US Food and Drug Administration in over 50 years. A major obstacle in this pipeline is the dearth of biomarkers available to prove a patient has responded to an experimental therapeutic intervention. This review will summarize the challenges faced in the discovery and validation of lupus biomarkers, the most promising lupus biomarkers identified to date, and the promise of future directions. PMID:23904865
Present and future experiments using bright low-energy positron beams
NASA Astrophysics Data System (ADS)
Hugenschmidt, Christoph
2017-01-01
Bright slow positron beams enable not only experiments with drastically reduced measurement time and improved signal-to-noise ratio but also the realization of novel experimental techniques. In solid state physics and materials science positron beams are usually applied for the depth dependent analysis of vacancy-like defects and their chemical surrounding using positron lifetime and (coincident) Doppler broadening spectroscopy. For surface studies, annihilation induced Auger-electron spectroscopy allows the analysis of the elemental composition in the topmost atomic layer, and the atomic positions at the surface can be determined by positron diffraction with outstanding accuracy. In fundamental research low-energy positron beams are used for the production of e.g. cold positronium or positronium negative ions. All the aforementioned experiments benefit from the high intensity of present positron beam facilities. In this paper, we scrutinize the technical constraints limiting the achievable positron intensity and the available kinetic energy at the sample position. Current efforts and future developments towards the generation of high intensity spin-polarized slow positron beams paving the way for new positron experiments are discussed.
Enhancement of critical heat flux in nucleate boiling of nanofluids: a state-of-art review
2011-01-01
Nanofluids (suspensions of nanometer-sized particles in base fluids) have recently been shown to have nucleate boiling critical heat flux (CHF) far superior to that of the pure base fluid. Over the past decade, numerous experimental and analytical studies on the nucleate boiling CHF of nanofluids have been conducted. The purpose of this article is to provide an exhaustive review of these studies. The characteristics of CHF enhancement in nanofluids are systemically presented according to the effects of the primary boiling parameters. Research efforts to identify the effects of nanoparticles underlying irregular enhancement phenomena of CHF in nanofluids are then presented. Also, attempts to explain the physical mechanism based on available CHF theories are described. Finally, future research needs are identified. PMID:21711949
Disease-related stigma: comparing predictors of AIDS and cancer stigma.
Greene, Kathryn; Banerjee, Smita C
2006-01-01
This study explores the prevalence of AIDS and cancer stigma as influenced by attitude toward homosexuality, religiosity, authoritarianism, and androgyny. This study used a quasi-experimental survey design (N = 485) to examine attitude toward people with AIDS and cancer, and interaction with people with AIDS and cancer. Negative attitudes toward homosexuality, high religious intensity and ideology, high authoritarianism, and low expressive emerged as factors related to more negative attitudes toward people with AIDS and unwillingness to interact with people with AIDS. Attitudes toward people with cancer were generally not related to the variables. Findings explore how to campaign efforts to reduce existing negative attitudes toward AIDS and homosexuality, given that gay men with AIDS are especially stigmatized. Implications and directions for future research are discussed, especially for interventions.
Sympathoneural and Adrenomedullary Responses to Mental Stress
Carter, Jason R.; Goldstein, David S.
2017-01-01
This concept-based review provides historical perspectives and updates about sympathetic noradrenergic and sympathetic adrenergic responses to mental stress. The topic of this review has incited perennial debate, because of disagreements over definitions, controversial inferences, and limited availability of relevant measurement tools. The discussion begins appropriately with Cannon's "homeostasis" and his pioneering work in the area. This is followed by mental stress as a scientific idea and the relatively new notions of allostasis and allostatic load. Experimental models of mental stress in rodents and humans are discussed, with particular attention to ethical constraints in humans. Sections follow on sympathoneural to mental stress, reactivity of catecholamine systems, clinical pathophysiologic states, and the cardiovascular reactivity hypothesis. Future advancement of the field will require integrative approaches and coordinated efforts between physiologists and psychologists on this interdisciplinary topic. PMID:25589266
Artificial intelligence approaches for rational drug design and discovery.
Duch, Włodzisław; Swaminathan, Karthikeyan; Meller, Jarosław
2007-01-01
Pattern recognition, machine learning and artificial intelligence approaches play an increasingly important role in rational drug design, screening and identification of candidate molecules and studies on quantitative structure-activity relationships (QSAR). In this review, we present an overview of basic concepts and methodology in the fields of machine learning and artificial intelligence (AI). An emphasis is put on methods that enable an intuitive interpretation of the results and facilitate gaining an insight into the structure of the problem at hand. We also discuss representative applications of AI methods to docking, screening and QSAR studies. The growing trend to integrate computational and experimental efforts in that regard and some future developments are discussed. In addition, we comment on a broader role of machine learning and artificial intelligence approaches in biomedical research.
Aerodynamics of advanced axial-flow turbomachinery
NASA Technical Reports Server (NTRS)
Serovy, G. K.; Kavanagh, P.; Kiishi, T. H.
1980-01-01
A multi-task research program on aerodynamic problems in advanced axial-flow turbomachine configurations was carried out at Iowa State University. The elements of this program were intended to contribute directly to the improvement of compressor, fan, and turbine design methods. Experimental efforts in intra-passage flow pattern measurements, unsteady blade row interaction, and control of secondary flow are included, along with computational work on inviscid-viscous interaction blade passage flow techniques. This final report summarizes the results of this program and indicates directions which might be taken in following up these results in future work. In a separate task a study was made of existing turbomachinery research programs and facilities in universities located in the United States. Some potentially significant research topics are discussed which might be successfully attacked in the university atmosphere.
Considerations in miniaturizing simplified agro-ecosystems for advanced life support
NASA Technical Reports Server (NTRS)
Volk, T.
1996-01-01
Miniaturizing the Earth's biogeochemical cycles to support human life during future space missions is the goal of the NASA research and engineering program in advanced life support. Mission requirements to reduce mass, volume, and power have focused efforts on (1) a maximally simplified agro-ecosystem of humans, food crops, and microbes; and, (2) a design for optimized productivity of food crops with high light levels over long days, with hydroponics, with elevated carbon dioxide and other controlled environmental factors, as well as with genetic selection for desirable crop properties. Mathematical modeling contributes to the goals by establishing trade-offs, by analyzing the growth and development of experimental crops, and by pointing to the possibilities of directed phasic control using modified field crop models to increase the harvest index.
Optimal cooperative control synthesis of active displays
NASA Technical Reports Server (NTRS)
Garg, S.; Schmidt, D. K.
1985-01-01
A technique is developed that is intended to provide a systematic approach to synthesizing display augmentation for optimal manual control in complex, closed-loop tasks. A cooperative control synthesis technique, previously developed to design pilot-optimal control augmentation for the plant, is extended to incorporate the simultaneous design of performance enhancing displays. The technique utilizes an optimal control model of the man in the loop. It is applied to the design of a quickening control law for a display and a simple K/s(2) plant, and then to an F-15 type aircraft in a multi-channel task. Utilizing the closed loop modeling and analysis procedures, the results from the display design algorithm are evaluated and an analytical validation is performed. Experimental validation is recommended for future efforts.
Recording the LHCb data and software dependencies
NASA Astrophysics Data System (ADS)
Trisovic, Ana; Couturier, Ben; Gibson, Val; Jones, Chris
2017-10-01
In recent years awareness of the importance of preserving the experimental data and scientific software at CERN has been rising. To support this effort, we are presenting a novel approach to structure dependencies of the LHCb data and software to make it more accessible in the long-term future. In this paper, we detail the implementation of a graph database of these dependencies. We list the implications that can be deduced from the graph mining (such as a search for the legacy software), with emphasis on data preservation. Furthermore, we introduce a methodology of recreating the LHCb data, thus supporting reproducible research and data stewardship. Finally, we describe how this information is made available to the users on a web portal that promotes data and analysis preservation and good practise with analysis documentation.
In search of the autologous clip: a case for experimental standardization.
Krugman, Kimberly A; Martin, Kimberly E; Cosgriff, Ned; Slakey, Douglas P
2011-10-01
In an effort to enable faster and, at times, more challenging surgeries without compromising patient or physician safety, medical device manufacturers have created myriad solutions to vascular ligation through the development of novel tools. The speed of development, FDA approval, and dissemination of these devices into the hands of surgeons often outpaces the ability of investigators to critically evaluate comparative effectiveness of these devices. The Medline database was searched for energy-based vessel ligation devices. To remove any perception bias against non-Covidien instruments, critical review was applied only to the devices manufactured by our company. We report on the variability present in published results and offer vital metrics for future studies. Standardized testing and reporting for measures of safety and efficacy of these surgical instruments awaits definition from a consensus group.
Considerations in miniaturizing simplified agro-ecosystems for advanced life support.
Volk, T
1996-01-01
Miniaturizing the Earth's biogeochemical cycles to support human life during future space missions is the goal of the NASA research and engineering program in advanced life support. Mission requirements to reduce mass, volume, and power have focused efforts on (1) a maximally simplified agro-ecosystem of humans, food crops, and microbes; and, (2) a design for optimized productivity of food crops with high light levels over long days, with hydroponics, with elevated carbon dioxide and other controlled environmental factors, as well as with genetic selection for desirable crop properties. Mathematical modeling contributes to the goals by establishing trade-offs, by analyzing the growth and development of experimental crops, and by pointing to the possibilities of directed phasic control using modified field crop models to increase the harvest index.
Overview: Parity Violation and Fundamental Symmetries
NASA Astrophysics Data System (ADS)
Carlini, Roger
2017-09-01
The fields of nuclear and particle physics have undertaken extensive programs of research to search for evidence of new phenomena via the precision measurement of observables that are well predicted within the standard model of electroweak interaction. It is already known that the standard model is incomplete as it does not include gravity and dark matter/energy and therefore likely the low energy approximation of a more complex theory. This talk will be an overview of the motivation, experimental methods and status of some of these efforts (past and future) related to precision in-direct searches that are complementary to the direct searches underway at the Large Hadron Collider. This abstract is for the invited talk associated with the Mini-symposium titled ``Electro-weak Physics and Fundamental Symmetries'' organized by Julie Roche.
Solar Power for Future NASA Missions
NASA Technical Reports Server (NTRS)
Bailey, Sheila G.; Landis, Geoffrey A.
2014-01-01
An overview of NASA missions and technology development efforts are discussed. Future spacecraft will need higher power, higher voltage, and much lower cost solar arrays to enable a variety of missions. One application driving development of these future arrays is solar electric propulsion.
Enabling Science and Technology Research Teams: A Breadmaking Metaphor
ERIC Educational Resources Information Center
Pennington, Deana
2010-01-01
Anyone who has been involved with a cross-disciplinary team that combines scientists and information technology specialists knows just how tough it can be to move these efforts forward. Decades of experience point to the transformative potential of technology-enabled science efforts, and the success stories offer hope for future efforts. But for…
Wilson, R.R.; Oliver, J.M.; Twedt, D.J.; Uihlein, W.B.; Fredrickson, L.H.; King, S.L.; Kaminski, R.M.
2005-01-01
Planned restoration of bottomland hardwoods is important to adequately address negative consequences resulting from the severe loss and fragmentation of forested wetlands in the Mississippi Alluvial Valley. Reforestation efforts have been promoted through government initiatives of state and federal agencies (e.g. Wetland Reserve Program) and private conservation groups. To clarify discussions of forested wetland restoration, we offer definitions of reforestation and restoration, review historic reforestation practices, identify additional needs, and propose a conceptual framework to assist in future reforestation efforts. Future reforestation efforts should include: (1) comprehensive planning among participating agencies, (2) standardized documentation of methods, and (3) short-term and long-term monitoring protocols that permit refinement of methodologies. Implementation of these concepts will promote cooperative planning among participants and facilitate research to evaluate bottomland hardwood restoration efforts.
Quantifying Astronaut Tasks: Robotic Technology and Future Space Suit Design
NASA Technical Reports Server (NTRS)
Newman, Dava
2003-01-01
The primary aim of this research effort was to advance the current understanding of astronauts' capabilities and limitations in space-suited EVA by developing models of the constitutive and compatibility relations of a space suit, based on experimental data gained from human test subjects as well as a 12 degree-of-freedom human-sized robot, and utilizing these fundamental relations to estimate a human factors performance metric for space suited EVA work. The three specific objectives are to: 1) Compile a detailed database of torques required to bend the joints of a space suit, using realistic, multi- joint human motions. 2) Develop a mathematical model of the constitutive relations between space suit joint torques and joint angular positions, based on experimental data and compare other investigators' physics-based models to experimental data. 3) Estimate the work envelope of a space suited astronaut, using the constitutive and compatibility relations of the space suit. The body of work that makes up this report includes experimentation, empirical and physics-based modeling, and model applications. A detailed space suit joint torque-angle database was compiled with a novel experimental approach that used space-suited human test subjects to generate realistic, multi-joint motions and an instrumented robot to measure the torques required to accomplish these motions in a space suit. Based on the experimental data, a mathematical model is developed to predict joint torque from the joint angle history. Two physics-based models of pressurized fabric cylinder bending are compared to experimental data, yielding design insights. The mathematical model is applied to EVA operations in an inverse kinematic analysis coupled to the space suit model to calculate the volume in which space-suited astronauts can work with their hands, demonstrating that operational human factors metrics can be predicted from fundamental space suit information.
Javidpour, Pouya; Deutsch, Samuel; Mutalik, Vivek K.; ...
2016-03-14
Ladderanes are hydrocarbon chains with three or five linearly concatenated cyclobutane rings that are uniquely produced as membrane lipid components by anammox (anaerobic ammonia-oxidizing) bacteria. By virtue of their angle and torsional strain, ladderanes are unusually energetic compounds, and if produced biochemically by engineered microbes, could serve as renewable, high-energy-density jet fuel components. The biochemistry and genetics underlying the ladderane biosynthetic pathway are unknown, however, previous studies have identified a pool of 34 candidate genes from the anammox bacterium, Kuenenia stuttgartiensis, some or all of which may be involved with ladderane fatty acid biosynthesis. The goal of the present studymore » was to establish a systematic means of testing the candidate genes from K. stuttgartiensis for involvement in ladderane biosynthesis through heterologous expression in E. coli under anaerobic conditions. This study describes an efficient means of assembly of synthesized, codon-optimized candidate ladderane biosynthesis genes in synthetic operons that allows for changes to regulatory element sequences, as well as modular assembly of multiple operons for simultaneous heterologous expression in E. coli (or potentially other microbial hosts). We also describe in vivo functional tests of putative anammox homologs of the phytoene desaturase CrtI, which plays an important role in the hypothesized ladderane pathway, and a method for soluble purification of one of these enzymes. This study is, to our knowledge, the first experimental effort focusing on the role of specific anammox genes in the production of ladderanes, and lays the foundation for future efforts toward determination of the ladderane biosynthetic pathway. Our substantial, but far from comprehensive, efforts at elucidating the ladderane biosynthetic pathway were not successful. We invite the scientific community to take advantage of the considerable synthetic biology resources and experimental results developed in this study to elucidate the biosynthetic pathway that produces unique and intriguing ladderane lipids.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Javidpour, Pouya; Deutsch, Samuel; Mutalik, Vivek K.
Ladderanes are hydrocarbon chains with three or five linearly concatenated cyclobutane rings that are uniquely produced as membrane lipid components by anammox (anaerobic ammonia-oxidizing) bacteria. By virtue of their angle and torsional strain, ladderanes are unusually energetic compounds, and if produced biochemically by engineered microbes, could serve as renewable, high-energy-density jet fuel components. The biochemistry and genetics underlying the ladderane biosynthetic pathway are unknown, however, previous studies have identified a pool of 34 candidate genes from the anammox bacterium, Kuenenia stuttgartiensis, some or all of which may be involved with ladderane fatty acid biosynthesis. The goal of the present studymore » was to establish a systematic means of testing the candidate genes from K. stuttgartiensis for involvement in ladderane biosynthesis through heterologous expression in E. coli under anaerobic conditions. This study describes an efficient means of assembly of synthesized, codon-optimized candidate ladderane biosynthesis genes in synthetic operons that allows for changes to regulatory element sequences, as well as modular assembly of multiple operons for simultaneous heterologous expression in E. coli (or potentially other microbial hosts). We also describe in vivo functional tests of putative anammox homologs of the phytoene desaturase CrtI, which plays an important role in the hypothesized ladderane pathway, and a method for soluble purification of one of these enzymes. This study is, to our knowledge, the first experimental effort focusing on the role of specific anammox genes in the production of ladderanes, and lays the foundation for future efforts toward determination of the ladderane biosynthetic pathway. Our substantial, but far from comprehensive, efforts at elucidating the ladderane biosynthetic pathway were not successful. We invite the scientific community to take advantage of the considerable synthetic biology resources and experimental results developed in this study to elucidate the biosynthetic pathway that produces unique and intriguing ladderane lipids.« less
Javidpour, Pouya; Deutsch, Samuel; Mutalik, Vivek K.; Hillson, Nathan J.; Petzold, Christopher J.; Keasling, Jay D.; Beller, Harry R.
2016-01-01
Ladderanes are hydrocarbon chains with three or five linearly concatenated cyclobutane rings that are uniquely produced as membrane lipid components by anammox (anaerobic ammonia-oxidizing) bacteria. By virtue of their angle and torsional strain, ladderanes are unusually energetic compounds, and if produced biochemically by engineered microbes, could serve as renewable, high-energy-density jet fuel components. The biochemistry and genetics underlying the ladderane biosynthetic pathway are unknown, however, previous studies have identified a pool of 34 candidate genes from the anammox bacterium, Kuenenia stuttgartiensis, some or all of which may be involved with ladderane fatty acid biosynthesis. The goal of the present study was to establish a systematic means of testing the candidate genes from K. stuttgartiensis for involvement in ladderane biosynthesis through heterologous expression in E. coli under anaerobic conditions. This study describes an efficient means of assembly of synthesized, codon-optimized candidate ladderane biosynthesis genes in synthetic operons that allows for changes to regulatory element sequences, as well as modular assembly of multiple operons for simultaneous heterologous expression in E. coli (or potentially other microbial hosts). We also describe in vivo functional tests of putative anammox homologs of the phytoene desaturase CrtI, which plays an important role in the hypothesized ladderane pathway, and a method for soluble purification of one of these enzymes. This study is, to our knowledge, the first experimental effort focusing on the role of specific anammox genes in the production of ladderanes, and lays the foundation for future efforts toward determination of the ladderane biosynthetic pathway. Our substantial, but far from comprehensive, efforts at elucidating the ladderane biosynthetic pathway were not successful. We invite the scientific community to take advantage of the considerable synthetic biology resources and experimental results developed in this study to elucidate the biosynthetic pathway that produces unique and intriguing ladderane lipids. PMID:26975050
Bellili, A; Linguerri, R; Hochlaf, M; Puzzarini, C
2015-11-14
In an effort to provide an accurate structural and spectroscopic characterization of acetyl cyanide, its two enolic isomers and the corresponding cationic species, state-of-the-art computational methods, and approaches have been employed. The coupled-cluster theory including single and double excitations together with a perturbative treatment of triples has been used as starting point in composite schemes accounting for extrapolation to the complete basis-set limit as well as core-valence correlation effects to determine highly accurate molecular structures, fundamental vibrational frequencies, and rotational parameters. The available experimental data for acetyl cyanide allowed us to assess the reliability of our computations: structural, energetic, and spectroscopic properties have been obtained with an overall accuracy of about, or better than, 0.001 Å, 2 kcal/mol, 1-10 MHz, and 11 cm(-1) for bond distances, adiabatic ionization potentials, rotational constants, and fundamental vibrational frequencies, respectively. We are therefore confident that the highly accurate spectroscopic data provided herein can be useful for guiding future experimental investigations and/or astronomical observations.
The Atomic Mass Evaluation (AME2012): Status and Perspectives
NASA Astrophysics Data System (ADS)
Kondev, F. G.; Audi, G.; Wang, M.; Xu, X.; Wapstra, A. H.; MacCormick, M.; Pfeiffer, B.
2013-10-01
The atomic mass is a fundamental property of the nucleus that has wide applications in natural sciences and technology. The new evaluated mass table, AME2012, has been recently published as a collaborative effort between scientists from China, Europe and USA, under the leadership of G. Audi. It represents a significant update of the previous AME2003 evaluation by considering a large number of precise experimental results obtained at existing Penning Trap and Storage Ring facilities, thus expending the region of experimentally known masses towards exotic neutron- and proton-rich nuclei. Since the presence of isomers plays an important role in determining the masses of many nuclei, a complementary database, NUBASE2012, that contains the isomer-level properties for all nuclei was also developed. This presentation will briefly review recent achievements of the collaboration, present on-going activities, and reflect on ideas for future developments and challenges in the field of evaluation of atomic masses. The work at ANL was supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357.
Yang, Jian; Feng, Jinfu; Hu, Junhua; Liu, An
2017-01-01
The motion characteristics of trans-media vehicles during the water-entry process were explored in this study in an effort to obtain the optimal water-entry condition of the vehicle for developing a novel, single control strategy integrating underwater non-control and in-air control. A water-entry dynamics model is established by combining the water-entry motion characteristics of the vehicle in uncontrolled conditions at low speed with time-varying parameters (e.g. buoyancy, added mass). A water-entry experiment is designed to confirm the effectiveness of the established model. After that, by comparing the experimental results with the simulated results, the model is further modified to more accurately reflect water-entry motion. The change laws of the vehicle’s attitude and position during the water-entry process are also obtained by analyzing the simulation of the modified model under different velocity, angle, and angle of attack conditions. The results presented here have guiding significance for the future realization of reaching the stable underwater navigation state of the vehicle after water-entry process. PMID:28558012
EVOLUTION of the Pressure Wave Supercharger Concept
NASA Astrophysics Data System (ADS)
Costiuc, Iuliana; Chiru, Anghel
2017-10-01
Born more than a century ago, the concept of exploiting the pressure wave phenomenon has evolved with rather small steps, experiencing an accelerated progress over the past decades. This paper aims an overview on the researchers’ results over time regarding the pressure wave technology and its applications, pointing out on the internal combustion engine’s supercharging application. This review complements the past reports on the subject, presenting the evolution of the concept and technology, as well as the researcher’s efforts on solving the specific shortcomings of this pressure wave technology. Undoubtedly, the pressure wave rotors have been a research goal over the years. At first, most of the researches were experimental and the theoretical calculations required to improve the technology were too arduous. Recently, new computer software dedicated to accurate simulation of the processes governing the wave rotor operation, altogether with modern experimental measurement instruments and well-developed diagnostic techniques have opened wide possibilities to innovate the pressure wave supercharging technology. This paper also highlights the challenges that specialists still have to overcome and aspects to become future preoccupations and research directions.
NASA Technical Reports Server (NTRS)
Abbott, John M.; Anderson, Bernhard H.; Rice, Edward J.
1990-01-01
The internal fluid mechanics research program in inlets, ducts, and nozzles consists of a balanced effort between the development of computational tools (both parabolized Navier-Stokes and full Navier-Stokes) and the conduct of experimental research. The experiments are designed to better understand the fluid flow physics, to develop new or improved flow models, and to provide benchmark quality data sets for validation of the computational methods. The inlet, duct, and nozzle research program is described according to three major classifications of flow phenomena: (1) highly 3-D flow fields; (2) shock-boundary-layer interactions; and (3) shear layer control. Specific examples of current and future elements of the research program are described for each of these phenomenon. In particular, the highly 3-D flow field phenomenon is highlighted by describing the computational and experimental research program in transition ducts having a round-to-rectangular area variation. In the case of shock-boundary-layer interactions, the specific details of research for normal shock-boundary-layer interactions are described. For shear layer control, research in vortex generators and the use of aerodynamic excitation for enhancement of the jet mixing process are described.
Yang, Jian; Li, Yongli; Feng, Jinfu; Hu, Junhua; Liu, An
2017-01-01
The motion characteristics of trans-media vehicles during the water-entry process were explored in this study in an effort to obtain the optimal water-entry condition of the vehicle for developing a novel, single control strategy integrating underwater non-control and in-air control. A water-entry dynamics model is established by combining the water-entry motion characteristics of the vehicle in uncontrolled conditions at low speed with time-varying parameters (e.g. buoyancy, added mass). A water-entry experiment is designed to confirm the effectiveness of the established model. After that, by comparing the experimental results with the simulated results, the model is further modified to more accurately reflect water-entry motion. The change laws of the vehicle's attitude and position during the water-entry process are also obtained by analyzing the simulation of the modified model under different velocity, angle, and angle of attack conditions. The results presented here have guiding significance for the future realization of reaching the stable underwater navigation state of the vehicle after water-entry process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amadio, G.; et al.
An intensive R&D and programming effort is required to accomplish new challenges posed by future experimental high-energy particle physics (HEP) programs. The GeantV project aims to narrow the gap between the performance of the existing HEP detector simulation software and the ideal performance achievable, exploiting latest advances in computing technology. The project has developed a particle detector simulation prototype capable of transporting in parallel particles in complex geometries exploiting instruction level microparallelism (SIMD and SIMT), task-level parallelism (multithreading) and high-level parallelism (MPI), leveraging both the multi-core and the many-core opportunities. We present preliminary verification results concerning the electromagnetic (EM) physicsmore » models developed for parallel computing architectures within the GeantV project. In order to exploit the potential of vectorization and accelerators and to make the physics model effectively parallelizable, advanced sampling techniques have been implemented and tested. In this paper we introduce a set of automated statistical tests in order to verify the vectorized models by checking their consistency with the corresponding Geant4 models and to validate them against experimental data.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liao, J.; Venugopalan, R.; Berges, J.
The RIKEN BNL Research Center (RBRC) was established in April 1997 at Brookhaven National Laboratory*. It is funded by the ''Rikagaku Kenkyusho'' (RIKEN, The Institute of Physical and Chemical Research) of Japan and the U. S. Department of Energy’s Office of Science. The RBRC is dedicated to the study of strong interactions, including spin physics, lattice QCD, and RHIC physics through the nurturing of a new generation of young physicists. The RBRC has theory, lattice gauge computing and experimental components. It is presently exploring the possibility of an astrophysics component being added to the program. The purpose of this Workshopmore » is to critically review the recent progress on the theory and phenomenology of early time dynamics in relativistic heavy ion collisions from RHIC to LHC energies, to examine the various approaches on thermalization and existing issues, and to formulate new research efforts for the future. Topics slated to be covered include Experimental evidence for equilibration/isotropization, comparison of various approaches, dependence on the initial conditions and couplings, and turbulent cascades and Bose-Einstein condensation.« less
Properties of the Only Thorium Fullerene, Th@C84, Uncovered.
Kaminský, Jakub; Vícha, Jan; Bouř, Petr; Straka, Michal
2017-04-27
Only a single thorium fullerene, Th@C 84 , has been reported to date (Akiyama, K.; et al. J. Nucl. Radiochem. Sci. 2002, 3, 151-154). Although the system was characterized by UV-vis and XANES (X-ray absorption near edge structure) spectra, its structure and properties remain unknown. In this work we used the density functional calculations to identify molecular and electronic structure of the Th@C 84 . Series of molecular structures satisfying the ThC 84 stoichiometric formula were studied comprising 24 IPR and 110 non-IPR Th@C 84 isomers as well as 9 ThC 2 @C 82 IPR isomers. The lowest energy structure is Th@C 84 -C s (10) with the singlet ground state. Its predicted electronic absorption spectra are in agreement with the experimentally observed ones. The bonding between the cage and Th was characterized as polar covalent with Th in formal oxidation state IV. The NMR chemical shifts of Th@C 84 -C s (10) were predicted to guide the future experimental efforts in identification of this compound.
MicroRNA-mediated regulatory circuits: outlook and perspectives
NASA Astrophysics Data System (ADS)
Cora', Davide; Re, Angela; Caselle, Michele; Bussolino, Federico
2017-08-01
MicroRNAs have been found to be necessary for regulating genes implicated in almost all signaling pathways, and consequently their dysfunction influences many diseases, including cancer. Understanding of the complexity of the microRNA-mediated regulatory network has grown in terms of size, connectivity and dynamics with the development of computational and, more recently, experimental high-throughput approaches for microRNA target identification. Newly developed studies on recurrent microRNA-mediated circuits in regulatory networks, also known as network motifs, have substantially contributed to addressing this complexity, and therefore to helping understand the ways by which microRNAs achieve their regulatory role. This review provides a summarizing view of the state-of-the-art, and perspectives of research efforts on microRNA-mediated regulatory motifs. In this review, we discuss the topological properties characterizing different types of circuits, and the regulatory features theoretically enabled by such properties, with a special emphasis on examples of circuits typifying their biological significance in experimentally validated contexts. Finally, we will consider possible future developments, in particular regarding microRNA-mediated circuits involving long non-coding RNAs and epigenetic regulators.
English semantic word-pair norms and a searchable Web portal for experimental stimulus creation.
Buchanan, Erin M; Holmes, Jessica L; Teasley, Marilee L; Hutchison, Keith A
2013-09-01
As researchers explore the complexity of memory and language hierarchies, the need to expand normed stimulus databases is growing. Therefore, we present 1,808 words, paired with their features and concept-concept information, that were collected using previously established norming methods (McRae, Cree, Seidenberg, & McNorgan Behavior Research Methods 37:547-559, 2005). This database supplements existing stimuli and complements the Semantic Priming Project (Hutchison, Balota, Cortese, Neely, Niemeyer, Bengson, & Cohen-Shikora 2010). The data set includes many types of words (including nouns, verbs, adjectives, etc.), expanding on previous collections of nouns and verbs (Vinson & Vigliocco Journal of Neurolinguistics 15:317-351, 2008). We describe the relation between our and other semantic norms, as well as giving a short review of word-pair norms. The stimuli are provided in conjunction with a searchable Web portal that allows researchers to create a set of experimental stimuli without prior programming knowledge. When researchers use this new database in tandem with previous norming efforts, precise stimuli sets can be created for future research endeavors.
Validation and Continued Development of Methods for Spheromak Simulation
NASA Astrophysics Data System (ADS)
Benedett, Thomas
2016-10-01
The HIT-SI experiment has demonstrated stable sustainment of spheromaks. Determining how the underlying physics extrapolate to larger, higher-temperature regimes is of prime importance in determining the viability of the inductively-driven spheromak. It is thus prudent to develop and validate a computational model that can be used to study current results and study the effect of possible design choices on plasma behavior. A zero-beta Hall-MHD model has shown good agreement with experimental data at 14.5 kHz injector operation. Experimental observations at higher frequency, where the best performance is achieved, indicate pressure effects are important and likely required to attain quantitative agreement with simulations. Efforts to extend the existing validation to high frequency (36-68 kHz) using an extended MHD model implemented in the PSI-TET arbitrary-geometry 3D MHD code will be presented. An implementation of anisotropic viscosity, a feature observed to improve agreement between NIMROD simulations and experiment, will also be presented, along with investigations of flux conserver features and their impact on density control for future SIHI experiments. Work supported by DoE.
Defense AT&L Magazine (Volume 39, Number 5, September-October 2010)
2010-10-01
coordinate and accelerate our near-term efforts. We have been focused on such things as widening the delivery pipe for MRAPs [mine resistant ambush pro...parked in the high desert heat . Seven years later, the scene is even more impressive, as the number of vehicles—in various states of readiness—has grown...activation efforts for future weapon systems. Going organic is the way of the future for farmers and mem - bers of the defense acquisition workforce
The State and Future of the Primary Care Behavioral Health Model of Service Delivery Workforce.
Serrano, Neftali; Cordes, Colleen; Cubic, Barbara; Daub, Suzanne
2018-06-01
The growth of the Primary Care Behavioral Health model (PCBH) nationally has highlighted and created a workforce development challenge given that most mental health professionals are not trained for primary care specialization. This work provides a review of the current efforts to retrain mental health professionals to fulfill roles as Behavioral Health Consultants (BHCs) including certificate programs, technical assistance programs, literature and on-the-job training, as well as detail the future needs of the workforce if the model is to sustainably proliferate. Eight recommendations are offered including: (1) the development of an interprofessional certification body for PCBH training criteria, (2) integration of PCBH model specific curricula in graduate studies, (3) integration of program development skill building in curricula, (4) efforts to develop faculty for PCBH model awareness, (5) intentional efforts to draw students to graduate programs for PCBH model training, (6) a national employment clearinghouse, (7) efforts to coalesce current knowledge around the provision of technical assistance to sites, and (8) workforce specific research efforts.
Harding, A.M.A.; van Pelt, Thomas I.; Piatt, John F.; Kitaysky, A.S.
2002-01-01
Using a supplemental feeding experiment, we investigated the ability of adult Horned Puffins to decrease provisioning effort in response to reduced nutritional requirements of chicks. We found no difference between experimental and control groups in parental provisioning before supplementary feeding was initiated. After receiving supplemental food for seven days, experimental chicks grew faster, gained more mass and received 87% less food from their parents than did control chicks. These results demonstrate that Horned Puffin parents can decrease food provisioning in response to a decrease in their chick nutritional requirements. ?? The Cooper Ornithological Society 2002.
Rocket Engine Turbine Blade Surface Pressure Distributions Experiment and Computations
NASA Technical Reports Server (NTRS)
Hudson, Susan T.; Zoladz, Thomas F.; Dorney, Daniel J.; Turner, James (Technical Monitor)
2002-01-01
Understanding the unsteady aspects of turbine rotor flow fields is critical to successful future turbine designs. A technology program was conducted at NASA's Marshall Space Flight Center to increase the understanding of unsteady environments for rocket engine turbines. The experimental program involved instrumenting turbine rotor blades with miniature surface mounted high frequency response pressure transducers. The turbine model was then tested to measure the unsteady pressures on the rotor blades. The data obtained from the experimental program is unique in two respects. First, much more unsteady data was obtained (several minutes per set point) than has been possible in the past. Also, an extensive steady performance database existed for the turbine model. This allowed an evaluation of the effect of the on-blade instrumentation on the turbine's performance. A three-dimensional unsteady Navier-Stokes analysis was also used to blindly predict the unsteady flow field in the turbine at the design operating conditions and at +15 degrees relative incidence to the first-stage rotor. The predicted time-averaged and unsteady pressure distributions show good agreement with the experimental data. This unique data set, the lessons learned for acquiring this type of data, and the improvements made to the data analysis and prediction tools are contributing significantly to current Space Launch Initiative turbine airflow test and blade surface pressure prediction efforts.
Clancy, Lisa M; Cooper, Amy L; Griffith, Gareth W; Santer, Roger D
2017-07-18
Same-sex sexual behaviour occurs across diverse animal taxa, but adaptive explanations can be difficult to determine. Here we investigate male-male mounting (MMM) behaviour in female-deprived desert locust males infected with the entomopathogenic fungus Metarhizium acridum. Over a four-week period, infected locusts performed more MMM behaviours than healthy controls. Among infected locusts, the probability of MMM, and the duration of time spent MMM, significantly increased with the mounting locust's proximity to death. In experimental trials, infected locusts were also significantly more likely than controls to attempt to mount healthy males. Therefore, we demonstrate that MMM is more frequent among infected than healthy male locusts, and propose that this may be explained by terminal reproductive effort and a lowered mate acceptance threshold in infected males. However, during experimental trials mounting attempts were more likely to be successful if the mounted locusts were experimentally manipulated to have a reduced capacity to escape. Thus, reduced escape capability resulting from infection may also contribute to the higher frequency of MMM among infected male locusts. Our data demonstrate that pathogen infection can affect same-sex sexual behaviour, and suggest that the impact of such behaviours on host and pathogen fitness will be a novel focus for future research.
MODELING THE ENDOCRINE CONTROL OF VITELLOGENIN PRODUCTION IN FEMALE RAINBOW TROUT
Sundling, Kaitlin; Craciun, Gheorghe; Schultz, Irvin; Hook, Sharon; Nagler, James; Cavileer, Tim; Verducci, Joseph; Liu, Yushi; Kim, Jonghan; Hayton, William
2015-01-01
The rainbow trout endocrine system is sensitive to changes in annual day length, which is likely the principal environmental cue controlling its reproductive cycle. This study focuses on the endocrine regulation of vitellogenin (Vg) protein synthesis, which is the major egg yolk precursor in this fish species. We present a model of Vg production in female rainbow trout which incorporates a biological pathway beginning with sex steroid estradiol-17β levels in the plasma and concluding with Vg secretion by the liver and sequestration in the oocytes. Numerical simulation results based on this model are compared with experimental data for estrogen receptor mRNA, Vg mRNA, and Vg in the plasma from female rainbow trout over a normal annual reproductive cycle. We also analyze the response of the model to parameter changes. The model is subsequently tested against experimental data from female trout under a compressed photoperiod regime. Comparison of numerical and experimental results suggests the possibility of a time-dependent change in oocyte Vg uptake rate. This model is part of a larger effort that is developing a mathematical description of the endocrine control of reproduction in female rainbow trout. We anticipate that these mathematical and computational models will play an important role in future regulatory toxicity assessments and in the prediction of ecological risk. PMID:24506554
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pivi, M.T.F.; Collet, G.; King, F.
Beam instability caused by the electron cloud has been observed in positron and proton storage rings and it is expected to be a limiting factor in the performance of the positron Damping Ring (DR) of future Linear Colliders (LC) such as ILC and CLIC. To test a series of promising possible electron cloud mitigation techniques as surface coatings and grooves, in the Positron Low Energy Ring (LER) of the PEP-II accelerator, we have installed several test vacuum chambers including (i) a special chamber to monitor the variation of the secondary electron yield of technical surface materials and coatings under themore » effect of ion, electron and photon conditioning in situ in the beam line; (ii) chambers with grooves in a straight magnetic-free section; and (iii) coated chambers in a dedicated newly installed 4-magnet chicane to study mitigations in a magnetic field region. In this paper, we describe the ongoing R&D effort to mitigate the electron cloud effect for the LC damping ring, focusing on the first experimental area and on results of the reduction of the secondary electron yield due to in situ conditioning.« less
Jaskolla, Thorsten W; Karas, Michael
2011-06-01
This work experimentally verifies and proves the two long since postulated matrix-assisted laser desorption/ionization (MALDI) analyte protonation pathways known as the Lucky Survivor and the gas phase protonation model. Experimental differentiation between the predicted mechanisms becomes possible by the use of deuterated matrix esters as MALDI matrices, which are stable under typical sample preparation conditions and generate deuteronated reagent ions, including the deuterated and deuteronated free matrix acid, only upon laser irradiation in the MALDI process. While the generation of deuteronated analyte ions proves the gas phase protonation model, the detection of protonated analytes by application of deuterated matrix compounds without acidic hydrogens proves the survival of analytes precharged from solution in accordance with the predictions from the Lucky Survivor model. The observed ratio of the two analyte ionization processes depends on the applied experimental parameters as well as the nature of analyte and matrix. Increasing laser fluences and lower matrix proton affinities favor gas phase protonation, whereas more quantitative analyte protonation in solution and intramolecular ion stabilization leads to more Lucky Survivors. The presented results allow for a deeper understanding of the fundamental processes causing analyte ionization in MALDI and may alleviate future efforts for increasing the analyte ion yield.
The visualization and availability of experimental research data at Elsevier
NASA Astrophysics Data System (ADS)
Keall, Bethan
2014-05-01
In the digital age, the visualization and availability of experimental research data is an increasingly prominent aspect of the research process and of the scientific output that researchers generate. We expect that the importance of data will continue to grow, driven by technological advancements, requirements from funding bodies to make research data available, and a developing research data infrastructure that is supported by data repositories, science publishers, and other stakeholders. Elsevier is actively contributing to these efforts, for example by setting up bidirectional links between online articles on ScienceDirect and relevant data sets on trusted data repositories. A key aspect of Elsevier's "Article of the Future" program, these links enrich the online article and make it easier for researchers to find relevant data and articles and help place data in the right context for re-use. Recently, we have set up such links with some of the leading data repositories in Earth Sciences, including the British Geological Survey, Integrated Earth Data Applications, the UK Natural Environment Research Council, and the Oak Ridge National Laboratory DAAC. Building on these links, Elsevier has also developed a number of data integration and visualization tools, such as an interactive map viewer that displays the locations of relevant data from PANGAEA next to articles on ScienceDirect. In this presentation we will give an overview of these and other capabilities of the Article of the Future, focusing on how they help advance communication of research in the digital age.
NASA Astrophysics Data System (ADS)
Baltz, V.; Manchon, A.; Tsoi, M.; Moriyama, T.; Ono, T.; Tserkovnyak, Y.
2018-01-01
Antiferromagnetic materials could represent the future of spintronic applications thanks to the numerous interesting features they combine: they are robust against perturbation due to magnetic fields, produce no stray fields, display ultrafast dynamics, and are capable of generating large magnetotransport effects. Intense research efforts over the past decade have been invested in unraveling spin transport properties in antiferromagnetic materials. Whether spin transport can be used to drive the antiferromagnetic order and how subsequent variations can be detected are some of the thrilling challenges currently being addressed. Antiferromagnetic spintronics started out with studies on spin transfer and has undergone a definite revival in the last few years with the publication of pioneering articles on the use of spin-orbit interactions in antiferromagnets. This paradigm shift offers possibilities for radically new concepts for spin manipulation in electronics. Central to these endeavors are the need for predictive models, relevant disruptive materials, and new experimental designs. This paper reviews the most prominent spintronic effects described based on theoretical and experimental analysis of antiferromagnetic materials. It also details some of the remaining bottlenecks and suggests possible avenues for future research. This review covers both spin-transfer-related effects, such as spin-transfer torque, spin penetration length, domain-wall motion, and "magnetization" dynamics, and spin-orbit related phenomena, such as (tunnel) anisotropic magnetoresistance, spin Hall, and inverse spin galvanic effects. Effects related to spin caloritronics, such as the spin Seebeck effect, are linked to the transport of magnons in antiferromagnets. The propagation of spin waves and spin superfluids in antiferromagnets is also covered.
NASA Astrophysics Data System (ADS)
Chaleff, Ethan Solomon
Molten salts, such as the fluoride salt eutectic LiF-NaF-KF (FLiNaK) or the transition metal fluoride salt KF-ZrF4, have been proposed as coolants for numerous advanced reactor concepts. These reactors are designed to operate at high temperatures where radiative heat transfer may play a significant role. If this is the case, the radiative heat transfer properties of the salt coolants are required to be known for heat transfer calculations to be performed accurately. Chapter 1 describes the existing literature and experimental efforts pertaining to radiative heat transfer in molten salts. The physics governing photon absorption by halide salts is discussed first, followed by a more specific description of experimental results pertaining to salts of interest. The phonon absorption edge in LiF-based salts such as FLiNaK is estimated and the technique described for potential use in other salts. A description is given of various spectral measurement techniques which might plausibly be employed in the present effort, as well as an argument for the use of integral techniques. Chapter 2 discusses the mathematical treatments required to approximate and solve for the radiative flux in participating materials. The differential approximation and the exact solutions to the radiative flux are examined, and methods are given to solve radiative and energy equations simultaneously. A coupled solution is used to examine radiative heat transfer to molten salt coolants. A map is generated of pipe diameters, wall temperatures, and average absorption coefficients where radiative heat transfer will increase expected heat transfer by more than 10% compared to convective methods alone. Chapter 3 presents the design and analysis of the Integral Radiative Absorption Chamber (IRAC). The IRAC employs an integral technique for the measurement of the entire electromagnetic spectrum, negating some of the challenges associated with the methods discussed in Chapter 1 at the loss of spectral information. The IRAC design is validated by modeling the experiment in Fluent which shows that the IRAC should be capable of measuring absorption coefficients within 10%. Chapter 4 contains a parallel effort to experimental techniques, whereby information on absorption in salts is pursued using the Density Functional Theory code VASP. Photon-electron interactions are studied in pure salts such as LiF and are shown to be broadly transparent. Transition metal Fluoride salts such as KF-ZrF4 are shown to be broadly opaque. The addition of small amounts of transition metal impurities is studied by insertion of Chromium into the salt mixtures, which causes otherwise transparent salts to exhibit absorption coefficients significant to heat transfer. The spectral absorption coefficient for FLiNaK with Chromium is presented as is the average absorption coefficient as a function of impurity concentration. Chapter 5 discusses experimental efforts undertaken at The Ohio State University. Challenges with the constructed experimental apparatus are discussed and suggestions for future improvement on the technique are included. Finally, Chapter 6 contains broad conclusions pertaining to radiative transfer in advanced reactors.
Overview of NASA/OAST efforts related to manufacturing technology
NASA Technical Reports Server (NTRS)
Saunders, N. T.
1976-01-01
An overview of some of NASA's current efforts related to manufacturing technology and some possible directions for the future are presented. The topics discussed are: computer-aided design, composite structures, and turbine engine components.
Gossip, Kate; Gouda, Hebe; Lee, Yong Yi; Firth, Sonja; Bermejo, Raoul; Zeck, Willibald; Jimenez Soto, Eliana
2017-06-29
Local health departments are often at the forefront of a disaster response, attending to the immediate trauma inflicted by the disaster and also the long term health consequences. As the frequency and severity of disasters are projected to rise, monitoring and evaluation (M&E) efforts are critical to help local health departments consolidate past experiences and improve future response efforts. Local health departments often conduct M&E work post disaster, however, many of these efforts fail to improve response procedures. We undertook a rapid realist review (RRR) to examine why M&E efforts undertaken by local health departments do not always result in improved disaster response efforts. We aimed to complement existing frameworks by focusing on the most basic and pragmatic steps of a M&E cycle targeted towards continuous system improvements. For these purposes, we developed a theoretical framework that draws on the quality improvement literature to 'frame' the steps in the M&E cycle. This framework encompassed a M&E cycle involving three stages (i.e., document and assess, disseminate and implement) that must be sequentially completed to learn from past experiences and improve future disaster response efforts. We used this framework to guide our examination of the literature and to identify any context-mechanism-outcome (CMO) configurations which describe how M&E may be constrained or enabled at each stage of the M&E cycle. This RRR found a number of explanatory CMO configurations that provide valuable insights into some of the considerations that should be made when using M&E to improve future disaster response efforts. Firstly, to support the accurate documentation and assessment of a disaster response, local health departments should consider how they can: establish a culture of learning within health departments; use embedded training methods; or facilitate external partnerships. Secondly, to enhance the widespread dissemination of lessons learned and facilitate inter-agency learning, evaluation reports should use standardised formats and terminology. Lastly, to increase commitment to improvement processes, local health department leaders should possess positive leadership attributes and encourage shared decision making. This study is among the first to conduct a synthesis of the CMO configurations which facilitate or hinder M&E efforts aimed at improving future disaster responses. It makes a significant contribution to the disaster literature and provides an evidence base that can be used to provide pragmatic guidance for improving M&E efforts of local health departments. PROSPERO 2015: CRD42015023526 .
Instructional Efficiency of Changing Cognitive Load in an Out-of-School Laboratory
NASA Astrophysics Data System (ADS)
Scharfenberg, Franz-Josef; Bogner, Franz X.
2010-04-01
Our research objective focused on monitoring students' mental effort and cognitive achievement to unveil potential effects of an instructional change in an out-of-school laboratory offering gene technology modules. Altogether, 231 students (12th graders) attended our day-long hands-on module. Within a quasi-experimental design, a treatment group followed the newly developed two-step approach derived from cognitive load theory while a control group applied experimentation in a conventional one-step mode. The difference consisted of additional focused discussions combined with noting students' ideas (Step 1) prior to starting any experimental procedure (Step 2). We monitored mental effort (nine times during the teaching unit) and cognitive achievement (in a pre-post-design with follow-up test). The treatment demonstrated a change in instructional efficiency (by combining mental effort and cognitive achievement data), especially for intrinsically high-loaded students. Conclusions for optimizing individual cognitive load in science teaching were drawn.
Ice Crystal Icing Research at NASA
NASA Technical Reports Server (NTRS)
Flegel, Ashlie B.
2017-01-01
Ice crystals found at high altitude near convective clouds are known to cause jet engine power-loss events. These events occur due to ice crystals entering a propulsion system's core flowpath and accreting ice resulting in events such as uncommanded loss of thrust (rollback), engine stall, surge, and damage due to ice shedding. As part of a community with a growing need to understand the underlying physics of ice crystal icing, NASA has been performing experimental efforts aimed at providing datasets that can be used to generate models to predict the ice accretion inside current and future engine designs. Fundamental icing physics studies on particle impacts, accretion on a single airfoil, and ice accretions observed during a rollback event inside a full-scale engine in the Propulsion Systems Laboratory are summarized. Low fidelity code development using the results from the engine tests which identify key parameters for ice accretion risk and the development of high fidelity codes are described. These activities have been conducted internal to NASA and through collaboration efforts with industry, academia, and other government agencies. The details of the research activities and progress made to date in addressing ice crystal icing research challenges are discussed.
Ice Crystal Icing Research at NASA
NASA Technical Reports Server (NTRS)
Flegel, Ashlie B.
2017-01-01
Ice crystals found at high altitude near convective clouds are known to cause jet engine power-loss events. These events occur due to ice crystals entering a propulsion systems core flowpath and accreting ice resulting in events such as uncommanded loss of thrust (rollback), engine stall, surge, and damage due to ice shedding. As part of a community with a growing need to understand the underlying physics of ice crystal icing, NASA has been performing experimental efforts aimed at providing datasets that can be used to generate models to predict the ice accretion inside current and future engine designs. Fundamental icing physics studies on particle impacts, accretion on a single airfoil, and ice accretions observed during a rollback event inside a full-scale engine in the Propulsion Systems Laboratory are summarized. Low fidelity code development using the results from the engine tests which identify key parameters for ice accretion risk and the development of high fidelity codes are described. These activities have been conducted internal to NASA and through collaboration efforts with industry, academia, and other government agencies. The details of the research activities and progress made to date in addressing ice crystal icing research challenges are discussed.
Bruni, Anthony; Gala-Lopez, Boris; Pepper, Andrew R; Abualhassan, Nasser S; Shapiro, AM James
2014-01-01
Islet transplantation is a well-established therapeutic treatment for a subset of patients with complicated type I diabetes mellitus. Prior to the Edmonton Protocol, only 9% of the 267 islet transplant recipients since 1999 were insulin independent for >1 year. In 2000, the Edmonton group reported the achievement of insulin independence in seven consecutive patients, which in a collaborative team effort propagated expansion of clinical islet transplantation centers worldwide in an effort to ameliorate the consequences of this disease. To date, clinical islet transplantation has established improved success with insulin independence rates up to 5 years post-transplant with minimal complications. In spite of marked clinical success, donor availability and selection, engraftment, and side effects of immunosuppression remain as existing obstacles to be addressed to further improve this therapy. Clinical trials to improve engraftment, the availability of insulin-producing cell sources, as well as alternative transplant sites are currently under investigation to expand treatment. With ongoing experimental and clinical studies, islet transplantation continues to be an exciting and attractive therapy to treat type I diabetes mellitus with the prospect of shifting from a treatment for some to a cure for all. PMID:25018643
Propulsion Integrated Vehicle Health Management Technology Experiment (PITEX) Conducted
NASA Technical Reports Server (NTRS)
Maul, William A.; Chicatelli, Amy K.; Fulton, Christopher E.
2004-01-01
The Propulsion Integrated Vehicle Health Management (IVHM) Technology Experiment (PITEX) is a continuing NASA effort being conducted cooperatively by the NASA Glenn Research Center, the NASA Ames Research Center, and the NASA Kennedy Space Center. It was a key element of a Space Launch Initiative risk-reduction task performed by the Northrop Grumman Corporation in El Segundo, California. PITEX's main objectives are the continued maturation of diagnostic technologies that are relevant to second generation reusable launch vehicle (RLV) subsystems and the assessment of the real-time performance of the PITEX diagnostic solution. The PITEX effort has considerable legacy in the NASA IVHM Technology Experiment for X-vehicles (NITEX) that was selected to fly on the X-34 subscale RLV that was being developed by Orbital Sciences Corporation. NITEX, funded through the Future-X Program Office, was to advance the technology-readiness level of selected IVHM technologies within a flight environment and to begin the transition of these technologies from experimental status into RLV baseline designs. The experiment was to perform realtime fault detection and isolation and suggest potential recovery actions for the X-34 main propulsion system (MPS) during all mission phases by using a combination of system-level analysis and detailed diagnostic algorithms.
On the Scaling of Small, Heat Simulated Jet Noise Measurements to Moderate Size Exhaust Jets
NASA Technical Reports Server (NTRS)
McLaughlin, Dennis K.; Bridges, James; Kuo, Ching-Wen
2010-01-01
Modern military aircraft jet engines are designed with variable geometry nozzles to provide optimum thrust in different operating conditions, depending on the flight envelope. However, the acoustic measurements for such nozzles are scarce, due to the cost involved in making full scale measurements and the lack of details about the exact geometry of these nozzles. Thus the present effort at The Pennsylvania State University and the NASA Glenn Research Center- in partnership with GE Aviation is aiming to study and characterize the acoustic field produced by supersonic jets issuing from converging-diverging military style nozzles. An equally important objective is to validate methodology for using data obtained from small and moderate scale experiments to reliably predict the most important components of full scale engine noise. The experimental results presented show reasonable agreement between small scale and moderate scale jet acoustic data, as well as between heated jets and heat-simulated ones. Unresolved issues however are identified that are currently receiving our attention, in particular the effect of the small bypass ratio airflow. Future activities will identify and test promising noise reduction techniques in an effort to predict how well such concepts will work with full scale engines in flight conditions.
Becker, Matthew H; Harris, Reid N; Minbiole, Kevin P C; Schwantes, Christian R; Rollins-Smith, Louise A; Reinert, Laura K; Brucker, Robert M; Domangue, Rickie J; Gratwicke, Brian
2011-12-01
Populations of native Panamanian golden frogs (Atelopus zeteki) have collapsed due to a recent chytridiomycosis epidemic. Reintroduction efforts from captive assurance colonies are unlikely to be successful without the development of methods to control chytridiomycosis in the wild. In an effort to develop a protective treatment regimen, we treated golden frogs with Janthinobacterium lividum, a skin bacterium that has been used to experimentally prevent chytridiomycosis in North American amphibians. Although J. lividum appeared to colonize A. zeteki skin temporarily, it did not prevent or delay mortality in A. zeteki exposed to Batrachochytrium dendrobatidis, the causative agent of chytridiomycosis. After introduction of J. lividum, average bacterial cell counts reached a peak of 1.7 × 10(6) cells per frog ~2 weeks after treatment but declined steadily after that. When J. lividum numbers declined to ~2.8 × 10(5) cells per frog, B. dendrobatidis infection intensity increased to greater than 13,000 zoospore equivalents per frog. At this point, frogs began to die of chytridiomycosis. Future research will concentrate on isolating and testing antifungal bacterial species from Panama that may be more compatible with Atelopus skin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faulconer, D.W
2004-03-15
Certain devices aimed at magnetic confinement of thermonuclear plasma rely on the steady flow of an electric current in the plasma. In view of the dominant place it occupies in both the world magnetic-confinement fusion effort and the author's own activity, the tokamak toroidal configuration is selected as prototype for discussing the question of how such a current can be maintained. Tokamaks require a stationary toroidal plasma current, this being traditionally provided by a pulsed magnetic induction which drives the plasma ring as the secondary of a transformer. Since this mechanism is essentially transient, and steady-state fusion reactor operation hasmore » manifold advantages, significant effort is now devoted to developing alternate steady-state means of generating toroidal current. These methods are classed under the global heading of 'noninductive current drive' or simply 'current drive', generally, though not exclusively, employing the injection of waves and/or toroidally directed particle beams. In what follows we highlight the physical mechanisms underlying surprisingly various approaches to driving current in a tokamak, downplaying a number of practical and technical issues. When a significant data base exists for a given method, its experimental current drive efficiency and future prospects are detailed.« less
An Efficient Method for Verifying Gyrokinetic Microstability Codes
NASA Astrophysics Data System (ADS)
Bravenec, R.; Candy, J.; Dorland, W.; Holland, C.
2009-11-01
Benchmarks for gyrokinetic microstability codes can be developed through successful ``apples-to-apples'' comparisons among them. Unlike previous efforts, we perform the comparisons for actual discharges, rendering the verification efforts relevant to existing experiments and future devices (ITER). The process requires i) assembling the experimental analyses at multiple times, radii, discharges, and devices, ii) creating the input files ensuring that the input parameters are faithfully translated code-to-code, iii) running the codes, and iv) comparing the results, all in an organized fashion. The purpose of this work is to automate this process as much as possible: At present, a python routine is used to generate and organize GYRO input files from TRANSP or ONETWO analyses. Another routine translates the GYRO input files into GS2 input files. (Translation software for other codes has not yet been written.) Other python codes submit the multiple GYRO and GS2 jobs, organize the results, and collect them into a table suitable for plotting. (These separate python routines could easily be consolidated.) An example of the process -- a linear comparison between GYRO and GS2 for a DIII-D discharge at multiple radii -- will be presented.
Python in the NERSC Exascale Science Applications Program for Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ronaghi, Zahra; Thomas, Rollin; Deslippe, Jack
We describe a new effort at the National Energy Re- search Scientific Computing Center (NERSC) in performance analysis and optimization of scientific Python applications targeting the Intel Xeon Phi (Knights Landing, KNL) many- core architecture. The Python-centered work outlined here is part of a larger effort called the NERSC Exascale Science Applications Program (NESAP) for Data. NESAP for Data focuses on applications that process and analyze high-volume, high-velocity data sets from experimental/observational science (EOS) facilities supported by the US Department of Energy Office of Science. We present three case study applications from NESAP for Data that use Python. These codesmore » vary in terms of “Python purity” from applications developed in pure Python to ones that use Python mainly as a convenience layer for scientists without expertise in lower level programming lan- guages like C, C++ or Fortran. The science case, requirements, constraints, algorithms, and initial performance optimizations for each code are discussed. Our goal with this paper is to contribute to the larger conversation around the role of Python in high-performance computing today and tomorrow, highlighting areas for future work and emerging best practices« less
Some historical trends in the research and development of aircraft
NASA Technical Reports Server (NTRS)
Spearman, M. L.
1983-01-01
A survey of some trends in aircraft design was made in an effort to determine the relation between research, development, test, and evaluation (RDT and E) and aircraft mission capability, requirements, and objectives. Driving forces in the history of aircraft include the quest for speed which involved design concepts incorporating jet propulsion systems and low drag features. The study of high speed design concepts promoted new experimental and analytical research techniques. These research techniques, in turn, have lead to concepts offering new performance potential. Design trends were directed toward increased speed, efficiency, productivity, and safety. Generally speaking, the research and development effort has been evolutionary in nature and, with the exception of the transition to supersonic flight, little has occurred since the origin of flight that has drastically changed the basic design fundamentals of aircraft. However, this does not preclude the possibility of dramatic changes in the future since the products of research are frequently unpredictable. Advances should be expected and sought in improved aerodynamics (reduced drag, enhanced lift, flow field exploitation); propulsion (improved engine cycles, multimode engines, alternate fuels, alternate power sources); structures (new materials, manufacturing techniques); all with a view toward increased efficiency and utility.
The space elevator: a new tool for space studies.
Edwards, Bradley C
2003-06-01
The objective has been to develop a viable scenario for the construction, deployment and operation of a space elevator using current or near future technology. This effort has been primarily a paper study with several experimental tests of specific systems. Computer simulations, engineering designs, literature studies and inclusion of existing programs have been utilized to produce a design for the first space elevator. The results from this effort illustrate a viable design using current and near-term technology for the construction of the first space elevator. The timeline for possible construction is within the coming decades and estimated costs are less than $10 B. The initial elevator would have a 5 ton/day capacity and operating costs near $100/lb for payloads going to any Earth orbit or traveling to the Moon, Mars, Venus or the asteroids. An operational space elevator would allow for larger and much longer-term biological space studies at selectable gravity levels. The high-capacity and low operational cost of this system would also allow for inexpensive searches for life throughout our solar system and the first tests of environmental engineering. This work is supported by a grant from the NASA Institute for Advanced Concepts (NIAC).
Anatase (101)-like Structural Model Revealed for Metastable Rutile TiO2(011) Surface.
Xu, Meiling; Shao, Sen; Gao, Bo; Lv, Jian; Li, Quan; Wang, Yanchao; Wang, Hui; Zhang, Lijun; Ma, Yanming
2017-03-08
Titanium dioxide has been widely used as an efficient transition metal oxide photocatalyst. However, its photocatalytic activity is limited to the ultraviolet spectrum range due to the large bandgap beyond 3 eV. Efforts to reduce the bandgap to achieve a broader spectrum range of light absorption have been successfully attempted via the experimental synthesis of dopant-free metastable surface structures of rutile-type TiO 2 (011) 2 × 1. This new surface phase possesses a reduced bandgap of ∼2.1 eV, showing great potential for an excellent photocatalyst covering a wide range of visible light. There is a need to establish the atomistic structure of this metastable surface to understand the physical cause for the bandgap reduction and to improve the future design of photocatalysts. Here, we report computational investigations in an effort to unravel this surface structure via swarm structure-searching simulations. The established structure adopts the anatase (101)-like structure model, where the topmost 2-fold O atoms form a quasi-hexagonal surface pattern and bond with the unsaturated 5-fold and 4-fold Ti atoms in the next layer. The predicted anatase (101)-like surface model can naturally explain the experimental observation of the STM images, the electronic bandgap, and the oxidation state of Ti 4+ . Dangling bonds on the anatase (101)-like surface are abundant making it a superior photocatalyst. First-principles molecular dynamics simulations have supported the high photocatalytic activity by showing that water and formic acid molecules dissociate spontaneously on the anatase (101)-like surface.
Interaction of eta mesons with nuclei.
Kelkar, N G; Khemchandani, K P; Upadhyay, N J; Jain, B K
2013-06-01
Back in the mid-1980s, a new branch of investigation related to the interaction of eta mesons with nuclei came into existence. It started with the theoretical prediction of possible exotic states of eta mesons and nuclei bound by the strong interaction and later developed into an extensive experimental program to search for such unstable states as well as understand the underlying interaction via eta-meson producing reactions. The vast literature of experimental as well as theoretical works that studied various aspects of eta-producing reactions such as the π(+)n → ηp, pd → (3)Heη, p (6)Li → (7)Be η and γ (3)He → η X, to name a few, had but one objective in mind: to understand the eta-nucleon (ηN) and hence the η-nucleus interaction which could explain the production data and confirm the existence of some η-mesic nuclei. In spite of these efforts, there remain uncertainties in the knowledge of the ηN and hence the η-nucleus interaction. Therefore, this review is an attempt to bind together the findings in these works and draw some global and specific conclusions which can be useful for future explorations.The ηN scattering length (which represents the strength of the η-nucleon interaction) using different theoretical models and analyzing the data on η production in pion, photon and proton induced reactions was found to be spread out in a wide range, namely, 0.18 ≤ Re aηN ≤ 1.03 fm and 0.16 ≤ Rm aηN ≤ 0.49 fm. Theoretical searches of heavy η-mesic nuclei based on η-nucleus optical potentials and lighter ones based on Faddeev type few-body approaches predict the existence of several quasibound and resonant states. Although some hints of η-mesic states such as (3)(η)He and (25)(η)Mg do exist from previous experiments, the promise of clearer signals for the existence of η-mesic nuclei lies in the experiments to be performed at the J-PARC, MAMI and COSY facilities in the near future. This review is aimed at giving an overall status of these efforts.
2009 Spawning cisco investigations in the Canadian waters of Lake Superior
Yule, Daniel L.; Cholwek, Gary A.; Evrard, Lori M.; E. Berglund,; K.I. Cullis,
2010-01-01
We sampled with acoustics (AC) and midwater trawls (MT) to determine cisco abundance in Lake Superior’s Thunder and Black bays during 8-14 November, 2009. Total abundance of spawning-size (≥ 250 mm total length) ciscoes was estimated at 6.25 million in Thunder Bay and 1.12 million in Black Bay. Exploitation fractions of market-size (≥ age 6) females from Thunder and Black bays for 2009 were estimated at 7.1% and 11.3%, respectively; below the recommended maximum annual harvest of 15% recently adopted by Lake Superior fisheries managers. Given Thunder Bay spawner densities are on a downward trajectory, and recruitment since the 2003 year-class has been low, it is likely the exploitation fractions will increase in the future. After 2010, the Ontario Ministry of Natural Resources (OMNR) will carry on the AC program as a management activity. It is likely suspended experimental gill net (GN) samples will be used to ground truth future AC samples. In 2009, we characterized the length and age structure of Thunder Bay ciscoes using both MT samples and GN samples. Females represented 49% of the MT catch, but only 39% in GN samples. Catching a smaller proportion of females in GN samples resulted in a lower female population estimate and a higher estimated exploitation fraction (10.4%) compared to MT samples (7.1%). Experimental gill net effort was limited to 10-11.8 m water column depths where midwater trawl samples also caught roughly 40% females. Ciscoes ≥ age 17 (≥ 1992 year class) were common in Black Bay, but rare in Thunder Bay suggesting: 1) the stocks may be distinct; and 2) total mortality of ciscoes returning to spawn in Black Bay in recent years has been lower than ciscoes returning to Thunder Bay. Our mid-November 2009 effort to assess the Black Bay stock by sampling outside of the 3 bay in the lake proper was deemed successful, but this should be confirmed by sampling the Black Bay region during both mid- and late-November 2010.
The Student Spaceflight Experiments Program: Access to the ISS for K-14 Students
NASA Astrophysics Data System (ADS)
Livengood, T. A.; Goldstein, J. J.; Hamel, S.; Manber, J.; Hulslander, M.
2013-12-01
The Student Spaceflight Experiments Program (SSEP) has flown 53 experiments to space, on behalf of students from middle school through community college, on 4 missions: each of the last 2 Space Shuttle flights, the first SpaceX demonstration flight to the International Space Station (ISS), and on SpaceX-1 to ISS. Two more missions to ISS have payloads flying in Fall 2013. SSEP plans 2 missions to the ISS per year for the foreseeable future, and is expanding the program to include 4-year undergraduate college students and home-schooled students. SSEP experiments have explored biological, chemical, and physical phenomena within self-contained enclosures developed by NanoRacks, currently in the form of MixStix Fluid Mixing Enclosures. 21,600 students participated in the initial 6 missions of SSEP, directly experiencing the entire lifecycle of space science experimentation through community-wide participation in SSEP, taking research from a nascent idea through developing competitive research proposals, down-selecting to three proposals from each participating community and further selection of a single proposal for flight, actual space flight, sample recovery, analysis, and reporting. The National Air and Space Museum has hosted 3 National Conferences for SSEP student teams to report results in keeping with the model of professional research. Student teams have unflinchingly reported on success, failure, and groundbased efforts to develop proposals for future flight opportunities. Community participation extends outside the sciences and the immediate proposal efforts to include design competitions for mission patches, which also fly to space. Student experimenters have rallied around successful proposal teams to support a successful experiment on behalf of the entire community. SSEP is a project of the National Center for Earth and Space Science Education enabled through NanoRacks LLC, working in partnership with NASA under a Space Act Agreement as part of the utilization of the International Space Station as a National Laboratory. 2012 Oct 06 - Astronaut Sunita Williams operating a Fluid Mixing Enclosure during SSEP Mission 2 on the International Space Station.
Millan, Mark J; Goodwin, Guy M; Meyer-Lindenberg, Andreas; Ögren, Sven Ove
2015-05-01
Pharmacotherapy is effective in helping many patients suffering from psychiatric and neurological disorders, and both psychotherapeutic and stimulation-based techniques likewise have important roles to play in their treatment. However, therapeutic progress has recently been slow. Future success for improving the control and prevention of brain disorders will depend upon deeper insights into their causes and pathophysiological substrates. It will also necessitate new and more rigorous methods for identifying, validating, developing and clinically deploying new treatments. A field of Research and Development (R and D) that remains critical to this endeavour is Neuropsychopharmacology which transformed the lives of patients by introducing pharmacological treatments for psychiatric disorder some 60 years ago. For about half of this time, the European College of Neuropsychopharmacology (ECNP) has fostered efforts to enhance our understanding of the brain, and to improve the management of psychiatric disorders. Further, together with partners in academia and industry, and in discussions with regulators and patients, the ECNP is implicated in new initiatives to achieve this goal. This is then an opportune moment to survey the field, to analyse what we have learned from the achievements and failures of the past, and to identify major challenges for the future. It is also important to highlight strategies that are being put in place in the quest for more effective treatment of brain disorders: from experimental research and drug discovery to clinical development and collaborative ventures for reinforcing "R and D". The present article sets the scene, then introduces and interlinks the eight articles that comprise this Special Volume of European Neuropsychopharmacology. A broad-based suite of themes is covered embracing: the past, present and future of "R and D" for psychiatric disorders; complementary contributions of genetics and epigenetics; efforts to improve the treatment of depression, neurodevelopmental and neurodegenerative disorders; and advances in the analysis and neuroimaging of cellular and cerebral circuits. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.
Operational development of small plant growth systems
NASA Technical Reports Server (NTRS)
Scheld, H. W.; Magnuson, J. W.; Sauer, R. L.
1986-01-01
The results of a study undertaken on the first phase of an empricial effort in the development of small plant growth chambers for production of salad type vegetables on space shuttle or space station are discussed. The overall effort is visualized as providing the underpinning of practical experience in handling of plant systems in space which will provide major support for future efforts in planning, design, and construction of plant-based (phytomechanical) systems for support of human habitation in space. The assumptions underlying the effort hold that large scale phytomechanical habitability support systems for future space stations must evolve from the simple to the complex. The highly complex final systems will be developed from the accumulated experience and data gathered from repetitive tests and trials of fragments or subsystems of the whole in an operational mode. These developing system components will, meanwhile, serve a useful operational function in providing psychological support and diversion for the crews.
Thompson, Wiley C
2010-01-01
The modern cast of disaster relief actors includes host nations, non-governmental organisations, private volunteer organisations, military organisations and others. Each group, civilian or military, has valuable skills and experiences critical to disaster relief work. The goal of this paper is to supplement the study of civil-military relief efforts with contemporary anecdotal experience. The paper examines the interaction between US military forces and other disaster relief actors during the 2005 Kashmir earthquake relief effort. The author uses direct observations made while working in Pakistan to contrast the relationships and activities from that effort with other accounts in prevailing scholarly disaster literature and military doctrine. Finally, this paper suggests that the Kashmir model of integration, coordination and transparency of intent creates a framework in which future humanitarian assistance operations could be successfully executed. Recommendations to improve civil-military interaction in future relief efforts will also be addressed.
Mental Effort in Binary Categorization Aided by Binary Cues
ERIC Educational Resources Information Center
Botzer, Assaf; Meyer, Joachim; Parmet, Yisrael
2013-01-01
Binary cueing systems assist in many tasks, often alerting people about potential hazards (such as alarms and alerts). We investigate whether cues, besides possibly improving decision accuracy, also affect the effort users invest in tasks and whether the required effort in tasks affects the responses to cues. We developed a novel experimental tool…
Ultra High Mode Mix in NIF NIC Implosions
NASA Astrophysics Data System (ADS)
Scott, Robbie; Garbett, Warren
2017-10-01
This work re-examines a sub-set of the low adiabat implosions from the National Ignition Campaign in an effort to better understand potential phenomenological sources of `excess' mix observed experimentally. An extensive effort has been made to match both shock-timing and backlit radiography (Con-A) implosion data in an effort to reproduce the experimental conditions as accurately as possible. Notably a 30% reduction in ablation pressure at peak drive is required to match the experimental data. The reduced ablation pressure required to match the experimental data allows the ablator to decompress, in turn causing the DT ice-ablator interface to go Rayleigh-Taylor unstable early in the implosion acceleration phase. Post-processing the runs with various mix models indicates high-mode mix from the DT ice-ablator interface may penetrate deep into the hotspot. This work offers a potential explanation of why these low-adiabat implosions exhibited significantly higher levels of mix than expected from high-fidelity multi-dimensional simulations. Through this new understanding, a possible route forward for low-adiabat implosions on NIF is suggested.
Issues in subject recruitment and retention with pregnant and parenting substance-abusing women.
Howard, J; Beckwith, L
1996-01-01
To advance knowledge about the treatment of addiction among pregnant women and other women of childbearing age, investigators must adhere to the requirements of a strict experimental research design while concurrently providing clinical services. This means that researchers must address a variety of difficult questions, including the following: Was the sample large enough? Were the criteria for subject inclusion and exclusion well defined? Did the process of recruitment result in a sample that could be generalized to a larger population, or was the sample biased in some way? Was assignment to groups clearly random? What was the attrition rate? Was attrition the same in both experimental and comparison groups? Did baseline measures collect enough information to permit a description of the facts that were associated with attrition in each group? Was the attrition rate so high that the retained sample had special characteristics? If so, what were these features? This chapter highlights several problems related to these questions, describes the difficulties that investigators have faced in meeting clinical and research challenges to date, and suggests strategies for overcoming some obstacles. In establishing the Perinatal-20 project, the National Institute on Drug Abuse took an informed first step in organizing a substantial research effort to investigate treatment modalities that incorporate services specific to the needs of substance-abusing women who have children. This initial effort has resulted in a beginning knowledge base that can be used to refine and expand future treatment efforts. Even the issue of the "study unit" for this population is evolving. Today's researchers are attempting to determine whether the mother alone or the mother along with her dependent children constitutes the study unit. This question also has led professionals in the field to examine a range of specific outcome priorities, and investigators just now are beginning to determine exactly what needs to be evaluated in gauging the effectiveness of treatment. Is success measured on the basis of the woman's progress with abstinence alone, or does it also include her role with her children? Is it determined on the basis of her relationship with her children or the children's growth and development? Compared with providing services for and studying single adult subjects, developing treatment for women and their children presents researchers with a more complex task and requires expanded clinical services (Gallagher 1990, pp. 540-559). As in most fields of study, initial research data in substance abuse treatment for pregnant and parenting women are derived from samples of convenience, as described above. To put this information in perspective, future research will require a wider and more representative spectrum of the population. Furthermore, tensions between clinical needs and research requirements must be considered in advance, and methods for relaxing these tensions will be critical to the success of future efforts. For example, members of both the research and clinical staff teams must be absolutely clear about the study design and the requirements of reliable research. Where possible, potential ambiguities about group assignment, project services, subjects' responsibilities, and so forth must be incorporated into subject consent forms so that the subjects also are apprised of potential problems and their solutions. A final caution to future investigators is to be aware of the economic, physical, and personnel limitations of the range of treatment services that can be provided in a research demonstration study involving this population. Because of these limitations and the extensive range of services the subjects of the studies require, treatment components must be discrete and carefully defined to prevent programs from becoming impractically diverse and unclear. Research goals must be attainable and measurable.(ABSTRACT TRUNCATED)
Flight program language requirements. Volume 2: Requirements and evaluations
NASA Technical Reports Server (NTRS)
1972-01-01
The efforts and results are summarized for a study to establish requirements for a flight programming language for future onboard computer applications. Several different languages were available as potential candidates for future NASA flight programming efforts. The study centered around an evaluation of the four most pertinent existing aerospace languages. Evaluation criteria were established, and selected kernels from the current Saturn 5 and Skylab flight programs were used as benchmark problems for sample coding. An independent review of the language specifications incorporated anticipated future programming requirements into the evaluation. A set of detailed language requirements was synthesized from these activities. The details of program language requirements and of the language evaluations are described.
NASA Technical Reports Server (NTRS)
Swickrath, Michael J.; Anderson, Molly; McMillin, Summer; Broerman, Craig
2011-01-01
Controlling carbon dioxide (CO2) and humidity levels in a spacesuit is critical to ensuring both the safety and comfort of an astronaut during extra-vehicular activity (EVA). Traditionally, this has been accomplished utilizing either non-regenerative lithium hydroxide (LiOH) or regenerative but heavy metal oxide (MetOx) canisters which pose a significant weight burden. Although such technology enables air revitalization, the volume requirements to store the waste canisters as well as the mass to transport multiple units become prohibitive as mission durations increase. Consequently, motivation exists toward developing a fully regenerative technology for spacesuit environmental control. The application of solid amine materials with vacuum swing adsorption technology has shown the capacity to control CO2 while concomitantly managing humidity levels through a fully regenerative cycle eliminating constraints imposed with the traditional technologies. Prototype air revitalization units employing this technology have been fabricated in both a rectangular and cylindrical geometry. Experimental results for these test articles have been collected and are described herein. In order to accelerate the developmental efforts, an axially-dispersed plug flow model with an accompanying energy balance has been established and correlated with the experimental data. The experimental and simulation results display good agreement for a variety of flow rates (110-170 ALM), replicated metabolic challenges (100-590 Watts), and atmosphere pressures under consideration for the spacesuit (248 and 760 mm Hg). The testing and model results lend insight into the operational capabilities of these devices as well as the influence the geometry of the device has on performance. In addition, variable metabolic profiles were imposed on the test articles in order to assess the ability of the technology to transition to new metabolic conditions. The advent of the model provides the capacity to apply computer-aided engineering practices to support the ongoing efforts to optimize and mature this technology for future application to space exploration.
A strain-mediated corrosion model for bioabsorbable metallic stents.
Galvin, E; O'Brien, D; Cummins, C; Mac Donald, B J; Lally, C
2017-06-01
This paper presents a strain-mediated phenomenological corrosion model, based on the discrete finite element modelling method which was developed for use with the ANSYS Implicit finite element code. The corrosion model was calibrated from experimental data and used to simulate the corrosion performance of a WE43 magnesium alloy stent. The model was found to be capable of predicting the experimentally observed plastic strain-mediated mass loss profile. The non-linear plastic strain model, extrapolated from the experimental data, was also found to adequately capture the corrosion-induced reduction in the radial stiffness of the stent over time. The model developed will help direct future design efforts towards the minimisation of plastic strain during device manufacture, deployment and in-service, in order to reduce corrosion rates and prolong the mechanical integrity of magnesium devices. The need for corrosion models that explore the interaction of strain with corrosion damage has been recognised as one of the current challenges in degradable material modelling (Gastaldi et al., 2011). A finite element based plastic strain-mediated phenomenological corrosion model was developed in this work and was calibrated based on the results of the corrosion experiments. It was found to be capable of predicting the experimentally observed plastic strain-mediated mass loss profile and the corrosion-induced reduction in the radial stiffness of the stent over time. To the author's knowledge, the results presented here represent the first experimental calibration of a plastic strain-mediated corrosion model of a corroding magnesium stent. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Reproducible model development in the cardiac electrophysiology Web Lab.
Daly, Aidan C; Clerx, Michael; Beattie, Kylie A; Cooper, Jonathan; Gavaghan, David J; Mirams, Gary R
2018-05-26
The modelling of the electrophysiology of cardiac cells is one of the most mature areas of systems biology. This extended concentration of research effort brings with it new challenges, foremost among which is that of choosing which of these models is most suitable for addressing a particular scientific question. In a previous paper, we presented our initial work in developing an online resource for the characterisation and comparison of electrophysiological cell models in a wide range of experimental scenarios. In that work, we described how we had developed a novel protocol language that allowed us to separate the details of the mathematical model (the majority of cardiac cell models take the form of ordinary differential equations) from the experimental protocol being simulated. We developed a fully-open online repository (which we termed the Cardiac Electrophysiology Web Lab) which allows users to store and compare the results of applying the same experimental protocol to competing models. In the current paper we describe the most recent and planned extensions of this work, focused on supporting the process of model building from experimental data. We outline the necessary work to develop a machine-readable language to describe the process of inferring parameters from wet lab datasets, and illustrate our approach through a detailed example of fitting a model of the hERG channel using experimental data. We conclude by discussing the future challenges in making further progress in this domain towards our goal of facilitating a fully reproducible approach to the development of cardiac cell models. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Experimental aeroelasticity in wind tunnels - History, status, and future in brief
NASA Technical Reports Server (NTRS)
Ricketts, Rodney H.
1993-01-01
The state of the art of experimental aeroelasticity in the United States is assessed. A brief history of the development of ground test facilities, apparatus, and testing methods is presented. Several experimental programs are described that were previously conducted and helped to improve the state of the art. Some specific future directions for improving and enhancing experimental aeroelasticity are suggested.
Nano Electronics on Atomically Controlled van der Waals Quantum Heterostructures
2018-02-19
the group V2-VI3 TI family. However, experimental efforts on Bi2Se3 have been frequently resulted in the bulk conduction being dominant over TSSs in...group V2-VI3 TI family. However, experimental efforts on Bi2Se3 have been frequently resulted in the bulk conduction being dominant over TSSs in...research interest of creating and manipulating unique quasi particles with topologically exceptional properties, such as Majorana particles, has added
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Michael R.
2006-11-16
Project Title: Magnetohydrodynamic Particle Acceleration Processes: SSX Experiments, Theory, and Astrophysical Applications PI: Michael R. Brown, Swarthmore College The purpose of the project was to provide theoretical and modeling support to the Swarthmore Spheromak Experiment (SSX). Accordingly, the theoretical effort was tightly integrated into the SSX experimental effort. During the grant period, Michael Brown and his experimental collaborators at Swarthmore, with assistance from W. Matthaeus as appropriate, made substantial progress in understanding the physics SSX plasmas.
GIS-based hydrologic modeling offers a convenient means of assessing the impacts associated with land-cover/use change for environmental planning efforts. Future scenarios can be developed through a combination of modifications to the land-cover/use maps used to parameterize hydr...
Learning Outcomes in Sustainability Education among Future Elementary School Teachers
ERIC Educational Resources Information Center
Foley, Rider W.; Archambault, Leanna M.; Hale, Annie E.; Dong, Hsiang-Kai
2017-01-01
Universities and colleges around the world are exploring ways of reorganizing curricula to educate future leaders in sustainability. Preservice teachers hold tremendous potential to introduce concepts of sustainability far earlier than post-secondary education. However, there is little research of such efforts to yield changes in future elementary…
ERIC Educational Resources Information Center
Wilcox, Bethany R.; Lewandowski, H. J.
2016-01-01
Student learning in instructional physics labs represents a growing area of research that includes investigations of students' beliefs and expectations about the nature of experimental physics. To directly probe students' epistemologies about experimental physics and support broader lab transformation efforts at the University of Colorado Boulder…
SCaN Testbed Software Development and Lessons Learned
NASA Technical Reports Server (NTRS)
Kacpura, Thomas J.; Varga, Denise M.
2012-01-01
National Aeronautics and Space Administration (NASA) has developed an on-orbit, adaptable, Software Defined Radio (SDR)Space Telecommunications Radio System (STRS)-based testbed facility to conduct a suite of experiments to advance technologies, reduce risk, and enable future mission capabilities on the International Space Station (ISS). The SCAN Testbed Project will provide NASA, industry, other Government agencies, and academic partners the opportunity to develop and field communications, navigation, and networking technologies in the laboratory and space environment based on reconfigurable, SDR platforms and the STRS Architecture.The SDRs are a new technology for NASA, and the support infrastructure they require is different from legacy, fixed function radios. SDRs offer the ability to reconfigure on-orbit communications by changing software for new waveforms and operating systems to enable new capabilities or fix any anomalies, which was not a previous option. They are not stand alone devices, but required a new approach to effectively control them and flow data. This requires extensive software to be developed to utilize the full potential of these reconfigurable platforms. The paper focuses on development, integration and testing as related to the avionics processor system, and the software required to command, control, monitor, and interact with the SDRs, as well as the other communication payload elements. An extensive effort was required to develop the flight software and meet the NASA requirements for software quality and safety. The flight avionics must be radiation tolerant, and these processors have limited capability in comparison to terrestrial counterparts. A big challenge was that there are three SDRs onboard, and interfacing with multiple SDRs simultaneously complicatesd the effort. The effort also includes ground software, which is a key element for both the command of the payload, and displaying data created by the payload. The verification of the software was an extensive effort. The challenges of specifying a suitable test matrix with reconfigurable systems that offer numerous configurations is highlighted. Since the flight system testing requires methodical, controlled testing that limits risk, a nearly identical ground system to the on-orbit flight system was required to develop the software and write verification procedures before it was installed and tested on the flight system. The development of the SCAN testbed was an accelerated effort to meet launch constraints, and this paper discusses tradeoffs made to balance needed software functionality and still maintain the schedule. Future upgrades are discussed that optimize the avionics and allow experimenters to utilize the SCAN testbed potential.
Computational/experimental studies of isolated, single component droplet combustion
NASA Technical Reports Server (NTRS)
Dryer, Frederick L.
1993-01-01
Isolated droplet combustion processes have been the subject of extensive experimental and theoretical investigations for nearly 40 years. The gross features of droplet burning are qualitatively embodied by simple theories and are relatively well understood. However, there remain significant aspects of droplet burning, particularly its dynamics, for which additional basic knowledge is needed for thorough interpretations and quantitative explanations of transient phenomena. Spherically-symmetric droplet combustion, which can only be approximated under conditions of both low Reynolds and Grashof numbers, represents the simplest geometrical configuration in which to study the coupled chemical/transport processes inherent within non-premixed flames. The research summarized here, concerns recent results on isolated, single component, droplet combustion under microgravity conditions, a program pursued jointly with F.A. Williams of the University of California, San Diego. The overall program involves developing and applying experimental methods to study the burning of isolated, single component droplets, in various atmospheres, primarily at atmospheric pressure and below, in both drop towers and aboard space-based platforms such as the Space Shuttle or Space Station. Both computational methods and asymptotic methods, the latter pursued mainly at UCSD, are used in developing the experimental test matrix, in analyzing results, and for extending theoretical understanding. Methanol, and the normal alkanes, n-heptane, and n-decane, have been selected as test fuels to study time-dependent droplet burning phenomena. The following sections summarizes the Princeton efforts on this program, describe work in progress, and briefly delineate future research directions.
Research in Hypersonic Airbreathing Propulsion at the NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Kumar, Ajay; Drummond, J. Philip; McClinton, Charles R.; Hunt, James L.
2001-01-01
The NASA Langley Research Center has been conducting research for over four decades to develop technology for an airbreathing-propelled vehicle. Several other organizations within the United States have also been involved in this endeavor. Even though significant progress has been made over this period, a hypersonic airbreathing vehicle has not yet been realized due to low technology maturity. One of the major reasons for the slow progress in technology development has been the low level and cyclic nature of funding. The paper provides a brief historical overview of research in hypersonic airbreathing technology and then discusses current efforts at NASA Langley to develop various analytical, computational, and experimental design tools and their application in the development of future hypersonic airbreathing vehicles. The main focus of this paper is on the hypersonic airbreathing propulsion technology.
Graphene Mechanics: Current Status and Perspectives.
Galiotis, Costas; Frank, Otakar; Koukaras, Emmanuel N; Sfyris, Dimitris
2015-01-01
The mechanical properties of 2D materials such as monolayer graphene are of extreme importance for several potential applications. We summarize the experimental and theoretical results to date on mechanical loading of freely suspended or fully supported graphene. We assess the obtained axial properties of the material in tension and compression and comment on the methods used for deriving the various reported values. We also report on past and current efforts to define the elastic constants of graphene in a 3D representation. Current areas of research that are concerned with the effect of production method and/or the presence of defects upon the mechanical integrity of graphene are also covered. Finally, we examine extensively the work related to the effect of graphene deformation upon its electronic properties and the possibility of employing strained graphene in future electronic applications.
Nwanaji-Enwerem, Jamaji C; Weisskopf, Marc G; Baccarelli, Andrea A
2018-04-23
The multi-tissue DNA methylation estimator of chronological age (DNAm-age) has been associated with a wide range of exposures and health outcomes. Still, it is unclear how DNAm-age can have such broad relationships and how it can be best utilized as a biomarker. Understanding DNAm-age's molecular relationships is a promising approach to address this critical knowledge gap. In this review, we discuss the existing literature regarding DNAm-age's molecular relationships in six major categories: animal model systems, cancer processes, cellular aging processes, immune system processes, metabolic processes, and nucleic acid processes. We also present perspectives regarding the future of DNAm-age research, including the need to translate a greater number of ongoing research efforts to experimental and animal model systems. Copyright © 2018 Elsevier B.V. All rights reserved.
Computational modeling of brain tumors: discrete, continuum or hybrid?
NASA Astrophysics Data System (ADS)
Wang, Zhihui; Deisboeck, Thomas S.
In spite of all efforts, patients diagnosed with highly malignant brain tumors (gliomas), continue to face a grim prognosis. Achieving significant therapeutic advances will also require a more detailed quantitative understanding of the dynamic interactions among tumor cells, and between these cells and their biological microenvironment. Data-driven computational brain tumor models have the potential to provide experimental tumor biologists with such quantitative and cost-efficient tools to generate and test hypotheses on tumor progression, and to infer fundamental operating principles governing bidirectional signal propagation in multicellular cancer systems. This review highlights the modeling objectives of and challenges with developing such in silico brain tumor models by outlining two distinct computational approaches: discrete and continuum, each with representative examples. Future directions of this integrative computational neuro-oncology field, such as hybrid multiscale multiresolution modeling are discussed.
Computational modeling of brain tumors: discrete, continuum or hybrid?
NASA Astrophysics Data System (ADS)
Wang, Zhihui; Deisboeck, Thomas S.
2008-04-01
In spite of all efforts, patients diagnosed with highly malignant brain tumors (gliomas), continue to face a grim prognosis. Achieving significant therapeutic advances will also require a more detailed quantitative understanding of the dynamic interactions among tumor cells, and between these cells and their biological microenvironment. Data-driven computational brain tumor models have the potential to provide experimental tumor biologists with such quantitative and cost-efficient tools to generate and test hypotheses on tumor progression, and to infer fundamental operating principles governing bidirectional signal propagation in multicellular cancer systems. This review highlights the modeling objectives of and challenges with developing such in silicobrain tumor models by outlining two distinct computational approaches: discrete and continuum, each with representative examples. Future directions of this integrative computational neuro-oncology field, such as hybrid multiscale multiresolution modeling are discussed.
Study of orifice fabrication technologies for the liquid droplet radiator
NASA Technical Reports Server (NTRS)
Wallace, David B.; Hayes, Donald J.; Bush, J. Michael
1991-01-01
Eleven orifice fabrication technologies potentially applicable for a liquid droplet radiator are discussed. The evaluation is focused on technologies capable of yielding 25-150 microns diameter orifices with trajectory accuracies below 5 milliradians, ultimately in arrays of up to 4000 orifices. An initial analytical screening considering factors such as trajectory accuracy, manufacturability, and hydrodynamics of orifice flow is presented. Based on this screening, four technologies were selected for experimental evaluation. A jet straightness system used to test 50-orifice arrays made by electro-discharge machining (EDM), Fotoceram, and mechanical drilling is discussed. Measurements on orifice diameter control and jet trajectory accuracy are presented and discussed. Trajectory standard deviations are in the 4.6-10.0 milliradian range. Electroforming and EDM appear to have the greatest potential for Liquid Droplet Radiator applications. The direction of a future development effort is discussed.
Structural and electronic properties of Ga2O3-Al2O3 alloys
NASA Astrophysics Data System (ADS)
Peelaers, Hartwin; Varley, Joel B.; Speck, James S.; Van de Walle, Chris G.
2018-06-01
Ga2O3 is emerging as an important electronic material. Alloying with Al2O3 is a viable method to achieve carrier confinement, to increase the bandgap, or to modify the lattice parameters. However, the two materials have very different ground-state crystal structures (monoclinic β-gallia for Ga2O3 and corundum for Al2O3). Here, we use hybrid density functional theory calculations to assess the alloy stabilities and electronic properties of the alloys. We find that the monoclinic phase is the preferred structure for up to 71% Al incorporation, in close agreement with experimental phase diagrams, and that the ordered monoclinic AlGaO3 alloy is exceptionally stable. We also discuss bandgap bowing, lattice constants, and band offsets that can guide future synthesis and device design efforts.
Chambers, David A
2018-04-01
Gaps remain between the outcomes of biomedical research and their application within clinical and community settings. The field of implementation science, also referred to as dissemination and implementation research, is intended to improve the adoption, uptake, and sustainability of evidence-based health interventions. The articles in this volume's symposium on implementation science and public health identify important directions in the effort to maximize the impact of research on public and population health. Leading researchers present reviews of the use of quasi-experimental designs in implementation science, the movement toward enhancing evidence-based public health, and intervention sustainability. Each article presents lessons learned from prior research and recommendations for the next generation of studies. Collectively, the symposium offers a road map for future implementation science that seeks to optimize public health.
Technical challenges for the future of high energy lasers
NASA Astrophysics Data System (ADS)
LaFortune, K. N.; Hurd, R. L.; Fochs, S. N.; Rotter, M. D.; Pax, P. H.; Combs, R. L.; Olivier, S. S.; Brase, J. M.; Yamamoto, R. M.
2007-02-01
The Solid-State, Heat-Capacity Laser (SSHCL) program at Lawrence Livermore National Laboratory is a multi-generation laser development effort scalable to the megawatt power levels with current performance approaching 100 kilowatts. This program is one of many designed to harness the power of lasers for use as directed energy weapons. There are many hurdles common to all of these programs that must be overcome to make the technology viable. There will be a in-depth discussion of the general issues facing state-of-the-art high energy lasers and paths to their resolution. Despite the relative simplicity of the SSHCL design, many challenges have been uncovered in the implementation of this particular system. An overview of these and their resolution are discussed. The overall system design of the SSHCL, technological strengths and weaknesses, and most recent experimental results will be presented.
Gravitational Waves: Experiments
NASA Astrophysics Data System (ADS)
Cerdonio, M.
2003-01-01
These notes are intended to bring to non-specialists the message about the status of the experimental searches, both in achievements and in near and far future prospective. I try to describe the whole matter in simple words, without the use of the formalism, and rather indicate to the interested reader a selection among an enormous literature. For the actual shaping up of current research efforts, I make specific reference to most recent papers. For much nicer pictures and graphs than I could possibly squeeze in here, I heavily refere to the web sites of the experiments, which are kept updated with a resolution of weeks and are thus, in these times, the most complete and updated source of information. Because of my own involvement with "bar" detectors I will, with apologies, dedicate more attention to the subfield of so called acoustic detectors.
Pointer, William David; Baglietto, Emilio
2016-05-01
Here, in the effort to reinvigorate innovation in the way we design, build, and operate the nuclear power generating stations of today and tomorrow, nothing can be taken for granted. Not even the seemingly familiar physics of boiling water. The Consortium for the Advanced Simulation of Light Water Reactors, or CASL, is focused on the deployment of advanced modeling and simulation capabilities to enable the nuclear industry to reduce uncertainties in the prediction of multi-physics phenomena and continue to improve the performance of today’s Light Water Reactors and their fuel. An important part of the CASL mission is the developmentmore » of a next generation thermal hydraulics simulation capability, integrating the history of engineering models based on experimental experience with the computing technology of the future.« less
Rapid Onboard Data Product Generation with Multicore Processors and FPGA
NASA Astrophysics Data System (ADS)
Mandl, D.; Sohlberg, R. A.; Cappelaere, P. G.; Frye, S. W.; Ly, V.; Handy, M.; Ambrosia, V. G.; Sullivan, D. V.; Bland, G.; Pastor, E.; Crago, S.; Flatley, C.; Shah, N.; Bronston, J.; Creech, T.
2012-12-01
The Intelligent Payload Module (IPM) is an experimental testbed with multicore processors and Field Programmable Gate Array (FPGA). This effort is being funded by the NASA Earth Science Technology Office as part of an Advanced Information Systems Technology (AIST) 2011 research grant to investigate the use of high performance onboard processing to create an onboard data processing pipeline that can rapidly process a subset of onboard imaging spectrometer data (1) through radiance to reflectance conversion (2) atmospheric correction (3) geolocation and co-registration and (4) level 2 data product generation. The requirements are driven by the mission concept for the HyspIRI NASA Decadal mission, although other NASA Decadal missions could use the same concept. The system is being set up to make use of the same ground and flight software being used by other satellites at NASA/GSFC. Furthermore, a Web Coverage Processing Service (WCPS) is installed as part of the flight software which enables a user on the ground to specify the desired algorithm to run onboard against the data in realtime. Benchmark demonstrations are being run and will be run through the three year effort on various platforms including a helicopter and various airplane platforms with various instruments to demonstrate various configurations that would be compatible with the HyspIRI mission and other similar missions. This presentation will lay out the demonstrations conducted to date along with any benchmark performance metrics and future demonstration efforts and objectives.Initial IPM Test Box
ERIC Educational Resources Information Center
Rusk, Harriet J.
1991-01-01
Considered are standardization efforts of the American National Standards Institute's Accredited Standards Committee X12 concerned with electronic data interchange (EDI). These efforts will effect dentistry first in the transmission of academic records, and then in communications between dental offices and businesses, including major insurance…
Manipulation of parental effort affects plumage bacterial load in a wild passerine.
Alt, Grete; Saag, Pauli; Mägi, Marko; Kisand, Veljo; Mänd, Raivo
2015-06-01
It has been suggested that plumage microorganisms play an important role in shaping the life histories of wild birds. Some bacteria may act as pathogens or cause damage to feathers, and thereby reduce individual fitness. Intense parental care in birds can result in a reduction of self-maintenance and preening behavior in parents and therefore might affect the dynamics of microbiota living on their feathers. However, experimental evidence of this relationship is virtually absent. We manipulated the parental effort of wild breeding pied flycatcher (Ficedula hypoleuca) females by modifying their brood size or temporarily removing male partners. We expected that experimentally decreasing or increasing parental effort would affect feather sanitation in females and therefore also bacterial density on their plumage. In accordance with this hypothesis, manipulation affected the density of free-living bacteria: females with reduced broods had the lowest number of free-living bacteria on their feathers, while females left without male partners had the highest. However, manipulation did not have a significant effect on the densities of attached bacteria. Our results provide experimental evidence that a trade-off between self-maintenance and parental effort affects plumage bacterial densities in birds.
Experimental gravitation in space - Is there a future?
NASA Astrophysics Data System (ADS)
Wharton, R. A.; McKay, C. P.; Mancinelli, R. L.; Simmons, G. M.
Experimental gravitation enters the 1990s with a past full of successes, but with a future full of uncertainties. Intellectually, the field is as vigorous as ever, with major thrusts in three main areas: the search for gravitational radiation, the study of post and post-post Newtonian effects, and the detection of hypothetical feeble new interactions. It is the only branch of space research involved in fundamental physics. But politically and financially, the future is uncertain. Competition for funding and for flight opportunities will be stiff for the foreseeable future, both with other disciplines such as astrophysics, planetary science and the military, and within experimental gravitation itself. Difficult choices lie ahead. This paper reviews the current state of the field and attempts to peer into the future.
[Effort-reward imbalance at work and depression: current research evidence].
Siegrist, J
2013-01-01
In view of highly prevalent stressful conditions in modern working life, in particular increasing work pressure and job insecurity, it is of interest to know whether specific constellations of an adverse psychosocial work environment increase the risk of depressive disorder among employed people. This contribution gives a short overview of current research evidence based on an internationally established work stress model of effort-reward imbalance. Taken together, results from seven prospective epidemiological investigations demonstrate a two-fold elevated relative risk of incident depressive disorder over a mean observation period of 2.7 years among exposed versus non-exposed employees. Additional findings from experimental and quasi-experimental studies point to robust associations of effort-reward imbalance at work with proinflammatory cytokines and markers of reduced immune competence. These latter markers may indicate potential psychobiological pathways. In conclusion, incorporating this new knowledge into medical treatment and preventive efforts seems well justified.
Kauffmann, Amitay; Ashby, Nathaniel J. S.; Zahavi, Gal
2017-01-01
Economic bubbles are an empirical puzzle because they do not readily fit the notion of an efficient market. We argue that bubbles are associated with a conflict and a gap in the allocation of effort during negotiation by sellers and buyers. We examined 21 experimental asset markets where in one condition players could buy and sell and in the other they could either buy or sell. The results indicated that when making concurrent buying and selling decisions the mean number of asks for sellers was 71% higher than the number of bids for buyers. Similar findings emerge in a re-analysis of data from Lei et al. (2001). Importantly, bubbles only emerged in markets where the number of asks was larger than that of bids. These findings indicate that bubbles are associated with increased negotiation effort when acting as a seller and diminished effort when acting as a buyer. PMID:29228034
Adaptation and Study of AIDS Viruses in Animal and Cell Culture Systems
1991-06-28
Cancer Res 1985;44,69-120. 23. Armstrong D, and Walzer P: Experimental infections in the nude mouse. In: The Nude Mouse in Experimental and Clinical...3558-3564. 42. Reka S, Borcich A, Cronin W, Kotler DP: Intestinal HIV infection in AIDS and ARC: correlation with tissue content of p24 and...Assistant II (28 Aug 1989-20 Feb 1990) 100% effort Otho (Sonny) Armstrong , B.S., Research Assistant III (16April 1990-6April 1991) 100% effort Ada
TREX13: Mid-Frequency Measurements and Modeling of Scattering by Fish
2017-11-13
Another key element to the fish effort is the UW- led (Home) high frequency surveys of fish in the area. The WHOI-led ( tanton) effort focussed on...lik J from fi h with gas-filled swimbladd r . b. Presenc o[fish at experimental ile. There w •r lhr f fi h that dominated the C. numb r in the fixed...34) _., •..,, . . . ... . - ,. • ~ > (a) (b) (c) Figure 3. The dominant species of fish present at experimental site. All have swim bladders which
Dynamic FLIR Target Acquisition. Phase I.
1978-08-02
The execution of the experimental plan developed and outlined in this report will make up the bulk of our second year effort. The third year will be...outlined in this report will make up the bulk of our second year effort. The third year will be devoted to further experimentation and analysis of...established. 2.1 TARGET SELECTION In an analysis of the success or failure of past air strike campaigns from WW II through the Six Day War (see Figure 2
NASA Technical Reports Server (NTRS)
Macelroy, Robert D.; Smernoff, David T.; Rummel, John D.
1987-01-01
Problems of food production by higher plants are addressed. Experimentation requirements and necessary equipment for designing an experimental Controlled Ecological Life Support System (CELSS) Plant Growth Module are defined. A framework is provided for the design of laboratory sized plant growth chambers. The rationale for the development of an informal collaborative effort between investigators from universities and industry and those at Ames is evaluated. Specific research problems appropriate for collaborative efforts are identified.
Accommodating complexity and human behaviors in decision analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Backus, George A.; Siirola, John Daniel; Schoenwald, David Alan
2007-11-01
This is the final report for a LDRD effort to address human behavior in decision support systems. One sister LDRD effort reports the extension of this work to include actual human choices and additional simulation analyses. Another provides the background for this effort and the programmatic directions for future work. This specific effort considered the feasibility of five aspects of model development required for analysis viability. To avoid the use of classified information, healthcare decisions and the system embedding them became the illustrative example for assessment.
Flexibility in the parental effort of an Arctic-breeding seabird
Harding, A.M.A.; Kitaysky, A.S.; Hall, M.E.; Welcker, J.; Karnovsky, N.J.; Talbot, S.L.; Hamer, K.C.; Gremillet, D.
2009-01-01
Parental investment strategies are considered to represent a trade-off between the benefits of investment in current offspring and costs to future reproduction. Due to their high residual reproductive value, long-lived organisms are predicted to be more reluctant to increase parental effort. 2. We tested the hypothesis that breeding little auks (Alle alle) have a fixed level of reproductive investment, and thus reduce parental effort when costs associated with reproduction increase. 3. To test this hypothesis we experimentally increased the flight costs of breeding little auks via feather clipping. In 2005 we examined changes in the condition of manipulated parents, of the mates of manipulated parents, and of their chick as direct measures of change in parental resource allocation between self-maintenance and current reproduction. In 2007 we increased sample sizes to determine whether there was a physiological cost (elevated corticosterone, CORT) associated with the manipulation. 4. We found that: (i) clipped birds and their mates lost more body mass than controls, but there was no difference in mass loss between members of a pair; (ii) clipped birds had higher CORT levels than control birds; (iii) there were no inter-annual differences in body mass and CORT levels between clipped individuals and their mates at recapture, and (iv) chicks with a clipped parent had lower peak and fledging mass, and higher CORT levels than control chicks in both years. 5. Contrary to our hypothesis, the reduction in body mass of partners to clipped birds suggests that little auks can increase parental effort to some extent. Nonetheless, the lower fledging mass and higher CORT of chicks with a clipped parent indicates provisioning rates may not have been fully maintained. 6. As predicted by life-history theory, there may be a threshold to the additional reproductive costs breeders will accept, with parents prioritizing self-maintenance over increased provisioning effort when foraging costs become too high. ?? 2008 British Ecological Society.
NASA Technical Reports Server (NTRS)
Patrick, Marshall C.; Cooper, Anita E.; Powers, W. T.
2003-01-01
Flow-field analysis techniques under continuing development at NASA's Marshall Space Flight Center are the foundation for a new type of health monitoring instrumentation for propulsion systems and a vast range of other applications. Physics, spectroscopy, mechanics, optics, and cutting-edge computer sciences merge to make recent developments in such instrumentation possible. Issues encountered in adaptation of such a system to future space vehicles, or retrofit in existing hardware, are central to the work. This paper is an overview of the collaborative efforts results, current efforts, and future plans.
1988-04-14
McDonalds or Burger King for snack shops, Marriott for messing/billeting facilities, etc.? RECOMMENDED ELEMENTS OF ANALYSIS/TOPICAL AREAS: DATE RESULTS ITEM...e.g., a Burger King on post) now brings in about SI million per month to the family support coffers. It began in 1984 and has returned $21 million...Army, private sector franchises and family support. - The first or leading question is whether the family affects retention and, if so, what the Army
Software Engineering Laboratory (SEL) Ada performance study report
NASA Technical Reports Server (NTRS)
Booth, Eric W.; Stark, Michael E.
1991-01-01
The goals of the Ada Performance Study are described. The methods used are explained. Guidelines for future Ada development efforts are given. The goals and scope of the study are detailed, and the background of Ada development in the Flight Dynamics Division (FDD) is presented. The organization and overall purpose of each test are discussed. The purpose, methods, and results of each test and analyses of these results are given. Guidelines for future development efforts based on the analysis of results from this study are provided. The approach used on the performance tests is discussed.
ERIC Educational Resources Information Center
Mette, Ian M.; Nieuwenhuizen, Lisa; Hvidston, David J.
2016-01-01
The purpose of this study was to investigate the impact of one school's teacher-driven professional development effort to address culturally responsive teaching practices in a large district in a Midwestern state. During the 2011-2012 school year, a team of teachers and principals began a three-year long effort to provide job-embedded professional…
ERIC Educational Resources Information Center
Pinkowski, Francis; And Others
Current evaluation activities in the New Jersey school system are surveyed, and recommendations for future evaluation efforts are made. The current activities and future developments of school (or school district), statewide, and project (or program) evaluation are discussed individually. The following program objectives are suggested: to raise…
The Future Revisited: A Progress Report on Forming the Future, 1985.
ERIC Educational Resources Information Center
Gaines, Margie; Schuyler, Nancy B.
This report summarized progress made since 1981-82 on 88 propositions and 292 related recommendations set forth by Forming the Future, a cooperative effort between the Austin (Texas) Independent School District and the Austin community to implement a 5-year program of broad school improvements. Of the 292 recommendations, approximately 86% were…
Future Challenges in Library Science.
ERIC Educational Resources Information Center
Murgai, Sarla R.
This paper considers a number of potential developments for the future of library science and the roles of information professionals. Among the projections are: (1) the use of computers and management science operations research methodologies will form the basis of decision making in libraries in the future; (2) a concerted effort will be made to…
ERIC Educational Resources Information Center
Vergara, Claudia E.; Urban-Lurain, Mark; Campa, Henry, III; Cheruvelil, Kendra S.; Ebert-May, Diane; Fata-Hartley, Cori; Johnston, Kevin
2014-01-01
Doctoral granting institutions prepare future faculty members for academic positions at institutions of higher education across the nation. Growing concerns about whether these institutions are adequately preparing students to meet the demands of a changing academic environment have prompted several reform efforts. We describe a professional…
Physical Education: A View Toward the Future.
ERIC Educational Resources Information Center
Welsh, Raymond, Ed.
This document examines the near future of physical education in the last quarter of the twentieth century. Through this effort, an attempt is made to (1) help clarify the current state of the profession, (2) help to restructure images regarding the possibilities of the profession's future, (3) help to stimulate the formation of plans and…
Experimental investigations of turbulent temperature fluctuations and phase angles in ASDEX Upgrade
NASA Astrophysics Data System (ADS)
Freethy, Simon
2017-10-01
A complete experimental understanding of the turbulent fluctuations in tokamak plasmas is essential for providing confidence in the extrapolation of heat transport models to future experimental devices and reactors. Guided by ``predict first'' nonlinear gyrokinetic simulations with the GENE code, two new turbulence diagnostics were designed and have been installed on ASDEX Upgrade (AUG) to probe the fundamentals of ion-scale turbulent electron heat transport. The first, a 30-channel correlation ECE (CECE) radiometer, measures radial profiles (0.5
NASA Astrophysics Data System (ADS)
Danielson, L. R.; Righter, K.; Vander Kaaden, K. E.; Rowland, R. L., II; Draper, D. S.; McCubbin, F. M.
2017-12-01
Large sample volume 5000 ton multi-anvil presses have contributed to the exploration of deep Earth and planetary interiors, synthesis of ultra-hard and other novel materials, and serve as a sample complement to pressure and temperature regimes already attainable by diamond anvil cell experiments. However, no such facility exists in the Western Hemisphere. We are establishing an open user facility for the entire research community, with the unique capability of a 5000 ton multi-anvil and deformation press, HERA (High pressure Experimental Research Apparatus), supported by a host of extant co-located experimental and analytical laboratories and research staff. We offer wide range of complementary and/or preparatory experimental options. Any required synthesis of materials or follow up experiments can be carried out controlled atmosphere furnaces, piston cylinders, multi-anvil, or experimental impact apparatus. Additionally, our division houses two machine shops that would facilitate any modification or custom work necessary for development of CETUS, one for general fabrication and one located specifically within our experimental facilities. We also have a general sample preparation laboratory, specifically for experimental samples, that allows users to quickly and easily prepare samples for ebeam analyses and more. Our focus as contract staff is on serving the scientific needs of our users and collaborators. We are seeking community expert input on multiple aspects of this facility, such as experimental assembly design, module modifications, immediate projects, and future innovation initiatives. We've built a cooperative network of 12 (and growing) collaborating institutions, including COMPRES. CETUS is a coordinated effort leveraging HERA with our extant experimental, analytical, and planetary process modelling instrumentation and expertise in order to create a comprehensive model of the origin and evolution of our solar system and beyond. We are looking to engage the community in how the CETUS facility can best serve your needs.
Planning for the Future, a Look from Apollo to the Present
NASA Technical Reports Server (NTRS)
Segrera, David
2008-01-01
Future missions out of low Earth orbit, returning to the moon and Mars, will be some of the most complicated endeavors ever attempted by mankind. It will require the wealth of nations and the dedicated efforts of thousand of individuals working in a concerted effort to take man to the moon, Mars and beyond. These missions will require new equipment and new approaches to optimize our limited resources and time in space. This daily planning and optimization which currently is being performed by scores of people in MCC Houston and around the world will need to adapt to the challenges faced far from Earth. By studying the processes, methodologies, and tools employed from Apollo, Skylab, Shuttle, ISS, and other programs such as NEEMO, we can learn from the past to plan for the future. This paper will explore the planning process used from Apollo onward and will discuss their relevancy in future applications.
The cost of model reference adaptive control - Analysis, experiments, and optimization
NASA Technical Reports Server (NTRS)
Messer, R. S.; Haftka, R. T.; Cudney, H. H.
1993-01-01
In this paper the performance of Model Reference Adaptive Control (MRAC) is studied in numerical simulations and verified experimentally with the objective of understanding how differences between the plant and the reference model affect the control effort. MRAC is applied analytically and experimentally to a single degree of freedom system and analytically to a MIMO system with controlled differences between the model and the plant. It is shown that the control effort is sensitive to differences between the plant and the reference model. The effects of increased damping in the reference model are considered, and it is shown that requiring the controller to provide increased damping actually decreases the required control effort when differences between the plant and reference model exist. This result is useful because one of the first attempts to counteract the increased control effort due to differences between the plant and reference model might be to require less damping, however, this would actually increase the control effort. Optimization of weighting matrices is shown to help reduce the increase in required control effort. However, it was found that eventually the optimization resulted in a design that required an extremely high sampling rate for successful realization.
Flegal, Kristin E.; Lustig, Cindy
2016-01-01
Cognitive training programs that instruct specific strategies frequently show limited transfer. Open-ended approaches can achieve greater transfer, but may fail to benefit many older adults due to age deficits in self-initiated processing. We examined whether a compromise that encourages effort at encoding without an experimenter-prescribed strategy might yield better results. Older adults completed memory training under conditions that either 1) mandated a specific strategy to increase deep, associative encoding, 2) attempted to suppress such encoding by mandating rote rehearsal, or 3) encouraged time and effort towards encoding but allowed for strategy choice. The experimenter-enforced associative encoding strategy succeeded in creating integrated representations of studied items, but training-task progress was related to pre-existing ability. Independent of condition assignment, self-reported deep encoding was associated with positive training and transfer effects, suggesting that the most beneficial outcomes occur when environmental support guiding effort is provided but participants generate their own strategies. PMID:26549616
Flegal, Kristin E; Lustig, Cindy
2016-07-01
Cognitive training programs that instruct specific strategies frequently show limited transfer. Open-ended approaches can achieve greater transfer, but may fail to benefit many older adults due to age deficits in self-initiated processing. We examined whether a compromise that encourages effort at encoding without an experimenter-prescribed strategy might yield better results. Older adults completed memory training under conditions that either (1) mandated a specific strategy to increase deep, associative encoding, (2) attempted to suppress such encoding by mandating rote rehearsal, or (3) encouraged time and effort toward encoding but allowed for strategy choice. The experimenter-enforced associative encoding strategy succeeded in creating integrated representations of studied items, but training-task progress was related to pre-existing ability. Independent of condition assignment, self-reported deep encoding was associated with positive training and transfer effects, suggesting that the most beneficial outcomes occur when environmental support guiding effort is provided but participants generate their own strategies.
Nebulized isotonic saline improves voice production in Sjögren's syndrome.
Tanner, Kristine; Nissen, Shawn L; Merrill, Ray M; Miner, Alison; Channell, Ron W; Miller, Karla L; Elstad, Mark; Kendall, Katherine A; Roy, Nelson
2015-10-01
This study examined the effects of a topical vocal fold hydration treatment on voice production over time. Prospective, longitudinal, within-subjects A (baseline), B (treatment), A (withdrawal/reversal), B (treatment) experimental design. Eight individuals with primary Sjögren's syndrome (SS), an autoimmune disease causing laryngeal dryness, completed an 8-week A-B-A-B experiment. Participants performed twice-daily audio recordings of connected speech and sustained vowels and then rated vocal effort, mouth dryness, and throat dryness. Two-week treatment phases introduced twice-daily 9-mL doses of nebulized isotonic saline (0.9% Na(+)Cl(-)). Voice handicap and patient-based measures of SS disease severity were collected before and after each 2-week phase. Connected speech and sustained vowels were analyzed using the Cepstral Spectral Index of Dysphonia (CSID). Acoustic and patient-based ratings during each baseline and treatment phase were analyzed and compared. Baseline CSID and patient-based ratings were in the mild-to-moderate range. CSID measures of voice severity improved by approximately 20% with nebulized saline treatment and worsened during treatment withdrawal. Posttreatment CSID values fell within the normal-to-mild range. Similar patterns were observed in patient-based ratings of vocal effort and dryness. CSID values and patient-based ratings correlated significantly (P < .05). Nebulized isotonic saline improves voice production based on acoustic and patient-based ratings of voice severity. Future work should optimize topical vocal fold hydration treatment formulations, dose, and delivery methodologies for various patient populations. This study lays the groundwork for future topical vocal fold hydration treatment development to manage and possibly prevent dehydration-related voice disorders. 2b. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.
Future Directions for Research in Autism Spectrum Disorders
Damiano, Cara R.; Mazefsky, Carla A.; White, Susan W.; Dichter, Gabriel S.
2014-01-01
This article suggests future directions for research aimed at improved understanding of the etiology and pathophysiology of autism spectrum disorder (ASD) as well as pharmacologic and psychosocial interventions for ASD across the lifespan. The past few years have witnessed unprecedented transformations in the understanding of ASD neurobiology, genetics, early identification, and early intervention. However, recent increases in ASD prevalence estimates highlight the urgent need for continued efforts to translate novel ASD discoveries into effective interventions for all individuals with ASD. In this article we highlight promising areas for ongoing and new research expected to quicken the pace of scientific discovery and ultimately the translation of research findings into accessible and empirically supported interventions for those with ASD. We highlight emerging research in the following domains as particularly promising and pressing: (1) preclinical models; (2) experimental therapeutics; (3) early identification and intervention; (4) psychiatric comorbidities and the Research Domain Criteria (RDoC) initiative; (5) ecological momentary assessment; (6) neurotechnologies; and (7) the needs of adults with ASD. Increased research emphasis in these areas has the potential to hasten the translation of knowledge on the etiological mechanisms of ASD to psychosocial and biological interventions to reduce the burden of ASD on affected individuals and their families. PMID:25216048
Progress on the Fabric for Frontier Experiments Project at Fermilab
NASA Astrophysics Data System (ADS)
Box, Dennis; Boyd, Joseph; Dykstra, Dave; Garzoglio, Gabriele; Herner, Kenneth; Kirby, Michael; Kreymer, Arthur; Levshina, Tanya; Mhashilkar, Parag; Sharma, Neha
2015-12-01
The FabrIc for Frontier Experiments (FIFE) project is an ambitious, major-impact initiative within the Fermilab Scientific Computing Division designed to lead the computing model for Fermilab experiments. FIFE is a collaborative effort between experimenters and computing professionals to design and develop integrated computing models for experiments of varying needs and infrastructure. The major focus of the FIFE project is the development, deployment, and integration of Open Science Grid solutions for high throughput computing, data management, database access and collaboration within experiment. To accomplish this goal, FIFE has developed workflows that utilize Open Science Grid sites along with dedicated and commercial cloud resources. The FIFE project has made significant progress integrating into experiment computing operations several services including new job submission services, software and reference data distribution through CVMFS repositories, flexible data transfer client, and access to opportunistic resources on the Open Science Grid. The progress with current experiments and plans for expansion with additional projects will be discussed. FIFE has taken a leading role in the definition of the computing model for Fermilab experiments, aided in the design of computing for experiments beyond Fermilab, and will continue to define the future direction of high throughput computing for future physics experiments worldwide.
Garssen, Annemarie G; Baattrup-Pedersen, Annette; Riis, Tenna; Raven, Bart M; Hoffman, Carl Christian; Verhoeven, Jos T A; Soons, Merel B
2017-08-01
In many parts of the world, the magnitude and frequency of cold-season precipitation are expected to increase in the near future. This will result in an increased magnitude and duration of winter and spring flooding by rain-fed streams and rivers. Such climate-driven increases in flooding are likely to affect riparian plant communities, but future vegetation changes are hard to predict due to current lack of data. To fill this knowledge gap, we experimentally modified the hydrology of five streams across three countries in north-western Europe during late winter/early spring over a period of 3 years. We assessed the responses in riparian plant species richness, biomass, plant-available nitrogen and phosphorus and seed deposition to increased flooding depth (+18 cm on average at the lowest positions along the riparian gradient) and prolonged flooding duration (6 weeks on average). After 3 years of increased flooding, there was an overall decline in riparian species richness, while riparian plant biomass increased. Extractable soil nitrogen and phosphorus also increased and are likely to have contributed to the increased biomass. Increased flooding resulted in the arrival of more seeds of additional species to the riparian zone, thereby potentially facilitating the shifts in riparian plant species composition we observed. The results of our concerted experimental effort demonstrate that changes in stream riparian plant communities can occur rapidly following increased winter flooding, leading to strong reductions in plant species diversity. © 2017 The Authors. Global Change Biology published by John Wiley & Sons Ltd.
Serper, M; Payne, E; Dill, C; Portillo, C; Taliercio, J
2017-10-01
Poor motivation to engage in goal-oriented behavior has been recognized as a hallmark feature of schizophrenia spectrum disorders (SZ). Low drive in SZ may be related to anticipating rewards as well as to poor working memory. However, few studies to date have examined beliefs about self-efficacy and satisfaction for future rewards (anticipatory pleasure). Additionally, few studies to date have examined how these deficits may impact SZ patients' real world functioning. The present study examined SZ patients' (n=57) anticipatory pleasure, working memory, self-efficacy and real world functioning in relation to their negative symptom severity. Results revealed that SZ patients' negative symptom severity was related to decisions in effort allocation and reward probability, working memory deficits, self-efficacy and anticipatory pleasure for future reward. Effort allocation deficits also predicted patients' daily functioning skills. SZ patients with high levels of negative symptoms are not merely effort averse, but have more difficulty effectively allocating effort and anticipating pleasure engaging in effortful activities. It may be the case that continuously failing to achieve reinforcement from engagement and participation may lead SZ patients to form certain negative beliefs about their abilities which contributes to amotivation and cognitive deficits. Lastly, our findings provide further support for a link between SZ patients functional daily living skills their effort allocation. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
NASA Technology Investments in Electric Propulsion: New Directions in the New Millennium
NASA Technical Reports Server (NTRS)
Sankovic, John M.
2002-01-01
The last decade was a period of unprecedented acceptance of NASA developed electric propulsion by the user community. The benefits of high performance electric propulsion systems are now widely recognized, and new technologies have been accepted across the commonly. NASA clearly recognizes the need for new, high performance, electric propulsion technologies for future solar system missions and is sponsoring aggressive efforts in this area. These efforts are mainly conducted under the Office of Aerospace Technology. Plans over the next six years include the development of next generation ion thrusters for end of decade missions. Additional efforts are planned for the development of very high power thrusters, including magnetoplasmadynamic, pulsed inductive, and VASIMR, and clusters of Hall thrusters. In addition to the in-house technology efforts, NASA continues to work closely with both supplier and user communities to maximize the acceptance of new technology in a timely and cost-effective manner. This paper provides an overview of NASA's activities in the area of electric propulsion with an emphasis on future program directions.
Measurement of fracture properties of concrete at high strain rates
Cendón, D. A.; Sánchez-Gálvez, V.; Gálvez, F.
2017-01-01
An analysis of the spalling technique of concrete bars using the modified Hopkinson bar was carried out. A new experimental configuration is proposed adding some variations to previous works. An increased length for concrete specimens was chosen and finite-element analysis was used for designing a conic projectile to obtain a suitable triangular impulse wave. The aim of this initial work is to establish an experimental framework which allows a simple and direct analysis of concrete subjected to high strain rates. The efforts and configuration of these primary tests, as well as the selected geometry and dimensions for the different elements, have been focused to achieve a simple way of identifying the fracture position and so the tensile strength of tested specimens. This dynamic tensile strength can be easily compared with previous values published in literature giving an idea of the accuracy of the method and technique proposed and the possibility to extend it in a near future to obtain other mechanical properties such as the fracture energy. The tests were instrumented with strain gauges, accelerometers and high-speed camera in order to validate the results by different ways. Results of the dynamic tensile strength of the tested concrete are presented. This article is part of the themed issue ‘Experimental testing and modelling of brittle materials at high strain rates’. PMID:27956510
Soviet ionospheric modification research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duncan, L.M.; Carlson, H.C.; Djuth, F.T.
1988-07-01
Soviet published literature in ionospheric modification research by high-power radio waves is assessed, including an evaluation of its impact on and applications to future remote-sensing and telecommunications systems. This assessment is organized to place equal emphasis on basic research activities, designed to investigate both the natural geophysical environment and fundamental plasma physics; advanced research programs, such as those studying artificial ionization processes and oblique high-power radio propagation and practical system applications and operational limitations addressed by this research. The assessment indicates that the Soviet Union sustains high-quality theoretical and experimental research programs in ionospheric modification, with a breadth and levelmore » of effort greatly exceeding comparable Western programs. Soviet theoretical research tends to be analytical and intuitive, as compared to the Western emphasis on numerical simulation techniques. The Soviet experimental approach is less exploratory, designed principally to confirm theoretical predictions. Although limited by inferior diagnostic capabilities, Soviet experimental facilities are more numerous, operate on a more regular basis, and transmit radio wave powers exceeding those os Western facilities. Because of its broad scope of activity, the Soviet Union is better poised to quickly exploit new technologies and system applications as they are developed. This panel has identified several key areas of Soviet research activity and emerging technology that may offer long-term opportunities for remote-sensing and telecommunications advantages. However, we have found no results that suggest imminent breakthrough discoveries in these fields.« less
Forman, Jason L; Lopez-Valdes, Francisco J; Duprey, Sonia; Bose, Dipan; Del Pozo de Dios, Eduardo; Subit, Damien; Gillispie, Tim; Crandall, Jeff R; Segui-Gomez, Maria
2015-07-01
Road traffic injuries account for 1.3 million deaths per year world-wide. Mitigating both fatalities and injuries requires a detailed understanding of the tolerance of the human body to external load. To identify research priorities, it is necessary to periodically compare trends in injury tolerance research to the characteristics of injuries occurring in the field. This study sought to perform a systematic review on the last twenty years of experimental injury tolerance research, and to evaluate those results relative to available epidemiologic data. Four hundred and eight experimental injury tolerance studies from 1990-2009 were identified from a reference index of over 68,000 papers. Examined variables included the body regions, ages, and genders studied; and the experimental models used. Most (20%) of the publications studied injury to the spine. There has also been a substantial volume of biomechanical research focused on upper and lower extremity injury, thoracic injury, and injury to the elderly - although these injury types still occur with regularity in the field. In contrast, information on pediatric injury and physiological injury (especially in the central nervous system) remains lacking. Given their frequency of injury in the field, future efforts should also include improving our understanding of tolerances and protection of vulnerable road users (e.g., motorcyclists, pedestrians). Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lai, Hanh; McJunkin, Timothy R.; Miller, Carla J.; Scott, Jill R.; Almirall, José R.
2008-09-01
The combined use of SIMION 7.0 and the statistical diffusion simulation (SDS) user program in conjunction with SolidWorks® with COSMSOSFloWorks® fluid dynamics software to model a complete, commercial ion mobility spectrometer (IMS) was demonstrated for the first time and compared to experimental results for tests using compounds of immediate interest in the security industry (e.g., 2,4,6-trinitrotoluene, 2,7-dinitrofluorene, and cocaine). The effort of this research was to evaluate the predictive power of SIMION/SDS for application to IMS instruments. The simulation was evaluated against experimental results in three studies: (1) a drift:carrier gas flow rates study assesses the ability of SIMION/SDS to correctly predict the ion drift times; (2) a drift gas composition study evaluates the accuracy in predicting the resolution; (3) a gate width study compares the simulated peak shape and peak intensity with the experimental values. SIMION/SDS successfully predicted the correct drift time, intensity, and resolution trends for the operating parameters studied. Despite the need for estimations and assumptions in the construction of the simulated instrument, SIMION/SDS was able to predict the resolution between two ion species in air within 3% accuracy. The preliminary success of IMS simulations using SIMION/SDS software holds great promise for the design of future instruments with enhanced performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanh Lai; Timothy R. McJunkin; Carla J. Miller
2008-09-01
The combined use of SIMION 7.0 and the statistical diffusion simulation (SDS) user program in conjunction with SolidWorks® with COSMSOFloWorks® fluid dynamics software to model a complete, commercial ion mobility spectrometer (IMS) was demonstrated for the first time and compared to experimental results for tests using compounds of immediate interest in the security industry (e.g., 2,4,6-trinitrotoluene and cocaine). The effort of this research was to evaluate the predictive power of SIMION/SDS for application to IMS instruments. The simulation was evaluated against experimental results in three studies: 1) a drift:carrier gas flow rates study assesses the ability of SIMION/SDS to correctlymore » predict the ion drift times; 2) a drift gas composition study evaluates the accuracy in predicting the resolution; and 3) a gate width study compares the simulated peak shape and peak intensity with the experimental values. SIMION/SDS successfully predicted the correct drift time, intensity, and resolution trends for the operating parameters studied. Despite the need for estimations and assumptions in the construction of the simulated instrument, SIMION/SDS was able to predict the resolution between two ion species in air within 3% accuracy. The preliminary success of IMS simulations using SIMION/SDS software holds great promise for the design of future instruments with enhanced performance.« less
Aerothermal modeling, phase 1. Volume 2: Experimental data
NASA Technical Reports Server (NTRS)
Kenworthy, M. J.; Correa, S. M.; Burrus, D. L.
1983-01-01
The experimental test effort is discussed. The test data are presented. The compilation is divided into sets representing each of the 18 experimental configurations tested. A detailed description of each configuration, and plots of the temperature difference ratio parameter or pattern factor parameter calculated from the test data are also provided.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-06
... appropriate habitat is found, the area will be considered for experimental introduction. The conservation committee will increase research efforts in experimental translocations in Conservation Area B and evaluate... conduct experimental vegetation treatments within existing conservation areas to determine if this...
Promising Practices and Programs: Current Efforts and Future Directions
ERIC Educational Resources Information Center
Crisp, Gloria
2016-01-01
The final chapter of the issue provides a synthesis of the first eight chapters, offers conclusions and recommendations, and considers future directions regarding practices and programs with promise for high impact at community colleges around the country.
Carasik, Lane B.; Shaver, Dillon R.; Haefner, Jonah B.; ...
2017-08-21
We report the development of molten salt cooled reactors (MSR) and fluoride-salt cooled high temperature reactors (FHR) requires the use of advanced design tools for the primary heat exchanger design. Due to geometric and flow characteristics, compact (pitch to diameter ratios equal to or less than 1.25) heat exchangers with a crossflow flow arrangement can become desirable for these reactors. Unfortunately, the available experimental data is limited for compact tube bundles or banks in crossflow. Computational Fluid Dynamics can be used to alleviate the lack of experimental data in these tube banks. Previous computational efforts have been primarily focused onmore » large S/D ratios (larger than 1.4) using unsteady Reynolds averaged Navier-Stokes and Large Eddy Simulation frameworks. These approaches are useful, but have large computational requirements that make comprehensive design studies impractical. A CFD study was conducted with steady RANS in an effort to provide a starting point for future design work. The study was performed for an in-line tube bank geometry with FLiBe (LiF-BeF2), a frequently selected molten salt, as the working fluid. Based on the estimated pressure drops, the pressure and velocity distributions in the domain, an appropriate meshing strategy was determined and presented. Periodic boundaries in the spanwise direction transverse flow were determined to be an appropriate boundary condition for reduced computational domains. The domain size was investigated and a minimum of 2-flow channels for a domain is recommended to ensure the behavior is accounted for. Finally, the standard low Re κ-ε (Lien) turbulence model was determined to be the most appropriate for steady RANS of this case at the time of writing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carasik, Lane B.; Shaver, Dillon R.; Haefner, Jonah B.
We report the development of molten salt cooled reactors (MSR) and fluoride-salt cooled high temperature reactors (FHR) requires the use of advanced design tools for the primary heat exchanger design. Due to geometric and flow characteristics, compact (pitch to diameter ratios equal to or less than 1.25) heat exchangers with a crossflow flow arrangement can become desirable for these reactors. Unfortunately, the available experimental data is limited for compact tube bundles or banks in crossflow. Computational Fluid Dynamics can be used to alleviate the lack of experimental data in these tube banks. Previous computational efforts have been primarily focused onmore » large S/D ratios (larger than 1.4) using unsteady Reynolds averaged Navier-Stokes and Large Eddy Simulation frameworks. These approaches are useful, but have large computational requirements that make comprehensive design studies impractical. A CFD study was conducted with steady RANS in an effort to provide a starting point for future design work. The study was performed for an in-line tube bank geometry with FLiBe (LiF-BeF2), a frequently selected molten salt, as the working fluid. Based on the estimated pressure drops, the pressure and velocity distributions in the domain, an appropriate meshing strategy was determined and presented. Periodic boundaries in the spanwise direction transverse flow were determined to be an appropriate boundary condition for reduced computational domains. The domain size was investigated and a minimum of 2-flow channels for a domain is recommended to ensure the behavior is accounted for. Finally, the standard low Re κ-ε (Lien) turbulence model was determined to be the most appropriate for steady RANS of this case at the time of writing.« less
The History of Presolar Grains
NASA Technical Reports Server (NTRS)
Bernatowicz, Thomas J.
2004-01-01
Below we summarize the results of our investigations into the history of presolar grains that were conducted in the last year. During this time we have expended much of our effort in the development of experimental techniques and sample preparation methods that are needed to laboratory in December, 2000. Specific information on this instrument is contained in the Full Proposal of PI Ernst Zinner and will not be repeated here. Our general strategy in the past year has been in large measure to explore novel sample handling methods for the very small (sub-micron), but more representative, presolar grains that can now be characterized isotopically in the NanoSIMS. We have developed experimental techniques that will permit NanoSIMS analyses of the very same ultramicrotome sections studied in the TEM, and we have developed grain dispersion, handling and mounting techniques that permit NanoSIMS isotopic analysis as well as field emission SEM, high energy TEM, and atomic force microscopy of pristine presolar grains. Although much of this has been slow and very difficult work that has no immediate payoff in terms of publishable results, we considered it absolutely necessary groundwork for future discoveries, especially in the realm of individual presolar grains that have been inaccessible to past studies due to size constraints. As discussed below, we have been largely successful in these endeavors, and expect to reap the benefits of this work in the next year. We also report on our continued morphologic studies of pristine presolar grains, on our investigations of presolar graphite grains from supernovae as well as on rarer types of presotar SIC, on the search for presolar silicates, and on our efforts to obtain direct size-distribution information on presolar SiC through X-ray mapping techniques.
Kolar, Roman
2015-05-01
Scientific findings have revealed how much we have dramatically underestimated the intellectual, social and emotional capabilities of non-human animals, including their levels of self-consciousness and ability to suffer from psychological stress. In the 21st century, the field of animal ethics has evolved as a serious scientific discipline, and nowadays largely advocates that the way we treat animals, both legally and in practice, is morally wrong. Politics and legislation have reacted to these facts, to some extent, but neither current legislation nor current practice reflect the scientific and moral state-of-the-art. Too often, the will to change things is watered down in the decision-making process, e.g. in the drafting of legislation. In the field of animal experimentation there have been many genuine efforts by various players, to advance and apply the principles behind the Three Rs. However, the fundamental problem, i.e. the overall number of animals sacrificed for scientific purposes, has increased. Clearly, if we are serious about our will to regard animal experimentation as an ethical and societal problem, we have to put much more emphasis on addressing the question of how to avoid the use of animals in science. To achieve this goal, certain issues need to be considered: a) the present system of ethical evaluation of animal experiments, including testing for regulatory purposes, needs to be reformed and applied effectively to meet the legal and moral requirements; b) animal testing must be avoided in future legislation, and existing legislation has to be revised in that regard; c) resources from animal-based research have to re-allocated toward alternatives; and d) the academic curricula must be reformed to foster and integrate ethical and animal welfare issues. 2015 FRAME.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grabaskas, David; Bucknor, Matthew; Jerden, James
2016-02-01
The development of an accurate and defensible mechanistic source term will be vital for the future licensing efforts of metal fuel, pool-type sodium fast reactors. To assist in the creation of a comprehensive mechanistic source term, the current effort sought to estimate the release fraction of radionuclides from metal fuel pins to the primary sodium coolant during fuel pin failures at a variety of temperature conditions. These release estimates were based on the findings of an extensive literature search, which reviewed past experimentation and reactor fuel damage accidents. Data sources for each radionuclide of interest were reviewed to establish releasemore » fractions, along with possible release dependencies, and the corresponding uncertainty levels. Although the current knowledge base is substantial, and radionuclide release fractions were established for the elements deemed important for the determination of offsite consequences following a reactor accident, gaps were found pertaining to several radionuclides. First, there is uncertainty regarding the transport behavior of several radionuclides (iodine, barium, strontium, tellurium, and europium) during metal fuel irradiation to high burnup levels. The migration of these radionuclides within the fuel matrix and bond sodium region can greatly affect their release during pin failure incidents. Post-irradiation examination of existing high burnup metal fuel can likely resolve this knowledge gap. Second, data regarding the radionuclide release from molten high burnup metal fuel in sodium is sparse, which makes the assessment of radionuclide release from fuel melting accidents at high fuel burnup levels difficult. This gap could be addressed through fuel melting experimentation with samples from the existing high burnup metal fuel inventory.« less
Rapid freezing of water under dynamic compression
NASA Astrophysics Data System (ADS)
Myint, Philip C.; Belof, Jonathan L.
2018-06-01
Understanding the behavior of materials at extreme pressures is a central issue in fields like aerodynamics, astronomy, and geology, as well as for advancing technological grand challenges such as inertial confinement fusion. Dynamic compression experiments to probe high-pressure states often encounter rapid phase transitions that may cause the materials to behave in unexpected ways, and understanding the kinetics of these phase transitions remains an area of great interest. In this review, we examine experimental and theoretical/computational efforts to study the freezing kinetics of water to a high-pressure solid phase known as ice VII. We first present a detailed analysis of dynamic compression experiments in which water has been observed to freeze on sub-microsecond time scales to ice VII. This is followed by a discussion of the limitations of currently available molecular and continuum simulation methods in modeling these experiments. We then describe how our phase transition kinetics models, which are based on classical nucleation theory, provide a more physics-based framework that overcomes some of these limitations. Finally, we give suggestions on future experimental and modeling work on the liquid–ice VII transition, including an outline of the development of a predictive multiscale model in which molecular and continuum simulations are intimately coupled.
A review of the effects of nicotine on social functioning.
Martin, Lea M; Sayette, Michael A
2018-06-28
Many smokers are aware that smoking is a dangerous health behavior and eventually try to quit smoking. Unfortunately, most quit attempts end in failure. Traditionally, the addictive nature of smoking has been attributed to the pharmacologic effects of nicotine. In an effort to offer a more comprehensive, biobehavioral analysis of smoking behavior and motivation, some researchers have begun to consider the role of social factors in smoking. In line with recent recommendations to integrate social and pharmacological analyses of smoking, we reviewed the experimental literature examining the effects of nicotine and nicotine withdrawal on social functioning. The review identified 13 studies that experimentally manipulated nicotine and assessed social functioning, 12 of which found support for nicotine's enhancement of social functioning. Although few experiments have investigated social functioning, they nevertheless offer compelling evidence that nicotine enhances social functioning in smokers and suggest that nicotine deprivation may hamper social functioning in those dependent on nicotine. Future directions for investigating social outcomes and context in those who use nicotine products are discussed with a focus on leveraging advances in social and developmental psychology, animal research, sociology, and neuroimaging to more comprehensively understand smoking behavior. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
WIND Validation Cases: Computational Study of Thermally-perfect Gases
NASA Technical Reports Server (NTRS)
DalBello, Teryn; Georgiadis, Nick (Technical Monitor)
2002-01-01
The ability of the WIND Navier-Stokes code to predict the physics of multi-species gases is investigated in support of future high-speed, high-temperature propulsion applications relevant to NASA's Space Transportation efforts. Three benchmark cases are investigated to evaluate the capability of the WIND chemistry model to accurately predict the aerodynamics of multi-species chemically non-reacting (frozen) gases. Case 1 represents turbulent mixing of sonic hydrogen and supersonic vitiated air. Case 2 consists of heated and unheated round supersonic jet exiting to ambient. Case 3 represents 2-D flow through a converging-diverging Mach 2 nozzle. For Case 1, the WIND results agree fairly well with experimental results and that significant mixing occurs downstream of the hydrogen injection point. For Case 2, the results show that the Wilke and Sutherland viscosity laws gave similar results, and the available SST turbulence model does not predict round supersonic nozzle flows accurately. For Case 3, results show that experimental, frozen, and 1-D gas results agree fairly well, and that frozen, homogeneous, multi-species gas calculations can be approximated by running in perfect gas mode while specifying the mixture gas constant and Ratio of Specific Heats.
Kinetic physics in ICF: present understanding and future directions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rinderknecht, Hans G.; Amendt, P. A.; Wilks, S. C.
Kinetic physics has the potential to impact the performance of indirect-drive inertial confinement fusion (ICF) experiments. Systematic anomalies in the National Ignition Facility implosion dataset have been identified in which kinetic physics may play a role, including inferred missing energy in the hohlraum, drive asymmetry in near-vacuum hohlraums, low areal density and high burn-averaged ion temperatures (T i ) compared with mainline simulations, and low ratios of the DD-neutron and DT-neutron yields and inferred T i . Several components of ICF implosions are likely to be influenced or dominated by kinetic physics: laser-plasma interactions in the LEH and hohlraum interior;more » the hohlraum wall blowoff, blowoff/gas and blowoff/ablator interfaces; the ablator and ablator/ice interface; and the DT fuel all present conditions in which kinetic physics can significantly affect the dynamics. This review presents the assembled experimental data and simulation results to date, which indicate that the effects of long mean-free-path plasma phenomena and self-generated electromagnetic fields may have a significant impact in ICF targets. Finally, simulation and experimental efforts are proposed to definitively quantify the importance of these effects at ignition-relevant conditions, including priorities for ongoing study.« less
DLR HABLEG- High Altitude Balloon Launched Experimental Glider
NASA Astrophysics Data System (ADS)
Wlach, S.; Schwarzbauch, M.; Laiacker, M.
2015-09-01
The group Flying Robots at the DLR Institute of Robotics and Mechatronics in Oberpfaffenhofen conducts research on solar powered high altitude aircrafts. Due to the high altitude and the almost infinite mission duration, these platforms are also denoted as High Altitude Pseudo-Satellites (HAPS). This paper highlights some aspects of the design, building, integration and testing of a flying experimental platform for high altitudes. This unmanned aircraft, with a wingspan of 3 m and a mass of less than 10 kg, is meant to be launched as a glider from a high altitude balloon in 20 km altitude and shall investigate technologies for future large HAPS platforms. The aerodynamic requirements for high altitude flight included the development of a launch method allowing for a safe transition to horizontal flight from free-fall with low control authority. Due to the harsh environmental conditions in the stratosphere, the integration of electronic components in the airframe is a major effort. For regulatory reasons a reliable and situation dependent flight termination system had to be implemented. In May 2015 a flight campaign was conducted. The mission was a full success demonstrating that stratospheric research flights are feasible with rather small aircrafts.
Kinetic physics in ICF: present understanding and future directions
Rinderknecht, Hans G.; Amendt, P. A.; Wilks, S. C.; ...
2018-03-19
Kinetic physics has the potential to impact the performance of indirect-drive inertial confinement fusion (ICF) experiments. Systematic anomalies in the National Ignition Facility implosion dataset have been identified in which kinetic physics may play a role, including inferred missing energy in the hohlraum, drive asymmetry in near-vacuum hohlraums, low areal density and high burn-averaged ion temperatures (T i ) compared with mainline simulations, and low ratios of the DD-neutron and DT-neutron yields and inferred T i . Several components of ICF implosions are likely to be influenced or dominated by kinetic physics: laser-plasma interactions in the LEH and hohlraum interior;more » the hohlraum wall blowoff, blowoff/gas and blowoff/ablator interfaces; the ablator and ablator/ice interface; and the DT fuel all present conditions in which kinetic physics can significantly affect the dynamics. This review presents the assembled experimental data and simulation results to date, which indicate that the effects of long mean-free-path plasma phenomena and self-generated electromagnetic fields may have a significant impact in ICF targets. Finally, simulation and experimental efforts are proposed to definitively quantify the importance of these effects at ignition-relevant conditions, including priorities for ongoing study.« less
Kinetic physics in ICF: present understanding and future directions
NASA Astrophysics Data System (ADS)
Rinderknecht, Hans G.; Amendt, P. A.; Wilks, S. C.; Collins, G.
2018-06-01
Kinetic physics has the potential to impact the performance of indirect-drive inertial confinement fusion (ICF) experiments. Systematic anomalies in the National Ignition Facility implosion dataset have been identified in which kinetic physics may play a role, including inferred missing energy in the hohlraum, drive asymmetry in near-vacuum hohlraums, low areal density and high burn-averaged ion temperatures (〈Ti 〉) compared with mainline simulations, and low ratios of the DD-neutron and DT-neutron yields and inferred 〈Ti 〉. Several components of ICF implosions are likely to be influenced or dominated by kinetic physics: laser-plasma interactions in the LEH and hohlraum interior; the hohlraum wall blowoff, blowoff/gas and blowoff/ablator interfaces; the ablator and ablator/ice interface; and the DT fuel all present conditions in which kinetic physics can significantly affect the dynamics. This review presents the assembled experimental data and simulation results to date, which indicate that the effects of long mean-free-path plasma phenomena and self-generated electromagnetic fields may have a significant impact in ICF targets. Simulation and experimental efforts are proposed to definitively quantify the importance of these effects at ignition-relevant conditions, including priorities for ongoing study.
Wang, Jian -Jun; Wang, Yi; Ihlefeld, Jon F.; ...
2016-04-06
Effective thermal conductivity as a function of domain structure is studied by solving the heat conduction equation using a spectral iterative perturbation algorithm in materials with inhomogeneous thermal conductivity distribution. Using this proposed algorithm, the experimentally measured effective thermal conductivities of domain-engineered {001} p-BiFeO 3 thin films are quantitatively reproduced. In conjunction with two other testing examples, this proposed algorithm is proven to be an efficient tool for interpreting the relationship between the effective thermal conductivity and micro-/domain-structures. By combining this algorithm with the phase-field model of ferroelectric thin films, the effective thermal conductivity for PbZr 1-xTi xO 3 filmsmore » under different composition, thickness, strain, and working conditions is predicted. It is shown that the chemical composition, misfit strain, film thickness, film orientation, and a Piezoresponse Force Microscopy tip can be used to engineer the domain structures and tune the effective thermal conductivity. Furthermore, we expect our findings will stimulate future theoretical, experimental and engineering efforts on developing devices based on the tunable effective thermal conductivity in ferroelectric nanostructures.« less
Genetics and morphology of Aedes aegypti (Diptera: Culicidae) in septic tanks in Puerto Rico.
Somers, Gerard; Brown, Julia E; Barrera, Roberto; Powell, Jeffrey R
2011-11-01
Dengue viruses, primarily transmitted by the mosquito Aedes aegypti (L.), affect an estimated 50-100 million people yearly. Traditional approaches to control mosquito population numbers, such as the use of pesticides, have had only limited success. Atypical mosquito behavior may be one reason why current vector control efforts have been less efficacious than expected. In Puerto Rico, for example, adult Ae. aegypti have been observed emerging from septic tanks. Interestingly, adults emerging from septic tanks are larger on average than adults collected from surface containers. To determine whether adults colonizing septic tanks constitute a separate Ae. aegypti population, we used 12 previously validated microsatellite loci to examine adult mosquitoes collected from both septic tanks and surface containers, but found no evidence to suggest genetic differentiation. Size differences between septic tank and surface mosquitoes were reduced when nutrient levels were held constant across experimental groups. Despite the absence of evidence suggesting a genetic difference between experimental groups in this study, Ae. aegypti emerging from septic tanks may still represent a more dangerous phenotype and should be given special consideration when developing vector control programs and designing public health interventions in the future.
Genetics and Morphology of Aedes aegypti (Diptera: Culicidae) in Septic Tanks in Puerto Rico
SOMERS, GERARD; BROWN, JULIA E.; BARRERA, ROBERTO; POWELL, JEFFREY R.
2012-01-01
Dengue viruses, primarily transmitted by the mosquito Aedes aegypti (L.), affect an estimated 50–100 million people yearly. Traditional approaches to control mosquito population numbers, such as the use of pesticides, have had only limited success. Atypical mosquito behavior may be one reason why current vector control efforts have been less efficacious than expected. In Puerto Rico, for example, adult Ae. aegypti have been observed emerging from septic tanks. Interestingly, adults emerging from septic tanks are larger on average than adults collected from surface containers. To determine whether adults colonizing septic tanks constitute a separate Ae. aegypti population, we used 12 previously validated microsatellite loci to examine adult mosquitoes collected from both septic tanks and surface containers, but found no evidence to suggest genetic differentiation. Size differences between septic tank and surface mosquitoes were reduced when nutrient levels were held constant across experimental groups. Despite the absence of evidence suggesting a genetic difference between experimental groups in this study, Ae. aegypti emerging from septic tanks may still represent a more dangerous phenotype and should be given special consideration when developing vector control programs and designing public health interventions in the future. PMID:22238867
Project-Based Learning in Programmable Logic Controller
NASA Astrophysics Data System (ADS)
Seke, F. R.; Sumilat, J. M.; Kembuan, D. R. E.; Kewas, J. C.; Muchtar, H.; Ibrahim, N.
2018-02-01
Project-based learning is a learning method that uses project activities as the core of learning and requires student creativity in completing the project. The aims of this study is to investigate the influence of project-based learning methods on students with a high level of creativity in learning the Programmable Logic Controller (PLC). This study used experimental methods with experimental class and control class consisting of 24 students, with 12 students of high creativity and 12 students of low creativity. The application of project-based learning methods into the PLC courses combined with the level of student creativity enables the students to be directly involved in the work of the PLC project which gives them experience in utilizing PLCs for the benefit of the industry. Therefore, it’s concluded that project-based learning method is one of the superior learning methods to apply on highly creative students to PLC courses. This method can be used as an effort to improve student learning outcomes and student creativity as well as to educate prospective teachers to become reliable educators in theory and practice which will be tasked to create qualified human resources candidates in order to meet future industry needs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marian, Jaime; Becquart, Charlotte S.; Domain, Christophe
2017-06-09
Under the anticipated operating conditions for demonstration magnetic fusion reactors beyond ITER, structural materials will be exposed to unprecedented conditions of irradiation, heat flux, and temperature. While such extreme environments remain inaccessible experimentally, computational modeling and simulation can provide qualitative and quantitative insights into materials response and complement the available experimental measurements with carefully validated predictions. For plasma facing components such as the first wall and the divertor, tungsten (W) has been selected as the best candidate material due to its superior high-temperature and irradiation properties. In this paper we provide a review of recent efforts in computational modeling ofmore » W both as a plasma-facing material exposed to He deposition as well as a bulk structural material subjected to fast neutron irradiation. We use a multiscale modeling approach –commonly used as the materials modeling paradigm– to define the outline of the paper and highlight recent advances using several classes of techniques and their interconnection. We highlight several of the most salient findings obtained via computational modeling and point out a number of remaining challenges and future research directions« less
Aquaporin 4 in Astrocytes is a Target for Therapy in Alzheimer's Disease.
Lan, Yu-Long; Chen, Jian-Jiao; Hu, Gang; Xu, Jun; Xiao, Ming; Li, Shao
2017-01-01
Current experimental evidence points to the conclusion that aquaporin 4 (AQP4), which is an important water-channel membrane protein found in the brain, could play major roles in various brain conditions pathologically including pathogenesis of Alzheimer's disease (AD). In this paper, we review how AQP4 and altered astrocyte functions interact in AD, and provide experimental evidence highlighting the importance of this topic for the future investigations. The interactions of AQP4 are as follows: (i) AQP4 could influence astrocytic calcium signaling and potassium homeostasis. (ii) AQP4 is linked with the removal of interstitial β-amyloid and glutamate transmission. (iii) Furthermore, AQP4 modulates the reactive astrogliosis and neuroinflammation mechanisms. (iv) To add to this, AQP4 could participate in the AD pathogenesis through affecting neurotrophic factor production. It is therefore possible to identify certain functional molecules that regulate astrocyte make-up and functions. However, making crucial efforts to develop specific agents or drugs that target AQP4 function and test their therapeutic efficiency will be a breakthrough for addressing AD in that AQP4 controls the various physiological as well as pathophysiological features of astrocytes. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Innovations in compact stellarator coil design
NASA Astrophysics Data System (ADS)
Pomphrey, N.; Berry, L.; Boozer, A.; Brooks, A.; Hatcher, R. E.; Hirshman, S. P.; Ku, L.-P.; Miner, W. H.; Mynick, H. E.; Reiersen, W.; Strickler, D. J.; Valanju, P. M.
2001-03-01
Experimental devices for the study of the physics of high beta (β gtrsim 4%), low aspect ratio (A lesssim 4.5) stellarator plasmas require coils that will produce plasmas satisfying a set of physics goals, provide experimental flexibility and be practical to construct. In the course of designing a flexible coil set for the National Compact Stellarator Experiment, several innovations have been made that may be useful in future stellarator design efforts. These include: the use of singular value decomposition methods for obtaining families of smooth current potentials on distant coil winding surfaces from which low current density solutions may be identified; the use of a control matrix method for identifying which few of the many detailed elements of a stellarator boundary must be targeted if a coil set is to provide fields to control the essential physics of the plasma; the use of a genetic algorithm for choosing an optimal set of discrete coils from a continuum of potential contours; the evaluation of alternate coil topologies for balancing the trade-off between physics objectives and engineering constraints; the development of a new coil optimization code for designing modular coils and the identification of a `natural' basis for describing current sheet distributions.
Rapid freezing of water under dynamic compression.
Myint, Philip C; Belof, Jonathan L
2018-06-13
Understanding the behavior of materials at extreme pressures is a central issue in fields like aerodynamics, astronomy, and geology, as well as for advancing technological grand challenges such as inertial confinement fusion. Dynamic compression experiments to probe high-pressure states often encounter rapid phase transitions that may cause the materials to behave in unexpected ways, and understanding the kinetics of these phase transitions remains an area of great interest. In this review, we examine experimental and theoretical/computational efforts to study the freezing kinetics of water to a high-pressure solid phase known as ice VII. We first present a detailed analysis of dynamic compression experiments in which water has been observed to freeze on sub-microsecond time scales to ice VII. This is followed by a discussion of the limitations of currently available molecular and continuum simulation methods in modeling these experiments. We then describe how our phase transition kinetics models, which are based on classical nucleation theory, provide a more physics-based framework that overcomes some of these limitations. Finally, we give suggestions on future experimental and modeling work on the liquid-ice VII transition, including an outline of the development of a predictive multiscale model in which molecular and continuum simulations are intimately coupled.
Paek, Hye-Jin
2008-11-01
This study explores moderating roles of primary social influences in the relationship between adolescent triers' and experimenters' self-reported exposure to antismoking messages and their smoking intentions. The theoretical arguments are drawn from primary socialization theory, group socialization theory, and the social development model, and the data are from the 2004 National Youth Tobacco Survey. The tobit regression models demonstrate that, as a primary social influence, peer smoking seems to be a strong risk factor for all of the adolescent segments' smoking intentions, whereas parental monitoring can be a significant counter-risk factor for middle-schoolers' smoking intentions. In addition, school intervention programs and parental monitoring against smoking appear to play a moderating role in the relationship between high-school triers' self-reported exposure to antismoking messages and their smoking intentions. The findings seem to suggest that campaigners should make more efforts to incorporate primary social influences to prevent adolescent smoking. The findings also suggest that campaigners should tailor antismoking programs to fit specific target audiences. In particular, middle-school experimenters deserve more attention from antismoking campaigners because they seem most vulnerable to future smoking.
Recent Advances and Future Prospects in Fundamental Symmetries
NASA Astrophysics Data System (ADS)
Plaster, Brad
2017-09-01
A broad program of initiatives in fundamental symmetries seeks answers to several of the most pressing open questions in nuclear physics, ranging from the scale of the neutrino mass, to the particle-antiparticle nature of the neutrino, to the origin of the matter-antimatter asymmetry, to the limits of Standard Model interactions. Although the experimental program is quite broad, with efforts ranging from precision measurements of neutrino properties; to searches for electric dipole moments; to precision measurements of magnetic dipole moments; and to precision measurements of couplings, particle properties, and decays; all of these seemingly disparate initiatives are unified by several common threads. These include the use and exploitation of symmetry principles, novel cross-disciplinary experimental work at the forefront of the precision frontier, and the need for accompanying breakthroughs in development of the theory necessary for an interpretation of the anticipated results from these experiments. This talk will highlight recent accomplishments and advances in fundamental symmetries and point to the extraordinary level of ongoing activity aimed at realizing the development and interpretation of next-generation experiments. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Award Number DE-SC-0014622.
2012-01-01
Treatment of large bone defects represents a great challenge in orthopedic and craniomaxillofacial surgery. Although there are several methods for bone reconstruction, they all have specific indications and limitations. The concept of using barrier membranes for restoration of bone defects has been developed in an effort to simplify their treatment by offering a sinlge-staged procedure. Research on this field of bone regeneration is ongoing, with evidence being mainly attained from preclinical studies. The purpose of this review is to summarize the current experimental and clinical evidence on the use of barrier membranes for restoration of bone defects in maxillofacial and orthopedic surgery. Although there are a few promising preliminary human studies, before clinical applications can be recommended, future research should aim to establish the 'ideal' barrier membrane and delineate the need for additional bone grafting materials aiming to 'mimic' or even accelerate the normal process of bone formation. Reproducible results and long-term observations with barrier membranes in animal studies, and particularly in large animal models, are required as well as well-designed clinical studies to evaluate their safety, efficacy and cost-effectiveness. PMID:22834465
Lonsdorf, Tina B; Merz, Christian J
2017-09-01
Why do only some individuals develop pathological anxiety following adverse events? Fear acquisition, extinction and return of fear paradigms serve as experimental learning models for the development, treatment and relapse of anxiety. Individual differences in experimental performance were however mostly regarded as 'noise' by researchers interested in basic associative learning principles. Our work for the first time presents a comprehensive literature overview and methodological discussion on inter-individual differences in fear acquisition, extinction and return of fear. We tell a story from noise that steadily develops into a meaningful tune and converges to a model of mechanisms contributing to individual risk/resilience with respect to fear and anxiety-related behavior. Furthermore, in light of the present 'replicability crisis' we identify methodological pitfalls and provide suggestions for study design and analyses tailored to individual difference research in fear conditioning. Ultimately, synergistic transdisciplinary and collaborative efforts hold promise to not only improve our mechanistic understanding but can also be expected to contribute to the development of specifically tailored ('individualized') intervention and targeted prevention programs in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jian -Jun; Wang, Yi; Ihlefeld, Jon F.
Effective thermal conductivity as a function of domain structure is studied by solving the heat conduction equation using a spectral iterative perturbation algorithm in materials with inhomogeneous thermal conductivity distribution. Using this proposed algorithm, the experimentally measured effective thermal conductivities of domain-engineered {001} p-BiFeO 3 thin films are quantitatively reproduced. In conjunction with two other testing examples, this proposed algorithm is proven to be an efficient tool for interpreting the relationship between the effective thermal conductivity and micro-/domain-structures. By combining this algorithm with the phase-field model of ferroelectric thin films, the effective thermal conductivity for PbZr 1-xTi xO 3 filmsmore » under different composition, thickness, strain, and working conditions is predicted. It is shown that the chemical composition, misfit strain, film thickness, film orientation, and a Piezoresponse Force Microscopy tip can be used to engineer the domain structures and tune the effective thermal conductivity. Furthermore, we expect our findings will stimulate future theoretical, experimental and engineering efforts on developing devices based on the tunable effective thermal conductivity in ferroelectric nanostructures.« less
Experimental and Computational Sonic Boom Assessment of Lockheed-Martin N+2 Low Boom Models
NASA Technical Reports Server (NTRS)
Cliff, Susan E.; Durston, Donald A.; Elmiligui, Alaa A.; Walker, Eric L.; Carter, Melissa B.
2015-01-01
Flight at speeds greater than the speed of sound is not permitted over land, primarily because of the noise and structural damage caused by sonic boom pressure waves of supersonic aircraft. Mitigation of sonic boom is a key focus area of the High Speed Project under NASA's Fundamental Aeronautics Program. The project is focusing on technologies to enable future civilian aircraft to fly efficiently with reduced sonic boom, engine and aircraft noise, and emissions. A major objective of the project is to improve both computational and experimental capabilities for design of low-boom, high-efficiency aircraft. NASA and industry partners are developing improved wind tunnel testing techniques and new pressure instrumentation to measure the weak sonic boom pressure signatures of modern vehicle concepts. In parallel, computational methods are being developed to provide rapid design and analysis of supersonic aircraft with improved meshing techniques that provide efficient, robust, and accurate on- and off-body pressures at several body lengths from vehicles with very low sonic boom overpressures. The maturity of these critical parallel efforts is necessary before low-boom flight can be demonstrated and commercial supersonic flight can be realized.
Test Facilities and Experience on Space Nuclear System Developments at the Kurchatov Institute
NASA Astrophysics Data System (ADS)
Ponomarev-Stepnoi, Nikolai N.; Garin, Vladimir P.; Glushkov, Evgeny S.; Kompaniets, George V.; Kukharkin, Nikolai E.; Madeev, Vicktor G.; Papin, Vladimir K.; Polyakov, Dmitry N.; Stepennov, Boris S.; Tchuniyaev, Yevgeny I.; Tikhonov, Lev Ya.; Uksusov, Yevgeny I.
2004-02-01
The complexity of space fission systems and rigidity of requirement on minimization of weight and dimension characteristics along with the wish to decrease expenditures on their development demand implementation of experimental works which results shall be used in designing, safety substantiation, and licensing procedures. Experimental facilities are intended to solve the following tasks: obtainment of benchmark data for computer code validations, substantiation of design solutions when computational efforts are too expensive, quality control in a production process, and ``iron'' substantiation of criticality safety design solutions for licensing and public relations. The NARCISS and ISKRA critical facilities and unique ORM facility on shielding investigations at the operating OR nuclear research reactor were created in the Kurchatov Institute to solve the mentioned tasks. The range of activities performed at these facilities within the implementation of the previous Russian nuclear power system programs is briefly described in the paper. This experience shall be analyzed in terms of methodological approach to development of future space nuclear systems (this analysis is beyond this paper). Because of the availability of these facilities for experiments, the brief description of their critical assemblies and characteristics is given in this paper.
Learning outdoors: male lizards show flexible spatial learning under semi-natural conditions
Noble, Daniel W. A.; Carazo, Pau; Whiting, Martin J.
2012-01-01
Spatial cognition is predicted to be a fundamental component of fitness in many lizard species, and yet some studies suggest that it is relatively slow and inflexible. However, such claims are based on work conducted using experimental designs or in artificial contexts that may underestimate their cognitive abilities. We used a biologically realistic experimental procedure (using simulated predatory attacks) to study spatial learning and its flexibility in the lizard Eulamprus quoyii in semi-natural outdoor enclosures under similar conditions to those experienced by lizards in the wild. To evaluate the flexibility of spatial learning, we conducted a reversal spatial-learning task in which positive and negative reinforcements of learnt spatial stimuli were switched. Nineteen (32%) male lizards learnt both tasks within 10 days (spatial task mean: 8.16 ± 0.69 (s.e.) and reversal spatial task mean: 10.74 ± 0.98 (s.e.) trials). We demonstrate that E. quoyii are capable of flexible spatial learning and suggest that future studies focus on a range of lizard species which differ in phylogeny and/or ecology, using biologically relevant cognitive tasks, in an effort to bridge the cognitive divide between ecto- and endotherms. PMID:23075525
NASA Astrophysics Data System (ADS)
Woelfl, A. C.; Jencks, J.; Johnston, G.; Varner, J. D.; Devey, C. W.
2017-12-01
Human activities are rapidly expanding into the oceans, yet detailed bathymetric maps do not exist for most of the seafloor that would permit governments to formulate sensible usage rules. Changing this situation will require an enormous international mapping effort. To ensure that this effort is directed towards the regions most in need of mapping, we need to know which areas have already been mapped and which areas are potentially most interesting. Despite various mapping efforts in recent years, large parts of the Atlantic still lack detailed bathymetric information. To successfully plan for future mapping efforts to fill these gaps, knowledge of current data coverage is imperative to avoid duplication of effort. While certain datasets are publically available online (e.g. NOAA's NCEI, EMODnet, IHO-DCDB, LDEO's GMRT), many are not. However, with the limited information we do have at hand, the question remains, where should we map next? And what criteria should we take into account? In 2016, a study was taken on as part of the efforts of the International Atlantic Seabed Mapping Working Group (ASMIWG). The ASMIWG, established by the Tri-Partite Galway Statement Implementation Committee, was tasked to develop a cohesive seabed mapping strategy for the Atlantic Ocean. The aim of our study was to develop a reproducible process for identifying and evaluating potential target areas within the North Atlantic that represent suitable sites for future bathymetric surveys. The sites were selected by applying a GIS-based suitability analysis that included specific user group-based parameters of the marine environment. Furthermore, information regarding current data coverage were gathered to take into account in the selection process. The results reveal the suitability of sites within the North Atlantic based on the selected criteria. Three potential target sites should be seen as flexible suggestions for future mapping initiatives rather than a rigid, defined set of areas. This methodology can be adjusted to other areas of interest and can include a variety of parameters based on stakeholder interest. Further this work only included accessible and displayable information about multibeam data coverage and would certainly benefit from more easily available and discoverable data sets or at least from location information.
Coastlines of the past: clues for our future
NASA Astrophysics Data System (ADS)
Reynolds, L.
2017-12-01
Coastlines are constantly evolving due to the long-term effects of sea-level change and human impacts, as well as in response to high-impact, short duration hazard events such as storms, tsunamis, and earthquakes. The sediments that accumulate in coastal systems such as estuaries, dunes, and beaches archieve the enviornmental record of the past, providing us a baseline with which to predict future coastal hazard magnitude and recurrence intervals. We study this record to understand future hazard potential, as well as to aid restoration efforts. Many coastal systems around the world have been degraded in the last few hundred years by human activity- these regions are important breeding grounds for commercially viable species, natural pollution filters, and barriers against inundation. Efforts to restore coastal systems often rely on data from historical sources to reconstruct past coastal conditions-the geological record can extend the timeframe with which we think about possible restoration points. In addition, studying past coastal response to enviornmental changes can aid the effort to restore systems to a point of sustainability and resilience instead of simply restoring to an arbirtary point in time.
Environmental futures research at the U.S. Environmental Protection Agency
Robert L. Olson
2012-01-01
Relatively little research on environmental futures has been carried out in the United States. An exception is the long-running futures research that the U.S. Environmental Protection Agency (EPA) has been conducting since the 1970s. This paper reviews past and current efforts toward developing a capacity for environmental foresight within the EPA, and discusses some...
NASA Astrophysics Data System (ADS)
Dixon, K. W.; Balaji, V.; Lanzante, J.; Radhakrishnan, A.; Hayhoe, K.; Stoner, A. K.; Gaitan, C. F.
2013-12-01
Statistical downscaling (SD) methods may be viewed as generating a value-added product - a refinement of global climate model (GCM) output designed to add finer scale detail and to address GCM shortcomings via a process that gleans information from a combination of observations and GCM-simulated climate change responses. Making use of observational data sets and GCM simulations representing the same historical period, cross-validation techniques allow one to assess how well an SD method meets this goal. However, lacking observations of future, the extent to which a particular SD method's skill might degrade when applied to future climate projections cannot be assessed in the same manner. Here we illustrate and describe extensions to a 'perfect model' experimental design that seeks to quantify aspects of SD method performance both for a historical period (1979-2008) and for late 21st century climate projections. Examples highlighting cases in which downscaling performance deteriorates in future climate projections will be discussed. Also, results will be presented showing how synthetic datasets having known statistical properties may be used to further isolate factors responsible for degradations in SD method skill under changing climatic conditions. We will describe a set of input files used to conduct these analyses that are being made available to researchers who wish to utilize this experimental framework to evaluate SD methods they have developed. The gridded data sets cover a region centered on the contiguous 48 United States with a grid spacing of approximately 25km, have daily time resolution (e.g., maximum and minimum near-surface temperature and precipitation), and represent a total of 120 years of model simulations. This effort is consistent with the 2013 National Climate Predictions and Projections Platform Quantitative Evaluation of Downscaling Workshop goal of supporting a community approach to promote the informed use of downscaled climate projections.
Cultivating Institutional Capacities for Learning Analytics
ERIC Educational Resources Information Center
Lonn, Steven; McKay, Timothy A.; Teasley, Stephanie D.
2017-01-01
This chapter details the process the University of Michigan developed to build institutional capacity for learning analytics. A symposium series, faculty task force, fellows program, research grants, and other initiatives are discussed, with lessons learned for future efforts and how other institutions might adapt such efforts to spur cultural…
Jonkers, Ilse; De Schutter, Joris; De Groote, Friedl
2016-01-01
Experimental studies have shown that a continuum of ankle and hip strategies is used to restore posture following an external perturbation. Postural responses can be modeled by feedback control with feedback gains that optimize a specific objective. On the one hand, feedback gains that minimize effort have been used to predict muscle activity during perturbed standing. On the other hand, hip and ankle strategies have been predicted by minimizing postural instability and deviation from upright posture. It remains unclear, however, whether and how effort minimization influences the selection of a specific postural response. We hypothesize that the relative importance of minimizing mechanical work vs. postural instability influences the strategy used to restore upright posture. This hypothesis was investigated based on experiments and predictive simulations of the postural response following a backward support surface translation. Peak hip flexion angle was significantly correlated with three experimentally determined measures of effort, i.e., mechanical work, mean muscle activity and metabolic energy. Furthermore, a continuum of ankle and hip strategies was predicted in simulation when changing the relative importance of minimizing mechanical work and postural instability, with increased weighting of mechanical work resulting in an ankle strategy. In conclusion, the combination of experimental measurements and predictive simulations of the postural response to a backward support surface translation showed that the trade-off between effort and postural instability minimization can explain the selection of a specific postural response in the continuum of potential ankle and hip strategies. PMID:27489362
NASA Astrophysics Data System (ADS)
Purser, A.; Marcon, Y.; Boetius, A.
2016-02-01
The current supplies of many high technology elements from land-based sources are at capacity, such as copper, nickel and yttrium. Potential future sources of some of these elements include the deep sea manganese nodule fields of the Atlantic, Indian and Pacific oceans. Large swathes of deep-sea seafloor are covered with high densities of 5 - 25 cm diameter nodules - agglomerations of manganese, iron and trace metals. In the 1980's these manganese fields were first seriously considered as mining targets, and the ''DISturbance and reCOLonization (DISCOL) experiment was started in the South Pacific, to simulate the likely environmental impacts of mining. In September 1989, 'RV Sonne', deploying a custom-built plough device, removed manganese nodules from the seafloor surface by ploughing them down into the sediment. This removal of nodules (and therefore hard substrate) was considered to likely be the most significant environmental impact of any future mining efforts. 78 plough tracks of 8 - 16m width were made across a 10.8 km diameter circular area centered on 7°04.4´S 88°27.6´W. Megafauna abundances were assessed prior and post ploughing, both within the disturbed area and at reference stations 6 km from the disturbed area. Research cruises in the 1990s investigated the short-term temporal impact ploughing had on the faunal community in the DISCOL area. Cruises conducted 3 and 7 years after disturbance showed that megafaunal communities within ploughed areas remained quite distinct from those observed pre-disturbance or in the reference areas. In 2016 the 'RV Sonne' revisited the DISCOL site with two research cruises, as part of the 'JPI-Oceans' programme. Here we report the current megafaunal community structures observed by SO242-2 within the DISCOL area, and the slow recovery rates of many taxa 26 years after the initial experimental disturbance, and provide images of the long term impact of experimental disturbances at the seafloor.
Proceedings of RIKEN BNL Research Center Workshop: Brookhaven Summer Program on Nucleon Spin Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aschenauer, A.; Qiu, Jianwei; Vogelsang, W.
Understanding the structure of the nucleon is of fundamental importance in sub-atomic physics. Already the experimental studies on the electro-magnetic form factors in the 1950s showed that the nucleon has a nontrivial internal structure, and the deep inelastic scattering experiments in the 1970s revealed the partonic substructure of the nucleon. Modern research focuses in particular on the spin and the gluonic structure of the nucleon. Experiments using deep inelastic scattering or polarized p-p collisions are carried out in the US at the CEBAF and RHIC facilities, respectively, and there are other experimental facilities around the world. More than twenty yearsmore » ago, the European Muon Collaboration published their first experimental results on the proton spin structure as revealed in polarized deep inelastic lepton-nucleon scattering, and concluded that quarks contribute very little to the proton's spin. With additional experimental and theoretical investigations and progress in the following years, it is now established that, contrary to naive quark model expectations, quarks and anti-quarks carry only about 30% of the total spin of the proton. Twenty years later, the discovery from the polarized hadron collider at RHIC was equally surprising. For the phase space probed by existing RHIC experiments, gluons do not seem to contribute any to the proton's spin. To find out what carries the remaining part of proton's spin is a key focus in current hadronic physics and also a major driving force for the new generation of spin experiments at RHIC and Jefferson Lab and at a future Electron Ion Collider. It is therefore very important and timely to organize a series of annual spin physics meetings to summarize the status of proton spin physics, to focus the effort, and to layout the future perspectives. This summer program on 'Nucleon Spin Physics' held at Brookhaven National Laboratory (BNL) on July 14-27, 2010 [http://www.bnl.gov/spnsp/] is the second one following the Berkeley Summer Program taken place in June of 2009. This program at BNL focused on theory and had many presentations on a wide range of theoretical aspects on nucleon spin, from perturbative-QCD calculations to models, and to the first principle lattice calculation. It also had a good number of summary talks from all major experimental collaborations on spin physics. The program facilitated many discussions between theorists as well as experimentalists. With five transparencies from each presentation at the Summer Program, this proceedings provides a valuable summary on the status and progress, as well as the future prospects of spin physics.« less
NASA Astrophysics Data System (ADS)
Trautz, Andrew C.; Illangasekare, Tissa H.; Rodriguez-Iturbe, Ignacio; Heck, Katharina; Helmig, Rainer
2017-04-01
The atmosphere, soils, and vegetation near the land-atmosphere interface are in a state of continuous dynamic interaction via a myriad of complex interrelated feedback processes which collectively, remain poorly understood. Studying the fundamental nature and dynamics of such processes in atmospheric, ecological, and/or hydrological contexts in the field setting presents many challenges; current experimental approaches are an important factor given a general lack of control and high measurement uncertainty. In an effort to address these issues and reduce overall complexity, new experimental design considerations (two-dimensional intermediate-scale coupled wind tunnel-synthetic aquifer testing using synthetic plants) for studying soil-plant-atmosphere continuum soil moisture dynamics are introduced and tested in this study. Validation of these experimental considerations, particularly the adoption of synthetic plants, is required prior to their application in future research. A comparison of three experiments with bare soil surfaces or transplanted with a Stargazer lily/limestone block was used to evaluate the feasibility of the proposed approaches. Results demonstrate that coupled wind tunnel-porous media experimentation, used to simulate field conditions, reduces complexity, and enhances control while allowing fine spatial-temporal resolution measurements to be made using state-of-the-art technologies. Synthetic plants further help reduce system complexity (e.g., airflow) while preserving the basic hydrodynamic functions of plants (e.g., water uptake and transpiration). The trends and distributions of key measured atmospheric and subsurface spatial and temporal variables (e.g., soil moisture, relative humidity, temperature, air velocity) were comparable, showing that synthetic plants can be used as simple, idealized, nonbiological analogs for living vegetation in fundamental hydrodynamic studies.
Operational Influence on Thermal Behavior of High-Speed Helical Gear Trains
NASA Technical Reports Server (NTRS)
Handschuh, Robert F.; Kilmain, Charles J.
2006-01-01
An experimental effort has been conducted on an aerospace-quality helical gear train to investigate the thermal behavior of the gear system as many important operational conditions were varied. Drive system performance measurements were made at varying speeds and loads (to 5,000 hp and 15,000 rpm). Also, an analytical effort was undertaken for comparison to the measured results. The influence of the various loss mechanisms from the analysis for this high speed helical gear train gearbox will be presented and compared to the experimental results.
Experimental optimization of the FireFly 600 photovoltaic off-grid system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyson, William Earl; Orozco, Ron; Ralph, Mark E.
2003-10-01
A comprehensive evaluation and experimental optimization of the FireFly{trademark} 600 off-grid photovoltaic system manufactured by Energia Total, Ltd. was conducted at Sandia National Laboratories in May and June of 2001. This evaluation was conducted at the request of the manufacturer and addressed performance of individual system components, overall system functionality and performance, safety concerns, and compliance with applicable codes and standards. A primary goal of the effort was to identify areas for improvement in performance, reliability, and safety. New system test procedures were developed during the effort.
Progress of Stirling cycle analysis and loss mechanism characterization
NASA Technical Reports Server (NTRS)
Tew, R. C., Jr.
1986-01-01
An assessment of Stirling engine thermodynamic modeling and design codes shows a general deficiency; this deficiency is due to poor understanding of the fluid flow and heat transfer phenomena that occur in the oscillating flow and pressure level environment within the engines. Stirling engine thermodynamic loss mechanisms are listed. Several experimental and computational research efforts now underway to characterize various loss mechanisms are reviewed. The need for additional experimental rigs and rig upgrades is discussed. Recent developments and current efforts in Stirling engine thermodynamic modeling are also reviewed.
Outer planet Grand Tour missions photometry/polarimetry experiment critical components study
NASA Technical Reports Server (NTRS)
Pellicori, S. F.; Russell, E. E.; Watts, L. A.
1972-01-01
Work performed during this effort was limited to two primary areas of technical concern: optical design optimization, and sensor selection. An optical system concept was established, and various system components were evaluated through experimental test sequences. Photodetectors were investigated for the applicability in meeting OPGT requirements as constrained by the photometry/polarimetry team directives. The most promising (gallium arsenide PMT) was further experimentally tested to ascertain its behavior with respect to anticipated environmental conditions. Results of testing and summary of the preceding tradeoff study effort are presented.
Trapped particle flux models at NSSDC/WDC-A-R/S
NASA Technical Reports Server (NTRS)
Bilitza, D.; Sawyer, D. M.; King, J. H.
1989-01-01
The data needed in the future for trapped particle modeling are summarized. A short summary of past and future modeling activities and a list of satellite data that have not yet been considered in the modeling efforts is included.
Future use of digital remote sensing data
NASA Technical Reports Server (NTRS)
Spann, G. W.; Jones, N. L.
1978-01-01
Users of remote sensing data are increasingly turning to digital processing techniques for the extraction of land resource, environmental, and natural resource information. This paper presents the results of recent and ongoing research efforts sponsored, in part, by NASA/Marshall Space Flight Center on the current uses of and future needs for digital remote sensing data. An ongoing investigation involves a comprehensive survey of capabilities for digital Landsat data use in the Southeastern U.S. Another effort consists of an evaluation of future needs for digital remote sensing data by federal, state, and local governments and the private sector. These needs are projected into the 1980-1985 time frame. Furthermore, the accelerating use of digital remote sensing data is not limited to the U.S. or even to the developed countries of the world.
Management of Knowledge Representation Standards Activities
NASA Technical Reports Server (NTRS)
Patil, Ramesh S. (Principal Investigator)
1993-01-01
This report describes the efforts undertaken over the last two years to identify the issues underlying the current difficulties in sharing and reuse, and a community wide initiative to overcome them. First, we discuss four bottlenecks to sharing and reuse, present a vision of a future in which these bottlenecks have been ameliorated, and describe the efforts of the initiative's four working groups to address these bottlenecks. We then address the supporting technology and infrastructure that is critical to enabling the vision of the future. Finally, we consider topics of longer-range interest by reviewing some of the research issues raised by our vision.
Information Systems for NASA's Aeronautics and Space Enterprises
NASA Technical Reports Server (NTRS)
Kutler, Paul
1998-01-01
The aerospace industry is being challenged to reduce costs and development time as well as utilize new technologies to improve product performance. Information technology (IT) is the key to providing revolutionary solutions to the challenges posed by the increasing complexity of NASA's aeronautics and space missions and the sophisticated nature of the systems that enable them. The NASA Ames vision is to develop technologies enabling the information age, expanding the frontiers of knowledge for aeronautics and space, improving America's competitive position, and inspiring future generations. Ames' missions to accomplish that vision include: 1) performing research to support the American aviation community through the unique integration of computation, experimentation, simulation and flight testing, 2) studying the health of our planet, understanding living systems in space and the origins of the universe, developing technologies for space flight, and 3) to research, develop and deliver information technologies and applications. Information technology may be defined as the use of advance computing systems to generate data, analyze data, transform data into knowledge and to use as an aid in the decision-making process. The knowledge from transformed data can be displayed in visual, virtual and multimedia environments. The decision-making process can be fully autonomous or aided by a cognitive processes, i.e., computational aids designed to leverage human capacities. IT Systems can learn as they go, developing the capability to make decisions or aid the decision making process on the basis of experiences gained using limited data inputs. In the future, information systems will be used to aid space mission synthesis, virtual aerospace system design, aid damaged aircraft during landing, perform robotic surgery, and monitor the health and status of spacecraft and planetary probes. NASA Ames through the Center of Excellence for Information Technology Office is leading the effort in pursuit of revolutionary, IT-based approaches to satisfying NASA's aeronautics and space requirements. The objective of the effort is to incorporate information technologies within each of the Agency's four Enterprises, i.e., Aeronautics and Space Transportation Technology, Earth, Science, Human Exploration and Development of Space and Space Sciences. The end results of these efforts for Enterprise programs and projects should be reduced cost, enhanced mission capability and expedited mission completion.
Sample Return Propulsion Technology Development Under NASA's ISPT Project
NASA Technical Reports Server (NTRS)
Anderson, David J.; Dankanich, John; Hahne, David; Pencil, Eric; Peterson, Todd; Munk, Michelle M.
2011-01-01
Abstract In 2009, the In-Space Propulsion Technology (ISPT) program was tasked to start development of propulsion technologies that would enable future sample return missions. Sample return missions can be quite varied, from collecting and bringing back samples of comets or asteroids, to soil, rocks, or atmosphere from planets or moons. As a result, ISPT s propulsion technology development needs are also broad, and include: 1) Sample Return Propulsion (SRP), 2) Planetary Ascent Vehicles (PAV), 3) Multi-mission technologies for Earth Entry Vehicles (MMEEV), and 4) Systems/mission analysis and tools that focuses on sample return propulsion. The SRP area includes electric propulsion for sample return and low cost Discovery-class missions, and propulsion systems for Earth Return Vehicles (ERV) including transfer stages to the destination. Initially the SRP effort will transition ongoing work on a High-Voltage Hall Accelerator (HIVHAC) thruster into developing a full HIVHAC system. SRP will also leverage recent lightweight propellant-tanks advancements and develop flight-qualified propellant tanks with direct applicability to the Mars Sample Return (MSR) mission and with general applicability to all future planetary spacecraft. ISPT s previous aerocapture efforts will merge with earlier Earth Entry Vehicles developments to form the starting point for the MMEEV effort. The first task under the Planetary Ascent Vehicles (PAV) effort is the development of a Mars Ascent Vehicle (MAV). The new MAV effort will leverage past MAV analysis and technology developments from the Mars Technology Program (MTP) and previous MSR studies. This paper will describe the state of ISPT project s propulsion technology development for future sample return missions.12
The Architecture and Application of RAMSES, a CCSDS and ECSS PUS Compliant Test and Control System
NASA Astrophysics Data System (ADS)
Battelino, Milan; Svard, Christian; Carlsson, Anna; Carlstedt-Duke, Theresa; Tornqvist, Marcus
2010-08-01
SSC, Swedish Space Corporation, has more than 30 years of experience in developing test and control systems for sounding rockets, experimental test modules and satellites. The increasing amount of ongoing projects made SSC to consider developing a test and control system conformant to CCSDS (Consultative Committee for Space Data Systems) and ECSS (European Cooperation for Space Standardization), that with small effort and cost, could be reused between separate projects and products. The foreseen reduction in cost and development time for different future space-related projects made such a reusable control system desirable. This paper will describe the ideas behind the RAMSES (Rocket and Multi-Satellite EMCS Software) system, its architecture and how it has been and is being used in a variety of applications at SSC such as the multi-satellite mission PRISMA and sounding rocket project MAXUS-8.
A hybrid organic-inorganic perovskite dataset
NASA Astrophysics Data System (ADS)
Kim, Chiho; Huan, Tran Doan; Krishnan, Sridevi; Ramprasad, Rampi
2017-05-01
Hybrid organic-inorganic perovskites (HOIPs) have been attracting a great deal of attention due to their versatility of electronic properties and fabrication methods. We prepare a dataset of 1,346 HOIPs, which features 16 organic cations, 3 group-IV cations and 4 halide anions. Using a combination of an atomic structure search method and density functional theory calculations, the optimized structures, the bandgap, the dielectric constant, and the relative energies of the HOIPs are uniformly prepared and validated by comparing with relevant experimental and/or theoretical data. We make the dataset available at Dryad Digital Repository, NoMaD Repository, and Khazana Repository (http://khazana.uconn.edu/), hoping that it could be useful for future data-mining efforts that can explore possible structure-property relationships and phenomenological models. Progressive extension of the dataset is expected as new organic cations become appropriate within the HOIP framework, and as additional properties are calculated for the new compounds found.
Impact of scaffold rigidity on the design and evolution of an artificial Diels-Alderase
Preiswerk, Nathalie; Beck, Tobias; Schulz, Jessica D.; Milovník, Peter; Mayer, Clemens; Siegel, Justin B.; Baker, David; Hilvert, Donald
2014-01-01
By combining targeted mutagenesis, computational refinement, and directed evolution, a modestly active, computationally designed Diels-Alderase was converted into the most proficient biocatalyst for [4+2] cycloadditions known. The high stereoselectivity and minimal product inhibition of the evolved enzyme enabled preparative scale synthesis of a single product diastereomer. X-ray crystallography of the enzyme–product complex shows that the molecular changes introduced over the course of optimization, including addition of a lid structure, gradually reshaped the pocket for more effective substrate preorganization and transition state stabilization. The good overall agreement between the experimental structure and the original design model with respect to the orientations of both the bound product and the catalytic side chains contrasts with other computationally designed enzymes. Because design accuracy appears to correlate with scaffold rigidity, improved control over backbone conformation will likely be the key to future efforts to design more efficient enzymes for diverse chemical reactions. PMID:24847076
Data integration: Combined imaging and electrophysiology data in the cloud.
Kini, Lohith G; Davis, Kathryn A; Wagenaar, Joost B
2016-01-01
There has been an increasing effort to correlate electrophysiology data with imaging in patients with refractory epilepsy over recent years. IEEG.org provides a free-access, rapidly growing archive of imaging data combined with electrophysiology data and patient metadata. It currently contains over 1200 human and animal datasets, with multiple data modalities associated with each dataset (neuroimaging, EEG, EKG, de-identified clinical and experimental data, etc.). The platform is developed around the concept that scientific data sharing requires a flexible platform that allows sharing of data from multiple file formats. IEEG.org provides high- and low-level access to the data in addition to providing an environment in which domain experts can find, visualize, and analyze data in an intuitive manner. Here, we present a summary of the current infrastructure of the platform, available datasets and goals for the near future. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, B.; /Brookhaven; Herve, Alain
2011-10-14
Two experimental detectors working in a push-pull mode has been considered for the Interaction Region of the International Linear Collider. The push-pull mode of operation sets specific requirements and challenges for many systems of detector and machine, in particular for the IR magnets, for the cryogenics and alignment system, for beamline shielding, for detector design and overall integration, and so on. These challenges and the identified conceptual solutions discussed in the paper intend to form a draft of the Interface Document which will be developed further in the nearest future. The authors of the present paper include the organizers andmore » conveners of working groups of the workshop on engineering design of interaction region IRENG07, the leaders of the IR Integration within Global Design Effort Beam Delivery System, and the representatives from each detector concept submitting the Letters Of Intent.« less
Therapy for Specific Problems: Youth Tobacco Cessation
Curry, Susan J.; Mermelstein, Robin J.; Sporer, Amy K.
2010-01-01
Cigarette smoking is the leading cause of premature morbidity and mortality in the United States. The majority of children smoke their first cigarette in early adolescence, and many older teens have well-established dependence on nicotine. Efforts to promote and support smoking cessation among these youth smokers are critical. The available experimental studies of youth cessation interventions find that behavioral interventions increase the chances of youth smokers achieving successful cessation. Currently there is insufficient evidence for the effectiveness of pharmacological treatments with youth smokers. Many innovative studies have been compromised by challenges in recruiting sufficient numbers of youth, obtaining approval for waivers of parental consent, and high attrition in longitudinal studies. Key areas for future work include bridging the fields of adolescent development and treatment design, matching treatments to developmental trajectories of smoking behavior, better understanding treatment processes and treatment moderators, and building demand for evidence-based cessation treatments. PMID:19035825
Numerical Prediction of SERN Performance using WIND code
NASA Technical Reports Server (NTRS)
Engblom, W. A.
2003-01-01
Computational results are presented for the performance and flow behavior of single-expansion ramp nozzles (SERNs) during overexpanded operation and transonic flight. Three-dimensional Reynolds-Averaged Navier Stokes (RANS) results are obtained for two vehicle configurations, including the NASP Model 5B and ISTAR RBCC (a variant of X-43B) using the WIND code. Numerical predictions for nozzle integrated forces and pitch moments are directly compared to experimental data for the NASP Model 5B, and adequate-to-excellent agreement is found. The sensitivity of SERN performance and separation phenomena to freestream static pressure and Mach number is demonstrated via a matrix of cases for both vehicles. 3-D separation regions are shown to be induced by either lateral (e.g., sidewall) shocks or vertical (e.g., cowl trailing edge) shocks. Finally, the implications of this work to future preliminary design efforts involving SERNs are discussed.
Fully-Coupled Thermo-Electrical Modeling and Simulation of Transition Metal Oxide Memristors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mamaluy, Denis; Gao, Xujiao; Tierney, Brian David
2016-11-01
Transition metal oxide (TMO) memristors have recently attracted special attention from the semiconductor industry and academia. Memristors are one of the strongest candidates to replace flash memory, and possibly DRAM and SRAM in the near future. Moreover, memristors have a high potential to enable beyond-CMOS technology advances in novel architectures for high performance computing (HPC). The utility of memristors has been demonstrated in reprogrammable logic (cross-bar switches), brain-inspired computing and in non-CMOS complementary logic. Indeed, the potential use of memristors as logic devices is especially important considering the inevitable end of CMOS technology scaling that is anticipated by 2025. Inmore » order to aid the on-going Sandia memristor fabrication effort with a memristor design tool and establish a clear physical picture of resistance switching in TMO memristors, we have created and validated with experimental data a simulation tool we name the Memristor Charge Transport (MCT) Simulator.« less
Visualization and imaging methods for flames in microgravity
NASA Technical Reports Server (NTRS)
Weiland, Karen J.
1993-01-01
The visualization and imaging of flames has long been acknowledged as the starting point for learning about and understanding combustion phenomena. It provides an essential overall picture of the time and length scales of processes and guides the application of other diagnostics. It is perhaps even more important in microgravity combustion studies, where it is often the only non-intrusive diagnostic measurement easily implemented. Imaging also aids in the interpretation of single-point measurements, such as temperature, provided by thermocouples, and velocity, by hot-wire anemometers. This paper outlines the efforts of the Microgravity Combustion Diagnostics staff at NASA Lewis Research Center in the area of visualization and imaging of flames, concentrating on methods applicable for reduced-gravity experimentation. Several techniques are under development: intensified array camera imaging, and two-dimensional temperature and species concentrations measurements. A brief summary of results in these areas is presented and future plans mentioned.
A Fundamental Study of Smoldering with Emphasis on Experimental Design for Zero-G
NASA Technical Reports Server (NTRS)
Pagni, P. J.; Fernandez-Pello, A. C.
1985-01-01
The objective of this section of the microgravity project is to identify key sets of low-gravity experiments which would critically compliment a larger set of more easily performed normal-gravity experiments to explain the phenomena found in smoldering combustion. It is planned to follow through on the conceptual design of these experiments by participating in the future in the fabrication of the refined apparatus and in the data collection and interpretation. Low-gravity experiments are appropriate for smoldering combustion because of the complexity of smoldering which requires every means possible to discriminate among the many chemical and physical mechanisms active in most smoldering combustion scenarios. Efforts will be primarily analytical, attempting to identify appropriate approximations and dominant dimensionless groups based on existing data and state-of-the-art combustion modelling. Transient stability questions such as ignition, extinction and the choices among charring, tarring, or flaming modes will be included.
Validation and Continued Development of Methods for Spheromak Simulation
NASA Astrophysics Data System (ADS)
Benedett, Thomas
2017-10-01
The HIT-SI experiment has demonstrated stable sustainment of spheromaks. Determining how the underlying physics extrapolate to larger, higher-temperature regimes is of prime importance in determining the viability of the inductively-driven spheromak. It is thus prudent to develop and validate a computational model that can be used to study current results and study the effect of possible design choices on plasma behavior. An extended MHD model has shown good agreement with experimental data at 14 kHz injector operation. Efforts to extend the existing validation to a range of higher frequencies (36, 53, 68 kHz) using the PSI-Tet 3D extended MHD code will be presented, along with simulations of potential combinations of flux conserver features and helicity injector configurations and their impact on current drive performance, density control, and temperature for future SIHI experiments. Work supported by USDoE.
CEMCAN Software Enhanced for Predicting the Properties of Woven Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
Murthy, Pappu L. N.; Mital, Subodh K.; DiCarlo, James A.
2000-01-01
Major advancements are needed in current high-temperature materials to meet the requirements of future space and aeropropulsion structural components. Ceramic matrix composites (CMC's) are one class of materials that are being evaluated as candidate materials for many high-temperature applications. Past efforts to improve the performance of CMC's focused primarily on improving the properties of the fiber, interfacial coatings, and matrix constituents as individual phases. Design and analysis tools must take into consideration the complex geometries, microstructures, and fabrication processes involved in these composites and must allow the composite properties to be tailored for optimum performance. Major accomplishments during the past year include the development and inclusion of woven CMC micromechanics methodology into the CEMCAN (Ceramic Matrix Composites Analyzer) computer code. The code enables one to calibrate a consistent set of constituent properties as a function of temperature with the aid of experimentally measured data.
Thermal quantum time-correlation functions from classical-like dynamics
NASA Astrophysics Data System (ADS)
Hele, Timothy J. H.
2017-07-01
Thermal quantum time-correlation functions are of fundamental importance in quantum dynamics, allowing experimentally measurable properties such as reaction rates, diffusion constants and vibrational spectra to be computed from first principles. Since the exact quantum solution scales exponentially with system size, there has been considerable effort in formulating reliable linear-scaling methods involving exact quantum statistics and approximate quantum dynamics modelled with classical-like trajectories. Here, we review recent progress in the field with the development of methods including centroid molecular dynamics , ring polymer molecular dynamics (RPMD) and thermostatted RPMD (TRPMD). We show how these methods have recently been obtained from 'Matsubara dynamics', a form of semiclassical dynamics which conserves the quantum Boltzmann distribution. We also apply the Matsubara formalism to reaction rate theory, rederiving t → 0+ quantum transition-state theory (QTST) and showing that Matsubara-TST, like RPMD-TST, is equivalent to QTST. We end by surveying areas for future progress.
Compact field color schlieren system for use in microgravity materials processing
NASA Technical Reports Server (NTRS)
Poteet, W. M.; Owen, R. B.
1986-01-01
A compact color schlieren system designed for field measurement of materials processing parameters has been built and tested in a microgravity environment. Improvements in the color filter design and a compact optical arrangement allowed the system described here to retain the traditional advantages of schlieren, such as simplicity, sensitivity, and ease of data interpretation. Testing was accomplished by successfully flying the instrument on a series of parabolic trajectories on the NASA KC-135 microgravity simulation aircraft. A variety of samples of interest in materials processing were examined. Although the present system was designed for aircraft use, the technique is well suited to space flight experimentation. A major goal of this effort was to accommodate the main optical system within a volume approximately equal to that of a Space Shuttle middeck locker. Future plans include the development of an automated space-qualified facility for use on the Shuttle and Space Station.
Exploring the zone of anisotropy and broken symmetries in DNA-mediated nanoparticle crystallization.
O'Brien, Matthew N; Girard, Martin; Lin, Hai-Xin; Millan, Jaime A; Olvera de la Cruz, Monica; Lee, Byeongdu; Mirkin, Chad A
2016-09-20
In this work, we present a joint experimental and molecular dynamics simulations effort to understand and map the crystallization behavior of polyhedral nanoparticles assembled via the interaction of DNA surface ligands. In these systems, we systematically investigated the interplay between the effects of particle core (via the particle symmetry and particle size) and ligands (via the ligand length) on crystallization behavior. This investigation revealed rich phase diagrams, previously unobserved phase transitions in polyhedral crystallization behavior, and an unexpected symmetry breaking in the ligand distribution on a particle surface. To understand these results, we introduce the concept of a zone of anisotropy, or the portion of the phase space where the anisotropy of the particle is preserved in the crystallization behavior. Through comparison of the zone of anisotropy for each particle we develop a foundational roadmap to guide future investigations.
Kaplan, A Ya
2016-01-01
Technology brain-computer interface (BCI) based on the registration and interpretation of EEG has recently become one of the most popular developments in neuroscience and psychophysiology. This is due not only to the intended future use of these technologies in many areas of practical human activity, but also to the fact that IMC--is a completely new paradigm in psychophysiology, allowing test hypotheses about the possibilities of the human brain to the development of skills of interaction with the outside world without the mediation of the motor system, i.e. only with the help of voluntary modulation of EEG generators. This paper examines the theoretical and experimental basis, the current state and prospects of development of training, communicational and assisting complexes based on BCI to control them without muscular effort on the basis of mental commands detected in the EEG of patients with severely impaired speech and motor system.
Coupled study by TEM/EELS and STM/STS of electronic properties of C- and CN-nanotubes
NASA Astrophysics Data System (ADS)
Lin, Hong; Lagoute, Jérôme; Repain, Vincent; Chacon, Cyril; Girard, Yann; Lauret, Jean-Sébastien; Arenal, Raul; Ducastelle, François; Rousset, Sylvie; Loiseau, Annick
2011-12-01
Carbon nanotubes are the focus of considerable research efforts due to their fascinating physical properties. They provide an excellent model system for the study of one-dimensional materials and molecular electronics. The chirality of nanotubes can lead to very different electronic behaviour, either metallic or semiconducting. Their electronic spectrum consists of a series of Van Hove singularities defining a bandgap for semiconducting tubes and molecular orbitals at the corresponding energies. A promising way to tune the nanotubes electronic properties for future applications is to use doping by heteroatoms. Here we report on the experimental investigation of the role of many-body interactions in nanotube bandgaps, the visualization in direct space of the molecular orbitals of nanotubes and the properties of nitrogen doped nanotubes using scanning tunneling microscopy and transmission electron microscopy as well as electron energy loss spectroscopy.
NASA Technical Reports Server (NTRS)
Gyekenyesi, Andrew L.; Gastelli, Michael G.; Ellis, John R.; Burke, Christopher S.
1995-01-01
An experimental study was conducted to investigate the mechanical behavior of a T650-35/AMB21 eight-harness satin weave polymer composite system. Emphasis was placed on the development and refinement of techniques used in elevated temperature uniaxial PMC testing. Issues such as specimen design, gripping, strain measurement, and temperature control and measurement were addressed. Quasi-static tensile and fatigue properties (R(sub sigma) = 0.1) were examined at room and elevated temperatures. Stiffness degradation and strain accumulation during fatigue cycling were recorded to monitor damage progression and provide insight for future analytical modeling efforts. Accomplishments included an untabbed dog-bone specimen design which consistently failed in the gage section, accurate temperature control and assessment, and continuous in-situ strain measurement capability during fatigue loading at elevated temperatures. Finally, strain accumulation and stiffness degradation during fatigue cycling appeared to be good indicators of damage progression.
Sodium Based Heat Pipe Modules for Space Reactor Concepts: Stainless Steel SAFE-100 Core
NASA Technical Reports Server (NTRS)
Martin, James J.; Reid, Robert S.
2004-01-01
A heat pipe cooled reactor is one of several candidate reactor cores being considered for advanced space power and propulsion systems to support future space exploration applications. Long life heat pipe modules, with designs verified through a combination of theoretical analysis and experimental lifetime evaluations, would be necessary to establish the viability of any of these candidates, including the heat pipe reactor option. A hardware-based program was initiated to establish the infrastructure necessary to build heat pipe modules. This effort, initiated by Los Alamos National Laboratory and referred to as the Safe Affordable Fission Engine (SAFE) project, set out to fabricate and perform non-nuclear testing on a modular heat pipe reactor prototype that can provide 100 kilowatt from the core to an energy conversion system at 700 C. Prototypic heat pipe hardware was designed, fabricated, filled, closed-out and acceptance tested.
Data integration: Combined Imaging and Electrophysiology data in the cloud
Kini, Lohith G.; Davis, Kathryn A.; Wagenaar, Joost B.
2015-01-01
There has been an increasing effort to correlate electrophysiology data with imaging in patients with refractory epilepsy over recent years. IEEG.org provides a free-access, rapidly growing archive of imaging data combined with electrophysiology data and patient metadata. It currently contains over 1200 human and animal datasets, with multiple data modalities associated with each dataset (neuroimaging, EEG, EKG, de-identified clinical and experimental data, etc.). The platform is developed around the concept that scientific data sharing requires a flexible platform that allows sharing of data from multiple file-formats. IEEG.org provides high and low-level access to the data in addition to providing an environment in which domain experts can find, visualize, and analyze data in an intuitive manner. Here, we present a summary of the current infrastructure of the platform, available datasets and goals for the near future. PMID:26044858
Fiber lasers and amplifiers for science and exploration at NASA Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
Krainak, Michael A.; Abshire, James; Allan, Graham R.; Stephen Mark
2005-01-01
We discuss present and near-term uses for high-power fiber lasers and amplifiers for NASA- specific applications including planetary topography and atmospheric spectroscopy. Fiber lasers and amplifiers offer numerous advantages for both near-term and future deployment of instruments on exploration and science remote sensing orbiting satellites. Ground-based and airborne systems provide an evolutionary path to space and a means for calibration and verification of space-borne systems. We present experimental progress on both the fiber transmitters and instrument prototypes for ongoing development efforts. These near-infrared instruments are laser sounders and lidars for measuring atmospheric carbon dioxide, oxygen, water vapor and methane and a pseudo-noise (PN) code laser ranging system. The associated fiber transmitters include high-power erbium, ytterbium, neodymium and Raman fiber amplifiers. In addition, we will discuss near-term fiber laser and amplifier requirements and programs for NASA free space optical communications, planetary topography and atmospheric spectroscopy.
Avian cooperative breeding: Old hypotheses and new directions.
Heinsohn, R G; Cockburn, A; Mulder, R A
1990-12-01
In cooperatively breeding birds, individuals that appear capable of reproducing on their own may instead assist others with their breeding efforts. Research into avian cooperative breeding has attempted to reconcile the apparent altruism of this behaviour with maximization of inclusive fitness. Most explanations of cooperative breeding have suggested that philopatry is enforced by ecological constraints, such as a shortage of resources critical to breeding. Non-dispersers may then benefit both directly and indirectly from contributing at the nest. Recent research has shown that such benefits may be sufficient to promote philopatry, without the need for ecological constraints, and emphasizes that consideration of both costs and benefits of philopatry is essential for a comprehensive approach to the problem. The growing body of data from long-term studies of different species should combine with an improved phylogenetic perspective on cooperative breeding, to provide a useful base for future comparative analyses and experimentation. Copyright © 1990. Published by Elsevier Ltd.
Machine-Learning Techniques Applied to Antibacterial Drug Discovery
Durrant, Jacob D.; Amaro, Rommie E.
2014-01-01
The emergence of drug-resistant bacteria threatens to catapult humanity back to the pre-antibiotic era. Even now, multi-drug-resistant bacterial infections annually result in millions of hospital days, billions in healthcare costs, and, most importantly, tens of thousands of lives lost. As many pharmaceutical companies have abandoned antibiotic development in search of more lucrative therapeutics, academic researchers are uniquely positioned to fill the resulting vacuum. Traditional high-throughput screens and lead-optimization efforts are expensive and labor intensive. Computer-aided drug discovery techniques, which are cheaper and faster, can accelerate the identification of novel antibiotics in an academic setting, leading to improved hit rates and faster transitions to pre-clinical and clinical testing. The current review describes two machine-learning techniques, neural networks and decision trees, that have been used to identify experimentally validated antibiotics. We conclude by describing the future directions of this exciting field. PMID:25521642
Energy-level alignment at organic heterointerfaces
Oehzelt, Martin; Akaike, Kouki; Koch, Norbert; Heimel, Georg
2015-01-01
Today’s champion organic (opto-)electronic devices comprise an ever-increasing number of different organic-semiconductor layers. The functionality of these complex heterostructures largely derives from the relative alignment of the frontier molecular-orbital energies in each layer with respect to those in all others. Despite the technological relevance of the energy-level alignment at organic heterointerfaces, and despite continued scientific interest, a reliable model that can quantitatively predict the full range of phenomena observed at such interfaces is notably absent. We identify the limitations of previous attempts to formulate such a model and highlight inconsistencies in the interpretation of the experimental data they were based on. We then develop a theoretical framework, which we demonstrate to accurately reproduce experiment. Applying this theory, a comprehensive overview of all possible energy-level alignment scenarios that can be encountered at organic heterojunctions is finally given. These results will help focus future efforts on developing functional organic interfaces for superior device performance. PMID:26702447
NASA Astrophysics Data System (ADS)
Bergey, Bradley W.; Cromley, Jennifer G.; Newcombe, Nora S.
2015-10-01
There is growing evidence that targeted instruction can improve diagram comprehension, yet one of the skills identified in the diagram comprehension literature-coordinating multiple representations-has rarely been directly taught to students and tested as a classroom intervention. We created a Coordinating Multiple Representation (CMR) intervention that was an addition to an intervention focused on Conventions of Diagrams (COD) and tested their joint effects on diagram comprehension for near transfer (uninstructed biology diagrams), far transfer (uninstructed geology diagrams), and content learning (biology knowledge). The comparison group received instruction using a previously validated intervention that focused exclusively on COD. Participants were 9th-10th grade biology students (N = 158 from two schools), whose classes were randomly assigned to COD alone or COD + CMR conditions and studied with a pretest-posttest experimental design. Both groups showed significant growth in biology knowledge (d = .30-.53, for COD and COD + CMR, respectively) and biology diagram comprehension (d = .28-.57). Neither group showed far transfer. Analyses of student work products during the interventions suggest that gains were not simply due to the passage of time, because student effort was correlated with gains in both treatment groups. Directions for improving future CMR interventions are discussed.
Madurski, Christine; LeBel, Etienne P
2015-08-01
Correll (Journal of Personality and Social Psychology, 94, 48-59, 2008; Study 2) found that instructions to use or avoid race information decreased the emission of 1/f noise in a weapon identification task (WIT). These results suggested that 1/f noise in racial bias tasks reflected an effortful deliberative process, providing new insights regarding the mechanisms underlying implicit racial biases. Given the potential theoretical and applied importance of understanding the psychological processes underlying implicit racial biases - and in light of the growing demand for independent direct replications of findings to ensure the cumulative nature of our science - we attempted to replicate Correll's finding in two high-powered studies. Despite considerable effort to closely duplicate all procedural and methodological details of the original study (i.e., same cover story, experimental manipulation, implicit measure task, original stimuli, task instructions, sampling frame, population, and statistical analyses), both replication attempts were unsuccessful in replicating the original finding challenging the theoretical account that 1/f noise in racial bias tasks reflects a deliberative process. However, the emission of 1/f noise did consistently emerge across samples in each of our conditions. Hence, future research is needed to clarify the psychological significance of 1/f noise in racial bias tasks.
NASA Technical Reports Server (NTRS)
Herman, Daniel A; Shastry, Rohit; Huang, Wensheng; Soulas, George C.; KamHawi, Hani
2012-01-01
In order to aid in the design of high-power Hall thrusters and provide experimental validation for existing modeling efforts, plasma potential and Langmuir probe measurements were performed in the near-field plume of the NASA 300M Hall thruster. A probe array consisting of a Faraday probe, Langmuir probe, and emissive probe was used to interrogate the plume from approximately 0.1 - 2.0 DT,m downstream of the thruster exit plane at four operating conditions: 300 V, 400 V, and 500 V at 20 kW as well as 300 V at 10 kW. Results show that the acceleration zone and high-temperature region were contained within 0.3 DT,m from the exit plane at all operating conditions. Isothermal lines were shown to strongly follow magnetic field lines in the nearfield, with maximum temperatures ranging from 19 - 27 eV. The electron temperature spatial distribution created large drops in measured floating potentials in front of the magnetic pole surfaces where the plasma density was small, which suggests strong sheaths at these surfaces. The data taken have provided valuable information for future design and modeling validation, and complements ongoing internal measurement efforts on the NASA 300 M.
The state of animal welfare in the context of refinement.
Zurlo, Joanne; Hutchinson, Eric
2014-01-01
The ultimate goal of the Three Rs is the full replacement of animals used in biomedical research and testing. However, replacement is unlikely to occur in the near future; therefore the scientific community as a whole must continue to devote considerable effort to ensure optimal animal welfare for the benefit of the science and the animals, i.e., the R of refinement. Laws governing the care and use of laboratory animals have recently been revised in Europe and the US and these place greater emphasis on promoting the well-being of the animals in addition to minimizing pain and distress. Social housing for social species is now the default condition, which can present a challenge in certain experimental settings and for certain species. The practice of positive reinforcement training of laboratory animals, particularly non-human primates, is gathering momentum but is not yet universally employed. Enhanced consideration of refinement extends to rodents, particularly mice, whose use is still increasing as more genetically modified models are generated. The wastage of extraneous mice and the method of their euthanasia are refinement issues that still need to be addressed. An international, concerted effort into defining the needs of laboratory animals is still necessary to improve the quality of the animal models used as well as their welfare.
NASA Human Spaceflight Architecture Team: Lunar Surface Exploration Strategies
NASA Technical Reports Server (NTRS)
Mueller, Rob P.
2012-01-01
NASA s agency wide Human Spaceflight Architecture Team (HAT) has been developing Design Reference Missions (DRMs) to support the ongoing effort to characterize NASA s future human exploration strategy. The DRM design effort includes specific articulations of transportation and surface elements, technologies and operations required to enable future human exploration of various destinations including the moon, Near Earth Asteroids (NEAs) and Mars as well as interim cis-lunar targets. In prior architecture studies, transportation concerns have dominated the analysis. As a result, an effort was made to study the human utilization strategy at each specific destination and the resultant impacts on the overall architecture design. In particular, this paper considers various lunar surface strategies as representative scenarios that could occur in a human lunar return, and demonstrates their alignment with the internationally developed Global Exploration Roadmap (GER).
A Systematic Method for Verification and Validation of Gyrokinetic Microstability Codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bravenec, Ronald
My original proposal for the period Feb. 15, 2014 through Feb. 14, 2017 called for an integrated validation and verification effort carried out by myself with collaborators. The validation component would require experimental profile and power-balance analysis. In addition, it would require running the gyrokinetic codes varying the input profiles within experimental uncertainties to seek agreement with experiment before discounting a code as invalidated. Therefore, validation would require a major increase of effort over my previous grant periods which covered only code verification (code benchmarking). Consequently, I had requested full-time funding. Instead, I am being funded at somewhat less thanmore » half time (5 calendar months per year). As a consequence, I decided to forego the validation component and to only continue the verification efforts.« less
A Semantic Web-Based Methodology for Describing Scientific Research Efforts
ERIC Educational Resources Information Center
Gandara, Aida
2013-01-01
Scientists produce research resources that are useful to future research and innovative efforts. In a typical scientific scenario, the results created by a collaborative team often include numerous artifacts, observations and relationships relevant to research findings, such as programs that generate data, parameters that impact outputs, workflows…
New Horizons Risk Communication Strategy, Planning, Implementation, and Lessons Learned
NASA Technical Reports Server (NTRS)
Dawson, Sandra A.
2006-01-01
This paper discusses the risk communication goals, strategy, planning process and product development for the New Horizons mission, including lessons from the Cassini mission that were applied in that effort, and presents lessons learned from the New Horizons effort that could be applicable to future missions.
2016-07-13
ELECTRONIC HEALTH RECORDS VA’s Efforts Raise Concerns about Interoperability Goals and Measures, Duplication with DOD...Agencies, Committee on Appropriations, U.S. Senate July 13, 2016 ELECTRONIC HEALTH RECORDS VA’s Efforts Raise Concerns about Interoperability Goals...initiatives with the Department of Defense (DOD) that were intended to advance the ability of the two departments to share electronic health records , the
Brazil on the Rise: Implications on U.S. Policies
2012-04-01
Brazilian Joint Counternarcotics Opportunity………….6 U.S. Efforts in Bolivia Brazil Fills the U.S. Counternarcotics Gap in Bolivia Future for...efforts Brazil has undertaken with Bolivia, one can see how a multilateral effort in the region yields better results to address the situation...form of Brazil. Brazil Fills the U.S. Counternarcotics Gap in Bolivia In 1998 there was reportedly little to no narcotics transiting Brazil, and
Automotive Fuel Economy and Emissions Experimental Data
DOT National Transportation Integrated Search
1979-02-01
The purpose of this effort was to generate experimental data to support an assessment of the relationship between automobile fuel economy and emission control systems. Tests were made at both the engine and vehicle levels. Detailed investigations wer...
Recycling Old PCC Pavement - Performance Evaluation of FAI 57 Inlays
DOT National Transportation Integrated Search
1993-02-01
This report details the construction and performance monitoring efforts of two demonstration projects proposed in an experimental features work plan entitled Recycling Old PCC Pavement". The objectives of this experimental feature were to evaluate th...
NASA Astrophysics Data System (ADS)
Xu, Jin-Shi; Li, Chuan-Feng; Guo, Guang-Can
2016-11-01
In 1935, Einstein, Podolsky and Rosen published their influential paper proposing a now famous paradox (the EPR paradox) that threw doubt on the completeness of quantum mechanics. Two fundamental concepts: entanglement and steering, were given in the response to the EPR paper by Schrodinger, which both reflect the nonlocal nature of quantum mechanics. In 1964, John Bell obtained an experimentally testable inequality, in which its violation contradicts the prediction of local hidden variable models and agrees with that of quantum mechanics. Since then, great efforts have been made to experimentally investigate the nonlocal feature of quantum mechanics and many distinguished quantum properties were observed. In this work, along with the discussion of the development of quantum nonlocality, we would focus on our recent experimental efforts in investigating quantum correlations and their applications with optical systems, including the study of entanglement-assisted entropic uncertainty principle, Einstein-Podolsky-Rosen steering and the dynamics of quantum correlations.
NASA Technical Reports Server (NTRS)
Schubert, Siegfried
2011-01-01
The Global Modeling and Assimilation Office at NASA's Goddard Space Flight Center is developing a number of experimental prediction and analysis products suitable for research and applications. The prediction products include a large suite of subseasonal and seasonal hindcasts and forecasts (as a contribution to the US National MME), a suite of decadal (10-year) hindcasts (as a contribution to the IPCC decadal prediction project), and a series of large ensemble and high resolution simulations of selected extreme events, including the 2010 Russian and 2011 US heat waves. The analysis products include an experimental atlas of climate (in particular drought) and weather extremes. This talk will provide an update on those activities, and discuss recent efforts by WCRP to leverage off these and similar efforts at other institutions throughout the world to develop an experimental global drought early warning system.
Development of resources and tools for mapping genetic sources of phenotypic variation
USDA-ARS?s Scientific Manuscript database
Commercial and experimental genetic resources were established and investigated for a range of reproductive and disease susceptibility phenotypes. The phenotyping efforts were accompanied with RNA and whole genome sequencing and novel assemblies of the swine genome. The efforts were complemented wit...
Task design influences prosociality in captive chimpanzees (Pan troglodytes).
House, Bailey R; Silk, Joan B; Lambeth, Susan P; Schapiro, Steven J
2014-01-01
Chimpanzees confer benefits on group members, both in the wild and in captive populations. Experimental studies of how animals allocate resources can provide useful insights about the motivations underlying prosocial behavior, and understanding the relationship between task design and prosocial behavior provides an important foundation for future research exploring these animals' social preferences. A number of studies have been designed to assess chimpanzees' preferences for outcomes that benefit others (prosocial preferences), but these studies vary greatly in both the results obtained and the methods used, and in most cases employ procedures that reduce critical features of naturalistic social interactions, such as partner choice. The focus of the current study is on understanding the link between experimental methodology and prosocial behavior in captive chimpanzees, rather than on describing these animals' social motivations themselves. We introduce a task design that avoids isolating subjects and allows them to freely decide whether to participate in the experiment. We explore key elements of the methods utilized in previous experiments in an effort to evaluate two possibilities that have been offered to explain why different experimental designs produce different results: (a) chimpanzees are less likely to deliver food to others when they obtain food for themselves, and (b) evidence of prosociality may be obscured by more "complex" experimental apparatuses (e.g., those including more components or alternative choices). Our results suggest that the complexity of laboratory tasks may generate observed variation in prosocial behavior in laboratory experiments, and highlights the need for more naturalistic research designs while also providing one example of such a paradigm.
Task Design Influences Prosociality in Captive Chimpanzees (Pan troglodytes)
House, Bailey R.; Silk, Joan B.; Lambeth, Susan P.; Schapiro, Steven J.
2014-01-01
Chimpanzees confer benefits on group members, both in the wild and in captive populations. Experimental studies of how animals allocate resources can provide useful insights about the motivations underlying prosocial behavior, and understanding the relationship between task design and prosocial behavior provides an important foundation for future research exploring these animals' social preferences. A number of studies have been designed to assess chimpanzees' preferences for outcomes that benefit others (prosocial preferences), but these studies vary greatly in both the results obtained and the methods used, and in most cases employ procedures that reduce critical features of naturalistic social interactions, such as partner choice. The focus of the current study is on understanding the link between experimental methodology and prosocial behavior in captive chimpanzees, rather than on describing these animals' social motivations themselves. We introduce a task design that avoids isolating subjects and allows them to freely decide whether to participate in the experiment. We explore key elements of the methods utilized in previous experiments in an effort to evaluate two possibilities that have been offered to explain why different experimental designs produce different results: (a) chimpanzees are less likely to deliver food to others when they obtain food for themselves, and (b) evidence of prosociality may be obscured by more “complex” experimental apparatuses (e.g., those including more components or alternative choices). Our results suggest that the complexity of laboratory tasks may generate observed variation in prosocial behavior in laboratory experiments, and highlights the need for more naturalistic research designs while also providing one example of such a paradigm. PMID:25191860
Code of Federal Regulations, 2012 CFR
2012-07-01
... Department of Defense OFFICE OF THE SECRETARY OF DEFENSE SECURITY DEPARTMENT OF DEFENSE PERSONNEL SECURITY... effort to assess the probability of future behavior which could have an effect adverse to the national... the past but necessarily anticipating the future. Rarely is proof of trustworthiness and reliability...
Machette, Michael N.; Brown, William M.
1995-01-01
Almost 75 percent of Utah's population lives near the Wasatch Fault. Earth scientists have shown that this fault has repeatedly experienced strong earthquakes of magnitude 7 or larger and will continue to do so in the future. Efforts to increase public awareness of earthquake hazards in Utah have resulted in residents and community leaders taking actions that will save lives and reduce damage in future earthquakes.
Military efforts in nanosensors, 3D printing, and imaging detection
NASA Astrophysics Data System (ADS)
Edwards, Eugene; Booth, Janice C.; Roberts, J. Keith; Brantley, Christina L.; Crutcher, Sihon H.; Whitley, Michael; Kranz, Michael; Seif, Mohamed; Ruffin, Paul
2017-04-01
A team of researchers and support organizations, affiliated with the Army Aviation and Missile Research, Development, and Engineering Center (AMRDEC), has initiated multidiscipline efforts to develop nano-based structures and components for advanced weaponry, aviation, and autonomous air/ground systems applications. The main objective of this research is to exploit unique phenomena for the development of novel technology to enhance warfighter capabilities and produce precision weaponry. The key technology areas that the authors are exploring include nano-based sensors, analysis of 3D printing constituents, and nano-based components for imaging detection. By integrating nano-based devices, structures, and materials into weaponry, the Army can revolutionize existing (and future) weaponry systems by significantly reducing the size, weight, and cost. The major research thrust areas include the development of carbon nanotube sensors to detect rocket motor off-gassing; the application of current methodologies to assess materials used for 3D printing; and the assessment of components to improve imaging seekers. The status of current activities, associated with these key areas and their implementation into AMRDEC's research, is outlined in this paper. Section #2 outlines output data, graphs, and overall evaluations of carbon nanotube sensors placed on a 16 element chip and exposed to various environmental conditions. Section #3 summarizes the experimental results of testing various materials and resulting components that are supplementary to additive manufacturing/fused deposition modeling (FDM). Section #4 recapitulates a preliminary assessment of the optical and electromechanical components of seekers in an effort to propose components and materials that can work more effectively.
Hungry Horse Dam Fisheries Mitigation, 1992-1993 Progress Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DosSantos, Joe; Vashro, Jim; Lockard, Larry
1994-06-01
In February of 1900, over forty agency representatives and interested citizens began development of the 1991 Mitigation Plan. This effort culminated in the 1993 Implementation Plan for mitigation of fish losses attributable to the construction and operation of Hungry Horse Dam. The primary purpose of this biennial report is to inform the public of the status of ongoing mitigation activities resulting from those planning efforts. A habitat improvement project is underway to benefit bull trout in Big Creek in the North Fork drainage of the Flathead River and work is planned in Hay Creek, another North Fork tributary. Bull troutmore » redd counts have been expanded and experimental programs involving genetic evaluation, outmigrant monitoring, and hatchery studies have been initiated, Cutthroat mitigation efforts have focused on habitat improvements in Elliott Creek and Taylor`s Outflow and improvements have been followed by imprint plants of hatchery fish and/or eyed eggs in those streams. Rogers Lake west of Kalispell and Lion Lake, near Hungry Horse, were chemically rehabilitated. Cool and warm water fish habitat has been improved in Halfmoon Lake and Echo Lake. Public education and public interest is important to the future success of mitigation activities. As part of the mitigation team`s public awareness responsibility we have worked with numerous volunteer groups, public agencies, and private landowners to stimulate interest and awareness of mitigation activities and the aquatic ecosystem. The purpose of this biennial report is to foster public awareness of, and support for, mitigation activities as we move forward in implementing the Hungry Horse Dam Fisheries Mitigation Implementation Plan.« less
Perception of effort in Exercise Science: Definition, measurement and perspectives.
Pageaux, Benjamin
2016-11-01
Perception of effort, also known as perceived exertion or sense of effort, can be described as a cognitive feeling of work associated with voluntary actions. The aim of the present review is to provide an overview of what is perception of effort in Exercise Science. Due to the addition of sensations other than effort in its definition, the neurophysiology of perceived exertion remains poorly understood. As humans have the ability to dissociate effort from other sensations related to physical exercise, the need to use a narrower definition is emphasised. Consequently, a definition and some brief guidelines for its measurement are provided. Finally, an overview of the models present in the literature aiming to explain its neurophysiology, and some perspectives for future research are offered.
Jefferson Lab Science: Present and Future
McKeown, Robert D.
2015-02-12
The Continuous Electron Beam Accelerator Facility (CEBAF) and associated experimental equipment at Jefferson Lab comprise a unique facility for experimental nuclear physics. Furthermore, this facility is presently being upgraded, which will enable a new experimental program with substantial discovery potential to address important topics in nuclear, hadronic, and electroweak physics. Further in the future, it is envisioned that the Laboratory will evolve into an electron-ion colliding beam facility.
National Ignition Facility: Experimental plan
NASA Astrophysics Data System (ADS)
1994-05-01
As part of the Conceptual Design Report (CDR) for the National Ignition Facility (NIF), scientists from Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL), the University of Rochester's Laboratory for Laser Energetics (UR/LLE), and EG&G formed an NIF Target Diagnostics Working Group. The purpose of the Target Diagnostics Working Group is to prepare conceptual designs of target diagnostics for inclusion in the facility CDR and to determine how these specifications impact the CDR. To accomplish this, a subgroup has directed its efforts at constructing an approximate experimental plan for the ignition campaign of the NIF CDR. The results of this effort are contained in this document, the Experimental Plan for achieving fusion ignition in the NIF. This group initially concentrated on the flow-down requirements of the experimental campaign leading to ignition, which will dominate the initial efforts of the NIF. It is envisaged, however, that before ignition, there will be parallel campaigns supporting weapons physics, weapons effects, and other research. This plan was developed by analyzing the sequence of activities required to finally fire the laser at the level of power and precision necessary to achieve the conditions of an ignition hohlraum target, and to then use our experience in activating and running Nova experiments to estimate the rate of completing these activities.
Future Research Needs in Learning Disabilities.
ERIC Educational Resources Information Center
Senf, Gerald M.
This paper deals with future research needs and problems in learning disabilities, and is divided into the following two broad categories: (1) supporting conditions, which involve necessary prerequisites to the research effort; and (2) procedural considerations, which deal with methodological concerns. First, the problems posed by supporting…
Needed: Clean Water. Problems of Pollution.
ERIC Educational Resources Information Center
Environmental Protection Agency, Washington, DC.
This pamphlet utilizes illustrations and captions to indicate the demands currently made on our water resources and the problems associated with that demand. Current and future solutions are described with suggestions for personal conservation efforts to help provide enough clean water for everyone in the future. (CS)
Comparison of in vivo and ex vivo viscoelastic behavior of the spinal cord.
Ramo, Nicole L; Shetye, Snehal S; Streijger, Femke; Lee, Jae H T; Troyer, Kevin L; Kwon, Brian K; Cripton, Peter; Puttlitz, Christian M
2018-03-01
Despite efforts to simulate the in vivo environment, post-mortem degradation and lack of blood perfusion complicate the use of ex vivo derived material models in computational studies of spinal cord injury. In order to quantify the mechanical changes that manifest ex vivo, the viscoelastic behavior of in vivo and ex vivo porcine spinal cord samples were compared. Stress-relaxation data from each condition were fit to a non-linear viscoelastic model using a novel characterization technique called the direct fit method. To validate the presented material models, the parameters obtained for each condition were used to predict the respective dynamic cyclic response. Both ex vivo and in vivo samples displayed non-linear viscoelastic behavior with a significant increase in relaxation with applied strain. However, at all three strain magnitudes compared, ex vivo samples experienced a higher stress and greater relaxation than in vivo samples. Significant differences between model parameters also showed distinct relaxation behaviors, especially in non-linear relaxation modulus components associated with the short-term response (0.1-1 s). The results of this study underscore the necessity of utilizing material models developed from in vivo experimental data for studies of spinal cord injury, where the time-dependent properties are critical. The ability of each material model to accurately predict the dynamic cyclic response validates the presented methodology and supports the use of the in vivo model in future high-resolution finite element modeling efforts. Neural tissues (such as the brain and spinal cord) display time-dependent, or viscoelastic, mechanical behavior making it difficult to model how they respond to various loading conditions, including injury. Methods that aim to characterize the behavior of the spinal cord almost exclusively use ex vivo cadaveric or animal samples, despite evidence that time after death affects the behavior compared to that in a living animal (in vivo response). Therefore, this study directly compared the mechanical response of ex vivo and in vivo samples to quantify these differences for the first time. This will allow researchers to draw more accurate conclusions about spinal cord injuries based on ex vivo data (which are easier to obtain) and emphasizes the importance of future in vivo experimental animal work. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA's Advanced Radioisotope Power Conversion Technology Development Status
NASA Technical Reports Server (NTRS)
Anderson, David J.; Sankovic, John; Wilt, David; Abelson, Robert D.; Fleurial, Jean-Pierre
2007-01-01
NASA's Advanced Radioisotope Power Systems (ARPS) project is developing the next generation of radioisotope power conversion technologies that will enable future missions that have requirements that cannot be met by either photovoltaic systems or by current radioisotope power systems (RPSs). Requirements of advanced RPSs include high efficiency and high specific power (watts/kilogram) in order to meet future mission requirements with less radioisotope fuel and lower mass so that these systems can meet requirements for a variety of future space applications, including continual operation surface missions, outer-planetary missions, and solar probe. These advances would enable a factor of 2 to 4 decrease in the amount of fuel required to generate electrical power. Advanced RPS development goals also include long-life, reliability, and scalability. This paper provides an update on the contractual efforts under the Radioisotope Power Conversion Technology (RPCT) NASA Research Announcement (NRA) for research and development of Stirling, thermoelectric, and thermophotovoltaic power conversion technologies. The paper summarizes the current RPCT NRA efforts with a brief description of the effort, a status and/or summary of the contractor's key accomplishments, a discussion of upcoming plans, and a discussion of relevant system-level benefits and implications. The paper also provides a general discussion of the benefits from the development of these advanced power conversion technologies and the eventual payoffs to future missions (discussing system benefits due to overall improvements in efficiency, specific power, etc.).
Iyer, Swami; Killingback, Timothy
2014-10-01
The traveler's dilemma game and the minimum-effort coordination game are social dilemmas that have received significant attention resulting from the fact that the predictions of classical game theory are inconsistent with the results found when the games are studied experimentally. Moreover, both the traveler's dilemma and the minimum-effort coordination games have potentially important applications in evolutionary biology. Interestingly, standard deterministic evolutionary game theory, as represented by the replicator dynamics in a well-mixed population, is also inadequate to account for the behavior observed in these games. Here we study the evolutionary dynamics of both these games in populations with interaction patterns described by a variety of complex network topologies. We investigate the evolutionary dynamics of these games through agent-based simulations on both model and empirical networks. In particular, we study the effects of network clustering and assortativity on the evolutionary dynamics of both games. In general, we show that the evolutionary behavior of the traveler's dilemma and minimum-effort coordination games on complex networks is in good agreement with that observed experimentally. Thus, formulating the traveler's dilemma and the minimum-effort coordination games on complex networks neatly resolves the paradoxical aspects of these games.
NASA Astrophysics Data System (ADS)
Iyer, Swami; Killingback, Timothy
2014-10-01
The traveler's dilemma game and the minimum-effort coordination game are social dilemmas that have received significant attention resulting from the fact that the predictions of classical game theory are inconsistent with the results found when the games are studied experimentally. Moreover, both the traveler's dilemma and the minimum-effort coordination games have potentially important applications in evolutionary biology. Interestingly, standard deterministic evolutionary game theory, as represented by the replicator dynamics in a well-mixed population, is also inadequate to account for the behavior observed in these games. Here we study the evolutionary dynamics of both these games in populations with interaction patterns described by a variety of complex network topologies. We investigate the evolutionary dynamics of these games through agent-based simulations on both model and empirical networks. In particular, we study the effects of network clustering and assortativity on the evolutionary dynamics of both games. In general, we show that the evolutionary behavior of the traveler's dilemma and minimum-effort coordination games on complex networks is in good agreement with that observed experimentally. Thus, formulating the traveler's dilemma and the minimum-effort coordination games on complex networks neatly resolves the paradoxical aspects of these games.
Stochastic evolutionary dynamics in minimum-effort coordination games
NASA Astrophysics Data System (ADS)
Li, Kun; Cong, Rui; Wang, Long
2016-08-01
The minimum-effort coordination game draws recently more attention for the fact that human behavior in this social dilemma is often inconsistent with the predictions of classical game theory. Here, we combine evolutionary game theory and coalescence theory to investigate this game in finite populations. Both analytic results and individual-based simulations show that effort costs play a key role in the evolution of contribution levels, which is in good agreement with those observed experimentally. Besides well-mixed populations, set structured populations have also been taken into consideration. Therein we find that large number of sets and moderate migration rate greatly promote effort levels, especially for high effort costs.
The Need for Large-Scale, Longitudinal Empirical Studies in Middle Level Education Research
ERIC Educational Resources Information Center
Mertens, Steven B.; Caskey, Micki M.; Flowers, Nancy
2016-01-01
This essay describes and discusses the ongoing need for large-scale, longitudinal, empirical research studies focused on middle grades education. After a statement of the problem and concerns, the essay describes and critiques several prior middle grades efforts and research studies. Recommendations for future research efforts to inform policy…
The Managerial Activities and Leadership Roles of Five Achieving the Dream Leader College Presidents
ERIC Educational Resources Information Center
Mace, Teresa Marie Taylor
2013-01-01
A significant increase in community colleges' (CC) presidential retirements is resulting in a huge loss of critical knowledge and experience. Recognition of this has led to numerous efforts and initiatives to prepare future community college leaders. These efforts have included numerous attempts to identify the competencies, skills, and leadership…
Global Education Comes to Russia in 1991.
ERIC Educational Resources Information Center
Tucker, Jan L.
This paper discusses the first international conference on the future of education in Russia held in Sochi, Russia, in September of 1991. The focus was on recent efforts that have been made by educators to develop global education in Russian schools. These efforts include a detailed project for the development of global education in Russia and…
An RCT of an Evidence-Based Practice Teaching Model with the Field Instructor
ERIC Educational Resources Information Center
Tennille, Julie Anne
2013-01-01
Problem: Equipping current and future social work practitioners with skills to deliver evidence-based practice (EBP) has remained an elusive prospect since synchronized efforts with field instructors have not been a consistent part of dissemination and implementation efforts. Recognizing the highly influential position of field instructors, this…
[Economic Growth and Development].
ERIC Educational Resources Information Center
Clausen, A. W.
Recent efforts of the World Bank to improve global economic problems are described, issues which will influence the role of the World Bank in the decade to come are discussed, and the Bank's future role is examined. Recent World Bank efforts to help developing nations include a lending program, project investments, analytical and advisory work,…
The key roles of four Experimental Forests in the LTSP International Research Program
Robert F. Powers; Robert Denner; John D. Elioff; Gary O. Fiddler; Deborah Page-Dumroese; Felix Ponder; Allan E. Tiarks; Peter E. Avers; Richard G. Cline; Nelson S. Loftus
2014-01-01
Four Experimental Forests were pivotal in piloting the long-term soil productivity (LTSP) cooperative research program - one of the most successful and extensive collaborative science efforts yet undertaken by the USDA Forest Service. Launched on the Palustris, Challenge, Marcell, and Priest River Experimental Forests, LTSP traces to a seminal discussion during a field...
ERIC Educational Resources Information Center
Kniefel, Tanya M.
An evaluation design created to provide information for a multiple-project program of educational experimentation is presented. Project SEED (State Experimentation in Educational Development) became an official education effort in North Carolina on July 1, 1971. Model for the program was that of the State's ESEA Title III program with certain…
Ramirez-Andreotta, Monica D.; Brody, Julia Green; Lothrop, Nathan; Loh, Miranda; Beamer, Paloma I.; Brown, Phil
2016-01-01
Understanding the short- and long-term impacts of a biomonitoring and exposure project and reporting personal results back to study participants is critical for guiding future efforts, especially in the context of environmental justice. The purpose of this study was to evaluate learning outcomes from environmental communication efforts and whether environmental health literacy goals were met in an environmental justice community. We conducted 14 interviews with parents who had participated in the University of Arizona’s Metals Exposure Study in Homes and analyzed their responses using NVivo, a qualitative data management and analysis program. Key findings were that participants used the data to cope with their challenging circumstances, the majority of participants described changing their families’ household behaviors, and participants reported specific interventions to reduce family exposures. The strength of this study is that it provides insight into what people learn and gain from such results communication efforts, what participants want to know, and what type of additional information participants need to advance their environmental health literacy. This information can help improve future report back efforts and advance environmental health and justice. PMID:27399755
A study of fault prediction and reliability assessment in the SEL environment
NASA Technical Reports Server (NTRS)
Basili, Victor R.; Patnaik, Debabrata
1986-01-01
An empirical study on estimation and prediction of faults, prediction of fault detection and correction effort, and reliability assessment in the Software Engineering Laboratory environment (SEL) is presented. Fault estimation using empirical relationships and fault prediction using curve fitting method are investigated. Relationships between debugging efforts (fault detection and correction effort) in different test phases are provided, in order to make an early estimate of future debugging effort. This study concludes with the fault analysis, application of a reliability model, and analysis of a normalized metric for reliability assessment and reliability monitoring during development of software.
Research Priorities for Economic Analyses of Prevention: Current Issues & Future Directions
Crowley, D. Max; Hill, Laura Griner; Kuklinski, Margaret R.; Jones, Damon E.
2013-01-01
In response to growing interest in economic analyses of prevention efforts, a diverse group of prevention researchers, economists, and policy analysts convened a scientific panel, on “Research Priorities in Economic Analysis of Prevention” at the 19th annual conference of the Society for Prevention Research. The panel articulated four priorities that, if followed in future research, would make economic analyses of prevention efforts easier to compare and more relevant to policymakers, and community stakeholders. These priorities are: (1) increased standardization of evaluation methods, (2) improved economic valuation of common prevention outcomes, (3) expanded efforts to maximize evaluation generalizability and impact, as well as (4) enhanced transparency and communicability of economic evaluations. In this paper we define three types of economic analyses in prevention, provide context and rationale for these four priorities as well as related sub-priorities, and discuss the challenges inherent in meeting them. PMID:23963624
NASA Technical Reports Server (NTRS)
Costa, Guillermo J.; Arteaga, Ricardo A.
2011-01-01
A preliminary survey of existing separation assurance and collision avoidance advancements, technologies, and efforts has been conducted in order to develop a concept of operations for flight testing autonomous separation assurance at Dryden Flight Research Center. This effort was part of the Unmanned Aerial Systems in the National Airspace System project. The survey focused primarily on separation assurance projects validated through flight testing (including lessons learned), however current forays into the field were also examined. Comparisons between current Dryden flight and range assets were conducted using House of Quality matrices in order to allow project management to make determinations regarding asset utilization for future flight tests. This was conducted in order to establish a body of knowledge of the current collision avoidance landscape, and thus focus Dryden s efforts more effectively towards the providing of assets and test ranges for future flight testing within this research field.
Teacher response to learning disability: a test of attributional principles.
Clark, M D
1997-01-01
Attribution research has identified student ability and effort expended as causes of achievement outcomes that result in differing teacher affect, evaluative feedback, and expectation of future performance. Ninety-seven elementary-school general education teachers (84 women and 13 men) rated their responses to the test failures of hypothetical boys with and without learning disabilities. In most cases, greater reward and less punishment, less anger and more pity, and higher expectations of future failure followed the negative outcomes of the boys with learning disabilities, when compared with their nondisabled ability and effort matches, indicating that learning disability acts as a cause of achievement outcomes in the same way as ability and effort. This pattern of teacher affect and response can send negative messages that are often interpreted as low-ability cues, thus affecting students' self-esteem, sense of competence as learners, and motivation to achieve.
RANS Based Methodology for Predicting the Influence of Leading Edge Erosion on Airfoil Performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langel, Christopher M.; Chow, Raymond C.; van Dam, C. P.
The impact of surface roughness on flows over aerodynamically designed surfaces is of interested in a number of different fields. It has long been known the surface roughness will likely accelerate the laminar- turbulent transition process by creating additional disturbances in the boundary layer. However, there are very few tools available to predict the effects surface roughness will have on boundary layer flow. There are numerous implications of the premature appearance of a turbulent boundary layer. Increases in local skin friction, boundary layer thickness, and turbulent mixing can impact global flow properties compounding the effects of surface roughness. With thismore » motivation, an investigation into the effects of surface roughness on boundary layer transition has been conducted. The effort involved both an extensive experimental campaign, and the development of a high fidelity roughness model implemented in a R ANS solver. Vast a mounts of experimental data was generated at the Texas A&M Oran W. Nicks Low Speed Wind Tunnel for the calibration and validation of the roughness model described in this work, as well as future efforts. The present work focuses on the development of the computational model including a description of the calibration process. The primary methodology presented introduces a scalar field variable and associated transport equation that interacts with a correlation based transition model. The additional equation allows for non-local effects of surface roughness to be accounted for downstream of rough wall sections while maintaining a "local" formulation. The scalar field is determined through a boundary condition function that has been calibrated to flat plate cases with sand grain roughness. The model was initially tested on a NACA 0012 airfoil with roughness strips applied to the leading edge. Further calibration of the roughness model was performed using results from the companion experimental study on a NACA 63 3 -418 airfoil. The refined model demonstrates favorable agreement predicting changes to the transition location, as well as drag, for a number of different leading edge roughness configurations on the NACA 63 3-418 airfoil. Additional tests were conducted on a thicker S814 airfoil, with similar roughness configurations to the NACA 63 3-418. Simulations run with the roughness model compare favorably with the results obtained in the experimental study for both airfoils.« less
Experimental Creep Life Assessment for the Advanced Stirling Convertor Heater Head
NASA Technical Reports Server (NTRS)
Krause, David L.; Kalluri, Sreeramesh; Shah, Ashwin R.; Korovaichuk, Igor
2010-01-01
The United States Department of Energy is planning to develop the Advanced Stirling Radioisotope Generator (ASRG) for the National Aeronautics and Space Administration (NASA) for potential use on future space missions. The ASRG provides substantial efficiency and specific power improvements over radioisotope power systems of heritage designs. The ASRG would use General Purpose Heat Source modules as energy sources and the free-piston Advanced Stirling Convertor (ASC) to convert heat into electrical energy. Lockheed Martin Corporation of Valley Forge, Pennsylvania, is integrating the ASRG systems, and Sunpower, Inc., of Athens, Ohio, is designing and building the ASC. NASA Glenn Research Center of Cleveland, Ohio, manages the Sunpower contract and provides technology development in several areas for the ASC. One area is reliability assessment for the ASC heater head, a critical pressure vessel within which heat is converted into mechanical oscillation of a displacer piston. For high system efficiency, the ASC heater head operates at very high temperature (850 C) and therefore is fabricated from an advanced heat-resistant nickel-based superalloy Microcast MarM-247. Since use of MarM-247 in a thin-walled pressure vessel is atypical, much effort is required to assure that the system will operate reliably for its design life of 17 years. One life-limiting structural response for this application is creep; creep deformation is the accumulation of time-dependent inelastic strain under sustained loading over time. If allowed to progress, the deformation eventually results in creep rupture. Since creep material properties are not available in the open literature, a detailed creep life assessment of the ASC heater head effort is underway. This paper presents an overview of that creep life assessment approach, including the reliability-based creep criteria developed from coupon testing, and the associated heater head deterministic and probabilistic analyses. The approach also includes direct benchmark experimental creep assessment. This element provides high-fidelity creep testing of prototypical heater head test articles to investigate the relevant material issues and multiaxial stress state. Benchmark testing provides required data to evaluate the complex life assessment methodology and to validate that analysis. Results from current benchmark heater head tests and newly developed experimental methods are presented. In the concluding remarks, the test results are shown to compare favorably with the creep strain predictions and are the first experimental evidence for a robust ASC heater head creep life.
Impacts of experimentally increased foraging effort on the family: offspring sex matters
Harding, A.M.A.; Kitaysky, A.S.; Hamer, K.C.; Hall, M.E.; Welcker, J.; Talbot, S.L.; Karnovsky, N.J.; Gabrielsen, G.W.; Gremillet, D.
2009-01-01
We examined how short-term impacts of experimentally increased foraging effort by one parent reverberate around the family in a monomorphic seabird (little auk, Alle alle), and whether these effects depend on offspring sex. In many species, more effort is required to rear sons successfully than daughters. However, undernourishment may have stronger adverse consequences for male offspring, which could result in a lower fitness benefit of additional parental effort when rearing a son. We tested two alternative hypotheses concerning the responses of partners to handicapping parents via feather clipping: partners rearing a son are (1) more willing or able to compensate for the reduced contribution of their mate, or (2) less willing or able to compensate, compared to those rearing a daughter. Hypothesis 1 predicts that sons will be no more adversely affected than daughters, and the impact on parents will be greater when rearing a son. Hypothesis 2 predicts that sons will be more adversely affected than daughters, and parents raising a son less affected. Although experimental chicks of both sexes fledged in poorer condition than controls, sons attained higher mass and more rapid growth than daughters in both groups. Clipped parents lost a similar proportion of their initial mass regardless of chick sex, whereas partners of clipped birds lost more mass when rearing a son. These results support hypothesis 1: impacts of increased foraging effort by one parent were felt by offspring, regardless of their sex, and by the partners of manipulated birds, particularly when the offspring was male. ?? 2009 The Association for the Study of Animal Behaviour.
MO-FG-BRC-00: Joint AAPM-ESTRO Symposium: Advances in Experimental Medical Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Experimental research in medical physics has expanded the limits of our knowledge and provided novel imaging and therapy technologies for patients around the world. However, experimental efforts are challenging due to constraints in funding, space, time and other forms of institutional support. In this joint ESTRO-AAPM symposium, four exciting experimental projects from four different countries are highlighted. Each project is focused on a different aspect of radiation therapy. From the USA, we will hear about a new linear accelerator concept for more compact and efficient therapy devices. From Canada, we will learn about novel linear accelerator target design and themore » implications for imaging and therapy. From France, we will discover a mature translational effort to incorporate theranostic nanoparticles in MR-guided radiation therapy. From Germany, we will find out about a novel in-treatment imaging modality for particle therapy. These examples of high impact, experimental medical physics research are representative of the diversity of such efforts that are on-going around the globe. J. Robar, Research is supported through collaboration with Varian Medical Systems and Brainlab AGD. Westerly, This work is supported by the Department of Radiation Oncology at the University of Colorado School of Medicine. COI: NONEK. Parodi, Part of the presented work is supported by the DFG (German Research Foundation) Cluster of Excellence MAP (Munich-Centre for Advanced Photonics) and has been carried out in collaboration with IBA.« less
David N. Bengston; Robert L. Olson; Leif A. DeVaney
2012-01-01
Past efforts to examine the future of wildland fire management have relied heavily on expertise from within the wildfire community. But changes in seemingly unrelated external factors - outside of the world of wildfire and fire management - can have unexpected and profound effects. This paper describes an ongoing sh1dy of the...
Cognitive effort: A neuroeconomic approach
Braver, Todd S.
2015-01-01
Cognitive effort has been implicated in numerous theories regarding normal and aberrant behavior and the physiological response to engagement with demanding tasks. Yet, despite broad interest, no unifying, operational definition of cognitive effort itself has been proposed. Here, we argue that the most intuitive and epistemologically valuable treatment is in terms of effort-based decision-making, and advocate a neuroeconomics-focused research strategy. We first outline psychological and neuroscientific theories of cognitive effort. Then we describe the benefits of a neuroeconomic research strategy, highlighting how it affords greater inferential traction than do traditional markers of cognitive effort, including self-reports and physiologic markers of autonomic arousal. Finally, we sketch a future series of studies that can leverage the full potential of the neuroeconomic approach toward understanding the cognitive and neural mechanisms that give rise to phenomenal, subjective cognitive effort. PMID:25673005
Ten-year space launch technology plan
NASA Technical Reports Server (NTRS)
1992-01-01
This document is the response to the National Space Policy Directive-4 (NSPD-4), signed by the President on 10 Jul. 1991. Directive NSPD-4 calls upon the Department of Defense (DoD), the Department of Energy (DOE), and the National Aeronautics and Space Administration (NASA) to coordinate national space launch technology efforts and to jointly prepare a 10-year space launch technology plan. The nation's future in space rests on the strength of its national launch technology program. This plan documents our current launch technology efforts, plans for future initiatives in this arena, and the overarching philosophy that links these activities into an integrated national technology program.
ERIC Educational Resources Information Center
Massy, William F.
1989-01-01
Three principal aspects of capital needs in biomedical research are discussed: the significant and growing need for capital; sources; and the role of federal policy. Important assumptions, questions, and possible future trends are discussed. Consolidated thinking and effort are encouraged. (MSE)
GIS-based hydrologic modeling offers a convenient means of assessing the impacts associated with land-cover/use change for environmental planning efforts. Alternative future scenarios can be used as input to hydrologic models and compared with existing conditions to evaluate pot...
The Future of Educational Entrepreneurship: Possibilities for School Reform
ERIC Educational Resources Information Center
Hess, Frederick M., Ed.
2008-01-01
"The Future of Educational Entrepreneurship" examines the challenge of creating innovative and productive entrepreneurial activity in American education. In the course of exploring these challenges, the book considers a number of crucial issues and circumstances: existing "barriers to entry" that prohibit or obstruct entrepreneurial efforts; the…
3 CFR - Blue Ribbon Commission on America's Nuclear Future
Code of Federal Regulations, 2011 CFR
2011-01-01
... America's Nuclear Future Memorandum for the Secretary of Energy Expanding our Nation's capacity to generate clean nuclear energy is crucial to our ability to combat climate change, enhance energy security... safe, secure, and responsible use of nuclear energy. These efforts are critical to accomplishing many...
Lin, Xiuyun; Zhao, Guoxiang; Li, Xiaoming; Stanton, Bonita; Zhang, Liying; Hong, Yan; Zhao, Junfeng; Fang, Xiaoyi
2010-05-01
(1) Examine the psychometric properties of two parallel measures of HIV-related stigma (i.e., perceived public stigma and children's personal stigma against people living with HIV/AIDS [PLWHA]) among children affected by HIV/AIDS. (2) Examine whether expressions of stigma measures differ by child's sex, developmental stage, family socioeconomic status (SES), or orphanhood status (i.e., AIDS orphans, vulnerable children, and comparison children). (3) Examine the association between HIV-related stigma and children's psychosocial adjustments among these children. Cross-sectional data were collected from 755 AIDS orphans (children who had lost one or both their parents to AIDS), 466 vulnerable children who lived with HIV infected parents, and 404 comparison children who did not experience HIV-related illness and death in their families. The measures included perceived public stigma, personal stigma, depressive symptoms, loneliness, self-esteem, future expectations, hopefulness about the future, and perceived control over the future. Both stigma scales were positively associated with psychopathological symptoms (e.g., depression, loneliness) and negatively associated with psychosocial well-being (e.g., self-esteem, positive future expectation, hopefulness about future, and perceived control over the future). Both stigma measures contribute to children's psychosocial problems independent of their orphanhood status and other key demographic factors. Community-wide stigma reduction and psychological support should be part of the care efforts for children affected by AIDS. Stigma reduction efforts should not only target the stigma against PLWHA but also possible stigma against the entire community (e.g., villages) with a high prevalence of HIV/AIDS. The stigma reduction efforts also needs to be appropriate for children's age, gender, family SES, and AIDS experience in the family. Future research should explore individual and contextual factors such as social support, coping, and attachment in mitigating the negative effect of stigma among these children.
Rohwer, Sievert; Langston, Nancy; Gori, Dave
1996-10-01
We experimentally manipulated the strength of selection in the field on red-winged blackbirds (Agelaius phoeniceus) to test hypotheses about contrasting selective forces that favor either large or small males in sexually size dimorphic birds. Selander (1972) argued that sexual selection favors larger males, while survival selection eventually stabilizes male size because larger males do not survive as well as smaller males during harsh winters. Searcy (1979a) proposed instead that sexual selection may be self limiting: male size might be stabilized not by overwinter mortality, but by breeding-season sexual selection that favors smaller males. Under conditions of energetic stress, smaller males should be able to display more and thus achieve higher reproductive success. Using feeders that provisioned males or females but not both, we produced conditions that mimicked the extremes of natural conditions. We found experimental support for the hypothesis that when food is abundant, sexual selection favors larger males. But even under conditions of severe energetic stress, smaller males did not gain larger harems, as the self-limiting hypothesis predicted. Larger males were more energetically stressed than smaller males, but in ways that affected their future reproductive output rather than their current reproductive performance. Stressed males that returned had smaller wings and tails than those that did not return; among returning stressed males, relative harem sizes were inversely related to wing and tail length. Thus, male body size may be stabilized not by survival costs during the non-breeding season, nor by energetic costs during the breeding season, but by costs of future reproduction that larger males pay for their increased breeding-season effort. © 1996 The Society for the Study of Evolution.
High-Temperature Solar Cell Development
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.; Raffaelle, Ryne P.; Merritt, Danielle
2004-01-01
The vast majority of satellites and near-earth probes developed to date have relied upon photovoltaic power generation. If future missions to probe environments close to the sun will be able to use photovoltaic power, solar cells that can function at high temperatures, under high light intensity, and high radiation conditions must be developed. For example, the equilibrium temperature of a Mercury surface station will be about 450 C, and the temperature of solar arrays on the proposed "Solar Probe" mission will extend to temperatures as high as 2000 C (although it is likely that the craft will operate on stored power rather than solar energy during the closest approach to the sun). Advanced thermal design principles, such as replacing some of the solar array area with reflectors, off-pointing, and designing the cells to reflect rather than absorb light out of the band of peak response, can reduce these operating temperature somewhat. Nevertheless, it is desirable to develop approaches to high-temperature solar cell design that can operate under temperature extremes far greater than today's cells. Solar cells made from wide bandgap (WBG) compound semiconductors are an obvious choice for such an application. In order to aid in the experimental development of such solar cells, we have initiated a program studying the theoretical and experimental photovoltaic performance of wide bandgap materials. In particular, we have been investigating the use of GaP, SiC, and GaN materials for space solar cells. We will present theoretical results on the limitations on current cell technologies and the photovoltaic performance of these wide-bandgap solar cells in a variety of space conditions. We will also give an overview of some of NASA's cell developmental efforts in this area and discuss possible future mission applications.
Translational environmental biology: cell biology informing conservation.
Traylor-Knowles, Nikki; Palumbi, Stephen R
2014-05-01
Typically, findings from cell biology have been beneficial for preventing human disease. However, translational applications from cell biology can also be applied to conservation efforts, such as protecting coral reefs. Recent efforts to understand the cell biological mechanisms maintaining coral health such as innate immunity and acclimatization have prompted new developments in conservation. Similar to biomedicine, we urge that future efforts should focus on better frameworks for biomarker development to protect coral reefs. Copyright © 2014 Elsevier Ltd. All rights reserved.
Exploring mechanisms of transport and persistence of environmental DNA (eDNA)
NASA Astrophysics Data System (ADS)
Shogren, A.; Tank, J. L.; Riis, T.; Rosi, E. J.; Bolster, D.
2017-12-01
Sampling for eDNA is a non-intrusive method to detect species presence without direct observation, which allows for earlier detection and more rapid response than conventional sampling methods. However, our current understanding of how eDNA is transported and persists in flowing waters (e.g., streams and rivers) remains imprecise; in flowing waters, the target organism may be some distance away from where the eDNA in water is collected. It is uncertain how the unique transport properties of suspended eDNA or the inherent heterogeneity of natural flowing systems may impact the probability of downstream eDNA detection. To improve understanding of eDNA fate, we first conducted experimental releases and modeled the impact of benthic substrate heterogeneity and size on eDNA transport and retention in streams. We also used recirculating artificial streams to constrain estimates of eDNA degradation in systems with varying flow and microbial biofilm coverage. We found that eDNA retention in streams is substrate-specific, and that streambed hydraulics have significant influence on how far eDNA is transported downstream. Through the degradation experiments, we found that eDNA degradation is strongly context dependent, but even in systems with low velocity, eDNA can remain detectable in the water column >24hrs after introduction. This differential persistence of eDNA particles confirms that eDNA dynamics in flowing waters are not constant along a spatial continuum, which complicates interpretation of a positive detection in flowing waters, which presents a scaling problem for future modeling efforts to support transport predictions. To test our experimental results in a natural system, we compared our previous estimates for eDNA transport, retention, and degradation to field data collected during a longitudinal field survey for zebra mussel eDNA on the Gudena River in Silkeborg, Denmark. We found that though heterogeneity indeed complicates scaling efforts to extrapolate results from small experimental streams to larger natural systems, we can use the small-scale experiments to improve how we interpret spatial variation in eDNA signal in larger scale flowing systems.
Motivation and future temporal orientation: a test of the self-handicapping hypothesis.
Lennings, C J
1999-06-01
Self-handicapping motivation refers to the likelihood a person will project personal ambition into the future, make a pessimistic judgement, and then mobilise effort in the present to avoid an anticipated negative outcome. It should, therefore, be a correlate of future time perspective. This study showed for a sample of 120 first-year students that, whilst future time perspective did strongly predict scores on a measure of self-handicapping motivation, neither variable was a useful predictor of outcome.
NASA Technical Reports Server (NTRS)
Ku, Jentung; Ottenstein, Laura; Douglas, Donya; Hoang, Triem
2010-01-01
Under NASA s New Millennium Program Space Technology 8 (ST 8) Project, Goddard Space Fight Center has conducted a Thermal Loop experiment to advance the maturity of the Thermal Loop technology from proof of concept to prototype demonstration in a relevant environment , i.e. from a technology readiness level (TRL) of 3 to a level of 6. The thermal Loop is an advanced thermal control system consisting of a miniature loop heat pipe (MLHP) with multiple evaporators and multiple condensers designed for future small system applications requiring low mass, low power, and compactness. The MLHP retains all features of state-of-the-art loop heat pipes (LHPs) and offers additional advantages to enhance the functionality, performance, versatility, and reliability of the system. An MLHP breadboard was built and tested in the laboratory and thermal vacuum environments for the TRL 4 and TRL 5 validations, respectively, and an MLHP proto-flight unit was built and tested in a thermal vacuum chamber for the TRL 6 validation. In addition, an analytical model was developed to simulate the steady state and transient behaviors of the MLHP during various validation tests. The MLHP demonstrated excellent performance during experimental tests and the analytical model predictions agreed very well with experimental data. All success criteria at various TRLs were met. Hence, the Thermal Loop technology has reached a TRL of 6. This paper presents the validation results, both experimental and analytical, of such a technology development effort.
NASA Astrophysics Data System (ADS)
de Boeck, H. J.; Lemmens, C. M. H. M.; Gielen, B.; Malchair, S.; Carnol, M.; Merckx, R.; van den Berge, J.; Ceulemans, R.; Nijs, I.
2007-12-01
Here we report on the single and combined impacts of climate warming and species richness on the biomass production in experimental grassland communities. Projections of a future warmer climate have stimulated studies on the response of terrestrial ecosystems to this global change. Experiments have likewise addressed the importance of species numbers for ecosystem functioning. There is, however, little knowledge on the interplay between warming and species richness. During three years, we grew experimental plant communities containing one, three or nine grassland species in 12 sunlit, climate-controlled chambers in Wilrijk, Belgium. Half of these chambers were exposed to ambient air temperatures (unheated), while the other half were warmed by 3°C (heated). Equal amounts of water were added to heated and unheated communities, so that warming would imply drier soils if evapotranspiration was higher. Biomass production was decreased due to warming, both aboveground (-29%) and belowground (-25%), as negative impacts of increased heat and drought stress in summer prevailed. Increased resource partitioning, likely mostly through spatial complementarity, led to higher shoot and root biomass in multi-species communities, regardless of the induced warming. Surprisingly, warming suppressed productivity the most in 9-species communities, which may be attributed to negative impacts of intense interspecific competition for resources under conditions of high abiotic stress. Our results suggest that warming and the associated soil drying could reduce primary production in many temperate grasslands, and that this will not necessarily be mitigated by efforts to maintain or increase species richness.
Sequence and structural analyses of nuclear export signals in the NESdb database
Xu, Darui; Farmer, Alicia; Collett, Garen; Grishin, Nick V.; Chook, Yuh Min
2012-01-01
We compiled >200 nuclear export signal (NES)–containing CRM1 cargoes in a database named NESdb. We analyzed the sequences and three-dimensional structures of natural, experimentally identified NESs and of false-positive NESs that were generated from the database in order to identify properties that might distinguish the two groups of sequences. Analyses of amino acid frequencies, sequence logos, and agreement with existing NES consensus sequences revealed strong preferences for the Φ1-X3-Φ2-X2-Φ3-X-Φ4 pattern and for negatively charged amino acids in the nonhydrophobic positions of experimentally identified NESs but not of false positives. Strong preferences against certain hydrophobic amino acids in the hydrophobic positions were also revealed. These findings led to a new and more precise NES consensus. More important, three-dimensional structures are now available for 68 NESs within 56 different cargo proteins. Analyses of these structures showed that experimentally identified NESs are more likely than the false positives to adopt α-helical conformations that transition to loops at their C-termini and more likely to be surface accessible within their protein domains or be present in disordered or unobserved parts of the structures. Such distinguishing features for real NESs might be useful in future NES prediction efforts. Finally, we also tested CRM1-binding of 40 NESs that were found in the 56 structures. We found that 16 of the NES peptides did not bind CRM1, hence illustrating how NESs are easily misidentified. PMID:22833565
The Business Education of Charismatic Leaders and Good Soldiers
ERIC Educational Resources Information Center
Norris, Sharon E.
2018-01-01
This article describes how charismatic leaders inspire followers with a vision of a better future, but attaining that better future is not easy and requires hard work, extra effort, and sacrifice. In challenging organizational environments where crisis is present, one leadership style that emerges has been described as charismatic. Charismatic…
GSD Update: Checking the range for signs of climate change in the past, present and future
Lisa-Natalie Anjozian
2011-01-01
The July 2011 inaugural issue of GSDUpdate: Checking the Range for Signs of Climate Change In the Past, Present and Future, a research review of the Program, focuses on the efforts toward understanding the role of climate in shaping the environment.
A Man-Machine System for Contemporary Counseling Practice: Diagnosis and Prediction.
ERIC Educational Resources Information Center
Roach, Arthur J.
This paper looks at present and future capabilities for diagnosis and prediction in computer-based guidance efforts and reviews the problems and potentials which will accompany the implementation of such capabilities. In addition to necessary procedural refinement in prediction, future developments in computer-based educational and career…
Educational Development and Reformation in Malaysia: Past, Present, and Future.
ERIC Educational Resources Information Center
Ahmad, Rahimah Haji
1998-01-01
Discusses educational development in Malaysia, focusing on curriculum changes, issues, and future perspectives. Discusses the development of values education, its importance in the curriculum, and the government's efforts to mold a united nation with Malaysian values. Current reforms target tertiary education. The school curriculum has not been…
Discerning the Future of Early Childhood Intervention.
ERIC Educational Resources Information Center
Zigler, Edward; Berman, Winnie
1983-01-01
Examines the recent history of early childhood intervention efforts; discusses principles that guided the formation of intervention programs in the 1960s and 1970s; describes the Head Start program and lessons learned from its development; considers issues in evaluating intervention programs; and presents suggestions for future directions in early…
Nutrition Education Research: Directions for the Future. [Proceedings].
ERIC Educational Resources Information Center
Brun, Judy K., Ed.
A Nutrition Education Research Conference was hosted by the National Dairy Council on December 4-6, 1978. Specific purposes of the conference were to: (1) examine historical foundations; (2) analyze governmental activities; (3) determine current status; and (4) identify priorities for future efforts. The conference's general sessions focused on…
Health Insurance for Children. The Future for Children.
ERIC Educational Resources Information Center
Behrman, Richard E., Ed.
2003-01-01
This issue of "The Future of Children" focuses on efforts to provide publicly funded health insurance to low-income children in the United States through Medicaid and the State Children's Health Insurance Program (SCHIP). The articles summarize current knowledge and research about which children are uninsured and why, discuss ways to…
ERIC Educational Resources Information Center
Helfer, Ray E.
1987-01-01
An informal review of early (1960s) materials publicizing the problems of child abuse led the author to suggest three resolutions for the future: (1) elimination of fragmented social services; (2) increased public recognition of the importance of children; and (3) expenditure of more money and effort on preventive family services. (DB)
78 FR 12254 - Interest in Restructure of Rotorcraft Airworthiness Standards
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-22
... recognized that the evolution of the part 27 and 29 rules has not kept pace with technology and the... and adaptable to future technology. This action is part of an effort to develop recommendations for... rotorcraft airworthiness regulations more efficient and adaptable to future technology. Additionally, the FAA...
Green, Dan
2016-12-14
The demise of the SSC in the U.S. created an upheaval in the U.S. high energy physics (HEP) community. Here, the subsequent redirection of HEP efforts to the CERN Large Hadron Collider (LHC) can perhaps be seen as informing on possible future paths for worldwide collaboration on future HEP megaprojects.