Kundzewicz, Z. W.; Krysanova, V.; Dankers, R.; Hirabayashi, Y.; Kanae, S.; Hattermann, F. F.; Huang, S.; Milly, Paul C.D.; Stoffel, M.; Driessen, P.P.J.; Matczak, P.; Quevauviller, P.; Schellnhuber, H.-J.
2017-01-01
This paper interprets differences in flood hazard projections over Europe and identifies likely sources of discrepancy. Further, it discusses potential implications of these differences for flood risk reduction and adaptation to climate change. The discrepancy in flood hazard projections raises caution, especially among decision makers in charge of water resources management, flood risk reduction, and climate change adaptation at regional to local scales. Because it is naïve to expect availability of trustworthy quantitative projections of future flood hazard, in order to reduce flood risk one should focus attention on mapping of current and future risks and vulnerability hotspots and improve the situation there. Although an intercomparison of flood hazard projections is done in this paper and differences are identified and interpreted, it does not seems possible to recommend which large-scale studies may be considered most credible in particular areas of Europe.
Flood hazard assessment in areas prone to flash flooding
NASA Astrophysics Data System (ADS)
Kvočka, Davor; Falconer, Roger A.; Bray, Michaela
2016-04-01
Contemporary climate projections suggest that there will be an increase in the occurrence of high-intensity rainfall events in the future. These precipitation extremes are usually the main cause for the emergence of extreme flooding, such as flash flooding. Flash floods are among the most unpredictable, violent and fatal natural hazards in the world. Furthermore, it is expected that flash flooding will occur even more frequently in the future due to more frequent development of extreme weather events, which will greatly increase the danger to people caused by flash flooding. This being the case, there will be a need for high resolution flood hazard maps in areas susceptible to flash flooding. This study investigates what type of flood hazard assessment methods should be used for assessing the flood hazard to people caused by flash flooding. Two different types of flood hazard assessment methods were tested: (i) a widely used method based on an empirical analysis, and (ii) a new, physically based and experimentally calibrated method. Two flash flood events were considered herein, namely: the 2004 Boscastle flash flood and the 2007 Železniki flash flood. The results obtained in this study suggest that in the areas susceptible to extreme flooding, the flood hazard assessment should be conducted using methods based on a mechanics-based analysis. In comparison to standard flood hazard assessment methods, these physically based methods: (i) take into account all of the physical forces, which act on a human body in floodwater, (ii) successfully adapt to abrupt changes in the flow regime, which often occur for flash flood events, and (iii) rapidly assess a flood hazard index in a relatively short period of time.
Projected Flood Risks in China based on CMIP5
NASA Astrophysics Data System (ADS)
Xu, Ying
2016-04-01
Based on the simulations from 22 CMIP5 models and in combination with data on population, GDP, arable land, and terrain elevation, the spatial distributions of the flood risk levels are calculated and analyzed under RCP8.5 for the baseline period (1986-2005), the near term future period (2016-2035), the middle term future period (2046-2065), and the long term future period (2080-2099). (1) Areas with higher flood hazard risk levels in the future are concentrated in southeastern China, and the areas with the risk level III continue to expand. The major changes in flood hazard risks will occur in the middle and long term future. (2) In future, the areas of high vulnerability to flood hazards will be located in China's eastern region. In the middle and late 21st century, the extent of the high vulnerability area will expand eastward and its intensity will gradually increase. The highest vulnerability values are found in the provinces of Beijing, Tianjin, Hebei, Henan, Anhui, Shandong, Shanghai, Jiangsu, and in parts of the Pearl River Delta. Furthermore, the major cities in northeast China, as well as Wuhan, Changsha and Nanchang are highly vulnerable. (3) The regions with high flood risk levels will be located in eastern China, in the middle and lower reaches of Yangtze River and stretching northward to Beijing and Tianjin. High-risk flood areas are also occurring in major cities in Northeast China, in some parts of Shaanxi and Shanxi, and in some coastal areas in Southeast China. (4) Compared to the baseline period, the high flood risks will increase on a regional level towards the end of the 21st century, although the areas of flood hazards show little variation. In this paper, the projected future flood risks for different periods were analyzed under the RCP8.5 emission scenarios. By comparing the results with the simulations under the RCP 2.6 and RCP 4.5 scenarios, both scenarios show no differences in the spatial distribution, but in the intensity of flood hazard risks, which are weaker than for the RCP8.5 scenarios. By using the simulations from climate model ensembles to project future flood risks, uncertainty exists for various factors, such as the coarse resolution of global climate models, different approaches to flood assessments, the selection of the weighting coefficients, as well as the used greenhouse gas emission scheme, and the estimations of future population, GDP, and arable land. Therefore, further analysis is needed to reduce the uncertainties of future flood risks.
Analyzing Future Flooding under Climate Change Scenario using CMIP5 Streamflow Data
NASA Astrophysics Data System (ADS)
Parajuli, Ranjan; Nyaupane, Narayan; Kalra, Ajay
2017-12-01
Flooding is a severe and costlier natural hazard. The effect of climate change has intensified the scenario in recent years. Flood prevention practice along with a proper understanding of flooding event can mitigate the risk of such hazard. The floodplain mapping is one of the technique to quantify the severity of the flooding. Carson City, which is one of the agricultural areas in the desert of Nevada has experienced peak flood in the recent year. The underlying probability distribution for the area, latest Coupled Model Intercomparison Project (CMIP5) streamflow data of Carson River were analyzed for 27 different statistical distributions. The best-fitted distribution underlying was used to forecast the 100yr flood (design flood). The data from 1950-2099 derived from 31 model and total 97 projections were used to predict the future streamflow. Delta change method is adopted to quantify the amount of future (2050-2099) flood. To determine the extent of flooding 3 scenarios (i) historic design flood, (ii) 500yr flood and (iii) future 100yr flood were routed on an HEC-RAS model, prepared using available terrain data. Some of the climate projection shows an extreme increase in future design flood. This study suggests an approach to quantify the future flood and floodplain using climate model projections. The study would provide helpful information to the facility manager, design engineer, and stakeholders.
Flood Risk in the Danube basin under climate change
NASA Astrophysics Data System (ADS)
Schröter, Kai; Wortmann, Michel; del Rocio Rivas Lopez, Maria; Liersch, Stefan; Viet Nguyen, Dung; Hardwick, Stephen; Hattermann, Fred
2017-04-01
The projected increase in temperature is expected to intensify the hydrological cycle, and thus more intense precipitation is likely to increase hydro-meteorological extremes and flood hazard. However to assess the future dynamics of hazard and impact induced by these changes it is necessary to consider extreme events and to take a spatially differentiated perspective. The Future Danube Model is a multi-hazard and risk model suite for the Danube region which has been developed in the OASIS project. The model comprises modules for estimating potential perils from heavy precipitation, heat-waves, floods, droughts, and damage risk considering hydro-climatic extremes under current and climate change conditions. Web-based open Geographic Information Systems (GIS) technology allows customers to graphically analyze and overlay perils and other spatial information such as population density or assets exposed. The Future Danube Model combines modules for weather generation, hydrological and hydrodynamic processes, and supports risk assessment and adaptation planning support. This contribution analyses changes in flood hazard in the Danube basin and in flood risk for the German part of the Danube basin. As climate change input, different regionalized climate ensemble runs of the newest IPCC generation are used, the so-called Representative Concentration Pathways (RCPs). They are delivered by the CORDEX initiative (Coordinated Downscaling Experiments). The CORDEX data sample is extended using the statistical weather generator (IMAGE) in order to also consider extreme events. Two time slices are considered: near future 2020-2049 and far future 2050-2079. This data provides the input for the hydrological, hydraulic and flood loss model chain. Results for RCP4.5 and RCP8.5 indicate an increase in intensity and frequency of peak discharges and thus in flood hazard for many parts of the Danube basin.
A framework for global river flood risk assessments
NASA Astrophysics Data System (ADS)
Winsemius, H. C.; Van Beek, L. P. H.; Jongman, B.; Ward, P. J.; Bouwman, A.
2012-08-01
There is an increasing need for strategic global assessments of flood risks in current and future conditions. In this paper, we propose a framework for global flood risk assessment for river floods, which can be applied in current conditions, as well as in future conditions due to climate and socio-economic changes. The framework's goal is to establish flood hazard and impact estimates at a high enough resolution to allow for their combination into a risk estimate. The framework estimates hazard at high resolution (~1 km2) using global forcing datasets of the current (or in scenario mode, future) climate, a global hydrological model, a global flood routing model, and importantly, a flood extent downscaling routine. The second component of the framework combines hazard with flood impact models at the same resolution (e.g. damage, affected GDP, and affected population) to establish indicators for flood risk (e.g. annual expected damage, affected GDP, and affected population). The framework has been applied using the global hydrological model PCR-GLOBWB, which includes an optional global flood routing model DynRout, combined with scenarios from the Integrated Model to Assess the Global Environment (IMAGE). We performed downscaling of the hazard probability distributions to 1 km2 resolution with a new downscaling algorithm, applied on Bangladesh as a first case-study application area. We demonstrate the risk assessment approach in Bangladesh based on GDP per capita data, population, and land use maps for 2010 and 2050. Validation of the hazard and damage estimates has been performed using the Dartmouth Flood Observatory database and damage estimates from the EM-DAT database and World Bank sources. We discuss and show sensitivities of the estimated risks with regard to the use of different climate input sets, decisions made in the downscaling algorithm, and different approaches to establish impact models.
Analyzing Future Flooding under Climate Change Scenario using CMIP5 Streamflow Data
NASA Astrophysics Data System (ADS)
Nyaupane, Narayan; Parajuli, Ranjan; Kalra, Ajay
2017-12-01
Flooding is the most severe and costlier natural hazard in US. The effect of climate change has intensified the scenario in recent years. Flood prevention practice along with proper understanding of flooding event can mitigate the risk of such hazard. The flood plain mapping is one of the technique to quantify the severity of the flooding. Carson City, which is one of the agricultural area in the desert of Nevada has experienced peak flood in recent year. The underlying probability distribution for the area, latest Coupled Model Intercomparison Project (CMIP5) streamflow data of Carson River were analyzed for 27 different statistical distributions. The best fitted distribution underlying was used to forecast the 100yr flood (design flood). The data from 1950-2099 derived from 31 model and total 97 projections were used to predict the future streamflow. Delta change method is adopted to quantify the amount of future (2050-2099) flood. To determine the extent of flooding 3 scenarios (i) historic design flood, (ii) 500yr flood and (iii) future 100yr flood were routed on a HEC-RAS model, prepared using available terrain data. Some of the climate projection shows extreme increase in future design flood. The future design flood could be more than the historic 500yr flood. At the same time, the extent of flooding could go beyond the historic flood of 0.2% annual probability. This study suggests an approach to quantify the future flood and floodplain using climate model projections. The study would provide helpful information to the facility manager, design engineer and stake holders.
Future property damage from flooding: sensitivities to economy and climate change
Liu, Jing; Hertel, Thomas; Diffenbaugh, Noah; ...
2015-08-09
Using a unique dataset for Indiana counties during the period 1995-2012, we estimate the effects of flood hazard, asset exposure, and social vulnerability on property damage. This relationship then is combined with the expected level of future flood risks to project property damage from flooding in 2030 under various scenarios. We compare these scenario projections to identify which risk management strategy offers the greatest potential to mitigate flooding loss. Results show that by 2030, county level flooding hazard measured by extreme flow volume and frequency will increase by an average of 16.2% and 7.4%, respectively. The total increase in propertymore » damages projected under different model specifications range from 13.3% to 20.8%. Across models future damages consistently exhibit the highest sensitivity to future increases in asset exposure, reinforcing the importance of non-structural measures in managing floodplain development.« less
Zhou, Qianqian; Leng, Guoyong; Feng, Leyang
2017-07-13
Understanding historical changes in flood damage and the underlying mechanisms is critical for predicting future changes for better adaptations. In this study, a detailed assessment of flood damage for 1950–1999 is conducted at the state level in the conterminous United States (CONUS). Geospatial datasets on possible influencing factors are then developed by synthesizing natural hazards, population, wealth, cropland and urban area to explore the relations with flood damage. A considerable increase in flood damage in CONUS is recorded for the study period which is well correlated with hazards. Comparably, runoff indexed hazards simulated by the Variable Infiltration Capacity (VIC) modelmore » can explain a larger portion of flood damage variations than precipitation in 84% of the states. Cropland is identified as an important factor contributing to increased flood damage in central US while urbanland exhibits positive and negative relations with total flood damage and damage per unit wealth in 20 and 16 states, respectively. Altogether, flood damage in 34 out of 48 investigated states can be predicted at the 90% confidence level. In extreme cases, ~76% of flood damage variations can be explained in some states, highlighting the potential of future flood damage prediction based on climate change and socioeconomic scenarios.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Qianqian; Leng, Guoyong; Feng, Leyang
Understanding historical changes in flood damage and the underlying mechanisms is critical for predicting future changes for better adaptations. In this study, a detailed assessment of flood damage for 1950–1999 is conducted at the state level in the conterminous United States (CONUS). Geospatial datasets on possible influencing factors are then developed by synthesizing natural hazards, population, wealth, cropland and urban area to explore the relations with flood damage. A considerable increase in flood damage in CONUS is recorded for the study period which is well correlated with hazards. Comparably, runoff indexed hazards simulated by the Variable Infiltration Capacity (VIC) modelmore » can explain a larger portion of flood damage variations than precipitation in 84% of the states. Cropland is identified as an important factor contributing to increased flood damage in central US while urbanland exhibits positive and negative relations with total flood damage and damage per unit wealth in 20 and 16 states, respectively. Altogether, flood damage in 34 out of 48 investigated states can be predicted at the 90% confidence level. In extreme cases, ~76% of flood damage variations can be explained in some states, highlighting the potential of future flood damage prediction based on climate change and socioeconomic scenarios.« less
NASA Astrophysics Data System (ADS)
Huong, Do Thi Viet; Nagasawa, Ryota
2014-01-01
The potential flood hazard was assessed for the Hoa Chau commune in central Vietnam in order to identify the high flood hazard zones for the decision makers who will execute future rural planning. A new approach for deriving the potential flood hazard based on integration of inundation and flow direction maps is described. Areas inundated in the historical flood event of 2007 were extracted from Advanced Land Observing Satellite (ALOS) phased array L-band synthetic aperture data radar (PALSAR) images, while flow direction characteristics were derived from the ASTER GDEM to extract the depressed surfaces. Past flood experience and the flow direction were then integrated to analyze and rank the potential flood hazard zones. The land use/cover map extracted from LANDSAT TM and flood depth point records from field surveys were utilized to check the possibility of susceptible inundated areas, extracting data from ALOS PALSAR and ranking the potential flood hazard. The estimation of potential flood hazard areas revealed that 17.43% and 17.36% of Hoa Chau had high and medium potential flood hazards, respectively. The flow direction and ALOS PALSAR data were effectively integrated for determining the potential flood hazard when hydrological and meteorological data were inadequate and remote sensing images taken during flood times were not available or were insufficient.
Flooding Hazard Maps of Different Land Uses in Subsidence Area
NASA Astrophysics Data System (ADS)
Lin, Yongjun; Chang, Hsiangkuan; Tan, Yihchi
2017-04-01
This study aims on flooding hazard maps of different land uses in the subsidence area of southern Taiwan. Those areas are low-lying due to subsidence resulting from over pumping ground water for aquaculture. As a result, the flooding due to storm surges and extreme rainfall are frequent in this area and are expected more frequently in the future. The main land uses there include: residence, fruit trees, and aquaculture. The hazard maps of the three land uses are investigated. The factors affecting hazards of different land uses are listed below. As for residence, flooding depth, duration of flooding, and rising rate of water surface level are factors affecting its degree of hazard. High flooding depth, long duration of flooding, and fast rising rate of water surface make residents harder to evacuate. As for fruit trees, flooding depth and duration of flooding affects its hazard most due to the root hypoxia. As for aquaculture, flooding depth affects its hazard most because the high flooding depth may cause the fish flush out the fishing ponds. An overland flow model is used for simulations of hydraulic parameters for factors such as flooding depth, rising rate of water surface level and duration of flooding. As above-mentioned factors, the hazard maps of different land uses can be made and high hazardous are can also be delineated in the subsidence areas.
Declining vulnerability to river floods and the global benefits of adaptation
NASA Astrophysics Data System (ADS)
Jongman, Brenden; Winsemius, Hessel; Aerts, Jeroen; Coughlan de Perez, Erin; Van Aalst, Maarten; Kron, Wolfgang; Ward, Philip
2016-04-01
The global impacts of river floods are substantial and rising. Effective adaptation to the increasing risks requires an in-depth understanding of the physical and socioeconomic drivers of risk. Whilst the modeling of flood hazard and exposure has improved greatly, compelling evidence on spatiotemporal patterns in vulnerability of societies around the world is lacking. Hence, the effects of vulnerability on global flood risk are not fully understood, and future projections of fatalities and losses available today are based on simplistic assumptions or do not include vulnerability. In this study, we show that trends and fluctuations in vulnerability to river floods around the world can be estimated by dynamic high-resolution modeling of flood hazard and exposure. We show that fatalities and losses as a share of exposed population and gross domestic product are decreasing with rising income. We also show that there is a tendency of convergence in vulnerability levels between low- and high-income countries. Based on these findings, we simulate future flood impacts per country using traditional assumptions of static vulnerability through time, but also using future assumptions on reduced vulnerability in the future. We show that future risk increases can be largely contained using effective disaster risk reduction strategies, including a reduction of vulnerability. The study was carried out using the global flood risk model, GLOFRIS, combined with high-resolution time-series maps of hazard and exposure at the global scale. Based on: Jongman et al., 2015. Proceedings of the National Academy of Sciences of the United States of America, doi:10.1073/pnas.1414439112.
Future trends in flood risk in Indonesia - A probabilistic approach
NASA Astrophysics Data System (ADS)
Muis, Sanne; Guneralp, Burak; Jongman, Brenden; Ward, Philip
2014-05-01
Indonesia is one of the 10 most populous countries in the world and is highly vulnerable to (river) flooding. Catastrophic floods occur on a regular basis; total estimated damages were US 0.8 bn in 2010 and US 3 bn in 2013. Large parts of Greater Jakarta, the capital city, are annually subject to flooding. Flood risks (i.e. the product of hazard, exposure and vulnerability) are increasing due to rapid increases in exposure, such as strong population growth and ongoing economic development. The increase in risk may also be amplified by increasing flood hazards, such as increasing flood frequency and intensity due to climate change and land subsidence. The implementation of adaptation measures, such as the construction of dykes and strategic urban planning, may counteract these increasing trends. However, despite its importance for adaptation planning, a comprehensive assessment of current and future flood risk in Indonesia is lacking. This contribution addresses this issue and aims to provide insight into how socio-economic trends and climate change projections may shape future flood risks in Indonesia. Flood risk were calculated using an adapted version of the GLOFRIS global flood risk assessment model. Using this approach, we produced probabilistic maps of flood risks (i.e. annual expected damage) at a resolution of 30"x30" (ca. 1km x 1km at the equator). To represent flood exposure, we produced probabilistic projections of urban growth in a Monte-Carlo fashion based on probability density functions of projected population and GDP values for 2030. To represent flood hazard, inundation maps were computed using the hydrological-hydraulic component of GLOFRIS. These maps show flood inundation extent and depth for several return periods and were produced for several combinations of GCMs and future socioeconomic scenarios. Finally, the implementation of different adaptation strategies was incorporated into the model to explore to what extent adaptation may be able to decrease future risks. Preliminary results show that the urban extent in Indonesia is projected to increase within 211 to 351% over the period 2000-2030 (5 and 95 percentile). Mainly driven by this rapid urbanization, potential flood losses in Indonesia increase rapidly and are primarily concentrated on the island of Java. The results reveal the large risk-reducing potential of adaptation measures. Since much of the urban development between 2000 and 2030 takes place in flood-prone areas, strategic urban planning (i.e. building in safe areas) may significantly reduce the urban population and infrastructure exposed to flooding. We conclude that a probabilistic risk approach in future flood risk assessment is vital; the drivers behind risk trends (exposure, hazard, vulnerability) should be understood to develop robust and efficient adaptation pathways.
A framework for global river flood risk assessments
NASA Astrophysics Data System (ADS)
Winsemius, H. C.; Van Beek, L. P. H.; Jongman, B.; Ward, P. J.; Bouwman, A.
2013-05-01
There is an increasing need for strategic global assessments of flood risks in current and future conditions. In this paper, we propose a framework for global flood risk assessment for river floods, which can be applied in current conditions, as well as in future conditions due to climate and socio-economic changes. The framework's goal is to establish flood hazard and impact estimates at a high enough resolution to allow for their combination into a risk estimate, which can be used for strategic global flood risk assessments. The framework estimates hazard at a resolution of ~ 1 km2 using global forcing datasets of the current (or in scenario mode, future) climate, a global hydrological model, a global flood-routing model, and more importantly, an inundation downscaling routine. The second component of the framework combines hazard with flood impact models at the same resolution (e.g. damage, affected GDP, and affected population) to establish indicators for flood risk (e.g. annual expected damage, affected GDP, and affected population). The framework has been applied using the global hydrological model PCR-GLOBWB, which includes an optional global flood routing model DynRout, combined with scenarios from the Integrated Model to Assess the Global Environment (IMAGE). We performed downscaling of the hazard probability distributions to 1 km2 resolution with a new downscaling algorithm, applied on Bangladesh as a first case study application area. We demonstrate the risk assessment approach in Bangladesh based on GDP per capita data, population, and land use maps for 2010 and 2050. Validation of the hazard estimates has been performed using the Dartmouth Flood Observatory database. This was done by comparing a high return period flood with the maximum observed extent, as well as by comparing a time series of a single event with Dartmouth imagery of the event. Validation of modelled damage estimates was performed using observed damage estimates from the EM-DAT database and World Bank sources. We discuss and show sensitivities of the estimated risks with regard to the use of different climate input sets, decisions made in the downscaling algorithm, and different approaches to establish impact models.
The importance of vegetation change in the prediction of future tropical cyclone flood statistics
NASA Astrophysics Data System (ADS)
Irish, J. L.; Resio, D.; Bilskie, M. V.; Hagen, S. C.; Weiss, R.
2015-12-01
Global sea level rise is a near certainty over the next century (e.g., Stocker et al. 2013 [IPCC] and references therein). With sea level rise, coastal topography and land cover (hereafter "landscape") is expected to change and tropical cyclone flood hazard is expected to accelerate (e.g., Irish et al. 2010 [Ocean Eng], Woodruff et al. 2013 [Nature], Bilskie et al. 2014 [Geophys Res Lett], Ferreira et al. 2014 [Coast Eng], Passeri et al. 2015 [Nat Hazards]). Yet, the relative importance of sea-level rise induced landscape change on future tropical cyclone flood hazard assessment is not known. In this paper, idealized scenarios are used to evaluate the relative impact of one class of landscape change on future tropical cyclone extreme-value statistics in back-barrier regions: sea level rise induced vegetation migration and loss. The joint probability method with optimal sampling (JPM-OS) (Resio et al. 2009 [Nat Hazards]) with idealized surge response functions (e.g., Irish et al. 2009 [Nat Hazards]) is used to quantify the present-day and future flood hazard under various sea level rise scenarios. Results are evaluated in terms of their impact on the flood statistics (a) when projected flood elevations are included directly in the JPM analysis (Figure 1) and (b) when represented as additional uncertainty within the JPM integral (Resio et al. 2013 [Nat Hazards]), i.e., as random error. Findings are expected to aid in determining the level of effort required to reasonably account for future landscape change in hazard assessments, namely in determining when such processes are sufficiently captured by added uncertainty and when sea level rise induced vegetation changes must be considered dynamically, via detailed modeling initiatives. Acknowledgements: This material is based upon work supported by the National Science Foundation under Grant No. CMMI-1206271 and by the National Sea Grant College Program of the U.S. Department of Commerce's National Oceanic and Atmospheric Administration under Grant No. NA10OAR4170099. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of these organizations. The STOKES ARCC at the University of Central Florida provided computational resources for storm surge simulations.
Contribution of future urbanisation expansion to flood risk changes
NASA Astrophysics Data System (ADS)
Bruwier, Martin; Mustafa, Ahmed; Archambeau, Pierre; Erpicum, Sébastien; Pirotton, Michel; Teller, Jacques; Dewals, Benjamin
2016-04-01
The flood risk is expected to increase in the future due to climate change and urban development. Climate change modifies flood hazard and urban development influences exposure and vulnerability to floods. While the influence of climate change on flood risk has been studied widely, the impact of urban development also needs to be considered in a sustainable flood risk management approach. The main goal of this study is the determination of the sensitivity of future flood risk to different urban development scenarios at a relatively short-time horizon in the River Meuse basin in Wallonia (Belgium). From the different scenarios, the expected impact of urban development on flood risk is assessed. Three urban expansion scenarios are developed up to 2030 based on a coupled cellular automata (CA) and agent-based (AB) urban expansion model: (i) business-as-usual, (ii) restrictive and (iii) extreme expansion scenarios. The main factor controlling these scenarios is the future urban land demand. Each urban expansion scenario is developed by considering or not high and/or medium flood hazard zones as a constraint for urban development. To assess the model's performance, it is calibrated for the Meuse River valley (Belgium) to simulate urban expansion between 1990 and 2000. Calibration results are then assessed by comparing the 2000 simulated land-use map and the actual 2000 land-use map. The flood damage estimation for each urban expansion scenario is determined for five flood discharges by overlaying the inundation map resulting from a hydraulic computation and the urban expansion map and by using damage curves and specific prices. The hydraulic model Wolf2D has been extensively validated by comparisons between observations and computational results during flood event .This study focuses only on mobile and immobile prices for urban lands, which are associated to the most severe damages caused by floods along the River Meuse. These findings of this study offers tools to drive urban expansion based on numerous policies visions to mitigate future flood risk along the Meuse River. In particular, we assess the impacts on future flood risk of the prohibition of urban development in high and/or medium flood hazard zones. Acknowledgements The research was funded through the ARC grant for Concerted Research Actions, financed by the Wallonia-Brussels Federation.
Mapping flood hazards under uncertainty through probabilistic flood inundation maps
NASA Astrophysics Data System (ADS)
Stephens, T.; Bledsoe, B. P.; Miller, A. J.; Lee, G.
2017-12-01
Changing precipitation, rapid urbanization, and population growth interact to create unprecedented challenges for flood mitigation and management. Standard methods for estimating risk from flood inundation maps generally involve simulations of floodplain hydraulics for an established regulatory discharge of specified frequency. Hydraulic model results are then geospatially mapped and depicted as a discrete boundary of flood extents and a binary representation of the probability of inundation (in or out) that is assumed constant over a project's lifetime. Consequently, existing methods utilized to define flood hazards and assess risk management are hindered by deterministic approaches that assume stationarity in a nonstationary world, failing to account for spatio-temporal variability of climate and land use as they translate to hydraulic models. This presentation outlines novel techniques for portraying flood hazards and the results of multiple flood inundation maps spanning hydroclimatic regions. Flood inundation maps generated through modeling of floodplain hydraulics are probabilistic reflecting uncertainty quantified through Monte-Carlo analyses of model inputs and parameters under current and future scenarios. The likelihood of inundation and range of variability in flood extents resulting from Monte-Carlo simulations are then compared with deterministic evaluations of flood hazards from current regulatory flood hazard maps. By facilitating alternative approaches of portraying flood hazards, the novel techniques described in this presentation can contribute to a shifting paradigm in flood management that acknowledges the inherent uncertainty in model estimates and the nonstationary behavior of land use and climate.
NASA Astrophysics Data System (ADS)
Knighton, James; Steinschneider, Scott; Walter, M. Todd
2017-12-01
There is a chronic disconnection among purely probabilistic flood frequency analysis of flood hazards, flood risks, and hydrological flood mechanisms, which hamper our ability to assess future flood impacts. We present a vulnerability-based approach to estimating riverine flood risk that accommodates a more direct linkage between decision-relevant metrics of risk and the dominant mechanisms that cause riverine flooding. We adapt the conventional peaks-over-threshold (POT) framework to be used with extreme precipitation from different climate processes and rainfall-runoff-based model output. We quantify the probability that at least one adverse hydrologic threshold, potentially defined by stakeholders, will be exceeded within the next N years. This approach allows us to consider flood risk as the summation of risk from separate atmospheric mechanisms, and supports a more direct mapping between hazards and societal outcomes. We perform this analysis within a bottom-up framework to consider the relevance and consequences of information, with varying levels of credibility, on changes to atmospheric patterns driving extreme precipitation events. We demonstrate our proposed approach using a case study for Fall Creek in Ithaca, NY, USA, where we estimate the risk of stakeholder-defined flood metrics from three dominant mechanisms: summer convection, tropical cyclones, and spring rain and snowmelt. Using downscaled climate projections, we determine how flood risk associated with a subset of mechanisms may change in the future, and the resultant shift to annual flood risk. The flood risk approach we propose can provide powerful new insights into future flood threats.
NASA Astrophysics Data System (ADS)
Paron, Paolo; von Hagen, Craig; Peppino Disperati, Stefano; Hermansyah, Budi; Shaheen, Imra; Jan, Qasim; Berloffa, Andrea; Khan, Ruby; Fakhre, Alam
2013-04-01
Pakistan is highly disaster-prone, with three major flood disasters occurred in the past three years, yet major losses are not inevitable. Farming-based families still struggling to recover from 2010 and 2011 floods have again faced another bad monsoon season in 2012. Meanwhile, the likelihood of yet more natural disasters in the future is high as the phenomenon of climate change is increasing the prevalence of extreme weather conditions. Even with less rainfall, the risk of flooding this year remains high, while many villages have not fully recovered from the 2011-2012 floods. It is of utmost importance to support the most vulnerable rural communities to recover their flood-affected livelihoods. In the meantime, prioritizing disaster preparedness through flood hazard and population mapping is crucial to ensure that realistic contingency plans are in place to deliver an effective and timely response and reduce the impact of floods before they strike. To increase preparedness in future floods, an integrated approach that builds the resilience of flood affected community and enhances emergency preparedness based on reliable data is critical. We present here the innovative methodology developed for estimating population and livelihood that could potentially be affected by a future flood scenario, as well as a methodology for knowing where these people are located, along with an overview of their livelihood pattern. This project has used only freely available dataset, due to the urgency of providing a toolbox to the humanitarian community and the absence of readily available detailed information on natural hazards and exposure in Pakistan. The estimated figures resulting from this project, would provide the Food Security stakeholders with adequate information and data for programming a tailored response in case of floods during future monsoon season. For the purpose of preparedness, understanding the risks, and its potential magnitude, is crucial to provide decision makers with timely information that can serve as a baseline to inform assessments, data analysis and programming of response. Having an estimate of the potentially affected people and agricultural areas before a disaster occurs, can contribute to an organized, appropriate, more timely and targeted response. We also developed a web-based mapping tool to allow remote access to relevant real-time data and scenarios. By combining maps of land cover, crop zones, flood hazard and population, this project has provided essential geographic orientation for food security preparedness analysis, and is essential for the following reasons: i. It provides the basis for quantifying population at risk of food insecurity before a disaster occurs; ii. It provides a stratification for any post-disaster assessment; iii. Combined with a FS&L (Food Security and Livelihood Assessment), it helps to inform the Food Security response analyses and assistance targeting; iv. It complements and inform the district-based HLV (Hazard Livelihood and Vulnerability baseline and contingency plans) with data and analyses at country and provincial level linked with agriculture seasonal calendars, main key production cycles, and seasonal hazards; v. It provides inputs to any future activities under the Integrated Phase Classification (IPC) project.
NASA Astrophysics Data System (ADS)
Sutanudjaja, Edwin; van Beek, Rens; Winsemius, Hessel; Ward, Philip; Bierkens, Marc
2017-04-01
The Aqueduct Global Flood Analyzer, launched in 2015, is an open-access and free-of-charge web-based interactive platform which assesses and visualises current and future projections of river flood impacts across the globe. One of the key components in the Analyzer is a set of river flood inundation hazard maps derived from the global hydrological model simulation of PCR-GLOBWB. For the current version of the Analyzer, accessible on http://floods.wri.org/#/, the early generation of PCR-GLOBWB 1.0 was used and simulated at 30 arc-minute ( 50 km at the equator) resolution. In this presentation, we will show the new version of these hazard maps. This new version is based on the latest version of PCR-GLOBWB 2.0 (https://github.com/UU-Hydro/PCR-GLOBWB_model, Sutanudjaja et al., 2016, doi:10.5281/zenodo.60764) simulated at 5 arc-minute ( 10 km at the equator) resolution. The model simulates daily hydrological and water resource fluxes and storages, including the simulation of overbank volume that ends up on the floodplain (if flooding occurs). The simulation was performed for the present day situation (from 1960) and future climate projections (until 2099) using the climate forcing created in the ISI-MIP project. From the simulated flood inundation volume time series, we then extract annual maxima for each cell, and fit these maxima to a Gumbel extreme value distribution. This allows us to derive flood volume maps of any hazard magnitude (ranging from 2-year to 1000-year flood events) and for any time period (e.g. 1960-1999, 2010-2049, 2030-2069, and 2060-2099). The derived flood volumes (at 5 arc-minute resolution) are then spread over the high resolution terrain model using an updated GLOFRIS downscaling module (Winsemius et al., 2013, doi:10.5194/hess-17-1871-2013). The updated version performs a volume spreading sequentially from more upstream basins to downstream basins, hence enabling a better inclusion of smaller streams, and takes into account spreading of water over diverging deltaic regions. This results in a set of high resolution hazard maps of flood inundation depth at 30 arc-second ( 1 km at the equator) resolution. Together with many other updates and new features, the resulting flood hazard maps will be used in the next generation of the Aqueduct Global Flood Analyzer.
NASA Astrophysics Data System (ADS)
Sanders, B. F.
2017-12-01
Flooding of coastal and fluvial systems are the most significant natural hazards facing society, and damages have been escalating for decades globally and in the U.S. Almost all metropolitan areas are exposed to flood risk. The threat from river flooding is especially high in India and China, and coastal cities around the world are threatened by storm surge and rising sea levels. Several trends including rising sea levels, urbanization, deforestation, and rural-to-urban population shifts will increase flood exposure in the future. Flood impacts are escalating despite advances in hazards science and extensive effort to manage risks. The fundamental issue is not that flooding is becoming more severe, even though it is in some places, but rather that societies are become more vulnerable to flood impacts. A critical factor contributing to the escalation of flood impacts is that the most vulnerable sectors of communities are left out of processes to prepare for and respond to flooding. Furthermore, the translation of knowledge about flood hazards and vulnerabilities into actionable information for communities has not been effective. In Southern and Baja California, an interdisciplinary team of researchers has partnered with stakeholders in flood vulnerable communities to co-develop flood hazard information systems designed to meet end-user needs for decision-making. The initiative leveraged the power of advanced, fine-scale hydraulic models of flooding to craft intuitive visualizations of context-sensitive scenarios. This presentation will cover the ways by which the process of flood inundation modeling served as a focal point for knowledge development, as well as the unique visualizations that populate on-line information systems accessible here: http://floodrise.uci.edu/online-flood-hazard-viewers/
A method for mapping flood hazard along roads.
Kalantari, Zahra; Nickman, Alireza; Lyon, Steve W; Olofsson, Bo; Folkeson, Lennart
2014-01-15
A method was developed for estimating and mapping flood hazard probability along roads using road and catchment characteristics as physical catchment descriptors (PCDs). The method uses a Geographic Information System (GIS) to derive candidate PCDs and then identifies those PCDs that significantly predict road flooding using a statistical modelling approach. The method thus allows flood hazards to be estimated and also provides insights into the relative roles of landscape characteristics in determining road-related flood hazards. The method was applied to an area in western Sweden where severe road flooding had occurred during an intense rain event as a case study to demonstrate its utility. The results suggest that for this case study area three categories of PCDs are useful for prediction of critical spots prone to flooding along roads: i) topography, ii) soil type, and iii) land use. The main drivers among the PCDs considered were a topographical wetness index, road density in the catchment, soil properties in the catchment (mainly the amount of gravel substrate) and local channel slope at the site of a road-stream intersection. These can be proposed as strong indicators for predicting the flood probability in ungauged river basins in this region, but some care is needed in generalising the case study results other potential factors are also likely to influence the flood hazard probability. Overall, the method proposed represents a straightforward and consistent way to estimate flooding hazards to inform both the planning of future roadways and the maintenance of existing roadways. Copyright © 2013 Elsevier Ltd. All rights reserved.
Predicting the impact of tsunami in California under rising sea level
NASA Astrophysics Data System (ADS)
Dura, T.; Garner, A. J.; Weiss, R.; Kopp, R. E.; Horton, B.
2017-12-01
The flood hazard for the California coast depends not only on the magnitude, location, and rupture length of Alaska-Aleutian subduction zone earthquakes and their resultant tsunamis, but also on rising sea levels, which combine with tsunamis to produce overall flood levels. The magnitude of future sea-level rise remains uncertain even on the decadal scale, with future sea-level projections becoming even more uncertain at timeframes of a century or more. Earthquake statistics indicate that timeframes of ten thousand to one hundred thousand years are needed to capture rare, very large earthquakes. Because of the different timescales between reliable sea-level projections and earthquake distributions, simply combining the different probabilities in the context of a tsunami hazard assessment may be flawed. Here, we considered 15 earthquakes between Mw 8 to Mw 9.4 bound by -171oW and -140oW of the Alaska-Aleutian subduction zone. We employed 24 realizations at each magnitude with random epicenter locations and different fault length-to-width ratios, and simulated the tsunami evolution from these 360 earthquakes at each decade from the years 2000 to 2200. These simulations were then carried out for different sea-level-rise projections to analyze the future flood hazard for California. Looking at the flood levels at tide gauges, we found that the flood level simulated at, for example, the year 2100 (including respective sea-level change) is different from the flood level calculated by adding the flood for the year 2000 to the sea-level change prediction for the year 2100. This is consistent for all sea-level rise scenarios, and this difference in flood levels range between 5% and 12% for the larger half of the given magnitude interval. Focusing on flood levels at the tide gauge in the Port of Los Angeles, the most probable flood level (including all earthquake magnitudes) in the year 2000 was 5 cm. Depending on the sea-level predictions, in the year 2050 the most probable flood levels could rise to 20 to 30 cm, but increase significantly from 2100 to 2200 to between 0.5 m and 2.5 m. Aside from the significant increase in flood level, it should be noted that the range over which potential most probable flood levels can vary is significant and defines a tremendous challenge for long-term planning of hazard mitigating measures.
Projected Risk of Flooding Disaster over China in 21st Century Based on CMIP5 Models
NASA Astrophysics Data System (ADS)
Li, Rouke; Xu, Ying
2016-04-01
Based on the simulations from CMIP5 models, using climate indices which have high correlation with historical disaster data, and in combination with terrain elevation data and the socio-economic data, to project the flooding disaster risk, the vulnerability of flooding hazard affected body and the risk of flooding hazard respectively during the near term(2015-2039), medium term(2045-2069) and long term(2075-2099) under RCP8.5. According to the IPCC AR5 WGII, we used risk evaluation model of disaster: R=E*H*V. R on behalf of disaster risk index. H, E and V express risk, exposure and vulnerability respectively. The results show that the extreme flooding disaster risk will gradually increase during different terms in the future, and regions with high risk level of flooding hazard are might mainly located in southeastern and eastern China. Under the RCP8.5 greenhouse gas emissions scenario, the high risk of flooding disaster in future might mainly appear in eastern part of Sichuan, most of North China, and major of East China. Compared with the baseline period,21st century forward, although the occurrence of floods area changes little, the regional strong risk will increase during the end of the 21st century. Due to the coarse resolution of climate models and the methodology for determining weight coefficients, large uncertainty still exists in the projection of the flooding disaster risk.
Estimates of present and future flood risk in the conterminous United States
NASA Astrophysics Data System (ADS)
Wing, Oliver E. J.; Bates, Paul D.; Smith, Andrew M.; Sampson, Christopher C.; Johnson, Kris A.; Fargione, Joseph; Morefield, Philip
2018-03-01
Past attempts to estimate rainfall-driven flood risk across the US either have incomplete coverage, coarse resolution or use overly simplified models of the flooding process. In this paper, we use a new 30 m resolution model of the entire conterminous US with a 2D representation of flood physics to produce estimates of flood hazard, which match to within 90% accuracy the skill of local models built with detailed data. These flood depths are combined with exposure datasets of commensurate resolution to calculate current and future flood risk. Our data show that the total US population exposed to serious flooding is 2.6-3.1 times higher than previous estimates, and that nearly 41 million Americans live within the 1% annual exceedance probability floodplain (compared to only 13 million when calculated using FEMA flood maps). We find that population and GDP growth alone are expected to lead to significant future increases in exposure, and this change may be exacerbated in the future by climate change.
NASA Astrophysics Data System (ADS)
Kinoshita, Youhei; Tanoue, Masahiro; Watanabe, Satoshi; Hirabayashi, Yukiko
2018-01-01
This study represents the first attempt to quantify the effects of autonomous adaptation on the projection of global flood hazards and to assess future flood risk by including this effect. A vulnerability scenario, which varies according to the autonomous adaptation effect for conventional disaster mitigation efforts, was developed based on historical vulnerability values derived from flood damage records and a river inundation simulation. Coupled with general circulation model outputs and future socioeconomic scenarios, potential future flood fatalities and economic loss were estimated. By including the effect of autonomous adaptation, our multimodel ensemble estimates projected a 2.0% decrease in potential flood fatalities and an 821% increase in potential economic losses by 2100 under the highest emission scenario together with a large population increase. Vulnerability changes reduced potential flood consequences by 64%-72% in terms of potential fatalities and 28%-42% in terms of potential economic losses by 2100. Although socioeconomic changes made the greatest contribution to the potential increased consequences of future floods, about a half of the increase of potential economic losses was mitigated by autonomous adaptation. There is a clear and positive relationship between the global temperature increase from the pre-industrial level and the estimated mean potential flood economic loss, while there is a negative relationship with potential fatalities due to the autonomous adaptation effect. A bootstrapping analysis suggests a significant increase in potential flood fatalities (+5.7%) without any adaptation if the temperature increases by 1.5 °C-2.0 °C, whereas the increase in potential economic loss (+0.9%) was not significant. Our method enables the effects of autonomous adaptation and additional adaptation efforts on climate-induced hazards to be distinguished, which would be essential for the accurate estimation of the cost of adaptation to climate change.
An Agent-Based Model of Evolving Community Flood Risk.
Tonn, Gina L; Guikema, Seth D
2018-06-01
Although individual behavior plays a major role in community flood risk, traditional flood risk models generally do not capture information on how community policies and individual decisions impact the evolution of flood risk over time. The purpose of this study is to improve the understanding of the temporal aspects of flood risk through a combined analysis of the behavioral, engineering, and physical hazard aspects of flood risk. Additionally, the study aims to develop a new modeling approach for integrating behavior, policy, flood hazards, and engineering interventions. An agent-based model (ABM) is used to analyze the influence of flood protection measures, individual behavior, and the occurrence of floods and near-miss flood events on community flood risk. The ABM focuses on the following decisions and behaviors: dissemination of flood management information, installation of community flood protection, elevation of household mechanical equipment, and elevation of homes. The approach is place based, with a case study area in Fargo, North Dakota, but is focused on generalizable insights. Generally, community mitigation results in reduced future damage, and individual action, including mitigation and movement into and out of high-risk areas, can have a significant influence on community flood risk. The results of this study provide useful insights into the interplay between individual and community actions and how it affects the evolution of flood risk. This study lends insight into priorities for future work, including the development of more in-depth behavioral and decision rules at the individual and community level. © 2017 Society for Risk Analysis.
NASA Astrophysics Data System (ADS)
Auermuller, L. M.; Gatto, J.; Huch, C.
2015-12-01
The highly developed nature of New Jersey's coastline, barrier island and lagoon communities make them particularly vulnerable to storm surge, sea level rise and flooding. The impacts of Hurricane Sandy have enlightened coastal communities to these realities. Recognizing these vulnerabilities, the Jacques Cousteau National Research Reserve (JC NERR), Rutgers Center for Remote Sensing and Spatial Analysis (CRSSA), Rutgers Bloustein School and the Barnegat Bay Partnership (BBP) have developed web-based tools to assist NJ's coastal communities in visualizing and planning for future local impacts. NJFloodMapper and NJAdapt are two complementary interactive mapping websites that visualize different current and future flood hazards. These hazard layers can be combined with additional data including critical facilities, evacuation routes, socioeconomic and environmental data. Getting to Resilience is an online self-assessment tool developed to assist communities reduce vulnerability and increase preparedness by linking planning, mitigation, and adaptation. Through this interactive process communities will learn how their preparedness can yield valuable points through voluntary programs like FEMA's Community Rating System and Sustainable Jersey. The assessment process can also increase the community's understanding of where future vulnerabilities should be addressed through hazard mitigation planning. Since Superstorm Sandy, more than thirty communities in New Jersey have been provided technical assistance in assessing their risks and vulnerabilities to coastal hazards, and have begun to understand how to better plan and prepare for short and long-term changes along their shorelines.
NASA Astrophysics Data System (ADS)
Kain, Claire L.; Rigby, Edward H.; Mazengarb, Colin
2018-02-01
Two episodes of intense flooding and sediment movement occurred in the Westmorland Stream alluvial system near Caveside, Australia in January 2011 and June 2016. The events were investigated in order to better understand the drivers and functioning of this composite alluvial system on a larger scale, so as to provide awareness of the potential hazard from future flood and debris flow events. A novel combination of methods was employed, including field surveys, catchment morphometry, GIS mapping from LiDAR and aerial imagery, and hydraulic modelling using RiverFlow-2D software. Both events were initiated by extreme rainfall events (< 1% Annual Exceedance Probability for durations exceeding 6 h) and resulted in flooding and sediment deposition across the alluvial fan. The impacts of the 2011 and 2016 events on the farmland appeared similar; however, there were differences in sediment source and transport processes that have implications for understanding recurrence probabilities. A debris flow was a key driver in the 2011 event, by eroding the stream channel in the forested watershed and delivering a large volume of sediment downstream to the alluvial fan. In contrast, modelled flooding velocities suggest the impacts of the 2016 event were the result of an extended period of extreme stream flooding and consequent erosion of alluvium directly above the current fan apex. The morphometry of the catchment is better aligned with values from fluvially dominated fans found elsewhere, which suggests that flooding represents a more frequent future risk than debris flows. These findings have wider implications for the estimation of debris flow and flood hazard on alluvial fans in Tasmania and elsewhere, as well as further demonstrating the capacity of combined hydraulic modelling and geomorphologic investigation as a predictive tool to inform hazard management practices in environments affected by flooding and sediment movement.
The Importance of Studying Past Extreme Floods to Prepare for Uncertain Future Extremes
NASA Astrophysics Data System (ADS)
Burges, S. J.
2016-12-01
Hoyt and Langbein, 1955 in their book `Floods' wrote: " ..meteorologic and hydrologic conditions will combine to produce superfloods of unprecedented magnitude. We have every reason to believe that in most rivers past floods may not be an accurate measure of ultimate flood potentialities. It is this superflood with which we are always most concerned". I provide several examples to offer some historical perspective on assessing extreme floods. In one example, flooding in the Miami Valley, OH in 1913 claimed 350 lives. The engineering and socio-economic challenges facing the Morgan Engineering Co in how to mitigate against future flood damage and loss of life when limited information was available provide guidance about ways to face an uncertain hydroclimate future, particularly one of a changed climate. A second example forces us to examine mixed flood populations and illustrates the huge uncertainty in assigning flood magnitude and exceedance probability to extreme floods in such cases. There is large uncertainty in flood frequency estimates; knowledge of the total flood hydrograph, not the peak flood flow rate alone, is what is needed for hazard mitigation assessment or design. Some challenges in estimating the complete flood hydrograph in an uncertain future climate, including demands on hydrologic models and their inputs, are addressed.
Ensemble tropical-extratropical cyclone coastal flood hazard assessment with climate change
NASA Astrophysics Data System (ADS)
Orton, P. M.; Lin, N.; Colle, B.
2016-12-01
A challenge with quantifying future changes in coastal flooding for the U.S. East Coast is that climate change has varying effects on different types of storms, in addition to raising mean sea levels. Moreover, future flood hazard uncertainties are large and come from many sources. Here, a new coastal flood hazard assessment approach is demonstrated that separately evaluates and then combines probabilities of storm tide generated from tropical cyclones (TCs) and extratropical cyclones (ETCs). The separation enables us to incorporate climate change impacts on both types of storms. The assessment accounts for epistemic storm tide uncertainty using an ensemble of different prior studies and methods of assessment, merged with uncertainty in climate change effects on storm tides and sea levels. The assessment is applied for New York Harbor, under the auspices of the New York City Panel on Climate Change (NPCC). In the New York Bight region and much of the U.S. East Coast, differing flood exceedance curve slopes for TCs and ETCs arise due to their differing physics. It is demonstrated how errors can arise for this region from mixing together storm types in an extreme value statistical analysis, a common practice when using observations. The effects of climate change on TC and ETC flooding have recently been assessed for this region, for TCs using a Global Climate Model (GCM) driven hurricane model with hydrodynamic modeling, and for ETCs using a GCM-driven multilinear regression-based storm surge model. The results of these prior studies are applied to our central estimates of the flood exceedance curve probabilities, transforming them for climate change effects. The results are useful for decision-makers because they highlight the large uncertainty in present-day and future flood risk, and also for scientists because they identify the areas where further research is most needed.
Natural hazards and climate change in Dhaka: future trends, social adaptation and informal dynamics
NASA Astrophysics Data System (ADS)
Thiele-Eich, I.; Aßheuer, T.; Simmer, C.; Braun, B.
2009-04-01
Similar to many megacities in the world, Dhaka is regularly threatened by natural hazards. Risks associated with floods and cyclones in particular are expected to increase in the years to come because of global climate change and rapid urbanization. Greater Dhaka is expected to grow from 13.5 million inhabitants in 2007 to 22 million inhabitants by 2025. The vast majority of this growth will take place in informal settlements. Due to the setting of Greater Dhaka in a deltaic plain, the sprawl of slums is primarily taking place in wetlands, swamps and other flood-prone areas. Slum dwellers and informal businesses are vulnerable, but have somehow learned to cope with seasonal floods and developed specific adaptation strategies. An increase of precipitation extremes and tropical cyclones, however, would put considerable stress on the adaptability of the social and economic system. DhakaHazard, a joint research project of the Department of Meteorology at the University of Bonn and the Department of Geography at the University of Cologne, takes up these issues in an interdisciplinary approach. The project, which begun in November 2008, aims to achieve two main objectives: To link analyses of informal social and economic adaptation strategies to models on future climate change and weather extremes. To estimate more accurately the future frequency and magnitude of weather extremes and floods which are crucial for the future adaptability of informal systems. To fulfill these objectives, scientists at the Meteorological Institute are studying the evolution of natural hazards in Bangladesh, while researchers at the Department of Geography are undertaking the task of assessing these hazards from a social point of view. More specifically, the meteorologists are identifying global and regional weather conditions resulting in flooding of the Greater Dhaka region, while possible variations in flood-inducing weather patterns are analyzed by evaluating their frequency and magnitude. Findings are then applied to future global climate scenario runs to obtain a first estimate of trends for the frequency and magnitude of weather extremes and their impact on spatial and temporal characteristics of floods in the Greater Dhaka region. From this estimate, a prediction method for the spatial patterns of flooding within the Dhaka area will be developed. The social part of the project analyzes the vulnerability and resilience of economic and social systems within high-risk areas by utilizing methods such as e.g. quantitative household surveys in Dhaka and qualitative expert interviews. Geographers are hoping to identify adaptation and recovery strategies of slum dwellers and informal businesses (e.g. brickfields, tanneries), analyze the role of social capital as well as formal and informal institutions for building up resilience, and analyze possibilities and limits of adaptation strategies under conditions of further urban growth and climate change. By paying attention to the important behavioral patterns of the informal sector, a meteorological early warning system can then be developed to make better use of weather predictions to mitigate weather-related risks for Greater Dhaka. If successful, this project poses as an exemplary intersection of social science and natural hazards research.
Use of Space Technology in Flood Mitigation (Western Province, Zambia)
NASA Astrophysics Data System (ADS)
Mulando, A.
2001-05-01
Disasters, by definition are events that appear suddenly and with little warning. They are usually short lived, with extreme events bringing death, injury and destruction of buildings and communications. Their aftermath can be as damaging as their physical effects through destruction of sanitation and water supplies, destruction of housing and breakdown of transport for food, temporary shelter and emergency services. Since floods are one of the natural disasters which endanger both life and property, it becomes vital to know its extents and where the hazards exists. Flood disasters manifest natural processes on a larger scale and information provided by Remote Sensing is a most appropriate input to analysis of actual events and investigations of potential risks. An analytical and qualitative image processing and interpretation of Remotely Sensed data as well as other data such as rainfall, population, settlements not to mention but a few should be used to derive good mitigation strategies. Since mitigation is the cornerstone of emergency management, it therefore becomes a sustained action that will reduce or eliminate long term risks to people and property from natural hazards such as floods and their effects. This will definitely involve keeping of homes and other sensitive structures away from flood plains. Promotion of sound land use planning based on this known hazard, "FLOODS" is one such form of mitigation that can be applied in flood affected areas within flood plain. Therefore future mitigation technologies and procedures should increasingly be based on the use of flood extent information provided by Remote Sensing Satellites like the NOAA AVHRR as well as information on the designated flood hazard and risk areas.
Translating Uncertain Sea Level Projections Into Infrastructure Impacts Using a Bayesian Framework
NASA Astrophysics Data System (ADS)
Moftakhari, Hamed; AghaKouchak, Amir; Sanders, Brett F.; Matthew, Richard A.; Mazdiyasni, Omid
2017-12-01
Climate change may affect ocean-driven coastal flooding regimes by both raising the mean sea level (msl) and altering ocean-atmosphere interactions. For reliable projections of coastal flood risk, information provided by different climate models must be considered in addition to associated uncertainties. In this paper, we propose a framework to project future coastal water levels and quantify the resulting flooding hazard to infrastructure. We use Bayesian Model Averaging to generate a weighted ensemble of storm surge predictions from eight climate models for two coastal counties in California. The resulting ensembles combined with msl projections, and predicted astronomical tides are then used to quantify changes in the likelihood of road flooding under representative concentration pathways 4.5 and 8.5 in the near-future (1998-2063) and mid-future (2018-2083). The results show that road flooding rates will be significantly higher in the near-future and mid-future compared to the recent past (1950-2015) if adaptation measures are not implemented.
Assessing coastal flood risk and sea level rise impacts at New York City area airports
NASA Astrophysics Data System (ADS)
Ohman, K. A.; Kimball, N.; Osler, M.; Eberbach, S.
2014-12-01
Flood risk and sea level rise impacts were assessed for the Port Authority of New York and New Jersey (PANYNJ) at four airports in the New York City area. These airports included John F. Kennedy International, LaGuardia, Newark International, and Teterboro Airports. Quantifying both present day and future flood risk due to climate change and developing flood mitigation alternatives is crucial for the continued operation of these airports. During Hurricane Sandy in October 2012 all four airports were forced to shut down, in part due to coastal flooding. Future climate change and sea level rise effects may result in more frequent shutdowns and disruptions in travel to and from these busy airports. The study examined the effects of the 1%-annual-chance coastal flooding event for present day existing conditions and six different sea level rise scenarios at each airport. Storm surge model outputs from the Federal Emergency Management Agency (FEMA) provided the present day storm surge conditions. 50th and 90thpercentile sea level rise projections from the New York Panel on Climate Change (NPCC) 2013 report were incorporated into storm surge results using linear superposition methods. These projections were evaluated for future years 2025, 2035, and 2055. In addition to the linear superposition approach for storm surge at airports where waves are a potential hazard, one dimensional wave modeling was performed to get the total water level results. Flood hazard and flood depth maps were created based on these results. In addition to assessing overall flooding at each airport, major at-risk infrastructure critical to the continued operation of the airport was identified and a detailed flood vulnerability assessment was performed. This assessment quantified flood impacts in terms of potential critical infrastructure inundation and developed mitigation alternatives to adapt to coastal flooding and future sea level changes. Results from this project are advancing the PANYNJ's understanding of the effects of sea level rise on coastal flooding at the airports and guiding decision-making in the selection of effective adaptation actions. Given the importance of these airports to transportation, this project is advancing security and continuity of national and international commerce well into the 21st century.
44 CFR 60.22 - Planning considerations for flood-prone areas.
Code of Federal Regulations, 2010 CFR
2010-10-01
... land in relation to the hazards involved, and (iii) does not increase the danger to human life; (2) Prohibit nonessential or improper installation of public utilities and public facilities in flood-prone... public purposes consistent with a policy of minimization of future property losses; (4) Acquisition of...
Proposal of global flood vulnerability scenarios for evaluating future potential flood losses
NASA Astrophysics Data System (ADS)
Kinoshita, Y.; Tanoue, M.; Watanabe, S.; Hirabayashi, Y.
2015-12-01
Flooding is one of the most hazardous and damaging natural disasters causing serious economic loss and casualties across the world (Jongman et al., 2015). Previous studies showed that the global temperature increase affects regional weather pattern, and several general circulation model (GCM) simulations suggest the increase of flood events in both frequency and magnitude in many parts of the world (Hirabayashi et al., 2013). Effective adaptation to potential flood risks under the warming climate requires an in-depth understanding of both the physical and socioeconomic contributors of the flood risk. To assess the realistic future potential flood risk, future sophisticated vulnerability scenarios associated with the shared socioeconomic pathways (SSPs) are necessary. In this study we propose a new future vulnerability scenarios in mortality. Our vulnerability scenarios are constructed based on the modeled flood exposure (population potentially suffered by flooding) and a past from 1980 to 2005. All the flood fatality data were classified according to four income levels (high, mid-high, mid-low and low). Our proposed scenarios have three pathways regarding to SSPs; High efficiency (HE) scenario (SSP1, SSP4 (rich country) and SSP5), Medium efficiency (ME) scenario (SSP2), and Low efficiency (LE) scenario (SSP3 and SSP4 (poor country)). The maximum mortality protection level on each category was detected by applying exponential curve fitting with offset term. Slopes in the HE scenario are assumed to be equal to slopes estimated by regression analysis in each category. The slope in the HE scenario is defined by the mean value of all countries' slope value that is approximately -0.33 mortality decreases per year. The EM-DAT mortality data shows a decreasing trend in time in almost all of the countries. Although mortalities in some countries show an increasing trend, this is because these countries were affected by once-in-hundred-years floods after 1990's. The slope in the ME scenario are half of that in the HE scenario, and a quarter in the LE scenario. In addition, we set three categories depending on mortality level. Our proposed vulnerability scenarios would enable us to reasonably replicate self-sustained vulnerability change against flood hazard associated with the SSPs.
Evolution of tsunami warning systems and products.
Bernard, Eddie; Titov, Vasily
2015-10-28
Each year, about 60 000 people and $4 billion (US$) in assets are exposed to the global tsunami hazard. Accurate and reliable tsunami warning systems have been shown to provide a significant defence for this flooding hazard. However, the evolution of warning systems has been influenced by two processes: deadly tsunamis and available technology. In this paper, we explore the evolution of science and technology used in tsunami warning systems, the evolution of their products using warning technologies, and offer suggestions for a new generation of warning products, aimed at the flooding nature of the hazard, to reduce future tsunami impacts on society. We conclude that coastal communities would be well served by receiving three standardized, accurate, real-time tsunami warning products, namely (i) tsunami energy estimate, (ii) flooding maps and (iii) tsunami-induced harbour current maps to minimize the impact of tsunamis. Such information would arm communities with vital flooding guidance for evacuations and port operations. The advantage of global standardized flooding products delivered in a common format is efficiency and accuracy, which leads to effectiveness in promoting tsunami resilience at the community level. © 2015 The Authors.
Evolution of tsunami warning systems and products
Bernard, Eddie; Titov, Vasily
2015-01-01
Each year, about 60 000 people and $4 billion (US$) in assets are exposed to the global tsunami hazard. Accurate and reliable tsunami warning systems have been shown to provide a significant defence for this flooding hazard. However, the evolution of warning systems has been influenced by two processes: deadly tsunamis and available technology. In this paper, we explore the evolution of science and technology used in tsunami warning systems, the evolution of their products using warning technologies, and offer suggestions for a new generation of warning products, aimed at the flooding nature of the hazard, to reduce future tsunami impacts on society. We conclude that coastal communities would be well served by receiving three standardized, accurate, real-time tsunami warning products, namely (i) tsunami energy estimate, (ii) flooding maps and (iii) tsunami-induced harbour current maps to minimize the impact of tsunamis. Such information would arm communities with vital flooding guidance for evacuations and port operations. The advantage of global standardized flooding products delivered in a common format is efficiency and accuracy, which leads to effectiveness in promoting tsunami resilience at the community level. PMID:26392620
NASA Astrophysics Data System (ADS)
Haer, T.; Botzen, W.; Aerts, J.
2016-12-01
In the last four decades the global population living in the 1/100 year-flood zone has doubled from approximately 500 million to a little less than 1 billion people. Urbanization in low lying -flood prone- cities further increases the exposed assets, such as buildings and infrastructure. Moreover, climate change will further exacerbate flood risk in the future. Accurate flood risk assessments are important to inform policy-makers and society on current- and future flood risk levels. However, these assessment suffer from a major flaw in the way they estimate flood vulnerability and adaptive behaviour of individuals and governments. Current flood risk projections commonly assume that either vulnerability remains constant, or try to mimic vulnerability through incorporating an external scenario. Such a static approach leads to a misrepresentation of future flood risk, as humans respond adaptively to flood events, flood risk communication, and incentives to reduce risk. In our study, we integrate adaptive behaviour in a large-scale European flood risk framework through an agent-based modelling approach. This allows for the inclusion of heterogeneous agents, which dynamically respond to each other and a changing environment. We integrate state-of-the-art flood risk maps based on climate scenarios (RCP's), and socio-economic scenarios (SSP's), with government and household agents, which behave autonomously based on (micro-)economic behaviour rules. We show for the first time that excluding adaptive behaviour leads to a major misrepresentation of future flood risk. The methodology is applied to flood risk, but has similar implications for other research in the field of natural hazards. While more research is needed, this multi-disciplinary study advances our understanding of how future flood risk will develop.
A framework for global river flood risk assessment
NASA Astrophysics Data System (ADS)
Winsemius, H. C.; Van Beek, L. P. H.; Bouwman, A.; Ward, P. J.; Jongman, B.
2012-04-01
There is an increasing need for strategic global assessments of flood risks. Such assessments may be required by: (a) International Financing Institutes and Disaster Management Agencies to evaluate where, when, and which investments in flood risk mitigation are most required; (b) (re-)insurers, who need to determine their required coverage capital; and (c) large companies to account for risks of regional investments. In this contribution, we propose a framework for global river flood risk assessment. The framework combines coarse scale resolution hazard probability distributions, derived from global hydrological model runs (typical scale about 0.5 degree resolution) with high resolution estimates of exposure indicators. The high resolution is required because floods typically occur at a much smaller scale than the typical resolution of global hydrological models, and exposure indicators such as population, land use and economic value generally are strongly variable in space and time. The framework therefore estimates hazard at a high resolution ( 1 km2) by using a) global forcing data sets of the current (or in scenario mode, future) climate; b) a global hydrological model; c) a global flood routing model, and d) importantly, a flood spatial downscaling routine. This results in probability distributions of annual flood extremes as an indicator of flood hazard, at the appropriate resolution. A second component of the framework combines the hazard probability distribution with classical flood impact models (e.g. damage, affected GDP, affected population) to establish indicators for flood risk. The framework can be applied with a large number of datasets and models and sensitivities of such choices can be evaluated by the user. The framework is applied using the global hydrological model PCR-GLOBWB, combined with a global flood routing model. Downscaling of the hazard probability distributions to 1 km2 resolution is performed with a new downscaling algorithm, applied on a number of target regions. We demonstrate the use of impact models in these regions based on global GDP, population, and land use maps. In this application, we show sensitivities of the estimated risks with regard to the use of different climate input datasets, decisions made in the downscaling algorithm, and different approaches to establish distributed estimates of GDP and asset exposure to flooding.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, R.J.
Whether water resource developers are utility operators, cities, industrialists of agriculturalists, their interests and those of affected landowners must accommodate each other. They must come together as men, and compromise their difficulties. Past disputes and their resolutions are guides to present and future flood-hazard settlement. Utah Lake and the Jordan River were once the setting for an equitable settlement of a flood hazard. In 1885, President John Taylor (President Taylor) of the Church of Jesus Christ of Latter-day Saints played a significant role in bringing about a compromise between downstream water users in Salt Lake County, Utah, and adversely affectedmore » upstream landowners in Provo and other parts of Utah County. Subsequent periodic flooding resulted in a second compromise agreement a century later. This paper considers the Utah Lake and Jordan River experiences. It examines the two compromises, how they came about, and their impact upon water resource management. In addition to their historical interest, these settlements provide useful guidance for negotiation and resolution of flood hazard disputes.« less
Dankers, Rutger; Arnell, Nigel W.; Clark, Douglas B.; Falloon, Pete D.; Fekete, Balázs M.; Gosling, Simon N.; Heinke, Jens; Kim, Hyungjun; Masaki, Yoshimitsu; Satoh, Yusuke; Stacke, Tobias; Wada, Yoshihide; Wisser, Dominik
2014-01-01
Climate change due to anthropogenic greenhouse gas emissions is expected to increase the frequency and intensity of precipitation events, which is likely to affect the probability of flooding into the future. In this paper we use river flow simulations from nine global hydrology and land surface models to explore uncertainties in the potential impacts of climate change on flood hazard at global scale. As an indicator of flood hazard we looked at changes in the 30-y return level of 5-d average peak flows under representative concentration pathway RCP8.5 at the end of this century. Not everywhere does climate change result in an increase in flood hazard: decreases in the magnitude and frequency of the 30-y return level of river flow occur at roughly one-third (20–45%) of the global land grid points, particularly in areas where the hydrograph is dominated by the snowmelt flood peak in spring. In most model experiments, however, an increase in flooding frequency was found in more than half of the grid points. The current 30-y flood peak is projected to occur in more than 1 in 5 y across 5–30% of land grid points. The large-scale patterns of change are remarkably consistent among impact models and even the driving climate models, but at local scale and in individual river basins there can be disagreement even on the sign of change, indicating large modeling uncertainty which needs to be taken into account in local adaptation studies. PMID:24344290
Maldonado, Alejandra; Collins, Timothy W.; Grineski, Sara E.; Chakraborty, Jayajit
2016-01-01
Although numerous studies have been conducted on the vulnerability of marginalized groups in the environmental justice (EJ) and hazards fields, analysts have tended to lump people together in broad racial/ethnic categories without regard for substantial within-group heterogeneity. This paper addresses that limitation by examining whether Hispanic immigrants are disproportionately exposed to risks from flood hazards relative to other racial/ethnic groups (including US-born Hispanics), adjusting for relevant covariates. Survey data were collected for 1283 adult householders in the Houston and Miami Metropolitan Statistical Areas (MSAs) and flood risk was estimated using their residential presence/absence within federally-designated 100-year flood zones. Generalized estimating equations (GEE) with binary logistic specifications that adjust for county-level clustering were used to analyze (separately) and compare the Houston (N = 546) and Miami (N = 560) MSAs in order to clarify determinants of household exposure to flood risk. GEE results in Houston indicate that Hispanic immigrants have the greatest likelihood, and non-Hispanic Whites the least likelihood, of residing in a 100-year flood zone. Miami GEE results contrastingly reveal that non-Hispanic Whites have a significantly greater likelihood of residing in a flood zone when compared to Hispanic immigrants. These divergent results suggest that human-flood hazard relationships have been structured differently between the two MSAs, possibly due to the contrasting role that water-based amenities have played in urbanization within the two study areas. Future EJ research and practice should differentiate between Hispanic subgroups based on nativity status and attend to contextual factors influencing environmental risk disparities. PMID:27490561
Maldonado, Alejandra; Collins, Timothy W; Grineski, Sara E; Chakraborty, Jayajit
2016-08-01
Although numerous studies have been conducted on the vulnerability of marginalized groups in the environmental justice (EJ) and hazards fields, analysts have tended to lump people together in broad racial/ethnic categories without regard for substantial within-group heterogeneity. This paper addresses that limitation by examining whether Hispanic immigrants are disproportionately exposed to risks from flood hazards relative to other racial/ethnic groups (including US-born Hispanics), adjusting for relevant covariates. Survey data were collected for 1283 adult householders in the Houston and Miami Metropolitan Statistical Areas (MSAs) and flood risk was estimated using their residential presence/absence within federally-designated 100-year flood zones. Generalized estimating equations (GEE) with binary logistic specifications that adjust for county-level clustering were used to analyze (separately) and compare the Houston (N = 546) and Miami (N = 560) MSAs in order to clarify determinants of household exposure to flood risk. GEE results in Houston indicate that Hispanic immigrants have the greatest likelihood, and non-Hispanic Whites the least likelihood, of residing in a 100-year flood zone. Miami GEE results contrastingly reveal that non-Hispanic Whites have a significantly greater likelihood of residing in a flood zone when compared to Hispanic immigrants. These divergent results suggest that human-flood hazard relationships have been structured differently between the two MSAs, possibly due to the contrasting role that water-based amenities have played in urbanization within the two study areas. Future EJ research and practice should differentiate between Hispanic subgroups based on nativity status and attend to contextual factors influencing environmental risk disparities.
Soong, David T.; Straub, Timothy D.; Murphy, Elizabeth A.
2006-01-01
Results of hydrologic model, flood-frequency, hydraulic model, and flood-hazard analysis of the Blackberry Creek watershed in Kane County, Illinois, indicate that the 100-year and 500-year flood plains range from approximately 25 acres in the tributary F watershed (a headwater subbasin at the northeastern corner of the watershed) to almost 1,800 acres in Blackberry Creek main stem. Based on 1996 land-cover data, most of the land in the 100-year and 500-year flood plains was cropland, forested and wooded land, and grassland. A relatively small percentage of urban land was in the flood plains. The Blackberry Creek watershed has undergone rapid urbanization in recent decades. The population and urbanized lands in the watershed are projected to double from the 1990 condition by 2020. Recently, flood-induced damage has occurred more frequently in urbanized areas of the watershed. There are concerns about the effect of urbanization on flood peaks and volumes, future flood-mitigation plans, and potential effects on the water quality and stream habitats. This report describes the procedures used in developing the hydrologic models, estimating the flood-peak discharge magnitudes and recurrence intervals for flood-hazard analysis, developing the hydraulic model, and the results of the analysis in graphical and tabular form. The hydrologic model, Hydrological Simulation Program-FORTRAN (HSPF), was used to perform the simulation of continuous water movements through various patterns of land uses in the watershed. Flood-frequency analysis was applied to an annual maximum series to determine flood quantiles in subbasins for flood-hazard analysis. The Hydrologic Engineering Center-River Analysis System (HEC-RAS) hydraulic model was used to determine the 100-year and 500-year flood elevations, and to determine the 100-year floodway. The hydraulic model was calibrated and verified using high water marks and observed inundation maps for the July 17-18, 1996, flood event. Digital maps of the 100-year and 500-year flood plains and the 100-year floodway for each tributary and the main stem of Blackberry Creek were compiled.
NASA Astrophysics Data System (ADS)
Winsemius, Hessel; Jongman, Brenden; Veldkamp, Ted; Hallegatte, Stéphane; Bangalore, Mook; Ward, Philip
2016-04-01
Prior to the COP21 conference in Paris this year, the World Bank published a report called "Shockwaves - Managing the Impacts of Climate Change on Poverty". The report flagged that ending poverty and stabilizing climate change should be jointly tackled and that without a good joint policy, a further 100 million people could become trapped in poverty by 2050. As part of the "Shockwaves" report, we investigated whether low-income households are disproportionately overrepresented in hazard-prone areas compared to households with higher income. Furthermore, the hazardous conditions under which poor households are exposed to now may become worse due to climate change with resulting increases in intensity and frequency of floods and droughts. We also show how the amount of affected people to these natural hazards change in the future if nothing is done. We use recent advances in the global spatial modeling of flood and drought hazard and a large sample of household surveys containing asset and income data to explore the relationships.
NASA Astrophysics Data System (ADS)
Beckers, Joost; Buckman, Lora; Bachmann, Daniel; Visser, Martijn; Tollenaar, Daniel; Vatvani, Deepak; Kramer, Nienke; Goorden, Neeltje
2015-04-01
Decision making in disaster management requires fast access to reliable and relevant information. We believe that online information and services will become increasingly important in disaster management. Within the EU FP7 project RASOR (Rapid Risk Assessment and Spatialisation of Risk) an online platform is being developed for rapid multi-hazard risk analyses to support disaster management anywhere in the world. The platform will provide access to a plethora of GIS data that are relevant to risk assessment. It will also enable the user to run numerical flood models to simulate historical and newly defined flooding scenarios. The results of these models are maps of flood extent, flood depths and flow velocities. The RASOR platform will enable to overlay historical event flood maps with observations and Earth Observation (EO) imagery to fill in gaps and assess the accuracy of the flood models. New flooding scenarios can be defined by the user and simulated to investigate the potential impact of future floods. A series of flood models have been developed within RASOR for selected case study areas around the globe that are subject to very different flood hazards: • The city of Bandung in Indonesia, which is prone to fluvial flooding induced by heavy rainfall. The flood hazard is exacerbated by land subsidence. • The port of Cilacap on the south coast of Java, subject to tsunami hazard from submarine earthquakes in the Sunda trench. • The area south of city of Rotterdam in the Netherlands, prone to coastal and/or riverine flooding. • The island of Santorini in Greece, which is subject to tsunamis induced by landslides. Flood models have been developed for each of these case studies using mostly EO data, augmented by local data where necessary. Particular use was made of the new TanDEM-X (TerraSAR-X add-on for Digital Elevation Measurement) product from the German Aerospace centre (DLR) and EADS Astrium. The presentation will describe the flood models and the flooding scenarios that can be defined by the RASOR end user to support risk management in each area. Ongoing work for three more case studies (Haiti, Po valley in Italy and Jakarta, Indonesia) will also be discussed.
Declining vulnerability to river floods and the global benefits of adaptation
Jongman, Brenden; Winsemius, Hessel C.; Aerts, Jeroen C. J. H.; Coughlan de Perez, Erin; van Aalst, Maarten K.; Kron, Wolfgang; Ward, Philip J.
2015-01-01
The global impacts of river floods are substantial and rising. Effective adaptation to the increasing risks requires an in-depth understanding of the physical and socioeconomic drivers of risk. Whereas the modeling of flood hazard and exposure has improved greatly, compelling evidence on spatiotemporal patterns in vulnerability of societies around the world is still lacking. Due to this knowledge gap, the effects of vulnerability on global flood risk are not fully understood, and future projections of fatalities and losses available today are based on simplistic assumptions or do not include vulnerability. We show for the first time (to our knowledge) that trends and fluctuations in vulnerability to river floods around the world can be estimated by dynamic high-resolution modeling of flood hazard and exposure. We find that rising per-capita income coincided with a global decline in vulnerability between 1980 and 2010, which is reflected in decreasing mortality and losses as a share of the people and gross domestic product exposed to inundation. The results also demonstrate that vulnerability levels in low- and high-income countries have been converging, due to a relatively strong trend of vulnerability reduction in developing countries. Finally, we present projections of flood losses and fatalities under 100 individual scenario and model combinations, and three possible global vulnerability scenarios. The projections emphasize that materialized flood risk largely results from human behavior and that future risk increases can be largely contained using effective disaster risk reduction strategies. PMID:25902499
Declining vulnerability to river floods and the global benefits of adaptation.
Jongman, Brenden; Winsemius, Hessel C; Aerts, Jeroen C J H; Coughlan de Perez, Erin; van Aalst, Maarten K; Kron, Wolfgang; Ward, Philip J
2015-05-05
The global impacts of river floods are substantial and rising. Effective adaptation to the increasing risks requires an in-depth understanding of the physical and socioeconomic drivers of risk. Whereas the modeling of flood hazard and exposure has improved greatly, compelling evidence on spatiotemporal patterns in vulnerability of societies around the world is still lacking. Due to this knowledge gap, the effects of vulnerability on global flood risk are not fully understood, and future projections of fatalities and losses available today are based on simplistic assumptions or do not include vulnerability. We show for the first time (to our knowledge) that trends and fluctuations in vulnerability to river floods around the world can be estimated by dynamic high-resolution modeling of flood hazard and exposure. We find that rising per-capita income coincided with a global decline in vulnerability between 1980 and 2010, which is reflected in decreasing mortality and losses as a share of the people and gross domestic product exposed to inundation. The results also demonstrate that vulnerability levels in low- and high-income countries have been converging, due to a relatively strong trend of vulnerability reduction in developing countries. Finally, we present projections of flood losses and fatalities under 100 individual scenario and model combinations, and three possible global vulnerability scenarios. The projections emphasize that materialized flood risk largely results from human behavior and that future risk increases can be largely contained using effective disaster risk reduction strategies.
Mills, David; Jones, Russell; Wobus, Cameron; Ekstrom, Julia; Jantarasami, Lesley; St Juliana, Alexis; Crimmins, Allison
2018-04-17
The public health community readily recognizes flooding and wildfires as climate-related health hazards, but few studies quantify changes in risk of exposure, particularly for vulnerable children and older adults. This study quantifies future populations potentially exposed to inland flooding and wildfire smoke under two climate scenarios, highlighting the populations in particularly vulnerable age groups (≤4 y old and ≥65 y old). Spatially explicit projections of inland flooding and wildfire under two representative concentration pathways (RCP8.5 and RCP4.5) are integrated with static (2010) and dynamic (2050 and 2090) age-stratified projections of future contiguous U.S. populations at the county level. In both 2050 and 2090, an additional one-third of the population will live in areas affected by larger and more frequent inland flooding under RCP8.5 than under RCP4.5. Approximately 15 million children and 25 million older adults could avoid this increased risk of flood exposure each year by 2090 under a moderate mitigation scenario (RCP4.5 compared with RCP8.5). We also find reduced exposure to wildfire smoke under the moderate mitigation scenario. Nearly 1 million young children and 1.7 million older adults would avoid exposure to wildfire smoke each year under RCP4.5 than under RCP8.5 by the end of the century. By integrating climate-driven hazard and population projections, newly created county-level exposure maps identify locations of potential significant future public health risk. These potential exposure results can help inform actions to prevent and prepare for associated future adverse health outcomes, particularly for vulnerable children and older adults. https://doi.org/10.1289/EHP2594.
NASA Astrophysics Data System (ADS)
Lara, A.; Ribas, A.; Cifuentes, L. A.
2013-05-01
Mediterranean areas are not immune to flood problems. The Spanish Mediterranean coast is a reflection of this, where flooding continues to be the greatest natural hazard with negative effects on the territory. The urbanization of coastal watersheds, very pronounced in the last 15 years, has led to the creation of authentic urban continuums in the seafront and the appearance of residential developments therein. The municipalities of Costa Brava, in the province of Girona, are an example of this dynamic of the increasing risk, exposure, and impact of floods. In Chile, floods are considered one of the main natural hazards, especially in the province of Concepcion. One of the most important cities of this area is Talcahuano, which has suffered continual flood episodes during recent years. Flood episodes could yet increase in the future due to the high frequency of extraordinary atmospheric events and a higher exposure to flood risk created by the development of intensive urbanization processes. However, after the February 27th 8.8 degrees earthquake (Richter scale) that affected the center-south of Chile and originated the tsunami which flooded a large percentage of the residential area and military base of the city of Talcahuano, the risk, vulnerability, resilience and copy capacity concepts changed. This research looks at the social perception and social knowledge of Mediterranean residents affected and unaffected by floods, emphasizing which is their risk, vulnerability, resilience and copy capacity concept and what kind of measures they proposed to reduce their flood vulnerability. The end objective of this research is to become a framework for future local flood policies and a tool that could be reviewed by specialists in other regions that might be affected by this hazard. This social assessment has been carried out through surveys of residents in Costa Brava and Talcahuano whose endogenous and exogenous characteristics have been significant in explaining their perceptions. The main results show that: a) the flood experience is a determinant in social perception of flood risk; b) fear has a strong role in the livelihood of Talcahuano residents; c) Insurance is the main solution for Spanish residents; d) the residents surveyed feel that the government and disaster managers ignore the local community for design measures to improve local vulnerability against floods and; e) both areas give strong support to implementing structural measures.
Evaluation of urban flood damages in climate and land use changes: Case Studies from Southeast Asia
NASA Astrophysics Data System (ADS)
Kefi, M.; Binaya, M. K.; Kumar, P.; Fukushi, K.
2017-12-01
Urbanization, changes in land use and global warming increase the threat of natural disasters such as flooding. In recent decades, it was observed a rise of intensity and frequency of flood events. The exposure both of people and the national economy to flood hazards is amplified and can induce serious economic and social damages. For this reason, local governments adopted several strategies to cope with flood risk in urban areas in particular, but a better comprehension of the flood hazard factors may enhance the efficiency of mitigating measures overall. For this research, a spatial analysis is applied to estimate future direct flood damage for 2030 in three Southeast Asian megacities: Jakarta (Indonesia), Metro-Manila (Philippines) and Hanoi (Vietnam). This comprehensive method combined flood characteristics (flood depth) obtained from flood simulation using FLO-2D, land use generated from supervised classification and remote sensing products, property value of affected buildings and flood damage rate derived from flood depth function. This function is established based on field surveys with local people affected by past flood events. Additionally, two scenarios were analyzed to simulate the future conditions. The first one is related to climate change and it is based on several General Circulation Models (GCMs). However, the second one is establish to point out the effect of adaptation strategies. The findings shows that the climate change combined with the expansion of built-up areas increase the vulnerability of urban areas to flooding and the economic damage. About 16%, 8% and 19% of flood inundation areas are expected to increase respectively in Metro-Manila, Jakarta and Hanoi. However, appropriate flood control measures can be helpful to reduce the impact of natural disaster. Furthermore, flood damage maps are generated at a large scale, which can be helpful to local stakeholders when prioritizing their mitigation strategies on urban disaster resilience.
NASA Astrophysics Data System (ADS)
Ballesteros-Cánovas, Juan Antonio; Stoffel, Markus; Trappmann, Daniel; Shekhar, Mayank; Bhattacharyya, Amalava
2016-04-01
Floods are a common natural hazard in the Western Indian Himalayas. They usually occur when humid monsoon airs are lifted along the Himalayan relief, thereby creating intense orographic rainfall and runoff, a process which is often enhanced by simultaneous snowmelt. Monsoon floods are considered a major threat in the region and frequently affect inhabited valleys, disturbing the status quo of communities, stressing the future welfare and condition of their economic development. Given the assumption that ongoing and future climatic changes may impact on monsoon patterns and extreme precipitation, the implementation of adaptation policies in this region is critically needed in order to improve local resilience of Himalayan communities. However, its success implementation is highly dependent on system knowledge and hence reliable baseline data of past disasters. In this communication, we demonstrate how newly gained knowledge on past flood incidents may improve flood hazard and risk assessments. Based on growth-ring analysis of trees growing in the floodplains and other, more classical paleo-hydrology techniques, we reconstruct the regional flood activity for the last decades. This information is then included as non-systematic data into the regional flood frequency by using Bayesian Markov Monte Carlo Chain algorithms, so as to analyse the impact of the additional data on flood hazard assessments. Moreover, through a detailed analysis of three flood risk hotspots, we demonstrate how the newly gained knowledge on past flood disasters derived from indirect proxies can explain failures in the implementation of disaster risk management (DRM). Our methodology allowed identification of thirty-four unrecorded flood events at the study sites located in the upper reaches since the early 20th century, and thus completion of the existing flood history in the region based on flow measurements in the lower part of the catchment. We observe that 56% of the floods occurred simultaneously in more than two catchments, and that in 15% of the cases more than four catchments were affected. By contrast, 44% of event years were related with one specific catchment, corroborating the assumption that large-scale atmospheric conditions and specific weather and/or geomorphic conditions may operate as triggers of floods in Kullu district. The inclusion of peak discharge data related with these ungauged extreme flood events into the regional flood frequency evidenced that flood hazard was systematically underestimated. Our results allowed to highlight the potential causes of three paradigmatic cases of flood disaster incidents at Kullus district, suggesting that the lack of knowledge on past flood disaster could play an important role in Disaster Risk managment (DRM) at three actors-levels i.e. civil engineering, local authorities and inhabitants. These observations show that reliable DRM implementation is conditioned by lack of data to characterize the flood process, and therefore put in value the palaeohydrological approach used in this study.
Real Option Cost Vulnerability Analysis of Electrical Infrastructure
NASA Astrophysics Data System (ADS)
Prime, Thomas; Knight, Phil
2015-04-01
Critical infrastructure such as electricity substations are vulnerable to various geo-hazards that arise from climate change. These geo-hazards range from increased vegetation growth to increased temperatures and flood inundation. Of all the identified geo-hazards, coastal flooding has the greatest impact, but to date has had a low probability of occurring. However, in the face of climate change, coastal flooding is likely to occur more often due to extreme water levels being experienced more frequently due to sea-level rise (SLR). Knowing what impact coastal flooding will have now and in the future on critical infrastructure such as electrical substations is important for long-term management. Using a flood inundation model, present day and future flood events have been simulated, from 1 in 1 year events up to 1 in 10,000 year events. The modelling makes an integrated assessment of impact by using sea-level and surge to simulate a storm tide. The geographical area the model covers is part of the Northwest UK coastline with a range of urban and rural areas. The ensemble of flood maps generated allows the identification of critical infrastructure exposed to coastal flooding. Vulnerability has be assessed using an Estimated Annual Damage (EAD) value. Sampling SLR annual probability distributions produces a projected "pathway" for SLR up to 2100. EAD is then calculated using a relationship derived from the flood model. Repeating the sampling process allows a distribution of EAD up to 2100 to be produced. These values are discounted to present day values using an appropriate discount rate. If the cost of building and maintain defences is also removed from this a Net Present Value (NPV) of building the defences can be calculated. This distribution of NPV can be used as part of a cost modelling process involving Real Options, A real option is the right but not obligation to undertake investment decisions. In terms of investment in critical infrastructure resilience this means that a real option can be deferred or exercised depending on the climate future that has been realised. The real option value is defined as the maximum positive NPV value that is found across the range of potential SLR "futures". Real Options add value in that flood defences may not be built when there is real value in doing so. The cost modelling output is in the form of an accessible database that has detailed real option values varying spatially across the model domain (for each critical infrastructure) and temporally up to 2100. The analysis has shown that in 2100, 8.2% of the substations analysed have a greater than a 1 in 2 chance of exercising the real option to build flood defences against coastal flooding. The cost modelling tool and flood maps that have been developed will help stakeholders in deciding where and when to invest in mitigating against coastal flooding.
78 FR 45938 - Final Flood Hazard Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-30
...] Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final notice. SUMMARY: Flood hazard determinations, which may include additions or modifications of Base Flood Elevations (BFEs), base flood depths, Special Flood Hazard Area (SFHA) boundaries or zone designations, or...
Flood Losses Associated with Winter Storms in the U.S. Northeast
NASA Astrophysics Data System (ADS)
Ting, M.; Shimkus, C.
2015-12-01
Winter storms pose a number of hazards to coastal communities in the U.S. Northeast including heavy rain, snow, strong wind, cold temperatures, and flooding. These hazards can cause millions in property damages from one storm alone. This study addresses the impacts of winter storms from 2001 - 2012 on coastal counties in the U.S. Northeast and underscores the significant economic consequences extreme winter storms have on property. The analysis on the types of hazards (floods, strong wind, snow, etc.) and associated damage from the National Climatic Data Center Storm Events Database indicates that floods were responsible for the highest damages. This finding suggests that winter storm vulnerability could grow in the future as precipitation intensity increases and sea level rise exacerbate flood losses. Flood loss maps are constructed based on damage amount, which can be compared to the flood exposure maps constructed by the NOAA Office of Coastal Management. Interesting agreements and discrepancies exist between the two methods, which warrant further examination. Furthermore, flood losses often came from storms characterized as heavy precipitation storms and strong surge storms, and sometimes both, illustrating the compounding effect of flood risks in the region. While New Jersey counties experienced the most damage per unit area, there is no discernable connection between population density and damage amount, which suggests that societal impacts may rely less on population characteristics and more on infrastructure types and property values, which vary throughout the region.
Elk River Watershed - Flood Study
NASA Astrophysics Data System (ADS)
Barnes, C. C.; Byrne, J. M.; MacDonald, R. J.; Lewis, D.
2014-12-01
Flooding has the potential to cause significant impacts to economic activities as well as to disrupt or displace populations. Changing climate regimes such as extreme precipitation events increase flood vulnerability and put additional stresses on infrastructure. Potential flooding from just under 100 (2009 NPRI Reviewed Facility Data Release, Environment Canada) toxic tailings ponds located in Canada increase risk to human safety and the environment. One such geotechnical failure spilt billions of litres of toxic tailings into the Fraser River watershed, British Columbia, when a tailings pond dam breach occurred in August 2014. Damaged and washed out roadways cut access to essential services as seen by the extensive floods that occurred in Saskatchewan and Manitoba in July 2014, and in Southern Alberta in 2013. Recovery efforts from events such as these can be lengthy, and have substantial social and economic impacts both in loss of revenue and cost of repair. The objective of this study is to investigate existing conditions in the Elk River watershed and model potential future hydrological changes that can increase flood risk hazards. By analyzing existing hydrology, meteorology, land cover, land use, economic, and settlement patterns a baseline is established for existing conditions in the Elk River watershed. Coupling the Generate Earth Systems Science (GENESYS) high-resolution spatial hydrometeorological model with flood hazard analysis methodology, high-resolution flood vulnerability base line maps are created using historical climate conditions. Further work in 2015 will examine possible impacts for a range of climate change and land use change scenarios to define changes to future flood risk and vulnerability.
Cumulative hazard: The case of nuisance flooding
NASA Astrophysics Data System (ADS)
Moftakhari, Hamed R.; AghaKouchak, Amir; Sanders, Brett F.; Matthew, Richard A.
2017-02-01
The cumulative cost of frequent events (e.g., nuisance floods) over time may exceed the costs of the extreme but infrequent events for which societies typically prepare. Here we analyze the likelihood of exceedances above mean higher high water and the corresponding property value exposure for minor, major, and extreme coastal floods. Our results suggest that, in response to sea level rise, nuisance flooding (NF) could generate property value exposure comparable to, or larger than, extreme events. Determining whether (and when) low cost, nuisance incidents aggregate into high cost impacts and deciding when to invest in preventive measures are among the most difficult decisions for policymakers. It would be unfortunate if efforts to protect societies from extreme events (e.g., 0.01 annual probability) left them exposed to a cumulative hazard with enormous costs. We propose a Cumulative Hazard Index (CHI) as a tool for framing the future cumulative impact of low cost incidents relative to infrequent extreme events. CHI suggests that in New York, NY, Washington, DC, Miami, FL, San Francisco, CA, and Seattle, WA, a careful consideration of socioeconomic impacts of NF for prioritization is crucial for sustainable coastal flood risk management.
Statistical analysis of the uncertainty related to flood hazard appraisal
NASA Astrophysics Data System (ADS)
Notaro, Vincenza; Freni, Gabriele
2015-12-01
The estimation of flood hazard frequency statistics for an urban catchment is of great interest in practice. It provides the evaluation of potential flood risk and related damage and supports decision making for flood risk management. Flood risk is usually defined as function of the probability, that a system deficiency can cause flooding (hazard), and the expected damage, due to the flooding magnitude (damage), taking into account both the exposure and the vulnerability of the goods at risk. The expected flood damage can be evaluated by an a priori estimation of potential damage caused by flooding or by interpolating real damage data. With regard to flood hazard appraisal several procedures propose to identify some hazard indicator (HI) such as flood depth or the combination of flood depth and velocity and to assess the flood hazard corresponding to the analyzed area comparing the HI variables with user-defined threshold values or curves (penalty curves or matrixes). However, flooding data are usually unavailable or piecemeal allowing for carrying out a reliable flood hazard analysis, therefore hazard analysis is often performed by means of mathematical simulations aimed at evaluating water levels and flow velocities over catchment surface. As results a great part of the uncertainties intrinsic to flood risk appraisal can be related to the hazard evaluation due to the uncertainty inherent to modeling results and to the subjectivity of the user defined hazard thresholds applied to link flood depth to a hazard level. In the present work, a statistical methodology was proposed for evaluating and reducing the uncertainties connected with hazard level estimation. The methodology has been applied to a real urban watershed as case study.
44 CFR 64.3 - Flood Insurance Maps.
Code of Federal Regulations, 2012 CFR
2012-10-01
... tidal floods (coastal high hazard area) V1-30, VE Area of special flood hazards, with water surface elevations determined and with velocity, that is inundated by tidal floods (coastal high hazard area) V0 Area..., but possible, mudslide hazards E Area of special flood-related erosion hazards. Areas identified as...
44 CFR 64.3 - Flood Insurance Maps.
Code of Federal Regulations, 2013 CFR
2013-10-01
... tidal floods (coastal high hazard area) V1-30, VE Area of special flood hazards, with water surface elevations determined and with velocity, that is inundated by tidal floods (coastal high hazard area) V0 Area..., but possible, mudslide hazards E Area of special flood-related erosion hazards. Areas identified as...
44 CFR 64.3 - Flood Insurance Maps.
Code of Federal Regulations, 2014 CFR
2014-10-01
... tidal floods (coastal high hazard area) V1-30, VE Area of special flood hazards, with water surface elevations determined and with velocity, that is inundated by tidal floods (coastal high hazard area) V0 Area..., but possible, mudslide hazards E Area of special flood-related erosion hazards. Areas identified as...
NASA Astrophysics Data System (ADS)
O'Neill, Andrea; Barnard, Patrick; Erikson, Li; Foxgrover, Amy; Limber, Patrick; Vitousek, Sean; Fitzgibbon, Michael; Wood, Nathan
2017-04-01
The risk of coastal flooding will increase for many low-lying coastal regions as predominant contributions to flooding, including sea level, storm surge, wave setup, and storm-related fluvial discharge, are altered with climate change. Community leaders and local governments therefore look to science to provide insight into how climate change may affect their areas. Many studies of future coastal flooding vulnerability consider sea level and tides, but ignore other important factors that elevate flood levels during storm events, such as waves, surge, and discharge. Here we present a modelling approach that considers a broad range of relevant processes contributing to elevated storm water levels for open coast and embayment settings along the U.S. West Coast. Additionally, we present online tools for communicating community-relevant projected vulnerabilities. The Coastal Storm Modeling System (CoSMoS) is a numerical modeling system developed to predict coastal flooding due to both sea-level rise (SLR) and plausible 21st century storms for active-margin settings like the U.S. West Coast. CoSMoS applies a predominantly deterministic framework of multi-scale models encompassing large geographic scales (100s to 1000s of kilometers) to small-scale features (10s to 1000s of meters), resulting in flood extents that can be projected at a local resolution (2 meters). In the latest iteration of CoSMoS applied to Southern California, U.S., efforts were made to incorporate water level fluctuations in response to regional storm impacts, locally wind-generated waves, coastal river discharge, and decadal-scale shoreline and cliff changes. Coastal hazard projections are available in a user-friendly web-based tool (www.prbo.org/ocof), where users can view variations in flood extent, maximum flood depth, current speeds, and wave heights in response to a range of potential SLR and storm combinations, providing direct support to adaptation and management decisions. In order to capture the societal aspect of the hazard, projections are combined with socioeconomic exposure to produce clear, actionable information (https://www.usgs.gov/apps/hera/); this integrated approach to hazard displays provides an example of how to effectively translate complex climate impacts projections into simple, societally-relevant information.
Flood Hazard Mapping by Applying Fuzzy TOPSIS Method
NASA Astrophysics Data System (ADS)
Han, K. Y.; Lee, J. Y.; Keum, H.; Kim, B. J.; Kim, T. H.
2017-12-01
There are lots of technical methods to integrate various factors for flood hazard mapping. The purpose of this study is to suggest the methodology of integrated flood hazard mapping using MCDM(Multi Criteria Decision Making). MCDM problems involve a set of alternatives that are evaluated on the basis of conflicting and incommensurate criteria. In this study, to apply MCDM to assessing flood risk, maximum flood depth, maximum velocity, and maximum travel time are considered as criterion, and each applied elements are considered as alternatives. The scheme to find the efficient alternative closest to a ideal value is appropriate way to assess flood risk of a lot of element units(alternatives) based on various flood indices. Therefore, TOPSIS which is most commonly used MCDM scheme is adopted to create flood hazard map. The indices for flood hazard mapping(maximum flood depth, maximum velocity, and maximum travel time) have uncertainty concerning simulation results due to various values according to flood scenario and topographical condition. These kind of ambiguity of indices can cause uncertainty of flood hazard map. To consider ambiguity and uncertainty of criterion, fuzzy logic is introduced which is able to handle ambiguous expression. In this paper, we made Flood Hazard Map according to levee breach overflow using the Fuzzy TOPSIS Technique. We confirmed the areas where the highest grade of hazard was recorded through the drawn-up integrated flood hazard map, and then produced flood hazard map can be compared them with those indicated in the existing flood risk maps. Also, we expect that if we can apply the flood hazard map methodology suggested in this paper even to manufacturing the current flood risk maps, we will be able to make a new flood hazard map to even consider the priorities for hazard areas, including more varied and important information than ever before. Keywords : Flood hazard map; levee break analysis; 2D analysis; MCDM; Fuzzy TOPSIS Acknowlegement This research was supported by a grant (17AWMP-B079625-04) from Water Management Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government.
12 CFR 572.6 - Required use of standard flood hazard determination form.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 12 Banks and Banking 5 2010-01-01 2010-01-01 false Required use of standard flood hazard... TREASURY LOANS IN AREAS HAVING SPECIAL FLOOD HAZARDS § 572.6 Required use of standard flood hazard determination form. (a) Use of form. A savings association shall use the standard flood hazard determination...
78 FR 14584 - Proposed Flood Hazard Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-06
...; Internal Agency Docket No. FEMA-B-1296] Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard..., Special Flood Hazard Area (SFHA) boundary or zone designation, or regulatory floodway on the Flood...
Sensitive Land Use Planning, Malinao, Albay, Philippines
NASA Astrophysics Data System (ADS)
Abante, A. M. R.; Abante, C. G. R.
2018-02-01
This paper reviews the hazard zone as defined in the zoning ordinance of the Local Government of Malinao. The zonification was completed in accordance with the approved Comprehensive Land Use Plan stipulating the allowed use and regulations of zones to control future land development. This paper brings together an examination of human exposure as well as spatial situations and conditions of their houses within the hazard zone playing with flood risks. The purposive selection sample households were based on characteristics of people residing within it, in which the site concurs with the flood forecasted frequent every 5, 25 and 100 years turned to be significant to better understanding ‘risks computing’ were variables retrieved from the intersecting spaces fused to get the complex interrelationship of the sets of flood hazard, vulnerability and exposure of inhabitants and their place of residence weighted against capability of individual family or household to withstand effects of flooding. The Risk Quotient Object and Field Bases Model were tested in specific location in Malinao. The sample households’ individual risk location quotient varies from high to a very high risk distributions ranging from 8 to 125 numerical values. As Malinao stays on to experience flood hazards, changing climate and other natural calamities, the need to understand the six elements of disaster risk computing at household level is becoming crucial in risk reduction meeting the targets and priorities for action as specified in the Sendai Framework.
River flood risk in Jakarta under scenarios of future change
NASA Astrophysics Data System (ADS)
Budiyono, Yus; Aerts, Jeroen C. J. H.; Tollenaar, Daniel; Ward, Philip J.
2016-03-01
Given the increasing impacts of flooding in Jakarta, methods for assessing current and future flood risk are required. In this paper, we use the Damagescanner-Jakarta risk model to project changes in future river flood risk under scenarios of climate change, land subsidence, and land use change. Damagescanner-Jakarta is a simple flood risk model that estimates flood risk in terms of annual expected damage, based on input maps of flood hazard, exposure, and vulnerability. We estimate baseline flood risk at USD 186 million p.a. Combining all future scenarios, we simulate a median increase in risk of +180 % by 2030. The single driver with the largest contribution to that increase is land subsidence (+126 %). We simulated the impacts of climate change by combining two scenarios of sea level rise with simulations of changes in 1-day extreme precipitation totals from five global climate models (GCMs) forced by the four Representative Concentration Pathways (RCPs). The results are highly uncertain; the median change in risk due to climate change alone by 2030 is a decrease by -46 %, but we simulate an increase in risk under 12 of the 40 GCM-RCP-sea level rise combinations. Hence, we developed probabilistic risk scenarios to account for this uncertainty. If land use change by 2030 takes places according to the official Jakarta Spatial Plan 2030, risk could be reduced by 12 %. However, if land use change in the future continues at the same rate as the last 30 years, large increases in flood risk will take place. Finally, we discuss the relevance of the results for flood risk management in Jakarta.
Flood on Big Fossil Creek at Haltom City near Fort Worth, Texas, in 1962
Montgomery, John H.; Ruggles, Frederick H.; Patterson, James Lee
1965-01-01
The approximate area inundated near Fort Worth, Texas, by Big Fossil Creek, during the flood of September 7, 1962, is shown on a topographic map to record the flood hazard in graphic form. Big Fossil Creek, which drains an area of 74.7 square miles, flows generally southeastward along the northeast edge of Fort Worth through Richland Hills and Haltom City, into West Fork Trinity River. The flood of September 7, 1962, the greatest in Richland Hills since at least 1900 was the result of a high rate of discharge from the area upstream from the confluence of Big Fossil Creek and Whites Branch. Greater floods are possible, but no attempt has been made to show their probable overflow limits. Future protective works may reduce the frequency of flooding in the area but will not necessarily eliminate flooding. Changes in culture such as new highways and bridges and changes in land use may influence the inundation pattern of future floods. Mapping of the West Fork Trinity River flood was beyond the scope of the Big Fossil Creek study, and is not shown.
Radar image and data fusion for natural hazards characterisation
Lu, Zhong; Dzurisin, Daniel; Jung, Hyung-Sup; Zhang, Jixian; Zhang, Yonghong
2010-01-01
Fusion of synthetic aperture radar (SAR) images through interferometric, polarimetric and tomographic processing provides an all - weather imaging capability to characterise and monitor various natural hazards. This article outlines interferometric synthetic aperture radar (InSAR) processing and products and their utility for natural hazards characterisation, provides an overview of the techniques and applications related to fusion of SAR/InSAR images with optical and other images and highlights the emerging SAR fusion technologies. In addition to providing precise land - surface digital elevation maps, SAR - derived imaging products can map millimetre - scale elevation changes driven by volcanic, seismic and hydrogeologic processes, by landslides and wildfires and other natural hazards. With products derived from the fusion of SAR and other images, scientists can monitor the progress of flooding, estimate water storage changes in wetlands for improved hydrological modelling predictions and assessments of future flood impacts and map vegetation structure on a global scale and monitor its changes due to such processes as fire, volcanic eruption and deforestation. With the availability of SAR images in near real - time from multiple satellites in the near future, the fusion of SAR images with other images and data is playing an increasingly important role in understanding and forecasting natural hazards.
12 CFR 339.6 - Required use of standard flood hazard determination form.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 12 Banks and Banking 4 2010-01-01 2010-01-01 false Required use of standard flood hazard... STATEMENTS OF GENERAL POLICY LOANS IN AREAS HAVING SPECIAL FLOOD HAZARDS § 339.6 Required use of standard flood hazard determination form. (a) Use of form. A bank shall use the standard flood hazard...
12 CFR 760.6 - Required use of standard flood hazard determination form.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 12 Banks and Banking 6 2010-01-01 2010-01-01 false Required use of standard flood hazard... AFFECTING CREDIT UNIONS LOANS IN AREAS HAVING SPECIAL FLOOD HAZARDS § 760.6 Required use of standard flood hazard determination form. (a) Use of form. A credit union shall use the standard flood hazard...
Global coastal flood hazard mapping
NASA Astrophysics Data System (ADS)
Eilander, Dirk; Winsemius, Hessel; Ward, Philip; Diaz Loaiza, Andres; Haag, Arjen; Verlaan, Martin; Luo, Tianyi
2017-04-01
Over 10% of the world's population lives in low-lying coastal areas (up to 10m elevation). Many of these areas are prone to flooding from tropical storm surges or extra-tropical high sea levels in combination with high tides. A 1 in 100 year extreme sea level is estimated to expose 270 million people and 13 trillion USD worth of assets to flooding. Coastal flood risk is expected to increase due to drivers such as ground subsidence, intensification of tropical and extra-tropical storms, sea level rise and socio-economic development. For better understanding of the hazard and drivers to global coastal flood risk, a globally consistent analysis of coastal flooding is required. In this contribution we present a comprehensive global coastal flood hazard mapping study. Coastal flooding is estimated using a modular inundation routine, based on a vegetation corrected SRTM elevation model and forced by extreme sea levels. Per tile, either a simple GIS inundation routine or a hydrodynamic model can be selected. The GIS inundation method projects extreme sea levels to land, taking into account physical obstructions and dampening of the surge level land inwards. For coastlines with steep slopes or where local dynamics play a minor role in flood behavior, this fast GIS method can be applied. Extreme sea levels are derived from the Global Tide and Surge Reanalysis (GTSR) dataset. Future sea level projections are based on probabilistic sea level rise for RCP 4.5 and RCP 8.5 scenarios. The approach is validated against observed flood extents from ground and satellite observations. The results will be made available through the online Aqueduct Global Flood Risk Analyzer of the World Resources Institute.
An analysis of European riverine flood risk and adaptation measures under projected climate change
NASA Astrophysics Data System (ADS)
Bouwer, Laurens; Burzel, Andreas; Holz, Friederike; Winsemius, Hessel; de Bruijn, Karind
2015-04-01
There is increasing need to assess costs and benefits of adaptation at scales beyond the river basin. In Europe, such estimates are required at the European scale in order to set priorities for action and financing, for instance in the context of the EU Adaptation Strategy. The goal of this work as part of the FP7 BASE project is to develop a flood impact model that can be applied at Pan-European scale and that is able to project changes in flood risk due to climate change and socio-economic developments, and costs of adaptation. For this research, we build upon the global flood hazard estimation method developed by Winsemius et al. (Hydrology and Earth System Sciences, 2013), that produces flood inundation maps at different return period, for present day (EU WATCH) and future climate (IPCC scenarios RCP4.5 and 8.5, for five climate models). These maps are used for the assessment of flood impacts. We developed and tested a model for assessing direct economic flood damages by using large scale land use maps. We characterise vulnerable land use functions, in particular residential, commercial, industrial, infrastructure and agriculture, using depth-damage relationships. Furthermore, we apply up to NUTS3 level information on Gross Domestic Product, which is used as a proxy for relative differences in maximum damage values between different areas. Next, we test two adaptation measures, by adjusting flood protection levels and adjusting damage functions. The results show the projected changes in flood risk in the future. For example, on NUTS2 level, flood risk increases in some regions up to 179% (between the baseline scenario 1960-1999 and time slice 2010-2049). On country level there are increases up to 60% for selected climate models. The conference presentation will show the most relevant improvements in damage modelling on the continental scale, and results of the analysis of adaptation measures. The results will be critically discussed under the aspect of major uncertainties in both future flood hazards as well as damage costs and adaptation effects and costs.
Luh, Jeanne; Royster, Sarah; Sebastian, Daniel; Ojomo, Edema; Bartram, Jamie
2017-08-15
We conducted an expert assessment to obtain expert opinions on the relative global resilience of ten drinking water and five sanitation technologies to the following six climate-related hazards: drought, decreased inter-annual precipitation, flood, superstorm flood, wind damage, and saline intrusion. Resilience scores ranged from 1.7 to 9.9 out of a maximum resilience of 10, with high scores corresponding to high resilience. We find that for some climate-related hazards, such as drought, technologies demonstrated a large range in resilience, indicating that the choice of water and sanitation technologies is important for areas prone to drought. On the other hand, the range of resilience scores for superstorm flooding was much smaller, particularly for sanitation technologies, suggesting that the choice of technology is less of a determinant of functionality for superstorm flooding as compared to other climate-related hazards. For drinking water technologies, only treated piped utility-managed systems that use surface water had resilience scores >6.0 for all hazards, while protected dug wells were found to be one of the least resilient technologies, consistently scoring <5.0 for all hazards except wind damage. In general, sanitation technologies were found to have low to medium resilience, suggesting that sanitation systems need to be adapted to ensure functionality during and after climate-related hazards. The results of the study can be used to help communities decide which technologies are best suited for the climate-related challenges they face and help in future adaptation planning. Copyright © 2017 Elsevier B.V. All rights reserved.
Flood Protection Decision Making Within a Coupled Human and Natural System
NASA Astrophysics Data System (ADS)
O'Donnell, Greg; O'Connell, Enda
2013-04-01
Due to the perceived threat from climate change, prediction under changing climatic and hydrological conditions has become a dominant theme of hydrological research. Much of this research has been climate model-centric, in which GCM/RCM climate projections have been used to drive hydrological system models to explore potential impacts that should inform adaptation decision-making. However, adaptation fundamentally involves how humans may respond to increasing flood and drought hazards by changing their strategies, activities and behaviours which are coupled in complex ways to the natural systems within which they live and work. Humans are major agents of change in hydrological systems, and representing human activities and behaviours in coupled human and natural hydrological system models is needed to gain insight into the complex interactions that take place, and to inform adaptation decision-making. Governments and their agencies are under pressure to make proactive investments to protect people living in floodplains from the perceived increasing flood hazard. However, adopting this as a universal strategy everywhere is not affordable, particularly in times of economic stringency and given uncertainty about future climatic conditions. It has been suggested that the assumption of stationarity, which has traditionally been invoked in making hydrological risk assessments, is no longer tenable. However, before the assumption of hydrologic nonstationarity is accepted, the ability to cope with the uncertain impacts of global warming on water management via the operational assumption of hydrologic stationarity should be carefully examined. Much can be learned by focussing on natural climate variability and its inherent changes in assessing alternative adaptation strategies. A stationary stochastic multisite flood hazard model has been developed that can exhibit increasing variability/persistence in annual maximum floods, starting with the traditional assumption of independence. This has been coupled to an agent based model of how various stakeholders interact in determining where and when flood protection investments are made in a hypothetical region with multiple sites at risk from flood hazard. Monte Carlo simulation is used to explore how government agencies with finite resources might best invest in flood protection infrastructure in a highly variable climate with a high degree of future uncertainty. Insight is provided into whether proactive or reactive strategies are to be preferred in an increasingly variable climate.
44 CFR 65.16 - Standard Flood Hazard Determination Form and Instructions.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Standard Flood Hazard... MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IDENTIFICATION AND MAPPING OF SPECIAL HAZARD AREAS § 65.16 Standard Flood Hazard Determination...
NASA Astrophysics Data System (ADS)
Shkolnik, Igor; Pavlova, Tatiana; Efimov, Sergey; Zhuravlev, Sergey
2018-01-01
Climate change simulation based on 30-member ensemble of Voeikov Main Geophysical Observatory RCM (resolution 25 km) for northern Eurasia is used to drive hydrological model CaMa-Flood. Using this modeling framework, we evaluate the uncertainties in the future projection of the peak river discharge and flood hazard by 2050-2059 relative to 1990-1999 under IPCC RCP8.5 scenario. Large ensemble size, along with reasonably high modeling resolution, allows one to efficiently sample natural climate variability and increase our ability to predict future changes in the hydrological extremes. It has been shown that the annual maximum river discharge can almost double by the mid-XXI century in the outlets of major Siberian rivers. In the western regions, there is a weak signal in the river discharge and flood hazard, hardly discernible above climate variability. Annual maximum flood area is projected to increase across Siberia mostly by 2-5% relative to the baseline period. A contribution of natural climate variability at different temporal scales to the uncertainty of ensemble prediction is discussed. The analysis shows that there expected considerable changes in the extreme river discharge probability at locations of the key hydropower facilities. This suggests that the extensive impact studies are required to develop recommendations for maintaining regional energy security.
Future heat-waves, droughts and floods in 571 European cities
NASA Astrophysics Data System (ADS)
Guerreiro, Selma B.; Dawson, Richard J.; Kilsby, Chris; Lewis, Elizabeth; Ford, Alistair
2018-03-01
Cities are particularly vulnerable to climate risks due to their agglomeration of people, buildings and infrastructure. Differences in methodology, hazards considered, and climate models used limit the utility and comparability of climate studies on individual cities. Here we assess, for the first time, future changes in flood, heat-waves (HW), and drought impacts for all 571 European cities in the Urban Audit database using a consistent approach. To capture the full range of uncertainties in natural variability and climate models, we use all climate model runs from the Coupled Model Inter-comparison Project Phase 5 (CMIP5) for the RCP8.5 emissions scenario to calculate Low, Medium and High Impact scenarios, which correspond to the 10th, 50th and 90th percentiles of each hazard for each city. We find that HW days increase across all cities, but especially in southern Europe, whilst the greatest HW temperature increases are expected in central European cities. For the low impact scenario, drought conditions intensify in southern European cities while river flooding worsens in northern European cities. However, the high impact scenario projects that most European cities will see increases in both drought and river flood risks. Over 100 cities are particularly vulnerable to two or more climate impacts. Moreover, the magnitude of impacts exceeds those previously reported highlighting the substantial challenge cities face to manage future climate risks.
Flood Hazards: Communicating Hydrology and Complexity to the Public
NASA Astrophysics Data System (ADS)
Holmes, R. R.; Blanchard, S. F.; Mason, R. R.
2010-12-01
Floods have a major impact on society and the environment. Since 1952, approximately 1,233 of 1,931 (64%) Federal disaster declarations were due directly to flooding, with an additional 297 due to hurricanes which had associated flooding. Although the overall average annual number of deaths due to flooding has decreased in the United States, the average annual flood damage is rising. According to the Munich Reinsurance Company in their publication “Schadenspiegel 3/2005”, during 1990s the world experienced as much as $500 billion in economic losses due to floods, highlighting the serious need for continued emphasis on flood-loss prevention measures. Flood-loss prevention has two major elements: mitigation (including structural flood-control measures and land-use planning and regulation) and risk awareness. Of the two, increasing risk awareness likely offers the most potential for protecting lives over the near-term and long-term sustainability in the coming years. Flood-risk awareness and risk-aware behavior is dependent on communication, involving both prescriptive and educational measures. Prescriptive measures (for example, flood warnings and stormwater ordinances) are and have been effective, but there is room for improvement. New communications technologies, particularly social media utilizing mobile, smart phones and text devices, for example, could play a significant role in increasing public awareness of long-term risk and near-term flood conditions. The U.S. Geological Survey (USGS), for example, the Federal agency that monitors the Nation’s rivers, recently released a new service that can better connect the to the public to information about flood hazards. The new service, WaterAlert (URL: http://water.usgs.gov/wateralert/), allows users to set flood notification thresholds of their own choosing for any USGS real-time streamgage. The system then sends emails or text messages to subscribers whenever the threshold conditions are met, as often as the user specifies. In the future, with new GPS enabled cell-phones, notifications could be sent to users based on their proximity to flood hazards. Educational measures also should communicate the hydrologic underpinnings and uncertainties of the complex science of flood hydrology in an understandable manner to a non-technical public. Education can be especially beneficial and important for those in a policy-making role or those who find themselves in an area of potential flood hazards. Case studies, such as the fatal June 11, 2010 flash flood on the Little Missouri River in Arkansas, if presented in a way that the public will absorb, powerfully illustrate the importance of flood hazard awareness and the cost of living unaware. Additionally, such crucial points as the connection between the accuracy of flood-probability estimates and the density (and longevity) of the basic data sources (such as the USGS streamgage or the National Weather Service raingage networks) and the residual risks that both communities and individuals face have to continually be stressed to the general public and policy makers alike. In short, success in flood hazards communication (both prescriptive warnings and education) requires a fusion of the social sciences and hydrology.
NASA Astrophysics Data System (ADS)
Couasnon, Anaïs; Sebastian, Antonia; Morales-Nápoles, Oswaldo
2017-04-01
Recent research has highlighted the increased risk of compound flooding in the U.S. In coastal catchments, an elevated downstream water level, resulting from high tide and/or storm surge, impedes drainage creating a backwater effect that may exacerbate flooding in the riverine environment. Catchments exposed to tropical cyclone activity along the Gulf of Mexico and Atlantic coasts are particularly vulnerable. However, conventional flood hazard models focus mainly on precipitation-induced flooding and few studies accurately represent the hazard associated with the interaction between discharge and elevated downstream water levels. This study presents a method to derive stochastic boundary conditions for a coastal watershed. Mean daily discharge and maximum daily residual water levels are used to build a non-parametric Bayesian network (BN) based on copulas. Stochastic boundary conditions for the watershed are extracted from the BN and input into a 1-D process-based hydraulic model to obtain water surface elevations in the main channel of the catchment. The method is applied to a section of the Houston Ship Channel (Buffalo Bayou) in Southeast Texas. Data at six stream gages and two tidal stations are used to build the BN and 100-year joint return period events are modeled. We find that the dependence relationship between the daily residual water level and the mean daily discharge in the catchment can be represented by a Gumbel copula (Spearman's rank correlation coefficient of 0.31) and that they result in higher water levels in the mid- to upstream reaches of the watershed than when modeled independently. This indicates that conventional (deterministic) methods may underestimate the flood hazard associated with compound flooding in the riverine environment and that such interactions should not be neglected in future coastal flood hazard studies.
NASA Astrophysics Data System (ADS)
Hoch, J. M.; Bierkens, M. F.; Van Beek, R.; Winsemius, H.; Haag, A.
2015-12-01
Understanding the dynamics of fluvial floods is paramount to accurate flood hazard and risk modeling. Currently, economic losses due to flooding constitute about one third of all damage resulting from natural hazards. Given future projections of climate change, the anticipated increase in the World's population and the associated implications, sound knowledge of flood hazard and related risk is crucial. Fluvial floods are cross-border phenomena that need to be addressed accordingly. Yet, only few studies model floods at the large-scale which is preferable to tiling the output of small-scale models. Most models cannot realistically model flood wave propagation due to a lack of either detailed channel and floodplain geometry or the absence of hydrologic processes. This study aims to develop a large-scale modeling tool that accounts for both hydrologic and hydrodynamic processes, to find and understand possible sources of errors and improvements and to assess how the added hydrodynamics affect flood wave propagation. Flood wave propagation is simulated by DELFT3D-FM (FM), a hydrodynamic model using a flexible mesh to schematize the study area. It is coupled to PCR-GLOBWB (PCR), a macro-scale hydrological model, that has its own simpler 1D routing scheme (DynRout) which has already been used for global inundation modeling and flood risk assessments (GLOFRIS; Winsemius et al., 2013). A number of model set-ups are compared and benchmarked for the simulation period 1986-1996: (0) PCR with DynRout; (1) using a FM 2D flexible mesh forced with PCR output and (2) as in (1) but discriminating between 1D channels and 2D floodplains, and, for comparison, (3) and (4) the same set-ups as (1) and (2) but forced with observed GRDC discharge values. Outputs are subsequently validated against observed GRDC data at Óbidos and flood extent maps from the Dartmouth Flood Observatory. The present research constitutes a first step into a globally applicable approach to fully couple hydrologic with hydrodynamic computations while discriminating between 1D-channels and 2D-floodplains. Such a fully-fledged set-up would be able to provide higher-order flood hazard information, e.g. time to flooding and flood duration, ultimately leading to improved flood risk assessment and management at the large scale.
NASA Astrophysics Data System (ADS)
Castleton, J.; Erickson, B.; Bowman, S. D.; Unger, C. D.
2014-12-01
The Utah Geological Survey's (UGS) Geologic Hazards Program has partnered with the U.S. Army Corps of Engineers to create geologically derived web-based flood hazard maps. Flooding in Utah communities has historically been one of the most damaging geologic hazards. The most serious floods in Utah have generally occurred in the Great Salt Lake basin, particularly in the Weber River drainage on the western slopes of the Wasatch Range, in areas of high population density. With a growing population of 2.9 million, the state of Utah is motivated to raise awareness about the potential for flooding. The process of increasing community resiliency to flooding begins with identification and characterization of flood hazards. Many small communities in areas experiencing rapid growth have not been mapped completely by the Federal Emergency Management Agency (FEMA) Flood Insurance Rate Maps (FIRM). Existing FIRM maps typically only consider drainage areas that are greater than one square mile in determining flood zones and do not incorporate geologic data, such as the presence of young, geologically active alluvial fans that indicate a high potential for debris flows and sheet flooding. Our new flood hazard mapping combines and expands on FEMA data by incorporating mapping derived from 1:24,000-scale UGS geologic maps, LiDAR data, digital elevation models, and historical aerial photography. Our flood hazard maps are intended to supplement the FIRM maps to provide local governments and the public with additional flood hazard information so they may make informed decisions, ultimately reducing the risk to life and property from flooding hazards. Flooding information must be widely available and easily accessed. One of the most effective ways to inform the public is through web-based maps. Web-based flood hazard maps will not only supply the public with the flood information they need, but also provides a platform to add additional geologic hazards to an easily accessible format.
Going beyond the flood insurance rate map: insights from flood hazard map co-production
NASA Astrophysics Data System (ADS)
Luke, Adam; Sanders, Brett F.; Goodrich, Kristen A.; Feldman, David L.; Boudreau, Danielle; Eguiarte, Ana; Serrano, Kimberly; Reyes, Abigail; Schubert, Jochen E.; AghaKouchak, Amir; Basolo, Victoria; Matthew, Richard A.
2018-04-01
Flood hazard mapping in the United States (US) is deeply tied to the National Flood Insurance Program (NFIP). Consequently, publicly available flood maps provide essential information for insurance purposes, but they do not necessarily provide relevant information for non-insurance aspects of flood risk management (FRM) such as public education and emergency planning. Recent calls for flood hazard maps that support a wider variety of FRM tasks highlight the need to deepen our understanding about the factors that make flood maps useful and understandable for local end users. In this study, social scientists and engineers explore opportunities for improving the utility and relevance of flood hazard maps through the co-production of maps responsive to end users' FRM needs. Specifically, two-dimensional flood modeling produced a set of baseline hazard maps for stakeholders of the Tijuana River valley, US, and Los Laureles Canyon in Tijuana, Mexico. Focus groups with natural resource managers, city planners, emergency managers, academia, non-profit, and community leaders refined the baseline hazard maps by triggering additional modeling scenarios and map revisions. Several important end user preferences emerged, such as (1) legends that frame flood intensity both qualitatively and quantitatively, and (2) flood scenario descriptions that report flood magnitude in terms of rainfall, streamflow, and its relation to an historic event. Regarding desired hazard map content, end users' requests revealed general consistency with mapping needs reported in European studies and guidelines published in Australia. However, requested map content that is not commonly produced included (1) standing water depths following the flood, (2) the erosive potential of flowing water, and (3) pluvial flood hazards, or flooding caused directly by rainfall. We conclude that the relevance and utility of commonly produced flood hazard maps can be most improved by illustrating pluvial flood hazards and by using concrete reference points to describe flooding scenarios rather than exceedance probabilities or frequencies.
12 CFR 614.4940 - Required use of standard flood hazard determination form.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 12 Banks and Banking 6 2010-01-01 2010-01-01 false Required use of standard flood hazard... LOAN POLICIES AND OPERATIONS Flood Insurance Requirements § 614.4940 Required use of standard flood hazard determination form. (a) Use of form. System institutions must use the standard flood hazard...
NASA Astrophysics Data System (ADS)
Dullo, T. T.; Gangrade, S.; Marshall, R.; Islam, S. R.; Ghafoor, S. K.; Kao, S. C.; Kalyanapu, A. J.
2017-12-01
The damage and cost of flooding are continuously increasing due to climate change and variability, which compels the development and advance of global flood hazard models. However, due to computational expensiveness, evaluation of large-scale and high-resolution flood regime remains a challenge. The objective of this research is to use a coupled modeling framework that consists of a dynamically downscaled suite of eleven Coupled Model Intercomparison Project Phase 5 (CMIP5) climate models, a distributed hydrologic model called DHSVM, and a computational-efficient 2-dimensional hydraulic model called Flood2D-GPU to study the impacts of climate change on flood regime in the Alabama-Coosa-Tallapoosa (ACT) River Basin. Downscaled meteorologic forcings for 40 years in the historical period (1966-2005) and 40 years in the future period (2011-2050) were used as inputs to drive the calibrated DHSVM to generate annual maximum flood hydrographs. These flood hydrographs along with 30-m resolution digital elevation and estimated surface roughness were then used by Flood2D-GPU to estimate high-resolution flood depth, velocities, duration, and regime. Preliminary results for the Conasauga river basin (an upper subbasin within ACT) indicate that seven of the eleven climate projections show an average increase of 25 km2 in flooded area (between historic and future projections). Future work will focus on illustrating the effects of climate change on flood duration and area for the entire ACT basin.
NASA Astrophysics Data System (ADS)
Garner, A. J.; Mann, M. E.; Emanuel, K.; Kopp, R. E.; Lin, N.; Alley, R. B.; Horton, B.; Deconto, R. M.; Donnelly, J. P.; Pollard, D.
2017-12-01
The flood hazard in New York City depends on both storm surges and rising sea levels. We combine modeled storm surges with probabilistic sea-level rise projections to assess future coastal inundation in New York City from the pre-industrial through 2300 CE. The storm surges are derived from large sets of synthetic tropical cyclones, downscaled from RCP 8.5 runs of three CMIP5 models. The sea-level rise projections include the collapse of the Antarctic ice sheet to assess future coastal inundation. CMIP5 models indicate that there will be minimal change in storm-surge heights from 2010 to 2100 or 2300, because the predicted strengthening of the strongest storms will be compensated by storm tracks moving offshore at the latitude of New York City. However, projected sea-level rise causes overall flood heights associated with tropical cyclones in New York City in coming centuries to increase greatly compared to pre-industrial or modern flood heights. We find that the 1-in-500-year flood event increases from 3.4 m above mean tidal level during 1970-2005 to 3.9 - 4.8 m above mean tidal level by 2080-2100, and ranges from 2.8 - 13.0 m above mean tidal level by 2280-2300. Further, we find that the return period of a 2.25 m flood has decreased from 500 years prior to 1800 to 25 years during 1970-2005, and further decreases to 5 years by 2030 - 2045 in 95% of our simulations.
44 CFR 64.3 - Flood Insurance Maps.
Code of Federal Regulations, 2011 CFR
2011-10-01
... flood hazard that results from the decertification of a previously accredited flood protection system that is determined to be in the process of being restored to provide base flood protection V Area of... tidal floods (coastal high hazard area) V1-30, VE Area of special flood hazards, with water surface...
Household Adaptive Behavior in Response to Coastal Flood Risk and External Stressors
NASA Astrophysics Data System (ADS)
Buchanan, M. K.
2017-12-01
Approximately forty percent of the world's population sits along ocean coastlines. This urban exposure to flooding is increasing due to population growth and sea level rise resulting from anthropogenic climate change. Recent research improving the characterization of physical hazards from climate change on the coastal zone has helped cities assess their risks. This work includes improving our understanding of the rate and magnitude of sea level rise, the change in distribution of tropical cyclones, and the resulting frequency and severity of flooding on global to local scales. However, the ability of settlements to cope or thrive under changing climate conditions will likely depend on the cooperation and initiative of households, regardless of any governmental efforts to reduce risk. Understanding individuals' likely responses to changing coastal hazards is thus critical for decision-makers to plan for a sustainable future. Individuals may be motivated not only by information regarding emerging flood hazards, but also by cognitive and contextual factors. For governments to develop effective adaptation policies, it is important to understand what factors tend to motivate household adaptation. We apply principles from economics and psychology to investigate how people respond to various existing adaptation options and policies, using a household survey with experiments in New York City neighborhoods affected by Hurricane Sandy. We investigate a comprehensive set of factors that may influence household adaptive behavior. A striking 64% of homeowners and 83% of renters intend to relocate among different plausible future conditions, such as frequent nuisance flooding and the adaptation of peers. This amount is substantial considering the political sensitivity of `retreat' and the lack of regional and federal preparation for large-scale climate-induced migration.
NASA Astrophysics Data System (ADS)
Schaub, Y.; Huggel, C.; Serraino, M.; Haeberli, W.
2012-04-01
The changes in high-mountain environments are increasingly fast and complex. GIS-based models of the Swiss Alps show that numerous topographic overdeepenings are likely to appear on progressively exposed glacier beds, which are considered as potential sites of future lake formation. In many cases these newly forming lakes will be situated in an over-steepened and destabilized high-mountain environment and are, therefore, prone to impact waves from landslides. The risk of glacier lake outburst floods, endangering infrastructure, residential areas and persons further downvalley, is increasing with further lake formation and glacier recession. This risk may persist for many decades if not centuries. Future-oriented hazard assessments have to be integrative and must deal with all possible process chains. Reference studies and methodologies are still scarce, however. We present an approach to compare risks resulting from high-mountain lakes in the Swiss Alps amongst each other. Already existing lakes are thereby as much included in the analysis as future ones. The presented risk assessment approach integrates the envisaged high-mountain hazard process chain with present and future socio-economic conditions. Applying the concept of integral risk management, the hazard and damage potentials have to be analyzed. The areas that feature the topographic potential for rock/iceavalanches to reach a lake were analyzed regarding their susceptibility to slope failure including the factors slope inclination, permafrost occurrence, glacier recession and bedrock lithology. Together with the analysis of the lakes (volume and runout path of potential outburst floods), the hazard analysis of the process chain was completed. As an example, high long-term hazard potentials in the Swiss Alps have, for instance, to be expected in the area of the Great Aletsch glacier. A methodology for the assessment of the damage potential was elaborated and will be presented. In order to estimate the location of the largest damage potentials, driving forces of different spatial development scenarios for the Swiss Alps will be implemented in a land allocation model for the Swiss Alps. By bringing together hazard, exposure and vulnerability analyses, a risk assessment for the entire Swiss Alps regarding lake-outburst floods triggered by impacts of rock/ice avalanches can be conducted for today, the middle of the century and even beyond.
Garner, Andra J; Mann, Michael E; Emanuel, Kerry A; Kopp, Robert E; Lin, Ning; Alley, Richard B; Horton, Benjamin P; DeConto, Robert M; Donnelly, Jeffrey P; Pollard, David
2017-11-07
The flood hazard in New York City depends on both storm surges and rising sea levels. We combine modeled storm surges with probabilistic sea-level rise projections to assess future coastal inundation in New York City from the preindustrial era through 2300 CE. The storm surges are derived from large sets of synthetic tropical cyclones, downscaled from RCP8.5 simulations from three CMIP5 models. The sea-level rise projections account for potential partial collapse of the Antarctic ice sheet in assessing future coastal inundation. CMIP5 models indicate that there will be minimal change in storm-surge heights from 2010 to 2100 or 2300, because the predicted strengthening of the strongest storms will be compensated by storm tracks moving offshore at the latitude of New York City. However, projected sea-level rise causes overall flood heights associated with tropical cyclones in New York City in coming centuries to increase greatly compared with preindustrial or modern flood heights. For the various sea-level rise scenarios we consider, the 1-in-500-y flood event increases from 3.4 m above mean tidal level during 1970-2005 to 4.0-5.1 m above mean tidal level by 2080-2100 and ranges from 5.0-15.4 m above mean tidal level by 2280-2300. Further, we find that the return period of a 2.25-m flood has decreased from ∼500 y before 1800 to ∼25 y during 1970-2005 and further decreases to ∼5 y by 2030-2045 in 95% of our simulations. The 2.25-m flood height is permanently exceeded by 2280-2300 for scenarios that include Antarctica's potential partial collapse. Copyright © 2017 the Author(s). Published by PNAS.
Mann, Michael E.; Emanuel, Kerry A.; Alley, Richard B.; Horton, Benjamin P.; DeConto, Robert M.; Donnelly, Jeffrey P.; Pollard, David
2017-01-01
The flood hazard in New York City depends on both storm surges and rising sea levels. We combine modeled storm surges with probabilistic sea-level rise projections to assess future coastal inundation in New York City from the preindustrial era through 2300 CE. The storm surges are derived from large sets of synthetic tropical cyclones, downscaled from RCP8.5 simulations from three CMIP5 models. The sea-level rise projections account for potential partial collapse of the Antarctic ice sheet in assessing future coastal inundation. CMIP5 models indicate that there will be minimal change in storm-surge heights from 2010 to 2100 or 2300, because the predicted strengthening of the strongest storms will be compensated by storm tracks moving offshore at the latitude of New York City. However, projected sea-level rise causes overall flood heights associated with tropical cyclones in New York City in coming centuries to increase greatly compared with preindustrial or modern flood heights. For the various sea-level rise scenarios we consider, the 1-in-500-y flood event increases from 3.4 m above mean tidal level during 1970–2005 to 4.0–5.1 m above mean tidal level by 2080–2100 and ranges from 5.0–15.4 m above mean tidal level by 2280–2300. Further, we find that the return period of a 2.25-m flood has decreased from ∼500 y before 1800 to ∼25 y during 1970–2005 and further decreases to ∼5 y by 2030–2045 in 95% of our simulations. The 2.25-m flood height is permanently exceeded by 2280–2300 for scenarios that include Antarctica’s potential partial collapse. PMID:29078274
NASA Astrophysics Data System (ADS)
Garner, Andra J.; Mann, Michael E.; Emanuel, Kerry A.; Kopp, Robert E.; Lin, Ning; Alley, Richard B.; Horton, Benjamin P.; DeConto, Robert M.; Donnelly, Jeffrey P.; Pollard, David
2017-11-01
The flood hazard in New York City depends on both storm surges and rising sea levels. We combine modeled storm surges with probabilistic sea-level rise projections to assess future coastal inundation in New York City from the preindustrial era through 2300 CE. The storm surges are derived from large sets of synthetic tropical cyclones, downscaled from RCP8.5 simulations from three CMIP5 models. The sea-level rise projections account for potential partial collapse of the Antarctic ice sheet in assessing future coastal inundation. CMIP5 models indicate that there will be minimal change in storm-surge heights from 2010 to 2100 or 2300, because the predicted strengthening of the strongest storms will be compensated by storm tracks moving offshore at the latitude of New York City. However, projected sea-level rise causes overall flood heights associated with tropical cyclones in New York City in coming centuries to increase greatly compared with preindustrial or modern flood heights. For the various sea-level rise scenarios we consider, the 1-in-500-y flood event increases from 3.4 m above mean tidal level during 1970–2005 to 4.0–5.1 m above mean tidal level by 2080–2100 and ranges from 5.0–15.4 m above mean tidal level by 2280–2300. Further, we find that the return period of a 2.25-m flood has decreased from ˜500 y before 1800 to ˜25 y during 1970–2005 and further decreases to ˜5 y by 2030–2045 in 95% of our simulations. The 2.25-m flood height is permanently exceeded by 2280–2300 for scenarios that include Antarctica's potential partial collapse.
Shao, Wanyun; Xian, Siyuan; Lin, Ning; Kunreuther, Howard; Jackson, Nida; Goidel, Kirby
2017-01-01
Over the past several decades, the economic damage from flooding in the coastal areas has greatly increased due to rapid coastal development coupled with possible climate change impacts. One effective way to mitigate excessive economic losses from flooding is to purchase flood insurance. Only a minority of coastal residents however have taken this preventive measure. Using original survey data for all coastal counties of the United States Gulf Coast merged with contextual data, this study examines the effects of external influences and perceptions of flood-related risks on individuals' voluntary behaviors to purchase flood insurance. It is found that the estimated flood hazard conveyed through the U.S. Federal Emergency Management Agency's (FEMA's) flood maps, the intensities and consequences of past storms and flooding events, and perceived flood-related risks significantly affect individual's voluntary purchase of flood insurance. This behavior is also influenced by home ownership, trust in local government, education, and income. These findings have several important policy implications. First, FEMA's flood maps have been effective in conveying local flood risks to coastal residents, and correspondingly influencing their decisions to voluntarily seek flood insurance in the U.S. Gulf Coast. Flood maps therefore should be updated frequently to reflect timely and accurate information about flood hazards. Second, policy makers should design strategies to increase homeowners' trust in the local government, to better communicate flood risks with residents, to address the affordability issue for the low-income, and better inform less educated homeowners through various educational programs. Future studies should examine the voluntary flood insurance behavior across countries that are vulnerable to flooding. Copyright © 2016 Elsevier Ltd. All rights reserved.
24 CFR 3285.406 - Flood hazard areas.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Flood hazard areas. 3285.406... URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Anchorage Against Wind § 3285.406 Flood hazard areas. Refer to § 3285.302 for anchoring requirements in flood hazard areas. ...
An approach for the anticipatory and participatory management of current and future flood risks
NASA Astrophysics Data System (ADS)
Luther, J.
2012-04-01
Despite the fact that many measures to attenuate flood hazards and reduce vulnerabilities are being implemented, adverse effects of floods are ever-increasing in most parts of the world. On the one hand this holds true for economically and/or demographically growing regions. On the other hand this applies also to areas that face population shrinkage and economic problems. Such flood risks occur in human-environment systems and are subject to dynamics caused by a number of drivers such as climate change, land-use changes, and others. Many drivers evolve slowly over time or show time-lag effects and long return periods. Moreover, certain decisions may determine the control actions of the following decades. At present, current flood risks are mostly determined based on historic developments and the ex post analysis of flood events. Approaches that look at the future dynamics of both hazards and vulnerable elements ex ante in an integrated manner are rare. Instead, future hazard scenarios are often just overlaid with current socio-economic data, which poses a strong inconsistency. Usually the focus lies on rather short-term, specific or local problems. But many developments and measures show their effects only after long time periods and when considering the whole catchment area. This calls for a holistic and long-term view into the future and implies the challenge of dealing with many uncertainties due to the system's complexity. In order to anticipate and react to these developments, this contribution suggests developing a flexible, yet holistic approach to design, analyse and evaluate alternative futures of such human-environment systems. These futures follow a scenario understanding that considers both specific (current) factor constellations as well as consistent assumptions on autonomous developments (so-called development frameworks) and potentials for control (strategic alternatives) of the interacting entities that influence flood risk. Different scenario concepts and the application of respective techniques are thus reviewed and incorporated with regard to their suitability for an integrated management of current and future flood risks. In particular, "hybrid scenarios" with qualitative and quantitative components represented by nested models as well as assumptions across different spatiotemporal scales, respectively, are suggested for dealing with the uncertainties when assessing flood risks throughout a system's possible evolution. The (initially top-down developed) approach and its components will be briefly presented. These "scenario products" could later serve as a stimulus for discussions that bring together different actors and enhance - and eventually legitimise - the scenarios further in a "scenario process": (1) A first step is the conceptualisation of a flood risk system following the SPRC-model. Its physical geographical and anthropogenic factors may either be subject to autonomous trends, target-oriented control, or facultative system behaviour (e.g. dike breaches). With this concept, the integration of different processes and scales is aspired. (2) Secondly, it is conceptually shown how the risk cascade for present and future states of the flood risk system can be calculated based on coupled models ranging from climate change projections to a damage simulation models. (3) Thirdly, ways to develop socioeconomic storylines for the development frameworks and guiding principles for the strategic alternatives are presented and the futures are combined. This involves making plausible and consistent assumptions for many system factors and their drivers and finding ways to harmonise existing data for the same areas and time steps. (4) Fourthly, selected futures can be analysed and evaluated ex ante applying the coupled models of the second step to derive the emerging flood risks. The evaluation addresses, amongst other aspects, the identification of (i) the sensitivity of all scenarios against the current strategic alternative; (ii) the resulting risks when applying different strategic alternatives against one selected scenario; (iii) the efficiency (as cost-effectiveness) and robustness of one selected strategic alternative against the different scenarios; and (iv) the model uncertainty, for example caused by different climate downscaling methods. It is of growing importance to place any scenario/simulation results in a societal or even individual context and confront them with the perspectives of the people potentially affected. Only this yields a holistic picture and may lead to sustainable, comprehensible decisions. The approach is partly exemplified with research conducted in Saxony (Germany) and the Elbe River catchment in Central Europe and concentrates on river or plain floods, neglecting water quality issues.
NASA Astrophysics Data System (ADS)
Czajkowski, Jeffrey; Villarini, Gabriele; Montgomery, Marilyn; Michel-Kerjan, Erwann; Goska, Radoslaw
2017-02-01
The most recent decades have witnessed record breaking losses associated with U.S. landfalling tropical cyclones (TCs). Flood-related damages represent a large portion of these losses, and although storm surge is typically the main focus in the media and of warnings, much of the TC flood losses are instead freshwater-driven, often extending far inland from the landfall locations. Despite this actuality, knowledge of TC freshwater flood risk is still limited. Here we provide for the first time a comprehensive assessment of the TC freshwater flood risk from the full set of all significant flood events associated with U.S. landfalling TCs from 2001 to 2014. We find that the areas impacted by freshwater flooding are nearly equally divided between coastal and inland areas. We determine the statistical relationship between physical hazard and residential economic impact at a community level for the entire country. These results allow us to assess the potential future changes in TC freshwater flood risk due to changing climate pattern and urbanization in a more heavily populated U.S. Findings have important implications for flood risk management, insurance and resilience.
Czajkowski, Jeffrey; Villarini, Gabriele; Montgomery, Marilyn; Michel-Kerjan, Erwann; Goska, Radoslaw
2017-01-01
The most recent decades have witnessed record breaking losses associated with U.S. landfalling tropical cyclones (TCs). Flood-related damages represent a large portion of these losses, and although storm surge is typically the main focus in the media and of warnings, much of the TC flood losses are instead freshwater-driven, often extending far inland from the landfall locations. Despite this actuality, knowledge of TC freshwater flood risk is still limited. Here we provide for the first time a comprehensive assessment of the TC freshwater flood risk from the full set of all significant flood events associated with U.S. landfalling TCs from 2001 to 2014. We find that the areas impacted by freshwater flooding are nearly equally divided between coastal and inland areas. We determine the statistical relationship between physical hazard and residential economic impact at a community level for the entire country. These results allow us to assess the potential future changes in TC freshwater flood risk due to changing climate pattern and urbanization in a more heavily populated U.S. Findings have important implications for flood risk management, insurance and resilience. PMID:28148952
77 FR 18844 - Proposed Flood Hazard Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-28
...: Internal Agency Docket No. FEMA-B-1236] Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood depth...
78 FR 49277 - Proposed Flood Hazard Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-13
...: Internal Agency Docket No. FEMA-B-1345] Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood depth...
32 CFR 643.31 - Policy-Flood hazards.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 4 2010-07-01 2010-07-01 true Policy-Flood hazards. 643.31 Section 643.31... ESTATE Policy § 643.31 Policy—Flood hazards. Each Determination of Availability Report will include an evaluation of the flood hazards, if any, relative to the property involved in the proposed outgrant action...
34 CFR 75.611 - Avoidance of flood hazards.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 34 Education 1 2010-07-01 2010-07-01 false Avoidance of flood hazards. 75.611 Section 75.611... by a Grantee? Construction § 75.611 Avoidance of flood hazards. In planning the construction, a...) Evaluate flood hazards in connection with the construction; and (b) As far as practicable, avoid uneconomic...
NASA Astrophysics Data System (ADS)
Kontar, Y. Y.
2014-12-01
The increasing extent and vulnerability of technologically advanced society together with aspects of global climate change intensifies the frequency and severity of natural disasters. Every year, communities around the world face the devastating consequences of hazardous events, including loss of life, property and infrastructure damage, and environmental decline. Environmentally sound strategies have to be developed to minimize these consequences. However, hazard-prone areas differ geographically, climatically, and culturally. There is no a one-size-fits-all solution. Thus, it is crucial that future decision-makers not only know the conditions that make some natural Earth processes hazardous to people, but also understand how people perceive and adjust to potential natural hazards in their regions. In May 2013, an ice jam caused major flooding in Galena, a remote village in interior Alaska. Within two days, flooding destroyed nearly the entire region's infrastructure, and displaced over 400 residents. Almost a year later, a significant part of Galena's population was still evacuated in Fairbanks and other neighboring towns. The rebuilding holdup reflected the federal government's reluctance to spend millions of dollars an the area that may be destroyed again by the next flood. Massive floods inundated towns along the Yukon River before (e.g., Eagle in 2009 and Holycross in 1975), but people return to refurbish and again inhabit the same territories. Rivers have a significant importance to Alaskan rural communities. Not only do rivers provide food, drink, transportation, and in some cases arable land and irrigation, but they also carry cultural significance for the Native Alaskan people. The Galena case study provides a revealing example of challenges of communicating with and educating the public and policy makers about natural hazards.
The Atlas of Natural Hazards and Risks of Austria: first results for fluvial and pluvial floods
NASA Astrophysics Data System (ADS)
Mergili, Martin; Tader, Andreas; Glade, Thomas; Neuhold, Clemens; Stiefelmeyer, Heinz
2015-04-01
Incoherent societal adaptation to natural processes results in significant losses every year. A better knowledge of the spatial and temporal distribution of hazards and risks, and of particular hot spots in a given region or period, is essential for reducing adverse impacts. Commonly, different hazard and risk estimations are performed within individual approaches based on tailor-made concepts. This works well as long as specific cases are considered. The advantage of such a procedure is that each individual hazard and risk is addressed in the best possible manner. The drawback, however, consists in the fact that the results differ significantly in terms of quality and accuracy and therefore cannot be compared. Hence, there is a need to develop a strategy and concept which uses similar data sources of equivalent quality in order to adequately analyze the different natural hazards and risks at broader scales. The present study is aiming to develop such a platform. The project Risk:ATlas focuses on the design of an atlas visualizing the most relevant natural hazards and, in particular, possible consequences for the entire territory of Austria. Available as a web-based tool and as a printed atlas, it is seen as a key tool to improve the basis for risk reduction, risk adaptation and risk transfer. The atlas is founded on those data sets available for the entire territory of Austria at a consistent resolution and quality. A 1 m resolution DEM and the official cadastre and building register represent the core, further data sets are employed according to the requirements for each natural hazard and risk. In this contribution, the methodology and the preliminary results for fluvial and pluvial floods and their consequences to buildings for three selected test areas in different types of landscapes (rural, urban and mountainous) are presented. Flooding depths expected for annualities of 30, 100 and 300 are derived from existing data sets for fluvial floods and are computed using the model FloodArea for pluvial floods. Land cover parameters necessary for flood routing are deduced from the official cadastre. The values exposed to each flood scenario are quantified on the basis of objects. In this study, the focus is on buildings, thus the official building register is employed as a major data source. The same register is used to derive the vulnerability of each building with regard to floods. Combining exposed values and vulnerability, the risk for each building, expressed as the expected damage per unit of time, is derived. Furthermore, a methodology to automatically regionalize the object-based hazards, exposures, vulnerabilities and risks to any spatial unit desired is presented. This enables us (i) to adapt the web-based atlas to different zooming levels and to flexibly react to (ii) the needs of the users of the atlas and (iii) the availability of reference data for validation of the analyses. The next steps will include (1) extending the analyses for fluvial and pluvial floods to the entire territory of Austria, employing advanced computational techniques such as the use of a cluster; (2) deriving hazards, exposures, vulnerabilities and risks related to a variety of other hazardous processes as well as to chains and combinations of processes (multi-hazard); (3) considering the consequences of hazardous processes not only for buildings, but also for infrastructures and even humans; and (4) elaborating future scenarios, based on possible environmental (including climatic) and socio-economic changes.
78 FR 29760 - Final Flood Hazard Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-21
... accordance with section 110 of the Flood Disaster Protection Act of 1973, 42 U.S.C. 4104, and 44 CFR part 67...] Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final Notice. SUMMARY: Flood hazard determinations, which may include additions or modifications of Base Flood...
Nonstationary decision model for flood risk decision scaling
NASA Astrophysics Data System (ADS)
Spence, Caitlin M.; Brown, Casey M.
2016-11-01
Hydroclimatic stationarity is increasingly questioned as a default assumption in flood risk management (FRM), but successor methods are not yet established. Some potential successors depend on estimates of future flood quantiles, but methods for estimating future design storms are subject to high levels of uncertainty. Here we apply a Nonstationary Decision Model (NDM) to flood risk planning within the decision scaling framework. The NDM combines a nonstationary probability distribution of annual peak flow with optimal selection of flood management alternatives using robustness measures. The NDM incorporates structural and nonstructural FRM interventions and valuation of flows supporting ecosystem services to calculate expected cost of a given FRM strategy. A search for the minimum-cost strategy under incrementally varied representative scenarios extending across the plausible range of flood trend and value of the natural flow regime discovers candidate FRM strategies that are evaluated and compared through a decision scaling analysis (DSA). The DSA selects a management strategy that is optimal or close to optimal across the broadest range of scenarios or across the set of scenarios deemed most likely to occur according to estimates of future flood hazard. We illustrate the decision framework using a stylized example flood management decision based on the Iowa City flood management system, which has experienced recent unprecedented high flow episodes. The DSA indicates a preference for combining infrastructural and nonstructural adaptation measures to manage flood risk and makes clear that options-based approaches cannot be assumed to be "no" or "low regret."
Risk analysis based on hazards interactions
NASA Astrophysics Data System (ADS)
Rossi, Lauro; Rudari, Roberto; Trasforini, Eva; De Angeli, Silvia; Becker, Joost
2017-04-01
Despite an increasing need for open, transparent, and credible multi-hazard risk assessment methods, models, and tools, the availability of comprehensive risk information needed to inform disaster risk reduction is limited, and the level of interaction across hazards is not systematically analysed. Risk assessment methodologies for different hazards often produce risk metrics that are not comparable. Hazard interactions (consecutive occurrence two or more different events) are generally neglected, resulting in strongly underestimated risk assessment in the most exposed areas. This study presents cases of interaction between different hazards, showing how subsidence can affect coastal and river flood risk (Jakarta and Bandung, Indonesia) or how flood risk is modified after a seismic event (Italy). The analysis of well documented real study cases, based on a combination between Earth Observation and in-situ data, would serve as basis the formalisation of a multi-hazard methodology, identifying gaps and research frontiers. Multi-hazard risk analysis is performed through the RASOR platform (Rapid Analysis and Spatialisation Of Risk). A scenario-driven query system allow users to simulate future scenarios based on existing and assumed conditions, to compare with historical scenarios, and to model multi-hazard risk both before and during an event (www.rasor.eu).
NASA Astrophysics Data System (ADS)
Wobus, Cameron; Gutmann, Ethan; Jones, Russell; Rissing, Matthew; Mizukami, Naoki; Lorie, Mark; Mahoney, Hardee; Wood, Andrew W.; Mills, David; Martinich, Jeremy
2017-12-01
A growing body of work suggests that the extreme weather events that drive inland flooding are likely to increase in frequency and magnitude in a warming climate, thus potentially increasing flood damages in the future. We use hydrologic projections based on the Coupled Model Intercomparison Project Phase 5 (CMIP5) to estimate changes in the frequency of modeled 1 % annual exceedance probability (1 % AEP, or 100-year) flood events at 57 116 stream reaches across the contiguous United States (CONUS). We link these flood projections to a database of assets within mapped flood hazard zones to model changes in inland flooding damages throughout the CONUS over the remainder of the 21st century. Our model generates early 21st century flood damages that reasonably approximate the range of historical observations and trajectories of future damages that vary substantially depending on the greenhouse gas (GHG) emissions pathway. The difference in modeled flood damages between higher and lower emissions pathways approaches USD 4 billion per year by 2100 (in undiscounted 2014 dollars), suggesting that aggressive GHG emissions reductions could generate significant monetary benefits over the long term in terms of reduced flood damages. Although the downscaled hydrologic data we used have been applied to flood impacts studies elsewhere, this research expands on earlier work to quantify changes in flood risk by linking future flood exposure to assets and damages on a national scale. Our approach relies on a series of simplifications that could ultimately affect damage estimates (e.g., use of statistical downscaling, reliance on a nationwide hydrologic model, and linking damage estimates only to 1 % AEP floods). Although future work is needed to test the sensitivity of our results to these methodological choices, our results indicate that monetary damages from inland flooding could be significantly reduced through substantial GHG mitigation.
NASA Astrophysics Data System (ADS)
Wobus, C. W.; Gutmann, E. D.; Jones, R.; Rissing, M.; Mizukami, N.; Lorie, M.; Mahoney, H.; Wood, A.; Mills, D.; Martinich, J.
2017-12-01
A growing body of recent work suggests that the extreme weather events that drive inland flooding are likely to increase in frequency and magnitude in a warming climate, thus increasing monetary damages from flooding in the future. We use hydrologic projections based on the Coupled Model Intercomparison Project Phase 5 (CMIP5) to estimate changes in the frequency of modeled 1% annual exceedance probability flood events at 57,116 locations across the contiguous United States (CONUS). We link these flood projections to a database of assets within mapped flood hazard zones to model changes in inland flooding damages throughout the CONUS over the remainder of the 21st century, under two greenhouse gas (GHG) emissions scenarios. Our model generates early 21st century flood damages that reasonably approximate the range of historical observations, and trajectories of future damages that vary substantially depending on the GHG emissions pathway. The difference in modeled flood damages between higher and lower emissions pathways approaches $4 billion per year by 2100 (in undiscounted 2014 dollars), suggesting that aggressive GHG emissions reductions could generate significant monetary benefits over the long-term in terms of reduced flood risk. Although the downscaled hydrologic data we used have been applied to flood impacts studies elsewhere, this research expands on earlier work to quantify changes in flood risk by linking future flood exposure to assets and damages at a national scale. Our approach relies on a series of simplifications that could ultimately affect damage estimates (e.g., use of statistical downscaling, reliance on a nationwide hydrologic model, and linking damage estimates only to 1% AEP floods). Although future work is needed to test the sensitivity of our results to these methodological choices, our results suggest that monetary damages from inland flooding could be substantially reduced through more aggressive GHG mitigation policies.
A Collaborative Approach to Flood Early Warning Systems In South East Westmoreland, Jamaica
NASA Astrophysics Data System (ADS)
Hyman, T. A.
2015-12-01
Jamaica is prone to climatic, tectonic and technological hazards, with climatic hazards being the most prevalent. Specifically, flood events from cyclonic activity are the most common and widespread. Jamaica also experiences frequent flash floods, usually with insufficient lead time to enact efficient and targeted responses. On average, there is at least one disastrous flood every four years in Jamaica, and from 1800 to 2003 fifty-four major floods took place, causing 273 fatalities and economic losses of over US2 billion. Notably, the 1979 flood event in Western Jamaica caused 41 deaths and economic losses of US 27 Million, and which also has a 50 year return period. To date, no Flood Warning System exists in Western Jamaica and there are limited rain and river gauges. Additionally, responses to climatic events within South-East Westmoreland communities are ad hoc, with little coordination. Many of the hazard responses have been reactive and some stakeholders have delayed to their detriment.[1] The use of Flood Early Warning Systems (FEWS) to address such challenges is thus an option being considered by the community associations. The Rio Cobre FEWS in the parish of St. Catherine serves as a best practice example of community driven flood warning systems in Jamaica. This is because of the collaborative approach to flood risk, strengthened by institutional arrangements between the Meteorological Service, Water Resources Authority, Office of Disaster Management, Scientists and residents of the surrounding communities. The Community Associations in South-East Westmoreland are thus desirous of implementing a FEWS similar to the Rio Cobre FEWS. This paper thus aims to analyse the implementation process in terms of key stakeholders involved, governance approach and the socio-economic impact of a collaborative approach on infrastructure and livelihoods, in the case of future flooding events. [1] (especially in the case of Hurricane Ivan 2004)
NASA Astrophysics Data System (ADS)
Apel, H.; Trepat, O. M.; Hung, N. N.; Chinh, D. T.; Merz, B.; Dung, N. V.
2015-08-01
Many urban areas experience both fluvial and pluvial floods, because locations next to rivers are preferred settlement areas, and the predominantly sealed urban surface prevents infiltration and facilitates surface inundation. The latter problem is enhanced in cities with insufficient or non-existent sewer systems. While there are a number of approaches to analyse either fluvial or pluvial flood hazard, studies of combined fluvial and pluvial flood hazard are hardly available. Thus this study aims at the analysis of fluvial and pluvial flood hazard individually, but also at developing a method for the analysis of combined pluvial and fluvial flood hazard. This combined fluvial-pluvial flood hazard analysis is performed taking Can Tho city, the largest city in the Vietnamese part of the Mekong Delta, as example. In this tropical environment the annual monsoon triggered floods of the Mekong River can coincide with heavy local convective precipitation events causing both fluvial and pluvial flooding at the same time. Fluvial flood hazard was estimated with a copula based bivariate extreme value statistic for the gauge Kratie at the upper boundary of the Mekong Delta and a large-scale hydrodynamic model of the Mekong Delta. This provided the boundaries for 2-dimensional hydrodynamic inundation simulation for Can Tho city. Pluvial hazard was estimated by a peak-over-threshold frequency estimation based on local rain gauge data, and a stochastic rain storm generator. Inundation was simulated by a 2-dimensional hydrodynamic model implemented on a Graphical Processor Unit (GPU) for time-efficient flood propagation modelling. All hazards - fluvial, pluvial and combined - were accompanied by an uncertainty estimation considering the natural variability of the flood events. This resulted in probabilistic flood hazard maps showing the maximum inundation depths for a selected set of probabilities of occurrence, with maps showing the expectation (median) and the uncertainty by percentile maps. The results are critically discussed and ways for their usage in flood risk management are outlined.
NASA Astrophysics Data System (ADS)
Chang, N. B.
2016-12-01
Many countries concern about development and redevelopment efforts in urban regions to reduce the flood risk by considering hazards such as high-tide events, storm surge, flash floods, stormwater runoff, and impacts of sea level rise. Combining these present and future hazards with vulnerable characteristics found throughout coastal communities such as majority low-lying areas and increasing urban development, create scenarios for increasing exposure of flood hazard. As such, the most vulnerable areas require adaptation strategies and mitigation actions for flood hazard management. In addition, in the U.S., Numeric Nutrient Criteria (NNC) are a critical tool for protecting and restoring the designated uses of a waterbody with regard to nitrogen and phosphorus pollution. Strategies such as low impact development (LID) have been promoted in recent years as an alternative to traditional stormwater management and drainage to control both flooding and water quality impact. LID utilizes decentralized multifunctional site designs and incorporates on-site storm water management practices rather than conventional storm water management approaches that divert flow toward centralized facilities. How to integrate hydrologic and water quality models to achieve the decision support becomes a challenge. The Cross Bayou Watershed of Pinellas County in Tampa Bay, a highly urbanized coastal watershed, is utilized as a case study due to its sensitivity to flood hazards and water quality management within the watershed. This study will aid the County, as a decision maker, to implement its stormwater management policy and honor recent NNC state policy via demonstration of an integrated hydrologic and water quality model, including the Interconnected Channel and Pond Routing Model v.4 (ICPR4) and the BMPTRAIN model as a decision support tool. The ICPR4 can be further coupled with the ADCIRC/SWAN model to reflect the storm surge and seal level rise in coastal regions.
Assessment of flood hazard in a combined sewer system in Reykjavik city centre.
Hlodversdottir, Asta Osk; Bjornsson, Brynjolfur; Andradottir, Hrund Olof; Eliasson, Jonas; Crochet, Philippe
2015-01-01
Short-duration precipitation bursts can cause substantial property damage and pose operational risks for wastewater managers. The objective of this study was to assess the present and possible future flood hazard in the combined sewer system in Reykjavik city centre. The catchment is characterised by two hills separated by a plain. A large portion of the pipes in the aging network are smaller than the current minimum diameter of 250 mm. Runoff and sewer flows were modelled using the MIKE URBAN software package incorporating both historical precipitation and synthetic storms derived from annual maximum rainfall data. Results suggest that 3% of public network manholes were vulnerable to flooding during an 11-year long rainfall sequence. A Chicago Design Storm (CDS) incorporating a 10-minute rainfall burst with a 5-year return period predicted twice as many flooded manholes at similar locations. A 20% increase in CDS intensity increased the number of flooded manholes and surface flood volume by 70% and 80%, respectively. The flood volume tripled if rainfall increase were combined with urban re-development, leading to a 20% increase in the runoff coefficient. Results highlight the need for reducing network vulnerabilities, which include decreased pipe diameters and low or drastically varying pipe grades.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 12 Banks and Banking 6 2010-01-01 2010-01-01 false Notice of special flood hazards and... ADMINISTRATION REGULATIONS AFFECTING CREDIT UNIONS LOANS IN AREAS HAVING SPECIAL FLOOD HAZARDS § 760.9 Notice of special flood hazards and availability of Federal disaster relief assistance. (a) Notice requirement. When...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 12 Banks and Banking 5 2010-01-01 2010-01-01 false Notice of special flood hazards and... SUPERVISION, DEPARTMENT OF THE TREASURY LOANS IN AREAS HAVING SPECIAL FLOOD HAZARDS § 572.9 Notice of special flood hazards and availability of Federal disaster relief assistance. (a) Notice requirement. When a...
7 CFR Exhibit A to Subpart C of... - Notice of Flood, Mudslide Hazard or Wetland Area
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 14 2010-01-01 2009-01-01 true Notice of Flood, Mudslide Hazard or Wetland Area A... Flood, Mudslide Hazard or Wetland Area TO:____ DATE:____ This is to notify you that the real property... of the Federal Emergency Management Agency as having special flood or mudslide hazards. This...
Larsen, Matthew C.; Wieczorek, Gerald F.; Eaton, L.S.; Torres-Sierra, Heriberto; Sylva, Walter F.
2001-01-01
Large populations live on or near alluvial fans in locations such as Los Angeles, California, Salt Lake City, Utah, Denver, Colorado, and lesser known areas such as Sarno, Italy, and Vargas, Venezuela. Debris flows and flash floods occur episodically in these alluvial fan environments, and place many communities at high risk during intense and prolonged rainfall. In December 1999, rainstorms induced thousands of landslides along the Cordillera de la Costa, Vargas, Venezuela. Rainfall accumulation of 293 mm during the first 2 weeks of December was followed by an additional 911 mm of rainfall on December 14 through 16. Debris flows and floods inundated coastal communities resulting in a catastrophic death toll of as many as 30,000 people. Flash floods and debris flows caused severe property destruction on alluvial fans at the mouths of the coastal mountain drainage network. In time scales spanning thousands of years, the alluvial fans along this Caribbean coastline are dynamic zones of high geomorphic activity. Because most of the coastal zone in Vargas consists of steep mountain fronts that rise abruptly from the Caribbean Sea, the alluvial fans provide practically the only flat areas upon which to build. Rebuilding and reoccupation of these areas requires careful determination of hazard zones to avoid future loss of life and property. KEY TERMS: Debris flows, flash floods, alluvial fans, natural hazards, landslides, Venezuela
A fluvial and pluvial probabilistic flood hazard analysis for Can Tho city, Vietnam
NASA Astrophysics Data System (ADS)
Apel, Heiko; Martinez, Oriol; Thi Chinh, Do; Viet Dung, Nguyen
2014-05-01
Can Tho city is the largest city and the economic heart of the Mekong Delta, Vietnam. Due to its economic importance and envisaged development goals the city grew rapidly in population size and extend over the last two decades. Large parts of the city are located in flood prone areas, and also the central parts of the city recently experienced an increasing number of flood events, both of fluvial and pluvial nature. As the economic power and asset values are constantly increasing, this poses a considerable risk for the city. The the aim of this study is to perform a flood hazard analysis considering both fluvial and pluvial floods and to derive probabilistic flood hazard maps. This requires in a first step an understanding of the typical flood mechanisms. Fluvial floods are triggered by a coincidence of high water levels during the annual flood period in the Mekong Delta with high tidal levels, which cause in combination short term inundations in Can Tho. Pluvial floods are triggered by typical tropical convective rain storms during the monsoon season. These two flood pathways are essentially independent in its sources and can thus be treated in the hazard analysis accordingly. For the fluvial hazard analysis we propose a bivariate frequency analysis of the Mekong flood characteristics, the annual maximum flood discharge Q and the annual flood volume V at the upper boundary of the Mekong Delta, the gauging station Kratie. This defines probabilities of exceedance of different Q-V pairs, which are transferred into synthetic flood hydrographs. The synthetic hydrographs are routed through a quasi-2D hydrodynamic model of the entire Mekong Delta in order to provide boundary conditions for a detailed hazard mapping of Can Tho. This downscaling step is necessary, because the huge complexity of the river and channel network does not allow for a proper definition of boundary conditions for Can Tho city by gauge data alone. In addition the available gauge data around Can Tho are too short for a meaningful frequency analysis. The detailed hazard mapping is performed by a 2D hydrodynamic model for Can Tho city. As the scenarios are derived in a Monte-Carlo framework, the final flood hazard maps are probabilistic, i.e. show the median flood hazard along with uncertainty estimates for each defined level of probabilities of exceedance. For the pluvial flood hazard a frequency analysis of the hourly rain gauge data of Can Tho is performed implementing a peak-over-threshold procedure. Based on this frequency analysis synthetic rains storms are generated in a Monte-Carlo framework for the same probabilities of exceedance as in the fluvial flood hazard analysis. Probabilistic flood hazard maps were then generated with the same 2D hydrodynamic model for the city. In a last step the fluvial and pluvial scenarios are combined assuming independence of the events. These scenarios were also transferred into hazard maps by the 2D hydrodynamic model finally yielding combined fluvial-pluvial probabilistic flood hazard maps for Can Tho. The derived set of maps may be used for an improved city planning or a flood risk analysis.
NASA Astrophysics Data System (ADS)
Dadson, Simon J.; Hall, Jim W.; Murgatroyd, Anna; Acreman, Mike; Bates, Paul; Beven, Keith; Heathwaite, Louise; Holden, Joseph; Holman, Ian P.; Lane, Stuart N.; O'Connell, Enda; Penning-Rowsell, Edmund; Reynard, Nick; Sear, David; Thorne, Colin; Wilby, Rob
2017-03-01
Flooding is a very costly natural hazard in the UK and is expected to increase further under future climate change scenarios. Flood defences are commonly deployed to protect communities and property from flooding, but in recent years flood management policy has looked towards solutions that seek to mitigate flood risk at flood-prone sites through targeted interventions throughout the catchment, sometimes using techniques which involve working with natural processes. This paper describes a project to provide a succinct summary of the natural science evidence base concerning the effectiveness of catchment-based `natural' flood management in the UK. The evidence summary is designed to be read by an informed but not technically specialist audience. Each evidence statement is placed into one of four categories describing the nature of the underlying information. The evidence summary forms the appendix to this paper and an annotated bibliography is provided in the electronic supplementary material.
Dadson, Simon J; Hall, Jim W; Murgatroyd, Anna; Acreman, Mike; Bates, Paul; Beven, Keith; Heathwaite, Louise; Holden, Joseph; Holman, Ian P; Lane, Stuart N; O'Connell, Enda; Penning-Rowsell, Edmund; Reynard, Nick; Sear, David; Thorne, Colin; Wilby, Rob
2017-03-01
Flooding is a very costly natural hazard in the UK and is expected to increase further under future climate change scenarios. Flood defences are commonly deployed to protect communities and property from flooding, but in recent years flood management policy has looked towards solutions that seek to mitigate flood risk at flood-prone sites through targeted interventions throughout the catchment, sometimes using techniques which involve working with natural processes. This paper describes a project to provide a succinct summary of the natural science evidence base concerning the effectiveness of catchment-based 'natural' flood management in the UK. The evidence summary is designed to be read by an informed but not technically specialist audience. Each evidence statement is placed into one of four categories describing the nature of the underlying information. The evidence summary forms the appendix to this paper and an annotated bibliography is provided in the electronic supplementary material.
Prime, Thomas; Brown, Jennifer M.; Plater, Andrew J.
2015-01-01
Conventionally flood mapping typically includes only a static water level (e.g. peak of a storm tide) in coastal flood inundation events. Additional factors become increasingly important when increased water-level thresholds are met during the combination of a storm tide and increased mean sea level. This research incorporates factors such as wave overtopping and river flow in a range of flood inundation scenarios of future sea-level projections for a UK case study of Fleetwood, northwest England. With increasing mean sea level it is shown that wave overtopping and river forcing have an important bearing on the cost of coastal flood events. The method presented converts inundation maps into monetary cost. This research demonstrates that under scenarios of joint extreme surge-wave-river events the cost of flooding can be increased by up to a factor of 8 compared with an increase in extent of up to a factor of 3 relative to “surge alone” event. This is due to different areas being exposed to different flood hazards and areas with common hazard where flood waters combine non-linearly. This shows that relying simply on flood extent and volume can under-predict the actual economic impact felt by a coastal community. Additionally, the scenario inundation depths have been presented as “brick course” maps, which represent a new way of interpreting flood maps. This is primarily aimed at stakeholders to increase levels of engagement within the coastal community. PMID:25710497
Prime, Thomas; Brown, Jennifer M; Plater, Andrew J
2015-01-01
Conventionally flood mapping typically includes only a static water level (e.g. peak of a storm tide) in coastal flood inundation events. Additional factors become increasingly important when increased water-level thresholds are met during the combination of a storm tide and increased mean sea level. This research incorporates factors such as wave overtopping and river flow in a range of flood inundation scenarios of future sea-level projections for a UK case study of Fleetwood, northwest England. With increasing mean sea level it is shown that wave overtopping and river forcing have an important bearing on the cost of coastal flood events. The method presented converts inundation maps into monetary cost. This research demonstrates that under scenarios of joint extreme surge-wave-river events the cost of flooding can be increased by up to a factor of 8 compared with an increase in extent of up to a factor of 3 relative to "surge alone" event. This is due to different areas being exposed to different flood hazards and areas with common hazard where flood waters combine non-linearly. This shows that relying simply on flood extent and volume can under-predict the actual economic impact felt by a coastal community. Additionally, the scenario inundation depths have been presented as "brick course" maps, which represent a new way of interpreting flood maps. This is primarily aimed at stakeholders to increase levels of engagement within the coastal community.
Assessment of Three Flood Hazard Mapping Methods: A Case Study of Perlis
NASA Astrophysics Data System (ADS)
Azizat, Nazirah; Omar, Wan Mohd Sabki Wan
2018-03-01
Flood is a common natural disaster and also affect the all state in Malaysia. Regarding to Drainage and Irrigation Department (DID) in 2007, about 29, 270 km2 or 9 percent of region of the country is prone to flooding. Flood can be such devastating catastrophic which can effected to people, economy and environment. Flood hazard mapping can be used is an important part in flood assessment to define those high risk area prone to flooding. The purposes of this study are to prepare a flood hazard mapping in Perlis and to evaluate flood hazard using frequency ratio, statistical index and Poisson method. The six factors affecting the occurrence of flood including elevation, distance from the drainage network, rainfall, soil texture, geology and erosion were created using ArcGIS 10.1 software. Flood location map in this study has been generated based on flooded area in year 2010 from DID. These parameters and flood location map were analysed to prepare flood hazard mapping in representing the probability of flood area. The results of the analysis were verified using flood location data in year 2013, 2014, 2015. The comparison result showed statistical index method is better in prediction of flood area rather than frequency ratio and Poisson method.
NASA Astrophysics Data System (ADS)
Apel, Heiko; Martínez Trepat, Oriol; Nghia Hung, Nguyen; Thi Chinh, Do; Merz, Bruno; Viet Dung, Nguyen
2016-04-01
Many urban areas experience both fluvial and pluvial floods, because locations next to rivers are preferred settlement areas and the predominantly sealed urban surface prevents infiltration and facilitates surface inundation. The latter problem is enhanced in cities with insufficient or non-existent sewer systems. While there are a number of approaches to analyse either a fluvial or pluvial flood hazard, studies of a combined fluvial and pluvial flood hazard are hardly available. Thus this study aims to analyse a fluvial and a pluvial flood hazard individually, but also to develop a method for the analysis of a combined pluvial and fluvial flood hazard. This combined fluvial-pluvial flood hazard analysis is performed taking Can Tho city, the largest city in the Vietnamese part of the Mekong Delta, as an example. In this tropical environment the annual monsoon triggered floods of the Mekong River, which can coincide with heavy local convective precipitation events, causing both fluvial and pluvial flooding at the same time. The fluvial flood hazard was estimated with a copula-based bivariate extreme value statistic for the gauge Kratie at the upper boundary of the Mekong Delta and a large-scale hydrodynamic model of the Mekong Delta. This provided the boundaries for 2-dimensional hydrodynamic inundation simulation for Can Tho city. The pluvial hazard was estimated by a peak-over-threshold frequency estimation based on local rain gauge data and a stochastic rainstorm generator. Inundation for all flood scenarios was simulated by a 2-dimensional hydrodynamic model implemented on a Graphics Processing Unit (GPU) for time-efficient flood propagation modelling. The combined fluvial-pluvial flood scenarios were derived by adding rainstorms to the fluvial flood events during the highest fluvial water levels. The probabilities of occurrence of the combined events were determined assuming independence of the two flood types and taking the seasonality and probability of coincidence into account. All hazards - fluvial, pluvial and combined - were accompanied by an uncertainty estimation taking into account the natural variability of the flood events. This resulted in probabilistic flood hazard maps showing the maximum inundation depths for a selected set of probabilities of occurrence, with maps showing the expectation (median) and the uncertainty by percentile maps. The results are critically discussed and their usage in flood risk management are outlined.
Towards Water Sensitive City: Lesson Learned From Bogor Flood Hazard in 2017
NASA Astrophysics Data System (ADS)
Ramdhan, Muhammad; Arifin, Hadi Susilo; Suharnoto, Yuli; Tarigan, Suria Darma
2018-02-01
Bogor known as rain city and it's located at an altitude range of 190-330 meters above sea level. In February 2017 Bogor experienced a series of natural disasters related to heavy rainfall that fell during that time. The hazard in the form of flash floods that cause casualties was shocked, due to the location of Bogor city that located in the foothills with a fairly steep slope. There is a problem with the drainage system in the city of Bogor. Australia Indonesia Center in cooperation with Bogor city government held a focus group discussion to seek a permanent solution for the problems and so that similar incidents do not occur in the future.
A Unified Flash Flood Database across the United States
Gourley, Jonathan J.; Hong, Yang; Flamig, Zachary L.; Arthur, Ami; Clark, Robert; Calianno, Martin; Ruin, Isabelle; Ortel, Terry W.; Wieczorek, Michael; Kirstetter, Pierre-Emmanuel; Clark, Edward; Krajewski, Witold F.
2013-01-01
Despite flash flooding being one of the most deadly and costly weather-related natural hazards worldwide, individual datasets to characterize them in the United States are hampered by limited documentation and can be difficult to access. This study is the first of its kind to assemble, reprocess, describe, and disseminate a georeferenced U.S. database providing a long-term, detailed characterization of flash flooding in terms of spatiotemporal behavior and specificity of impacts. The database is composed of three primary sources: 1) the entire archive of automated discharge observations from the U.S. Geological Survey that has been reprocessed to describe individual flooding events, 2) flash-flooding reports collected by the National Weather Service from 2006 to the present, and 3) witness reports obtained directly from the public in the Severe Hazards Analysis and Verification Experiment during the summers 2008–10. Each observational data source has limitations; a major asset of the unified flash flood database is its collation of relevant information from a variety of sources that is now readily available to the community in common formats. It is anticipated that this database will be used for many diverse purposes, such as evaluating tools to predict flash flooding, characterizing seasonal and regional trends, and improving understanding of dominant flood-producing processes. We envision the initiation of this community database effort will attract and encompass future datasets.
Long-term strategies of climate change adaptation to manage flooding events in urban areas
NASA Astrophysics Data System (ADS)
Pouget, Laurent; Russo, Beniamino; Redaño, Angel; Ribalaygua, Jaime
2010-05-01
Heavy and sudden rainfalls regularly affect the Mediterranean area, so a great number of people and buildings are exposed to the risk of rain-generated floods. Climate change is expected to modify this risk and, in the case that extreme rainfalls increase in frequencies and intensity, this could result in important damages, particularly in urban areas. This paper presents a project that aims to determine adaptation strategies to future flood risks in urban areas. It has been developed by a panel of water companies (R+i Alliance funding), and includes the evaluation of the climate change impact on the extreme rainfall, the use of innovative modelling tools to accurately forecast the flood risk and, finally, the definition of a pro-active and long-term planning against floods. This methodology has been applied in the city of Barcelona. Current climate models give some projections that are not directly applicable for flood risk studies, either because they do not have an adequate spatial and temporal resolution, or because they do not consider some important local factors, such as orography. These points have been considered within the project, when developing the design storms corresponding to future climatic conditions (e.g. years 2030 or 2050). The methodology uses statistical downscaling techniques based on global climate models predictions, including corrections for extreme events and convective storms, as well as temporal downscaling based on historical observations. The design storms created are used in combination with the predictions of sea level rise and land use evolutions to determine the future risk of flooding in the area of study. Once the boundary conditions are known, an accurate flood hazard assessment is done. It requires a local knowledge of the flow parameters in the whole analyzed domain. In urban catchments, in order to fulfill this requirement, powerful hydrological and hydraulic tools and detailed topographic data represent the unique way for a local estimation of the flow parameters (flow depth, flow velocity, flood duration, etc.). If urban floods are caused by heavy rainfall events and a quick hydrological response of the catchment, the approach to elaborate a flood hazard assessment study should take into account the drainage system capacity, too (in terms of effectiveness of surface drainage structures, as well as storm sewerages). In these cases, the hydrological modelling of the involved subcatchments should be linked to the runoff propagation 2D modelling on the urban surface and the hydraulics of the storm sewers (dual drainage modelling) through a coupled 2D/1D approach. The design storm created and the 2D/1D modelling approach have been used to simulate the future flood risk in the city of Barcelona. From the simulation results, it is possible to understand the flooding processes and the risk associated. It is therefore possible to develop some long-term adaptation strategies to reduce the flood risk for current and future climatic conditions, such as structural measures (e.g. improvement of the stormwater network) and non-structural measures (e.g. enhancement of the flood warning system).
Data assimilation of citizen collected information for real-time flood hazard mapping
NASA Astrophysics Data System (ADS)
Sayama, T.; Takara, K. T.
2017-12-01
Many studies in data assimilation in hydrology have focused on the integration of satellite remote sensing and in-situ monitoring data into hydrologic or land surface models. For flood predictions also, recent studies have demonstrated to assimilate remotely sensed inundation information with flood inundation models. In actual flood disaster situations, citizen collected information including local reports by residents and rescue teams and more recently tweets via social media also contain valuable information. The main interest of this study is how to effectively use such citizen collected information for real-time flood hazard mapping. Here we propose a new data assimilation technique based on pre-conducted ensemble inundation simulations and update inundation depth distributions sequentially when local data becomes available. The propose method is composed by the following two-steps. The first step is based on weighting average of preliminary ensemble simulations, whose weights are updated by Bayesian approach. The second step is based on an optimal interpolation, where the covariance matrix is calculated from the ensemble simulations. The proposed method was applied to case studies including an actual flood event occurred. It considers two situations with more idealized one by assuming continuous flood inundation depth information is available at multiple locations. The other one, which is more realistic case during such a severe flood disaster, assumes uncertain and non-continuous information is available to be assimilated. The results show that, in the first idealized situation, the large scale inundation during the flooding was estimated reasonably with RMSE < 0.4 m in average. For the second more realistic situation, the error becomes larger (RMSE 0.5 m) and the impact of the optimal interpolation becomes comparatively less effective. Nevertheless, the applications of the proposed data assimilation method demonstrated a high potential of this method for assimilating citizen collected information for real-time flood hazard mapping in the future.
NASA Astrophysics Data System (ADS)
Oulahen, Greg
2015-03-01
Insurance coverage of damage caused by overland flooding is currently not available to Canadian homeowners. As flood disaster losses and water damage claims both trend upward, insurers in Canada are considering offering residential flood coverage in order to properly underwrite the risk and extend their business. If private flood insurance is introduced in Canada, it will have implications for the current regime of public flood management and for residential vulnerability to flood hazards. This paper engages many of the competing issues surrounding the privatization of flood risk by addressing questions about whether flood insurance can be an effective tool in limiting exposure to the hazard and how it would exacerbate already unequal vulnerability. A case study investigates willingness to pay for flood insurance among residents in Metro Vancouver and how attitudes about insurance relate to other factors that determine residential vulnerability to flood hazards. Findings indicate that demand for flood insurance is part of a complex, dialectical set of determinants of vulnerability.
44 CFR 64.3 - Flood Insurance Maps.
Code of Federal Regulations, 2010 CFR
2010-10-01
... with water surface elevations determined A0 Area of special flood hazards having shallow water depths... insurance rating purposes AH Areas of special flood hazards having shallow water depths and/or unpredictable... of special flood hazards having shallow water depths and/or unpredictable flow paths between (1) and...
Thirty Years Later: Reflections of the Big Thompson Flood, Colorado, 1976 to 2006
NASA Astrophysics Data System (ADS)
Jarrett, R. D.; Costa, J. E.; Brunstein, F. C.; Quesenberry, C. A.; Vandas, S. J.; Capesius, J. P.; O'Neill, G. B.
2006-12-01
Thirty years ago, over 300 mm of rain fell in about 4 to 6 hours in the middle reaches of the Big Thompson River Basin during the devastating flash flood on July 31, 1976. The rainstorm produced flood discharges that exceeded 40 m3/s/km2. A peak discharge of 883 m3/s was estimated at the Big Thompson River near Drake streamflow-gaging station. The raging waters left 144 people dead, 250 injured, and over 800 people were evacuated by helicopter. Four-hundred eighteen homes and businesses were destroyed, as well as 438 automobiles, and damage to infrastructure left the canyon reachable only via helicopter. Total damage was estimated in excess of $116 million (2006 dollars). Natural hazards similar to the Big Thompson flood are rare, but the probability of a similar event hitting the Front Range, other parts of Colorado, or other parts of the Nation is real. Although much smaller in scale than the Big Thompson flood, several flash floods have happened during the monsoon in early July 2006 in the Colorado foothills that reemphasized the hazards associated with flash flooding. The U.S. Geological Survey (USGS) conducts flood research to help understand and predict the magnitude and likelihood of large streamflow events such as the Big Thompson flood. A summary of hydrologic conditions of the 1976 flood, what the 1976 flood can teach us about flash floods, a description of some of the advances in USGS flood science as a consequence of this disaster, and lessons that we learned to help reduce loss of life from this extraordinary flash flood are discussed. In the 30 years since the Big Thompson flood, there have been important advances in streamflow monitoring and flood warning. The National Weather Service (NWS) NEXRAD radar allows real-time monitoring of precipitation in most places in the United States. The USGS currently (2006) operates about 7,250 real-time streamflow-gaging stations in the United States that are monitored by the USGS, the NWS, and emergency managers. When substantial flooding occurs, the USGS mobilizes personnel to collect streamflow data in affected areas. Streamflow data improve flood forecasting and provide data for flood-frequency analysis for floodplain management, design of structures located in floodplains, and related water studies. An important lesson learned is that nature provides environmental signs before and during floods that can help people avoid hazard areas. Important contributions to flood science as a result of the 1976 flood include development of paleoflood methods to interpret the preserved flood-plain stratigraphy to document the number, magnitude, and age of floods that occurred prior to streamflow monitoring. These methods and data on large floods can be used in many mountain-river systems to help us better understand flood hazards and plan for the future. For example, according to conventional flood-frequency analysis, the 1976 Big Thompson flood had a flood recurrence interval of about 100 years. However, paleoflood research indicated the 1976 flood was the largest in about the last 10,000 years in the basin and had a flood recurrence interval in excess of 1,000 years.
NASA Astrophysics Data System (ADS)
Ybanez, R. L.; Lagmay, A. M. A.; David, C. P.
2016-12-01
With climatological hazards increasing globally, the Philippines is listed as one of the most vulnerable countries in the world due to its location in the Western Pacific. Flood hazards mapping and modelling is one of the responses by local government and research institutions to help prepare for and mitigate the effects of flood hazards that constantly threaten towns and cities in floodplains during the 6-month rainy season. Available digital elevation maps, which serve as the most important dataset used in 2D flood modelling, are limited in the Philippines and testing is needed to determine which of the few would work best for flood hazards mapping and modelling. Two-dimensional GIS-based flood modelling with the flood-routing software FLO-2D was conducted using three different available DEMs from the ASTER GDEM, the SRTM GDEM, and the locally available IfSAR DTM. All other parameters kept uniform, such as resolution, soil parameters, rainfall amount, and surface roughness, the three models were run over a 129-sq. kilometer watershed with only the basemap varying. The output flood hazard maps were compared on the basis of their flood distribution, extent, and depth. The ASTER and SRTM GDEMs contained too much error and noise which manifested as dissipated and dissolved hazard areas in the lower watershed where clearly delineated flood hazards should be present. Noise on the two datasets are clearly visible as erratic mounds in the floodplain. The dataset which produced the only feasible flood hazard map is the IfSAR DTM which delineates flood hazard areas clearly and properly. Despite the use of ASTER and SRTM with their published resolution and accuracy, their use in GIS-based flood modelling would be unreliable. Although not as accessible, only IfSAR or better datasets should be used for creating secondary products from these base DEM datasets. For developing countries which are most prone to hazards, but with limited choices for basemaps used in hazards studies, the caution must be taken in the use of globally available GDEMs and higher-resolution DEMs must always be sought.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 38 Pensions, Bonuses, and Veterans' Relief 2 2010-07-01 2010-07-01 false Notice of special flood... of Payment, and Flood Insurance § 36.4708 Notice of special flood hazards and availability of Federal... a loan secured by a building or a mobile home located or to be located in a special flood hazard...
NASA Astrophysics Data System (ADS)
Mentzafou, Angeliki; Markogianni, Vasiliki; Dimitriou, Elias
2017-02-01
Many scientists link climate change to the increase of the extreme weather phenomena frequency, which combined with land use changes often lead to disasters with severe social and economic effects. Especially floods as a consequence of heavy rainfall can put vulnerable human and natural systems such as transboundary wetlands at risk. In order to meet the European Directive 2007/60/EC requirements for the development of flood risk management plans, the flood hazard map of Evros transboundary watershed was produced after a grid-based GIS modelling method that aggregates the main factors related to the development of floods: topography, land use, geology, slope, flow accumulation and rainfall intensity. The verification of this tool was achieved through the comparison between the produced hazard map and the inundation maps derived from the supervised classification of Landsat 5 and 7 satellite imageries of four flood events that took place at Evros delta proximity, a wetland of international importance. The comparison of the modelled output (high and very high flood hazard areas) with the extent of the inundated areas as mapped from the satellite data indicated the satisfactory performance of the model. Furthermore, the vulnerability of each land use against the flood events was examined. Geographically Weighted Regression has also been applied between the final flood hazard map and the major factors in order to ascertain their contribution to flood events. The results accredited the existence of a strong relationship between land uses and flood hazard indicating the flood susceptibility of the lowlands and agricultural land. A dynamic transboundary flood hazard management plan should be developed in order to meet the Flood Directive requirements for adequate and coordinated mitigation practices to reduce flood risk.
Can we (actually) assess global risk?
NASA Astrophysics Data System (ADS)
Di Baldassarre, Giuliano
2013-04-01
The evaluation of the dynamic interactions of the different components of global risk (e.g. hazard, exposure, vulnerability or resilience) is one of the main challenges in risk assessment and management. In state-of-the-art approaches for the analysis of risk, natural and socio-economic systems are typically treated separately by using different methods. In flood risk studies, for instance, physical scientists typically focus on the study of the probability of flooding (i.e. hazard), while social scientists mainly examine the exposure, vulnerability or resilience to flooding. However, these different components are deeply interconnected. Changes in flood hazard might trigger changes in vulnerability, and vice versa. A typical example of these interactions is the so-called "levee effect", whereby heightening levees to reduce the probability of flooding often leads to increase the potential adverse consequences of flooding as people often perceive that flood risk was completely eliminated once the levee was raised. These interconnections between the different components of risk remain largely unexplored and poorly understood. This lack of knowledge is of serious concern as it limits our ability to plan appropriate risk prevention measures. To design flood control structures, for example, state-of-the-art models can indeed provide quantitative assessments of the corresponding risk reduction associated to the lower probability of flooding. Nevertheless, current methods cannot estimate how, and to what extent, such a reduction might trigger a future increase of the potential adverse consequences of flooding (the aforementioned "levee effect"). Neither can they evaluate how the latter might (in turn) lead to the requirement of additional flood control structures. Thus, while many progresses have been made in the static assessment of flood risk, more inter-disciplinary research is required for the development of methods for dynamic risk assessment, which is very much needed in a rapidly changing world. This presentation will discuss these challenges and describe a few initial attempts aiming to better understand the interactions between the different components of flood risk with reference to diverse case studies in Europe, Central America, and Africa.
NASA Astrophysics Data System (ADS)
Leijala, Ulpu; Björkqvist, Jan-Victor; Johansson, Milla M.; Pellikka, Havu
2017-04-01
Future coastal management continuously strives for more location-exact and precise methods to investigate possible extreme sea level events and to face flooding hazards in the most appropriate way. Evaluating future flooding risks by understanding the behaviour of the joint effect of sea level variations and wind waves is one of the means to make more comprehensive flooding hazard analysis, and may at first seem like a straightforward task to solve. Nevertheless, challenges and limitations such as availability of time series of the sea level and wave height components, the quality of data, significant locational variability of coastal wave height, as well as assumptions to be made depending on the study location, make the task more complicated. In this study, we present a statistical method for combining location-specific probability distributions of water level variations (including local sea level observations and global mean sea level rise) and wave run-up (based on wave buoy measurements). The goal of our method is to obtain a more accurate way to account for the waves when making flooding hazard analysis on the coast compared to the approach of adding a separate fixed wave action height on top of sea level -based flood risk estimates. As a result of our new method, we gain maximum elevation heights with different return periods of the continuous water mass caused by a combination of both phenomena, "the green water". We also introduce a sensitivity analysis to evaluate the properties and functioning of our method. The sensitivity test is based on using theoretical wave distributions representing different alternatives of wave behaviour in relation to sea level variations. As these wave distributions are merged with the sea level distribution, we get information on how the different wave height conditions and shape of the wave height distribution influence the joint results. Our method presented here can be used as an advanced tool to minimize over- and underestimation of the combined effect of sea level variations and wind waves, and to help coastal infrastructure planning and support smooth and safe operation of coastal cities in a changing climate.
38 CFR 36.4705 - Required use of standard flood hazard determination form.
Code of Federal Regulations, 2010 CFR
2010-07-01
... flood hazard determination form. 36.4705 Section 36.4705 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS (CONTINUED) LOAN GUARANTY Sale of Loans, Guarantee of Payment, and Flood Insurance § 36.4705 Required use of standard flood hazard determination form. (a) Use of form. The Secretary...
Values of Flood Hazard Mapping for Disaster Risk Assessment and Communication
NASA Astrophysics Data System (ADS)
Sayama, T.; Takara, K. T.
2015-12-01
Flood plains provide tremendous benefits for human settlements. Since olden days people have lived with floods and attempted to control them if necessary. Modern engineering works such as building embankment have enabled people to live even in flood prone areas, and over time population and economic assets have concentrated in these areas. In developing countries also, rapid land use change alters exposure and vulnerability to floods and consequently increases disaster risk. Flood hazard mapping is an essential step for any counter measures. It has various objectives including raising awareness of residents, finding effective evacuation routes and estimating potential damages through flood risk mapping. Depending on the objectives and data availability, there are also many possible approaches for hazard mapping including simulation basis, community basis and remote sensing basis. In addition to traditional paper-based hazard maps, Information and Communication Technology (ICT) promotes more interactive hazard mapping such as movable hazard map to demonstrate scenario simulations for risk communications and real-time hazard mapping for effective disaster responses and safe evacuations. This presentation first summarizes recent advancement of flood hazard mapping by focusing on Japanese experiences and other examples from Asian countries. Then it introduces a flood simulation tool suitable for hazard mapping at the river basin scale even in data limited regions. In the past few years, the tool has been practiced by local officers responsible for disaster management in Asian countries. Through the training activities of hazard mapping and risk assessment, we conduct comparative analysis to identify similarity and uniqueness of estimated economic damages depending on topographic and land use conditions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... HAZARDS Pt. 760, App. Appendix to Part 760—Sample Form of Notice of Special Flood Hazards and Availability... purchase flood insurance. The flood insurance must be maintained for the life of the loan. If you fail to purchase or renew flood insurance on the property, Federal law authorizes and requires us to purchase the...
Code of Federal Regulations, 2011 CFR
2011-01-01
... HAZARDS Pt. 760, App. Appendix to Part 760—Sample Form of Notice of Special Flood Hazards and Availability... purchase flood insurance. The flood insurance must be maintained for the life of the loan. If you fail to purchase or renew flood insurance on the property, Federal law authorizes and requires us to purchase the...
Review Article: A comparison of flood and earthquake vulnerability assessment indicators
NASA Astrophysics Data System (ADS)
de Ruiter, Marleen C.; Ward, Philip J.; Daniell, James E.; Aerts, Jeroen C. J. H.
2017-07-01
In a cross-disciplinary study, we carried out an extensive literature review to increase understanding of vulnerability indicators used in the disciplines of earthquake- and flood vulnerability assessments. We provide insights into potential improvements in both fields by identifying and comparing quantitative vulnerability indicators grouped into physical and social categories. Next, a selection of index- and curve-based vulnerability models that use these indicators are described, comparing several characteristics such as temporal and spatial aspects. Earthquake vulnerability methods traditionally have a strong focus on object-based physical attributes used in vulnerability curve-based models, while flood vulnerability studies focus more on indicators applied to aggregated land-use classes in curve-based models. In assessing the differences and similarities between indicators used in earthquake and flood vulnerability models, we only include models that separately assess either of the two hazard types. Flood vulnerability studies could be improved using approaches from earthquake studies, such as developing object-based physical vulnerability curve assessments and incorporating time-of-the-day-based building occupation patterns. Likewise, earthquake assessments could learn from flood studies by refining their selection of social vulnerability indicators. Based on the lessons obtained in this study, we recommend future studies for exploring risk assessment methodologies across different hazard types.
Current and future flood risk to railway infrastructure in Europe
NASA Astrophysics Data System (ADS)
Bubeck, Philip; Kellermann, Patric; Alfieri, Lorenzo; Feyen, Luc; Dillenardt, Lisa; Thieken, Annegret H.
2017-04-01
Railway infrastructure plays an important role in the transportation of freight and passengers across the European Union. According to Eurostat, more than four billion passenger-kilometres were travelled on national and international railway lines of the EU28 in 2014. To further strengthen transport infrastructure in Europe, the European Commission will invest another € 24.05 billion in the transnational transport network until 2020 as part of its new transport infrastructure policy (TEN-T), including railway infrastructure. Floods pose a significant risk to infrastructure elements. Damage data of recent flood events in Europe show that infrastructure losses can make up a considerable share of overall losses. For example, damage to state and municipal infrastructure in the federal state of Saxony (Germany) accounted for nearly 60% of overall losses during the large-scale event in June 2013. Especially in mountainous areas with little usable space available, roads and railway lines often follow floodplains or are located along steep and unsteady slopes. In Austria, for instance, the flood of 2013 caused € 75 million of direct damage to railway infrastructure. Despite the importance of railway infrastructure and its exposure to flooding, assessments of potential damage and risk (i.e. probability * damage) are still in its infancy compared with other sectors, such as the residential or industrial sector. Infrastructure-specific assessments at the regional scale are largely lacking. Regional assessment of potential damage to railway infrastructure has been hampered by a lack of infrastructure-specific damage models and data availability. The few available regional approaches have used damage models that assess damage to various infrastructure elements (e.g. roads, railway, airports and harbours) using one aggregated damage function and cost estimate. Moreover, infrastructure elements are often considerably underrepresented in regional land cover data, such as CORINE, due to their line shapes. To assess current and future damage and risk to railway infrastructure in Europe, we apply the damage model RAIL -' RAilway Infrastructure Loss' that was specifically developed for railway infrastructure using empirical damage data. To adequately and comprehensively capture the line-shaped features of railway infrastructure, the assessment makes use of the open-access data set of openrailway.org. Current and future flood hazard in Europe is obtained with the LISFLOOD-based pan-European flood hazard mapping procedure combined with ensemble projections of extreme streamflow for the current century based on EURO-CORDEX RCP 8.5 climate scenarios. The presentation shows first results of the combination of the hazard data and the model RAIL for Europe.
7 CFR 1980.433 - Flood or mudslide hazard area precautions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 14 2010-01-01 2009-01-01 true Flood or mudslide hazard area precautions. 1980.433... Program § 1980.433 Flood or mudslide hazard area precautions. (See subpart A, § 1980.42.) Administrative The State Director is responsible for determining if a project is located in a special flood or...
76 FR 37893 - Loans in Areas Having Special Flood Hazards
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-28
... DEPARTMENT OF THE TREASURY Office of Thrift Supervision Loans in Areas Having Special Flood...: Loans in Areas Having Special Flood Hazards. OMB Number: 1550-0088. Form Number: N/A. Description: The... property that is to secure a loan is located in a special flood hazard area, to notify a prospective...
Flood hazard mapping of Palembang City by using 2D model
NASA Astrophysics Data System (ADS)
Farid, Mohammad; Marlina, Ayu; Kusuma, Muhammad Syahril Badri
2017-11-01
Palembang as the capital city of South Sumatera Province is one of the metropolitan cities in Indonesia that flooded almost every year. Flood in the city is highly related to Musi River Basin. Based on Indonesia National Agency of Disaster Management (BNPB), the level of flood hazard is high. Many natural factors caused flood in the city such as high intensity of rainfall, inadequate drainage capacity, and also backwater flow due to spring tide. Furthermore, anthropogenic factors such as population increase, land cover/use change, and garbage problem make flood problem become worse. The objective of this study is to develop flood hazard map of Palembang City by using two dimensional model. HEC-RAS 5.0 is used as modelling tool which is verified with field observation data. There are 21 sub catchments of Musi River Basin in the flood simulation. The level of flood hazard refers to Head Regulation of BNPB number 2 in 2012 regarding general guideline of disaster risk assessment. The result for 25 year return per iod of flood shows that with 112.47 km2 area of inundation, 14 sub catchments are categorized in high hazard level. It is expected that the hazard map can be used for risk assessment.
Interconnected ponds operation for flood hazard distribution
NASA Astrophysics Data System (ADS)
Putra, S. S.; Ridwan, B. W.
2016-05-01
The climatic anomaly, which comes with extreme rainfall, will increase the flood hazard in an area within a short period of time. The river capacity in discharging the flood is not continuous along the river stretch and sensitive to the flood peak. This paper contains the alternatives on how to locate the flood retention pond that are physically feasible to reduce the flood peak. The flood ponds were designed based on flood curve number criteria (TR-55, USDA) with the aim of rapid flood peak capturing and gradual flood retuning back to the river. As a case study, the hydrologic condition of upper Ciliwung river basin with several presumed flood pond locations was conceptually designed. A fundamental tank model that reproducing the operation of interconnected ponds was elaborated to achieve the designed flood discharge that will flows to the downstream area. The flood hazard distribution status, as the model performance criteria, will be computed within Ciliwung river reach in Manggarai Sluice Gate spot. The predicted hazard reduction with the operation of the interconnected retention area result had been bench marked with the normal flow condition.
Current and future pluvial flood hazard analysis for the city of Antwerp
NASA Astrophysics Data System (ADS)
Willems, Patrick; Tabari, Hossein; De Niel, Jan; Van Uytven, Els; Lambrechts, Griet; Wellens, Geert
2016-04-01
For the city of Antwerp in Belgium, higher rainfall extremes were observed in comparison with surrounding areas. The differences were found statistically significant for some areas and may be the result of the heat island effect in combination with the higher concentrations of aerosols. A network of 19 rain gauges but with varying records length (the longest since the 1960s) and continuous radar data for 10 years were combined to map the spatial variability of rainfall extremes over the city at various durations from 15 minutes to 1 day together with the uncertainty. The improved spatial rainfall information was used as input in the sewer system model of the city to analyze the frequency of urban pluvial floods. Comparison with historical flood observations from various sources (fire brigade and media) confirmed that the improved spatial rainfall information also improved sewer impact results on both the magnitude and frequency of the sewer floods. Next to these improved urban flood impact results for recent and current climatological conditions, the new insights on the local rainfall microclimate were also helpful to enhance future projections on rainfall extremes and pluvial floods in the city. This was done by improved statistical downscaling of all available CMIP5 global climate model runs (160 runs) for the 4 RCP scenarios, as well as the available EURO-CORDEX regional climate model runs. Two types of statistical downscaling methods were applied for that purpose (a weather typing based method, and a quantile perturbation approach), making use of the microclimate results and its dependency on specific weather types. Changes in extreme rainfall intensities were analyzed and mapped as a function of the RCP scenario, together with the uncertainty, decomposed in the uncertainties related to the climate models, the climate model initialization or limited length of the 30-year time series (natural climate variability) and the statistical downscaling (albeit limited to two types of methods). These were finally transferred into future pluvial flash flood hazard maps for the city together with the uncertainties, and are considered as basis for spatial planning and adaptation.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 12 Banks and Banking 6 2010-01-01 2010-01-01 false Notice of special flood hazards and... ADMINISTRATION FARM CREDIT SYSTEM LOAN POLICIES AND OPERATIONS Flood Insurance Requirements § 614.4955 Notice of special flood hazards and availability of Federal disaster relief assistance. (a) Notice requirement. When...
Code of Federal Regulations, 2011 CFR
2011-10-01
... INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS § 79.1 Purpose. (a... the hazard mitigation grant programs made available under the National Flood Insurance Act of 1968, as... Repetitive Loss (SRL) and Flood Mitigation Assistance (FMA) grant programs mitigate losses from floods...
Code of Federal Regulations, 2014 CFR
2014-10-01
... INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS § 79.1 Purpose. (a... the hazard mitigation grant programs made available under the National Flood Insurance Act of 1968, as... Repetitive Loss (SRL) and Flood Mitigation Assistance (FMA) grant programs mitigate losses from floods...
78 FR 43899 - Changes in Flood Hazard Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-22
..., ``Flood Insurance.'') Dated: July 2, 2013. Roy E. Wright, Deputy Associate Administrator for Mitigation...] Changes in Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final notice. SUMMARY: New or modified Base (1% annual-chance) Flood Elevations (BFEs), base flood depths...
Code of Federal Regulations, 2012 CFR
2012-10-01
... INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS § 79.1 Purpose. (a... the hazard mitigation grant programs made available under the National Flood Insurance Act of 1968, as... Repetitive Loss (SRL) and Flood Mitigation Assistance (FMA) grant programs mitigate losses from floods...
Code of Federal Regulations, 2013 CFR
2013-10-01
... INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS § 79.1 Purpose. (a... the hazard mitigation grant programs made available under the National Flood Insurance Act of 1968, as... Repetitive Loss (SRL) and Flood Mitigation Assistance (FMA) grant programs mitigate losses from floods...
Kick, Edward L; Fraser, James C; Fulkerson, Gregory M; McKinney, Laura A; De Vries, Daniel H
2011-07-01
Of all natural disasters, flooding causes the greatest amount of economic and social damage. The United States' Federal Emergency Management Agency (FEMA) uses a number of hazard mitigation grant programmes for flood victims, including mitigation offers to relocate permanently repetitive flood loss victims. This study examines factors that help to explain the degree of difficulty repetitive flood loss victims experience when they make decisions about relocating permanently after multiple flood losses. Data are drawn from interviews with FEMA officials and a survey of flood victims from eight repetitive flooding sites. The qualitative and quantitative results show the importance of rational choices by flood victims in their mitigation decisions, as they relate to financial variables, perceptions of future risk, attachments to home and community, and the relationships between repetitive flood loss victims and the local flood management officials who help them. The results offer evidence to suggest the value of a more community-system approach to FEMA relocation practices. © 2011 The Author(s). Disasters © Overseas Development Institute, 2011.
NASA Astrophysics Data System (ADS)
Hussin, Haydar; van Westen, Cees; Reichenbach, Paola
2013-04-01
Local and regional authorities in mountainous areas that deal with hydro-meteorological hazards like landslides and floods try to set aside budgets for emergencies and risk mitigation. However, future losses are often not calculated in a probabilistic manner when allocating budgets or determining how much risk is acceptable. The absence of probabilistic risk estimates can create a lack of preparedness for reconstruction and risk reduction costs and a deficiency in promoting risk mitigation and prevention in an effective way. The probabilistic risk of natural hazards at local scale is usually ignored all together due to the difficulty in acknowledging, processing and incorporating uncertainties in the estimation of losses (e.g. physical damage, fatalities and monetary loss). This study attempts to set up a working framework for a probabilistic risk assessment (PRA) of landslides and floods at a municipal scale using the Fella river valley (Eastern Italian Alps) as a multi-hazard case study area. The emphasis is on the evaluation and determination of the uncertainty in the estimation of losses from multi-hazards. To carry out this framework some steps are needed: (1) by using physically based stochastic landslide and flood models we aim to calculate the probability of the physical impact on individual elements at risk, (2) this is then combined with a statistical analysis of the vulnerability and monetary value of the elements at risk in order to include their uncertainty in the risk assessment, (3) finally the uncertainty from each risk component is propagated into the loss estimation. The combined effect of landslides and floods on the direct risk to communities in narrow alpine valleys is also one of important aspects that needs to be studied.
Hall, Jim W.; Murgatroyd, Anna; Acreman, Mike; Bates, Paul; Beven, Keith; Heathwaite, Louise; Holden, Joseph; Holman, Ian P.; Lane, Stuart N.; O'Connell, Enda; Penning-Rowsell, Edmund; Reynard, Nick; Sear, David; Thorne, Colin; Wilby, Rob
2017-01-01
Flooding is a very costly natural hazard in the UK and is expected to increase further under future climate change scenarios. Flood defences are commonly deployed to protect communities and property from flooding, but in recent years flood management policy has looked towards solutions that seek to mitigate flood risk at flood-prone sites through targeted interventions throughout the catchment, sometimes using techniques which involve working with natural processes. This paper describes a project to provide a succinct summary of the natural science evidence base concerning the effectiveness of catchment-based ‘natural’ flood management in the UK. The evidence summary is designed to be read by an informed but not technically specialist audience. Each evidence statement is placed into one of four categories describing the nature of the underlying information. The evidence summary forms the appendix to this paper and an annotated bibliography is provided in the electronic supplementary material. PMID:28413336
An early career researcher's perspective on presenting flood risk research to the media
NASA Astrophysics Data System (ADS)
Slater, Louise
2017-04-01
My research lies at the intersection of three disciplines: hydrology, climatology, and geomorphology, and focusses on understanding the drivers of changing flood hazards to improve flood projections. Because flooding has major impacts on people's lives, and flood losses are projected to continue to increase in future decades, attribution studies are readily picked up by the press. As an Early Career Researcher, I will share my own experiences in communicating flood-related research results (through university press releases, Twitter, blog posts, and interviews), and what I have learnt about the types of strategies that can be followed to increase research dissemination/outreach, and the "Attention Score" of individual papers. In terms of interacting with the media, I will also share some suggestions regarding the types of questions that often arise, as well as awareness strategies to avoid potential pitfalls, misunderstandings or misinterpretations.
Recent changes in flood damage in the United States from observations and ACME model
NASA Astrophysics Data System (ADS)
Leng, G.; Leung, L. R.
2017-12-01
Despite efforts to mitigate flood hazards in flood-prone areas, survey- and report-based flood databases show that flood damage has increased and emerged as one of the most costly disaster in the United States since the 1990s. Understanding the mechanism driving the changes in flood damage is therefore critical for reducing flood risk. In this study, we first conduct a comprehensive analysis of the changing characteristics of flood damage at local, state and country level. Results show a significant increasing trend in the number of flood hazards, causing economic losses of up to $7 billion per year. The ratio of flood events that caused tangible economical cost to the total flood events has exhibited a non-significant increasing trend before 2007 followed by a significant decrease, indicating a changing vulnerability to floods. Analysis also reveals distinct spatial and temporal patterns in the threshold intensity of flood hazards with tangible economical cost. To understand the mechanism behind the increasing flood damage, we develop a flood damage economic model coupled with the integrated hydrological modeling system of ACME that features a river routing model with an inundation parameterization and a water use and regulation model. The model is evaluated over the country against historical records. Several numerical experiments are then designed to explore the mechanisms behind the recent changes in flood damage from the perspective of flood hazard, exposure and vulnerability, which constitute flood damage. The role of human activities such as reservoir operations and water use in modifying regional floods are also explored using the new tool, with the goal of improving understanding and modeling of vulnerability to flood hazards.
The credibility challenge for global fluvial flood risk analysis
NASA Astrophysics Data System (ADS)
Trigg, M. A.; Birch, C. E.; Neal, J. C.; Bates, P. D.; Smith, A.; Sampson, C. C.; Yamazaki, D.; Hirabayashi, Y.; Pappenberger, F.; Dutra, E.; Ward, P. J.; Winsemius, H. C.; Salamon, P.; Dottori, F.; Rudari, R.; Kappes, M. S.; Simpson, A. L.; Hadzilacos, G.; Fewtrell, T. J.
2016-09-01
Quantifying flood hazard is an essential component of resilience planning, emergency response, and mitigation, including insurance. Traditionally undertaken at catchment and national scales, recently, efforts have intensified to estimate flood risk globally to better allow consistent and equitable decision making. Global flood hazard models are now a practical reality, thanks to improvements in numerical algorithms, global datasets, computing power, and coupled modelling frameworks. Outputs of these models are vital for consistent quantification of global flood risk and in projecting the impacts of climate change. However, the urgency of these tasks means that outputs are being used as soon as they are made available and before such methods have been adequately tested. To address this, we compare multi-probability flood hazard maps for Africa from six global models and show wide variation in their flood hazard, economic loss and exposed population estimates, which has serious implications for model credibility. While there is around 30%-40% agreement in flood extent, our results show that even at continental scales, there are significant differences in hazard magnitude and spatial pattern between models, notably in deltas, arid/semi-arid zones and wetlands. This study is an important step towards a better understanding of modelling global flood hazard, which is urgently required for both current risk and climate change projections.
NASA Astrophysics Data System (ADS)
DeLorme, D.; Collini, R.; Stephens, S. H.
2017-12-01
As sea level rises, nuisance flooding along coasts is increasing. There is a need to understand how the public views flooding events in order to tailor communications to different audiences appropriately and help improve community resilience. This interdisciplinary presentation is intended to foster greater awareness about present-day nuisance flooding, ongoing conversation about best practices for accurately and effectively communicating about this "cumulative hazard" and its risks, and consideration about possible preparation and mitigation options for community resilience. The presentation will begin by defining and explaining nuisance flooding according to scientific experts and the scholarly literature. Next, we will share several specific examples of how nuisance flooding is increasingly impacting certain areas in the Northern U.S. Gulf Coast to demonstrate the importance of raising attention to and better understanding of this phenomenon across a range of audiences. We will particularly focus on the complex interrelated social, economic, and ecological issues associated with this hazard. Then, we will compare and contrast conceptualizations of nuisance flooding (characteristics, causes, consequences) and associated concerns from the viewpoints and experiences of various stakeholders in the Northern U.S. Gulf Coast (e.g., natural resource managers, community planners, extension specialists). These data are synthesized from multiple research methods and engagement mechanisms (e.g., focus groups, workshop mapping exercises) implemented during the first year of a multi-year NOAA-sponsored interdisciplinary project on Dynamic Sea Level Rise Assessments of the Ability of Natural and Nature-based Features to Mitigate Surge and Nuisance Flooding. To conclude, we will provide future research recommendations along with references and resources about nuisance flooding.
Flood hazard, vulnerability, and risk assessment for human life
NASA Astrophysics Data System (ADS)
Pan, T.; Chang, T.; Lai, J.; Hsieh, M.; Tan, Y.; Lin, Y.
2011-12-01
Flood risk assessment is an important issue for the countries suffering tropical cyclones and monsoon. Taiwan is located in the hot zone of typhoon tracks in the Western Pacific. There are three to five typhoons landing Taiwan every year. Typhoons and heavy rainfalls often cause inundation disaster rising with the increase of population and the development of social economy. The purpose of this study is to carry out the flood hazard, vulnerability and risk in term of human life. Based on the concept that flood risk is composed by flood hazard and vulnerability, a inundation simulation is performed to evaluate the factors of flood hazard for human life according to base flood (100-year return period). The flood depth, velocity and rising ratio are the three factors of flood hazards. Furthermore, the factors of flood vulnerability are identified in terms of human life that are classified into two main factors, residents and environment. The sub factors related to residents are the density of population and the density of vulnerable people including elders, youngers and disabled persons. The sub factors related to environment include the the number of building floors, the locations of buildings, the and distance to rescue center. The analytic hierarchy process (AHP) is adopted to determine the weights of these factors. The risk matrix is applied to show the risk from low to high based on the evaluation of flood hazards and vulnerabilities. The Tseng-Wen River watershed is selected as the case study because a serious flood was induced by Typhoon Morakot in 2009, which produced a record-breaking rainfall of 2.361mm in 48 hours in the last 50 years. The results of assessing the flood hazard, vulnerability and risk in term of human life could improve the emergency operation for flood disaster to prepare enough relief goods and materials during typhoon landing.
Flood hazards in the Seattle-Tacoma urban complex and adjacent areas, Washington
Foxworthy, B.L.; Nassar, E.G.
1975-01-01
Floods are natural hazards that have complicated man's land-use planning for as long as we have had a history. Although flood hzards are a continuing danger, the year-to-year threat cannot be accurately predicted. Also, on any one stream, the time since the last destructive flood might be so long that most people now living near the stream have not experienced such a flood. Because of the unpredictability and common infrequency of disastrous flooding, or out of ignorance about the danger, or perhaps because of an urge to gamble, man tends to focus his attention on only the advantages of the flood-prone areas, rather than the risk due to the occasional major flood. The purposes of this report are to: (1) briefly describe flood hazards in this region, including some that may be unique to the Puget Sound basin, (2) indicate the parts of the area for which flood-hazard data are available, and (3) list the main sources of hydrologic information that is useful for flood-hazard analysis in conjuction with long-range planning. This map-type report is one of a series being prepared by the U.S. Geological Survey to present basic environmental information and interpretations to assist land-use planning in the Puget Sound region.
Urban flooding and Resilience: concepts and needs
NASA Astrophysics Data System (ADS)
Gourbesville, Ph.
2012-04-01
During the recent years, a growing interest for resilience has been expressed in the natural disaster mitigation area and especially in the flood related events. The European Union, under the Seventh Framework Programme (FP7), has initiated several research initiatives in order to explore this concept especially for the urban environments. Under urban resilience is underlined the ability of system potentially exposed to hazard to resist, respond, recover and reflect up to stage which is enough to preserve level of functioning and structure. Urban system can be resilient to lot of different hazards. Urban resilience is defined as the degree to which cities are able to tolerate some disturbance before reorganizing around a new set of structures and processes (Holling 1973, De Bruijn 2005). The United Nation's International strategy for Disaster Reductions has defined resilience as "the capacity of a system, community or society potentially exposed to hazards to adapt, by resisting or changing in order to reach and maintain an acceptable level of functioning and structure. This is determined by the degree to which the social system is capable of organizing itself to increase this capacity for learning from past disasters for better future protection and to improve risk reduction measures."(UN/ISDR 2004). According to that, system should be able to accept the hazard and be able to recover up to condition that provides acceptable operational level of city structure and population during and after hazard event. Main elements of urban system are built environment and population. Physical characteristic of built environment and social characteristic of population have to be examined in order to evaluate resilience. Therefore presenting methodology for assessing flood resilience in urban areas has to be one of the focal points for the exposed cities. Strategies under flood management planning related to resilience of urban systems are usually regarding controlling runoff volume, increasing capacity of drainage systems, spatial planning, building regulations, etc. Resilience also considers resilience of population to floods and it's measured with time. Assessment of resilience that is focused on population is following bottom-up approach starting from individual and then assessing community level. Building resilience involves also contribution of social networks, increasing response capacity of communities, self-organization, learning and education and cheering adaptation culture. Measures for improving social side of resilience covers: raising public awareness, implementation of flood forecasting and warning, emergency response planning and training, sharing information, education and communication. Most of these aspects are analyzed with the CORFU FP7 project. Collaborative Research on Flood Resilience in Urban areas (CORFU) is a major project involving 17 European and Asian institutions, funded by a grant from the European Commission under the Seventh Framework Programme. The overall aim of CORFU is to enable European and Asian partners to learn from each other through joint investigation, development, implementation and dissemination of short to medium term strategies that will enable more scientifically sound management of the consequences of urban flooding in the future and to develop resilience strategies according to each situation. The CORFU project looks at advanced and novel strategies and provide adequate measures for improved flood management in cities. The differences in urban flooding problems in Asia and in Europe range from levels of economic development, infrastructure age, social systems and decision making processes, to prevailing drainage methods, seasonality of rainfall patterns and climate change trends. The study cases are, in Europe, the cities of Hamburg, Barcelona and Nice, and in Asia, Beijing, Dhaka, Mumbai, Taipei, Seoul and Incheon.
Insurability and mitigation of flood losses in private households in Germany.
Thieken, Annegret H; Petrow, Theresia; Kreibich, Heidi; Merz, Bruno
2006-04-01
In Germany, flood insurance is provided by private insurers as a supplement to building or contents insurance. This article presents the results of a survey of insurance companies with regard to eligibility conditions for flood insurance changes after August 2002, when a severe flood caused 1.8 billion euro of insured losses in the Elbe and the Danube catchment areas, and the general role of insurance in flood risk management in Germany. Besides insurance coverage, governmental funding and public donations played an important role in loss compensation after the August 2002 flood. Therefore, this article also analyzes flood loss compensation, risk awareness, and mitigation in insured and uninsured private households. Insured households received loss compensation earlier. They also showed slightly better risk awareness and mitigation strategies. Appropriate incentives should be combined with flood insurance in order to strengthen future private flood loss mitigation. However, there is some evidence that the surveyed insurance companies do little to encourage precautionary measures. To overcome this problem, flood hazards and mitigation strategies should be better communicated to both insurance companies and property owners.
Flood hazards studies in the Mississippi River basin using remote sensing
NASA Technical Reports Server (NTRS)
Rango, A.; Anderson, A. T.
1974-01-01
The Spring 1973 Mississippi River flood was investigated using remotely sensed data from ERTS-1. Both manual and automatic analyses of the data indicated that ERTS-1 is extremely useful as a regional tool for flood mamagement. Quantitative estimates of area flooded were made in St. Charles County, Missouri and Arkansas. Flood hazard mapping was conducted in three study areas along the Mississippi River using pre-flood ERTS-1 imagery enlarged to 1:250,000 and 1:100,000 scale. Initial results indicate that ERTS-1 digital mapping of flood prone areas can be performed at 1:62,500 which is comparable to some conventional flood hazard map scales.
Kourgialas, Nektarios N; Karatzas, George P
2017-12-01
The present work introduces a national scale flood hazard assessment methodology, using multi-criteria analysis and artificial neural networks (ANNs) techniques in a GIS environment. The proposed methodology was applied in Greece, where flash floods are a relatively frequent phenomenon and it has become more intense over the last decades, causing significant damages in rural and urban sectors. In order the most prone flooding areas to be identified, seven factor-maps (that are directly related to flood generation) were combined in a GIS environment. These factor-maps are: a) the Flow accumulation (F), b) the Land use (L), c) the Altitude (A), b) the Slope (S), e) the soil Erodibility (E), f) the Rainfall intensity (R), and g) the available water Capacity (C). The name to the proposed method is "FLASERC". The flood hazard for each one of these factors is classified into five categories: Very low, low, moderate, high, and very high. The above factors are combined and processed using the appropriate ANN algorithm tool. For the ANN training process spatial distribution of historical flooded points in Greece within the five different flood hazard categories of the aforementioned seven factor-maps were combined. In this way, the overall flood hazard map for Greece was determined. The final results are verified using additional historical flood events that have occurred in Greece over the last 100years. In addition, an overview of flood protection measures and adaptation policy approaches were proposed for agricultural and urban areas located at very high flood hazard areas. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Allen, Simon; Awasthi, Kirtiman; Ballesteros, Juan Antonio; Frey, Holger; Huggel, Christian; Kahn, Mustafa; Linsbauer, Andreas; Rohrer, Mario; Ruiz-Villanueva, Virginia; Salzmann, Nadine; Schauwecker, Simone; Stoffel, Markus
2014-05-01
High mountain environments are particularly susceptible to changes in atmospheric temperature and precipitation patterns, owing to the sensitivity of cryospheric components to melting conditions, and the importance of rainfall and river runoff for sustaining crops and livelihoods. The Himalayan state of Himachal Pradesh (population ca. 6 mil.) is the initial focus of a joint program between the governments of India and Switzerland aiming to build scientific capacity to understand the threat, and plan for adaptation to climate change in the Himalaya. Here we focus on the cryosphere, and provide an overview of the integrated framework we will follow to assess future water resource vulnerability from changes in runoff, and assess future disaster risk from mass movement and flood hazards. At this early stage of our project, we aim to identify key methodological steps, data requirements, and related challenges. The initial implementation of our framework will be centered on the Kullu district. Core and integrative components of both the traditional climate vulnerability framework (eg., IPCC AR4), and the vulnerability and risk concepts of the disaster risk management community (eg., IPCC SREX 2012) include the assessment of sensitivity, exposure, and adaptive capacity. Sensitivity to water vulnerability in the Kullu district requires the quantification of current and future water resource usage at the block or community level, using metrics such as total irrigated land area, total electricity usage, population density and birth rates. Within the disaster risk framework, sensitivity to mass movement and flood hazards will be determined based on factors such as population density and demographics (notably age and gender), strength of building materials etc. Projected temperature and precipitation data from regional climate model output will be used to model changes in melt water runoff and streamflow, determining the exposure of communities and natural systems to future changes in water quantity and quality. For disaster risk assessment, the goal is to identify the intersection of potential mass movement and flood hazards, with exposed people, resources, and assets. Base level information is required on glacier area and volume, mass balance, glacial lake distribution, surface topography, information on snow cover, duration, and snow water equivalent, and gauge measurements on river and stream flows. Where instrumental data is lacking, information of past hydrological regimes and evidence of mass movement can be derived from documentary records (archival reports), from geological indicators (i.e. palaeofloods: sedimentary and biological records over centennial to millennial scales), and from botanical sources (i.e. dendrogeomorphology). The adaptive capacity to face the challenges associated with a changing cryosphere in the Kullu district will require economic, political, and knowledge capacity to plan, prepare, and respond to issues of water quantity and quality, and disaster risk associated with mass movement and flood hazard. Socio-economic information to be assessed includes economic metrics, literacy rates, and population demographic factors such as gender, age, and religion. These same factors largely determine a communities capacity to anticipate, respond to, and recover from disasters.
NASA Astrophysics Data System (ADS)
Kwak, Young-joo; Magome, Jun; Hasegawa, Akira; Iwami, Yoichi
2017-04-01
Causing widespread devastation with massive economic damage and loss of human lives, flood disasters hamper economic growth and accelerate poverty particularly in developing countries. Globally, this trend will likely continue due to increase in flood magnitude and lack of preparedness for extreme events. In line with risk reduction efforts since the early 21st century, the monitors and governors of global river floods should pay attention to international scientific and policy communities for support to facilitate evidence-based policy making with a special interest in long-term changes due to climate change and socio-economic effects. Although advanced hydrological inundation models and risk models have been developed to reveal flood risk, hazard, exposure, and vulnerability at a river basin, it is obviously hard to identify the distribution and locations of continent-level flood risk based on national-level data. Therefore, we propose a methodological possibility for rapid global flood risk assessment with the results from its application to the two periods, i.e., Present (from 1980 to 2004) and Future (from 2075 to 2099). The method is particularly designed to effectively simplify complexities of a hazard area by calculating the differential inundation depth using GFID2M (global flood inundation depth 2-dimension model), despite low data availability. In this research, we addressed the question of which parts in the Eurasian region (8E to 180E, 0N to 60N) can be found as high-risk areas in terms of exposed population and economy in case of a 50-year return period flood. Economic losses were estimated according to the Shared Socioeconomic Pathways (SSP) scenario, and the flood scale was defined using the annual maximum daily river discharge under the extreme conditions of climate change simulated with MRI-AGCM3.2S based on the Representative Concentration Pathways (RCP8.5) emissions scenario. As a preliminary result, the total potential economic loss in the Eurasian region was identified as an upward trend proportional to projected vulnerable population based on distributed data of global population (Landscan 2009 by the Oak Ridge National Laboratory) coupled with SSP Gross Domestic Product (GDP) per capita in the future. The differences between Present and Future in physical exposure and potential economic losses are projected to increase approximately 305 million affected people and approximately 3 % of the total GDP (US 2400 billion) potential damage, respectively, in terms of climate change and socioeconomic impacts.
Gotham, Kevin Fox; Campanella, Richard; Lauve-Moon, Katie; Powers, Bradford
2018-02-01
This article investigates the determinants of flood risk perceptions in New Orleans, Louisiana (United States), a deltaic coastal city highly vulnerable to seasonal nuisance flooding and hurricane-induced deluges and storm surges. Few studies have investigated the influence of hazard experience, geophysical vulnerability (hazard proximity), and risk perceptions in cities undergoing postdisaster recovery and rebuilding. We use ordinal logistic regression techniques to analyze experiential, geophysical, and sociodemographic variables derived from a survey of 384 residents in seven neighborhoods. We find that residents living in neighborhoods that flooded during Hurricane Katrina exhibit higher levels of perceived risk than those residents living in neighborhoods that did not flood. In addition, findings suggest that flood risk perception is positively associated with female gender, lower income, and direct flood experiences. In conclusion, we discuss the implications of these findings for theoretical and empirical research on environmental risk, flood risk communication strategies, and flood hazards planning. © 2017 Society for Risk Analysis.
Flood maps in Europe - methods, availability and use
NASA Astrophysics Data System (ADS)
de Moel, H.; van Alphen, J.; Aerts, J. C. J. H.
2009-03-01
To support the transition from traditional flood defence strategies to a flood risk management approach at the basin scale in Europe, the EU has adopted a new Directive (2007/60/EC) at the end of 2007. One of the major tasks which member states must carry out in order to comply with this Directive is to map flood hazards and risks in their territory, which will form the basis of future flood risk management plans. This paper gives an overview of existing flood mapping practices in 29 countries in Europe and shows what maps are already available and how such maps are used. Roughly half of the countries considered have maps covering as good as their entire territory, and another third have maps covering significant parts of their territory. Only five countries have very limited or no flood maps available yet. Of the different flood maps distinguished, it appears that flood extent maps are the most commonly produced floods maps (in 23 countries), but flood depth maps are also regularly created (in seven countries). Very few countries have developed flood risk maps that include information on the consequences of flooding. The available flood maps are mostly developed by governmental organizations and primarily used for emergency planning, spatial planning, and awareness raising. In spatial planning, flood zones delimited on flood maps mainly serve as guidelines and are not binding. Even in the few countries (e.g. France, Poland) where there is a legal basis to regulate floodplain developments using flood zones, practical problems are often faced which reduce the mitigating effect of such binding legislation. Flood maps, also mainly extent maps, are also created by the insurance industry in Europe and used to determine insurability, differentiate premiums, or to assess long-term financial solvency. Finally, flood maps are also produced by international river commissions. With respect to the EU Flood Directive, many countries already have a good starting point to map their flood hazards. A flood risk based map that includes consequences, however, has yet to be developed by most countries.
Comparative hazard analysis of processes leading to remarkable flash floods (France, 1930-1999)
NASA Astrophysics Data System (ADS)
Boudou, M.; Lang, M.; Vinet, F.; Cœur, D.
2016-10-01
Flash flood events are responsible for large economic losses and lead to fatalities every year in France. This is especially the case in the Mediterranean and oversea territories/departments of France, characterized by extreme hydro-climatological features and with a large part of the population exposed to flood risks. The recurrence of remarkable flash flood events, associated with high hazard intensity, significant damage and socio-political consequences, therefore raises several issues for authorities and risk management policies. This study aims to improve our understanding of the hazard analysis process in the case of four remarkable flood events: March 1930, October 1940, January 1980 and November 1999. Firstly, we present the methodology used to define the remarkability score of a flood event. Then, to identify the factors leading to a remarkable flood event, we explore the main parameters of the hazard analysis process, such as the meteorological triggering conditions, the return period of the rainfall and peak discharge, as well as some additional factors (initial catchment state, flood chronology, cascade effects, etc.). The results contribute to understanding the complexity of the processes leading to flood hazard and highlight the importance for risk managers of taking additional factors into account.
Recent Developments of the Florida Public Hurricane Loss Model
NASA Astrophysics Data System (ADS)
Cocke, S.; Shin, D. W.; Annane, B.
2016-12-01
Catastrophe models are used extensively by the insurance industry to estimate losses due to natural hazards such as hurricanes and earthquakes. In the state of Florida, primary insurers for hurricane damage to residential properties are required by law to use certified catastrophe models to establish their premiums and capital reserves. The Florida Public Hurricane Loss Model (FPHLM) is one of only five certified catastrophe models in Florida, and the only non-commercial model certified. The FPHLM has been funded through the Florida Legislature and is overseen by the Florida Office of Insurance Regulation (OIR). The model was developed by a consortium of universities and private consultants primary located in Florida, but includes some partners outside of the state. The FPHLM has met Florida requirements since 2006 and has undergone continuous evolution to maintain state-of-the-art capabilities and changes in state requirements established by the Florida Commission on Hurricane Loss Projection Methodology. Recently the model has been undergoing major enhancement to incorporate damage due to flooding, which not only includes hurricane floods but floods due to all potential natural hazards. This work is being done in anticipation of future changes in the National Flood Insurance Program (NFIP) that will bring private insurers to the flood market. The model will incorporate a surge model as well as an inland flood model. We will present progress on these recent enhancements along with additional progress of the model.
Creating a Flood Risk Index to Improve Community Resilience
NASA Astrophysics Data System (ADS)
Klima, K.; El Gammal, L.
2017-12-01
While flood risk reduction is an existent discourse and agenda in policy and insurance, vulnerabilities vary between communities; some communities may have aging infrastructure, or an older/poorer population less able to absorb a flood, putting them at increased risk from the hazards. As a result, some are considering environmental justice aspects of flood risk reduction. To date, catastrophe models have focused on creating floodmaps (e.g., NOAA's Sea Level Rise Viewer, Climate Central's Surging Seas), or on linking hydrological models to economic loss models (e.g., HEC-RAS + HAZUS). However, this approach may be highly inequitable between areas of different income (as well as other demographics). Some have begun work on combining hydrology with vulnerability information (e.g., USACE's North Atlantic Comprehensive Coastal Study). To our knowledge, no one has tried to adapt the more advanced known heat risk theory to water risk by combining hydrology information (e.g., HEC-RAS, floodplain maps) with the social vulnerability (e.g., Cutter et al.) of the residents. This project will create a method to combine water hazard data with a derived water vulnerability index to help a community understand their current and future water risk. We will use the case study area of Pittsburgh, PA, which faces severe precipitation and riverine flooding hazards. Building on present literature of factors influencing water vulnerability contextualized to the Pittsburgh region, we will identify, quantify, and map the top factors impacting water vulnerability. We will combine these with flood maps to identify the geospatial distribution of water risk. This work will allow policy makers to identify location-specific aspects of water vulnerability and risk in any community, thus promoting environmental justice. It is possible that this type of original research would create maps of relative water risk that may prove as understandable to the general public as other flood maps, and may also help to promote "just resilience". This presentation will present a method to combine water hazard data with a derived water vulnerability index to present work on the geospatial distribution of water risk in Pittsburgh, PA.
A statistical approach to evaluate flood risk at the regional level: an application to Italy
NASA Astrophysics Data System (ADS)
Rossi, Mauro; Marchesini, Ivan; Salvati, Paola; Donnini, Marco; Guzzetti, Fausto; Sterlacchini, Simone; Zazzeri, Marco; Bonazzi, Alessandro; Carlesi, Andrea
2016-04-01
Floods are frequent and widespread in Italy, causing every year multiple fatalities and extensive damages to public and private structures. A pre-requisite for the development of mitigation schemes, including financial instruments such as insurance, is the ability to quantify their costs starting from the estimation of the underlying flood hazard. However, comprehensive and coherent information on flood prone areas, and estimates on the frequency and intensity of flood events, are not often available at scales appropriate for risk pooling and diversification. In Italy, River Basins Hydrogeological Plans (PAI), prepared by basin administrations, are the basic descriptive, regulatory, technical and operational tools for environmental planning in flood prone areas. Nevertheless, such plans do not cover the entire Italian territory, having significant gaps along the minor hydrographic network and in ungauged basins. Several process-based modelling approaches have been used by different basin administrations for the flood hazard assessment, resulting in an inhomogeneous hazard zonation of the territory. As a result, flood hazard assessments expected and damage estimations across the different Italian basin administrations are not always coherent. To overcome these limitations, we propose a simplified multivariate statistical approach for the regional flood hazard zonation coupled with a flood impact model. This modelling approach has been applied in different Italian basin administrations, allowing a preliminary but coherent and comparable estimation of the flood hazard and the relative impact. Model performances are evaluated comparing the predicted flood prone areas with the corresponding PAI zonation. The proposed approach will provide standardized information (following the EU Floods Directive specifications) on flood risk at a regional level which can in turn be more readily applied to assess flood economic impacts. Furthermore, in the assumption of an appropriate flood risk statistical characterization, the proposed procedure could be applied straightforward outside the national borders, particularly in areas with similar geo-environmental settings.
Hydrology Analysis and Modelling for Klang River Basin Flood Hazard Map
NASA Astrophysics Data System (ADS)
Sidek, L. M.; Rostam, N. E.; Hidayah, B.; Roseli, ZA; Majid, W. H. A. W. A.; Zahari, N. Z.; Salleh, S. H. M.; Ahmad, R. D. R.; Ahmad, M. N.
2016-03-01
Flooding, a common environmental hazard worldwide has in recent times, increased as a result of climate change and urbanization with the effects felt more in developing countries. As a result, the explosive of flooding to Tenaga Nasional Berhad (TNB) substation is increased rapidly due to existing substations are located in flood prone area. By understanding the impact of flood to their substation, TNB has provided the non-structure mitigation with the integration of Flood Hazard Map with their substation. Hydrology analysis is the important part in providing runoff as the input for the hydraulic part.
Integrating Entropy-Based Naïve Bayes and GIS for Spatial Evaluation of Flood Hazard.
Liu, Rui; Chen, Yun; Wu, Jianping; Gao, Lei; Barrett, Damian; Xu, Tingbao; Li, Xiaojuan; Li, Linyi; Huang, Chang; Yu, Jia
2017-04-01
Regional flood risk caused by intensive rainfall under extreme climate conditions has increasingly attracted global attention. Mapping and evaluation of flood hazard are vital parts in flood risk assessment. This study develops an integrated framework for estimating spatial likelihood of flood hazard by coupling weighted naïve Bayes (WNB), geographic information system, and remote sensing. The north part of Fitzroy River Basin in Queensland, Australia, was selected as a case study site. The environmental indices, including extreme rainfall, evapotranspiration, net-water index, soil water retention, elevation, slope, drainage proximity, and density, were generated from spatial data representing climate, soil, vegetation, hydrology, and topography. These indices were weighted using the statistics-based entropy method. The weighted indices were input into the WNB-based model to delineate a regional flood risk map that indicates the likelihood of flood occurrence. The resultant map was validated by the maximum inundation extent extracted from moderate resolution imaging spectroradiometer (MODIS) imagery. The evaluation results, including mapping and evaluation of the distribution of flood hazard, are helpful in guiding flood inundation disaster responses for the region. The novel approach presented consists of weighted grid data, image-based sampling and validation, cell-by-cell probability inferring and spatial mapping. It is superior to an existing spatial naive Bayes (NB) method for regional flood hazard assessment. It can also be extended to other likelihood-related environmental hazard studies. © 2016 Society for Risk Analysis.
Floods and droughts: friends or foes?
NASA Astrophysics Data System (ADS)
Prudhomme, Christel
2017-04-01
Water hazards are some of the biggest threats to lives and livelihoods globally, causing serious damages to society and infrastructure. But floods and droughts are an essential part of the hydrological regime that ensures fundamental ecosystem functions, providing natural ways to bring in nutrients, flush out pollutants and enabling soils, rivers and lakes natural biodiversity to thrive. Traditionally, floods and droughts are too often considered separately, with scientific advance in process understanding, modelling, statistical characterisation and impact assessment are often done independently, possibly delaying the development of innovative methods that could be applied to both. This talk will review some of the key characteristics of floods and droughts, highlighting differences and commonalties, losses and benefits, with the aim of identifying future key research challenges faced by both current and next generation of hydrologists.
Strong influence of El Niño Southern Oscillation on flood risk around the world
Ward, Philip J.; Jongman, B; Kummu, M.; Dettinger, Mike; Sperna Weiland, F.C; Winsemius, H.C
2014-01-01
El Niño Southern Oscillation (ENSO) is the most dominant interannual signal of climate variability and has a strong influence on climate over large parts of the world. In turn, it strongly influences many natural hazards (such as hurricanes and droughts) and their resulting socioeconomic impacts, including economic damage and loss of life. However, although ENSO is known to influence hydrology in many regions of the world, little is known about its influence on the socioeconomic impacts of floods (i.e., flood risk). To address this, we developed a modeling framework to assess ENSO’s influence on flood risk at the global scale, expressed in terms of affected population and gross domestic product and economic damages. We show that ENSO exerts strong and widespread influences on both flood hazard and risk. Reliable anomalies of flood risk exist during El Niño or La Niña years, or both, in basins spanning almost half (44%) of Earth’s land surface. Our results show that climate variability, especially from ENSO, should be incorporated into disaster-risk analyses and policies. Because ENSO has some predictive skill with lead times of several seasons, the findings suggest the possibility to develop probabilistic flood-risk projections, which could be used for improved disaster planning. The findings are also relevant in the context of climate change. If the frequency and/or magnitude of ENSO events were to change in the future, this finding could imply changes in flood-risk variations across almost half of the world’s terrestrial regions.
Early warning of orographically induced floods and landslides in Western Norway
NASA Astrophysics Data System (ADS)
Leine, Ann-Live; Wang, Thea; Boje, Søren
2017-04-01
In Western Norway, landslides and debris flows are commonly initiated by short-term orographic rainfall or intensity peaks during a prolonged rainfall event. In recent years, the flood warning service in Norway has evolved from being solely a flood forecasting service to also integrating landslides into its early warning systems. As both floods and landslides are closely related to the same hydrometeorological processes, particularly in small catchments, there is a natural synergy between monitoring flood and landslide risk. The Norwegian Flood and Landslide Hazard Forecasting and Warning Service issues regional landslide hazard warnings based on hydrological models, threshold values, observations and weather forecasts. Intense rainfall events and/or orographic precipitation that, under certain topographic conditions, significantly increase the risk of debris avalanches and debris floods are lately receiving more research focus from the Norwegian warning service. Orographic precipitation is a common feature in W-Norway, when moist and relatively mild air arrives from the Atlantic. Steep mountain slopes covered by glacial till makes the region prone to landslides, as well as flooding. The operational early warning system in Norway requires constant improvement, especially with the enhanced number of intense rainfall events that occur in a warming climate. Here, we examine different cases of intense rainfall events which have lead to landslides and debris flows, as well as increased runoff in fast responding small catchments. The main objective is to increase the understanding of the hydrometeorological conditions related to these events, in order to make priorities for the future development of the warning service.
Strong influence of El Niño Southern Oscillation on flood risk around the world
Ward, Philip J.; Jongman, Brenden; Kummu, Matti; Dettinger, Michael D.; Sperna Weiland, Frederiek C.; Winsemius, Hessel C.
2014-01-01
El Niño Southern Oscillation (ENSO) is the most dominant interannual signal of climate variability and has a strong influence on climate over large parts of the world. In turn, it strongly influences many natural hazards (such as hurricanes and droughts) and their resulting socioeconomic impacts, including economic damage and loss of life. However, although ENSO is known to influence hydrology in many regions of the world, little is known about its influence on the socioeconomic impacts of floods (i.e., flood risk). To address this, we developed a modeling framework to assess ENSO’s influence on flood risk at the global scale, expressed in terms of affected population and gross domestic product and economic damages. We show that ENSO exerts strong and widespread influences on both flood hazard and risk. Reliable anomalies of flood risk exist during El Niño or La Niña years, or both, in basins spanning almost half (44%) of Earth’s land surface. Our results show that climate variability, especially from ENSO, should be incorporated into disaster-risk analyses and policies. Because ENSO has some predictive skill with lead times of several seasons, the findings suggest the possibility to develop probabilistic flood-risk projections, which could be used for improved disaster planning. The findings are also relevant in the context of climate change. If the frequency and/or magnitude of ENSO events were to change in the future, this finding could imply changes in flood-risk variations across almost half of the world’s terrestrial regions. PMID:25331867
24 CFR 3285.302 - Flood hazard areas.
Code of Federal Regulations, 2010 CFR
2010-04-01
... loads associated with design flood and wind events or combined wind and flood events, and homes must be installed on foundation supports that are designed and anchored to prevent floatation, collapse, or lateral... URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Foundations § 3285.302 Flood hazard...
Effects of climate variability on global scale flood risk
NASA Astrophysics Data System (ADS)
Ward, P.; Dettinger, M. D.; Kummu, M.; Jongman, B.; Sperna Weiland, F.; Winsemius, H.
2013-12-01
In this contribution we demonstrate the influence of climate variability on flood risk. Globally, flooding is one of the worst natural hazards in terms of economic damages; Munich Re estimates global losses in the last decade to be in excess of $240 billion. As a result, scientifically sound estimates of flood risk at the largest scales are increasingly needed by industry (including multinational companies and the insurance industry) and policy communities. Several assessments of global scale flood risk under current and conditions have recently become available, and this year has seen the first studies assessing how flood risk may change in the future due to global change. However, the influence of climate variability on flood risk has as yet hardly been studied, despite the fact that: (a) in other fields (drought, hurricane damage, food production) this variability is as important for policy and practice as long term change; and (b) climate variability has a strong influence in peak riverflows around the world. To address this issue, this contribution illustrates the influence of ENSO-driven climate variability on flood risk, at both the globally aggregated scale and the scale of countries and large river basins. Although it exerts significant and widespread influences on flood peak discharges in many parts of the world, we show that ENSO does not have a statistically significant influence on flood risk once aggregated to global totals. At the scale of individual countries, though, strong relationships exist over large parts of the Earth's surface. For example, we find particularly strong anomalies of flood risk in El Niño or La Niña years (compared to all years) in southern Africa, parts of western Africa, Australia, parts of Central Eurasia (especially for El Niño), the western USA (especially for La Niña), and parts of South America. These findings have large implications for both decadal climate-risk projections and long-term future climate change research. We carried out the research by simulating daily river discharge using a global hydrological model (PCR-GLOBWB), forced with gridded climate reanalysis time-series. From this, we derived peak annual flood volumes for large-scale river basins globally. These were used to force a global inundation model (dynRout) to map inundation extent and depth for return periods between 2 and 1000 years, under El Niño conditions, neutral conditions, and La Niña conditions. Theses flood hazard maps were combined with global datasets on socioeconomic variables such as population and income to represent the socioeconomic exposure to flooding, and depth-damage curves to represent vulnerability.
12 CFR 760.6 - Required use of standard flood hazard determination form.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 12 Banks and Banking 6 2011-01-01 2011-01-01 false Required use of standard flood hazard determination form. 760.6 Section 760.6 Banks and Banking NATIONAL CREDIT UNION ADMINISTRATION REGULATIONS..., computerized, or electronic manner. A credit union may obtain the standard flood hazard determination form from...
12 CFR 572.6 - Required use of standard flood hazard determination form.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 12 Banks and Banking 5 2011-01-01 2011-01-01 false Required use of standard flood hazard determination form. 572.6 Section 572.6 Banks and Banking OFFICE OF THRIFT SUPERVISION, DEPARTMENT OF THE..., computerized, or electronic manner. A savings association may obtain the standard flood hazard determination...
Water Level Prediction of Lake Cascade Mahakam Using Adaptive Neural Network Backpropagation (ANNBP)
NASA Astrophysics Data System (ADS)
Mislan; Gaffar, A. F. O.; Haviluddin; Puspitasari, N.
2018-04-01
A natural hazard information and flood events are indispensable as a form of prevention and improvement. One of the causes is flooding in the areas around the lake. Therefore, forecasting the surface of Lake water level to anticipate flooding is required. The purpose of this paper is implemented computational intelligence method namely Adaptive Neural Network Backpropagation (ANNBP) to forecasting the Lake Cascade Mahakam. Based on experiment, performance of ANNBP indicated that Lake water level prediction have been accurate by using mean square error (MSE) and mean absolute percentage error (MAPE). In other words, computational intelligence method can produce good accuracy. A hybrid and optimization of computational intelligence are focus in the future work.
Back analysis of Swiss flood danger map to define local flood hazards
NASA Astrophysics Data System (ADS)
Choffet, Marc; Derron, Marc-Henri; Jaboyedoff, Michel; Leroi, Eric; Mayis, Arnaud
2010-05-01
The flood hazard maps for the entire Switzerland will be available at the end of 2011. Furthermore, the Swiss territory has been covered by aerial laser scanning (ALS) providing high resolution digital elevation model (DEM). This paper describes the development of a method for analyzing the local flood hazard based on Swiss hazard maps and HR-DEM. In their original state, Swiss hazard maps are constructed on the basis of an aggregation of information, a matrix intensity, and frequency. The degree of danger represented by the yellow, blue and red zones gives no information on the water level at each point of the territory. The developed method is based on a superposition of the danger map with the HR-DEM to determine the water level in a hazard area. To perform this method, (1) a triangulation is based on the intersection of the hazard map with the HR-DEM. It uses the limits of area where information is contrain. The hazard map perimeter and the boundaries of hazard areas give information on the widest possible overflow in case of flooding. It is also possible to associate it with a return period. (2) Based on these areas and the difference with the DEM, it is possible to calibrate the highest flood level and the extract water levels for the entire area. This analysis of existing documents opens up interesting perspectives for understanding how infrastructures are threatened by flood hazard by predicting water levels and potential damages to buildings while proposing remedial measures. Indeed, this method allows estimating the water level at each point of a building in case of flooding. It is designed to provide spatial information on water height levels; this offers a different approach of buildings in danger zones. Indeed, it is possible to discern several elements, such as areas of water accumulation involving longer flood duration, possible structural damages to buildings due to high hydrostatic pressure, determination of a local hazard, or the display of water levels in 3D.
Topography- and nightlight-based national flood risk assessment in Canada
NASA Astrophysics Data System (ADS)
Elshorbagy, Amin; Bharath, Raja; Lakhanpal, Anchit; Ceola, Serena; Montanari, Alberto; Lindenschmidt, Karl-Erich
2017-04-01
In Canada, flood analysis and water resource management, in general, are tasks conducted at the provincial level; therefore, unified national-scale approaches to water-related problems are uncommon. In this study, a national-scale flood risk assessment approach is proposed and developed. The study focuses on using global and national datasets available with various resolutions to create flood risk maps. First, a flood hazard map of Canada is developed using topography-based parameters derived from digital elevation models, namely, elevation above nearest drainage (EAND) and distance from nearest drainage (DFND). This flood hazard mapping method is tested on a smaller area around the city of Calgary, Alberta, against a flood inundation map produced by the city using hydraulic modelling. Second, a flood exposure map of Canada is developed using a land-use map and the satellite-based nightlight luminosity data as two exposure parameters. Third, an economic flood risk map is produced, and subsequently overlaid with population density information to produce a socioeconomic flood risk map for Canada. All three maps of hazard, exposure, and risk are classified into five classes, ranging from very low to severe. A simple way to include flood protection measures in hazard estimation is also demonstrated using the example of the city of Winnipeg, Manitoba. This could be done for the entire country if information on flood protection across Canada were available. The evaluation of the flood hazard map shows that the topography-based method adopted in this study is both practical and reliable for large-scale analysis. Sensitivity analysis regarding the resolution of the digital elevation model is needed to identify the resolution that is fine enough for reliable hazard mapping, but coarse enough for computational tractability. The nightlight data are found to be useful for exposure and risk mapping in Canada; however, uncertainty analysis should be conducted to investigate the effect of the overglow phenomenon on flood risk mapping.
Mesh versus bathtub - effects of flood models on exposure analysis in Switzerland
NASA Astrophysics Data System (ADS)
Röthlisberger, Veronika; Zischg, Andreas; Keiler, Margreth
2016-04-01
In Switzerland, mainly two types of maps that indicate potential flood zones are available for flood exposure analyses: 1) Aquaprotect, a nationwide overview provided by the Federal Office for the Environment and 2) communal flood hazard maps available from the 26 cantons. The model used to produce Aquaprotect can be described as a bathtub approach or linear superposition method with three main parameters, namely the horizontal and vertical distance of a point to water features and the size of the river sub-basin. Whereas the determination of flood zones in Aquaprotect is based on a uniform, nationwide model, the communal flood hazard maps are less homogenous, as they have been elaborated either at communal or cantonal levels. Yet their basic content (i.e. indication of potential flood zones for three recurrence periods, with differentiation of at least three inundation depths) is described in national directives and the vast majority of communal flood hazard maps are based on 2D inundation simulations using meshes. Apart from the methodical differences between Aquaprotect and the communal flood hazard maps (and among different communal flood hazard maps), all of these maps include a layer with a similar recurrence period (i.e. Aquaprotect 250 years, flood hazard maps 300 years) beyond the intended protection level of installed structural systems. In our study, we compare the resulting exposure by overlaying the two types of flood maps with a complete, harmonized, and nationwide dataset of building polygons. We assess the different exposure at the national level, and also consider differences among the 26 cantons and the six biogeographically unique regions, respectively. It was observed that while the nationwide exposure rates for both types of flood maps are similar, the differences within certain cantons and biogeographical regions are remarkable. We conclude that flood maps based on bathtub models are appropriate for assessments at national levels, while maps based on 2D simulations are preferable at sub-national levels.
Compounding effects of sea level rise and fluvial flooding.
Moftakhari, Hamed R; Salvadori, Gianfausto; AghaKouchak, Amir; Sanders, Brett F; Matthew, Richard A
2017-09-12
Sea level rise (SLR), a well-documented and urgent aspect of anthropogenic global warming, threatens population and assets located in low-lying coastal regions all around the world. Common flood hazard assessment practices typically account for one driver at a time (e.g., either fluvial flooding only or ocean flooding only), whereas coastal cities vulnerable to SLR are at risk for flooding from multiple drivers (e.g., extreme coastal high tide, storm surge, and river flow). Here, we propose a bivariate flood hazard assessment approach that accounts for compound flooding from river flow and coastal water level, and we show that a univariate approach may not appropriately characterize the flood hazard if there are compounding effects. Using copulas and bivariate dependence analysis, we also quantify the increases in failure probabilities for 2030 and 2050 caused by SLR under representative concentration pathways 4.5 and 8.5. Additionally, the increase in failure probability is shown to be strongly affected by compounding effects. The proposed failure probability method offers an innovative tool for assessing compounding flood hazards in a warming climate.
78 FR 21136 - Changes in Flood Hazard Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-09
... zone designations, or the regulatory floodway (hereinafter referred to as flood hazard determinations), as shown on the Flood Insurance Rate Maps (FIRMs), and where applicable, in the supporting Flood... appeals to the Chief Executive Officer of the community as listed in the table below. FOR FURTHER...
78 FR 35300 - Changes in Flood Hazard Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-12
... zone designations, or the regulatory floodway (hereinafter referred to as flood hazard determinations), as shown on the Flood Insurance Rate Maps (FIRMs), and where applicable, in the supporting Flood... appeals to the Chief Executive Officer of the community as listed in the table below. FOR FURTHER...
Code of Federal Regulations, 2011 CFR
2011-01-01
... SPECIAL FLOOD HAZARDS Pt. 339, App. A Appendix A to Part 339—Sample Form of Notice of Special Flood... you do not purchase flood insurance. The flood insurance must be maintained for the life of the loan. If you fail to purchase or renew flood insurance on the property, Federal law authorizes and requires...
Code of Federal Regulations, 2010 CFR
2010-01-01
... SPECIAL FLOOD HAZARDS Pt. 339, App. A Appendix A to Part 339—Sample Form of Notice of Special Flood... you do not purchase flood insurance. The flood insurance must be maintained for the life of the loan. If you fail to purchase or renew flood insurance on the property, Federal law authorizes and requires...
Analysis of present and future potential compound flooding risk along the European coast
NASA Astrophysics Data System (ADS)
Bevacqua, Emanuele; Maraun, Douglas; Voukouvalas, Evangelos; Vousdoukas, Michalis I.; Widmann, Martin; Manning, Colin; Vrac, Mathieu
2017-04-01
The coastal zone is the natural border between the sea and the mainland, and it is constantly under the influence of marine and land-based natural and human-induced pressure. Compound floods are extreme events occurring in coastal areas where the interaction of joint high sea level and large amount of precipitation causes extreme floodings. Typically the risk of flooding in coastal areas is defined analysing either sea level or precipitation driven floodings, however compound floods should be considered to avoid an underestimation of the risk. In the future, the human pressure at the coastal zone is expected to increase, urging for a comprehensive analysis of the compound flooding risk under different climate change scenarios. In this study we introduce the concept of "potential risk" as we investigate how often large amount of precipitation and high sea level may co-occur, and not the effective impact due to the interaction of these two hazards. The effective risk of compound flooding in a specific place depends also on the local orography and on the existing protections. The estimation of the potential risk of compound flooding is useful to individuate places where an effective risk of compound flooding may exist, and where further studies would be useful to get more precise information on the local risk. We estimate the potential risk of compound flooding along the European coastal zone incorporating the ERA-Interim meteorological reanalysis for the past and present state, and the future projections from two RCP scenarios (namely the RCP4.5 and RCP8.5 scenarios) as derived from 8 CMIP5 models of the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Sea level data are estimated by forcing the hydrodynamic model Delft3D-Flow with 6-hourly wind and atmospheric pressure fields. Based on sea level (storm surge and astronomical tide) and precipitation joint occurrence analysis, a map of the potential compound flooding risk along the European coast is proposed and critical places with high potential risk are identified. For these critical places, we plan to asses the potential compound flood risk driven by coinciding extreme values of sea level and river discharge. Finally, we analyse the atmospheric large scale processes that lead to compound floods and their variation under future climate change scenarios.
NASA Astrophysics Data System (ADS)
Hamilton, D.; Shaller, P.; Cattarossi, A.
The 100-year flood hazard was reappraised for a parcel of land in the central Coachella Valley of southern California, USA, by use of geologic mapping, geomorphic analy- sis, analysis of historical aerial photos, and computer-aided hydrologic modeling. An- nual precipitation is only about 6 inches, but the area is subject to rare but extreme rainfall events resulting from thunderstorms and hurricanes. The principal flooding hazard at the parcel is from nearby Thousand Palms Wash, which transmits drainage directly from the Little San Bernardino Mountains into the central Coachella Valley. A perceived secondary flood hazard originates from several drainage basins in the Little San Bernardino Mountains northwest of the Indio Hills. This source was the subject of this investigation. The San Andreas fault, which consists of two major active strands in the upper Coachella Valley area, dominates the geology, landforms, groundwater conditions and surface hydrology in the study area. Gouge associated with the faults impedes groundwater flow, resulting in shallow groundwater levels, lush vegetation, and the stabilization of large masses of sand dunes along the fault traces. Sand forms dominate the surface of the Coachella Valley and pose two barriers to storm water flow: a physical barrier created by their height, and a hydrologic barrier caused by their high infiltration rate. Probable routes of future storm water flows in the study area were evaluated using historical aerial photos of flood events that struck the area between 1974 and 1991. The Willow Hole gap is the most direct route for storm waters from the Little San Bernardino Mountains to the central Coachella Valley. Historical air photo data indicate that storm water from the Little San Bernardino Mountains does not normally flow through the gap, but rather is shunted around a large shutter ridge associated with the San Andreas fault. Two FLO-2D hydrologic models were developed to evaluate the 100-year flooding potential at the subject property from sources in the Little San Bernardino Mountains. The upstream model, which was run assuming no infiltration, was used as input to the downstream model, which was run using three different values for infiltration. Where infiltration was considered at all (even at a level much lower than the minimum predicted from soils mapping of the area), no storm water from the Little San Bernardino Mountains was able reach the 1 subject property whatsoever. The subject property therefore does not appear to be at risk from secondary flooding sources in the Little San Bernardino Mountains in the 100-year storm. This case study was performed in accordance with new guidelines for flood hazards on alluvial fans issued by the Federal Emergency Management Agency who is the lead agency in the USA that identifies flood prone areas. 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Ootegem, Luc; SHERPPA — Ghent University; Verhofstadt, Elsy
Depth–damage-functions, relating the monetary flood damage to the depth of the inundation, are commonly used in the case of fluvial floods (floods caused by a river overflowing). We construct four multivariate damage models for pluvial floods (caused by extreme rainfall) by differentiating on the one hand between ground floor floods and basement floods and on the other hand between damage to residential buildings and damage to housing contents. We do not only take into account the effect of flood-depth on damage, but also incorporate the effects of non-hazard indicators (building characteristics, behavioural indicators and socio-economic variables). By using a Tobit-estimationmore » technique on identified victims of pluvial floods in Flanders (Belgium), we take into account the effect of cases of reported zero damage. Our results show that the flood depth is an important predictor of damage, but with a diverging impact between ground floor floods and basement floods. Also non-hazard indicators are important. For example being aware of the risk just before the water enters the building reduces content damage considerably, underlining the importance of warning systems and policy in this case of pluvial floods. - Highlights: • Prediction of damage of pluvial floods using also non-hazard information • We include ‘no damage cases’ using a Tobit model. • The damage of flood depth is stronger for ground floor than for basement floods. • Non-hazard indicators are especially important for content damage. • Potential gain of policies that increase awareness of flood risks.« less
NASA Technical Reports Server (NTRS)
Brakenridge, G. R.; Anderson, E.; Nghiem, S. V.; Caquard, S.; Shabaneh, T. B.
2003-01-01
Orbital remote sensing of the Earth is now poised to make three fundamental contributions towards reducing the detrimental effects of extreme floods. Effective Flood warning requires frequent radar observation of the Earth's surface through cloud cover. In contrast, both optical and radar wavelengths will increasingly be used for disaster assessment and hazard reduction.
Identification and delineation of areas flood hazard using high accuracy of DEM data
NASA Astrophysics Data System (ADS)
Riadi, B.; Barus, B.; Widiatmaka; Yanuar, M. J. P.; Pramudya, B.
2018-05-01
Flood incidents that often occur in Karawang regency need to be mitigated. These expectations exist on technologies that can predict, anticipate and reduce disaster risks. Flood modeling techniques using Digital Elevation Model (DEM) data can be applied in mitigation activities. High accuracy DEM data used in modeling, will result in better flooding flood models. The result of high accuracy DEM data processing will yield information about surface morphology which can be used to identify indication of flood hazard area. The purpose of this study was to identify and describe flood hazard areas by identifying wetland areas using DEM data and Landsat-8 images. TerraSAR-X high-resolution data is used to detect wetlands from landscapes, while land cover is identified by Landsat image data. The Topography Wetness Index (TWI) method is used to detect and identify wetland areas with basic DEM data, while for land cover analysis using Tasseled Cap Transformation (TCT) method. The result of TWI modeling yields information about potential land of flood. Overlay TWI map with land cover map that produces information that in Karawang regency the most vulnerable areas occur flooding in rice fields. The spatial accuracy of the flood hazard area in this study was 87%.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-16
... from destruction, loss or injury due to hazards associated with rising flood water. DATES: Effective... destruction, loss or injury due to the hazards associated with rising flood water. Notifications to the marine..., levee system, vessels and tows from the hazards associated with rising flood water on the Atchafalaya...
12 CFR 22.6 - Required use of standard flood hazard determination form.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 12 Banks and Banking 1 2010-01-01 2010-01-01 false Required use of standard flood hazard determination form. 22.6 Section 22.6 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY... the Act. The standard flood hazard determination form may be used in a printed, computerized, or...
12 CFR 22.6 - Required use of standard flood hazard determination form.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 12 Banks and Banking 1 2011-01-01 2011-01-01 false Required use of standard flood hazard determination form. 22.6 Section 22.6 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY... electronic manner. A bank may obtain the standard flood hazard determination form from FEMA, P.O. Box 2012...
76 FR 37647 - Safety Zone; Missouri River From the Border Between Montana and North Dakota
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-28
... destruction, loss or injury due to hazards associated with rising flood water. Operation in this zone is... vessels from destruction, loss or injury due to the hazards associated with rising flood water. The... destruction, loss or injury due to the hazards associated with rising flood water. If you are a small business...
Modeling Compound Flood Hazards in Coastal Embayments
NASA Astrophysics Data System (ADS)
Moftakhari, H.; Schubert, J. E.; AghaKouchak, A.; Luke, A.; Matthew, R.; Sanders, B. F.
2017-12-01
Coastal cities around the world are built on lowland topography adjacent to coastal embayments and river estuaries, where multiple factors threaten increasing flood hazards (e.g. sea level rise and river flooding). Quantitative risk assessment is required for administration of flood insurance programs and the design of cost-effective flood risk reduction measures. This demands a characterization of extreme water levels such as 100 and 500 year return period events. Furthermore, hydrodynamic flood models are routinely used to characterize localized flood level intensities (i.e., local depth and velocity) based on boundary forcing sampled from extreme value distributions. For example, extreme flood discharges in the U.S. are estimated from measured flood peaks using the Log-Pearson Type III distribution. However, configuring hydrodynamic models for coastal embayments is challenging because of compound extreme flood events: events caused by a combination of extreme sea levels, extreme river discharges, and possibly other factors such as extreme waves and precipitation causing pluvial flooding in urban developments. Here, we present an approach for flood risk assessment that coordinates multivariate extreme analysis with hydrodynamic modeling of coastal embayments. First, we evaluate the significance of correlation structure between terrestrial freshwater inflow and oceanic variables; second, this correlation structure is described using copula functions in unit joint probability domain; and third, we choose a series of compound design scenarios for hydrodynamic modeling based on their occurrence likelihood. The design scenarios include the most likely compound event (with the highest joint probability density), preferred marginal scenario and reproduced time series of ensembles based on Monte Carlo sampling of bivariate hazard domain. The comparison between resulting extreme water dynamics under the compound hazard scenarios explained above provides an insight to the strengths/weaknesses of each approach and helps modelers choose the appropriate scenario that best fit to the needs of their project. The proposed risk assessment approach can help flood hazard modeling practitioners achieve a more reliable estimate of risk, by cautiously reducing the dimensionality of the hazard analysis.
NASA Astrophysics Data System (ADS)
Kjellgren, S.
2013-07-01
In response to the EU Floods Directive (2007/60/EC), flood hazard maps are currently produced all over Europe, reflecting a wider shift in focus from "flood protection" to "risk management", for which not only public authorities but also populations at risk are seen as responsible. By providing a visual image of the foreseen consequences of flooding, flood hazard maps can enhance people's knowledge about flood risk, making them more capable of an adequate response. Current literature, however, questions the maps' awareness raising capacity, arguing that their content and design are rarely adjusted to laypeople's needs. This paper wants to complement this perspective with a focus on risk communication by studying how these tools are disseminated and marketed to the public in the first place. Judging from communication theory, simply making hazard maps publicly available is unlikely to lead to attitudinal or behavioral effects, since this typically requires two-way communication and material or symbolic incentives. Consequently, it is relevant to investigate whether and how local risk managers, who are well positioned to interact with the local population, make use of flood hazard maps for risk communication purposes. A qualitative case study of this issue in the German state of Baden-Württemberg suggests that many municipalities lack a clear strategy for using this new information tool for hazard and risk communication. Four barriers in this regard are identified: perceived disinterest/sufficient awareness on behalf of the population at risk; unwillingness to cause worry or distress; lack of skills and resources; and insufficient support. These barriers are important to address - in research as well as in practice - since it is only if flood hazard maps are used to enhance local knowledge resources that they can be expected to contribute to social capacity building.
Allowances for evolving coastal flood risk under uncertain local sea-level rise
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buchanan, Maya K.; Kopp, Robert E.; Oppenheimer, Michael
Estimates of future flood hazards made under the assumption of stationary mean sea level are biased low due to sea-level rise (SLR). However, adjustments to flood return levels made assuming fixed increases of sea level are also inadequate when applied to sea level that is rising over time at an uncertain rate. SLR allowances—the height adjustment from historic flood levels that maintain under uncertainty the annual expected probability of flooding—are typically estimated independently of individual decision-makers’ preferences, such as time horizon, risk tolerance, and confidence in SLR projections.We provide a framework of SLR allowances that employs complete probability distributions ofmore » local SLR and a range of user-defined flood risk management preferences. Given non-stationary and uncertain sea-level rise, these metrics provide estimates of flood protection heights and offsets for different planning horizons in coastal areas. In conclusion, we illustrate the calculation of various allowance types for a set of long-duration tide gauges along U.S. coastlines.« less
Allowances for evolving coastal flood risk under uncertain local sea-level rise
Buchanan, Maya K.; Kopp, Robert E.; Oppenheimer, Michael; ...
2016-06-03
Estimates of future flood hazards made under the assumption of stationary mean sea level are biased low due to sea-level rise (SLR). However, adjustments to flood return levels made assuming fixed increases of sea level are also inadequate when applied to sea level that is rising over time at an uncertain rate. SLR allowances—the height adjustment from historic flood levels that maintain under uncertainty the annual expected probability of flooding—are typically estimated independently of individual decision-makers’ preferences, such as time horizon, risk tolerance, and confidence in SLR projections.We provide a framework of SLR allowances that employs complete probability distributions ofmore » local SLR and a range of user-defined flood risk management preferences. Given non-stationary and uncertain sea-level rise, these metrics provide estimates of flood protection heights and offsets for different planning horizons in coastal areas. In conclusion, we illustrate the calculation of various allowance types for a set of long-duration tide gauges along U.S. coastlines.« less
NASA Astrophysics Data System (ADS)
Kwak, Youngjoo; Kondoh, Akihiko
2010-05-01
Floods are also related to the changes in social economic conditions and land use. Recently, floods increased due to rapid urbanization and human activity in the lowland. Therefore, integrated management of total basin system is necessary to get the secure society. Typhoon ‘Rusa’ swept through eastern and southern parts of South Korea in the 2002. This pity experience gave us valuable knowledge that could be used to mitigate the future flood hazards. The purpose of this study is to construct the digital maps of the multi-factors related to urban flood concerning geomorphologic characteristics, land cover, and surface wetness. Parameters particularly consider geomorphologic functional unit, geomorphologic parameters derived from DEM (digital elevation model), and land use. The research area is Nakdong River Basin in S. Korea. As a result of preliminary analysis for Pusan area, the vulnerability map and the flood-prone areas can be extracted by applying spatial analysis on GIS (geographic information system).
Flood Hazard Management: British and International Perspectives
NASA Astrophysics Data System (ADS)
James, L. Douglas
This proceedings of an international workshop at the Flood Hazard Research Centre (Queensway, Enfield, Middlesex, U.K.) begins by noting how past British research on flood problems concentrated on refining techniques to implement established policy. In contrast, research covered in North American and Australian publications involved normative issues on policy alternatives and administrative implementation. The workshop's participants included 16 widely recognized scientists, whose origins were about equally divided between Britain and overseas; from this group the workshop's organizers expertly drew ideas for refining British urban riverine flood hazard management and for cultivating links among researchers everywhere. Such intellectual exchange should be of keen interest to flood hazard program managers around the world, to students of comparative institutional performance, to those who make policy on protecting people from hazards, and to hydrologists and other geophysicists who must communicate descriptive information for bureaucratic, political, and public decision- making.
NASA Astrophysics Data System (ADS)
Su, Weizhong
2017-03-01
There is growing interest in using the urban landscape for stormwater management studies, where land patterns and processes can be important controls for the sustainability of urban development and planning. This paper proposes an original index of Major Hazard Oriented Level (MHOL) and investigates the structure distribution, driving factors, and controlling suggestions of urban-rural land growth in flood-prone areas in the Taihu Lake watershed, China. The MHOL of incremental urban-rural land increased from M 31.51 during the years 1985-1995 to M 38.37 during the years 1995-2010 (M for medium structure distribution, and the number for high-hazard value). The index shows that urban-rural land was distributed uniformly in flood hazard levels and tended to move rapidly to high-hazard areas, where 72.68% of incremental urban-rural land was aggregated maximally in new urban districts along the Huning traffic line and the Yangtze River. Thus, the current accelerating growth of new urban districts could account for the ampliative exposure to high-hazard areas. New districts are driven by the powerful link between land financial benefits and political achievements for local governments and the past unsustainable process of "single objective" oriented planning. The correlation categorical analysis of the current development intensity and carrying capacity of hydrological ecosystems for sub-basins was used to determine four types of development areas and provide decision makers with indications on the future watershed-scale subdivision of Major Function Oriented Zoning implemented by the Chinese government.
A high-resolution global flood hazard model
NASA Astrophysics Data System (ADS)
Sampson, Christopher C.; Smith, Andrew M.; Bates, Paul B.; Neal, Jeffrey C.; Alfieri, Lorenzo; Freer, Jim E.
2015-09-01
Floods are a natural hazard that affect communities worldwide, but to date the vast majority of flood hazard research and mapping has been undertaken by wealthy developed nations. As populations and economies have grown across the developing world, so too has demand from governments, businesses, and NGOs for modeled flood hazard data in these data-scarce regions. We identify six key challenges faced when developing a flood hazard model that can be applied globally and present a framework methodology that leverages recent cross-disciplinary advances to tackle each challenge. The model produces return period flood hazard maps at ˜90 m resolution for the whole terrestrial land surface between 56°S and 60°N, and results are validated against high-resolution government flood hazard data sets from the UK and Canada. The global model is shown to capture between two thirds and three quarters of the area determined to be at risk in the benchmark data without generating excessive false positive predictions. When aggregated to ˜1 km, mean absolute error in flooded fraction falls to ˜5%. The full complexity global model contains an automatically parameterized subgrid channel network, and comparison to both a simplified 2-D only variant and an independently developed pan-European model shows the explicit inclusion of channels to be a critical contributor to improved model performance. While careful processing of existing global terrain data sets enables reasonable model performance in urban areas, adoption of forthcoming next-generation global terrain data sets will offer the best prospect for a step-change improvement in model performance.
A high‐resolution global flood hazard model†
Smith, Andrew M.; Bates, Paul D.; Neal, Jeffrey C.; Alfieri, Lorenzo; Freer, Jim E.
2015-01-01
Abstract Floods are a natural hazard that affect communities worldwide, but to date the vast majority of flood hazard research and mapping has been undertaken by wealthy developed nations. As populations and economies have grown across the developing world, so too has demand from governments, businesses, and NGOs for modeled flood hazard data in these data‐scarce regions. We identify six key challenges faced when developing a flood hazard model that can be applied globally and present a framework methodology that leverages recent cross‐disciplinary advances to tackle each challenge. The model produces return period flood hazard maps at ∼90 m resolution for the whole terrestrial land surface between 56°S and 60°N, and results are validated against high‐resolution government flood hazard data sets from the UK and Canada. The global model is shown to capture between two thirds and three quarters of the area determined to be at risk in the benchmark data without generating excessive false positive predictions. When aggregated to ∼1 km, mean absolute error in flooded fraction falls to ∼5%. The full complexity global model contains an automatically parameterized subgrid channel network, and comparison to both a simplified 2‐D only variant and an independently developed pan‐European model shows the explicit inclusion of channels to be a critical contributor to improved model performance. While careful processing of existing global terrain data sets enables reasonable model performance in urban areas, adoption of forthcoming next‐generation global terrain data sets will offer the best prospect for a step‐change improvement in model performance. PMID:27594719
Flood Hazard and Risk Analysis in Urban Area
NASA Astrophysics Data System (ADS)
Huang, Chen-Jia; Hsu, Ming-hsi; Teng, Wei-Hsien; Lin, Tsung-Hsien
2017-04-01
Typhoons always induce heavy rainfall during summer and autumn seasons in Taiwan. Extreme weather in recent years often causes severe flooding which result in serious losses of life and property. With the rapid industrial and commercial development, people care about not only the quality of life, but also the safety of life and property. So the impact of life and property due to disaster is the most serious problem concerned by the residents. For the mitigation of the disaster impact, the flood hazard and risk analysis play an important role for the disaster prevention and mitigation. In this study, the vulnerability of Kaohsiung city was evaluated by statistics of social development factor. The hazard factors of Kaohsiung city was calculated by simulated flood depth of six different return periods and four typhoon events which result in serious flooding in Kaohsiung city. The flood risk can be obtained by means of the flood hazard and social vulnerability. The analysis results provide authority to strengthen disaster preparedness and to set up more resources in high risk areas.
Landslide and flood hazard assessment in urban areas of LevoÄa region (Eastern Slovakia)
NASA Astrophysics Data System (ADS)
Magulova, Barbora; Caporali, Enrica; Bednarik, Martin
2010-05-01
The case study presents the use of statistical methods and analysis tools, for hazard assessment of "urbanization units", implemented in a Geographic Information Systems (GIS) environment. As a case study, the Levoča region (Slovakia) is selected. The region, with a total area of about 351 km2, is widely affected by landslides and floods. The problem, for small urbanization areas, is nowadays particularly significant from the socio-economic point of view. It is considered, presently, also an increasing problem, mainly because of climate change and more frequent extreme rainfall events. The geo-hazards are evaluated using a multivariate analysis. The landslide hazard assessment is based on the comparison and subsequent statistical elaboration of territorial dependence among different input factors influencing the instability of the slopes. Particularly, five factors influencing slope stability are evaluated, i.e. lithology, slope aspect, slope angle, hypsographic level and present land use. As a result a new landslide susceptibility map is compiled and different zones of stable, dormant and non-stable areas are defined. For flood hazard map a detailed digital elevation model is created. A compose index of flood hazard is derived from topography, land cover and pedology related data. To estimate flood discharge, time series of stream flow and precipitation measurements are used. The assessment results are prognostic maps of landslide hazard and flood hazard, which presents the optimal base for urbanization planning.
Flood frequencies and durations and their response to El Niño Southern Oscillation: Global analysis
NASA Astrophysics Data System (ADS)
Ward, P. J.; Kummu, M.; Lall, U.
2016-08-01
Floods are one of the most serious forms of natural hazards in terms of the damages they cause. In 2012 alone, flood damages exceeded 19 billion. A large proportion of the damages from several recent major flood disasters, such as those in South India and South Carolina (2015), England and Wales (2014), the Mississippi (2012), Thailand (2011), Queensland (Australia) (2010-2011), and Pakistan (2010), were related to the long duration of those flood events. However, most flood risk studies to date do not account for flood duration. In this paper, we provide the first global modelling exercise to assess the link between interannual climate variability and flood duration and frequency. Specifically, we examine relationships between simulated flood events and El Niño Southern Oscillation (ENSO). Our results show that the duration of flooding appears to be more sensitive to ENSO than is the case for flood frequency. At the globally aggregated scale, we found floods to be significantly longer during both El Niño and La Niña years, compared to neutral years. At the scale of individual river basins, we found strong correlations between ENSO and both flood frequency and duration for a large number of basins, with generally stronger correlations for flood duration than for flood frequency. Future research on flood impacts should attempt to incorporate more information on flood durations.
24 CFR 201.28 - Flood and hazard insurance, and Coastal Barriers properties.
Code of Federal Regulations, 2014 CFR
2014-04-01
... Coastal Barriers properties. 201.28 Section 201.28 Housing and Urban Development Regulations Relating to... Disbursement Requirements § 201.28 Flood and hazard insurance, and Coastal Barriers properties. (a) Flood... obtained by the borrower in compliance with section 102 of the Flood Disaster Protection Act of 1973 (42 U...
24 CFR 201.28 - Flood and hazard insurance, and Coastal Barriers properties.
Code of Federal Regulations, 2011 CFR
2011-04-01
... Coastal Barriers properties. 201.28 Section 201.28 Housing and Urban Development Regulations Relating to... Disbursement Requirements § 201.28 Flood and hazard insurance, and Coastal Barriers properties. (a) Flood... obtained by the borrower in compliance with section 102 of the Flood Disaster Protection Act of 1973 (42 U...
24 CFR 201.28 - Flood and hazard insurance, and Coastal Barriers properties.
Code of Federal Regulations, 2013 CFR
2013-04-01
... Coastal Barriers properties. 201.28 Section 201.28 Housing and Urban Development Regulations Relating to... Disbursement Requirements § 201.28 Flood and hazard insurance, and Coastal Barriers properties. (a) Flood... obtained by the borrower in compliance with section 102 of the Flood Disaster Protection Act of 1973 (42 U...
24 CFR 201.28 - Flood and hazard insurance, and Coastal Barriers properties.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Coastal Barriers properties. 201.28 Section 201.28 Housing and Urban Development Regulations Relating to... Disbursement Requirements § 201.28 Flood and hazard insurance, and Coastal Barriers properties. (a) Flood... obtained by the borrower in compliance with section 102 of the Flood Disaster Protection Act of 1973 (42 U...
24 CFR 201.28 - Flood and hazard insurance, and Coastal Barriers properties.
Code of Federal Regulations, 2012 CFR
2012-04-01
... Coastal Barriers properties. 201.28 Section 201.28 Housing and Urban Development Regulations Relating to... Disbursement Requirements § 201.28 Flood and hazard insurance, and Coastal Barriers properties. (a) Flood... obtained by the borrower in compliance with section 102 of the Flood Disaster Protection Act of 1973 (42 U...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-22
... to hazards associated with rising flood water. DATES: Effective Date: this rule is effective in the..., vessels and tows from the hazards associated with rising flood water on the Morgan City-Port Allen Route... system, vessels and tows from destruction, loss or injury due to the hazards associated with rising flood...
The development of flood map in Malaysia
NASA Astrophysics Data System (ADS)
Zakaria, Siti Fairus; Zin, Rosli Mohamad; Mohamad, Ismail; Balubaid, Saeed; Mydin, Shaik Hussein; MDR, E. M. Roodienyanto
2017-11-01
In Malaysia, flash floods are common occurrences throughout the year in flood prone areas. In terms of flood extent, flash floods affect smaller areas but because of its tendency to occur in densely urbanized areas, the value of damaged property is high and disruption to traffic flow and businesses are substantial. However, in river floods especially the river floods of Kelantan and Pahang, the flood extent is widespread and can extend over 1,000 square kilometers. Although the value of property and density of affected population is lower, the damage inflicted by these floods can also be high because the area affected is large. In order to combat these floods, various flood mitigation measures have been carried out. Structural flood mitigation alone can only provide protection levels from 10 to 100 years Average Recurrence Intervals (ARI). One of the economically effective non-structural approaches in flood mitigation and flood management is using a geospatial technology which involves flood forecasting and warning services to the flood prone areas. This approach which involves the use of Geographical Information Flood Forecasting system also includes the generation of a series of flood maps. There are three types of flood maps namely Flood Hazard Map, Flood Risk Map and Flood Evacuation Map. Flood Hazard Map is used to determine areas susceptible to flooding when discharge from a stream exceeds the bank-full stage. Early warnings of incoming flood events will enable the flood victims to prepare themselves before flooding occurs. Properties and life's can be saved by keeping their movable properties above the flood levels and if necessary, an early evacuation from the area. With respect to flood fighting, an early warning with reference through a series of flood maps including flood hazard map, flood risk map and flood evacuation map of the approaching flood should be able to alert the organization in charge of the flood fighting actions and the authority to undertake the necessary decisions, and the general public to be aware of the impending danger. However this paper will only discuss on the generations of Flood Hazard Maps and the use of Flood Risk Map and Flood Evacuation Map by using geospatial data.
Assessing Flood Risk at Nuclear Power Plants with an Uncertain Climate
NASA Astrophysics Data System (ADS)
Wigmosta, M. S.; Vail, L. W.
2011-12-01
In 2010 a tsunami severely damaged the Fukushima Dai-ichi Nuclear Power Plant in Japan. As a result, the U.S. Nuclear Regulatory Commission directed that a systematic and methodical review of Commission processes and regulations be performed to determine whether the agency should make additional improvements to its regulatory system and to make recommendations to the Commission. Two of the recommendations of the Task Force created to inform the Commission were: establish a logical, systematic, and coherent regulatory framework for adequate protection that appropriately balances defense-in-depth and risk considerations and that the NRC require licensees to reevaluate and upgrade as necessary the design-basis flooding protection of structures, systems, and components for each operating reactor. These recommendations came at the same time as technical discussions about updating approaches to evaluate flood hazard were underway. These discussions included: consideration of climate nonstationarity in flood assessments; transitioning from PMP/PMF assessments to probabilistic flood analyses to better align with risk-informed decision making; and systematic consideration of combined events in flood risk analysis. There is no scientific basis to assume that shifts in long-term mean precipitation and temperature (such as is commonly derived from climate models) relate to flood probability. Flood mechanisms are often more complex and reflect climate pattern anomalies more than mean annual shifts. Instead of discounting historical data due to climatic nonstationarity, it is important to better understand the climate patterns that have triggered floods in the past and to look to climate forecasts to understand the likely changes in the frequency of those historical climate patterns with climate change. It is equally important to have a better understanding of whether climate change will result in flood-generating climate systems heretofore unknown in the particular locale. This presentation will provide a roadmap to ensuring that the flood hazards of existing and future nuclear power plants are well defined.
The Generation of a Stochastic Flood Event Catalogue for Continental USA
NASA Astrophysics Data System (ADS)
Quinn, N.; Wing, O.; Smith, A.; Sampson, C. C.; Neal, J. C.; Bates, P. D.
2017-12-01
Recent advances in the acquisition of spatiotemporal environmental data and improvements in computational capabilities has enabled the generation of large scale, even global, flood hazard layers which serve as a critical decision-making tool for a range of end users. However, these datasets are designed to indicate only the probability and depth of inundation at a given location and are unable to describe the likelihood of concurrent flooding across multiple sites.Recent research has highlighted that although the estimation of large, widespread flood events is of great value to flood mitigation and insurance industries, to date it has been difficult to deal with this spatial dependence structure in flood risk over relatively large scales. Many existing approaches have been restricted to empirical estimates of risk based on historic events, limiting their capability of assessing risk over the full range of plausible scenarios. Therefore, this research utilises a recently developed model-based approach to describe the multisite joint distribution of extreme river flows across continental USA river gauges. Given an extreme event at a site, the model characterises the likelihood neighbouring sites are also impacted. This information is used to simulate an ensemble of plausible synthetic extreme event footprints from which flood depths are extracted from an existing global flood hazard catalogue. Expected economic losses are then estimated by overlaying flood depths with national datasets defining asset locations, characteristics and depth damage functions. The ability of this approach to quantify probabilistic economic risk and rare threshold exceeding events is expected to be of value to those interested in the flood mitigation and insurance sectors.This work describes the methodological steps taken to create the flood loss catalogue over a national scale; highlights the uncertainty in the expected annual economic vulnerability within the USA from extreme river flows; and presents future developments to the modelling approach.
Bubeck, Philip; Wouter Botzen, W J; Laudan, Jonas; Aerts, Jeroen C J H; Thieken, Annegret H
2017-11-17
Protection motivation theory (PMT) has become a popular theory to explain the risk-reducing behavior of residents against natural hazards. PMT captures the two main cognitive processes that individuals undergo when faced with a threat, namely, threat appraisal and coping appraisal. The latter describes the evaluation of possible response measures that may reduce or avert the perceived threat. Although the coping appraisal component of PMT was found to be a better predictor of protective intentions and behavior, little is known about the factors that influence individuals' coping appraisals of natural hazards. More insight into flood-coping appraisals of PMT, therefore, are needed to better understand the decision-making process of individuals and to develop effective risk communication strategies. This study presents the results of two surveys among more than 1,600 flood-prone households in Germany and France. Five hypotheses were tested using multivariate statistics regarding factors related to flood-coping appraisals, which were derived from the PMT framework, related literature, and the literature on social vulnerability. We found that socioeconomic characteristics alone are not sufficient to explain flood-coping appraisals. Particularly, observational learning from the social environment, such as friends and neighbors, is positively related to flood-coping appraisals. This suggests that social norms and networks play an important role in flood-preparedness decisions. Providing risk and coping information can also have a positive effect. Given the strong positive influence of the social environment on flood-coping appraisals, future research should investigate how risk communication can be enhanced by making use of the observed social norms and network effects. © 2017 Society for Risk Analysis.
Mapping Coastal Flood Zones for the National Flood Insurance Program
NASA Astrophysics Data System (ADS)
Carlton, D.; Cook, C. L.; Weber, J.
2004-12-01
The National Flood Insurance Program (NFIP) was created by Congress in 1968, and significantly amended in 1973 to reduce loss of life and property caused by flooding, reduce disaster relief costs caused by flooding and make Federally backed flood insurance available to property owners. These goals were to be achieved by requiring building to be built to resist flood damages, guide construction away from flood hazards, and transferring the cost of flood losses from taxpayers to policyholders. Areas subject to flood hazards were defined as those areas that have a probability greater than 1 percent of being inundated in any given year. Currently over 19,000 communities participate in the NFIP, many of them coastal communities subject to flooding from tides, storm surge, waves, or tsunamis. The mapping of coastal hazard areas began in the early 1970's and has been evolving ever since. At first only high tides and storm surge were considered in determining the hazardous areas. Then, after significant wave caused storm damage to structures outside of the mapped hazard areas wave hazards were also considered. For many years FEMA has had Guidelines and Specifications for mapping coastal hazards for the East Coast and the Gulf Coast. In September of 2003 a study was begun to develop similar Guidelines and Specifications for the Pacific Coast. Draft Guidelines and Specifications will be delivered to FEMA by September 30, 2004. During the study tsunamis were identified as a potential source of a 1 percent flood event on the West Coast. To better understand the analytical results, and develop adequate techniques to estimate the magnitude of a tsunami with a 1 percent probability of being equaled or exceeded in any year, a pilot study has begun at Seaside Oregon. Both the onshore velocity and the resulting wave runup are critical functions for FEMA to understand and potentially map. The pilot study is a cooperative venture between NOAA and USGS that is partially funded by both agencies and by FEMA. The results of the pilot study will help FEMA determine when tsunamis should be considered in mapping coastal hazards, how to predict their impact, how they should be mapped and possibly the construction standards for zones mapped as having a 1 percent or greater chance of suffering a tsunami.
Assessment of flood risk in Tokyo metropolitan area
NASA Astrophysics Data System (ADS)
Hirano, J.; Dairaku, K.
2013-12-01
Flood is one of the most significant natural hazards in Japan. The Tokyo metropolitan area has been affected by several large flood disasters. Therefore, investigating potential flood risk in Tokyo metropolitan area is important for development of adaptation strategy for future climate change. We aim to develop a method for evaluating flood risk in Tokyo Metropolitan area by considering effect of historical land use and land cover change, socio-economic change, and climatic change. Ministry of land, infrastructure, transport and tourism in Japan published 'Statistics of flood', which contains data for flood causes, number of damaged houses, area of wetted surface, and total amount of damage for each flood at small municipal level. By using these flood data, we estimated damage by inundation inside a levee for each prefecture based on a statistical method. On the basis of estimated damage, we developed flood risk curves in the Tokyo metropolitan area, representing relationship between damage and exceedance probability of flood for the period 1976-2008 for each prefecture. Based on the flood risk curve, we attempted evaluate potential flood risk in the Tokyo metropolitan area and clarify the cause for regional difference of flood risk. By analyzing flood risk curves, we found out regional differences of flood risk. We identified high flood risk in Tokyo and Saitama prefecture. On the other hand, flood risk was relatively low in Ibaraki and Chiba prefecture. We found that these regional differences of flood risk can be attributed to spatial distribution of entire property value and ratio of damaged housing units in each prefecture.We also attempted to evaluate influence of climate change on potential flood risk by considering variation of precipitation amount and precipitation intensity in the Tokyo metropolitan area. Results shows that we can evaluate potential impact of precipitation change on flood risk with high accuracy by using our methodology. Acknowledgments This study is conducted as part of the research subject "Vulnerability and Adaptation to Climate Change in Water Hazard Assessed Using Regional Climate Scenarios in the Tokyo Region' (National Research Institute for Earth Science and Disaster Prevention; PI: Koji Dairaku) of Research Program on Climate Change Adaptation (RECCA) and was supported by the SOUSEI Program, funded by Ministry of Education, Culture, Sports, Science and Technology, Government of Japan
Mapping historical information for better understanding the causality factors of past disasters
NASA Astrophysics Data System (ADS)
Boudou, Martin; Lang, Michel; Vinet, Freddy; Coeur, Denis
2015-04-01
The Flood Directive of 2007 promotes the use of historical information in order to mitigate the impact of future extreme events. According to this text, the study of past events offers new insights for better understanding the causality factors of a disaster, from hydrometeorological keys to socio-political repercussions of the flood. In this presentation we decided to focus on the study of factors leading to the exceptionality of a hydrological flood event. This aspect is regularly pointed out by the feedbacks carried out after a catastrophic event and remains a subject of debate for risk managers. The role of antecedent meteorological conditions is especially underestimated by local authorities. These factors can however be considered as a key issue to appreciate the exceptional character of a hydrological disaster. For example the 2013 June floods in France that affected the region of Pyrenees revealed the significant contribution of snow melting to the discharges recorded. In an article of 2014, Schröter et al. showed that the soil moisture can be considered as a key driver of the generalised flood hazard intensity that affected Germany over the same month of June 2013. With regard to these assessments, some considerations emerge. Does a diachronic appraisal of past disasters point out the main issues responsible for an exceptional flood hazard level? Is there common causality issues involved into these extreme hydrological events? In order to answer these questions this presentation proposes a comparative analysis of nine major floods that impacted the French territory during the XXth century (from 1910 to 2010). The set is composed by different flood typologies (from torrential events to floods resulting from groundwater level rising) so as to get a complete view of flood risk in France. The methodology proposed relies on a cartographic approach to highlight the causality factors of these past hydrological disasters. For instance, mapping the rainfall data over the representation of the maximum discharges recorded can help to understand the significance of the rainfall event. In some cases, the use of textual historical information allows to emphasize the significance of other factors such as snow melting or the influence of anthropogenic infrastructures. Indeed, mapping historical information seems to be an original approach to represent the various spatial and temporal scales of historical disasters and an interesting tool to explore the exceptionality of the hazard level.
44 CFR 65.16 - Standard Flood Hazard Determination Form and Instructions.
Code of Federal Regulations, 2011 CFR
2011-10-01
... by the Director as an area having special flood hazards and in which flood insurance under this title.... Finally, the form is available through the Internet at http://www.fema.gov/nfip/mpurfi.htm. [63 FR 27857...
Estimates of Present and Future Flood Risk in the Conterminous United States
NASA Astrophysics Data System (ADS)
Wing, O.; Bates, P. D.; Smith, A.; Sampson, C. C.; Johnson, K.; Fargione, J.; Morefield, P.
2017-12-01
Past attempts to estimate flood risk across the USA either have incomplete coverage, coarse resolution or use overly simplified models of the flooding process. In this paper, we use a new 30m resolution model of the entire conterminous US (CONUS) with realistic flood physics to produce estimates of flood hazard which match to within 90% accuracy the skill of local models built with detailed data. Socio-economic data of commensurate resolution are combined with these flood depths to estimate current and future flood risk. Future population and land-use projections from the US Environmental Protection Agency (USEPA) are employed to indicate how flood risk might change through the 21st Century, while present-day estimates utilize the Federal Emergency Management Agency (FEMA) National Structure Inventory and a USEPA map of population distribution. Our data show that the total CONUS population currently exposed to serious flooding is 2.6 to 3.1 times higher than previous estimates; with nearly 41 million Americans living within the so-called 1 in 100-year (1% annual probability) floodplain, compared to only 13 million according to FEMA flood maps. Moreover, socio-economic change alone leads to significant future increases in flood exposure and risk, even before climate change impacts are accounted for. The share of the population living on the 1 in 100-year floodplain is projected to increase from 13.3% in the present-day to 15.6 - 15.8% in 2050 and 16.4 - 16.8% in 2100. The area of developed land within this floodplain, currently at 150,000 km2, is likely to increase by 37 - 72% in 2100 based on the scenarios selected. 5.5 trillion worth of assets currently lie on the 1% floodplain; we project that by 2100 this number will exceed 10 trillion. With this detailed spatial information on present-day flood risk, federal and state agencies can take appropriate action to mitigate losses. Use of USEPA population and land-use projections mean that particular attention can be paid to floodplains where development is projected. Steps to conserve such areas or ensure adequate defenses are in place could avoid the exposure of trillions of dollars of assets, not to mention the human suffering caused by loss of property and life.
Floods at Mount Clemens, Michigan
Wiitala, S.W.; Ash, Arlington D.
1962-01-01
The approximate areas inundated during the flood of April 5-6, 1947, by Clinton River, North Branch and Middle Branch of Clinton River, and Harrington Drain, in Clinton Township, Macomb County, Mich., are shown on a topographic map base to record the flood hazard in graphical form. The flood of April 1947 is the highest known since 1934 and probably since 1902. Greater floods are possible, but no attempt was made to define their probable overflow limits.The Clinton River Cut-Off Canal, a flood-relief channel which diverts flow directly into Lake St. Clair from a point about 1500 feet downstream from Gratiot Avenue (about 9 miles upstream from the mouth) has been in operation since October 1951. The approximate limits of overflow that would results from a flood equivalent in discharge to that of April 1947, and occurring with the Cut-Off Canal in operation, are also shown. Although the Cut-Off Canal may reduce the frequency and depth of flooding it will not necessarily eliminate future flooding in the area. Improvements and additions to the drainage systems in the basin, expanding urbanization, new highways, and other cultural changes may influence the inundation pattern of future floods.The preparation of this flood inundation map was financed through a cooperative agreement between Clinton Township, Macomb County, Mich., and the U.S. Geological Survey.Backwater curves used to define the profile for a hypothetical flood on the Clinton River downstream from Moravian Drive, equivalent in discharge to the 1947 flood, but occurring with the present Cut-Off Canal in operation; flood stage established at the gaging station on Clinton River at Mount Clemens; and supplementary floodmark elevations were furnished by the Corps of Engineers.Bench-mark elevations and field survey data, used in the analysis of floods on Harrington Drain, were furnished by the Macomb County Drain Commission.
A hydrodynamic modelling of proposed dams in reducing flood hazard in Kelantan Catchment
NASA Astrophysics Data System (ADS)
Maruti, S. F.; Amerudin, S.; Kadir, W. H. W.; Yusof, Z. M.
2018-04-01
Flood is natural disaster that can cause damage and death. The flood that hit Kelantan in 2014 was the worst flood in Malaysian history. Although the disaster could not be avoided, awareness and preparedness could have helped to reduce the impact. Kuala Krai located at the downstream area in Kelantan catchment is the most affected due to the 2014 floods. The confluence of Lebir and Galas rivers into Kelantan river has led to the increase of flood magnitude to the downstream area. Therefore, Kemubu dam and Lebir dam, located along Galas river and Lebir river, respectively, have been proposed by the Kelantan authority to reduce the flood hazard. In this paper, a hydrodynamic modelling study is carried out, which is coupled of 1D and 2D model to simulate the flood event with and without the proposed dams. The model is developed using a Digital Terrain Model (DTM), which was generated from Airborne LiDAR and SRTM data sources. The hydrograph and water level for 2014 floods event were obtained and was set as an input data for boundary conditions. The modelling results of maximum velocity of 33 m/s and water depth of 19 m were used to generate flood hazard map. The result has found that the proposed dams were able to reduce the flood hazard, particularly at Kuala Krai, Kelantan.
Revision to flood hazard evaluation for the Savannah River Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buckley, R.; Werth, D.
Requirements for the Natural Phenomena Hazard (NPH) mitigation for new and existing Department of Energy (DOE) facilities are outlined in DOE Order 420.1. This report examines the hazards posed by potential flooding and represents an update to two previous reports. The facility-specific probabilistic flood hazard curve is defined as the water elevation for each annual probability of precipitation occurrence (or inversely, the return period in years). New design hyetographs for both 6-hr and 24-hr precipitation distributions were used in conjunction with hydrological models of various basins within the Savannah River Site (SRS). For numerous locations of interest, peak flow dischargemore » and flood water elevation were determined. In all cases, the probability of flooding of these facilities for a 100,000 year precipitation event is negligible.« less
NASA Astrophysics Data System (ADS)
Lindquist, E.; Pierce, J. L.
2013-12-01
Numerous frameworks and models exist for understanding the dynamics of the public policy process. A policy network approach considers how and why stakeholders and interests pay attention to and engage in policy problems, such as flood control or developing resilient and fire resistant landscapes. Variables considered in this approach include what the relationships are between these stakeholders, how they influence the process and outcomes, communication patterns within and between policy networks, and how networks change as a result of new information, science, or public interest and involvement with the problem. This approach is useful in understanding the creation of natural hazards policy as new information or situations, such as projected climate change impacts, influence and disrupt the policy process and networks. Two significant natural hazard policy networks exist in the semi-arid Treasure Valley region of Southwest Idaho, which includes the capitol city of Boise and the surrounding metropolitan area. Boise is situated along the Boise River and adjacent to steep foothills; this physiographic setting makes Boise vulnerable to both wildfires at the wildland-urban interface (WUI) and flooding. Both of these natural hazards have devastated the community in the past and floods and fires are projected to occur with more frequency in the future as a result of projected climate change impacts in the region. While both hazards are fairly well defined problems, there are stark differences lending themselves to comparisons across their respective networks. The WUI wildfire network is large and well developed, includes stakeholders from all levels of government, the private sector and property owner organizations, has well defined objectives, and conducts promotional and educational activities as part of its interaction with the public in order to increase awareness and garner support for its policies. The flood control policy network, however, is less defined, dominated by a few historically strong interests and is constrained (and supported) by the complex legal and management foundations of Western water rights, as well as federal and state regulatory practices for flood control and water provision. Overlap between these networks does occur as many of the stakeholders are the same, adding another dimension to the comparative approach presented here. It is the physical and natural sciences that bind these two networks, however, and create opportunities for convergence as hydrological inputs (snowmelt and rain) and summer drought simultaneously inform and impact efforts to increase resilience and reduce vulnerability and risk from both fire and flood. For example, early spring snowmelt can both increase risks of flooding and contribute to later severe fire conditions, and fires greatly increase the risk of catastrophic floods and debris flows in burned basins. Contributing to both of these potential hazards are changes in the climate in the region. This paper will present findings from a comparative study of these two policy networks and discuss the implications from how climate change is defined, understood, accepted, and integrated in both networks and the policy processes associated with these urban hazards.
Rossitsa River Basin: Flood Hazard and Risk Identification
NASA Astrophysics Data System (ADS)
Mavrova-Guirguinova, Maria; Pencheva, Denislava
2017-04-01
The process of Flood Risk Management Planning and adaptation of measures for flood risk reduction as the Early Warning provoke the necessity of surveys involving Identification aspects. This project presents risk identification combining two lines of analysis: (1) Creation a mathematical model of rainfall-runoff processes in a watershed based on limited number of observed input and output variables; (2) Procedures for determination of critical thresholds - discharges/water levels corresponding to certain consequences. The pilot region is Rossitsa river basin, Sevlievo, Bulgaria. The first line of analysis follows next steps: (a) Creation and calibration of Unit Hydrograph Models based on limited number of observed data for discharge and precipitation; The survey at the selected region has 22 observations for excess rainfall and discharge. (b) The relations of UHM coefficients from the input parameters have been determined statistically, excluding the ANN model of the run-off coefficient as a function of 3 parameters (amount of precipitation two days before, soil condition, intensity of the rainfall) where a feedforward neural network is used. (c) Additional simulations with UHM aiming at generation of synthetic data for rainfall-runoff events, which extend the range of observed data; (d) Training, validation and testing a generalized regional ANN Model for discharge forecasting with 4 input parameters, where the training data set consists of synthetic data, validation and testing data sets consists of observations. A function between consequences and discharges has been reached in the second line of analysis concerning critical hazard levels determination. Unsteady simulations with the hydraulic model using three typical hydrographs for determination of the existing time for reaction from one to upper critical threshold are made. Correction of the critical thresholds aiming at providing necessary time for reaction between the thresholds and probability analysis of the finally determined critical thresholds are made. The result of the described method is a Catalogue for off-line flood hazard and risk identification. It can be used as interactive computer system, based on simulations of the ANN "Catalogue". Flood risk identification of the future rainfall event is made in a multi-dimensional space for each kind of soil conditions (dry, average wet and wet condition) and observed amount of precipitation two days before. Rainfall-runoff scenarios in case of intensive rainfall or sustained rainfall (more than 6 hours) are taken into account. Critical thresholds and hazard zones needed of specific operative activities (rescue and recovery) corresponded to each of the regulated flood protection levels (unite, municipality, regional or national) are presented. The Catalogue gives the opportunity for flood hazard scenarios extraction. Regarding that, the Catalogue is useful on the prevention stage of flood protection planning (emergency operations, measures and resources for their implementation planning) and creation of scenarios for training the Emergency Plans. Concerning application for Early Warning, it gives approximate forecast for flood hazard. The Catalogue supplies the necessary time for reaction of about 24 hours. Thus, Early Warning is possible to the responsible authorities, all parts if the Unified Rescue System, members of suitable Headquarters for disaster protection (on municipality, region or national level).
77 FR 56669 - Proposed Flood Hazard Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-13
...Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood depth, Special Flood Hazard Area (SFHA) boundary or zone designation, or regulatory floodway on the Flood Insurance Rate Maps (FIRMs), and where applicable, in the supporting Flood Insurance Study (FIS) reports for the communities listed in the table below. The purpose of this notice is to seek general information and comment regarding the preliminary FIRM, and where applicable, the FIS report that the Federal Emergency Management Agency (FEMA) has provided to the affected communities. The FIRM and FIS report are the basis of the floodplain management measures that the community is required either to adopt or to show evidence of having in effect in order to qualify or remain qualified for participation in the National Flood Insurance Program (NFIP). In addition, the FIRM and FIS report, once effective, will be used by insurance agents and others to calculate appropriate flood insurance premium rates for new buildings and the contents of those buildings.
Determining the Financial Impact of Flood Hazards in Ungaged Basins
NASA Astrophysics Data System (ADS)
Cotterman, K. A.; Gutenson, J. L.; Pradhan, N. R.; Byrd, A.
2017-12-01
Many portions of the Earth lack adequate authoritative or in situ data that is of great value in determining natural hazard vulnerability from both anthropogenic and physical perspective. Such locations include the majority of developing nations, which do not possess adequate warning systems and protective infrastructure. The lack of warning and protection from natural hazards make these nations vulnerable to the destructive power of events such as floods. The goal of this research is to demonstrate an initial workflow with which to characterize flood financial hazards with global datasets and crowd-sourced, non-authoritative data in ungagged river basins. This workflow includes the hydrologic and hydraulic response of the watershed to precipitation, characterized by the physics-based modeling application Gridded Surface-Subsurface Hydrologic Analysis (GSSHA) model. In addition, data infrastructure and resources are available to approximate the human impact of flooding. Open source, volunteer geographic information (VGI) data can provide global coverage of elements at risk of flooding. Additional valuation mechanisms can then translate flood exposure into percentage and financial damage to each building. The combinations of these tools allow the authors to remotely assess flood hazards with minimal computational, temporal, and financial overhead. This combination of deterministic and stochastic modeling provides the means to quickly characterize watershed flood vulnerability and will allow emergency responders and planners to better understand the implications of flooding, both spatially and financially. In either a planning, real-time, or forecasting scenario, the system will assist the user in understanding basin flood vulnerability and increasing community resiliency and preparedness.
Dettinger, M.
2011-01-01
Recent studies have documented the important role that "atmospheric rivers" (ARs) of concentrated near-surface water vapor above the Pacific Ocean play in the storms and floods in California, Oregon, and Washington. By delivering large masses of warm, moist air (sometimes directly from the Tropics), ARs establish conditions for the kinds of high snowlines and copious orographic rainfall that have caused the largest historical storms. In many California rivers, essentially all major historical floods have been associated with AR storms. As an example of the kinds of storm changes that may influence future flood frequencies, the occurrence of such storms in historical observations and in a 7-model ensemble of historical-climate and projected future climate simulations is evaluated. Under an A2 greenhouse-gas emissions scenario (with emissions accelerating throughout the 21st Century), average AR statistics do not change much in most climate models; however, extremes change notably. Years with many AR episodes increase, ARs with higher-than-historical water-vapor transport rates increase, and AR storm-temperatures increase. Furthermore, the peak season within which most ARs occur is commonly projected to lengthen, extending the flood-hazard season. All of these tendencies could increase opportunities for both more frequent and more severe floods in California under projected climate changes. ?? 2011 American Water Resources Association.
NASA Astrophysics Data System (ADS)
Zhang, Qiang; Gu, Xihui; Singh, Vijay P.; Shi, Peijun; Sun, Peng
2018-05-01
Flood risks across the Pearl River basin, China, were evaluated using a peak flood flow dataset covering a period of 1951-2014 from 78 stations and historical flood records of the past 1000 years. The generalized extreme value (GEV) model and the kernel estimation method were used to evaluate frequencies and risks of hazardous flood events. Results indicated that (1) no abrupt changes or significant trends could be detected in peak flood flow series at most of the stations, and only 16 out of 78 stations exhibited significant peak flood flow changes with change points around 1990. Peak flood flow in the West River basin increased and significant increasing trends were identified during 1981-2010; decreasing peak flood flow was found in coastal regions and significant trends were observed during 1951-2014 and 1966-2014. (2) The largest three flood events were found to cluster in both space and time. Generally, basin-scale flood hazards can be expected in the West and North River basins. (3) The occurrence rate of floods increased in the middle Pearl River basin but decreased in the lower Pearl River basin. However, hazardous flood events were observed in the middle and lower Pearl River basin, and this is particularly true for the past 100 years. However, precipitation extremes were subject to moderate variations and human activities, such as building of levees, channelization of river systems, and rapid urbanization; these were the factors behind the amplification of floods in the middle and lower Pearl River basin, posing serious challenges for developing measures of mitigation of flood hazards in the lower Pearl River basin, particularly the Pearl River Delta (PRD) region.
The Human Dimension of Flood Risk: Towards Building Resilience in Vulnerable Communities
NASA Astrophysics Data System (ADS)
Goodrich, K.
2015-12-01
Significant advancements have been made in hydrodynamic modeling for natural disasters such as floods; however, it is vital to better understand how to effectively communicate risk to promote hazard preparedness. In many poor communities throughout the world, individuals live in areas that are hazardous because of the conditions of both the natural environment and built environment. Furthermore, environmental risks from the natural environment can be exacerbated by human development. Planning, behavioral change, and strategic actions taken by community members can mitigate risk, however, it is critical to first understand the perspective of those who are most vulnerable to (1) better communicate risk and (2) improve hazardous conditions. Thus, the Flood Resilient Infrastructure and Sustainable Environments (FloodRISE) project conducted a household level survey of over 350 participants in Los Laureles Canyon, a colonia in Tijuana, Mexico that is vulnerable to flooding. Preliminary results from the study will be discussed, specifically addressing: (1) the relationship between compounding risk factors, such as flooding and erosion, and (2) data that speaks to next steps for engaging community in the co-generation of local knowledge about flood hazards, and other strategies that contribute to more flood resilient communities.
NASA Astrophysics Data System (ADS)
Schubert, Jochen E.; Burns, Matthew J.; Fletcher, Tim D.; Sanders, Brett F.
2017-10-01
This research outlines a framework for the case-specific assessment of Green Infrastructure (GI) performance in mitigating flood hazard in small urban catchments. The urban hydrologic modeling tool (MUSIC) is coupled with a fine resolution 2D hydrodynamic model (BreZo) to test to what extent retrofitting an urban watershed with GI, rainwater tanks and infiltration trenches in particular, can propagate flood management benefits downstream and support intuitive flood hazard maps useful for communicating and planning with communities. The hydrologic and hydraulic models are calibrated based on current catchment conditions, then modified to represent alternative GI scenarios including a complete lack of GI versus a full implementation of GI. Flow in the hydrologic/hydraulic models is forced using a range of synthetic rainfall events with annual exceedance probabilities (AEPs) between 1-63% and durations from 10 min to 24 h. Flood hazard benefits mapped by the framework include maximum flood depths and extents, flow intensity (m2/s), flood duration, and critical storm duration leading to maximum flood conditions. Application of the system to the Little Stringybark Creek (LSC) catchment shows that across the range of AEPs tested and for storm durations equal or less than 3 h, presently implemented GI reduces downstream flooded area on average by 29%, while a full implementation of GI would reduce downstream flooded area on average by 91%. A full implementation of GI could also lower maximum flow intensities by 83% on average, reducing the drowning hazard posed by urban streams and improving the potential for access by emergency responders. For storm durations longer than 3 h, a full implementation of GI lacks the capacity to retain the resulting rainfall depths and only reduces flooded area by 8% and flow intensity by 5.5%.
NASA Astrophysics Data System (ADS)
Moncoulon, D.; Labat, D.; Ardon, J.; Onfroy, T.; Leblois, E.; Poulard, C.; Aji, S.; Rémy, A.; Quantin, A.
2013-07-01
The analysis of flood exposure at a national scale for the French insurance market must combine the generation of a probabilistic event set of all possible but not yet occurred flood situations with hazard and damage modeling. In this study, hazard and damage models are calibrated on a 1995-2012 historical event set, both for hazard results (river flow, flooded areas) and loss estimations. Thus, uncertainties in the deterministic estimation of a single event loss are known before simulating a probabilistic event set. To take into account at least 90% of the insured flood losses, the probabilistic event set must combine the river overflow (small and large catchments) with the surface runoff due to heavy rainfall, on the slopes of the watershed. Indeed, internal studies of CCR claim database has shown that approximately 45% of the insured flood losses are located inside the floodplains and 45% outside. 10% other percent are due to seasurge floods and groundwater rise. In this approach, two independent probabilistic methods are combined to create a single flood loss distribution: generation of fictive river flows based on the historical records of the river gauge network and generation of fictive rain fields on small catchments, calibrated on the 1958-2010 Météo-France rain database SAFRAN. All the events in the probabilistic event sets are simulated with the deterministic model. This hazard and damage distribution is used to simulate the flood losses at the national scale for an insurance company (MACIF) and to generate flood areas associated with hazard return periods. The flood maps concern river overflow and surface water runoff. Validation of these maps is conducted by comparison with the address located claim data on a small catchment (downstream Argens).
NASA Astrophysics Data System (ADS)
Skougaard Kaspersen, P.; Høegh Ravn, N.; Arnbjerg-Nielsen, K.; Madsen, H.; Drews, M.
2015-06-01
The extent and location of impervious surfaces within urban areas due to past and present city development strongly affects the amount and velocity of run-off during high-intensity rainfall and consequently influences the exposure of cities towards flooding. The frequency and intensity of extreme rainfall are expected to increase in many places due to climate change and thus further exacerbate the risk of pluvial flooding. This paper presents a combined hydrological-hydrodynamic modelling and remote sensing approach suitable for examining the susceptibility of European cities to pluvial flooding owing to recent changes in urban land cover, under present and future climatic conditions. Estimated changes in impervious urban surfaces based on Landsat satellite imagery covering the period 1984-2014 are combined with regionally downscaled estimates of current and expected future rainfall extremes to enable 2-D overland flow simulations and flood hazard assessments. The methodology is evaluated for the Danish city of Odense. Results suggest that the past 30 years of urban development alone has increased the city's exposure to pluvial flooding by 6% for 10-year rainfall up to 26% for 100-year rainfall. Corresponding estimates for RCP4.5 and RCP8.5 climate change scenarios (2071-2100) are in the order of 40 and 100%, indicating that land cover changes within cities can play a central role for the cities' exposure to flooding and conversely also for their adaptation to a changed climate.
Code of Federal Regulations, 2013 CFR
2013-10-01
... SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS § 79.2... special flood hazards, and is participating in the NFIP; or (2) A political subdivision of a State, or other authority that is designated by a political subdivision to develop and administer a mitigation...
The influence of coral reefs and climate change on wave-driven flooding of tropical coastlines
NASA Astrophysics Data System (ADS)
Quataert, Ellen; Storlazzi, Curt; Rooijen, Arnold; Cheriton, Olivia; Dongeren, Ap
2015-08-01
A numerical model, XBeach, calibrated and validated on field data collected at Roi-Namur Island on Kwajalein Atoll in the Republic of Marshall Islands, was used to examine the effects of different coral reef characteristics on potential coastal hazards caused by wave-driven flooding and how these effects may be altered by projected climate change. The results presented herein suggest that coasts fronted by relatively narrow reefs with steep fore reef slopes (~1:10 and steeper) and deeper, smoother reef flats are expected to experience the highest wave runup. Wave runup increases for higher water levels (sea level rise), higher waves, and lower bed roughness (coral degradation), which are all expected effects of climate change. Rising sea levels and climate change will therefore have a significant negative impact on the ability of coral reefs to mitigate the effects of coastal hazards in the future.
The influence of coral reefs and climate change on wave-driven flooding of tropical coastlines
Quataert, Ellen; Storlazzi, Curt; van Rooijen, Arnold; van Dongeren, Ap; Cheriton, Olivia
2015-01-01
A numerical model, XBeach, calibrated and validated on field data collected at Roi-Namur Island on Kwajalein Atoll in the Republic of Marshall Islands, was used to examine the effects of different coral reef characteristics on potential coastal hazards caused by wave-driven flooding and how these effects may be altered by projected climate change. The results presented herein suggest that coasts fronted by relatively narrow reefs with steep fore reef slopes (~1:10 and steeper) and deeper, smoother reef flats are expected to experience the highest wave runup. Wave runup increases for higher water levels (sea level rise), higher waves, and lower bed roughness (coral degradation), which are all expected effects of climate change. Rising sea levels and climate change will therefore have a significant negative impact on the ability of coral reefs to mitigate the effects of coastal hazards in the future.
The AVI project: A bibliographical and archive inventory of landslides and floods in Italy
NASA Astrophysics Data System (ADS)
Guzzetti, Fausto; Cardinali, Mauro; Reichenbach, Paola
1994-07-01
The AVI project was commissioned by the Minister of Civil Protection to the National Group for Prevention of Hydrogeologic Hazards to complete an inventory of areas historically affected by landslides and floods in Italy. More than 300 people, divided into 15 research teams and two support groups, worked for one year on the project. Twenty-two journals were systematically searched for the period 1918 1990, 350,000 newspaper issues were screened, and 39,953 articles were collected. About 150 experts on mass movement and floods were interviewed and 1482 published and unpublished technical and scientific reports were reviewed. The results of the AVI project, in spite of the limitations, represent the most comprehensive archiving of mass movement and floods ever prepared in Italy. The type and quality of the information collected and the methodologies and techniques used to make the inventory are discussed. Possible applications and future developments are also presented.
Learning to live with geologic and hydrologic hazards
Gori, Paula L.; Driedger, Carolyn L.; Randall, Sharon L.
1999-01-01
The Seattle, Washington, area is known for its livability and its magnificent natural setting. The city and nearby communities are surrounded by an abundance of rivers and lakes and by the bays of Puget Sound. Two majestic mountain ranges, the Olympics and the Cascades, rim the region. These splendid natural features are products of dynamic forces -- landslides, earthquakes, tsunamis, glaciers, volcanoes, and floods. The same processes that formed this beautiful landscape pose hazards to the ever-growing population of the region. To maintain the Seattle area's livability, public and private policymakers must learn to manage the area's vulnerability to natural hazards to protect its three million residents from loss and damage from future disasters. The U.S. Geological Survey (USGS) is working with other Federal and State agencies, the city of Seattle, and other local governments to provide necessary scientific information that will help communities manage the natural hazards. This information will be useful in planning future development, siting public facilities and businesses, and developing effective emergency plans. -- Gori, et.al., 1999
NASA Astrophysics Data System (ADS)
Schwanghart, Wolfgang; Worni, Raphael; Huggel, Christian; Stoffel, Markus; Korup, Oliver
2016-07-01
Himalayan water resources attract a rapidly growing number of hydroelectric power projects (HPP) to satisfy Asia’s soaring energy demands. Yet HPP operating or planned in steep, glacier-fed mountain rivers face hazards of glacial lake outburst floods (GLOFs) that can damage hydropower infrastructure, alter water and sediment yields, and compromise livelihoods downstream. Detailed appraisals of such GLOF hazards are limited to case studies, however, and a more comprehensive, systematic analysis remains elusive. To this end we estimate the regional exposure of 257 Himalayan HPP to GLOFs, using a flood-wave propagation model fed by Monte Carlo-derived outburst volumes of >2300 glacial lakes. We interpret the spread of thus modeled peak discharges as a predictive uncertainty that arises mainly from outburst volumes and dam-breach rates that are difficult to assess before dams fail. With 66% of sampled HPP are on potential GLOF tracks, up to one third of these HPP could experience GLOF discharges well above local design floods, as hydropower development continues to seek higher sites closer to glacial lakes. We compute that this systematic push of HPP into headwaters effectively doubles the uncertainty about GLOF peak discharge in these locations. Peak discharges farther downstream, in contrast, are easier to predict because GLOF waves attenuate rapidly. Considering this systematic pattern of regional GLOF exposure might aid the site selection of future Himalayan HPP. Our method can augment, and help to regularly update, current hazard assessments, given that global warming is likely changing the number and size of Himalayan meltwater lakes.
Dynamic building risk assessment theoretic model for rainstorm-flood utilization ABM and ABS
NASA Astrophysics Data System (ADS)
Lai, Wenze; Li, Wenbo; Wang, Hailei; Huang, Yingliang; Wu, Xuelian; Sun, Bingyun
2015-12-01
Flood is one of natural disasters with the worst loss in the world. It needs to assess flood disaster risk so that we can reduce the loss of flood disaster. Disaster management practical work needs the dynamic risk results of building. Rainstorm flood disaster system is a typical complex system. From the view of complex system theory, flood disaster risk is the interaction result of hazard effect objects, rainstorm flood hazard factors, and hazard environments. Agent-based modeling (ABM) is an important tool for complex system modeling. Rainstorm-flood building risk dynamic assessment method (RFBRDAM) was proposed using ABM in this paper. The interior structures and procedures of different agents in proposed meth had been designed. On the Netlogo platform, the proposed method was implemented to assess the building risk changes of the rainstorm flood disaster in the Huaihe River Basin using Agent-based simulation (ABS). The results indicated that the proposed method can dynamically assess building risk of the whole process for the rainstorm flood disaster. The results of this paper can provide one new approach for flood disaster building risk dynamic assessment and flood disaster management.
Future Reef Growth Can Mitigate Physical Impacts of Sea-Level Rise on Atoll Islands
NASA Astrophysics Data System (ADS)
Beetham, Edward; Kench, Paul S.; Popinet, Stéphane
2017-10-01
We present new detail on how future sea-level rise (SLR) will modify nonlinear wave transformation processes, shoreline wave energy, and wave driven flooding on atoll islands. Frequent and destructive wave inundation is a primary climate-change hazard that may render atoll islands uninhabitable in the near future. However, limited research has examined the physical vulnerability of atoll islands to future SLR and sparse information are available to implement process-based coastal management on coral reef environments. We utilize a field-verified numerical model capable of resolving all nonlinear wave transformation processes to simulate how future SLR will modify wave dissipation and overtopping on Funafuti Atoll, Tuvalu, accounting for static and accretionary reef adjustment morphologies. Results show that future SLR coupled with a static reef morphology will not only increase shoreline wave energy and overtopping but will fundamentally alter the spectral composition of shoreline energy by decreasing the contemporary influence of low-frequency infragravity waves. "
Geomorphologic flood-hazard assessment of alluvial fans and piedmonts
Field, J.J.; Pearthree, P.A.
1997-01-01
Geomorphologic studies are an excellent means of flood-hazard assessment on alluvial fans and piedmonts in the southwestern United States. Inactive, flood-free, alluvial fans display well developed soils, desert pavement, rock varnish, and tributary drainage networks. These areas are easily distinguished from flood-prone active alluvial fans on aerial photographs and in the field. The distribution of flood-prone areas associated with alluvial fans is strongly controlled by fanhead trenches dissecting the surface. Where fanhead trenches are permanent features cut in response to long-term conditions such as tectonic quiescence, flood-prone surfaces are situated down-slope from the mountain front and their positions are stable for thousands of years. Since the length and permanency of fanhead trenches can vary greatly between adjacent drainages, it is not appropriate to use regional generalizations to evaluate the distribution and stability of flood-hazard zones. Site-specific geomorphologic studies must be carried out if piedmont areas with a high risk of flooding are to be correctly identified and losses due to alluvial-fan flooding minimized. To meet the growing demand for trained professionals to complete geomorphologic maps of desert piedmonts, undergraduate and graduate geomorphology courses should adopt an instructional unit on alluvial-fan flood hazards that includes: 1) a review of geomorphologic characteristics that vary with surface age; 2) a basic mapping exercise; and 3) a discussion of the causes of fanhead trenching.
Pelletier, J.D.; Mayer, L.; Pearthree, P.A.; House, P.K.; Demsey, K.A.; Klawon, J.K.; Vincent, K.R.
2005-01-01
Millions of people in the western United States live near the dynamic, distributary channel networks of alluvial fans where flood behavior is complex and poorly constrained. Here we test a new comprehensive approach to alluvial-fan flood hazard assessment that uses four complementary methods: two-dimensional raster-based hydraulic modeling, satellite-image change detection, fieldbased mapping of recent flood inundation, and surficial geologic mapping. Each of these methods provides spatial detail lacking in the standard method and each provides critical information for a comprehensive assessment. Our numerical model simultaneously solves the continuity equation and Manning's equation (Chow, 1959) using an implicit numerical method. It provides a robust numerical tool for predicting flood flows using the large, high-resolution Digital Elevation Models (DEMs) necessary to resolve the numerous small channels on the typical alluvial fan. Inundation extents and flow depths of historic floods can be reconstructed with the numerical model and validated against field- and satellite-based flood maps. A probabilistic flood hazard map can also be constructed by modeling multiple flood events with a range of specified discharges. This map can be used in conjunction with a surficial geologic map to further refine floodplain delineation on fans. To test the accuracy of the numerical model, we compared model predictions of flood inundation and flow depths against field- and satellite-based flood maps for two recent extreme events on the southern Tortolita and Harquahala piedmonts in Arizona. Model predictions match the field- and satellite-based maps closely. Probabilistic flood hazard maps based on the 10 yr, 100 yr, and maximum floods were also constructed for the study areas using stream gage records and paleoflood deposits. The resulting maps predict spatially complex flood hazards that strongly reflect small-scale topography and are consistent with surficial geology. In contrast, FEMA Flood Insurance Rate Maps (FIRMs) based on the FAN model predict uniformly high flood risk across the study areas without regard for small-scale topography and surficial geology. ?? 2005 Geological Society of America.
78 FR 20336 - Changes in Flood Hazard Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-04
...] Changes in Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final... minimum that are required. They should not be construed to mean that the community must change any... flood insurance premium rates for new buildings, and for the contents in those buildings. The changes in...
A Mediterranean case study of flood evolution: the Metropolitan Area of Barcelona
NASA Astrophysics Data System (ADS)
Llasat, Maria Carmen; Gilabert, Joan; Llasat-Botija, Montserrat; Cortès, Maria; Marcos, Raül; Martín-Vide, Juan Pedro; Turco, Marco; Falcón, Lluis
2016-04-01
Flood risk changes in Mediterranean Region integrate multiple factors, some of them related with the hazard (i.e. rainfall intensity), the vulnerability and exposure (i.e. population or assets), feedback processes that affect both hazard and vulnerability (i.e. urbanization of flood prone areas), mitigation and adaptation measures (i.e. rainwater tanks or early warning systems), and the available information used to estimate flood events (i.e. newspapers or gauged data). Flood events in the West Mediterranean region are usually produced as a consequence of very intense and local precipitation, mainly recorded on late summer and autumn that can give place to flash-floods in little torrential rivers (usually non-permanent flows) or urban floods. The Metropolitan Area of Barcelona (AMB), Spain, constitutes a good paradigm of a Mediterranean coast region, with strong urbanization of flood prone areas and high population density in an area crossed by numerous streams. The AMB is constituted by 36 municipalities with a total population above 3.200.000 inhabitants in an extension of 636 km². The major part of the population is concentrated between the Besós River and the Llobregat River, the Littoral Range and the Mediterranean Sea. Although both rivers have experienced catastrophic flood events (i.e. 25 September 1962, 815 deaths; 19-23 September 1971, 19 deaths; October 1987, 8 deaths), the most frequent situation is related with floods in non-permanent streams. Their main impacts are consequence of drainage and runoff problems and can affect both urban and rural areas. This contribution explores the evolution of land uses, population and precipitation from the middle of the 20th century until now, and how these changes have affected (or not), the flood risk. To do it, daily and sub-daily rainfall series, discharge series for the Llobregat and Besós Rivers, population data and land use changes have been analyzed. Future precipitation projections provided by an ensemble of regional models (ENSEMBLES project) have been also considered. Flood events have been obtained from newspapers, reports and insurance data. The role played by prevention measures, particularly in the specific case of Barcelona, which has been recognized by UNISDR (United Nations International Strategy for Disaster Reduction) as resilient city in front of floods, is also presented. Results confirm the strong role played by the increase of urban surface (from less than 15% in 1956 to near 40% in 2009) and explore future adaptation measures in the context of the 2030 Agenda for Sustainable Development. This work has been supported by the Spanish project HOPE and the Metropolitan Area of Barcelona, and developed by an interdisciplinary team that include experts from hydrology, meteorology, geography, environmental sciences and architecture.
NASA Astrophysics Data System (ADS)
Breinl, Korbinian; Turkington, Thea
2017-04-01
We developed a new methodology for classifying flood types, which appears to be particularly suitable for climate change impact studies. Climate change is not only expected to change the magnitude and frequency of Alpine floods but also the types of floods. The distribution of existing flood types may change and new flood types may develop. A shift away from solely focusing on the magnitude and frequency of floods in flood hazard assessment and disaster risk management towards the causal types of floods is required as the types and therefore also timing and characteristics of floods will have implications on both the local social and ecological systems. The flood types are classified using k-means clustering of temperature and precipitation indicators, capturing differences in rainfall amounts, antecedent rainfall, snow-cover, and the day of the year. In a first step, we used the open-source multi-site weather generator TripleM coupled with the fast conceptual rainfall-runoff model HBV to extrapolate the observed discharge time series and generate a large inventory of different types of observed flood events and flood types. The weather generator was then parameterized based on projections of rainfall and temperature to simulate future flood types and events. We selected four climate projections (mild dry, mild wet, warm dry and warm wet conditions) from a set of 15, which originated from the EURO-CORDEX dataset. We worked in two catchments in the Austrian and French Alps that have been affected by floods in the past: the medium-sized Salzach catchment in Austria, which is dominated by rainfall driven flooding during the summer and autumn period, and the small Ubaye catchment in the Southern French Alps, which is dominated by rain-on-snow floods in the spring period. The analysis of the simulated future flood types shows clear changes in the distribution and characteristics of flood types in both study areas under the different climate projections examined.
Probabilistic Flood Maps to support decision-making: Mapping the Value of Information
NASA Astrophysics Data System (ADS)
Alfonso, L.; Mukolwe, M. M.; Di Baldassarre, G.
2016-02-01
Floods are one of the most frequent and disruptive natural hazards that affect man. Annually, significant flood damage is documented worldwide. Flood mapping is a common preimpact flood hazard mitigation measure, for which advanced methods and tools (such as flood inundation models) are used to estimate potential flood extent maps that are used in spatial planning. However, these tools are affected, largely to an unknown degree, by both epistemic and aleatory uncertainty. Over the past few years, advances in uncertainty analysis with respect to flood inundation modeling show that it is appropriate to adopt Probabilistic Flood Maps (PFM) to account for uncertainty. However, the following question arises; how can probabilistic flood hazard information be incorporated into spatial planning? Thus, a consistent framework to incorporate PFMs into the decision-making is required. In this paper, a novel methodology based on Decision-Making under Uncertainty theories, in particular Value of Information (VOI) is proposed. Specifically, the methodology entails the use of a PFM to generate a VOI map, which highlights floodplain locations where additional information is valuable with respect to available floodplain management actions and their potential consequences. The methodology is illustrated with a simplified example and also applied to a real case study in the South of France, where a VOI map is analyzed on the basis of historical land use change decisions over a period of 26 years. Results show that uncertain flood hazard information encapsulated in PFMs can aid decision-making in floodplain planning.
Improvements on flood alleviation in Germany: lessons learned from the Elbe flood in August 2002.
Petrow, Theresia; Thieken, Annegret H; Kreibich, Heidi; Bahlburg, Cord Heinrich; Merz, Bruno
2006-11-01
The increase in damage due to natural disasters is directly related to the number of people who live and work in hazardous areas and continuously accumulate assets. Therefore, land use planning authorities have to manage effectively the establishment and development of settlements in flood-prone areas in order to avoid the further increase of vulnerable assets. Germany faced major destruction during the flood in August 2002 in the Elbe and Danube catchments, and many changes have been suggested in the existing German water and planning regulations. This article presents some findings of a "Lessons Learned" study that was carried out in the aftermath of the flood and discusses the following topics: 1) the establishment of comprehensive hazard maps and flood protection concepts, 2) the harmonization of regulations of flood protection at the federal level, 3) the communication of the flood hazard and awareness strategies, and 4) how damage potential can be minimized through measures of area precaution such as resettlement and risk-adapted land use. Although attempts towards a coordinated and harmonized creation of flood hazard maps and concepts have been made, there is still no uniform strategy at all planning levels and for all states (Laender) of the Federal Republic of Germany. The development and communication of possible mitigation strategies for "unthinkable extreme events" beyond the common safety level of a 100-year flood are needed. In order to establish a sustainable and integrated flood risk management, interdisciplinary and catchment-based approaches are needed.
Global river flood hazard maps: hydraulic modelling methods and appropriate uses
NASA Astrophysics Data System (ADS)
Townend, Samuel; Smith, Helen; Molloy, James
2014-05-01
Flood hazard is not well understood or documented in many parts of the world. Consequently, the (re-)insurance sector now needs to better understand where the potential for considerable river flooding aligns with significant exposure. For example, international manufacturing companies are often attracted to countries with emerging economies, meaning that events such as the 2011 Thailand floods have resulted in many multinational businesses with assets in these regions incurring large, unexpected losses. This contribution addresses and critically evaluates the hydraulic methods employed to develop a consistent global scale set of river flood hazard maps, used to fill the knowledge gap outlined above. The basis of the modelling approach is an innovative, bespoke 1D/2D hydraulic model (RFlow) which has been used to model a global river network of over 5.3 million kilometres. Estimated flood peaks at each of these model nodes are determined using an empirically based rainfall-runoff approach linking design rainfall to design river flood magnitudes. The hydraulic model is used to determine extents and depths of floodplain inundation following river bank overflow. From this, deterministic flood hazard maps are calculated for several design return periods between 20-years and 1,500-years. Firstly, we will discuss the rationale behind the appropriate hydraulic modelling methods and inputs chosen to produce a consistent global scaled river flood hazard map. This will highlight how a model designed to work with global datasets can be more favourable for hydraulic modelling at the global scale and why using innovative techniques customised for broad scale use are preferable to modifying existing hydraulic models. Similarly, the advantages and disadvantages of both 1D and 2D modelling will be explored and balanced against the time, computer and human resources available, particularly when using a Digital Surface Model at 30m resolution. Finally, we will suggest some appropriate uses of global scale hazard maps and explore how this new approach can be invaluable in areas of the world where flood hazard and risk have not previously been assessed.
Analysis of Compound Water Hazard in Coastal Urbanized Areas under the Future Climate
NASA Astrophysics Data System (ADS)
Shibuo, Y.; Taniguchi, K.; Sanuki, H.; Yoshimura, K.; Lee, S.; Tajima, Y.; Koike, T.; Furumai, H.; Sato, S.
2017-12-01
Several studies indicate the increased frequency and magnitude of heavy rainfalls as well as the sea level rise under the future climate, which implies that coastal low-lying urbanized areas may experience increased risk against flooding. In such areas, where river discharge, tidal fluctuation, and city drainage networks altogether influence urban inundation, it is necessary to consider their potential interference to understand the effect of compound water hazard. For instance, pump stations cannot pump out storm water when the river water level is high, and in the meantime the river water level shall increase when it receives pumped water from cities. At the further downstream, as the tidal fluctuation regulates the water levels in the river, it will also affect the functionality of pump stations and possible inundation from rivers. In this study, we estimate compound water hazard in the coastal low-lying urbanized areas of the Tsurumi river basin under the future climate. We developed the seamlessly integrated river, sewerage, and coastal hydraulic model that can simulate river water levels, water flow in sewerage network, and inundation from the rivers and/or the coast to address the potential interference issue. As a forcing, the pseudo global warming method, which applies the changes in GCM anomaly to re-analysis data, is employed to produce ensemble typhoons to drive the seamlessly integrated model. The results show that heavy rainfalls caused by the observed typhoon generally become stronger under the pseudo global climate condition. It also suggests that the coastal low-lying areas become extensively inundated if the onset of river flooding and storm surge coincides.
Increasing stress on disaster-risk finance due to large floods
NASA Astrophysics Data System (ADS)
Jongman, Brenden; Hochrainer-Stigler, Stefan; Feyen, Luc; Aerts, Jeroen C. J. H.; Mechler, Reinhard; Botzen, W. J. Wouter; Bouwer, Laurens M.; Pflug, Georg; Rojas, Rodrigo; Ward, Philip J.
2014-04-01
Recent major flood disasters have shown that single extreme events can affect multiple countries simultaneously, which puts high pressure on trans-national risk reduction and risk transfer mechanisms. So far, little is known about such flood hazard interdependencies across regions and the corresponding joint risks at regional to continental scales. Reliable information on correlated loss probabilities is crucial for developing robust insurance schemes and public adaptation funds, and for enhancing our understanding of climate change impacts. Here we show that extreme discharges are strongly correlated across European river basins. We present probabilistic trends in continental flood risk, and demonstrate that observed extreme flood losses could more than double in frequency by 2050 under future climate change and socio-economic development. We suggest that risk management for these increasing losses is largely feasible, and we demonstrate that risk can be shared by expanding risk transfer financing, reduced by investing in flood protection, or absorbed by enhanced solidarity between countries. We conclude that these measures have vastly different efficiency, equity and acceptability implications, which need to be taken into account in broader consultation, for which our analysis provides a basis.
78 FR 45941 - Changes in Flood Hazard Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-30
... (hereinafter referred to as flood hazard determinations) as shown on the indicated Letter of Map Revision (LOMR... Insurance Rate Maps (FIRMs), and in some cases the Flood Insurance Study (FIS) reports, currently in effect... respective Community Map Repository address listed in the table below and online through the FEMA Map Service...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-28
... opportunity for comment and appeal. These other types of flood hazard determinations include new and modified... Appeal Procedures AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Pursuant to... rules. This new procedure will not affect the notice or appeals process for these determinations. FEMA...
78 FR 8177 - Proposed Flood Hazard Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-05
... insurance agents and others to calculate appropriate flood insurance premium rates for new buildings and the contents of those buildings. DATES: Comments are to be submitted on or before May 6, 2013. ADDRESSES: The... buildings built after the FIRM and FIS report become effective. The communities affected by the flood hazard...
44 CFR 65.11 - Evaluation of sand dunes in mapping coastal flood hazard areas.
Code of Federal Regulations, 2010 CFR
2010-10-01
... storm-induced dune erosion potential in its determination of coastal flood hazards and risk mapping... base flood storm surges and associated wave action where the cross-sectional area of the primary... storm surges and associated wave action. [53 FR 16279, May 6, 1988] ...
44 CFR 65.11 - Evaluation of sand dunes in mapping coastal flood hazard areas.
Code of Federal Regulations, 2013 CFR
2013-10-01
... storm-induced dune erosion potential in its determination of coastal flood hazards and risk mapping... base flood storm surges and associated wave action where the cross-sectional area of the primary... storm surges and associated wave action. [53 FR 16279, May 6, 1988] ...
44 CFR 65.11 - Evaluation of sand dunes in mapping coastal flood hazard areas.
Code of Federal Regulations, 2012 CFR
2012-10-01
... storm-induced dune erosion potential in its determination of coastal flood hazards and risk mapping... base flood storm surges and associated wave action where the cross-sectional area of the primary... storm surges and associated wave action. [53 FR 16279, May 6, 1988] ...
44 CFR 65.11 - Evaluation of sand dunes in mapping coastal flood hazard areas.
Code of Federal Regulations, 2014 CFR
2014-10-01
... storm-induced dune erosion potential in its determination of coastal flood hazards and risk mapping... base flood storm surges and associated wave action where the cross-sectional area of the primary... storm surges and associated wave action. [53 FR 16279, May 6, 1988] ...
44 CFR 65.11 - Evaluation of sand dunes in mapping coastal flood hazard areas.
Code of Federal Regulations, 2011 CFR
2011-10-01
... storm-induced dune erosion potential in its determination of coastal flood hazards and risk mapping... base flood storm surges and associated wave action where the cross-sectional area of the primary... storm surges and associated wave action. [53 FR 16279, May 6, 1988] ...
NASA Astrophysics Data System (ADS)
Thomas, E. A.
2012-12-01
Worldwide, the toll of disaster damage caused by foreseeable natural hazards is growing, despite the fact that science is increasingly able to quantify the risk and foresee the likely location of natural events (NCDC 2012; NHC 2010). Those events can cause disastrous consequences if human built infrastructure is not properly designed for both the current state and future events (IBHS, 2012). Our existing approaches are not working at reducing the mounting toll of disasters which follow foreseeable natural events. Rather, even if the climate were not changing, current land use decisions coupled with development, engineering, design, and construction practices are significantly contributing to further increasing an unsustainable toll from disasters (Pielke, Gratz et al. 2007). Safe and proper construction practices developed to reduce flood losses (e.g. Design for Flooding, Watson, Adams et al., 2010) are all too often thought of as a zero sum situation where the community wins and the developer loses. In reality, the United States and the rest of the world often can find win-win solutions based on sound economics, law, ethics, and environmental sustainability that will benefit communities, developers, and natural hazard risk mitigation practitioners. While such solutions are being implemented in a fragmentary manner throughout the United States, communities implementing these solutions are increasingly working together in peer networks, such as the Natural Hazard Mitigation Association (NHMA)'s Resilient Neighbors Network. Examples include the Urban Drainage and Flood Control District that covers the metropolitan Denver area and recent work in Tulsa, Oklahoma. This presentation will set forth the scientific, ethical, and legal basis of higher development standards which, when combined with good negotiations techniques, can significantly decrease the terrible misery from wildfires, tornadoes, floods, and other natural disasters. Communities clearly have the legal right to implement safe design standards (Thomas, Riley Medlock 2008); yet all too often do not (NOAA, 2010). The required negotiations techniques must include outreach even to those who believe the topics of climate change and sustainability are some sort of plot against property rights and the free enterprise system. The presentation will also challenge the scientific community to support reasoned efforts to better prepare society for the even greater challenges posed by climate variability, uncertainty, and change: to work with practitioners who seek to build a safe and sustainable future to identify gaps in scientific knowledge and help develop workable solutions at the local level. Edward A. Thomas Esq. President Natural Hazard Mitigation Association
Hjalmarson, H.W.
1994-01-01
Flood hazards of distributary-flow areas in Maricopa County, Arizona, can be distinguished on the basis of morphological features. Five distributary-flow areas represent the range of flood-hazard degree in the study area. Descriptive factors, including the presence of desert varnish and the absence of saguaro cactus, are more useful than traditional hydraulic-based methods in defining hazards. The width, depth, and velocity exponents of the hydraulic-geometry relations at the primary diffluences of the sites are similar to theoretical exponents for streams with cohesive bank material and the average exponents of stream channels in other areas in the United States. Because of the unexplained scatter of the values of the exponent of channel width, however, the use of average hydraulic-geometry relations is con- sidered inappropriate for characterizing flood hazards for specific distributary-flow in Maricopa County. No evidence has been found that supports the use of stochastic modeling of flows or flood hazards of many distributary-flow areas. The surface of many distributary-flow areas is stable with many distributary channels eroded in the calcreted surface material. Many distributary- flow areas do not appear to be actively aggrading today, and the paths of flow are not changing.
Flood Impacts on People: from Hazard to Risk Maps
NASA Astrophysics Data System (ADS)
Arrighi, C.; Castelli, F.
2017-12-01
The mitigation of adverse consequences of floods on people is crucial for civil protection and public authorities. According to several studies, in the developed countries the majority of flood-related fatalities occurs due to inappropriate high risk behaviours such as driving and walking in floodwaters. In this work both the loss of stability of vehicles and pedestrians in floodwaters are analysed. Flood hazard is evaluated, based on (i) a 2D inundation model of an urban area, (ii) 3D hydrodynamic simulations of water flows around vehicles and human body and (iii) a dimensional analysis of experimental activity. Exposure and vulnerability of vehicles and population are assessed exploiting several sources of open GIS data in order to produce risk maps for a testing case study. The results show that a significant hazard to vehicles and pedestrians exists in the study area. Particularly high is the hazard to vehicles, which are likely to be swept away by flood flow, possibly aggravate damages to structures and infrastructures and locally alter the flood propagation. Exposure and vulnerability analysis identifies some structures such as schools and public facilities, which may attract several people. Moreover, some shopping facilities in the area, which attract both vehicular and pedestrians' circulation are located in the highest flood hazard zone.The application of the method demonstrates that, at municipal level, such risk maps can support civil defence strategies and education to active citizenship, thus contributing to flood impact reduction to population.
Flood risk and insurance loss potential in the Thames Gateway
NASA Astrophysics Data System (ADS)
Eldridge, J.; Horn, D.
2009-04-01
The Thames Gateway, currently Europe's largest regeneration project, is an area of redevelopment located in the South East of England, with Government plans to create up to 160,000 new homes and 180,000 new jobs by 2016. Although the new development is intended to contribute £12bn annually to the economy, the potential flood risk is high, with much of the area situated on Thames tidal floodplain and vulnerable to both storm surges and peak river flows. This poses significant hazard to those inhabiting the area and has raised concern amongst the UK insurance industry, who would be liable for significant financial claims if a large flood event were to occur, particularly with respect to the number of new homes and businesses being built in flood risk areas. Flood risk and the potential damage to both lives and assets in vulnerable areas have gained substantial recognition, in light of recent flooding events, from both governmental agencies and in the public's awareness of flood hazard. This has resulted in a change in UK policy with planning policy for flood risk (PPS25, Planning Policy Statement 25) adopting a more strategic approach to development, as well as a new Flooding and Water Bill which is due for consultation in 2009. The Government and the Association of British Insurers, who represent the UK insurance industry, have also recently changed their Statement of Principles which guides provision of flood insurance in the future. This PhD research project aims to quantify flood risk in the Thames Gateway area with a view to evaluating the insurance loss potential under different insurance and planning scenarios. Using current sources of inundation extent, and incorporating varying insurance penetration rates and degrees of adoption of planning policy and guidance, it focuses on estimating flood risk under these different scenarios. This presentation introduces the development of the project and the theory and methodology which will be used to address the research problem, and presents the initial findings, including an overview of the major developments going ahead in the area and an indication of areas of high asset value and potential for inundation based on topography and standard of protection of defences.
Actionable Science for Sea Level Rise and Coastal Flooding to Help Avoid Maladaptation
NASA Astrophysics Data System (ADS)
Buchanan, M. K.
2017-12-01
Rising sea levels increase the frequency of flooding at all levels, from nuisance to extreme, along coastlines across the world. Although recent flooding has increased the saliency of sea level rise (SLR) and the risks it presents to governments and communities, the effect of SLR on coastal hazards is complex and filled with uncertainty that is often uncomfortable for decision-makers. Although it is certain that SLR is occurring and will continue, its rate remains ambiguous. Because extreme flooding is by definition rare, there is also uncertainty in the effect of natural variability on flood frequency. These uncertainties pose methodological obstacles for integrating SLR into flood hazard projections and risk management. A major challenge is how to distill this complexity into information geared towards public sectors to help inform adaptation decision-making. Because policy windows are limited, budgets are tight, and decisions may have long-term consequences, it is especially important that this information accounts for uncertainty to help avoid damage and maladaptation. The U.S. Global Research Program, and others, describe this type of science—data and tools that help decision-makers plan for climate change impacts—as actionable [1]. We produce actionable science to support decision-making for adaptation to coastal impacts, despite uncertainty in projections of SLR and flood frequency. We found that SLR will boost the occurrence of minor rather than severe flooding in some regions of the U.S., while in other regions the reverse is true. For many cities, the current ten-year flood level will become a regular occurrence as the century progresses and by 2100 will occur every few days for some cities. This creates a mismatch with current planning in some cases. For example, a costly storm surge barrier may be built to protect parts of New York City from extreme flood levels but these are not often used because they are expensive to operate and obstructive to navigation and ecological systems. The current 10-yr flood will become a nuisance flood in the future and large episodic protection may not be especially helpful. [1] Beier, Paul, et al. "A How-to Guide for Coproduction of Actionable Science." Conservation Letters (2016).
O'Connor, Jim; Atwater, Brian F.; Cohn, Timothy A.; Cronin, Thomas M.; Keith, Mackenzie K.; Smith, Christopher G.; Mason, Jr., Robert R.
2014-01-01
A screening of the 104 nuclear powerplants in the United States licensed by the Nuclear Regulatory Commission (at 64 sites) indicates several sites for which paleoflood studies likely would provide additional flood-frequency information. Two sites—Duane Arnold, Iowa, on the Cedar River; and David-Besse, Ohio, on the Toussaint River—have geologic conditions suitable for creating and preserving stratigraphic records of flooding and few upstream dams that may complicate flood-frequency analysis. One site—Crystal River, Florida1, on the Withlacoochee River and only 4 kilometers from the coast—has high potential as a candidate for assessing riverine and marine inundation hazards. Several sites on the Mississippi River have high geologic potential, but upstream dams almost certainly now regulate peak flows. Nevertheless, studies on the Mississippi River to evaluate long-term flood frequency may provide results applicable to a wide spectrum of regional hazard issues. Several sites in the southeastern United States have high geologic potential, and studies at these sites also may be helpful in evaluating hazards from outburst floods from landslide dams (river blockages formed by mass movements), which may be a regional hazard. For all these sites, closer investigation and field reconnaissance would be needed to confirm suitable deposits and settings for a complete paleoflood analysis. Similar screenings may help identify high-potential sites for geologic investigations of tsunami and storm-surge hazards.
Flash floods in Europe: state of the art and research perspectives
NASA Astrophysics Data System (ADS)
Gaume, Eric
2014-05-01
Flash floods, i.e. floods induced by severe rainfall events generally affecting watersheds of limited area, are the most frequent, destructive and deadly kind of natural hazard known in Europe and throughout the world. Flash floods are especially intense across the Mediterranean zone, where rainfall accumulations exceeding 500 mm within a few hours may be observed. Despite this state of facts, the study of extremes in hydrology has essentially gone unexplored until the recent past, with the exception of some rare factual reports on individual flood events, with the sporadic inclusion of isolated estimated peak discharges. Floods of extraordinary magnitude are in fact hardly ever captured by existing standard measurement networks, either because they are too heavily concentrated in space and time or because their discharges greatly exceed the design and calibration ranges of the measurement devices employed (stream gauges). This situation has gradually evolved over the last decade for two main reasons. First, the expansion and densification of weather radar networks, combined with improved radar quantitative precipitation estimates, now provide ready access to rainfall measurements at spatial and temporal scales that, while not perfectly accurate, are compatible with the study of extreme events. Heavy rainfall events no longer fail to be recorded by existing rain gauge and radar networks. Second, pioneering research efforts on extreme floods, based on precise post-flood surveys, have helped overcome the limitations imposed by a small base of available direct measured data. This activity has already yielded significant progress in expanding the knowledge and understanding of extreme flash floods. This presentation will provide a review of the recent research progresses in the area of flash flood studies, mainly based on the outcomes of the European research projects FLOODsite, HYDRATE and Hymex. It will show how intensive collation of field data helped better define the possible magnitudes of flood volumes and discharges during flash floods, their spatial distribution and rates of occurrence, as well as the factors that control the hydrological response of watersheds to heavy rainfalls explaining the large spatial variability in flood hazard. Developments in the fields of flood frequency analyses and flood forecasting based on the recently acquired data or adapted for the valuation of this specific data will also be presented. The presentation will end suggesting some perspectives for future research activities on flash floods.
Flood Vulnerability Assessment Map
Maps of energy infrastructure with real-time storm and emergency information by fuel type and by state. Flood hazard information from FEMA has been combined with EIA's energy infrastructure layers as a tool to help state, county, city, and private sector planners assess which key energy infrastructure assets are vulnerable to rising sea levels, storm surges, and flash flooding. Note that flood hazard layers must be zoomed-in to street level before they become visible.
Simulating Scenario Floods for Hazard Assessment on the Lower Bicol Floodplain, the Philippines
NASA Astrophysics Data System (ADS)
Usamah, Muhibuddin Bin; Alkema, Dinand
This paper describes the first results from a study to the behavior of floods in the lower Bicol area, the Philippines. A 1D2D dynamic hydraulic model was applied to simulate a set of scenario floods through the complex topography of the city Naga and surrounding area. The simulation results are integrated into a multi-parameter hazard zonation for the five scenario floods.
Vulnerability Assessment Using LIDAR Data in Silang-Sta Rosa Subwatershed, Philippines
NASA Astrophysics Data System (ADS)
Bragais, M. A.; Magcale-Macandog, D. B.; Arizapa, J. L.; Manalo, K. M.
2016-10-01
Silang-Sta. Rosa Subwatershed is experiencing rapid urbanization. Its downstream area is already urbanized and the development is moving fast upstream. With the rapid land conversion of pervious to impervious areas and increase frequency of intense rainfall events, the downstream of the watershed is at risk of flood hazard. The widely used freeware HEC-RAS (Hydrologic Engineering Center- River Analysis System) model was used to implement the 2D unsteady flow analysis to develop a flood hazard map. The LiDAR derived digital elevation model (DEM) with 1m resolution provided detailed terrain that is vital for producing reliable flood extent map that can be used for early warning system. With the detailed information from the simulation like areas to be flooded, the predicted depth and duration, we can now provide specific flood forecasting and mitigation plan even at community level. The methodology of using 2D unsteady flow modelling and high resolution DEM in a watershed can be replicated to other neighbouring watersheds specially those areas that are not yet urbanized so that their development will be guided to be flood hazard resilient. LGUs all over the country will benefit from having a high resolution flood hazard map.
NASA Astrophysics Data System (ADS)
Chiang, Shou-Hao; Chen, Chi-Farn
2016-04-01
Flood, as known as the most frequent natural hazard in Taiwan, has induced severe damages of residents and properties in urban areas. The flood risk is even more severe in Tainan since 1990s, with the significant urban development over recent decades. Previous studies have indicated that the characteristics and the vulnerability of flood are affected by the increase of impervious surface area (ISA) and the changing climate condition. Tainan City, in southern Taiwan is selected as the study area. This study uses logistic regression to functionalize the relationship between rainfall variables, ISA and historical flood events. Specifically, rainfall records from 2001 to 2014 were collected and mapped, and Landsat images of year 2001, 2004, 2007, 2010 and 2014 were used to generate the ISA with SVM (support vector machine) classifier. The result shows that rainfall variables and ISA are significantly correlated to the flood occurrence in Tainan City. With applying the logistic function, the likelihood of flood occurrence can be estimated and mapped over the study area. This study suggests the method is simple and feasible for rapid flood susceptibility mapping, when real-time rainfall observations can be available, and it has potential for future flood assessment, with incorporating climate change projections and urban growth prediction.
NASA Astrophysics Data System (ADS)
CHEN, Huali; Tokunaga, Tomochika; Ito, Yuka; Sawamukai, Marie
2014-05-01
Floods, the most common natural disaster in the world, cause serious loss of life and economic damage. Flood is one of the disasters in the coastal lowland along the Kujukuri Plain, Chiba Prefecture, Japan. Many natural and human activities have changed the surface environment of the Plain. These include agricultural development, urban and industrial development, change of the drainage patterns of the land surface, deposition and/or erosion of the river valleys, and so on. In addition, wide spread occurrence of land subsidence has been caused by the abstraction of natural gas dissolved in groundwater. The locations of the groundwater extraction include nearby the coast, and it may increase the flood risk. Hence, it is very important to evaluate flood hazard by taking into account the temporal change of land elevation caused by land subsidence, and to develop hazard maps for protecting surface environment and land-use planning. Multicriteria decision analysis (MCDA) provides methodology and techniques for analyzing complex decision problems, which often involve incommensurable data or criteria. Also, Geographical Information System (GIS) is the powerful tool since it manages large amount of spatial data involved in MCDA. The purpose of this study is to present a flood hazard model using MCDA techniques with GIS support in a region where primary data are scare. The model incorporates six parameters: river system, topography, land-use, flood control project, passing flood from coast, and precipitation. Main data sources used are 10 meter resolution topography data, airborne laser scanning data, leveling data, Landsat-TM data, two 1:30,000 scale river watershed map, and precipitation data from precipitation observation stations around the study area. River system map was created by merging the river order, the line density, and the river sink point density layers. Land-use data were derived from Landsat-TM images. A final hazard map for 2004, as an example, was obtained using an algorithm that combines factors in weighted linear combinations. The assignment of the weight/rank values and their analysis were realized by the application of the Analytic Hierarchy Process (AHP) method. This study is the preliminary work to investigate the flood hazard at the Kujukuri Plain. Flood hazard map of the other years will be analyzed to investigate the temporal change of the flood hazard area, and more data will be collected and added to improve the assessment.
Climatic control of Mississippi River flood hazard amplified by river engineering
NASA Astrophysics Data System (ADS)
Munoz, Samuel E.; Giosan, Liviu; Therrell, Matthew D.; Remo, Jonathan W. F.; Shen, Zhixiong; Sullivan, Richard M.; Wiman, Charlotte; O’Donnell, Michelle; Donnelly, Jeffrey P.
2018-04-01
Over the past century, many of the world’s major rivers have been modified for the purposes of flood mitigation, power generation and commercial navigation. Engineering modifications to the Mississippi River system have altered the river’s sediment levels and channel morphology, but the influence of these modifications on flood hazard is debated. Detecting and attributing changes in river discharge is challenging because instrumental streamflow records are often too short to evaluate the range of natural hydrological variability before the establishment of flood mitigation infrastructure. Here we show that multi-decadal trends of flood hazard on the lower Mississippi River are strongly modulated by dynamical modes of climate variability, particularly the El Niño–Southern Oscillation and the Atlantic Multidecadal Oscillation, but that the artificial channelization (confinement to a straightened channel) has greatly amplified flood magnitudes over the past century. Our results, based on a multi-proxy reconstruction of flood frequency and magnitude spanning the past 500 years, reveal that the magnitude of the 100-year flood (a flood with a 1 per cent chance of being exceeded in any year) has increased by 20 per cent over those five centuries, with about 75 per cent of this increase attributed to river engineering. We conclude that the interaction of human alterations to the Mississippi River system with dynamical modes of climate variability has elevated the current flood hazard to levels that are unprecedented within the past five centuries.
NASA Astrophysics Data System (ADS)
Spence, C. M.; Brown, C.; Doss-Gollin, J.
2016-12-01
Climate model projections are commonly used for water resources management and planning under nonstationarity, but they do not reliably reproduce intense short-term precipitation and are instead more skilled at broader spatial scales. To provide a credible estimate of flood trend that reflects climate uncertainty, we present a framework that exploits the connections between synoptic-scale oceanic and atmospheric patterns and local-scale flood-producing meteorological events to develop long-term flood hazard projections. We demonstrate the method for the Iowa River, where high flow episodes have been found to correlate with tropical moisture exports that are associated with a pressure dipole across the eastern continental United States We characterize the relationship between flooding on the Iowa River and this pressure dipole through a nonstationary Pareto-Poisson peaks-over-threshold probability distribution estimated based on the historic record. We then combine the results of a trend analysis of dipole index in the historic record with the results of a trend analysis of the dipole index as simulated by General Circulation Models (GCMs) under climate change conditions through a Bayesian framework. The resulting nonstationary posterior distribution of dipole index, combined with the dipole-conditioned peaks-over-threshold flood frequency model, connects local flood hazard to changes in large-scale atmospheric pressure and circulation patterns that are related to flooding in a process-driven framework. The Iowa River example demonstrates that the resulting nonstationary, probabilistic flood hazard projection may be used to inform risk-based flood adaptation decisions.
Climatic control of Mississippi River flood hazard amplified by river engineering.
Munoz, Samuel E; Giosan, Liviu; Therrell, Matthew D; Remo, Jonathan W F; Shen, Zhixiong; Sullivan, Richard M; Wiman, Charlotte; O'Donnell, Michelle; Donnelly, Jeffrey P
2018-04-04
Over the past century, many of the world's major rivers have been modified for the purposes of flood mitigation, power generation and commercial navigation. Engineering modifications to the Mississippi River system have altered the river's sediment levels and channel morphology, but the influence of these modifications on flood hazard is debated. Detecting and attributing changes in river discharge is challenging because instrumental streamflow records are often too short to evaluate the range of natural hydrological variability before the establishment of flood mitigation infrastructure. Here we show that multi-decadal trends of flood hazard on the lower Mississippi River are strongly modulated by dynamical modes of climate variability, particularly the El Niño-Southern Oscillation and the Atlantic Multidecadal Oscillation, but that the artificial channelization (confinement to a straightened channel) has greatly amplified flood magnitudes over the past century. Our results, based on a multi-proxy reconstruction of flood frequency and magnitude spanning the past 500 years, reveal that the magnitude of the 100-year flood (a flood with a 1 per cent chance of being exceeded in any year) has increased by 20 per cent over those five centuries, with about 75 per cent of this increase attributed to river engineering. We conclude that the interaction of human alterations to the Mississippi River system with dynamical modes of climate variability has elevated the current flood hazard to levels that are unprecedented within the past five centuries.
12 CFR 339.6 - Required use of standard flood hazard determination form.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 12 Banks and Banking 4 2011-01-01 2011-01-01 false Required use of standard flood hazard determination form. 339.6 Section 339.6 Banks and Banking FEDERAL DEPOSIT INSURANCE CORPORATION REGULATIONS AND... a printed, computerized, or electronic manner. A non-member bank may obtain the standard flood...
ERIC Educational Resources Information Center
Nunnally, Nelson R.; And Others
1974-01-01
This activity is designed to introduce college students to the concept of floods as natural hazards, to flood frequency analysis, to hazard adjustment, and to the mechanics of public policy formulation through a six hour laboratory exercise, culminating in a simulation game. (JH)
Costs and benefits of adapting to river floods at the global scale
NASA Astrophysics Data System (ADS)
Ward, Philip; Aerts, Jeroen; Botzen, Wouter; Hallegatte, Stephane; Jongman, Brenden; Kind, Jarl; Scussolini, Paolo; Winsemius, Hessel
2015-04-01
It is well known that the economic losses associated with flooding are huge; for example in 2012 alone the economic losses from flooding exceeded 19 billion. As a result, different models have been developed to assess global scale flood risk. Recently, these have been used in several studies to assess current flood risk at the global scale, and to project how risk may increase as a result of climate change and/or socioeconomic development. In most regions, these studies show rapid increases in risk into the future, and therefore call for urgent adaptation. However, to date no studies have attempted to assess the costs of carrying out such adaptation, nor the benefits. In this paper, we therefore present the first global scale estimate of the costs and benefits of adapting to increased river flood risk caused by factors such as climate change and socioeconomic development. For this study, we concentrate on structural adaptation measures, such as dikes, designed to prevent flood hazard up to a certain design standard. We address two questions: 1. What would be the costs and benefits of maintaining current flood protection standards, accounting for future climate and socioeconomic change until 2100? 2. What flood protection standards would be required by 2100 to keep future flood risk constant at today's levels? And what would be the costs and benefits associated with this? In this paper, we will present our first global estimates of the costs and benefits of adaptation to increased flood risk, as well as maps of these findings per country and river basin. We present the results under 4 emission scenarios (RCPs), 5 socioeconomic scenarios (SSPs), and under several assumptions relating to total potential flood damages, discount rates, construction costs, maintenance costs, and so forth. The research was carried out using the GLOFRIS modelling cascade. This global flood risk model calculates flood risk in terms of annual expected damage, and has been developed and validated over the past few years. For this study we have extended GLOFRIS by developing a module that calculates the costs and benefits of adaptation by increasing dike flood protection standards. In brief, this is carried out by calculating, per cell, the length of dikes that would be required to provide flood protection, multiplying this with the change in dike height that would be required to offer a certain flood protection standard, and multiplying this with data on the costs of dike construction and maintenance.
Xiao, Yangfan; Yi, Shanzhen; Tang, Zhongqian
2017-12-01
Flood is the most common natural hazard in the world and has caused serious loss of life and property. Assessment of flood prone areas is of great importance for watershed management and reduction of potential loss of life and property. In this study, a framework of multi-criteria analysis (MCA) incorporating geographic information system (GIS), fuzzy analytic hierarchy process (AHP) and spatial ordered weighted averaging (OWA) method was developed for flood hazard assessment. The factors associated with geographical, hydrological and flood-resistant characteristics of the basin were selected as evaluation criteria. The relative importance of the criteria was estimated through fuzzy AHP method. The OWA method was utilized to analyze the effects of different risk attitudes of the decision maker on the assessment result. The spatial ordered weighted averaging method with spatially variable risk preference was implemented in the GIS environment to integrate the criteria. The advantage of the proposed method is that it has considered spatial heterogeneity in assigning risk preference in the decision-making process. The presented methodology has been applied to the area including Hanyang, Caidian and Hannan of Wuhan, China, where flood events occur frequently. The outcome of flood hazard distribution presents a tendency of high risk towards populated and developed areas, especially the northeast part of Hanyang city, which has suffered frequent floods in history. The result indicates where the enhancement projects should be carried out first under the condition of limited resources. Finally, sensitivity of the criteria weights was analyzed to measure the stability of results with respect to the variation of the criteria weights. The flood hazard assessment method presented in this paper is adaptable for hazard assessment of a similar basin, which is of great significance to establish counterplan to mitigate life and property losses. Copyright © 2017 Elsevier B.V. All rights reserved.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., App. A Appendix A to Part 36—Sample Form of Notice of Special Flood Hazards and Availability of... law will not allow us to make you the loan that you have applied for if you do not purchase flood insurance. The flood insurance must be maintained for the life of the loan. If you fail to purchase or renew...
Code of Federal Regulations, 2010 CFR
2010-01-01
..., App. A Appendix A to Part 22—Sample Form of Notice of Special Flood Hazards and Availability of... law will not allow us to make you the loan that you have applied for if you do not purchase flood insurance. The flood insurance must be maintained for the life of the loan. If you fail to purchase or renew...
Code of Federal Regulations, 2011 CFR
2011-01-01
.... 572, App. A Appendix A to Part 572—Sample Form of Notice of Special Flood Hazards and Availability of... law will not allow us to make you the loan that you have applied for if you do not purchase flood insurance. The flood insurance must be maintained for the life of the loan. If you fail to purchase or renew...
Code of Federal Regulations, 2010 CFR
2010-01-01
.... 572, App. A Appendix A to Part 572—Sample Form of Notice of Special Flood Hazards and Availability of... law will not allow us to make you the loan that you have applied for if you do not purchase flood insurance. The flood insurance must be maintained for the life of the loan. If you fail to purchase or renew...
Code of Federal Regulations, 2011 CFR
2011-01-01
..., App. A Appendix A to Part 22—Sample Form of Notice of Special Flood Hazards and Availability of... law will not allow us to make you the loan that you have applied for if you do not purchase flood insurance. The flood insurance must be maintained for the life of the loan. If you fail to purchase or renew...
Code of Federal Regulations, 2010 CFR
2010-07-01
..., App. A Appendix A to Part 36—Sample Form of Notice of Special Flood Hazards and Availability of... law will not allow us to make you the loan that you have applied for if you do not purchase flood insurance. The flood insurance must be maintained for the life of the loan. If you fail to purchase or renew...
NASA Astrophysics Data System (ADS)
Zaharia, Liliana; Costache, Romulus; Prăvălie, Remus; Ioana-Toroimac, Gabriela
2017-04-01
Given that floods continue to cause yearly significant worldwide human and material damages, flood risk mitigation is a key issue and a permanent challenge in developing policies and strategies at various spatial scales. Therefore, a basic phase is elaborating hazard and flood risk maps, documents which are an essential support for flood risk management. The aim of this paper is to develop an approach that allows for the identification of flash-flood and flood-prone susceptible areas based on computing and mapping of two indices: FFPI (Flash-Flood Potential Index) and FPI (Flooding Potential Index). These indices are obtained by integrating in a GIS environment several geographical variables which control runoff (in the case of the FFPI) and favour flooding (in the case of the FPI). The methodology was applied in the upper (mountainous) and middle (hilly) catchment of the Prahova River, a densely populated and socioeconomically well-developed area which has been affected repeatedly by water-related hazards over the past decades. The resulting maps showing the spatialization of the FFPI and FPI allow for the identification of areas with high susceptibility to flashfloods and flooding. This approach can provide useful mapped information, especially for areas (generally large) where there are no flood/hazard risk maps. Moreover, the FFPI and FPI maps can constitute a preliminary step for flood risk and vulnerability assessment.
NASA Astrophysics Data System (ADS)
Koc, Gamze; Thieken, Annegret H.
2016-04-01
Despite technological development, better data and considerable efforts to reduce the impacts of natural hazards over the last two decades, natural disasters inflicted losses have caused enormous human and economic damages in Turkey. In particular earthquakes and flooding have caused enormous human and economic losses that occasionally amounted to 3 to 4% of the gross national product of Turkey (Genç, 2007). While there is a large body of literature on earthquake hazards and risks in Turkey, comparatively little is known about flood hazards and risks. Therefore, this study is aimed at investigating flood patterns, intensities and impacts, also providing an overview of the temporal and spatial distribution of flood losses by analysing different databases on disaster losses throughout Turkey. As input for more detailed event analyses, an additional aim is to retrieve the most severe flood events in the period between 1960 and 2014 from the databases. In general, data on disaster impacts are scarce in comparison to other scientific fields in natural hazard research, although the lack of reliable, consistent and comparable data is seen as a major obstacle for effective and long-term loss prevention. Currently, only a few data sets, especially the emergency events database EM-DAT (www.emdat.be) hosted and maintained by the Centre for Research on the Epidemiology of Disasters (CRED) since 1988, are publicly accessible and have become widely used to describe trends in disaster losses. However, loss data are subjected to various biases (Gall et al. 2009). Since Turkey is in the favourable position of having a distinct national disaster database since 2009, i.e. the Turkey Disaster Data Base (TABB), there is the unique opportunity to investigate flood impacts in Turkey in more detail as well as to identify biases and underlying reasons for mismatches with EM-DAT. To compare these two databases, the events of the two databases were reclassified by using the IRDR peril classification system (IRDR, 2014). Furthermore, literature, news archives and the Global Active Archive of Large Flood Events - Dartmouth Flood Observatory (floodobservatory.colorado.edu) were used to complement loss data gaps of the databases. From 1960 to 2014, EM-DAT reported 35 flood events in Turkey (26.3 % of all natural hazards events), which caused 773 fatalities (the second most destructive type of natural hazard after earthquakes) and a total economic damage of US 2.2 billion. In contrast, TABB contained 1076 flood events (8.3 % of all natural hazards events), by which 795 people died. On this basis, floods are the third most destructive type of natural hazard -after earthquakes and extreme temperatures- for human losses in Turkey. A comparison of the two databases EM-DAT and TABB reveals big mismatches of the flood data, e.g. the reported number of events, number of affected people and economic loss, differ dramatically. It is concluded that the main reason for the big differences and contradicting numbers of different natural disaster databases is lack of standardization for data collection, peril classification and database thresholds (entry criteria). Since loss data collection is gaining more and more attention, e.g. in the Sendai Framework for Disaster Risk Reduction 2015-2030 (SFDRR), the study could offer substantial insights for flood risk mitigation and adaptation studies in Turkey. References Gall, M., Borden, K., Cutter, S.L. (2009) When do losses count? Six fallacies of loss data from natural hazards. Bulletin of the American Meteorological Society, 90(6), 799-809. Genç, F.S., (2007) Türkiye'de Kentleşme ve Doǧal Afet Riskleri ile İlişkisi, TMMOB Afet Sempozyumu. IRDR (2014) IRDR Peril Classification and Hazard Glossary. Report of the Data Group in the Integrated Research on Disaster Risk. (Available at: http://www.irdrinternational.org/2014/03/28/irdr-peril-classification-and-hazard-glossary).
NASA Astrophysics Data System (ADS)
Benavente, J.; Del Río, L.; Gracia, F. J.; Martínez-del-Pozo, J. A.
2006-06-01
Mapping of coastal inundation hazard related to storms requires the combination of multiple sources of information regarding meteorological, morphological and dynamic characteristics of both the area at risk and the studied phenomena. Variables such as beach slope, storm wave height or wind speed have traditionally been used, but detailed geomorphological features of the area as well as long-term shoreline evolution trends must also be taken into account in order to achieve more realistic results. This work presents an evaluation of storm flooding hazard in Valdelagrana spit and marshes (SW Spain), considering two types of storm that are characteristic of the area: a modal storm with 1 year of recurrence interval (maximum wave height of 3.3 m), and an extreme storm with 6-10 years of recurrence interval (maximum wave height of 10.6 m), both approaching the coast perpendicularly. After calculating theoretical storm surge elevation, a digital terrain model was made by adjusting topographic data to field work and detailed geomorphological analysis. A model of flooding extent was subsequently developed for each storm type, and then corrected according to the rates of shoreline change in the last decades, which were assessed by means of aerial photographs taking the dune toe as shoreline indicator. Results show that long-term coastline trend represents an important factor in the prediction of flooding extent, since shoreline retreat causes the deterioration of natural coastal defences as dune ridges, thus increasing coastal exposure to high-energy waves. This way, it has been stated that the lack of sedimentary supply plays an important role in spatial variability of inundation extent in Valdelagrana spit. Finally, a hazard map is presented, where calculated coastal retreat rates are employed in order to predict the areas that could be affected by future inundation events.
Knuth, Daniela; Kehl, Doris; Hulse, Lynn; Schmidt, Silke
2014-07-01
Understanding public risk perceptions and their underlying processes is important in order to learn more about the way people interpret and respond to hazardous emergency events. Direct experience with an involuntary hazard has been found to heighten the perceived risk of experiencing the same hazard and its consequences in the future, but it remains unclear if cross-over effects are possible (i.e., experience with one hazard influencing perceived risk for other hazards also). Furthermore, the impact of objective risk and country of residence on perceived risk is not well understood. As part of the BeSeCu (Behavior, Security, and Culture) Project, a sample of 1,045 survivors of emergencies from seven European countries (i.e., Germany, the Czech Republic, Poland, Sweden, Spain, Turkey, and Italy) was drawn. Results revealed heightened perceived risk for emergency events (i.e., domestic and public fires, earthquakes, floods, and terrorist attacks) when the event had been experienced previously plus some evidence of cross-over effects, although these effects were not so strong. The largest country differences in perceived risk were observed for earthquakes, but this effect was significantly reduced by taking into account the objective earthquake risk. For fires, floods, terrorist attacks, and traffic accidents, only small country differences in perceived risk were found. Further studies including a larger number of countries are welcomed. © 2013 Society for Risk Analysis.
NASA Astrophysics Data System (ADS)
Moncoulon, D.; Labat, D.; Ardon, J.; Leblois, E.; Onfroy, T.; Poulard, C.; Aji, S.; Rémy, A.; Quantin, A.
2014-09-01
The analysis of flood exposure at a national scale for the French insurance market must combine the generation of a probabilistic event set of all possible (but which have not yet occurred) flood situations with hazard and damage modeling. In this study, hazard and damage models are calibrated on a 1995-2010 historical event set, both for hazard results (river flow, flooded areas) and loss estimations. Thus, uncertainties in the deterministic estimation of a single event loss are known before simulating a probabilistic event set. To take into account at least 90 % of the insured flood losses, the probabilistic event set must combine the river overflow (small and large catchments) with the surface runoff, due to heavy rainfall, on the slopes of the watershed. Indeed, internal studies of the CCR (Caisse Centrale de Reassurance) claim database have shown that approximately 45 % of the insured flood losses are located inside the floodplains and 45 % outside. Another 10 % is due to sea surge floods and groundwater rise. In this approach, two independent probabilistic methods are combined to create a single flood loss distribution: a generation of fictive river flows based on the historical records of the river gauge network and a generation of fictive rain fields on small catchments, calibrated on the 1958-2010 Météo-France rain database SAFRAN. All the events in the probabilistic event sets are simulated with the deterministic model. This hazard and damage distribution is used to simulate the flood losses at the national scale for an insurance company (Macif) and to generate flood areas associated with hazard return periods. The flood maps concern river overflow and surface water runoff. Validation of these maps is conducted by comparison with the address located claim data on a small catchment (downstream Argens).
24 CFR 3285.102 - Installation of manufactured homes in flood hazard areas.
Code of Federal Regulations, 2010 CFR
2010-04-01
... HOUSING COMMISSIONER, DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Pre-Installation Considerations § 3285.102 Installation of manufactured homes in flood hazard...
24 CFR 3285.102 - Installation of manufactured homes in flood hazard areas.
Code of Federal Regulations, 2011 CFR
2011-04-01
... HOUSING COMMISSIONER, DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Pre-Installation Considerations § 3285.102 Installation of manufactured homes in flood hazard...
24 CFR 3285.102 - Installation of manufactured homes in flood hazard areas.
Code of Federal Regulations, 2012 CFR
2012-04-01
... HOUSING COMMISSIONER, DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Pre-Installation Considerations § 3285.102 Installation of manufactured homes in flood hazard...
A Cascading Storm-Flood-Landslide Guidance System: Development and Application in China
NASA Astrophysics Data System (ADS)
Zeng, Ziyue; Tang, Guoqiang; Long, Di; Ma, Meihong; Hong, Yang
2016-04-01
Flash floods and landslides, triggered by storms, often interact and cause cascading effects on human lives and property. Satellite remote sensing data has significant potential use in analysis of these natural hazards. As one of the regions continuously affected by severe flash floods and landslides, Yunnan Province, located in Southwest China, has a complex mountainous hydrometeorology and suffers from frequent heavy rainfalls from May through to late September. Taking Yunnan as a test-bed, this study proposed a Cascading Storm-Flood-Landslide Guidance System to progressively analysis and evaluate the risk of the multi-hazards based on multisource satellite remote sensing data. First, three standardized rainfall amounts (average daily amount in flood seasons, maximum 1h and maximum 6h amount) from the products of Topical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) were used as rainfall indicators to derive the StorM Hazard Index (SMHI). In this process, an integrated approach of the Analytic Hierarchy Process (AHP) and the Information-Entropy theory was adopted to determine the weight of each indicator. Then, land cover and vegetation cover data from the Moderate Resolution Imaging Spectroradiometer (MODIS) products, soil type from the Harmonized World Soil Database (HWSD) soil map, and slope from the Shuttle Radar Topography Mission (SRTM) data were add as semi-static geo-topographical indicators to derive the Flash Flood Hazard Index (FFHI). Furthermore, three more relevant landslide-controlling indicators, including elevation, slope angle and soil text were involved to derive the LandSlide Hazard Index (LSHI). Further inclusion of GDP, population and prevention measures as vulnerability indicators enabled to consecutively predict the risk of storm to flash flood and landslide, respectively. Consequently, the spatial patterns of the hazard indices show that the southeast of Yunnan has more possibility to encounter with storms than other parts, while the northeast of Yunnan are most susceptible to floods and landslides, which agrees with the distribution of observed flood and landslide events. Moreover, risks for the multi-hazards were classified into four categories. Results show a strong correlation between the distributions of flash flood prone and landslide-prone regions and also highlight the counties with high risk of storms (e.g., Funing and Malipo), flash floods (e.g., Gongshan and Yanjing) and landslides (e.g., Zhaotong and Luxi). Compared to other approaches, the Cascading Storm-Flood-Landslide Guidance System uses a straightforward yet useful indicator-based weighted linear combination method and could be a useful prototype in mapping characteristics of storm-triggered hazards for users at different administrative levels (e.g., catchment, town, county, province and even nation) in China.
NASA Astrophysics Data System (ADS)
Zahmatkesh, Zahra; Karamouz, Mohammad; Nazif, Sara
2015-09-01
Simulation of rainfall-runoff process in urban areas is of great importance considering the consequences and damages of extreme runoff events and floods. The first issue in flood hazard analysis is rainfall simulation. Large scale climate signals have been proved to be effective in rainfall simulation and prediction. In this study, an integrated scheme is developed for rainfall-runoff modeling considering different sources of uncertainty. This scheme includes three main steps of rainfall forecasting, rainfall-runoff simulation and future runoff prediction. In the first step, data driven models are developed and used to forecast rainfall using large scale climate signals as rainfall predictors. Due to high effect of different sources of uncertainty on the output of hydrologic models, in the second step uncertainty associated with input data, model parameters and model structure is incorporated in rainfall-runoff modeling and simulation. Three rainfall-runoff simulation models are developed for consideration of model conceptual (structural) uncertainty in real time runoff forecasting. To analyze the uncertainty of the model structure, streamflows generated by alternative rainfall-runoff models are combined, through developing a weighting method based on K-means clustering. Model parameters and input uncertainty are investigated using an adaptive Markov Chain Monte Carlo method. Finally, calibrated rainfall-runoff models are driven using the forecasted rainfall to predict future runoff for the watershed. The proposed scheme is employed in the case study of the Bronx River watershed, New York City. Results of uncertainty analysis of rainfall-runoff modeling reveal that simultaneous estimation of model parameters and input uncertainty significantly changes the probability distribution of the model parameters. It is also observed that by combining the outputs of the hydrological models using the proposed clustering scheme, the accuracy of runoff simulation in the watershed is remarkably improved up to 50% in comparison to the simulations by the individual models. Results indicate that the developed methodology not only provides reliable tools for rainfall and runoff modeling, but also adequate time for incorporating required mitigation measures in dealing with potentially extreme runoff events and flood hazard. Results of this study can be used in identification of the main factors affecting flood hazard analysis.
Muis, Sanne; Güneralp, Burak; Jongman, Brenden; Aerts, Jeroen C J H; Ward, Philip J
2015-12-15
An accurate understanding of flood risk and its drivers is crucial for effective risk management. Detailed risk projections, including uncertainties, are however rarely available, particularly in developing countries. This paper presents a method that integrates recent advances in global-scale modeling of flood hazard and land change, which enables the probabilistic analysis of future trends in national-scale flood risk. We demonstrate its application to Indonesia. We develop 1000 spatially-explicit projections of urban expansion from 2000 to 2030 that account for uncertainty associated with population and economic growth projections, as well as uncertainty in where urban land change may occur. The projections show that the urban extent increases by 215%-357% (5th and 95th percentiles). Urban expansion is particularly rapid on Java, which accounts for 79% of the national increase. From 2000 to 2030, increases in exposure will elevate flood risk by, on average, 76% and 120% for river and coastal floods. While sea level rise will further increase the exposure-induced trend by 19%-37%, the response of river floods to climate change is highly uncertain. However, as urban expansion is the main driver of future risk, the implementation of adaptation measures is increasingly urgent, regardless of the wide uncertainty in climate projections. Using probabilistic urban projections, we show that spatial planning can be a very effective adaptation strategy. Our study emphasizes that global data can be used successfully for probabilistic risk assessment in data-scarce countries. Copyright © 2015 Elsevier B.V. All rights reserved.
iFLOOD: A Real Time Flood Forecast System for Total Water Modeling in the National Capital Region
NASA Astrophysics Data System (ADS)
Sumi, S. J.; Ferreira, C.
2017-12-01
Extreme flood events are the costliest natural hazards impacting the US and frequently cause extensive damages to infrastructure, disruption to economy and loss of lives. In 2016, Hurricane Matthew brought severe damage to South Carolina and demonstrated the importance of accurate flood hazard predictions that requires the integration of riverine and coastal model forecasts for total water prediction in coastal and tidal areas. The National Weather Service (NWS) and the National Ocean Service (NOS) provide flood forecasts for almost the entire US, still there are service-gap areas in tidal regions where no official flood forecast is available. The National capital region is vulnerable to multi-flood hazards including high flows from annual inland precipitation events and surge driven coastal inundation along the tidal Potomac River. Predicting flood levels on such tidal areas in river-estuarine zone is extremely challenging. The main objective of this study is to develop the next generation of flood forecast systems capable of providing accurate and timely information to support emergency management and response in areas impacted by multi-flood hazards. This forecast system is capable of simulating flood levels in the Potomac and Anacostia River incorporating the effects of riverine flooding from the upstream basins, urban storm water and tidal oscillations from the Chesapeake Bay. Flood forecast models developed so far have been using riverine data to simulate water levels for Potomac River. Therefore, the idea is to use forecasted storm surge data from a coastal model as boundary condition of this system. Final output of this validated model will capture the water behavior in river-estuary transition zone far better than the one with riverine data only. The challenge for this iFLOOD forecast system is to understand the complex dynamics of multi-flood hazards caused by storm surges, riverine flow, tidal oscillation and urban storm water. Automated system simulations will help to develop a seamless integration with the boundary systems in the service-gap area with new insights into our scientific understanding of such complex systems. A visualization system is being developed to allow stake holders and the community to have access to the flood forecasting for their region with sufficient lead time.
Large Scale Flood Risk Analysis using a New Hyper-resolution Population Dataset
NASA Astrophysics Data System (ADS)
Smith, A.; Neal, J. C.; Bates, P. D.; Quinn, N.; Wing, O.
2017-12-01
Here we present the first national scale flood risk analyses, using high resolution Facebook Connectivity Lab population data and data from a hyper resolution flood hazard model. In recent years the field of large scale hydraulic modelling has been transformed by new remotely sensed datasets, improved process representation, highly efficient flow algorithms and increases in computational power. These developments have allowed flood risk analysis to be undertaken in previously unmodeled territories and from continental to global scales. Flood risk analyses are typically conducted via the integration of modelled water depths with an exposure dataset. Over large scales and in data poor areas, these exposure data typically take the form of a gridded population dataset, estimating population density using remotely sensed data and/or locally available census data. The local nature of flooding dictates that for robust flood risk analysis to be undertaken both hazard and exposure data should sufficiently resolve local scale features. Global flood frameworks are enabling flood hazard data to produced at 90m resolution, resulting in a mis-match with available population datasets which are typically more coarsely resolved. Moreover, these exposure data are typically focused on urban areas and struggle to represent rural populations. In this study we integrate a new population dataset with a global flood hazard model. The population dataset was produced by the Connectivity Lab at Facebook, providing gridded population data at 5m resolution, representing a resolution increase over previous countrywide data sets of multiple orders of magnitude. Flood risk analysis undertaken over a number of developing countries are presented, along with a comparison of flood risk analyses undertaken using pre-existing population datasets.
Flood risk assessment and robust management under deep uncertainty: Application to Dhaka City
NASA Astrophysics Data System (ADS)
Mojtahed, Vahid; Gain, Animesh Kumar; Giupponi, Carlo
2014-05-01
The socio-economic changes as well as climatic changes have been the main drivers of uncertainty in environmental risk assessment and in particular flood. The level of future uncertainty that researchers face when dealing with problems in a future perspective with focus on climate change is known as Deep Uncertainty (also known as Knightian uncertainty), since nobody has already experienced and undergone those changes before and our knowledge is limited to the extent that we have no notion of probabilities, and therefore consolidated risk management approaches have limited potential.. Deep uncertainty is referred to circumstances that analysts and experts do not know or parties to decision making cannot agree on: i) the appropriate models describing the interaction among system variables, ii) probability distributions to represent uncertainty about key parameters in the model 3) how to value the desirability of alternative outcomes. The need thus emerges to assist policy-makers by providing them with not a single and optimal solution to the problem at hand, such as crisp estimates for the costs of damages of natural hazards considered, but instead ranges of possible future costs, based on the outcomes of ensembles of assessment models and sets of plausible scenarios. Accordingly, we need to substitute optimality as a decision criterion with robustness. Under conditions of deep uncertainty, the decision-makers do not have statistical and mathematical bases to identify optimal solutions, while instead they should prefer to implement "robust" decisions that perform relatively well over all conceivable outcomes out of all future unknown scenarios. Under deep uncertainty, analysts cannot employ probability theory or other statistics that usually can be derived from observed historical data and therefore, we turn to non-statistical measures such as scenario analysis. We construct several plausible scenarios with each scenario being a full description of what may happen in future and based on a meaningful synthesis of parameters' values with control of their correlations for maintaining internal consistencies. This paper aims at incorporating a set of data mining and sampling tools to assess uncertainty of model outputs under future climatic and socio-economic changes for Dhaka city and providing a decision support system for robust flood management and mitigation policies. After constructing an uncertainty matrix to identify the main sources of uncertainty for Dhaka City, we identify several hazard and vulnerability maps based on future climatic and socio-economic scenarios. The vulnerability of each flood management alternative under different set of scenarios is determined and finally the robustness of each plausible solution considered is defined based on the above assessment.
Forecasting surface water flooding hazard and impact in real-time
NASA Astrophysics Data System (ADS)
Cole, Steven J.; Moore, Robert J.; Wells, Steven C.
2016-04-01
Across the world, there is increasing demand for more robust and timely forecast and alert information on Surface Water Flooding (SWF). Within a UK context, the government Pitt Review into the Summer 2007 floods provided recommendations and impetus to improve the understanding of SWF risk for both off-line design and real-time forecasting and warning. Ongoing development and trial of an end-to-end real-time SWF system is being progressed through the recently formed Natural Hazards Partnership (NHP) with delivery to the Flood Forecasting Centre (FFC) providing coverage over England & Wales. The NHP is a unique forum that aims to deliver coordinated assessments, research and advice on natural hazards for governments and resilience communities across the UK. Within the NHP, a real-time Hazard Impact Model (HIM) framework has been developed that includes SWF as one of three hazards chosen for initial trialling. The trial SWF HIM system uses dynamic gridded surface-runoff estimates from the Grid-to-Grid (G2G) hydrological model to estimate the SWF hazard. National datasets on population, infrastructure, property and transport are available to assess impact severity for a given rarity of SWF hazard. Whilst the SWF hazard footprint is calculated in real-time using 1, 3 and 6 hour accumulations of G2G surface runoff on a 1 km grid, it has been possible to associate these with the effective rainfall design profiles (at 250m resolution) used as input to a detailed flood inundation model (JFlow+) run offline to produce hazard information resolved to 2m resolution. This information is contained in the updated Flood Map for Surface Water (uFMfSW) held by the Environment Agency. The national impact datasets can then be used with the uFMfSW SWF hazard dataset to assess impacts at this scale and severity levels of potential impact assigned at 1km and for aggregated county areas in real-time. The impact component is being led by the Health and Safety Laboratory (HSL) within the NHP. Flood Guidance within the FFC employs the national Flood Risk Matrix, which categorises potential impacts into minimal, minor, significant and severe, and Likelihood, into very low, low, medium and high classes, and the matrix entries then define the Overall Flood Risk as very low, low, medium and high. Likelihood is quantified by running G2G with Met Office ensemble rainfall inputs that in turn allows a probability to be assigned to the SWF hazard and associated impact. This overall procedure is being trialled and refined off-line by CEH and HSL using case study data, and at the same time implemented as a pre-operational test system at the Met Office for evaluation by FFC (a joint Environment Agency and Met Office centre for flood forecasting) in 2016.
High resolution mapping of flood hazard for South Korea
NASA Astrophysics Data System (ADS)
Ghosh, Sourima; Nzerem, Kechi; Zovi, Francesco; Li, Shuangcai; Mei, Yi; Assteerawatt, Anongnart; Hilberts, Arno; Tillmanns, Stephan; Mitas, Christos
2015-04-01
Floods are one of primary natural hazards that affect South Korea. During the past 15 years, catastrophic flood events which mainly have occurred during the rainy and typhoon seasons - especially under condition where soils are already saturated, have triggered substantial property damage with an average annual loss of around US1.2 billion (determined from WAter Management Information System's flood damage database for years 2002-2011) in South Korea. According to Seoul Metropolitan Government, over 16,000 households in the capital city Seoul were inundated during 2010 flood events. More than 10,000 households in Seoul were apparently flooded during one major flood event due to torrential rain in July 2011. Recently in August 2014, a serious flood event due to heavy rainfall hit the Busan region in the south east of South Korea. Addressing the growing needs, RMS has recently released country-wide high resolution combined flood return period maps for post-drainage local "pluvial" inundation and undefended large-scale "fluvial" inundation to aid the government and the insurance industry in the evaluation of comprehensive flood risk. RMS has developed a flood hazard model for South Korea to generate inundation depths and extents for a range of flood return periods. The model is initiated with 30 years of historical meteorological forcing data and calibrated to daily observations at over 100 river gauges across the country. Simulations of hydrologic processes are subsequently performed based on a 2000 year set of stochastic forcing. Floodplain inundation processes are modelled by numerically solving the shallow water equations using finite volume method on GPUs. Taking into account the existing stormwater drainage standards, economic exposure densities, etc., reasonable flood maps are created from inundation model output. Final hazard maps at one arcsec grid resolution can be the basis for both evaluating and managing flood risk, its economic impacts, and insured flood losses in South Korea.
Hurricane hazards: a national threat
,
2005-01-01
Hurricanes bring destructive winds, storm surge, torrential rain, flooding, and tornadoes. A single storm can wreak havoc on coastal and inland communities and on natural areas over thousands of square miles. In 2005, Hurricanes Katrina, Rita, and Wilma demonstrated the devastation that hurricanes can inflict and the importance of hurricane hazards research and preparedness. More than half of the U.S. population lives within 50 miles of a coast, and this number is increasing. Many of these areas, especially the Atlantic and Gulf coasts, will be in the direct path of future hurricanes. Hawaii is also vulnerable to hurricanes.
Multilevel integrated flood management aproach
NASA Astrophysics Data System (ADS)
Brilly, Mitja; Rusjan, Simon
2013-04-01
The optimal solution for complex flood management is integrated approach. Word »integration« used very often when we try to put something together, but should distinguish full multiple integrated approach of integration by parts when we put together and analyse only two variables. In doing so, we lost complexity of the phenomenon. Otherwise if we try to put together all variables we should take so much effort and time and we never finish the job properly. Solution is in multiple integration captures the essential factors, which are different on a case-by-case (Brilly, 2000). Physical planning is one of most important activity in which flood management should be integrated. The physical planning is crucial for vulnerability and its future development and on other hand our structural measures must be incorporate in space and will very often dominated in. The best solution is if space development derived on same time with development of structural measures. There are good examples with such approach (Vienna, Belgrade, Zagreb, and Ljubljana). Problems stared when we try incorporating flood management in already urbanised area or we would like to decrease risk to some lower level. Looking to practice we learn that middle Ages practices were much better than to day. There is also »disaster by design« when hazard increased as consequence of upstream development or in stream construction or remediation. In such situation we have risk on areas well protected in the past. Good preparation is essential for integration otherwise we just lost time what is essential for decision making and development. We should develop clear picture about physical characteristics of phenomena and possible solutions. We should develop not only the flood maps; we should know how fast phenomena could develop, in hour, day or more. Do we need to analyse ground water - surface water relations, we would like to protected area that was later flooded by ground water. Do we need to take care about sediment transport, phenomenon close related to floods - could the river bad bottom increase or decrease for some meters or river completely rearrange morphology - how then inundated area will look like. Hazard of floods should be presented properly, with maps, uncertainty and trends related to natural and anthropogenic impacts. We should look time back, how our river look in past centuries and what are water management plans for future. Which activities are on the river? There are good practice in flood protection, hydropower development and physical planning (Vienna, Sava River).
Artificialized land characteristics and sediment connectivity explain muddy flood hazard in Wallonia
NASA Astrophysics Data System (ADS)
de Walque, Baptiste; Bielders, Charles; Degré, Aurore; Maugnard, Alexandre
2017-04-01
Muddy flood occurrence is an off-site erosion problem of growing interest in Europe and in particular in the loess belt and Condroz regions of Wallonia (Belgium). In order to assess the probability of occurrence of muddy floods in specific places, a muddy flood hazard prediction model has been built. It was used to test 11 different explanatory variables in simple and multiple logistic regressions approaches. A database of 442 muddy flood-affected sites and an equal number of homologous non flooded sites was used. For each site, relief, land use, sediment production and sediment connectivity of the contributing area were extracted. To assess the prediction quality of the model, we proceeded to a validation using 48 new pairs of homologous sites. Based on Akaïke Information Criterion (AIC), we determined that the best muddy flood hazard assessment model requires a total of 6 explanatory variable as inputs: the spatial aggregation of the artificialized land, the sediment connectivity, the artificialized land proximity to the outlet, the proportion of artificialized land, the mean slope and the Gravelius index of compactness of the contributive area. The artificialized land properties listed above showed to improve substantially the model quality (p-values from 10e-10 to 10e-4). All of the 3 properties showed negative correlation with the muddy flood hazard. These results highlight the importance of considering the artificialized land characteristics in the sediment transport assessment models. Indeed, artificialized land such as roads may dramatically deviate flows and influence the connectivity in the landscape. Besides the artificialized land properties, the sediment connectivity showed significant explanatory power (p-value of 10e-11). A positive correlation between the sediment connectivity and the muddy flood hazard was found, ranging from 0.3 to 0.45 depending on the sediment connectivity index. Several studies already have highlighted the importance of this parameter in the sediment transport characterization in the landscape. Using the best muddy flood probability of occurrence threshold value of 0.49, the validation of the best multiple logistic regression resulted in a prediction quality of 75.6% (original dataset) and 81.2% (secondary dataset). The developed statistical model could be used as a reliable tool to target muddy floods mitigation measures in sites resulting with the highest muddy floods hazard.
Effects of anthropogenic land-subsidence on river flood hazard: a case study in Ravenna, Italy
NASA Astrophysics Data System (ADS)
Carisi, Francesca; Domeneghetti, Alessio; Castellarin, Attilio
2015-04-01
Can differential land-subsidence significantly alter the river flooding dynamics, and thus flood risk in flood prone areas? Many studies show how the lowering of the coastal areas is closely related to an increase in the flood-hazard due to more important tidal flooding and see level rise. On the contrary, the literature on the relationship between differential land-subsidence and possible alterations to riverine flood-hazard of inland areas is still sparse, while several areas characterized by significant land-subsidence rates during the second half of the 20th century experienced an intensification in both inundation magnitude and frequency. This study investigates the possible impact of a significant differential ground lowering on flood hazard in proximity of Ravenna, which is one of the oldest Italian cities, former capital of the Western Roman Empire, located a few kilometers from the Adriatic coast and about 60 km south of the Po River delta. The rate of land-subsidence in the area, naturally in the order of a few mm/year, dramatically increased up to 110 mm/year after World War II, primarily due to groundwater pumping and a number of deep onshore and offshore gas production platforms. The subsidence caused in the last century a cumulative drop larger than 1.5 m in the historical center of the city. Starting from these evidences and taking advantage of a recent digital elevation model of 10m resolution, we reconstructed the ground elevation in 1897 for an area of about 65 km2 around the city of Ravenna. We referred to these two digital elevation models (i.e. current topography and topographic reconstruction) and a 2D finite-element numerical model for the simulation of the inundation dynamics associated with several levee failure scenarios along embankment system of the river Montone. For each scenario and digital elevation model, the flood hazard is quantified in terms of water depth, speed and dynamics of the flooding front. The comparison enabled us to quantify alterations to the flooding hazard due to large and rapid differential land-subsidence, shedding some light on whether to consider anthropogenic land-subsidence among the relevant human-induced drivers of flood-risk change.
Benchmarking an operational procedure for rapid flood mapping and risk assessment in Europe
NASA Astrophysics Data System (ADS)
Dottori, Francesco; Salamon, Peter; Kalas, Milan; Bianchi, Alessandra; Feyen, Luc
2016-04-01
The development of real-time methods for rapid flood mapping and risk assessment is crucial to improve emergency response and mitigate flood impacts. This work describes the benchmarking of an operational procedure for rapid flood risk assessment based on the flood predictions issued by the European Flood Awareness System (EFAS). The daily forecasts produced for the major European river networks are translated into event-based flood hazard maps using a large map catalogue derived from high-resolution hydrodynamic simulations, based on the hydro-meteorological dataset of EFAS. Flood hazard maps are then combined with exposure and vulnerability information, and the impacts of the forecasted flood events are evaluated in near real-time in terms of flood prone areas, potential economic damage, affected population, infrastructures and cities. An extensive testing of the operational procedure is carried out using the catastrophic floods of May 2014 in Bosnia-Herzegovina, Croatia and Serbia. The reliability of the flood mapping methodology is tested against satellite-derived flood footprints, while ground-based estimations of economic damage and affected population is compared against modelled estimates. We evaluated the skill of flood hazard and risk estimations derived from EFAS flood forecasts with different lead times and combinations. The assessment includes a comparison of several alternative approaches to produce and present the information content, in order to meet the requests of EFAS users. The tests provided good results and showed the potential of the developed real-time operational procedure in helping emergency response and management.
NASA Astrophysics Data System (ADS)
Jung, E.; Yoon, H.
2016-12-01
Natural disasters are substantial source of social and economic damage around the globe. The amount of damage is larger when such catastrophe events happen in urbanized areas where the wealth is concentrated. Disasters cause losses in real estate assets, incurring additional cost of repair and maintenance of the properties. For this reason, natural hazard risk such as flooding and landslide is regarded as one of the important determinants of homebuyers' choice and preference. In this research, we aim to reveal whether the past records of flood affect real estate market values in Busan, Korea in 2014, under a hypothesis that homebuyers' perception of natural hazard is reflected on housing values, using the Mahalanobis-metric matching method. Unlike conventionally used hedonic pricing model to estimate capitalization of flood risk into the sales price of properties, the analytical method we adopt here enables inferring causal effects by efficiently controlling for observed/unobserved omitted variable bias. This matching approach pairs each inundated property (treatment variable) with a non-inundated property (control variable) with the closest Mahalanobis distance between them, and comparing their effects on residential property sales price (outcome variable). As a result, we expect price discounts for inundated properties larger than the one for comparable non-inundated properties. This research will be valuable in establishing the mitigation policies of future climate change to relieve the possible negative economic consequences from the disaster by estimating how people perceive and respond to natural hazard. This work was supported by the Korea Environmental Industry and Technology Institute (KEITI) under Grant (No. 2014-001-310007).
NASA Astrophysics Data System (ADS)
Nkwunonwo, U. C.; Whitworth, M.; Baily, B.
2016-02-01
Urban flooding has been and will continue to be a significant problem for many cities across the developed and developing world. Crucial to the amelioration of the effects of these floods is the need to formulate a sound flood management policy, which is driven by knowledge of the frequency and magnitude of impacts of these floods. Within the area of flood research, attempts are being made to gain a better understanding of the causes, impacts, and pattern of urban flooding. According to the United Nations office for disaster reduction (UNISDR), flood risk is conceptualized on the basis of three integral components which are frequently adopted during flood damage estimation. These components are: probability of flood hazard, the level of exposure, and vulnerabilities of elements at risk. Reducing the severity of each of these components is the objective of flood risk management under the UNISDR guideline and idea of "living with floods". On the basis of this framework, the present research reviews flood risk within the Lagos area of Nigeria over the period 1968-2012. During this period, floods have caused harm to millions of people physically, emotionally, and economically. Arguably over this period the efforts of stakeholders to address the challenges appear to have been limited by, amongst other things, a lack of reliable data, a lack of awareness amongst the population affected, and a lack of knowledge of flood risk mitigation. It is the aim of this research to assess the current understanding of flood risk and management in Lagos and to offer recommendations towards future guidance.
NASA Astrophysics Data System (ADS)
Allen, Simon; Linsbauer, Andreas; Huggel, Christian; Singh Randhawa, Surjeet
2016-04-01
Most research concerning the hazard from glacial lake outburst floods (GLOFs) has focused on the threat from lakes that have formed over the past century, and which continue to expand rapidly in response to recent warming of the climate system. However, attention is shifting towards the anticipation of future hazard and risk associated with new lakes that will develop as glaciers continue to retreat and dramatically different landscapes are uncovered. Nowhere will this threat be more pronounced than in the Himalaya, where the majority of the world's glaciers are found, and where the dynamics of nature interact closely with livelihoods and anthropogenic resources. Using the Indian Himalayan state of Himachal Pradesh (HP) as a case study, we combine a suite of GIS-based approaches to: 1)Implement a large-scale automated GLOF risk assessment within an integrative climate risk framework that recognizes both physical and socio-economic determining factors. 2)Expand the assessment beyond the current situation, to provide early anticipation of emerging GLOF hazard as new lakes form in response to further retreat of the Himalayan glaciers. Results clearly demonstrate a significant future increase in relative GLOF hazard levels across most Thesils of HP (administrative units), as the overall potential for GLOFs being triggered from mass movement of ice and rock avalanches increases, and as new GLOF paths affect additional land areas. Across most Thesils, the simulated increase in GLOF frequency is an order of magnitude larger than the simulated increase in GLOF affected area, as paths from newly formed glacial lakes generally tend to converge downstream within existing flood channels. In the Thesil of Kullu for example, we demonstrate a 7-fold increase in the probability of GLOF occurrence, and a 3-fold increase in the area affected by potential GLOF paths. In those situations where potential GLOFs from new lakes will flow primarily along existing flood paths, any adaptation measures implemented now will offer dual benefits - reducing not only the current GLOF risk, but also responding to the emerging risk anticipated for the coming decades. Such adaptation strategies (e.g. early warning systems, community preparedness, disaster response planning and land zoning) can be considered "low-regret" measures, i.e, responses that offer immediate benefits to the communities now while also offering benefits over a range of possible future scenarios. Conversely in locations where the formation of new lakes over the coming decades will create an entirely new threat, local authorities would be encouraged to consider long time scales in their climate adaptation planning. This is particularly relevant for new infrastructural developments (residential property, road, hydropower dams etc) where new threats could clearly emerge during the intended lifetime of any constructions.
Preparing for local adaptation: Understanding flood risk perceptions in Pittsburgh
NASA Astrophysics Data System (ADS)
Wong-Parodi, G.; Klima, K.
2016-12-01
In cities such as Pittsburgh, aging and insufficient infrastructure contributes to flashfloods and numerous combined sewer overflows annually, contaminating streets, basements and waterways. Climate change is expected to further exacerbate this problem by causing more intense and more frequent extreme events in Western Pennsylvania. For a storm water adaptation plan to be implemented successfully, the City of Pittsburgh will need informed public support. One way to achieve public understanding and support is through effective communication of the risks, benefits, and uncertainties of local flooding hazards and adaptation methods. In order to develop risk communications effectively, the City and its partners will need to know what knowledge and attitudes the residents of Pittsburgh already hold about flood risks. To that end we surveyed 1,376 Pittsburgh residents on a variety of flood risk topics through an online or paper survey in Fall 2015. On balance, residents were relatively knowledgeable about storm water and see the City's current infrastructure as being inadequate to meet future risk. Moreover, they see the risk of runoff events as increasing and especially among those who live in hazardous flood areas. Residents expressed interest in having a dedicated fund to deal with runoff events. Among those queried about their willingness-to-pay, those asked to pay $15 were most interested in a dedicated fund and for green infrastructure (as opposed to gray infrastructure) in particular. Finally, while most residents favored green infrastructure in terms of its attractiveness and perceived affects on mitigating climate change many did not see it as effective at addressing flooding as gray infrastructure. We found people understand the risk and are open to doing something about it. However, more guidance and information on appropriate ways to adapt locally in terms that make sense to residents could enhance informed support for adaptation measures.
33 CFR 222.2 - Acquisition of lands downstream from spillways for hydrologic safety purposes.
Code of Federal Regulations, 2011 CFR
2011-07-01
... CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE ENGINEERING AND DESIGN § 222.2... depth. (iii) Flood duration. (iv) Velocities. (v) Debris and erosion. (2) Determine the combinations of... hazardous and non-hazardous. Non-hazardous areas are defined as those areas where: (i) Flood depths are...
NASA Astrophysics Data System (ADS)
Al-Akad, S.; Akensous, Y.; Hakdaoui, M.
2017-11-01
This research article is summarize the applications of remote sensing and GIS to study the urban floods risk in Al Mukalla. Satellite acquisition of a flood event on October 2015 in Al Mukalla (Yemen) by using flood risk mapping techniques illustrate the potential risk present in this city. Satellite images (The Landsat and DEM images data were atmospherically corrected, radiometric corrected, and geometric and topographic distortions rectified.) are used for flood risk mapping to afford a hazard (vulnerability) map. This map is provided by applying image-processing techniques and using geographic information system (GIS) environment also the application of NDVI, NDWI index, and a method to estimate the flood-hazard areas. Four factors were considered in order to estimate the spatial distribution of the hazardous areas: flow accumulation, slope, land use, geology and elevation. The multi-criteria analysis, allowing to deal with vulnerability to flooding, as well as mapping areas at the risk of flooding of the city Al Mukalla. The main object of this research is to provide a simple and rapid method to reduce and manage the risks caused by flood in Yemen by take as example the city of Al Mukalla.
Downscaling GLOF Hazards: An in-depth look at the Nepal Himalaya
NASA Astrophysics Data System (ADS)
Rounce, D.; McKinney, D. C.; Lala, J.
2016-12-01
The Nepal Himalaya house a large number of glacial lakes that pose a flood hazard to downstream communities and infrastructure. The modeling of the entire process chain of these glacial lake outburst floods (GLOFs) has been advancing rapidly in recent years. The most common cause of failure is mass movement entering the glacial lake, which triggers a tsunami-like wave that breaches the terminal moraine and causes the ensuing downstream flood. Unfortunately, modeling the avalanche, the breach of the moraine, and the downstream flood requires a large amount of site-specific information and can be very labor-intensive. Therefore, these detailed models need to be paired with large-scale hazard assessments that identify the glacial lakes that are the biggest threat and the triggering events that threaten these lakes. This study discusses the merger of a large-scale, remotely-based hazard assessment with more detailed GLOF models to show how GLOF hazard modeling can be downscaled in the Nepal Himalaya.
An experimental system for flood risk forecasting at global scale
NASA Astrophysics Data System (ADS)
Alfieri, L.; Dottori, F.; Kalas, M.; Lorini, V.; Bianchi, A.; Hirpa, F. A.; Feyen, L.; Salamon, P.
2016-12-01
Global flood forecasting and monitoring systems are nowadays a reality and are being applied by an increasing range of users and practitioners in disaster risk management. Furthermore, there is an increasing demand from users to integrate flood early warning systems with risk based forecasts, combining streamflow estimations with expected inundated areas and flood impacts. To this end, we have developed an experimental procedure for near-real time flood mapping and impact assessment based on the daily forecasts issued by the Global Flood Awareness System (GloFAS). The methodology translates GloFAS streamflow forecasts into event-based flood hazard maps based on the predicted flow magnitude and the forecast lead time and a database of flood hazard maps with global coverage. Flood hazard maps are then combined with exposure and vulnerability information to derive flood risk. Impacts of the forecasted flood events are evaluated in terms of flood prone areas, potential economic damage, and affected population, infrastructures and cities. To further increase the reliability of the proposed methodology we integrated model-based estimations with an innovative methodology for social media monitoring, which allows for real-time verification of impact forecasts. The preliminary tests provided good results and showed the potential of the developed real-time operational procedure in helping emergency response and management. In particular, the link with social media is crucial for improving the accuracy of impact predictions.
44 CFR 65.16 - Standard Flood Hazard Determination Form and Instructions.
Code of Federal Regulations, 2013 CFR
2013-10-01
... MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance.... Finally, the form is available through the Internet at http://www.fema.gov/nfip/mpurfi.htm. [63 FR 27857...
44 CFR 65.16 - Standard Flood Hazard Determination Form and Instructions.
Code of Federal Regulations, 2014 CFR
2014-10-01
... MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance.... Finally, the form is available through the Internet at http://www.fema.gov/nfip/mpurfi.htm. [63 FR 27857...
44 CFR 65.16 - Standard Flood Hazard Determination Form and Instructions.
Code of Federal Regulations, 2012 CFR
2012-10-01
... MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance.... Finally, the form is available through the Internet at http://www.fema.gov/nfip/mpurfi.htm. [63 FR 27857...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-14
... title V of the Riegle Community Development and Regulatory Improvement Act,\\2\\ the National Flood... renewing a loan secured by a building or a mobile home located in a special flood hazard area to advise the... transferring a loan secured by a building or a mobile home located in a special flood hazard area to notify...
Multi-Hazard Assessment of Scour Damaged Bridges with UAS-Based Measurements
NASA Astrophysics Data System (ADS)
Özcan, O.; Ozcan, O.
2017-12-01
Flood and stream induced scour occurring in bridge piers constructed on rivers is one of the mostly observed failure reasons in bridges. Scour induced failure risk in bridges and determination of the alterations in bridge safety under seismic effects has the ultimate importance. Thus, for the determination of bridge safety under the scour effects, the scour amount under bridge piers should be designated realistically and should be tracked and updated continuously. Hereby, the scour induced failures in bridge foundation systems will be prevented and bridge substructure design will be conducted safely. In this study, in order to measure the amount of scour in bridge load bearing system (pile foundations and pile abutments) and to attain very high definition 3 dimensional models of river flood plain for the flood analysis, unmanned aircraft system (UAS) based measurement methods were implemented. UAS based measurement systems provide new and practical approach and bring high precision and reliable solutions considering recent measurement systems. For this purpose, the reinforced concrete (RC) bridge that is located on Antalya Boğaçayı River, Turkey and that failed in 2003 due to flood-induced scour was selected as the case study. The amount of scour occurred in bridge piers and piles was determined realistically and the behavior of bridge piers under scour effects was investigated. Future flood effects and the resultant amount of scour was determined with HEC-RAS software by using digital surface models that were obtained at regular intervals using UAS for the riverbed. In the light of the attained scour measurements and expected scour after a probable flood event, the behavior of scour damaged RC bridge was investigated by pushover and time history analyses under lateral and vertical seismic loadings. In the analyses, the load and displacement capacity of bridge was observed to diminish significantly under expected scour. Thus, the deterioration in multi hazard performance of the bridge was monitored significantly in the light of updated bridge load bearing system capacity. Regarding the case study, UAS based and continuously updated bridge multi hazard risk detection system was established that can be used for bridges located on riverbed.
NASA Astrophysics Data System (ADS)
Rianna, G.; Mercogliano, P.
2017-12-01
Urbanization increases the flood risk because of heightened vulnerability, stemming from population concentration and hazard due to soil sealing affecting the largest part of urban settlements and reducing the concentration time of interested basins. Furthermore, current and future hazards are exacerbated by expected increases in extreme rainfall events due to Climate Changes (CC) making inadequate urban drainage infrastructures designed under the assumption of steady conditions. In this work, we present a modeling chain/algorithm to assess potential increase in pluvial flood hazard able to take into account CC forcing. The adopted simulation chain reckon on three main elements: Regional Climate Model, COSMO_CLM, dynamically downscaling GCM CMCC_CM (Scoccimarro et al., 2011) and optimized, at high resolution (about 8km), by Bucchignani et al. (2015) on Italy provide projections about precipitation up to 2100 under two concentration scenarios (RCP4.5 and RCP8.5). Such projections are used in Equidistance Quantile Mapping (EQM) approach, developed by Srivastav et al. (2014) to estimate expected variations in IDF (Intensity-Duration-Frequency) curves calculated through Generalized Extreme Value (GEV) approach on the basis of available rainfall data. To this aim, 1971-2000 observations are used as reference. Finally, a 1-D/2-D coupled urban drainage/flooding model forced by IDF (current and projected) is used to simulate storm-sewer surcharge and surface inundation to establish the variations in urban flooding risk. As test case is considered the city center of Naples (Southern Italy). In this respective, the sewage and urban drainage network is highly complex due to the historical and subsequent transformations of the city. Under such constraints, the reliability of the results maybe deeply conditioned by uncertainties not undermining the illustrative purposes of the work. Briefly, EQM returns a remarkable increase in extreme precipitations; such increase is driven by concentration scenarios (higher for RCP8.5) and investigated time horizon (more significant for 2071-2100 time span). Furthermore, results provided by hydraulic models clearly highlight the inadequacy of the actual drainage system especially under a RCP8.5-driven scenario showing large portions of the city center flooded.
Coupling Radar Rainfall Estimation and Hydrological Modelling For Flash-flood Hazard Mitigation
NASA Astrophysics Data System (ADS)
Borga, M.; Creutin, J. D.
Flood risk mitigation is accomplished through managing either or both the hazard and vulnerability. Flood hazard may be reduced through structural measures which alter the frequency of flood levels in the area. The vulnerability of a community to flood loss can be mitigated through changing or regulating land use and through flood warning and effective emergency response. When dealing with flash-flood hazard, it is gener- ally accepted that the most effective way (and in many instances the only affordable in a sustainable perspective) to mitigate the risk is by reducing the vulnerability of the involved communities, in particular by implementing flood warning systems and community self-help programs. However, both the inherent characteristics of the at- mospheric and hydrologic processes involved in flash-flooding and the changing soci- etal needs provide a tremendous challenge to traditional flood forecasting and warning concepts. In fact, the targets of these systems are traditionally localised like urbanised sectors or hydraulic structures. Given the small spatial scale that characterises flash floods and the development of dispersed urbanisation, transportation, green tourism and water sports, human lives and property are exposed to flash flood risk in a scat- tered manner. This must be taken into consideration in flash flood warning strategies and the investigated region should be considered as a whole and every section of the drainage network as a potential target for hydrological warnings. Radar technology offers the potential to provide information describing rain intensities almost contin- uously in time and space. Recent research results indicate that coupling radar infor- mation to distributed hydrologic modelling can provide hydrologic forecasts at all potentially flooded points of a region. Nevertheless, very few flood warning services use radar data more than on a qualitative basis. After a short review of current under- standing in this area, two issues are examined: advantages and caveats of using radar rainfall estimates in operational flash flood forecasting, methodological problems as- sociated to the use of hydrological models for distributed flash flood forecasting with rainfall input estimated from radar.
Flood of October 8, 1962, on Bachman Branch and Joes Creek at Dallas, Texas
Ruggles, Frederick H.
1966-01-01
This report presents hydrologic data that enable the user to define areas susceptible to flooding and to evaluate the flood hazard along Bachman Branch and Joes Creek. The data provide a technical basis for making sound decisions concerning the use of flood-plain lands. The report will be useful for preparing building and zoning regulations, locating waste disposal facilities, purchasing unoccupied land, developing recreational areas, and managing surface water in relation to ground-water resources. This is one of the series of reports delineating the flood hazard on streams in the Dallas area.
Potential increase in floods in California's Sierra Nevada under future climate projections
Das, T.; Dettinger, M.D.; Cayan, D.R.; Hidalgo, H.G.
2011-01-01
California's mountainous topography, exposure to occasional heavily moisture-laden storm systems, and varied communities and infrastructures in low lying areas make it highly vulnerable to floods. An important question facing the state-in terms of protecting the public and formulating water management responses to climate change-is "how might future climate changes affect flood characteristics in California?" To help address this, we simulate floods on the western slopes of the Sierra Nevada Mountains, the state's primary catchment, based on downscaled daily precipitation and temperature projections from three General Circulation Models (GCMs). These climate projections are fed into the Variable Infiltration Capacity (VIC) hydrologic model, and the VIC-simulated streamflows and hydrologic conditions, from historical and from projected climate change runs, allow us to evaluate possible changes in annual maximum 3-day flood magnitudes and frequencies of floods. By the end of the 21st Century, all projections yield larger-than-historical floods, for both the Northern Sierra Nevada (NSN) and for the Southern Sierra Nevada (SSN). The increases in flood magnitude are statistically significant (at p <= 0. 01) for all the three GCMs in the period 2051-2099. The frequency of flood events above selected historical thresholds also increases under projections from CNRM CM3 and NCAR PCM1 climate models, while under the third scenario, GFDL CM2. 1, frequencies remain constant or decline slightly, owing to an overall drying trend. These increases appear to derive jointly from increases in heavy precipitation amount, storm frequencies, and days with more precipitation falling as rain and less as snow. Increases in antecedent winter soil moisture also play a role in some areas. Thus, a complex, as-yet unpredictable interplay of several different climatic influences threatens to cause increased flood hazards in California's complex western Sierra landscapes. ?? 2011 Springer Science+Business Media B.V.
Ortiz, Rocío; Ortiz, Pilar; Martín, José María; Vázquez, María Auxiliadora
2016-05-01
Flooding and dampness have caused considerable damage to historic towns and cities and have become more frequent in recent years. The aim of this paper is to analyse the hazards of flooding and dampness in historic cities to establish a methodology that prioritises preventive conservation actions and restorations. The case study concerns the historic centre of Seville (Spain) and parish churches built between the 13th and 18th centuries. Geographic information system (GIS) software has been used to assess hazards caused by flooding and dampness along with a Delphi consultation process surveying a multidisciplinary group of seven experts-archaeologists, geologists, chemists, architects, engineers and environmentalists-to gain a general overview of the hazards affecting each area of the city. Currently, the historic centre of Seville is at a very low risk of flooding due to the engineering works being undertaken to divert the river course. For flooding to occur, water levels would need to rise over 6 to 12m along the different sections of the defensive walls; as a result, the historic centre has not been flooded since 1961, when these defences broke. However, there is a continual presence of dampness due to the proximity of the river, the presence of underground water and the permeability of the subsoil, resulting in continual damage to the lower sections of the monuments studied. Hence, hazard maps of flooding and dampness need to be dovetailed. This new approach provides tools for decision-makers in the current crisis, allowing them to prioritise strategies that will minimise damage in a town, as the urban unit where territorial policies could be applied. Copyright © 2016 Elsevier B.V. All rights reserved.
Flash floods, hydro-geomorphic response and risk management
NASA Astrophysics Data System (ADS)
Braud, Isabelle; Borga, Marco; Gourley, Jonathan; Hürlimann, Marcel; Zappa, Massimilano; Gallart, Francesc
2016-10-01
Each year, natural disasters are responsible for fatalities and economic losses worldwide with 101 billion USD in economic losses and 7000 fatalities reported for 2014 (SwissRE, 2015). Even if earthquakes are responsible for most of these fatalities, flash floods and landslides are recognized as a significant source of threat to human lives (SwissRE, 2015). Jonkman (2005), in a global assessment of flood-related casualties, showed that flash floods lead to the highest mortality (number of fatalities divided by the number of affected people). They are also often associated with shallow landslides and geomorphic processes that can increase threat to human lives. Analysis of a global data set of fatalities from non-seismically triggered landslides (Petley, 2012) shows that 2620 fatal landslides were recorded worldwide in the period 2004-2010, causing a total of 32,322 recorded fatalities. In addition, heavy precipitation events, at the origin of flash floods and shallow landsliding are expected to increase in the future (e.g. Scoccimarro et al., 2016 for a recent study in Europe). Progress in flash floods and landslides understanding, forecasting and warning is therefore still needed to disentangle the complex interactions between hazards, exposure and vulnerability and to increase resilience (Borga et al., 2014).
The Ischia island flash flood of November 2009 (Italy): Phenomenon analysis and flood hazard
NASA Astrophysics Data System (ADS)
Santo, A.; Di Crescenzo, G.; Del Prete, S.; Di Iorio, L.
The island of Ischia is particularly susceptible to landslides and flash floods due to its particular geological and geomorphological context. Urbanization in recent decades coupled with the development of tourism has increased the risk. After the November 10, 2009 event occurring in the northern sector of the island (the town of Casamicciola), a detailed geo-morphological survey was conducted to ascertain the evolution of the phenomenon. In the watersheds upstream of Casamicciola, many landslides were mapped and the volume of material involved during detachment and sliding was estimated. In the lower course area, near the town and towards the sea, flow pathways were reconstructed with the aid of extensive video footage taken during the event. Rainfall data were also analyzed and a relationship was established between the hourly rainfall rate and the flash flood. The phenomenon was found to be quite complex, with many upstream landslides stopping before reaching the urban area. In the lower course the alluvial event occurred as a flood with a very small sediment discharge, which left a very thin layer of sediment. Reconstruction of the flash flood phenomenon suggested possible action for future risk mitigation, early warning and civil protection plans.
Flood- and drought-related natural hazards activities of the U.S. Geological Survey in New England
Lombard, Pamela J.
2016-03-23
Tools for natural hazard assessment and mitigation • Light detection and ranging (lidar) remote sensing technology • StreamStats Web-based tool for streamflow statistics • Flood inundation mapper
Climate and change: simulating flooding impacts on urban transport network
NASA Astrophysics Data System (ADS)
Pregnolato, Maria; Ford, Alistair; Dawson, Richard
2015-04-01
National-scale climate projections indicate that in the future there will be hotter and drier summers, warmer and wetter winters, together with rising sea levels. The frequency of extreme weather events is expected to increase, causing severe damage to the built environment and disruption of infrastructures (Dawson, 2007), whilst population growth and changed demographics are placing new demands on urban infrastructure. It is therefore essential to ensure infrastructure networks are robust to these changes. This research addresses these challenges by focussing on the development of probabilistic tools for managing risk by modelling urban transport networks within the context of extreme weather events. This paper presents a methodology to investigate the impacts of extreme weather events on urban environment, in particular infrastructure networks, through a combination of climate simulations and spatial representations. By overlaying spatial data on hazard thresholds from a flood model and a flood safety function, mitigated by potential adaptation strategies, different levels of disruption to commuting journeys on road networks are evaluated. The method follows the Catastrophe Modelling approach and it consists of a spatial model, combining deterministic loss models and probabilistic risk assessment techniques. It can be applied to present conditions as well as future uncertain scenarios, allowing the examination of the impacts alongside socio-economic and climate changes. The hazard is determined by simulating free surface water flooding, with the software CityCAT (Glenis et al., 2013). The outputs are overlapped to the spatial locations of a simple network model in GIS, which uses journey-to-work (JTW) observations, supplemented with speed and capacity information. To calculate the disruptive effect of flooding on transport networks, a function relating water depth to safe driving car speed has been developed by combining data from experimental reports (Morris et al., 2011) safety literature (Great Britain Department for Transport, 1999), analysis of videos of cars driving through floodwater, and expert judgement. A preliminary analysis has been run in the Tyne & Wear (in North-East England) region to demonstrate how the analysis can be used to assess the disruptions for commuter journeys due to flooding and will be demonstrated in this paper. The research will also investigate the effectiveness of adaptation strategies for extreme rainfall events, such as permeable surfaces and roof storages for buildings. Multiple scenarios (from the every-day-rainfall to the extreme weather phenomena) will be modelled, with different rainfall rates, rainfall durations and return periods. The comparison between the scenarios in which no interventions are adopted and those improved by one of the adaptation option will be compared to determine the cost-effectiveness of the solution considered. Integrating spatial analysis of transport use with an urban flood model and flood safety function enables the investigation of the impacts of extreme weather on infrastructure networks. Further work will develop the analysis in a number of ways (i) testing a range of flood events with different severity and frequency, (ii) exploration of the influence of climate and socio-economic change (iii) analysis of multiple hazard events and (iv) consideration of cascading disruption across different infrastructure networks.
44 CFR 78.5 - Flood Mitigation Plan development.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 44 Emergency Management and Assistance 1 2012-10-01 2011-10-01 true Flood Mitigation Plan..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.5 Flood Mitigation Plan development. A Flood Mitigation Plan will articulate a...
44 CFR 78.5 - Flood Mitigation Plan development.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 44 Emergency Management and Assistance 1 2013-10-01 2013-10-01 false Flood Mitigation Plan..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.5 Flood Mitigation Plan development. A Flood Mitigation Plan will articulate a...
44 CFR 78.5 - Flood Mitigation Plan development.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 44 Emergency Management and Assistance 1 2014-10-01 2014-10-01 false Flood Mitigation Plan..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.5 Flood Mitigation Plan development. A Flood Mitigation Plan will articulate a...
Flood risk management in the Souss watershed
NASA Astrophysics Data System (ADS)
Bouaakkaz, Brahim; El Abidine El Morjani, Zine; Bouchaou, Lhoussaine; Elhimri, Hamza
2018-05-01
Flooding is the most devasting natural hazards that causes more damage throughout the world. In 2016, for the fourth year in a row, it was the most costly natural disaster, in terms of global economic losses: 62 billion, according to a Benfield's 2016 annual report on climate and natural disasters [1]. The semi-arid to arid Souss watershed is vulnerable to floods, whose the intensity is becoming increasingly alarming and this area does not escape to the effects of this extreme event.. Indeed, the susceptibility of this region to this type of hazard is accentuated by its rapid evolution in terms of demography, uncontrolled land use, anthropogenic actions (uncontrolled urbanization, encroachment of the hydraulic public domain, overgrazing, clearing and deforestation).), and physical behavior of the environment (higher slope, impermeable rocks, etc.). It is in this context, that we have developed a strategic plan of action to manage this risk in the Souss basin in order to reduce the human, economic and environmental losses, after the modeling of the flood hazard in the study area, using georeferenced information systems (GIS), satellite remote sensing space and multi-criteria analysis techniques, as well as the history of major floods. This study, which generated the high resolution 30m flood hazard spatial distribution map of with accuracy of 85%, represents a decision tool to identify and prioririze area with high probability of hazard occurrence. It can also serve as a basis for urban evacuation plans for anticipating and preventing flood risk in the region, in order to ovoid any dramatic disaster.
A new remote hazard and risk assessment framework for glacial lakes in the Nepal Himalaya
NASA Astrophysics Data System (ADS)
Rounce, David R.; McKinney, Daene C.; Lala, Jonathan M.; Byers, Alton C.; Watson, C. Scott
2016-08-01
Glacial lake outburst floods (GLOFs) pose a significant threat to downstream communities and infrastructure due to their potential to rapidly unleash stored lake water. The most common triggers of these GLOFs are mass movement entering the lake and/or the self-destruction of the terminal moraine due to hydrostatic pressures or a buried ice core. This study initially uses previous qualitative and quantitative assessments to understand the hazards associated with eight glacial lakes in the Nepal Himalaya that are widely considered to be highly dangerous. The previous assessments yield conflicting classifications with respect to each glacial lake, which spurred the development of a new holistic, reproducible, and objective approach based solely on remotely sensed data. This remote hazard assessment analyzes mass movement entering the lake, the stability of the moraine, and lake growth in conjunction with a geometric GLOF to determine the downstream impacts such that the present and future risk associated with each glacial lake may be quantified. The new approach is developed within a hazard, risk, and management action framework with the aim that this remote assessment may guide future field campaigns, modeling efforts, and ultimately risk-mitigation strategies. The remote assessment was found to provide valuable information regarding the hazards faced by each glacial lake and results were discussed within the context of the current state of knowledge to help guide future efforts.
Quantifying the key factors that create road flooding.
DOT National Transportation Integrated Search
2013-01-01
Road flooding is a serious operational hazard in the low-lying areas of southern Louisiana. This hazard is especially acute for the regions emergency evacuation routes, which must be accessible by coastal residents who plan evacuations ahead of an...
44 CFR 79.3 - Responsibilities.
Code of Federal Regulations, 2011 CFR
2011-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS... oversight to all FEMA-related hazard mitigation programs and grants, including: (1) Issue program... Indian tribal governments regarding the mitigation and grants management process; (5) Review and approve...
44 CFR 79.3 - Responsibilities.
Code of Federal Regulations, 2014 CFR
2014-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS... oversight to all FEMA-related hazard mitigation programs and grants, including: (1) Issue program... Indian tribal governments regarding the mitigation and grants management process; (5) Review and approve...
44 CFR 79.3 - Responsibilities.
Code of Federal Regulations, 2013 CFR
2013-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS... oversight to all FEMA-related hazard mitigation programs and grants, including: (1) Issue program... Indian tribal governments regarding the mitigation and grants management process; (5) Review and approve...
44 CFR 79.3 - Responsibilities.
Code of Federal Regulations, 2012 CFR
2012-10-01
... SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS § 79.3...-related hazard mitigation programs and grants, including: (1) Issue program implementation procedures, as... governments regarding the mitigation and grants management process; (5) Review and approve State, Indian...
44 CFR 79.3 - Responsibilities.
Code of Federal Regulations, 2010 CFR
2010-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS... oversight to all FEMA-related hazard mitigation programs and grants, including: (1) Issue program... Indian tribal governments regarding the mitigation and grants management process; (5) Review and approve...
NASA Astrophysics Data System (ADS)
Roy, Nikhil; Wasini Pandey, Bindhy
2017-04-01
Brahmaputra valley of Assam is one of the most hazard prone areas of the Indian subcontinent. Recurring floods have severely affected the riparian communities of the region since time immemorial. But, the frequency of the problem has been intensified after the great earthquakes of 1897 and 1950. These two extreme earthquakes have disturbed the geological setting of the basin and the channel morphology has been altered henceforth. The impact of floods on riparian communities in Brahmaputra valley has been abysmal. During the monsoon season almost 30 per cent of the valley has been inundated with floods and the riparian communities are mostly affected. Large chunk of people have been uprooted from their native lands due to recurring floods in the low lying areas of the region. Although it is impossible to quantify the human tragedy during the natural disasters, but one can easily understand the situation by the facts that about 1.8 million people and 200,000 hectares of farmland were affected in the 2016 floods of Assam. In the present study, an attempt has been made to assess the spatio-temporal changes of the morphology of Brahmaputra River and its impact on the livelihood of the riparian communities. For that, LANDSAT and SENTINEL imageries have been used to examine the shifting of bank lines of three decades. CARTOSAT DEM has been used to prepare the FLOOD HAZARD ZONATION map of the Brahmaputra valley to examine the flood vulnerable areas of the region. The present study also tries to explain the livelihood condition of the Internally Displaced Persons and their social cohesion. Keywords: Brahmaputra River, Flood, LANDSAT, CARTOSAT DEM, FLOOD HAZARD ZONATION, Riparian Communities
7 CFR 1788.3 - Flood insurance.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 12 2010-01-01 2010-01-01 false Flood insurance. 1788.3 Section 1788.3 Agriculture... Insurance Requirements § 1788.3 Flood insurance. (a) Borrowers shall purchase and maintain flood insurance for buildings in flood hazard areas to the extent available and required under the National Flood...
44 CFR 78.6 - Flood Mitigation Plan approval process.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 44 Emergency Management and Assistance 1 2011-10-01 2011-10-01 false Flood Mitigation Plan..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.6 Flood Mitigation Plan approval process. The State POC will forward all Flood...
44 CFR 78.6 - Flood Mitigation Plan approval process.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 44 Emergency Management and Assistance 1 2013-10-01 2013-10-01 false Flood Mitigation Plan..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.6 Flood Mitigation Plan approval process. The State POC will forward all Flood...
44 CFR 78.6 - Flood Mitigation Plan approval process.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 44 Emergency Management and Assistance 1 2014-10-01 2014-10-01 false Flood Mitigation Plan..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.6 Flood Mitigation Plan approval process. The State POC will forward all Flood...
Hydrological Forecasting Practices in Brazil
NASA Astrophysics Data System (ADS)
Fan, Fernando; Paiva, Rodrigo; Collischonn, Walter; Ramos, Maria-Helena
2016-04-01
This work brings a review on current hydrological and flood forecasting practices in Brazil, including the main forecasts applications, the different kinds of techniques that are currently being employed and the institutions involved on forecasts generation. A brief overview of Brazil is provided, including aspects related to its geography, climate, hydrology and flood hazards. A general discussion about the Brazilian practices on hydrological short and medium range forecasting is presented. Detailed examples of some hydrological forecasting systems that are operational or in a research/pre-operational phase using the large scale hydrological model MGB-IPH are also presented. Finally, some suggestions are given about how the forecasting practices in Brazil can be understood nowadays, and what are the perspectives for the future.
Hurricane Sandy's flood frequency increasing from year 1800 to 2100.
Lin, Ning; Kopp, Robert E; Horton, Benjamin P; Donnelly, Jeffrey P
2016-10-25
Coastal flood hazard varies in response to changes in storm surge climatology and the sea level. Here we combine probabilistic projections of the sea level and storm surge climatology to estimate the temporal evolution of flood hazard. We find that New York City's flood hazard has increased significantly over the past two centuries and is very likely to increase more sharply over the 21st century. Due to the effect of sea level rise, the return period of Hurricane Sandy's flood height decreased by a factor of ∼3× from year 1800 to 2000 and is estimated to decrease by a further ∼4.4× from 2000 to 2100 under a moderate-emissions pathway. When potential storm climatology change over the 21st century is also accounted for, Sandy's return period is estimated to decrease by ∼3× to 17× from 2000 to 2100.
Hurricane Sandy’s flood frequency increasing from year 1800 to 2100
Horton, Benjamin P.; Donnelly, Jeffrey P.
2016-01-01
Coastal flood hazard varies in response to changes in storm surge climatology and the sea level. Here we combine probabilistic projections of the sea level and storm surge climatology to estimate the temporal evolution of flood hazard. We find that New York City’s flood hazard has increased significantly over the past two centuries and is very likely to increase more sharply over the 21st century. Due to the effect of sea level rise, the return period of Hurricane Sandy’s flood height decreased by a factor of ∼3× from year 1800 to 2000 and is estimated to decrease by a further ∼4.4× from 2000 to 2100 under a moderate-emissions pathway. When potential storm climatology change over the 21st century is also accounted for, Sandy’s return period is estimated to decrease by ∼3× to 17× from 2000 to 2100. PMID:27790992
Hazard Assessment from Storm Tides and Rainfall on a Tidal River Estuary
NASA Technical Reports Server (NTRS)
Orton, P.; Conticello, F.; Cioffi, F.; Hall, T.; Georgas, N.; Lall, U.; Blumberg, A.
2015-01-01
Here, we report on methods and results for a model-based flood hazard assessment we have conducted for the Hudson River from New York City to Troy/Albany at the head of tide. Our recent work showed that neglecting freshwater flows leads to underestimation of peak water levels at up-river sites and neglecting stratification (typical with two-dimensional modeling) leads to underestimation all along the Hudson. As a result, we use a three-dimensional hydrodynamic model and merge streamflows and storm tides from tropical and extratropical cyclones (TCs, ETCs), as well as wet extratropical cyclone (WETC) floods (e.g. freshets, rain-on-snow events). We validate the modeled flood levels and quantify error with comparisons to 76 historical events. A Bayesian statistical method is developed for tropical cyclone streamflows using historical data and consisting in the evaluation of (1) the peak discharge and its pdf as a function of TC characteristics, and (2) the temporal trend of the hydrograph as a function of temporal evolution of the cyclone track, its intensity and the response characteristics of the specific basin. A k-nearest-neighbors method is employed to determine the hydrograph shape. Out of sample validation tests demonstrate the effectiveness of the method. Thus, the combined effects of storm surge and runoff produced by tropical cyclones hitting the New York area can be included in flood hazard assessment. Results for the upper Hudson (Albany) suggest a dominance of WETCs, for the lower Hudson (at New York Harbor) a case where ETCs are dominant for shorter return periods and TCs are more important for longer return periods (over 150 years), and for the middle-Hudson (Poughkeepsie) a mix of all three flood events types is important. However, a possible low-bias for TC flood levels is inferred from a lower importance in the assessment results, versus historical event top-20 lists, and this will be further evaluated as these preliminary methods and results are finalized. Future funded work will quantify the influences of sea level rise and flood adaptation plans (e.g. surge barriers). It would also be valuable to examine how streamflows from tropical cyclones and wet cool-season storms will change, as this factor will dominate at upriver locations.
Emotions, trust, and perceived risk: affective and cognitive routes to flood preparedness behavior.
Terpstra, Teun
2011-10-01
Despite the prognoses of the effects of global warming (e.g., rising sea levels, increasing river discharges), few international studies have addressed how flood preparedness should be stimulated among private citizens. This article aims to predict Dutch citizens' flood preparedness intentions by testing a path model, including previous flood hazard experiences, trust in public flood protection, and flood risk perceptions (both affective and cognitive components). Data were collected through questionnaire surveys in two coastal communities (n= 169, n= 244) and in one river area community (n= 658). Causal relations were tested by means of structural equation modeling (SEM). Overall, the results indicate that both cognitive and affective mechanisms influence citizens' preparedness intentions. First, a higher level of trust reduces citizens' perceptions of flood likelihood, which in turn hampers their flood preparedness intentions (cognitive route). Second, trust also lessens the amount of dread evoked by flood risk, which in turn impedes flood preparedness intentions (affective route). Moreover, the affective route showed that levels of dread were especially influenced by citizens' negative and positive emotions related to their previous flood hazard experiences. Negative emotions most often reflected fear and powerlessness, while positive emotions most frequently reflected feelings of solidarity. The results are consistent with the affect heuristic and the historical context of Dutch flood risk management. The great challenge for flood risk management is the accommodation of both cognitive and affective mechanisms in risk communications, especially when most people lack an emotional basis stemming from previous flood hazard events. © 2011 Society for Risk Analysis.
Performance of Oil Infrastructure during Hurricane Harvey
NASA Astrophysics Data System (ADS)
Bernier, C.; Kameshwar, S.; Padgett, J.
2017-12-01
Three major refining centers - Corpus Christi, Houston, and Beaumont/Port Arthur - were affected during Hurricane Harvey. Damage to oil infrastructure, especially aboveground storage tanks (ASTs), caused the release of more than a million gallons of hazardous chemicals in the environment. The objective of this presentation is to identify and gain a better understanding of the different damage mechanisms that occurred during Harvey in order to avoid similar failures during future hurricane events. First, a qualitative description of the damage suffered by ASTs during Hurricane Harvey is presented. Analysis of aerial imagery and incident reports indicate that almost all spills were caused by rainfall and the associated flooding. The largest spill was caused by two large ASTs that floated due to flooding in the Houston Ship Channel releasing 500,000 gallons of gasoline. The vulnerability of ASTs subjected to flooding was already well known and documented from previous storm events. In addition to flooding, Harvey also exposed the vulnerability of ASTs with external floating roof to extreme rainfall; more than 15 floating roofs sank or tilted due to rain water accumulation on them, releasing pollutants in the atmosphere. Secondly, recent fragility models developed by the authors are presented which allow structural vulnerability assessment of floating roofs during rainfall events and ASTs during flood events. The fragility models are then coupled with Harvey rainfall and flood empirical data to identify the conditions (i.e.: internal liquid height or density, drainage system design and efficiency, etc.) that could have led to the observed failures during Hurricane Harvey. Finally, the conditions causing tank failures are studied to propose mitigation measures to prevent future AST failures during severe storm, flood, or rainfall events.
NASA Astrophysics Data System (ADS)
Emerton, R.; Cloke, H. L.; Stephens, L.; Woolnough, S. J.; Zsoter, E.; Pappenberger, F.
2016-12-01
El Niño Southern Oscillation (ENSO), a mode of variability which sees fluctuations between anomalously high or low sea surface temperatures in the Pacific, is known to influence river flow and flooding at the global scale. The anticipation and forecasting of floods is crucial for flood preparedness, and this link, alongside the predictive skill of ENSO up to seasons ahead, may provide an early indication of upcoming severe flood events. Information is readily available indicating the likely impacts of El Niño and La Niña on precipitation across the globe, which is often used as a proxy for flood hazard. However, the nonlinearity between precipitation and flood magnitude and frequency means that it is important to assess the impact of ENSO events not only on precipitation, but also on river flow and flooding. Historical probabilities provide key information regarding the likely impacts of ENSO events. We estimate, for the first time, the historical probability of increased flood hazard during El Niño and La Niña through a global hydrological analysis, using a new 20thCentury ensemble river flow reanalysis for the global river network. This dataset was produced by running the ECMWF ERA-20CM atmospheric reanalysis through a research set-up of the Global Flood Awareness System (GloFAS) using the CaMa-Flood hydrodynamic model, to produce a 110-year global reanalysis of river flow. We further evaluate the added benefit of the hydrological analysis over the use of precipitation as a proxy for flood hazard. For example, providing information regarding regions that are likely to experience a lagged influence on river flow compared to the influence on precipitation. Our results map, at the global scale, the probability of abnormally high river flow during any given month during an El Niño or La Niña; information such as this is key for organisations that work at the global scale, such as humanitarian aid organisations, providing a seasons-ahead indicator of potential increased flood hazard that can be used as soon as the event onset is declared, or even earlier, when El Niño or La Niña conditions are first predicted.
NASA Astrophysics Data System (ADS)
Khajehei, S.; Moradkhani, H.
2017-12-01
Understanding socio-economic characteristics involving natural hazards potential, vulnerability, and resilience is necessary to address the damages to economy and loss of life from extreme natural hazards. The vulnerability to flash floods is dependent on both biophysical and socio-economic factors. Although the biophysical characteristics (e.g. climate, vegetation, and land use) are informative and useful for predicting spatial and temporal extent of flash floods, they have minimal bearing on predicting when and where flash floods are likely to influence people or damage valuable assets and resources. The socio-economic factors determine spatial and temporal scales of the regions affected by flash floods. In this study, we quantify the socio-economic vulnerability to flash floods across the Contiguous United States (CONUS). A socio-economic vulnerability index was developed, employing Bayesian principal components for each state in the CONUS. For this purpose, extensive sets of social and economic variables from US Census and the Bureau of Economic Analysis were used. We developed maps presenting the coincidence of socio-economic vulnerability and the flash floods records. This product can help inform flash flood prevention, mitigation and recovery planning, as well as reducing the flash flood hazards affecting vulnerable places and population.
Multiscale Modelling of the 2011 Tohoku Tsunami with Fluidity: Coastal Inundation and Run-up.
NASA Astrophysics Data System (ADS)
Hill, J.; Martin-Short, R.; Piggott, M. D.; Candy, A. S.
2014-12-01
Tsunami-induced flooding represents one of the most dangerous natural hazards to coastal communities around the world, as exemplified by Tohoku tsunami of March 2011. In order to further understand this hazard and to design appropriate mitigation it is necessary to develop versatile, accurate software capable of simulating large scale tsunami propagation and interaction with coastal geomorphology on a local scale. One such software package is Fluidity, an open source, finite element, multiscale, code that is capable of solving the fully three dimensional Navier-Stokes equations on unstructured meshes. Such meshes are significantly better at representing complex coastline shapes than structured meshes and have the advantage of allowing variation in element size across a domain. Furthermore, Fluidity incorporates a novel wetting and drying algorithm, which enables accurate, efficient simulation of tsunami run-up over complex, multiscale, topography. Fluidity has previously been demonstrated to accurately simulate the 2011 Tohoku tsunami (Oishi et al 2013) , but its wetting and drying facility has not yet been tested on a geographical scale. This study makes use of Fluidity to simulate the 2011 Tohoku tsunami and its interaction with Japan's eastern shoreline, including coastal flooding. The results are validated against observations made by survey teams, aerial photographs and previous modelling efforts in order to evaluate Fluidity's current capabilities and suggest methods of future improvement. The code is shown to perform well at simulating flooding along the topographically complex Tohoku coast of Japan, with major deviations between model and observation arising mainly due to limitations imposed by bathymetry resolution, which could be improved in future. In theory, Fluidity is capable of full multiscale tsunami modelling, thus enabling researchers to understand both wave propagation across ocean basins and flooding of coastal landscapes down to interaction with individual defence structures. This makes the code an exciting candidate for use in future studies aiming to investigate tsunami risk elsewhere in the world. Oishi, Y. et al. Three-dimensional tsunami propagation simulations using an unstructured mesh finite element model. J. Geophys. Res. [Solid Earth] 118, 2998-3018 (2013).
NASA Astrophysics Data System (ADS)
Santillan, M. M.-M.; Santillan, J. R.; Morales, E. M. O.
2017-09-01
We discuss in this paper the development, including the features and functionalities, of an open source web-based flood hazard information dissemination and analytical system called "Flood EViDEns". Flood EViDEns is short for "Flood Event Visualization and Damage Estimations", an application that was developed by the Caraga State University to address the needs of local disaster managers in the Caraga Region in Mindanao, Philippines in accessing timely and relevant flood hazard information before, during and after the occurrence of flood disasters at the community (i.e., barangay and household) level. The web application made use of various free/open source web mapping and visualization technologies (GeoServer, GeoDjango, OpenLayers, Bootstrap), various geospatial datasets including LiDAR-derived elevation and information products, hydro-meteorological data, and flood simulation models to visualize various scenarios of flooding and its associated damages to infrastructures. The Flood EViDEns application facilitates the release and utilization of this flood-related information through a user-friendly front end interface consisting of web map and tables. A public version of the application can be accessed at http://121.97.192.11:8082/. The application is currently expanded to cover additional sites in Mindanao, Philippines through the "Geo-informatics for the Systematic Assessment of Flood Effects and Risks for a Resilient Mindanao" or the "Geo-SAFER Mindanao" Program.
Validation of a Global Hydrodynamic Flood Inundation Model
NASA Astrophysics Data System (ADS)
Bates, P. D.; Smith, A.; Sampson, C. C.; Alfieri, L.; Neal, J. C.
2014-12-01
In this work we present first validation results for a hyper-resolution global flood inundation model. We use a true hydrodynamic model (LISFLOOD-FP) to simulate flood inundation at 1km resolution globally and then use downscaling algorithms to determine flood extent and depth at 90m spatial resolution. Terrain data are taken from a custom version of the SRTM data set that has been processed specifically for hydrodynamic modelling. Return periods of flood flows along the entire global river network are determined using: (1) empirical relationships between catchment characteristics and index flood magnitude in different hydroclimatic zones derived from global runoff data; and (2) an index flood growth curve, also empirically derived. Bankful return period flow is then used to set channel width and depth, and flood defence impacts are modelled using empirical relationships between GDP, urbanization and defence standard of protection. The results of these simulations are global flood hazard maps for a number of different return period events from 1 in 5 to 1 in 1000 years. We compare these predictions to flood hazard maps developed by national government agencies in the UK and Germany using similar methods but employing detailed local data, and to observed flood extent at a number of sites including St. Louis, USA and Bangkok in Thailand. Results show that global flood hazard models can have considerable skill given careful treatment to overcome errors in the publicly available data that are used as their input.
Evaluation of a Socio-Hydrologic Model for the Rebuilding of Biloxi, Mississippi
NASA Astrophysics Data System (ADS)
Calhoun, J. L.; O'Donnell, F. C.; Burton, C. G.
2017-12-01
In August 2005, Hurricane Katrina ripped through the Gulf Coast of the United States causing billions in damage. The storm cost the City of Biloxi, Mississippi $355 million in infrastructure repair, which is being constructed with funding from the Federal Emergency Management Agency (FEMA). Approximately 30% of the city's storm systems including storm drains, bridges and culverts are being replaced and updated utilizing FEMA Hazard Mitigation funding to lessen the impact of future natural disasters. The infrastructure is being upgraded from conveying a 4% annual chance storm event to a 1% annual chance storm event. An extensive socio-economic data set of the impacts of Hurricane Katrina along the Mississippi Gulf Coast was used to analyze recovery in the area. The recovery data set assessed the area directly after the storm in 2005 thru 2010 with an analysis of recovery five years after the storm. This study uses a dynamic socio-hydrologic model with modifications to relate the change in flow capacity of engineered structures and socio-economic processes. The results will be used to assess the hypothesis that raising flood protection increases the base flood elevation levels and therefore requires a higher level of flood protection. The increase in flood protect eases the fears of the community leading them to not require additional flood protection when developing in flood prone areas and strengthening the socio-hydrologic association. The results will also be evaluated to create a tool for the City of Biloxi to improve their resilience from future hurricanes and storm surge events.
Flood Hazard Mapping Assessment for Lebanon
NASA Astrophysics Data System (ADS)
Abdallah, Chadi; Darwich, Talal; Hamze, Mouin; Zaarour, Nathalie
2014-05-01
Of all natural disasters, floods affect the greatest number of people worldwide and have the greatest potential to cause damage. In fact, floods are responsible for over one third of people affected by natural disasters; almost 190 million people in more than 90 countries are exposed to catastrophic floods every year. Nowadays, with the emerging global warming phenomenon, this number is expected to increase, therefore, flood prediction and prevention has become a necessity in many places around the globe to decrease damages caused by flooding. Available evidence hints at an increasing frequency of flooding disasters being witnessed in the last 25 years in Lebanon. The consequences of such events are tragic including annual financial losses of around 15 million dollars. In this work, a hydrologic-hydraulic modeling framework for flood hazard mapping over Lebanon covering 19 watershed was introduced. Several empirical, statistical and stochastic methods to calculate the flood magnitude and its related return periods, where rainfall and river gauge data are neither continuous nor available on a long term basis with an absence of proper river sections that under estimate flows during flood events. TRMM weather satellite information, automated drainage networks, curve numbers and other geometrical characteristics for each basin was prepared using WMS-software and then exported into HMS files to implement the hydrologic modeling (rainfall-runoff) for single designed storm of uniformly distributed depth along each basin. The obtained flow hydrographs were implemented in the hydraulic model (HEC-RAS) where relative water surface profiles are calculated and flood plains are delineated. The model was calibrated using the last flood event of January 2013, field investigation, and high resolution satellite images. Flow results proved to have an accuracy ranging between 83-87% when compared to the computed statistical and stochastic methods. Results included the generation of recurrence flood plain maps of 10, 50 & 100 years intensity maps along with flood hazard maps for each watershed. It is of utmost significance for this study to be effective that the produced flood intensity and hazard maps will be made available to decision-makers, planners and relevant community stakeholders.
Effects of anthropogenic land-subsidence on inundation dynamics: the case study of Ravenna, Italy
NASA Astrophysics Data System (ADS)
Carisi, Francesca; Domeneghetti, Alessio; Castellarin, Attilio
2016-05-01
Can differential land-subsidence significantly alter river flooding dynamics, and thus flood risk in flood prone areas? Many studies show how the lowering of the coastal areas is closely related to an increase in the flood-hazard due to more important tidal flooding and see level rise. The literature on the relationship between differential land-subsidence and possible alterations to riverine flood-hazard of inland areas is still sparse, although several geographical areas characterized by significant land-subsidence rates during the last 50 years experienced intensification in both inundation magnitude and frequency. We investigate the possible impact of a significant differential ground lowering on flood hazard over a 77 km2 area around the city of Ravenna, in Italy. The rate of land-subsidence in the study area, naturally in the order of a few mm year-1, dramatically increased up to 110 mm year-1 after World War II, primarily due to groundwater pumping and gas production platforms. The result was a cumulative drop that locally exceeds 1.5 m. Using a recent digital elevation model (res. 5 m) and literature data on land-subsidence, we constructed a ground elevation model over the study area in 1897 and we characterized either the current and the historical DEM with or without road embankments and land-reclamation channels in their current configuration. We then considered these four different topographic models and a two-dimensional hydrodynamic model to simulate and compare the inundation dynamics associated with a levee failure scenario along embankment system of the river Montone, which flows eastward in the southern portion of the study area. For each topographic model, we quantified the flood hazard in terms of maximum water depth (h) and we compared the actual effects on flood-hazard dynamics of differential land-subsidence relative to those associated with other man-made topographic alterations, which resulted to be much more significant.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-22
..., levee system, vessels and tows from destruction, loss or injury due to hazards associated with rising... the general public, levee system, vessels and tows from the hazards associated with rising flood water... system, vessels and tows from destruction, loss or injury due to the hazards associated with rising flood...
Social media for disaster response during floods
NASA Astrophysics Data System (ADS)
Eilander, D.; van de Vries, C.; Baart, F.; van Swol, R.; Wagemaker, J.; van Loenen, A.
2015-12-01
During floods it is difficult to obtain real-time accurate information about the extent and severity of the hazard. This information is very important for disaster risk reduction management and crisis relief organizations. Currently, real-time information is derived from few sources such as field reports, traffic camera's, satellite images and areal images. However, getting a real-time and accurate picture of the situation on the ground remains difficult. At the same time, people affected by natural hazards increasingly share their observations and their needs through digital media. Unlike conventional monitoring systems, Twitter data contains a relatively large number of real-time ground truth observations representing both physical hazard characteristics and hazard impacts. In the city of Jakarta, Indonesia, the intensity of unique flood related tweets during a flood event, peaked at almost 900 tweets per minute during floods in early 2015. Flood events around the world in 2014/2015 yielded large numbers of flood related tweets: from Philippines (85.000) to Pakistan (82.000) to South-Korea (50.000) to Detroit (20.000). The challenge here is to filter out useful content from this cloud of data, validate these observations and convert them to readily usable information. In Jakarta, flood related tweets often contain information about the flood depth. In a pilot we showed that this type of information can be used for real-time mapping of the flood extent by plotting these observations on a Digital Elevation Model. Uncertainties in the observations were taken into account by assigning a probability to each observation indicating its likelihood to be correct based on statistical analysis of the total population of tweets. The resulting flood maps proved to be correct for about 75% of the neighborhoods in Jakarta. Further cross-validation of flood related tweets against (hydro-) meteorological data is to likely improve the skill of the method.
Dynamic model of forest area on flood zone of Padang City, West Sumatra Province-Indonesia
NASA Astrophysics Data System (ADS)
Dewata, Indang; Iswandi, U.
2018-05-01
The flood disaster has caused many harm to human life, and the change of watershed characteristic is one of the factors causing the flood disaster. The increase of deforestation due to the increase of water causes the occurrence of flood disaster in the rainy season. The research objective was to develop a dynamic model of forest on flood hazard zone using powersim 10.1. In model development, there are three scenarios: optimistic, moderate, and pessimistic. The study shows that in Padang there are about 13 percent of high flood hazard zones. Deforestation of 4.5 percent/year is one cause that may increased the flooding intensity in Padang. There will be 14 percent of total forest area when management policy of forest absence in 2050.
NASA Astrophysics Data System (ADS)
Liu, D. L.; Li, Y.
2015-11-01
Evaluating social vulnerability is a crucial issue in risk and disaster management. In this study, a household social vulnerability index (HSVI) to flood hazards was developed and used to assess the social vulnerability of rural households in western mountainous regions of Henan province, China. Eight key indicators were indentified through interactive discussions with multidisciplinary specialists and local farmers, and their weights were determined using principle component analysis (PCA). The results showed that (1) the ratio of perennial working in other places, hazard-related training and illiteracy ratio (15+) were the most dominant factors to social vulnerability. (2) The numbers of high, moderate and low vulnerable households were 14, 64 and 16, respectively, which accounted for 14.9, 68.1, and 17.0 % of the total interviewed rural households, respectively. (3) The correlation coefficient between household social vulnerability scores and casualties in a storm flood in July 2010 was significant at 0.05 significance level (r = 0.248), which indicated that the selected indicators and their weights were valid. (4) Some mitigation strategies to reduce the household social vulnerability to flood hazards were proposed based on the assessment results. The results provide useful information for rural households and local governments to prepare, mitigate and response to flood hazards.
44 CFR 78.6 - Flood Mitigation Plan approval process.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 44 Emergency Management and Assistance 1 2012-10-01 2011-10-01 true Flood Mitigation Plan approval..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.6 Flood Mitigation Plan approval process. The State POC will forward all Flood...
Hydrometeorological Hazards: Monitoring, Forecasting, Risk Assessment, and Socioeconomic Responses
NASA Technical Reports Server (NTRS)
Wu, Huan; Huang, Maoyi; Tang, Qiuhong; Kirschbaum, Dalia B.; Ward, Philip
2017-01-01
Hydrometeorological hazards are caused by extreme meteorological and climate events, such as floods, droughts, hurricanes,tornadoes, or landslides. They account for a dominant fraction of natural hazards and occur in all regions of the world, although the frequency and intensity of certain hazards and societies vulnerability to them differ between regions. Severe storms, strong winds, floods, and droughts develop at different spatial and temporal scales, but all can become disasters that cause significant infrastructure damage and claim hundreds of thousands of lives annually worldwide. Oftentimes, multiple hazards can occur simultaneously or trigger cascading impacts from one extreme weather event. For example, in addition to causing injuries, deaths, and material damage, a tropical storm can also result in flooding and mudslides, which can disrupt water purification and sewage disposal systems, cause overflow of toxic wastes, andincrease propagation of mosquito-borne diseases.
Increasing flood exposure in the Netherlands: implications for risk financing
NASA Astrophysics Data System (ADS)
Jongman, B.; Koks, E. E.; Husby, T. G.; Ward, P. J.
2014-05-01
The effectiveness of disaster risk management and financing mechanisms depends on an accurate assessment of current and future hazard exposure. The increasing availability of detailed data offers policy makers and the insurance sector new opportunities to understand trends in risk, and to make informed decisions on ways to deal with these trends. In this paper we show how comprehensive property level information can be used for the assessment of exposure to flooding on a national scale, and how this information provides valuable input to discussions on possible risk financing practices. The case study used is the Netherlands, which is one of the countries most exposed to flooding globally, and which is currently undergoing a debate on strategies for the compensation of potential losses. Our results show that flood exposure has increased rapidly between 1960 and 2012, and that the growth of the building stock and its economic value in flood-prone areas has been higher than in non-flood-prone areas. We also find that property values in flood-prone areas are lower than those in non-flood-prone areas. We argue that the increase in the share of economic value located in potential flood-prone areas can have a negative effect on the feasibility of private insurance schemes in the Netherlands. The methodologies and results presented in this study are relevant for many regions around the world where the effects of rising flood exposure create a challenge for risk financing.
Financing increasing flood risk: evidence from millions of buildings
NASA Astrophysics Data System (ADS)
Jongman, B.; Koks, E. E.; Husby, T. G.; Ward, P. J.
2014-01-01
The effectiveness of disaster risk management and financing mechanisms depends on the accurate assessment of current and future hazard exposure. The increasing availability of detailed data offers policy makers and the insurance sector new opportunities to understand trends in risk, and to make informed decisions on the ways to deal with these trends. In this paper we show how comprehensive property level information can be used for the assessment of exposure to flooding on a national scale, and how this information can contribute to discussions on possible risk financing practices. The case-study used is the Netherlands, which is one of the countries most exposed to flooding globally, and which is currently undergoing a debate on strategies for the compensation of potential losses. Our results show that flood exposure has increased rapidly between 1960 and 2012, and that the growth of the building stock and its economic value in flood prone areas has been higher than in not flood prone areas. We also find that property values in flood prone areas are lower than those in not flood prone areas. We argue that the increase in the share of economic value located in potential flood prone areas can have a negative effect on the feasibility of private insurance schemes in the Netherlands. The methodologies and results presented in this study are relevant for many regions around the world where the effects of rising flood exposure create a challenge for risk financing.
44 CFR 67.4 - Proposed flood elevation determination.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Proposed flood elevation..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program APPEALS FROM PROPOSED FLOOD ELEVATION DETERMINATIONS § 67.4 Proposed flood elevation determination. The Federal...
44 CFR 67.4 - Proposed flood elevation determination.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program APPEALS FROM PROPOSED FLOOD ELEVATION DETERMINATIONS § 67.4 Proposed flood elevation determination. The Federal... 44 Emergency Management and Assistance 1 2012-10-01 2011-10-01 true Proposed flood elevation...
44 CFR 67.4 - Proposed flood elevation determination.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program APPEALS FROM PROPOSED FLOOD ELEVATION DETERMINATIONS § 67.4 Proposed flood elevation determination. The Federal... 44 Emergency Management and Assistance 1 2014-10-01 2014-10-01 false Proposed flood elevation...
NASA Astrophysics Data System (ADS)
Wang, X.
2017-12-01
The Pearl River Delta (PRD) in China, the summer rain storm occurs frequently, the flood damage is very serious. Damage assessment is the basis of scientific decision-making in disaster mitigation. All approaches of flood damage analysis contain uncertainties due to the inaccuracies and generalisations used, the lack of data aggravates this problem, making methods very rough. This study presents a detailed flood damage assessment framework in Pearl River Delta rural area, using 2017 "5.7" heavy rain storm event to simulate the process and estimate the flood loss in resident building and property, agriculture production. The framework integrates four modules,1) utilize the remote sensing and statistical yearbook and so on to construct the disaster bearing bodies GIS database; 2) using hydraulics model to simulate the flood extent and depth spatial distribution;3)through field investigation to obtain the flood loss data for all kinds of hazard-affected body, using statistical analysis method to get the damage curves;4)Integrate flood scenarios, disaster bearing bodies GIS database and damage curves to calculate the flood loss estimation value. Using this methodology, in the 2017 "5.7" heavy rain storm event, Huashan Town flood damage loss is underestimate compared with the government report, because of not considering the damage of water conservancy facilities. But the disaster loss value on the spatial distribution is consistent with actual situation. In terms of aggregated values in the whole town, the model is capable of obtaining figures that are within the same order of magnitude. This study produce a flood damage assessment framework taking into account the regional characteristics of PRD rural area, provide a template for future practice. This study only considers the current impacts, the framework should be improved by taking into account socio-economic and climatic changes, as well as implementing adaptation measures to be applied to assess the potential future damages. Key words: Heavy rain storm; flood; damage assessment; Pearl River Delta; rural area
Set-up and validation of a Delft-FEWS based coastal hazard forecasting system
NASA Astrophysics Data System (ADS)
Valchev, Nikolay; Eftimova, Petya; Andreeva, Nataliya
2017-04-01
European coasts are increasingly threatened by hazards related to low-probability and high-impact hydro-meteorological events. Uncertainties in hazard prediction and capabilities to cope with their impact lie in both future storm pattern and increasing coastal development. Therefore, adaptation to future conditions requires a re-evaluation of coastal disaster risk reduction (DRR) strategies and introduction of a more efficient mix of prevention, mitigation and preparedness measures. The latter presumes that development of tools, which can manage the complex process of merging data and models and generate products on the current and expected hydro-and morpho-dynamic states of the coasts, such as forecasting system of flooding and erosion hazards at vulnerable coastal locations (hotspots), is of vital importance. Output of such system can be of an utmost value for coastal stakeholders and the entire coastal community. In response to these challenges, Delft-FEWS provides a state-of-the-art framework for implementation of such system with vast capabilities to trigger the early warning process. In addition, this framework is highly customizable to the specific requirements of any individual coastal hotspot. Since its release many Delft-FEWS based forecasting system related to inland flooding have been developed. However, limited number of coastal applications was implemented. In this paper, a set-up of Delft-FEWS based forecasting system for Varna Bay (Bulgaria) and a coastal hotspot, which includes a sandy beach and port infrastructure, is presented. It is implemented in the frame of RISC-KIT project (Resilience-Increasing Strategies for Coasts - toolKIT). The system output generated in hindcast mode is validated with available observations of surge levels, wave and morphodynamic parameters for a sequence of three short-duration and relatively weak storm events occurred during February 4-12, 2015. Generally, the models' performance is considered as very good and results obtained - quite promising for reliable prediction of both boundary conditions and coastal hazard and gives a good basis for estimation of onshore impact.
Christenson, Elizabeth; Elliott, Mark; Banerjee, Ovik; Hamrick, Laura; Bartram, Jamie
2014-01-01
Global climate change (GCC) has led to increased focus on the occurrence of, and preparation for, climate-related extremes and hazards. Population exposure, the relative likelihood that a person in a given location was exposed to a given hazard event(s) in a given period of time, was the outcome for this analysis. Our objectives were to develop a method for estimating the population exposure at the country level to the climate-related hazards cyclone, drought, and flood; develop a method that readily allows the addition of better datasets to an automated model; differentiate population exposure of urban and rural populations; and calculate and present the results of exposure scores and ranking of countries based on the country-wide, urban, and rural population exposures to cyclone, drought, and flood. Gridded global datasets on cyclone, drought and flood occurrence as well as population density were combined and analysis was carried out using ArcGIS. Results presented include global maps of ranked country-level population exposure to cyclone, drought, flood and multiple hazards. Analyses by geography and human development index (HDI) are also included. The results and analyses of this exposure assessment have implications for country-level adaptation. It can also be used to help prioritize aid decisions and allocation of adaptation resources between countries and within a country. This model is designed to allow flexibility in applying cyclone, drought and flood exposure to a range of outcomes and adaptation measures. PMID:24566046
Murphy, Elizabeth A.; Straub, Timothy D.; Soong, David T.; Hamblen, Christopher S.
2007-01-01
Results of the hydrologic model, flood-frequency, hydraulic model, and flood-hazard analysis of the Blackberry Creek watershed in Kendall County, Illinois, indicate that the 100-year and 500-year flood plains cover approximately 3,699 and 3,762 acres of land, respectively. On the basis of land-cover data for 2003, most of the land in the flood plains was cropland and residential land. Although many acres of residential land were included in the flood plain, this land was mostly lawns, with 25 homes within the 100-year flood plain, and 41 homes within the 500-year flood plain in the 2003 aerial photograph. This report describes the data collection activities to refine the hydrologic and hydraulic models used in an earlier study of the Kane County part of the Blackberry Creek watershed and to extend the flood-frequency analysis through water year 2003. The results of the flood-hazard analysis are presented in graphical and tabular form. The hydrologic model, Hydrological Simulation Program - FORTRAN (HSPF), was used to simulate continuous water movement through various land-use patterns in the watershed. Flood-frequency analysis was applied to an annual maximum series to determine flood quantiles in subbasins for flood-hazard analysis. The Hydrologic Engineering Center- River Analysis System (HEC-RAS) hydraulic model was used to determine the 100-year and 500-year flood elevations, and the 100-year floodway. The hydraulic model was calibrated and verified using observations during three storms at two crest-stage gages and the U.S. Geological Survey streamflowgaging station near Yorkville. Digital maps of the 100-year and 500-year flood plains and the 100-year floodway for each tributary and the main stem of Blackberry Creek were compiled.
21st century Himalayan hydropower: Growing exposure to glacial lake outburst floods?
NASA Astrophysics Data System (ADS)
Schwanghart, Wolfgang; Worni, Raphael; Huggel, Christian; Stoffel, Markus; Korup, Oliver
2014-05-01
Primary energy demand in China and India has increased fivefold since 1980. To avoid power shortages and blackouts, the hydropower infrastructure in the Hindu Kush-Himalaya region is seeing massive development, a strategy supported by the policy of the World Bank and in harmony with the framework of the Kyoto Protocol. The targeted investments in clean energy from water resources, however, may trigger far-reaching impacts to downstream communities given that hydropower projects are planned and constructed in close vicinity to glaciated areas. We hypothesize that the location of these new schemes may be subject to higher exposure to a broad portfolio of natural hazards that proliferate in the steep, dissected, and tectonically active topography of the Himalayas. Here we focus on the hazard from glacial lake outburst floods (GLOF), and offer an unprecedented regional analysis for the Hindu Kush-Himalaya orogen. We compiled a database of nearly 4,000 proglacial lakes that we mapped from satellite imagery; and focus on those as potential GLOF sources that are situated above several dozen planned and existing hydropower plants. We implemented a scenario-based flood-wave propagation model of hypothetic GLOFs, and compared thus simulated peak discharges with those of the local design floods at the power plants. Multiple model runs confirm earlier notions that GLOF discharge may exceed meteorological, i.e. monsoon-fed, flood peaks by at least an order of magnitude throughout the Hindu Kush-Himalaya. We further show that the current trend in hydropower development near glaciated areas may lead to a >15% increase of projects that may be impacted by future GLOFs. At the same time, the majority of the projects are to be sited where outburst flood modelling produces its maximum uncertainty, highlighting the problem of locating minimum risk sites for hydropower. Exposure to GLOFs is not uniformly distributed in the Himalayas, and is particularly high in rivers draining the Mt. Everest and Lulana regions of Nepal and Bhutan, respectively. Together with the dense, cascading sequence of hydropower stations along several river networks in these areas, the combination of GLOFs and artificial reservoirs in steep terrain may result in increasing threats to downstream communities. Hydropower stations are infrastructural investments with minimum design lives of several decades, and our results suggest that their planning should be orchestrated with projected changes in glacier response to future climate change. Our data underline the preponderance of glacial lakes in areas with high glacial retreat rates and a commensurate exposure of hydropower stations to GLOFs. To ensure sustainable water resources use at minimum risk implications for on-site downstream communities, potential changes in GLOF hazard should be taken seriously when planning hydropower stations in the Hindu Kush-Himalaya.
Estimating floodwater depths from flood inundation maps and topography
Cohen, Sagy; Brakenridge, G. Robert; Kettner, Albert; Bates, Bradford; Nelson, Jonathan M.; McDonald, Richard R.; Huang, Yu-Fen; Munasinghe, Dinuke; Zhang, Jiaqi
2018-01-01
Information on flood inundation extent is important for understanding societal exposure, water storage volumes, flood wave attenuation, future flood hazard, and other variables. A number of organizations now provide flood inundation maps based on satellite remote sensing. These data products can efficiently and accurately provide the areal extent of a flood event, but do not provide floodwater depth, an important attribute for first responders and damage assessment. Here we present a new methodology and a GIS-based tool, the Floodwater Depth Estimation Tool (FwDET), for estimating floodwater depth based solely on an inundation map and a digital elevation model (DEM). We compare the FwDET results against water depth maps derived from hydraulic simulation of two flood events, a large-scale event for which we use medium resolution input layer (10 m) and a small-scale event for which we use a high-resolution (LiDAR; 1 m) input. Further testing is performed for two inundation maps with a number of challenging features that include a narrow valley, a large reservoir, and an urban setting. The results show FwDET can accurately calculate floodwater depth for diverse flooding scenarios but also leads to considerable bias in locations where the inundation extent does not align well with the DEM. In these locations, manual adjustment or higher spatial resolution input is required.
78 FR 52954 - Final Flood Hazard Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-27
... DEPARTMENT OF HOMELAND SECURITY Federal Emergency Management Agency [Docket ID FEMA-2013-0002] Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final notice... and FIS report are the basis of the floodplain management measures that a community is required either...
78 FR 52953 - Final Flood Hazard Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-27
... DEPARTMENT OF HOMELAND SECURITY Federal Emergency Management Agency [Docket ID FEMA-2013-0002] Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final Notice... and FIS report are the basis of the floodplain management measures that a community is required either...
78 FR 29763 - Final Flood Hazard Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-21
... DEPARTMENT OF HOMELAND SECURITY Federal Emergency Management Agency [Docket ID FEMA-2013-0002] Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final Notice... and FIS report are the basis of the floodplain management measures that a community is required either...
78 FR 45938 - Final Flood Hazard Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-30
... DEPARTMENT OF HOMELAND SECURITY Federal Emergency Management Agency [Docket ID FEMA-2013-0002] Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final notice... and FIS report are the basis of the floodplain management measures that a community is required either...
78 FR 20337 - Final Flood Hazard Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-04
... DEPARTMENT OF HOMELAND SECURITY Federal Emergency Management Agency [Docket ID FEMA-2013-0002] Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final Notice... and FIS report are the basis of the floodplain management measures that a community is required either...
78 FR 43905 - Final Flood Hazard Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-22
... DEPARTMENT OF HOMELAND SECURITY Federal Emergency Management Agency [Docket ID FEMA-2013-0002] Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final Notice... and FIS report are the basis of the floodplain management measures that a community is required either...
78 FR 48882 - Final Flood Hazard Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-12
... DEPARTMENT OF HOMELAND SECURITY Federal Emergency Management Agency [Docket ID FEMA-2013-0002] Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final Notice... and FIS report are the basis of the floodplain management measures that a community is required either...
78 FR 14576 - Final Flood Hazard Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-06
... DEPARTMENT OF HOMELAND SECURITY Federal Emergency Management Agency [Docket ID FEMA-2013-0002] Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final Notice... and FIS report are the basis of the floodplain management measures that a community is required either...
78 FR 5820 - Final Flood Hazard Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-28
... DEPARTMENT OF HOMELAND SECURITY Federal Emergency Management Agency [Docket ID FEMA-2013-0002] Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final Notice... and FIS report are the basis of the floodplain management measures that a community is required either...
78 FR 32678 - Final Flood Hazard Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-31
... DEPARTMENT OF HOMELAND SECURITY Federal Emergency Management Agency [Docket ID FEMA-2013-0002] Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final notice... and FIS report are the basis of the floodplain management measures that a community is required either...
78 FR 14318 - Final Flood Hazard Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-05
... DEPARTMENT OF HOMELAND SECURITY Federal Emergency Management Agency [Docket ID FEMA-2013-0002] Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final Notice... and FIS report are the basis of the floodplain management measures that a community is required either...
78 FR 9406 - Final Flood Hazard Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-08
... DEPARTMENT OF HOMELAND SECURITY Federal Emergency Management Agency [Docket ID FEMA-2013-0002] Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final notice... and FIS report are the basis of the floodplain management measures that a community is required either...
78 FR 43904 - Final Flood Hazard Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-22
... DEPARTMENT OF HOMELAND SECURITY Federal Emergency Management Agency [Docket ID FEMA-2013-0002] Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final Notice... and FIS report are the basis of the floodplain management measures that a community is required either...
78 FR 36216 - Final Flood Hazard Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-17
... DEPARTMENT OF HOMELAND SECURITY Federal Emergency Management Agency [Docket ID FEMA-2013-0002] Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final Notice... and FIS report are the basis of the floodplain management measures that a community is required either...
78 FR 64521 - Final Flood Hazard Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-29
... DEPARTMENT OF HOMELAND SECURITY Federal Emergency Management Agency [Docket ID FEMA-2013-0002] Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final Notice... and FIS report are the basis of the floodplain management measures that a community is required either...
78 FR 36220 - Final Flood Hazard Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-17
... DEPARTMENT OF HOMELAND SECURITY Federal Emergency Management Agency [Docket ID FEMA-2013-0002] Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final Notice... and FIS report are the basis of the floodplain management measures that a community is required either...
78 FR 32679 - Final Flood Hazard Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-31
... DEPARTMENT OF HOMELAND SECURITY Federal Emergency Management Agency [Docket ID FEMA-2013-0002] Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final Notice... and FIS report are the basis of the floodplain management measures that a community is required either...
78 FR 36219 - Final Flood Hazard Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-17
... DEPARTMENT OF HOMELAND SECURITY Federal Emergency Management Agency [Docket ID FEMA-2013-0002] Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final notice... and FIS report are the basis of the floodplain management measures that a community is required either...
78 FR 29761 - Final Flood Hazard Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-21
... DEPARTMENT OF HOMELAND SECURITY Federal Emergency Management Agency [Docket ID FEMA-2013-0002] Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final notice... and FIS report are the basis of the floodplain management measures that a community is required either...
78 FR 14316 - Final Flood Hazard Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-05
... DEPARTMENT OF HOMELAND SECURITY Federal Emergency Management Agency [Docket ID FEMA-2013-0002] Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final Notice... and FIS report are the basis of the floodplain management measures that a community is required either...
RiskScape: a new tool for comparing risk from natural hazards (Invited)
NASA Astrophysics Data System (ADS)
Stirling, M. W.; King, A.
2010-12-01
The Regional RiskScape is New Zealand’s joint venture between GNS Science & NIWA, and represents a comprehensive and easy-to-use tool for multi-hazard-based risk and impact analysis. It has basic GIS functionality, in that it has Import/Export functions to use with GIS software. Five natural hazards have been implemented in Riskscape to date: Flood (river), earthquake, volcano (ash), tsunami and wind storm. The software converts hazard exposure information into the likely impacts for a region, for example, damage and replacement costs, casualties, economic losses, disruption, and number of people affected. It therefore can be used to assist with risk management, land use planning, building codes and design, risk identification, prioritization of risk-reduction/mitigation, determination of “best use” risk-reduction investment, evacuation and contingency planning, awareness raising, public information, realistic scenarios for exercises, and hazard event response. Three geographically disparate pilot regions have been used to develop and triall Riskscape in New Zealand, and each region is exposed to a different mix of natural hazards. Future (phase II) development of Riskscape will include the following hazards: Landslides (both rainfall and earthquake triggered), storm surges, pyroclastic flows and lahars, and climate change effects. While Riskscape developments have thus far focussed on scenario-based risk, future developments will advance the software into providing probabilistic-based solutions.
NASA Astrophysics Data System (ADS)
Szoenyi, Michael; Mechler, Reinhard; McCallum, Ian
2015-04-01
In early June 2013, severe flooding hit Central and Eastern Europe, causing extensive damage, in particular along the Danube and Elbe main watersheds. The situation was particularly severe in Eastern Germany, Austria, Hungary and the Czech Republic. Based on the Post Event Review Capability (PERC) approach, developed by Zurich Insurance's Flood Resilience Program to provide independent review of large flood events, we examine what has worked well (best practice) and opportunities for further improvement. The PERC overall aims to thoroughly examine aspects of flood resilience, flood risk management and catastrophe intervention in order to help build back better after events and learn for future events. As our research from post event analyses shows a lot of losses are in fact avoidable by taking the right measures pre-event and these measures are economically - efficient with a return of 4 Euro on losses saved for every Euro invested in prevention on average (Wharton/IIASA flood resilience alliance paper on cost benefit analysis, Mechler et al. 2014) and up to 10 Euros for certain countries. For the 2013 flood events we provide analysis on the following aspects and in general identify a number of factors that worked in terms of reducing the loss and risk burden. 1. Understanding risk factors of the Central European Floods 2013 We review the precursors leading up to the floods in June, with an extremely wet May 2013 and an atypical V-b weather pattern that brought immense precipitation in a very short period to the watersheds of Elbe, Donau and partially the Rhine in the D-A-CH countries and researched what happened during the flood and why. Key questions we asked revolve around which protection and risk reduction approaches worked well and which did not, and why. 2. Insights and recommendations from the post event review The PERC identified a number of risk factors, which need attention if risk is to be reduced over time. • Yet another "100-year flood" - risk perception and understanding of risk in the population. • Residual risk and the levee shadow effect - why the population "felt safe." • What is the overload case and how to implement it in flood protection systems? • Decision-making for the future under uncertainty - how to design to acceptable flood protection levels if we haven't seen yet what's physically possible. 3. How to protect - practical examples Finally, we outline practical examples for reducing the loss burden and risk over time. • "Flood protection hierarchy" - from location choice under a hazard perspective to mobile flood protection. • Risk-based approach and identification of critical infrastructure. • Integrated flood risk management in theory and practical application. • Role of insurance.
Historical analysis of US pipeline accidents triggered by natural hazards
NASA Astrophysics Data System (ADS)
Girgin, Serkan; Krausmann, Elisabeth
2015-04-01
Natural hazards, such as earthquakes, floods, landslides, or lightning, can initiate accidents in oil and gas pipelines with potentially major consequences on the population or the environment due to toxic releases, fires and explosions. Accidents of this type are also referred to as Natech events. Many major accidents highlight the risk associated with natural-hazard impact on pipelines transporting dangerous substances. For instance, in the USA in 1994, flooding of the San Jacinto River caused the rupture of 8 and the undermining of 29 pipelines by the floodwaters. About 5.5 million litres of petroleum and related products were spilled into the river and ignited. As a results, 547 people were injured and significant environmental damage occurred. Post-incident analysis is a valuable tool for better understanding the causes, dynamics and impacts of pipeline Natech accidents in support of future accident prevention and mitigation. Therefore, data on onshore hazardous-liquid pipeline accidents collected by the US Pipeline and Hazardous Materials Safety Administration (PHMSA) was analysed. For this purpose, a database-driven incident data analysis system was developed to aid the rapid review and categorization of PHMSA incident reports. Using an automated data-mining process followed by a peer review of the incident records and supported by natural hazard databases and external information sources, the pipeline Natechs were identified. As a by-product of the data-collection process, the database now includes over 800,000 incidents from all causes in industrial and transportation activities, which are automatically classified in the same way as the PHMSA record. This presentation describes the data collection and reviewing steps conducted during the study, provides information on the developed database and data analysis tools, and reports the findings of a statistical analysis of the identified hazardous liquid pipeline incidents in terms of accident dynamics and consequences.
NASA Astrophysics Data System (ADS)
Tapales, Ben Joseph; Mendoza, Jerico; Uichanco, Christopher; Mahar Francisco Amante Lagmay, Alfredo; Moises, Mark Anthony; Delmendo, Patricia; Eneri Tingin, Neil
2015-04-01
Flooding has been a perennial problem in the city of Marikina. These incidences result in human and economic losses. In response to this, the city has been investing in their flood disaster mitigation program in the past years. As a result, flooding in Marikina was reduced by 31% from 1992 to 2004. [1] However, these measures need to be improved so as to mitigate the effects of floods with more than 100 year return period, such as the flooding brought by tropical storm Ketsana in 2009 which generated 455mm of rains over a 24-hour period. Heavy rainfall caused the streets to be completely submerged in water, leaving at least 70 people dead in the area. In 2012, the Southwest monsoon, enhanced by a typhoon, brought massive rains with an accumulated rainfall of 472mm for 22-hours, a number greater than that which was experienced during Ketsana. At this time, the local government units were much more prepared in mitigating the risk with the use of early warning and evacuation measures, resulting to zero casualty in the area. Their urban disaster management program, however, can be further improved through the integration of high-resolution 2D flood hazard maps in the city's flood disaster management. The use of these maps in flood disaster management is essential in reducing flood-related risks. This paper discusses the importance and advantages of integrating flood maps in structural and non-structural mitigation measures in the case of Marikina City. Flood hazard maps are essential tools in predicting the frequency and magnitude of floods in an area. An information that may be determined with the use of these maps is the locations of evacuation areas, which may be accurately positioned using high-resolution 2D flood hazard maps. Evacuation of people in areas that are not vulnerable of being inundated is one of the unnecessary measures that may be prevented and thus optimizing mitigation efforts by local government units. This paper also discusses proposals for a more efficient exchange of information, allowing for flood simulations to be utilized in local flood disaster management programs. The success of these systems relies heavily on the knowledge of the people involved. As environmental changes create more significant impacts, the need to adapt to these is vital for man's safety. [1] Pacific Disaster Center
NASA Astrophysics Data System (ADS)
Tapales, B. J. M.; Mendoza, J.; Uichanco, C.; Lagmay, A. M. F. A.; Moises, M. A.; Delmendo, P.; Tingin, N. E.
2014-12-01
Flooding has been a perennial problem in the city of Marikina. These incidences result in human and economic losses. In response to this, the city has been investing in their flood disaster mitigation program in the past years. As a result, flooding in Marikina was reduced by 31% from 1992 to 2004. [1] However, these measures need to be improved so as to mitigate the effects of floods with more than 100 year return period, such as the flooding brought by tropical storm Ketsana in 2009 which generated 455mm of rains over a 24-hour period. Heavy rainfall caused the streets to be completely submerged in water, leaving at least 70 people dead in the area. In 2012, the Southwest monsoon, enhanced by a typhoon, brought massive rains with an accumulated rainfall of 472mm for 22-hours, a number greater than that which was experienced during Ketsana. At this time, the local government units were much more prepared in mitigating the risk with the use of early warning and evacuation measures, resulting to zero casualty in the area. Their urban disaster management program, however, can be further improved through the integration of high-resolution 2D flood hazard maps in the city's flood disaster management. The use of these maps in flood disaster management is essential in reducing flood-related risks. This paper discusses the importance and advantages of integrating flood maps in structural and non-structural mitigation measures in the case of Marikina City. Flood hazard maps are essential tools in predicting the frequency and magnitude of floods in an area. An information that may be determined with the use of these maps is the locations of evacuation areas, which may be accurately positioned using high-resolution 2D flood hazard maps. Evacuation of areas that are not vulnerable of being inundated is one of the unnecessary measures that may be prevented and thus optimizing mitigation efforts by local government units. This paper also discusses proposals for a more efficient exchange of information, allowing for flood simulations to be utilized in local flood disaster management programs. The success of these systems relies heavily on the knowledge of the people involved. As environmental changes create more significant impacts, the need to adapt to these is vital for man's safety. [1] Pacific Disaster Center
NASA Astrophysics Data System (ADS)
Liu, Delin; Li, Yue
2016-05-01
Evaluating social vulnerability is a crucial issue in risk and disaster management. In this study, a household social vulnerability index (HSVI) to flood hazards was developed and used to assess the social vulnerability of rural households in western mountainous regions of Henan province, China. Eight key indicators were identified using existing literature and discussions with experts from multiple disciplines and local farmers, and their weights were determined using principle component analysis (PCA) and an expert scoring method. The results showed that (1) the ratio of perennial work in other places, hazard-related training and illiteracy ratio (15+) were the most dominant factors of social vulnerability. (2) The numbers of high, moderate and low vulnerability households were 14, 64 and 16, respectively, which accounted for 14.9, 68.1 and 17.0 % of the total interviewed rural households, respectively. (3) The correlation coefficient between household social vulnerability scores and casualties in a storm flood in July 2010 was significant at 0.05 significance level (r = 0.748), which indicated that the selected indicators and their weights were valid. (4) Some mitigation strategies to reduce household social vulnerability to flood hazards were proposed, which included (1) improving the local residents' income and their disaster-related knowledge and evacuation skills, (2) developing emergency plans and carrying out emergency drills and training, (3) enhancing the accuracy of disaster monitoring and warning systems and (4) establishing a specific emergency management department and comprehensive rescue systems. These results can provide useful information for rural households and local governments to prepare, mitigate and respond to flood hazards, and the corresponding strategies can help local households to reduce their social vulnerability and improve their ability to resist flood hazard.
Flood hazard assessment for french NPPs
NASA Astrophysics Data System (ADS)
Rebour, Vincent; Duluc, Claire-Marie; Guimier, Laurent
2015-04-01
This paper presents the approach for flood hazard assessment for NPP which is on-going in France in the framework of post-Fukushima activities. These activities were initially defined considering both European "stress tests" of NPPs pursuant to the request of the European Council, and the French safety audit of civilian nuclear facilities in the light of the Fukushima Daiichi accident. The main actors in that process are the utility (EDF is, up to date, the unique NPP's operator in France), the regulatory authority (ASN) and its technical support organization (IRSN). This paper was prepared by IRSN, considering official positions of the other main actors in the current review process, it was not officially endorsed by them. In France, flood hazard to be considered for design basis definition (for new NPPs and for existing NPPs in periodic safety reviews conducted every 10 years) was revised before Fukushima-Daichi accident, due to le Blayais NPP December 1999 experience (partial site flooding and loss of some safety classified systems). The paper presents in the first part an overview of the revised guidance for design basis flood. In order to address design extension conditions (conditions that could result from natural events exceeding the design basis events), a set of flooding scenarios have been defined by adding margins on the scenarios that are considered for the design. Due to the diversity of phenomena to be considered for flooding hazard, the margin assessment is specific to each flooding scenario in terms of parameter to be penalized and of degree of variation of this parameter. The general approach to address design extension conditions is presented in the second part of the paper. The next parts present the approach for five flooding scenarios including design basis scenario and additional margin to define design extension scenarios.
NASA Astrophysics Data System (ADS)
Nicolae Lerma, Alexandre; Bulteau, Thomas; Elineau, Sylvain; Paris, François; Durand, Paul; Anselme, Brice; Pedreros, Rodrigo
2018-01-01
A modelling chain was implemented in order to propose a realistic appraisal of the risk in coastal areas affected by overflowing as well as overtopping processes. Simulations are performed through a nested downscaling strategy from regional to local scale at high spatial resolution with explicit buildings, urban structures such as sea front walls and hydraulic structures liable to affect the propagation of water in urban areas. Validation of the model performance is based on hard and soft available data analysis and conversion of qualitative to quantitative information to reconstruct the area affected by flooding and the succession of events during two recent storms. Two joint probability approaches (joint exceedance contour and environmental contour) are used to define 100-year offshore conditions scenarios and to investigate the flood response to each scenario in terms of (1) maximum spatial extent of flooded areas, (2) volumes of water propagation inland and (3) water level in flooded areas. Scenarios of sea level rise are also considered in order to evaluate the potential hazard evolution. Our simulations show that for a maximising 100-year hazard scenario, for the municipality as a whole, 38 % of the affected zones are prone to overflow flooding and 62 % to flooding by propagation of overtopping water volume along the seafront. Results also reveal that for the two kinds of statistic scenarios a difference of about 5 % in the forcing conditions (water level, wave height and period) can produce significant differences in terms of flooding like +13.5 % of water volumes propagating inland or +11.3 % of affected surfaces. In some areas, flood response appears to be very sensitive to the chosen scenario with differences of 0.3 to 0.5 m in water level. The developed approach enables one to frame the 100-year hazard and to characterize spatially the robustness or the uncertainty over the results. Considering a 100-year scenario with mean sea level rise (0.6 m), hazard characteristics are dramatically changed with an evolution of the overtopping / overflowing process ratio and an increase of a factor 4.84 in volumes of water propagating inland and 3.47 in flooded surfaces.
Artigas, Francisco; Bosits, Stephanie; Kojak, Saleh; Elefante, Dominador; Pechmann, Ildiko
2016-10-01
The accurate forecast from Hurricane Sandy sea surge was the result of integrating the most sophisticated environmental monitoring technology available. This stands in contrast to the limited information and technology that exists at the community level to translate these forecasts into flood hazard levels on the ground at scales that are meaningful to property owners. Appropriately scaled maps with high levels of certainty can be effectively used to convey exposure to flood hazard at the community level. This paper explores the most basic analysis and data required to generate a relatively accurate flood hazard map to convey inundation risk due to sea surge. A Boolean overlay analysis of four input layers: elevation and slope derived from LiDAR data and distances from streams and catch basins derived from aerial photography and field reconnaissance were used to create a spatial model that explained 55 % of the extent and depth of the flood during Hurricane Sandy. When a ponding layer was added to the previous model to account for depressions that would fill and spill over to nearby areas, the new model explained almost 70 % of the extent and depth of the flood. The study concludes that fairly accurate maps can be created with readily available information and that it is possible to infer a great deal about risk of inundation at the property level, from flood hazard maps. The study goes on to conclude that local communities are encouraged to prepare for disasters, but in reality because of the existing Federal emergency management framework there is very little incentive to do so.
NASA Astrophysics Data System (ADS)
Artigas, Francisco; Bosits, Stephanie; Kojak, Saleh; Elefante, Dominador; Pechmann, Ildiko
2016-10-01
The accurate forecast from Hurricane Sandy sea surge was the result of integrating the most sophisticated environmental monitoring technology available. This stands in contrast to the limited information and technology that exists at the community level to translate these forecasts into flood hazard levels on the ground at scales that are meaningful to property owners. Appropriately scaled maps with high levels of certainty can be effectively used to convey exposure to flood hazard at the community level. This paper explores the most basic analysis and data required to generate a relatively accurate flood hazard map to convey inundation risk due to sea surge. A Boolean overlay analysis of four input layers: elevation and slope derived from LiDAR data and distances from streams and catch basins derived from aerial photography and field reconnaissance were used to create a spatial model that explained 55 % of the extent and depth of the flood during Hurricane Sandy. When a ponding layer was added to the previous model to account for depressions that would fill and spill over to nearby areas, the new model explained almost 70 % of the extent and depth of the flood. The study concludes that fairly accurate maps can be created with readily available information and that it is possible to infer a great deal about risk of inundation at the property level, from flood hazard maps. The study goes on to conclude that local communities are encouraged to prepare for disasters, but in reality because of the existing Federal emergency management framework there is very little incentive to do so.
Hot wet spots of Swiss buildings - detecting clusters of flood exposure
NASA Astrophysics Data System (ADS)
Röthlisberger, Veronika; Zischg, Andreas; Keiler, Margreth
2016-04-01
Where are the hotspots of flood exposure in Switzerland? There is no single answer but rather a wide range of findings depending on the databases and methods used. In principle, the analysis of flood exposure is the overlay of two spatial datasets, one on flood hazard and one on assets, e.g. buildings. The presented study aims to test a new developed approach which is based on public available Swiss data. On the hazard side, these are two different types of flood hazard maps each representing a similar return period beyond the dimensioning of structural protection systems. When it comes to assets we use nationwide harmonized data on building, namely a complete dataset of building polygons to which we assign features as volume, residents and monetary value. For the latter we apply findings of multivariate analyses of insurance data. By overlaying building polygons with the flood hazard map we identify the exposed buildings. We analyse the resulting spatial distribution of flood exposure at different levels of scales (local to regional) using administrative units (e.g. municipalities) but also artificial grids with a corresponding size (e.g. 5 000 m). The presentation focuses on the identification of hotspots highlighting the influence of the applied data and methods, e.g. local scan statistics testing intensities within and without potential clusters or log relative exposure surfaces based on kernel intensity estimates. We find a major difference of identified hotspots between absolute values and normalized values of exposure. Whereas the hotspots of flood exposure in absolute figures mirrors the underlying distribution of buildings, the hotspots of flood exposure ratios show very different pictures. We conclude that findings on flood exposure vary depending on the data and moreover the methods used and therefore need to be communicated carefully and appropriate to different stakeholders who may use the information for decision making on flood risk management.
Hu, Maochuan; Sayama, Takahiro; Zhang, Xingqi; Tanaka, Kenji; Takara, Kaoru; Yang, Hong
2017-05-15
Low impact development (LID) has attracted growing attention as an important approach for urban flood mitigation. Most studies evaluating LID performance for mitigating floods focus on the changes of peak flow and runoff volume. This paper assessed the performance of LID practices for mitigating flood inundation hazards as retrofitting technologies in an urbanized watershed in Nanjing, China. The findings indicate that LID practices are effective for flood inundation mitigation at the watershed scale, and especially for reducing inundated areas with a high flood hazard risk. Various scenarios of LID implementation levels can reduce total inundated areas by 2%-17% and areas with a high flood hazard level by 6%-80%. Permeable pavement shows better performance than rainwater harvesting against mitigating urban waterlogging. The most efficient scenario is combined rainwater harvesting on rooftops with a cistern capacity of 78.5 mm and permeable pavement installed on 75% of non-busy roads and other impervious surfaces. Inundation modeling is an effective approach to obtaining the information necessary to guide decision-making for designing LID practices at watershed scales. Copyright © 2017 Elsevier Ltd. All rights reserved.
44 CFR 78.13 - Grant administration.
Code of Federal Regulations, 2010 CFR
2010-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION... deposit the amounts in the National Flood Mitigation Fund if the applicant has not provided the...
44 CFR 78.13 - Grant administration.
Code of Federal Regulations, 2014 CFR
2014-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION... deposit the amounts in the National Flood Mitigation Fund if the applicant has not provided the...
44 CFR 78.13 - Grant administration.
Code of Federal Regulations, 2013 CFR
2013-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION... deposit the amounts in the National Flood Mitigation Fund if the applicant has not provided the...
44 CFR 78.13 - Grant administration.
Code of Federal Regulations, 2012 CFR
2012-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION... deposit the amounts in the National Flood Mitigation Fund if the applicant has not provided the...
44 CFR 78.13 - Grant administration.
Code of Federal Regulations, 2011 CFR
2011-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION... deposit the amounts in the National Flood Mitigation Fund if the applicant has not provided the...
1998-03-01
benefit estimation techniques used to monetize the value of flood hazard reduction in the City of Roanoke. Each method was then used to estimate...behavior. This framework justifies interpreting people’s choices to infer and then monetize their preferences. If individuals have well-ordered and...Journal of Agricultural Economics. 68 (1986) 2: 280-290. Soule, Don M. and Claude M. Vaughn, "Flood Protection Benefits as Reflected in Property
NASA Astrophysics Data System (ADS)
Mohanty, M. P.; Karmakar, S.; Ghosh, S.
2017-12-01
Many countries across the Globe are victims of floods. To monitor them, various sophisticated algorithms and flood models are used by the scientific community. However, there still lies a gap to efficiently mapping flood risk. The limitations being: (i) scarcity of extensive data inputs required for precise flood modeling, (ii) fizzling performance of models in large and complex terrains (iii) high computational cost and time, and (iv) inexpertise in handling model simulations by civic bodies. These factors trigger the necessity of incorporating uncomplicated and inexpensive, yet precise approaches to identify areas at different levels of flood risk. The present study addresses this issue by utilizing various easily available, low cost data in a GIS environment for a large flood prone and data poor region. A set of geomorphic indicators of Digital Elevation Model (DEM) are analysed through linear binary classification, and are used to identify the flood hazard. The performance of these indicators is then investigated using receiver operating characteristics (ROC) curve, whereas the calibration and validation of the derived flood maps are accomplished through a comparison with dynamically coupled 1-D 2-D flood model outputs. A high degree of similarity on flood inundation proves the reliability of the proposed approach in identifying flood hazard. On the other hand, an extensive list of socio-economic indicators is selected to represent the flood vulnerability at a very finer forward sortation level using multivariate Data Envelopment Analysis (DEA). A set of bivariate flood risk maps is derived combining the flood hazard and socio-economic vulnerability maps. Given the acute problem of floods in developing countries, the proposed methodology which may be characterized by low computational cost, lesser data requirement and limited flood modeling complexity may facilitate local authorities and planners for deriving effective flood management strategies.
Building a flood hazard map due to magma effusion into the caldera lake of the Baekdusan Volcano
NASA Astrophysics Data System (ADS)
Lee, K.; Kim, S.; Yun, S.; Yu, S.; Kim, I.
2013-12-01
Many volcanic craters and calderas are filled with large amounts of water that can pose significant flood hazards to downstream communities due to their high elevation and the potential for catastrophic releases of water. Recent reports pointed out the Baekdusan volcano that is located between the border of China and North Korea as a potential active volcano. Since Millennium Eruption around 1000 AD, smaller eruptions have occurred at roughly 100-year intervals, with the last one in 1903. The volcano is showing signs of waking from a century-long slumber recently and the volcanic ash may spread up to the northeastern of Japan. The development of various forecasting techniques to prevent and minimize economic and social damage is in urgent need. Floods from lake-filled calderas may be particularly large and high. Volcanic flood may cause significant hydrologic hazards for this reason. This study focuses on constructing a flood hazard map triggered by the uplift of lake bottom due to magma effusion in the Baekdusan volcano. A physically-based uplift model was developed to compute the amount of water and time to peak flow. The ordinary differential equation was numerically solved using the finite difference method and Newton-Raphson iteration method was used to solve nonlinear equation. The magma effusion rate into the caldera lake is followed by the past record from other volcanic activities. As a result, the hydrograph serves as an upper boundary condition when hydrodynamic model (Flo-2D) runs to simulate channel routing downstream. The final goal of the study stresses the potential flood hazard represented by the huge volume of water in the caldera lake, the unique geography, and the limited control capability. he study will contribute to build a geohazard map for the decision-makers and practitioners. Keywords: Effusion rate, Volcanic flood, Caldera lake, Uplift, Flood hazard map Acknowledgement This research was supported by a grant [NEMA-BAEKDUSAN-2012-1-2] from the Volcanic Disaster Preparedness Research Center sponsored by National Emergency Management Agency of Korea. Inundation map triggered by magma effusion simulated by Flo-2D
44 CFR 78.3 - Responsibilities.
Code of Federal Regulations, 2010 CFR
2010-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION... each State through the annual Cooperative Agreements; (2) Approve Flood Mitigation Plans in accordance... Planning and Projects Grants; (2) Prepare and submit the Flood Mitigation Plan; (3) Implement all approved...
44 CFR 78.3 - Responsibilities.
Code of Federal Regulations, 2014 CFR
2014-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION... each State through the annual Cooperative Agreements; (2) Approve Flood Mitigation Plans in accordance... Planning and Projects Grants; (2) Prepare and submit the Flood Mitigation Plan; (3) Implement all approved...
44 CFR 78.3 - Responsibilities.
Code of Federal Regulations, 2011 CFR
2011-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION... each State through the annual Cooperative Agreements; (2) Approve Flood Mitigation Plans in accordance... Planning and Projects Grants; (2) Prepare and submit the Flood Mitigation Plan; (3) Implement all approved...
44 CFR 78.3 - Responsibilities.
Code of Federal Regulations, 2013 CFR
2013-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION... each State through the annual Cooperative Agreements; (2) Approve Flood Mitigation Plans in accordance... Planning and Projects Grants; (2) Prepare and submit the Flood Mitigation Plan; (3) Implement all approved...
Vehicles instability criteria for flood risk assessment of a street network
NASA Astrophysics Data System (ADS)
Arrighi, Chiara; Huybrechts, Nicolas; Ouahsine, Abdellatif; Chassé, Patrick; Oumeraci, Hocine; Castelli, Fabio
2016-05-01
The mutual interaction between floods and human activity is a process, which has been evolving over history and has shaped flood risk pathways. In developed countries, many events have illustrated that the majority of the fatalities during a flood occurs in a vehicle, which is considered as a safe shelter but it may turn into a trap for several combinations of water depth and velocity. Thus, driving a car in floodwaters is recognized as the most crucial aggravating factor for people safety. On the other hand, the entrainment of vehicles may locally cause obstructions to the flow and induce the collapse of infrastructures. Flood risk to vehicles can be defined as the combination of the probability of a vehicle of being swept away (i.e. the hazard) and the actual traffic/parking density, i.e. the vulnerability. Hazard for vehicles can be assessed through the spatial identification and mapping of the critical conditions for vehicles incipient motion. This analysis requires a flood map with information on water depth and velocity and consistent instability criteria accounting for flood and vehicles characteristics. Vulnerability is evaluated thanks to the road network and traffic data. Therefore, vehicles flood risk mapping can support people's education and management practices in order to reduce the casualties. In this work, a flood hazard classification for vehicles is introduced and an application to a real case study is presented and discussed.
NASA Astrophysics Data System (ADS)
Lanni, Cristiano; Mazzorana, Bruno; Volcan, Claudio; Bertagnolli, Rudi
2015-04-01
Flood hazard is generally assessed by assuming the return period of the rainfall as a proxy for the return period of the discharge and the related hydrograph. Frequently this deterministic view is extended also to the straightforward application of hydrodynamic models. However, the climate (i.e. precipitation), the catchment (i.e. geology, soil and antecedent soil-moisture condition) and the anthropogenic (i.e. drainage system and its regulation) systems interact in a complex way, and the occurrence probability of a flood inundation event can significantly differ from the occurrence probability of the triggering event (i.e. rainfall). In order to reliably determine the spatial patterns of flood intensities and probabilities, the rigorous determination of flood event scenarios is beneficial because it provides a clear, rationale method to recognize and unveil the inherent stochastic behavior of natural processes. Therefore, a multi-scenario approach for hazard assessment should be applied and should consider the possible events taking place in the area potentially subject to flooding (i.e. floodplains). Here, we apply a multi-scenario approach for the assessment of the flood hazard around the Idro lake (Italy). We consider and estimate the probability of occurrence of several scenarios related to the initial (i.e. initial water level in the lake) and boundary (i.e. shape of the hydrograph, downslope drainage, spillway opening operations) conditions characterizing the lake. Finally, we discuss the advantages and issues of the presented methodological procedure compared to traditional (and essentially deterministic) approaches.
Ejeta, Luche Tadesse
2018-02-21
Emergency preparedness at all levels (individuals and communities) is the corner stone of effective response to the increasing trends of global disasters due to man-made and natural hazards. It is determined by different factors, including (among others) past direct and indirect exposures to hazards. This study was carried out in Dire Dawa town, Ethiopia, which in the past experienced frequent flooding events, yet dearth of information exists about preparedness in the area. The aim of the study was to assess the levels of emergency preparedness for flood hazards at households and communities levels. The study was conducted in a qualitative approach and was conducted in Dire Dawa town, which has been divided into nine administrative-units called Kebeles. Two focus group discussions were held in two of these units (Kebele-05 and 06), each focus group comprising twelve people (all above 18 years of age), and in total 24 people (13 females and 11 males) took part in the study. Open ended questions were used that could guide the discussions, and the discussions were audio-taped and transcribed. The results were translated from local language to English and qualitatively presented. The findings of focus group discussions showed that the local government in collaboration with the federal government built the flood protection dams in areas where flood hazards have been thought to be repeatedly wreaking havoc, specifically after the flood disaster of the year 2006. In addition, in Kebele-05, where one Non-Governmental Organization (NGO) was operating on flood hazards prevention and mitigation program, some non-structural emergency preparedness measures were undertaken by the communities. These non-structural measures (the major ones) entailed: establishment of committees recruited from residents and training them to raise awareness among communities on emergency preparedness; some residents made changes to their own houses (retrofitted) and put sandbags around their houses to temporarily protect the flooding; establishment of communication channels between communities to alarm each other in the event of flood disaster; and reforestation of the already deforested mountainous areas surrounding the town. However, concerns were raised by study participants about strengths of the constructed flood protection dams. Furthermore, the non-structural emergency preparedness measures identified by this study were not comprehensive; for example, residents were not trained in first aid, first aid kits were not provided, there was no linkage being established between communities and health facilities so as to provide emergency medical care to victims in the event of flood disaster. The findings of this study concur with some of the previous quantitative studies' results in that the past direct and indirect disaster experiences invoke preparedness intention and actual preparedness for flood hazards at individuals, communities and organizations levels. The only one quantitative and behavioral based study conducted thus far in Dire Dawa town reported the strong association of past flood disaster experience with household emergency preparedness. Among the residents there was a tendency to rely on the dams to be constructed with "good quality" and "higher strength" than making preparedness efforts on their own at their households. Structural measures such as building of dams, dikes, levees, and channel improvements could be means of mitigation measures; however, solely relying on these measures could have far reaching consequences. To mitigate flood hazards, dams were built and in addition, in Kebele-05 where an NGO was operating, some non-structural emergency preparedness measures were undertaken. In the course of construction of flood protection dams, ensuring communities ' involvement is needed ; and at the same time undertaking comprehensive non-structural emergency preparedness measures in all Kebeles is highly recommended. Emergency, Preparedness, Flood, Dire Dawa, Ethiopia.
44 CFR 79.5 - Application process.
Code of Federal Regulations, 2013 CFR
2013-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS.... (3) Participation in these flood mitigation grant programs is voluntary, and States may elect not to...
44 CFR 79.5 - Application process.
Code of Federal Regulations, 2012 CFR
2012-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS.... (3) Participation in these flood mitigation grant programs is voluntary, and States may elect not to...
44 CFR 67.8 - Appeal procedure.
Code of Federal Regulations, 2014 CFR
2014-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program APPEALS FROM PROPOSED FLOOD ELEVATION DETERMINATIONS § 67.8 Appeal procedure. (a) If a community appeals the proposed flood...
44 CFR 79.5 - Application process.
Code of Federal Regulations, 2014 CFR
2014-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS.... (3) Participation in these flood mitigation grant programs is voluntary, and States may elect not to...
44 CFR 79.5 - Application process.
Code of Federal Regulations, 2010 CFR
2010-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS.... (3) Participation in these flood mitigation grant programs is voluntary, and States may elect not to...
44 CFR 67.8 - Appeal procedure.
Code of Federal Regulations, 2012 CFR
2012-10-01
... SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program APPEALS FROM PROPOSED FLOOD ELEVATION DETERMINATIONS § 67.8 Appeal procedure. (a) If a community appeals the proposed flood elevation...
44 CFR 79.5 - Application process.
Code of Federal Regulations, 2011 CFR
2011-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS.... (3) Participation in these flood mitigation grant programs is voluntary, and States may elect not to...
Development of Probabilistic Flood Inundation Mapping For Flooding Induced by Dam Failure
NASA Astrophysics Data System (ADS)
Tsai, C.; Yeh, J. J. J.
2017-12-01
A primary function of flood inundation mapping is to forecast flood hazards and assess potential losses. However, uncertainties limit the reliability of inundation hazard assessments. Major sources of uncertainty should be taken into consideration by an optimal flood management strategy. This study focuses on the 20km reach downstream of the Shihmen Reservoir in Taiwan. A dam failure induced flood herein provides the upstream boundary conditions of flood routing. The two major sources of uncertainty that are considered in the hydraulic model and the flood inundation mapping herein are uncertainties in the dam break model and uncertainty of the roughness coefficient. The perturbance moment method is applied to a dam break model and the hydro system model to develop probabilistic flood inundation mapping. Various numbers of uncertain variables can be considered in these models and the variability of outputs can be quantified. The probabilistic flood inundation mapping for dam break induced floods can be developed with consideration of the variability of output using a commonly used HEC-RAS model. Different probabilistic flood inundation mappings are discussed and compared. Probabilistic flood inundation mappings are hoped to provide new physical insights in support of the evaluation of concerning reservoir flooded areas.
NASA Astrophysics Data System (ADS)
Haeberli, Wilfried; Schaub, Yvonne; Huggel, Christian
2017-09-01
While glacier volumes in most cold mountain ranges rapidly decrease due to continued global warming, degradation of permafrost at altitudes above and below glaciers is much slower. As a consequence, many still existing glacier and permafrost landscapes probably transform within decades into new landscapes of bare bedrock, loose debris, sparse vegetation, numerous new lakes and steep slopes with slowly degrading permafrost. These new landscapes are likely to persist for centuries if not millennia to come. During variable but mostly extended future time periods, such new landscapes will be characterized by pronounced disequilibria within their geo- and ecosystems. This especially involves long-term stability reduction of steep/icy mountain slopes as a slow and delayed reaction to stress redistribution following de-buttressing by vanishing glaciers and to changes in mechanical strength and hydraulic permeability caused by permafrost degradation. Thereby, the probability of far-reaching flood waves from large mass movements into lakes systematically increases with the formation of many new lakes and systems of lakes in close neighborhood to, or even directly at the foot of, so-affected slopes. Results of recent studies in the Swiss Alps are reviewed and complemented with examples from the Cordillera Blanca in Peru and the Mount Everest region in Nepal. Hot spots of future hazards from potential flood waves caused by large rock falls into new lakes can already now be recognized. To this end, integrated spatial information on glacier/permafrost evolution and lake formation can be used together with scenario-based models for rapid mass movements, impact waves and flood propagation. The resulting information must then be combined with exposure and vulnerability considerations related to settlements and infrastructure. This enables timely planning of risk reduction options. Such risk reduction options consist of two components: Mitigation of hazards, which in the present context are due to effects from climate change, and reduction in consequences, which result from societal conditions and changes. Hazard mitigation may include artificial lake drainage or lake-level lowering and flood retention, optimally in connection with multipurpose structures for hydropower production and/or irrigation. Reduction in damage potential (exposure, vulnerability) can be accomplished by installing early-warning systems, adapting spatial planning and/or by improving preparedness of local people and institutions.
24 CFR 200.926d - Construction requirements.
Code of Federal Regulations, 2012 CFR
2012-04-01
... hazard exposure—(i) Residential structures with basements located in FEMA-designated areas of special flood hazard. The elevation of the lowest floor in structures with basements shall be at or above the... residential structures under regulations for the National Flood Insurance Program (NFIP) (see 44 CFR 60.3...
24 CFR 200.926d - Construction requirements.
Code of Federal Regulations, 2014 CFR
2014-04-01
... hazard exposure—(i) Residential structures with basements located in FEMA-designated areas of special flood hazard. The elevation of the lowest floor in structures with basements shall be at or above the... residential structures under regulations for the National Flood Insurance Program (NFIP) (see 44 CFR 60.3...
24 CFR 200.926d - Construction requirements.
Code of Federal Regulations, 2011 CFR
2011-04-01
... hazard exposure—(i) Residential structures with basements located in FEMA-designated areas of special flood hazard. The elevation of the lowest floor in structures with basements shall be at or above the... residential structures under regulations for the National Flood Insurance Program (NFIP) (see 44 CFR 60.3...
24 CFR 200.926d - Construction requirements.
Code of Federal Regulations, 2013 CFR
2013-04-01
... hazard exposure—(i) Residential structures with basements located in FEMA-designated areas of special flood hazard. The elevation of the lowest floor in structures with basements shall be at or above the... residential structures under regulations for the National Flood Insurance Program (NFIP) (see 44 CFR 60.3...
44 CFR 206.252 - Insurance requirements for facilities damaged by flood.
Code of Federal Regulations, 2010 CFR
2010-10-01
... facilities damaged by flood. 206.252 Section 206.252 Emergency Management and Assistance FEDERAL EMERGENCY... Assistance Insurance Requirements § 206.252 Insurance requirements for facilities damaged by flood. (a) Where an insurable building damaged by flooding is located in a special flood hazard area identified for...
44 CFR 73.4 - Restoration of flood insurance coverage.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Restoration of flood... AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IMPLEMENTATION OF SECTION 1316 OF THE NATIONAL FLOOD INSURANCE ACT OF 1968 § 73.4 Restoration of flood insurance...
44 CFR 9.7 - Determination of proposed action's location.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Regional Administrator shall consult the FEMA Flood Insurance Rate Map (FIRM) the Flood Boundary Floodway Map (FBFM) and the Flood Insurance Study (FIS). (ii) If a detailed map (FIRM or FBFM) is not available, the Regional Administrator shall consult an FEMA Flood Hazard Boundary Map (FHBM) . If data on flood...
44 CFR 61.5 - Special terms and conditions.
Code of Federal Regulations, 2014 CFR
2014-10-01
... OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program INSURANCE COVERAGE AND RATES § 61.5 Special terms and conditions. (a) No new flood insurance or renewal of flood... other authority to be in violation of any flood plain, mudslide (i.e., mudflow) or flood-related erosion...
44 CFR 61.17 - Group Flood Insurance Policy.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program INSURANCE COVERAGE AND RATES § 61.17 Group Flood Insurance Policy. (a) A Group Flood Insurance Policy (GFIP) is a... 44 Emergency Management and Assistance 1 2013-10-01 2013-10-01 false Group Flood Insurance Policy...
44 CFR 61.17 - Group Flood Insurance Policy.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program INSURANCE COVERAGE AND RATES § 61.17 Group Flood Insurance Policy. (a) A Group Flood Insurance Policy (GFIP) is a... 44 Emergency Management and Assistance 1 2012-10-01 2011-10-01 true Group Flood Insurance Policy...
44 CFR 73.3 - Denial of flood insurance coverage.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IMPLEMENTATION OF SECTION 1316 OF THE NATIONAL FLOOD INSURANCE ACT OF 1968 § 73.3 Denial of flood insurance... 44 Emergency Management and Assistance 1 2012-10-01 2011-10-01 true Denial of flood insurance...
44 CFR 61.17 - Group Flood Insurance Policy.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program INSURANCE COVERAGE AND RATES § 61.17 Group Flood Insurance Policy. (a) A Group Flood Insurance Policy (GFIP) is a... 44 Emergency Management and Assistance 1 2011-10-01 2011-10-01 false Group Flood Insurance Policy...
44 CFR 61.17 - Group Flood Insurance Policy.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program INSURANCE COVERAGE AND RATES § 61.17 Group Flood Insurance Policy. (a) A Group Flood Insurance Policy (GFIP) is a... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Group Flood Insurance Policy...
44 CFR 61.17 - Group Flood Insurance Policy.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program INSURANCE COVERAGE AND RATES § 61.17 Group Flood Insurance Policy. (a) A Group Flood Insurance Policy (GFIP) is a... 44 Emergency Management and Assistance 1 2014-10-01 2014-10-01 false Group Flood Insurance Policy...
44 CFR 73.4 - Restoration of flood insurance coverage.
Code of Federal Regulations, 2014 CFR
2014-10-01
... AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IMPLEMENTATION OF SECTION 1316 OF THE NATIONAL FLOOD INSURANCE ACT OF 1968 § 73.4 Restoration of flood insurance... 44 Emergency Management and Assistance 1 2014-10-01 2014-10-01 false Restoration of flood...
44 CFR 61.5 - Special terms and conditions.
Code of Federal Regulations, 2012 CFR
2012-10-01
... OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program INSURANCE COVERAGE AND RATES § 61.5 Special terms and conditions. (a) No new flood insurance or renewal of flood... other authority to be in violation of any flood plain, mudslide (i.e., mudflow) or flood-related erosion...
44 CFR 73.3 - Denial of flood insurance coverage.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IMPLEMENTATION OF SECTION 1316 OF THE NATIONAL FLOOD INSURANCE ACT OF 1968 § 73.3 Denial of flood insurance... 44 Emergency Management and Assistance 1 2014-10-01 2014-10-01 false Denial of flood insurance...
44 CFR 61.5 - Special terms and conditions.
Code of Federal Regulations, 2013 CFR
2013-10-01
... OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program INSURANCE COVERAGE AND RATES § 61.5 Special terms and conditions. (a) No new flood insurance or renewal of flood... other authority to be in violation of any flood plain, mudslide (i.e., mudflow) or flood-related erosion...
44 CFR 73.4 - Restoration of flood insurance coverage.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IMPLEMENTATION OF SECTION 1316 OF THE NATIONAL FLOOD INSURANCE ACT OF 1968 § 73.4 Restoration of flood insurance... 44 Emergency Management and Assistance 1 2012-10-01 2011-10-01 true Restoration of flood insurance...
NASA Astrophysics Data System (ADS)
Rollason, Edward; Bracken, Louise; Hardy, Richard; Large, Andy
2017-04-01
Flooding is a major hazard across Europe which, since, 1998 has caused over €52 million in damages and displaced over half a million people. Climate change is predicted to increase the risks posed by flooding in the future. The 2007 EU Flood Directive cemented the use of flood risk maps as a central tool in understanding and communicating flood risk. Following recent flooding in England, an urgent need to integrate people living at risk from flooding into flood management approaches, encouraging flood resilience and the up-take of resilient activities has been acknowledged. The effective communication of flood risk information plays a major role in allowing those at risk to make effective decisions about flood risk and increase their resilience, however, there are emerging concerns over the effectiveness of current approaches. The research presented explores current approaches to flood risk communication in England and the effectiveness of these methods in encouraging resilient actions before and during flooding events. The research also investigates how flood risk communications could be undertaken more effectively, using a novel participatory framework to integrate the perspectives of those living at risk. The research uses co-production between local communities and researchers in the environmental sciences, using a participatory framework to bring together local knowledge of flood risk and flood communications. Using a local competency group, the research explores what those living at risk from flooding want from flood communications in order to develop new approaches to help those at risk understand and respond to floods. Suggestions for practice are refined by the communities to co-produce recommendations. The research finds that current approaches to real-time flood risk communication fail to forecast the significance of predicted floods, whilst flood maps lack detailed information about how floods occur, or use scientific terminology which people at risk find confusing or lacking in realistic grounding. This means users do not have information they find useful to make informed decisions about how to prepare for and respond to floods. Working together with at-risk participants, the research has developed new approaches for communicating flood risk. These approaches focus on understanding flood mechanisms and dynamics, to help participants imagine their flood risk and link potential scenarios to reality, and provide forecasts of predicted flooding at a variety of scales, allowing participants to assess the significance of predicted flooding and make more informed judgments on what action to take in response. The findings presented have significant implications for the way in which flood risk is communicated, changing the focus of mapping from probabilistic future scenarios to understanding flood dynamics and mechanisms. Such ways of communicating flood risk embrace how people would like to see risk communicated, and help those at risk grow their resilience. Communicating in such a way has wider implications for flood modelling and data collection. However, these represent potential opportunities to build more effective local partnerships for assessing and managing flood risks.
A spatiotemporal multi-hazard exposure assessment based on property data
NASA Astrophysics Data System (ADS)
Fuchs, Sven; Keiler, Margreth; Zischg, Andreas
2016-04-01
The paper presents a nation-wide spatially explicit object-based assessment of buildings and citizens exposed to natural hazards in Austria, including river flooding, torrential flooding, and snow avalanches. The assessment was based on two different datasets, (a) hazard information providing input to the exposure of elements at risk, and (b) information on the building stock combined from different spatial data available on the national level. Hazard information was compiled from two different sources. For torrential flooding and snow avalanches available local-scale hazard maps were used, and for river flooding the results of the countrywide flood modelling eHORA were available. Information on the building stock contained information on the location and size of each building, as well as on the building category and the construction period. Additional information related to the individual floors, such as their height and net area, main purpose and configuration, was included for each property. Moreover, this dataset has an interface to the population register and allowed therefore retrieving the number of primary residents for each building. With the exception of sacral buildings, an economic module was used to compute the monetary value of buildings using (a) the information of the building register such as building type, number of storeys and utilisation, and (b) regionally averaged construction costs. It is shown that the repeatedly-stated assumption of increasing exposure due to continued population growth and related increase in assets has to be carefully evaluated by the local development of building stock. While some regions have shown a clearly above-average increase in assets, other regions were characterised by a below-average development. This mirrors the topography of the country, but also the different economic activities. While hotels and hostels are extraordinary prone to torrential flooding, commercial buildings as well as buildings used for recreation purpose are considerably exposed to river flooding. Residential buildings have shown an average exposure, compared to the number of buildings of this type in the overall building stock. In sum, around 5 % of all buildings are exposed to torrential flooding, and around 9 % to river flooding, with around 1 % of the buildings stock being multi-exposed. The temporal assessment of exposure has shown considerable differences in the dynamics of exposure to different hazard categories in comparison to the overall property stock. In conclusion, the presented object-based assessment is an important and suitable tool for nation-wide exposure assessment and may be used in operational risk management. Reference: Fuchs, S.; Keiler, M. & A. Zischg (2015): A spatiotemporal multi-hazard exposure assessment based on property data. Natural Hazards and Earth System Sciences 15 (9). p. 2127-2142
Shi, Yuanyuan; Qiu, Juan; Li, Rendong; Shen, Qiang; Huang, Duan
2017-01-01
Schistosomiasis japonica is an infectious disease caused by Schistosoma japonicum, and it remains endemic in China. Flooding is the main hazard factor, as it causes the spread of Oncomelania hupensis, the only intermediate host of Schistosoma japonicum, thereby triggering schistosomiasis outbreaks. Based on multi-source real-time remote sensing data, we used remote sensing (RS) technology, especially synthetic aperture radar (SAR), and geographic information system (GIS) techniques to carry out warning research on potential snail habitats within the snail dispersal range following flooding. Our research result demonstrated: (1) SAR data from Sentinel-1A before and during a flood were used to identify submerged areas rapidly and effectively; (2) the likelihood of snail survival was positively correlated with the clay proportion, core area standard deviation, and ditch length but negatively correlated with the wetness index, NDVI (normalized difference vegetation index), elevation, woodland area, and construction land area; (3) the snail habitats were most abundant near rivers and ditches in paddy fields; (4) the rivers and paddy irrigation ditches in the submerged areas must be the focused of mitigation efforts following future floods. PMID:28867814
Shi, Yuanyuan; Qiu, Juan; Li, Rendong; Shen, Qiang; Huang, Duan
2017-08-30
Schistosomiasis japonica is an infectious disease caused by Schistosoma japonicum , and it remains endemic in China. Flooding is the main hazard factor, as it causes the spread of Oncomelania hupensis , the only intermediate host of Schistosoma japonicum , thereby triggering schistosomiasis outbreaks. Based on multi-source real-time remote sensing data, we used remote sensing (RS) technology, especially synthetic aperture radar (SAR), and geographic information system (GIS) techniques to carry out warning research on potential snail habitats within the snail dispersal range following flooding. Our research result demonstrated: (1) SAR data from Sentinel-1A before and during a flood were used to identify submerged areas rapidly and effectively; (2) the likelihood of snail survival was positively correlated with the clay proportion, core area standard deviation, and ditch length but negatively correlated with the wetness index, NDVI (normalized difference vegetation index), elevation, woodland area, and construction land area; (3) the snail habitats were most abundant near rivers and ditches in paddy fields; (4) the rivers and paddy irrigation ditches in the submerged areas must be the focused of mitigation efforts following future floods.
NASA Astrophysics Data System (ADS)
Thompson, Chris; Croke, Jacky
2016-04-01
The year 2010-2011 was the wettest on record for the state of Queensland, Australia producing catastrophic floods. A tropical low pressure system in 2013 delivered further extreme flood events across South East Queensland (SEQ) which prompted state and local governments to conduct studies into flood magnitude and frequency in the region and catchment factors contributing to flood hazards. The floods in the region are strongly influenced by El Nino-Southern Oscillation (ENSO) phenomenon, but also modulated by the Interdecadal Pacific Oscillation (IPO) which leads to flood and drought dominated regimes and high hydrological variability. One geomorphic feature in particular exerted a significant control on the transmission speed, the magnitude of flood inundation and resultant landscape resilience. This feature was referred to as a 'macrochannel', a term used to describe a 'large-channel' which has bankfull recurrence intervals generally greater than 10 years. The macrochannels display non-linear downstream hydraulic geometry which leads to zones of flood expansion (when hydraulic geometry decreases) and zones of flood contraction (when hydraulic geometry increases). The pattern of contraction and expansion zones determines flood hazard zones. The floods caused significant wet flow bank mass failures that mobilised over 1,000,000 m3 of sediment in one subcatchment. Results suggest that the wetflow bank mass failures are a stage in a cyclical evolution process which maintains the macrochannel morphology, hence channel resilience to floods. Chronological investigations further show the macrochannels are laterally stable and identify periods of heightened flood activity over the past millennium and upper limits on flood magnitude. This paper elaborates on the results of the geomorphic investigations on Lockyer Creek in SEQ and how the results have alerted managers and policy makers to the different flood responses of these systems and how flood risk management plans can be developed based on the identified hazard zones and geomorphic processes of macrochannel systems.
12 CFR 339.7 - Forced placement of flood insurance.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 12 Banks and Banking 4 2010-01-01 2010-01-01 false Forced placement of flood insurance. 339.7... GENERAL POLICY LOANS IN AREAS HAVING SPECIAL FLOOD HAZARDS § 339.7 Forced placement of flood insurance. If... not covered by flood insurance or is covered by flood insurance in an amount less than the amount...
12 CFR 572.7 - Forced placement of flood insurance.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 12 Banks and Banking 5 2010-01-01 2010-01-01 false Forced placement of flood insurance. 572.7... HAVING SPECIAL FLOOD HAZARDS § 572.7 Forced placement of flood insurance. If a savings association, or a... not covered by flood insurance or is covered by flood insurance in an amount less than the amount...
25 CFR 256.24 - Will I need flood insurance?
Code of Federal Regulations, 2010 CFR
2010-04-01
... 25 Indians 1 2010-04-01 2010-04-01 false Will I need flood insurance? 256.24 Section 256.24... Will I need flood insurance? You will need flood insurance if your dwelling is located in an area identified as having special flood hazards under the Flood Disaster Protection Act of 1973 (Pub. L. 93-234...
12 CFR 760.7 - Forced placement of flood insurance.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 12 Banks and Banking 6 2010-01-01 2010-01-01 false Forced placement of flood insurance. 760.7... LOANS IN AREAS HAVING SPECIAL FLOOD HAZARDS § 760.7 Forced placement of flood insurance. If a credit... not covered by flood insurance, or is covered by flood insurance in an amount less than the amount...
Code of Federal Regulations, 2010 CFR
2010-10-01
... from flooding.” (6) Data to substantiate the base flood elevation. If we complete a Flood Insurance Study (FIS), we will use those data to substantiate the base flood elevation. Otherwise, the community... technical data prepared and certified by a registered professional engineer. If base flood elevations have...
Code of Federal Regulations, 2013 CFR
2013-10-01
... INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.1 Purpose... of the Flood Mitigation Assistance (FMA) program, authorized by Sections 1366 and 1367 of the... eliminate claims under the National Flood Insurance Program (NFIP) through mitigation activities. The...
Code of Federal Regulations, 2014 CFR
2014-10-01
... INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.1 Purpose... of the Flood Mitigation Assistance (FMA) program, authorized by Sections 1366 and 1367 of the... eliminate claims under the National Flood Insurance Program (NFIP) through mitigation activities. The...
44 CFR 78.3 - Responsibilities.
Code of Federal Regulations, 2012 CFR
2012-10-01
... SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78... State through the annual Cooperative Agreements; (2) Approve Flood Mitigation Plans in accordance with... Planning and Projects Grants; (2) Prepare and submit the Flood Mitigation Plan; (3) Implement all approved...
Code of Federal Regulations, 2012 CFR
2012-10-01
... INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.1 Purpose... of the Flood Mitigation Assistance (FMA) program, authorized by Sections 1366 and 1367 of the... eliminate claims under the National Flood Insurance Program (NFIP) through mitigation activities. The...
Code of Federal Regulations, 2011 CFR
2011-10-01
... INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.1 Purpose... of the Flood Mitigation Assistance (FMA) program, authorized by Sections 1366 and 1367 of the... eliminate claims under the National Flood Insurance Program (NFIP) through mitigation activities. The...
Does antecedent precipitation play a role for floods in (small) Swiss catchments?
NASA Astrophysics Data System (ADS)
Froidevaux, Paul; Schwanbeck, Jan; Weingartner, Rolf; Chevalier, Clément; Romppainen-Martius, Olivia
2014-05-01
River flooding is one of the most devastating natural hazards worldwide. In Switzerland, like in many other regions, the building of flood protection infrastructures is complicated by difficulties in assessing flood risk due to: - The large year-to-year variability in flood losses. The variations amount to several orders of magnitude (see for ex. Hilker et al., 2009). - The non-stationarity of the flood risk at longer time scales. A pronounced decadal variability in flood risk has been observed by Schmocker-Fackel and Naef (2010) and Köplin et al. (2013) show that climate change will induce diverse and complex regional changes in flood risk. A better understanding of flood processes is therefore required in order to better predict changes in flood frequency. It has been hypothesized that flood frequency variations are linked to changes in the atmospheric circulation. Consequently, the whole mechanism chain starting from atmospheric circulation patterns triggering severe precipitation weather and ending with extreme river discharge must be considered. In a step in that direction we characterize precipitation events that triggered observed annual maximum discharges at 120 discharge stations during the last 53 years in Switzerland. The precipitation dataset is a temporally-homogeneous complex interpolation of daily rain gauge data on a 1 by 1 km grid covering the Swiss territory (MeteoSwiss, 2011). We test the relationship between different catchment-averaged precipitation indices and flood occurrence. We explicitly separate antecedent and event-associated precipitation. The preliminary results show that antecedent precipitation (weekly to monthly sums ending 3 days before the event) are no significant flood predictors for most of the catchments. On the other hand, a very strong signal is found for the 1-3 days precipitation sums. Lessons for flood modeling in Swiss catchments is that a strong effort is required in order to represent the flood-associated weather events correctly over a 1-3 day period -particularly the precipitation amounts- whereas antecedent precipitation is not a necessary precondition for flood building. In that sense, flood processes in Switzerland might contrast with extreme drought processes for which longer term precipitation statistics are expected to be important. Hilker, N., A. Badoux, and C. Hegg. 2009. The swiss flood and landslide damage database 1972-2007. Natural Hazards and Earth System Sciences 9, 913-925. Schmocker-Fackel, P., and F. Naef. 2010. More frequent flooding? changes in flood frequency in switzerland since 1850. Journal of hydrology 381, 1-8. 1,3 Köplin, N., Schädler, B., Viviroli, D. and Weingartner, R. 2013. Seasonality and magnitude of floods in Switzerland under future climate change. Hydrol. Process.. doi: 10.1002/hyp.9757 MeteoSwiss. 2011. Documentation of meteoswiss grid-data products. daily precipitation (final analysis): Rhiresd. available online at http://www.meteosuisse.admin.ch/web/de/services/datenportal/gitterdaten/precip.html.
NASA Astrophysics Data System (ADS)
Hagemeier-Klose, M.; Wagner, K.
2009-04-01
Flood risk communication with the general public and the population at risk is getting increasingly important for flood risk management, especially as a precautionary measure. This is also underlined by the EU Flood Directive. The flood related authorities therefore have to develop adjusted information tools which meet the demands of different user groups. This article presents the formative evaluation of flood hazard maps and web mapping services according to the specific requirements and needs of the general public using the dynamic-transactional approach as a theoretical framework. The evaluation was done by a mixture of different methods; an analysis of existing tools, a creative workshop with experts and laymen and an online survey. The currently existing flood hazard maps or web mapping services or web GIS still lack a good balance between simplicity and complexity with adequate readability and usability for the public. Well designed and associative maps (e.g. using blue colours for water depths) which can be compared with past local flood events and which can create empathy in viewers, can help to raise awareness, to heighten the activity and knowledge level or can lead to further information seeking. Concerning web mapping services, a linkage between general flood information like flood extents of different scenarios and corresponding water depths and real time information like gauge levels is an important demand by users. Gauge levels of these scenarios are easier to understand than the scientifically correct return periods or annualities. The recently developed Bavarian web mapping service tries to integrate these requirements.
Special Issue "Natural Hazards' Impact on Urban Areas and Infrastructure" in Natural Hazards
NASA Astrophysics Data System (ADS)
Bostenaru Dan, M.
2009-04-01
In 2006 and 2007, at the 3rd and 4th General Assembly of the European Geosciences Union respectivelly, the session on "Natural Hazards' Impact on Urban Areas and Infrastructure" was convened by Maria Bostenaru Dan, then at the Istituto Universitario di Studi Superiori di Pavia, ROSE School, Italy, who conducts research on earthquake management and Heidi Kreibich from the GFZ Potsdam, Germany, who conducts research on flood hazards, in 2007 being co-convened also by Agostino Goretti from the Civil Protection in Rome, Italy. The session initially started from an idea of Friedemann Wenzel from the Universität Karlsruhe (TH), Germany, the former speaker of the SFB 461 "Strong earthquakes", the university where also Maria Bostenaru graduated and worked and which runs together with the GFZ Potsdam the CEDIM, the Center for Disaster Management and Risk Reduction Technology. Selected papers from these two sessions as well as invited papers from other specialists were gathered for a special issue to be published in the journal "Natural Hazards" under the guest editorship of Heidi Kreibich and Maria Bostenaru Dan. Unlike the former special issue, this one contains a well balanced mixture of many hazards: climate change, floods, mountain hazards like avalanches, volcanoes, earthquakes. Aim of the issue was to enlarge the co-operation prospects between geosciences and other professions in field of natural hazards. Earthquake engineering and engineering seismology are seen more frequently co-operating, but in field of natural hazards there is a need to co-operate with urban planners, and, looking to the future, also in the field of integrated conservation, which implies co-operation between architecture and urban planning for the preservation of our environment. Integrated conservation is stipulated since the 1970s, which are the years when the participatism, and so the involvment of social sciences started.
78 FR 20338 - Final Flood Hazard Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-04
... Insurance Study (FIS) reports have been made final for the communities listed in the table below. The FIRM and FIS report are the basis of the floodplain management measures that a community is required either... showing the new or modified flood hazard information for each community. ADDRESSES: The FIRM, and if...
32 CFR 644.352 - Evaluation and reporting of flood hazards.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 32 National Defense 4 2012-07-01 2011-07-01 true Evaluation and reporting of flood hazards. 644.352 Section 644.352 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) REAL PROPERTY REAL ESTATE HANDBOOK Disposal Reports of Excess Real Property and Related Personal...
32 CFR 644.352 - Evaluation and reporting of flood hazards.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 32 National Defense 4 2013-07-01 2013-07-01 false Evaluation and reporting of flood hazards. 644.352 Section 644.352 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) REAL PROPERTY REAL ESTATE HANDBOOK Disposal Reports of Excess Real Property and Related Personal...
32 CFR 644.352 - Evaluation and reporting of flood hazards.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 4 2010-07-01 2010-07-01 true Evaluation and reporting of flood hazards. 644.352 Section 644.352 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) REAL PROPERTY REAL ESTATE HANDBOOK Disposal Reports of Excess Real Property and Related Personal...
32 CFR 644.352 - Evaluation and reporting of flood hazards.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 32 National Defense 4 2011-07-01 2011-07-01 false Evaluation and reporting of flood hazards. 644.352 Section 644.352 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) REAL PROPERTY REAL ESTATE HANDBOOK Disposal Reports of Excess Real Property and Related Personal...
32 CFR 644.352 - Evaluation and reporting of flood hazards.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 32 National Defense 4 2014-07-01 2013-07-01 true Evaluation and reporting of flood hazards. 644.352 Section 644.352 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) REAL PROPERTY REAL ESTATE HANDBOOK Disposal Reports of Excess Real Property and Related Personal...
78 FR 45944 - Proposed Flood Hazard Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-30
...; Internal Agency Docket No. FEMA-B-1247] Proposed Flood Hazard Determinations AGENCY: Federal Emergency... at www.msc.fema.gov for comparison. You may submit comments, identified by Docket No. FEMA-B-1247, to...-4064 or (email) [email protected] ; or visit the FEMA Map Information eXchange (FMIX) online...
Flood-hazard mapping in Honduras in response to Hurricane Mitch
Mastin, M.C.
2002-01-01
The devastation in Honduras due to flooding from Hurricane Mitch in 1998 prompted the U.S. Agency for International Development, through the U.S. Geological Survey, to develop a country-wide systematic approach of flood-hazard mapping and a demonstration of the method at selected sites as part of a reconstruction effort. The design discharge chosen for flood-hazard mapping was the flood with an average return interval of 50 years, and this selection was based on discussions with the U.S. Agency for International Development and the Honduran Public Works and Transportation Ministry. A regression equation for estimating the 50-year flood discharge using drainage area and annual precipitation as the explanatory variables was developed, based on data from 34 long-term gaging sites. This equation, which has a standard error of prediction of 71.3 percent, was used in a geographic information system to estimate the 50-year flood discharge at any location for any river in the country. The flood-hazard mapping method was demonstrated at 15 selected municipalities. High-resolution digital-elevation models of the floodplain were obtained using an airborne laser-terrain mapping system. Field verification of the digital elevation models showed that the digital-elevation models had mean absolute errors ranging from -0.57 to 0.14 meter in the vertical dimension. From these models, water-surface elevation cross sections were obtained and used in a numerical, one-dimensional, steady-flow stepbackwater model to estimate water-surface profiles corresponding to the 50-year flood discharge. From these water-surface profiles, maps of area and depth of inundation were created at the 13 of the 15 selected municipalities. At La Lima only, the area and depth of inundation of the channel capacity in the city was mapped. At Santa Rose de Aguan, no numerical model was created. The 50-year flood and the maps of area and depth of inundation are based on the estimated 50-year storm tide.
Putnam, A.L.
1984-01-01
Floods have been and continue to be one of the most destructive hazards facing the people of the United States. Of all the natural hazards, floods are the most widespread and the most ruinous to life and property. Today, floods are a greater menace to our welfare than ever before because we live in large numbers near water and have developed a complex reliance upon it. From large rivers to country creeks, from mountain rills to the trickles that occasionally dampen otherwise arid wastelands, every stream in the United States is subject to flooding at some time. Floods strike in myriad forms, including sea surges driven by wild winds or tsunamis churned into fury by seismic activity. By far the most frequent, however, standing in a class by themselves, are the inland, freshwater floods that are caused by rain, by melting snow and ice, or by the bursting of structures that man has erected to protect himself and his belongings from angry waters.
44 CFR 78.12 - Eligible types of projects.
Code of Federal Regulations, 2012 CFR
2012-10-01
... OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.12 Eligible types of projects. The following types of projects are eligible for.... (g) Minor physical flood mitigation projects that reduce localized flooding problems and do not...
Flooding and subsidence in the Thames Gateway: impact on insurance loss potential
NASA Astrophysics Data System (ADS)
Royse, Katherine; Horn, Diane; Eldridge, Jillian; Barker, Karen
2010-05-01
In the UK, household buildings insurance generally covers loss and damage to the insured property from a range of natural and human perils, including windstorm, flood, subsidence, theft, accidental fire and winter freeze. Consequently, insurers require a reasoned view on the likely scale of losses that they may face to assist in strategic planning, reinsurance structuring, regulatory returns and general risk management. The UK summer 2007 flood events not only provided a clear indication of the scale of potential losses that the industry could face from an individual event, with £3 billion in claims, but also identified a need for insurers and reinsurers to better understand how events may correlate in time and space, and how to most effectively use the computational models of extreme events that are commonly applied to reflect these correlations. In addition to the potential for temporal clustering of events such as windstorms and floods, there is a possibility that seemingly uncorrelated natural perils, such as floods and subsidence, may impact an insurer's portfolio. Where aggregations of large numbers of new properties are planned, such as in the Thames Gateway, consideration of the potential future risk of aggregate losses due to the combination of perils such as subsidence and flood is increasingly important within the insurance company's strategic risk management process. Whilst perils such as subsidence and flooding are generally considered independent within risk modelling, the potential for one event to influence the magnitude and likelihood of the other should be taken into account when determining risk level. In addition, the impact of correlated, but distinctive, loss causing events on particular property types may be significant, particularly if a specific property is designed to protect against one peril but is potentially susceptible to another. We suggest that flood events can lead to increased subsidence risk due to the weight of additional water and sediment, or rehydration of sediment under flood water. The latter mechanism may be particularly critical on sites where Holocene sediments are currently protected from flooding and are no longer subsiding. Holocene deposits tend to compress, either under their own weight or under a superimposed load such as made ground, built structures or flood water. If protected dry sediments become flooded in the future, subsidence would be expected to resume. This research project aims to investigate the correlation between flood hazards and subsidence hazards and the effect that these two sources of risk will have on insurance losses in the Thames Gateway. In particular, the research will explore the potential hydrological and geophysical drivers and links between flood and subsidence events within the Thames Gateway, assessing the potential for significant event occurrence within the timescales relevant to insurers. In the first part of the project we have identified flood risk areas within the Thames Gateway development zone which have a high risk of flooding and may be affected by renewed or increased subsidence. This has been achieved through the use of national and local-scale 2D and 3D geo-environmental information such as the Geosure dataset (e.g. swell-shrink, collapsible and compressible deposits data layers), PSI data, thickness of superficial and artificial land deposits, and flood potential data etc. In the second stage of the project we will investigate the hydrological and geophysical links between flooding and subsidence events on developed sites; quantify the insurance loss potential in the Thames Gateway from correlated flooding and subsidence events; consider how climate change will affect risk to developments in the Thames Gateway in the context of subsidence and flooding; and develop new ways of communicating and visualise correlated flood and subsidence risk to a range of stakeholders, including the insurance industry, planners, policy makers and the general public.
Tu, Tongbi; Carr, Kara J; Ercan, Ali; Trinh, Toan; Kavvas, M Levent; Nosacka, John
2017-12-31
Extreme floods are regarded as one of the most catastrophic natural hazards and can result in significant morphological changes induced by pronounced sediment erosion and deposition processes over the landscape. However, the effects of extreme floods of different return intervals on the floodplain and river channel morphological evolution with the associated sediment transport processes are not well explored. Furthermore, different basin management action plans, such as engineering structure modifications, may also greatly affect the flood inundation, sediment transport, solute transport and morphological processes within extreme flood events. In this study, a coupled two-dimensional hydrodynamic, sediment transport and morphological model is applied to evaluate the impact of different river and basin management strategies on the flood inundation, sediment transport dynamics and morphological changes within extreme flood events of different magnitudes. The 10-year, 50-year, 100-year and 200-year floods are evaluated for the Lower Cache Creek system in California under existing condition and a potential future modification scenario. Modeling results showed that select locations of flood inundation within the study area tend to experience larger inundation depth and more sediment is likely to be trapped in the study area under potential modification scenario. The proposed two dimensional flow and sediment transport modeling approach implemented with a variety of inflow conditions can provide guidance to decision-makers when considering implementation of potential modification plans, especially as they relate to competing management strategies of large water bodies, such as the modeling area in this study. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kalyanapu, A. J.; Dullo, T. T.; Gangrade, S.; Kao, S. C.; Marshall, R.; Islam, S. R.; Ghafoor, S. K.
2017-12-01
Hurricane Harvey that made landfall in the southern Texas this August is one of the most destructive hurricanes during the 2017 hurricane season. During its active period, many areas in coastal Texas region received more than 40 inches of rain. This downpour caused significant flooding resulting in about 77 casualties, displacing more than 30,000 people, inundating hundreds of thousands homes and is currently estimated to have caused more than $70 billion in direct damage. One of the significantly affected areas is Harris County where the city of Houston, TX is located. Covering over two HUC-8 drainage basins ( 2702 mi2), this county experienced more than 80% of its annual average rainfall during this event. This study presents an effort to reconstruct flooding caused by extreme rainfall due to Hurricane Harvey in Harris County, Texas. This computationally intensive task was performed at a 30-m spatial resolution using a rapid flood model called Flood2D-GPU, a graphics processing unit (GPU) accelerated model, on Oak Ridge National Laboratory's (ORNL) Titan Supercomputer. For this task, the hourly rainfall estimates from the National Center for Environmental Prediction Stage IV Quantitative Precipitation Estimate were fed into the Variable Infiltration Capacity (VIC) hydrologic model and Routing Application for Parallel computation of Discharge (RAPID) routing model to estimate flow hydrographs at 69 locations for Flood2D-GPU simulation. Preliminary results of the simulation including flood inundation extents, maps of flood depths and inundation duration will be presented. Future efforts will focus on calibrating and validating the simulation results and assessing the flood damage for better understanding the impacts made by Hurricane Harvey.
Scoping of Flood Hazard Mapping Needs for Androscoggin County, Maine
Schalk, Charles W.; Dudley, Robert W.
2007-01-01
Background The Federal Emergency Management Agency (FEMA) developed a plan in 1997 to modernize the FEMA flood mapping program. FEMA flood maps delineate flood hazard areas in support of the National Flood Insurance Program (NFIP). FEMA's plan outlined the steps necessary to update FEMA's flood maps for the nation to a seamless digital format and streamline FEMA's operations in raising public awareness of the importance of the maps and responding to requests to revise them. The modernization of flood maps involves conversion of existing information to digital format and integration of improved flood hazard data as needed and as funds allow. To determine flood mapping modernization needs, FEMA has established specific scoping activities to be done on a county-by-county basis for identifying and prioritizing requisite flood-mapping activities for map modernization. The U.S. Geological Survey (USGS), in cooperation with FEMA and the Maine Floodplain Management Program (MFMP) State Planning Office, began scoping work in 2006 for Androscoggin County. Scoping activities included assembling existing data and map needs information for communities in Androscoggin County, documentation of data, contacts, community meetings, and prioritized mapping needs in a final scoping report (this document), and updating the Mapping Needs Update Support System (MNUSS) Database with information gathered during the scoping process. The average age of the FEMA floodplain maps in Androscoggin County, Maine, is at least 17 years. Most studies were published in the early 1990s, and some towns have partial maps that are more recent than their study date. Since the studies were done, development has occurred in many of the watersheds and the characteristics of the watersheds have changed with time. Therefore, many of the older studies may not depict current conditions nor accurately estimate risk in terms of flood heights or flood mapping.
Scoping of Flood Hazard Mapping Needs for Lincoln County, Maine
Schalk, Charles W.; Dudley, Robert W.
2007-01-01
Background The Federal Emergency Management Agency (FEMA) developed a plan in 1997 to modernize the FEMA flood mapping program. FEMA flood maps delineate flood hazard areas in support of the National Flood Insurance Program (NFIP). FEMA's plan outlined the steps necessary to update FEMA's flood maps for the nation to a seamless digital format and streamline FEMA's operations in raising public awareness of the importance of the maps and responding to requests to revise them. The modernization of flood maps involves conversion of existing information to digital format and integration of improved flood hazard data as needed. To determine flood mapping modernization needs, FEMA has established specific scoping activities to be done on a county-by-county basis for identifying and prioritizing requisite flood-mapping activities for map modernization. The U.S. Geological Survey (USGS), in cooperation with FEMA and the Maine Floodplain Management Program (MFMP) State Planning Office, began scoping work in 2006 for Lincoln County. Scoping activities included assembling existing data and map needs information for communities in Lincoln County, documentation of data, contacts, community meetings, and prioritized mapping needs in a final scoping report (this document), and updating the Mapping Needs Update Support System (MNUSS) database with information gathered during the scoping process. The average age of the FEMA floodplain maps in Lincoln County, Maine is at least 17 years. Many of these studies were published in the mid- to late-1980s, and some towns have partial maps that are more recent than their study. However, in the ensuing 15-20 years, development has occurred in many of the watersheds, and the characteristics of the watersheds have changed with time. Therefore, many of the older studies may not depict current conditions nor accurately estimate risk in terms of flood heights or flood mapping.
12 CFR 22.3 - Requirement to purchase flood insurance where available.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 12 Banks and Banking 1 2010-01-01 2010-01-01 false Requirement to purchase flood insurance where... IN AREAS HAVING SPECIAL FLOOD HAZARDS § 22.3 Requirement to purchase flood insurance where available... building or mobile home and any personal property securing the loan is covered by flood insurance for the...
12 CFR 22.7 - Forced placement of flood insurance.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 12 Banks and Banking 1 2010-01-01 2010-01-01 false Forced placement of flood insurance. 22.7... HAVING SPECIAL FLOOD HAZARDS § 22.7 Forced placement of flood insurance. If a bank, or a servicer acting... or mobile home and any personal property securing the designated loan is not covered by flood...
12 CFR 572.3 - Requirement to purchase flood insurance where available.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 12 Banks and Banking 5 2010-01-01 2010-01-01 false Requirement to purchase flood insurance where... LOANS IN AREAS HAVING SPECIAL FLOOD HAZARDS § 572.3 Requirement to purchase flood insurance where... loan unless the building or mobile home and any personal property securing the loan is covered by flood...
44 CFR 60.12 - Flood plain management criteria for State-owned properties in special hazard areas.
Code of Federal Regulations, 2012 CFR
2012-10-01
... MITIGATION National Flood Insurance Program CRITERIA FOR LAND MANAGEMENT AND USE Requirements for State Flood Plain Management Regulations § 60.12 Flood plain management criteria for State-owned properties in... 44 Emergency Management and Assistance 1 2012-10-01 2011-10-01 true Flood plain management...
44 CFR 60.12 - Flood plain management criteria for State-owned properties in special hazard areas.
Code of Federal Regulations, 2014 CFR
2014-10-01
... MITIGATION National Flood Insurance Program CRITERIA FOR LAND MANAGEMENT AND USE Requirements for State Flood Plain Management Regulations § 60.12 Flood plain management criteria for State-owned properties in... 44 Emergency Management and Assistance 1 2014-10-01 2014-10-01 false Flood plain management...
44 CFR 60.12 - Flood plain management criteria for State-owned properties in special hazard areas.
Code of Federal Regulations, 2013 CFR
2013-10-01
... MITIGATION National Flood Insurance Program CRITERIA FOR LAND MANAGEMENT AND USE Requirements for State Flood Plain Management Regulations § 60.12 Flood plain management criteria for State-owned properties in... 44 Emergency Management and Assistance 1 2013-10-01 2013-10-01 false Flood plain management...
44 CFR 60.12 - Flood plain management criteria for State-owned properties in special hazard areas.
Code of Federal Regulations, 2010 CFR
2010-10-01
... MITIGATION National Flood Insurance Program CRITERIA FOR LAND MANAGEMENT AND USE Requirements for State Flood Plain Management Regulations § 60.12 Flood plain management criteria for State-owned properties in... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Flood plain management...