NASA Astrophysics Data System (ADS)
Prudhomme, C.; Haxton, T.; Crooks, S.; Jackson, C.; Barkwith, A.; Williamson, J.; Kelvin, J.; Mackay, J.; Wang, L.; Young, A.; Watts, G.
2012-12-01
The dataset Future Flows Hydrology was developed as part of the project "Future Flows and Groundwater Levels" to provide a consistent set of transient daily river flow and monthly groundwater levels projections across England, Wales and Scotland to enable the investigation of the role of climate variability on river flow and groundwater levels nationally and how this may change in the future. Future Flows Hydrology is derived from Future Flows Climate, a national ensemble projection derived from the Hadley Centre's ensemble projection HadRM3-PPE to provide a consistent set of climate change projections for the whole of Great Britain at both space and time resolutions appropriate for hydrological applications. Three hydrological models and one groundwater level model were used to derive Future Flows Hydrology, with 30 river sites simulated by two hydrological models to enable assessment of hydrological modelling uncertainty in studying the impact of climate change on the hydrology. Future Flows Hydrology contains an 11-member ensemble of transient projections from January 1951 to December 2098, each associated with a single realisation from a different variant of HadRM3 and a single hydrological model. Daily river flows are provided for 281 river catchments and monthly groundwater levels at 24 boreholes as .csv files containing all 11 ensemble members. When separate simulations are done with two hydrological models, two separate .csv files are provided. Because of potential biases in the climate-hydrology modelling chain, catchment fact sheets are associated with each ensemble. These contain information on the uncertainty associated with the hydrological modelling when driven using observed climate and Future Flows Climate for a period representative of the reference time slice 1961-1990 as described by key hydrological statistics. Graphs of projected changes for selected hydrological indicators are also provided for the 2050s time slice. Limitations associated with the dataset are provided, along with practical recommendation of use. Future Flows Hydrology is freely available for non-commercial use under certain licensing conditions. For each study site, catchment averages of daily precipitation and monthly potential evapotranspiration, used to drive the hydrological models, are made available, so that hydrological modelling uncertainty under climate change conditions can be explored further. doi:10.5285/f3723162-4fed-4d9d-92c6-dd17412fa37b.
NASA Astrophysics Data System (ADS)
Prudhomme, C.; Haxton, T.; Crooks, S.; Jackson, C.; Barkwith, A.; Williamson, J.; Kelvin, J.; Mackay, J.; Wang, L.; Young, A.; Watts, G.
2013-03-01
The dataset Future Flows Hydrology was developed as part of the project "Future Flows and Groundwater Levels'' to provide a consistent set of transient daily river flow and monthly groundwater level projections across England, Wales and Scotland to enable the investigation of the role of climate variability on river flow and groundwater levels nationally and how this may change in the future. Future Flows Hydrology is derived from Future Flows Climate, a national ensemble projection derived from the Hadley Centre's ensemble projection HadRM3-PPE to provide a consistent set of climate change projections for the whole of Great Britain at both space and time resolutions appropriate for hydrological applications. Three hydrological models and one groundwater level model were used to derive Future Flows Hydrology, with 30 river sites simulated by two hydrological models to enable assessment of hydrological modelling uncertainty in studying the impact of climate change on the hydrology. Future Flows Hydrology contains an 11-member ensemble of transient projections from January 1951 to December 2098, each associated with a single realisation from a different variant of HadRM3 and a single hydrological model. Daily river flows are provided for 281 river catchments and monthly groundwater levels at 24 boreholes as .csv files containing all 11 ensemble members. When separate simulations are done with two hydrological models, two separate .csv files are provided. Because of potential biases in the climate-hydrology modelling chain, catchment fact sheets are associated with each ensemble. These contain information on the uncertainty associated with the hydrological modelling when driven using observed climate and Future Flows Climate for a period representative of the reference time slice 1961-1990 as described by key hydrological statistics. Graphs of projected changes for selected hydrological indicators are also provided for the 2050s time slice. Limitations associated with the dataset are provided, along with practical recommendation of use. Future Flows Hydrology is freely available for non-commercial use under certain licensing conditions. For each study site, catchment averages of daily precipitation and monthly potential evapotranspiration, used to drive the hydrological models, are made available, so that hydrological modelling uncertainty under climate change conditions can be explored further. doi:10.5285/f3723162-4fed-4d9d-92c6-dd17412fa37b
Future changes in hydro-climatic extremes in the Upper Indus, Ganges, and Brahmaputra River basins
Lutz, Arthur F.; Nepal, Santosh; Khanal, Sonu; Pradhananga, Saurav; Shrestha, Arun B.; Immerzeel, Walter W.
2017-01-01
Future hydrological extremes, such as floods and droughts, may pose serious threats for the livelihoods in the upstream domains of the Indus, Ganges, Brahmaputra. For this reason, the impacts of climate change on future hydrological extremes is investigated in these river basins. We use a fully-distributed cryospheric-hydrological model to simulate current and future hydrological fluxes and force the model with an ensemble of 8 downscaled General Circulation Models (GCMs) that are selected from the RCP4.5 and RCP8.5 scenarios. The model is calibrated on observed daily discharge and geodetic mass balances. The climate forcing and the outputs of the hydrological model are used to evaluate future changes in climatic extremes, and hydrological extremes by focusing on high and low flows. The outcomes show an increase in the magnitude of climatic means and extremes towards the end of the 21st century where climatic extremes tend to increase stronger than climatic means. Future mean discharge and high flow conditions will very likely increase. These increases might mainly be the result of increasing precipitation extremes. To some extent temperature extremes might also contribute to increasing discharge extremes, although this is highly dependent on magnitude of change in temperature extremes. Low flow conditions may occur less frequently, although the uncertainties in low flow projections can be high. The results of this study may contribute to improved understanding on the implications of climate change for the occurrence of future hydrological extremes in the Hindu Kush–Himalayan region. PMID:29287098
NASA Astrophysics Data System (ADS)
Hoang, L. P.; van Vliet, M. T. H.; Lauri, H.; Kummu, M.; Koponen, J.; Supit, I.; Leemans, R.; Kabat, P.; Ludwig, F.
2016-12-01
The Mekong River's flows and water resources are in many ways essential for sustaining economic growths, flood security of about 70 million people and biodiversity in one of the world's most ecologically productive wetland systems. The river's hydrological cycle, however, are increasingly perturbed by climate change, large-scale hydropower developments and rapid irrigated land expansions. This study presents an integrated impact assessment to characterize and quantify future hydrological changes induced by these driving factors, both separately and combined. We have integrated a crop simulation module and a hydropower dam module into a distributed hydrological model (VMod) and simulated the Mekong's hydrology under multiple climate change and development scenarios. Our results show that the Mekong's hydrological regime will experience substantial changes caused by the considered factors. Magnitude-wise, hydropower dam developments exhibit the largest impacts on river flows, with projected higher flows (up to +35%) during the dry season and lower flows (up to -44%) during the wet season. Annual flow changes caused by the dams, however, are relatively marginal. In contrast to this, climate change is projected to increase the Mekong's annual flows (up to +16%) while irrigated land expansions result in annual flow reductions (-1% to -3%). Combining the impacts of these three drivers, we found that river flow changes, especially those at the monthly scale, largely differ from changes under the individual driving factors. This is explained by large differences in impacts' magnitudes and contrasting impacts' directions for the individual drivers. We argue that the Mekong's future flows are likely driven by multiple factors and thus advocate for integrated assessment approaches and tools that support proper considerations of these factors and their interplays.
Development of a new IHA method for impact assessment of climate change on flow regime
NASA Astrophysics Data System (ADS)
Yang, Tao; Cui, Tong; Xu, Chong-Yu; Ciais, Philippe; Shi, Pengfei
2017-09-01
The Indicators of Hydrologic Alteration (IHA) based on 33 parameters in five dimensions (flow magnitude, timing, duration, frequency and change rate) have been widely used in evaluation of hydrologic alteration in river systems. Yet, inter-correlation seriously exists amongst those parameters, therefore constantly underestimates or overestimates actual hydrological changes. Toward the end, a new method (Representative-IHA, RIHA) is developed by removing repetitions based on Criteria Importance Through Intercriteria Correlation (CRITIC) algorithm. RIHA is testified in evaluating effects of future climate change on hydro-ecology in the Niger River of Africa. Future flows are projected using three watershed hydrological models forced by five general circulation models (GCMs) under three Representative Concentration Pathways (RCPs) scenarios. Results show that: (1) RIHA is able to eliminate self-correlations amongst IHA indicators and identify the dominant characteristics of hydrological alteration in the Upper Niger River, (2) March streamflow, September streamflow, December streamflow, 30-day annual maximum, low pluses duration and fall rates tends to increase over the period 2010-2099, while July streamflow and 90-day annual minimum streamflow shows decrease, (3) the Niger River will undergo moderate flow alteration under RCP8.5 in 2050s and 2080s and low alteration other scenarios, (4) future flow alteration may induce increase water temperatures, reduction dissolved oxygen and food resources. Consequently, aquatic biodiversity and fish community of Upper Niger River would become more vulnerable in the future. The new method enables more scientific evaluation for multi-dimensional hydrologic alteration under the context of climate change.
The critical role of uncertainty in projections of hydrological extremes
NASA Astrophysics Data System (ADS)
Meresa, Hadush K.; Romanowicz, Renata J.
2017-08-01
This paper aims to quantify the uncertainty in projections of future hydrological extremes in the Biala Tarnowska River at Koszyce gauging station, south Poland. The approach followed is based on several climate projections obtained from the EURO-CORDEX initiative, raw and bias-corrected realizations of catchment precipitation, and flow simulations derived using multiple hydrological model parameter sets. The projections cover the 21st century. Three sources of uncertainty are considered: one related to climate projection ensemble spread, the second related to the uncertainty in hydrological model parameters and the third related to the error in fitting theoretical distribution models to annual extreme flow series. The uncertainty of projected extreme indices related to hydrological model parameters was conditioned on flow observations from the reference period using the generalized likelihood uncertainty estimation (GLUE) approach, with separate criteria for high- and low-flow extremes. Extreme (low and high) flow quantiles were estimated using the generalized extreme value (GEV) distribution at different return periods and were based on two different lengths of the flow time series. A sensitivity analysis based on the analysis of variance (ANOVA) shows that the uncertainty introduced by the hydrological model parameters can be larger than the climate model variability and the distribution fit uncertainty for the low-flow extremes whilst for the high-flow extremes higher uncertainty is observed from climate models than from hydrological parameter and distribution fit uncertainties. This implies that ignoring one of the three uncertainty sources may cause great risk to future hydrological extreme adaptations and water resource planning and management.
NASA Astrophysics Data System (ADS)
Velázquez, J. A.; Schmid, J.; Ricard, S.; Muerth, M. J.; Gauvin St-Denis, B.; Minville, M.; Chaumont, D.; Caya, D.; Ludwig, R.; Turcotte, R.
2012-06-01
Over the recent years, several research efforts investigated the impact of climate change on water resources for different regions of the world. The projection of future river flows is affected by different sources of uncertainty in the hydro-climatic modelling chain. One of the aims of the QBic3 project (Québec-Bavarian International Collaboration on Climate Change) is to assess the contribution to uncertainty of hydrological models by using an ensemble of hydrological models presenting a diversity of structural complexity (i.e. lumped, semi distributed and distributed models). The study investigates two humid, mid-latitude catchments with natural flow conditions; one located in Southern Québec (Canada) and one in Southern Bavaria (Germany). Daily flow is simulated with four different hydrological models, forced by outputs from regional climate models driven by a given number of GCMs' members over a reference (1971-2000) and a future (2041-2070) periods. The results show that the choice of the hydrological model does strongly affect the climate change response of selected hydrological indicators, especially those related to low flows. Indicators related to high flows seem less sensitive on the choice of the hydrological model. Therefore, the computationally less demanding models (usually simple, lumped and conceptual) give a significant level of trust for high and overall mean flows.
Future Climate Change Impact Assessment of River Flows at Two Watersheds of Peninsular Malaysia
NASA Astrophysics Data System (ADS)
Ercan, A.; Ishida, K.; Kavvas, M. L.; Chen, Z. R.; Jang, S.; Amin, M. Z. M.; Shaaban, A. J.
2016-12-01
Impacts of climate change on the river flows under future climate change conditions were assessed over Muda and Dungun watersheds of Peninsular Malaysia by means of a coupled regional climate model and a physically-based hydrology model utilizing an ensemble of 15 different future climate realizations. Coarse resolution GCMs' future projections covering a wide range of emission scenarios were dynamically downscaled to 6 km resolution over the study area. Hydrologic simulations of the two selected watersheds were carried out at hillslope-scale and at hourly increments.
NASA Astrophysics Data System (ADS)
Vansteenkiste, Thomas; Tavakoli, Mohsen; Ntegeka, Victor; De Smedt, Florimond; Batelaan, Okke; Pereira, Fernando; Willems, Patrick
2014-11-01
The objective of this paper is to investigate the effects of hydrological model structure and calibration on climate change impact results in hydrology. The uncertainty in the hydrological impact results is assessed by the relative change in runoff volumes and peak and low flow extremes from historical and future climate conditions. The effect of the hydrological model structure is examined through the use of five hydrological models with different spatial resolutions and process descriptions. These were applied to a medium sized catchment in Belgium. The models vary from the lumped conceptual NAM, PDM and VHM models over the intermediate detailed and distributed WetSpa model to the fully distributed MIKE SHE model. The latter model accounts for the 3D groundwater processes and interacts bi-directionally with a full hydrodynamic MIKE 11 river model. After careful and manual calibration of these models, accounting for the accuracy of the peak and low flow extremes and runoff subflows, and the changes in these extremes for changing rainfall conditions, the five models respond in a similar way to the climate scenarios over Belgium. Future projections on peak flows are highly uncertain with expected increases as well as decreases depending on the climate scenario. The projections on future low flows are more uniform; low flows decrease (up to 60%) for all models and for all climate scenarios. However, the uncertainties in the impact projections are high, mainly in the dry season. With respect to the model structural uncertainty, the PDM model simulates significantly higher runoff peak flows under future wet scenarios, which is explained by its specific model structure. For the low flow extremes, the MIKE SHE model projects significantly lower low flows in dry scenario conditions in comparison to the other models, probably due to its large difference in process descriptions for the groundwater component, the groundwater-river interactions. The effect of the model calibration was tested by comparing the manual calibration approach with automatic calibrations of the VHM model based on different objective functions. The calibration approach did not significantly alter the model results for peak flow, but the low flow projections were again highly influenced. Model choice as well as calibration strategy hence have a critical impact on low flows, more than on peak flows. These results highlight the high uncertainty in low flow modelling, especially in a climate change context.
NASA Astrophysics Data System (ADS)
Shrestha, N. S.; Dahal, P.
2016-12-01
Changes in the hydrological extreme are expected due to climate variability and are needed to assess at local and regional scales since these changes are not uniform over the globe. This study analyses the changes in intensity, frequency and persistence hydrological extreme in Gandaki River Basin (GRB) Nepal over past and future and its relation to climate variability. Hydrological data of 12 different hydrological stations covering all the sub basins of Gandaki River Basin were analyzed. At least 1 hydrological station in each sub basin to the maximum of 3 was taken into consideration for this study. Results show that hydrological extreme have increased in intensity, frequency and persistence over recent year and are predicted to increase in future (2030-2060). The time-series analysis revealed an increase in the magnitude, frequency and duration of flood and drought. The instantaneous maximum flow, flood events and duration of flood events are found to have increasing trend. The minimum discharge was observed to be decreasing which entails that the water availability in the driest time is decreasing. Trend analysis of seasonal flow revealed an increase in monsoon flows and decreasing in post monsoon. Changes in climate variability over the same period shows higher anomalies in both temperature and precipitation in recent decades (1990s and 2000s) compared to the baseline period (1970-2000). Model suggests an increasing trend in annual flows with the increase more pronounced in 2060s. Significant increase in extreme flows and subsequent decrease in dependable flows suggest increase in frequency of isolated extreme flows followed by prolonged dry spells. Data also showed that the mean temperature will be increasing from 1.9 0C to 3.1 0C and precipitation will be changing by -8% to +12% in 2031-2060 compared to the baseline period. For long-term planning and management of water resources, current trend and future change in the pattern of water availability should be analysed well in advance. Climate change with intensifying extreme events will likely have serious consequences on the hydrological changes. Therefore, this study would be useful in understanding how the hydrological regime has been changing with climate change in mountainous watershed.
NASA Astrophysics Data System (ADS)
Bocchiola, D.; Diolaiuti, G.; Soncini, A.; Mihalcea, C.; D'Agata, C.; Mayer, C.; Lambrecht, A.; Rosso, R.; Smiraglia, C.
2011-04-01
In the mountain regions of the Hindu Kush, Karakoram and Himalaya (HKH) the "third polar ice cap" of our planet, glaciers play the role of "water towers" by providing significant amount of melt water, especially in the dry season, essential for agriculture, drinking purposes, and hydropower production. Recently, most glaciers in the HKH have been retreating and losing mass, mainly due to significant regional warming, thus calling for assessment of future water resources availability for populations down slope. However, hydrology of these high altitude catchments is poorly studied and little understood. Most such catchments are poorly gauged, thus posing major issues in flow prediction therein, and representing in facts typical grounds of application of PUB concepts, where simple and portable hydrological modeling based upon scarce data amount is necessary for water budget estimation, and prediction under climate change conditions. In this preliminarily study, future (2060) hydrological flows in a particular watershed (Shigar river at Shigar, ca. 7000 km2), nested within the upper Indus basin and fed by seasonal melt from major glaciers, are investigated. The study is carried out under the umbrella of the SHARE-Paprika project, aiming at evaluating the impact of climate change upon hydrology of the upper Indus river. We set up a minimal hydrological model, tuned against a short series of observed ground climatic data from a number of stations in the area, in situ measured ice ablation data, and remotely sensed snow cover data. The future, locally adjusted, precipitation and temperature fields for the reference decade 2050-2059 from CCSM3 model, available within the IPCC's panel, are then fed to the hydrological model. We adopt four different glaciers' cover scenarios, to test sensitivity to decreased glacierized areas. The projected flow duration curves, and some selected flow descriptors are evaluated. The uncertainty of the results is then addressed, and use of the model for nearby catchments discussed. The proposed approach is valuable as a tool to investigate the hydrology of poorly gauged high altitude areas, and to project forward their hydrological behavior pending climate change.
NASA Astrophysics Data System (ADS)
Bocchiola, D.; Diolaiuti, G.; Soncini, A.; Mihalcea, C.; D'Agata, C.; Mayer, C.; Lambrecht, A.; Rosso, R.; Smiraglia, C.
2011-07-01
In the mountain regions of the Hindu Kush, Karakoram and Himalaya (HKH) the "third polar ice cap" of our planet, glaciers play the role of "water towers" by providing significant amount of melt water, especially in the dry season, essential for agriculture, drinking purposes, and hydropower production. Recently, most glaciers in the HKH have been retreating and losing mass, mainly due to significant regional warming, thus calling for assessment of future water resources availability for populations down slope. However, hydrology of these high altitude catchments is poorly studied and little understood. Most such catchments are poorly gauged, thus posing major issues in flow prediction therein, and representing in fact typical grounds of application of PUB concepts, where simple and portable hydrological modeling based upon scarce data amount is necessary for water budget estimation, and prediction under climate change conditions. In this preliminarily study, future (2060) hydrological flows in a particular watershed (Shigar river at Shigar, ca. 7000 km2), nested within the upper Indus basin and fed by seasonal melt from major glaciers, are investigated. The study is carried out under the umbrella of the SHARE-Paprika project, aiming at evaluating the impact of climate change upon hydrology of the upper Indus river. We set up a minimal hydrological model, tuned against a short series of observed ground climatic data from a number of stations in the area, in situ measured ice ablation data, and remotely sensed snow cover data. The future, locally adjusted, precipitation and temperature fields for the reference decade 2050-2059 from CCSM3 model, available within the IPCC's panel, are then fed to the hydrological model. We adopt four different glaciers' cover scenarios, to test sensitivity to decreased glacierized areas. The projected flow duration curves, and some selected flow descriptors are evaluated. The uncertainty of the results is then addressed, and use of the model for nearby catchments discussed. The proposed approach is valuable as a tool to investigate the hydrology of poorly gauged high altitude areas, and to project forward their hydrological behavior pending climate change.
NASA Astrophysics Data System (ADS)
Yuan, Fei; Zhao, Chongxu; Jiang, Yong; Ren, Liliang; Shan, Hongcui; Zhang, Limin; Zhu, Yonghua; Chen, Tao; Jiang, Shanhu; Yang, Xiaoli; Shen, Hongren
2017-11-01
Projections of hydrological changes are associated with large uncertainties from different sources, which should be quantified for an effective implementation of water management policies adaptive to future climate change. In this study, a modeling chain framework to project future hydrological changes and the associated uncertainties in the Xijiang River basin, South China, was established. The framework consists of three emission scenarios (ESs), four climate models (CMs), four statistical downscaling (SD) methods, four hydrological modeling (HM) schemes, and four probability distributions (PDs) for extreme flow frequency analyses. Direct variance method was adopted to analyze the manner by which uncertainty sources such as ES, CM, SD, and HM affect the estimates of future evapotranspiration (ET) and streamflow, and to quantify the uncertainties of PDs in future flood and drought risk assessment. Results show that ES is one of the least important uncertainty sources in most situations. CM, in general, is the dominant uncertainty source for the projections of monthly ET and monthly streamflow during most of the annual cycle, daily streamflow below the 99.6% quantile level, and extreme low flow. SD is the most predominant uncertainty source in the projections of extreme high flow, and has a considerable percentage of uncertainty contribution in monthly streamflow projections in July-September. The effects of SD in other cases are negligible. HM is a non-ignorable uncertainty source that has the potential to produce much larger uncertainties for the projections of low flow and ET in warm and wet seasons than for the projections of high flow. PD contributes a larger percentage of uncertainty in extreme flood projections than it does in extreme low flow estimates. Despite the large uncertainties in hydrological projections, this work found that future extreme low flow would undergo a considerable reduction, and a noticeable increase in drought risk in the Xijiang River basin would be expected. Thus, the necessity of employing effective water-saving techniques and adaptive water resources management strategies for drought disaster mitigation should be addressed.
Climate-induced alteration of hydrologic indicators in the Athabasca River Basin, Alberta, Canada
NASA Astrophysics Data System (ADS)
Eum, Hyung-Il; Dibike, Yonas; Prowse, Terry
2017-01-01
The hydrologic response of the Athabasca River Basin (ARB) in Alberta to projected changes in the future climate is investigated using the Variable Infiltration Capacity (VIC) process-based and distributed hydrologic model. The model forcings are derived from a selected set of GCMs from the latest Coupled Model Intercomparison Project (CMIP5) statistically downscaled to a higher resolution (10 km) over Canada. Twelve hydrologic indicators that represent the magnitude and timing of the hydrologic regimes are evaluated for three 30-year time periods centered at the 1990s, 2050s and 2080s to identify significant alterations of hydrologic regimes between the reference and the two future periods using a t-test at 5% significance level. Hydrologic alteration factors (HAF) are also evaluated for each hydrologic indicator using the range of variability approach (RVA) to investigate projected changes in the distribution of these indicators. The results show increases in spring and winter flows for the two future periods at all hydrometric stations within the basin, resulting in an extended period of spring freshet. A higher rate of increase is projected for the stations located at the upper reach of the river because of the combined effects of increased precipitation and earlier snowmelt resulting from a warming climate. By contrast, summer flows are projected to decrease by up to 21% on average in the 2080s over most of the mainstem stations because of earlier snowmelt, increased evapotranspiration and no significant increase in summer precipitation. A water-management rule that optimizes impacts of water withdrawal from the lower reach of the Athabasca River under the current condition is also applied to the future scenarios to assess its relative performance under the projected climate conditions. The results indicate possible improvement in the water resources system performance in terms of increased reliability and resilience and reduced vulnerability during the two future periods as compared with those in the reference period mainly because of the projected increases in spring and winter flows, which has the potential to offset an expected future water deficit.
Classification of reaches in the Missouri and lower Yellowstone Rivers based on flow characteristics
Pegg, Mark A.; Pierce, Clay L.
2002-01-01
Several aspects of flow have been shown to be important determinants of biological community structure and function in streams, yet direct application of this approach to large rivers has been limited. Using a multivariate approach, we grouped flow gauges into hydrologically similar units in the Missouri and lower Yellowstone Rivers and developed a model based on flow variability parameters that could be used to test hypotheses about the role of flow in determining aquatic community structure. This model could also be used for future comparisons as the hydrological regime changes. A suite of hydrological parameters for the recent, post-impoundment period (1 October 1966–30 September 1996) for each of 15 gauges along the Missouri and lower Yellowstone Rivers were initially used. Preliminary graphical exploration identified five variables for use in further multivariate analyses. Six hydrologically distinct units composed of gauges exhibiting similar flow characteristics were then identified using cluster analysis. Discriminant analyses identified the three most influential variables as flow per unit drainage area, coefficient of variation of mean annual flow, and flow constancy. One surprising result was the relative similarity of flow regimes between the two uppermost and three lowermost gauges, despite large differences in magnitude of flow and separation by roughly 3000 km. Our results synthesize, simplify and interpret the complex changes in flow occurring along the Missouri and lower Yellowstone Rivers, and provide an objective grouping for future tests of how these changes may affect biological communities.
Reynolds, Lindsay; Shafroth, Patrick B.
2017-01-01
Droughts in dryland regions on all continents are expected to increase in severity and duration under future climate projections. In dryland regions, it is likely that minimum streamflow will decrease with some perennial streams shifting to intermittent flow under climate-driven changes in precipitation and runoff and increases in temperature. Decreasing base flow and shifting flow regimes from perennial to intermittent could have significant implications for stream-dependent biota, including riparian vegetation. In this study, we asked, how do riparian plant communities vary along wet-to-dry hydrologic gradients on small (first–third order) streams? We collected data on geomorphic, hydrologic, and plant community characteristics on 54 stream sites ranging in hydrology from intermittent to perennial flow across the Upper Colorado River Basin (284,898 km2). We found that plant communities varied along hydrologic gradients from high to low elevation between streams, and perennial to intermittent flow. We identified indicator species associated with different hydrologic conditions and suggest how plant communities may shift under warmer, drier conditions. Our results indicate that species richness and cover of total, perennial, wetland, and native plant groups will decrease while annual plants will increase under drying conditions. Understanding how plant communities respond to regional drivers such as hydroclimate requires broad-scale approaches such as sampling across whole river basins. With increasingly arid conditions in many regions of the globe, understanding plant community shifts is key to understanding the future of riparian ecosystems.
Sellami, Haykel; Benabdallah, Sihem; La Jeunesse, Isabelle; Vanclooster, Marnik
2016-02-01
Catchment flow regimes alteration is likely to be a prominent consequence of climate change projections in the Mediterranean. Here we explore the potential effects of climatic change on the flow regime of the Thau and the Chiba catchments which are located in Southern France and Northeastern Tunisia, respectively. The Soil and Water Assessment Tool (SWAT) hydrological model is forced with projections from an ensemble of 4 climate model (CM) to assess changes and uncertainty in relevant hydrological indicators related to water balance, magnitude, frequency and timing of the flow between a reference (1971-2000) and future (2041-2071) periods. Results indicate that both catchments are likely to experience a decrease in precipitation and increase in temperature in the future. Consequently, runoff and soil water content are projected to decrease whereas potential evapotranspiration is likely to increase in both catchments. Yet uncertain, the projected magnitudes of these changes are higher in the wet period than in the dry period. Analyses of extreme flow show similar trend in both catchments, projecting a decrease in both high flow and low flow magnitudes for various time durations. Further, significant increase in low flow frequency as a proxy for hydrological droughts is projected for both catchments but with higher uncertainty in the wet period than in the dry period. Although no changes in the average timing of maximum and minimum flow events for different flow durations are projected, substantial uncertainty remains in the hydrological projections. While the results in both catchments show consistent trend of change for most of the hydrologic indicators, the overall degree of alteration on the flow regime of the Chiba catchment is projected to be higher than that of the Thau catchment. The projected magnitudes of alteration as well as their associated uncertainty vary depending on the catchment characteristics and flow seasonality. Copyright © 2015 Elsevier B.V. All rights reserved.
New methods in hydrologic modeling and decision support for culvert flood risk under climate change
NASA Astrophysics Data System (ADS)
Rosner, A.; Letcher, B. H.; Vogel, R. M.; Rees, P. S.
2015-12-01
Assessing culvert flood vulnerability under climate change poses an unusual combination of challenges. We seek a robust method of planning for an uncertain future, and therefore must consider a wide range of plausible future conditions. Culverts in our case study area, northwestern Massachusetts, USA, are predominantly found in small, ungaged basins. The need to predict flows both at numerous sites and under numerous plausible climate conditions requires a statistical model with low data and computational requirements. We present a statistical streamflow model that is driven by precipitation and temperature, allowing us to predict flows without reliance on reference gages of observed flows. The hydrological analysis is used to determine each culvert's risk of failure under current conditions. We also explore the hydrological response to a range of plausible future climate conditions. These results are used to determine the tolerance of each culvert to future increases in precipitation. In a decision support context, current flood risk as well as tolerance to potential climate changes are used to provide a robust assessment and prioritization for culvert replacements.
Development of a Simple Framework to Assess Hydrological Extremes using Solely Climate Data
NASA Astrophysics Data System (ADS)
Foulon, E.; Gagnon, P.; Rousseau, A. N.
2014-12-01
Extreme flow conditions such as droughts and floods are in general the direct consequences of short- to long-term weather/climate anomalies. For example, in southern Quebec, Canada, winter and summer 7-day low flows are due to summer and fall precipitations. Which prompts the question: is it possible to assess future extreme flow conditions from meteorological/climate indices or should we rely on the classical approach of using outputs of climate models as input to a hydrological model? The objective of this study is to assess six hydrological indices describing extreme flows at the watershed scale (Qmax, Qmin;7d, Qmin;30d for two seasons: winter and summer) using local climate indices without relying on the aforementioned classical approach. To establish the relationship between climate and hydrological indices, daily precipitations, minimum and maximum temperatures from 89 climate projections are used as inputs to a distributed hydrological model. River flows are simulated at the outlet of the Yamaska and Bécancour watersheds in Québec for the 1961-2100 periods. To identify the best predictors, hydrological indices are extracted from the flow series, and climate indices are computed for different time intervals (from a day up to four years). The difference between four-month, cumulative, climatic demand (P-ETP) explains 69% of the 7-day summer low flow during the calibration process. For both watersheds, preliminary findings indicate that the selected indices explain, on average, 38 and 60% of the variability of high- and low-flow indices, respectively. Overall, the results clearly illustrate that the change in the hydrological indices can be detected through the concurrent trends in the climate indices. The use of many climate projections ensures the relationships are not simulation-dependent and shows summer events are particularly at risk with increasing high flows and decreasing low flows. The development of a simple predictive tool to assess the impact of climate change on flows represents one of the major spin-off benefits of this study and may prooveto be useful to municipalities concerned with source water and flood management. Future work includes development of additional climate indices and application of the framework to more watersheds.
NASA Astrophysics Data System (ADS)
Schneider, Christof; Flörke, Martina; De Stefano, Lucia; Petersen-Perlman, Jacob D.
2017-06-01
Riparian wetlands have been disappearing at an accelerating rate. Their ecological integrity as well as their vital ecosystem services for humankind depend on regular patterns of inundation and drying provided by natural flow regimes. However, river hydrology has been altered worldwide. Dams cause less variable flow regimes and water abstractions decrease the amount of flow so that ecologically important flood pulses are often reduced. Given growing population pressure and projected climate change, immediate action is required. However, the implementation of counteractive measures is often a complex task. This study develops a screening tool for assessing hydrological threats to riparian wetlands on global scales. The approach is exemplified on 93 Ramsar sites, many of which are located in transboundary basins. First, the WaterGAP3 hydrological modeling framework is used to quantitatively compare current and future modified flow regimes to reference flow conditions. In our simulations current water resource management seriously impairs riparian wetland inundation at 29 % of the analyzed sites. A further 8 % experience significantly reduced flood pulses. In the future, eastern Europe, western Asia, as well as central South America could be hotspots of further flow modifications due to climate change. Second, a qualitative analysis of the 93 sites determined potential impact on overbank flows resulting from planned or proposed dam construction projects. They take place in one-third of the upstream areas and are likely to impair especially wetlands located in South America, Asia, and the Balkan Peninsula. Third, based on the existing legal/institutional framework and water resource availability upstream, further qualitative analysis evaluated the capacity to preserve overbank flows given future streamflow changes due to dam construction and climate change. Results indicate hotspots of vulnerability exist, especially in northern Africa and the Persian Gulf.
Historical and Future Projected Hydrologic Extremes over the Midwest and Great Lakes Region
NASA Astrophysics Data System (ADS)
Byun, K.; Hamlet, A. F.; Chiu, C. M.
2016-12-01
There is an increasing body of evidence from observed data that climate variability combined with regional climate change has had a significant impact on hydrologic cycles, including both seasonal patterns of runoff and altered hydrologic extremes (e.g. floods and extreme stormwater events). To better understand changing patterns of extreme high flows in Midwest and Great Lakes region, we analyzed long-term historical observations of peak streamflow at different gaging stations. We also conducted hydrologic model experiments using the Variable Infiltration Capacity (VIC) at 1/16 degree resolution in order to explore sensitivity of annual peak streamflow, both historically and under temperature and precipitation changes for several future periods. For future projections, the Hybrid Delta statistical downscaling approach applied to the Coupled Model Inter-comparison, Phase5 (CMIP5) Global Climate Model (GCM) scenarios was used to produce driving data for the VIC hydrologic model. Preliminary results for several test basins in the Midwest support the hypothesis that there are consistent and statistically significant changes in the mean annual flood starting before and after about 1975. Future projections using hydrologic model simulations support the hypothesis of higher peak flows due to warming and increasing precipitation projected for the 21st century. We will extend this preliminary analysis using observed data and simulations from 40 river basins in the Midwest to further test these hypotheses.
NASA Astrophysics Data System (ADS)
Rössler, Ole; Hänggi, Pascal; Köplin, Nina; Meyer, Rapahel; Schädler, Bruno; Weingartner, Rolf
2013-04-01
The potential effect of climate change on hydrology is the acceleration of the hydrological cycle that in turn will likely cause changes in the discharge regime. As a result, socio-economic systems (e.g., tourism, hydropower industry) may be drastically affected. In this study, we comprehensively analyzed the effect of climate change on different hydrological components like mean and low-flow levels, and drought stress in mesoscale catchments of Switzerland. In terms of mean flows approx. 200 catchments in Switzerland were simulated for the reference period 1984-2005 using the hydrological model PREVAH and projection for near (2025-2046) and far future (2074-2095) are based on delta-change values of 10 ENSEMBLES regional climate models assuming A1B emission scenario (CH2011 climate scenario data sets). We found seven distinct response types of catchments, each exhibiting a characteristic annual cycle of hydrologic change. A general pattern observed for all catchments, is the clearly decreasing summer runoff. Hence, within a second analysis of future discharge a special focus was set on summer low flow in a selection of 29 catchments in the Swiss Midlands. Low flows are critical as they have great implications on water usage and biodiversity. We re-calibrated the hydrological model PREVAH with a focus on base-flow and gauged discharge and used the aforementioned climate data sets and simulation time periods. We found low flow situations to be very likely to increase in both, magnitude and duration, especially in central and western Switzerland plateau. At third, the drought stress potential was analyzed by simulating the soil moisture level under climate change conditions in a high mountain catchment. We used the distributed hydrological model WaSiM-ETH for this aspect as soil characteristics are much better represented in this model. Soil moisture in forests below 2000 m a.s.l. were found to be affected at most, which might have implication to their function as avalanche protection forests. However, we found high uncertainties related to the downscaling method applied. Finally, we analyzed the effect of changed discharge characteristics on the hydropower production by coupling the hydrological model BERNHYDRO with a hydropower management model. For the near future (until 2050), the results indicate that losses in the hydropower production during the summer can be compensated by benefit during winter. These different aspects of climate change impacts on the hydrosphere reveal a differentiated picture involving potentially threatened and widely unaffected catchments, hydrologic parameters and hydrologic constraints to the society.
NASA Astrophysics Data System (ADS)
Eirini Vozinaki, Anthi; Tapoglou, Evdokia; Tsanis, Ioannis
2017-04-01
Climate change, although is already happening, consists of a big threat capable of causing lots of inconveniences in future societies and their economies. In this work, the climate change impact on the hydrological behavior of several Mediterranean sub-catchments, in Crete, is presented. The sensitivity of these hydrological systems to several climate change scenarios is also provided. The HBV hydrological model has been used, calibrated and validated for the study sub-catchments against measured weather and streamflow data and inputs. The impact of climate change on several hydro-meteorological parameters (i.e. precipitation, streamflow etc.) and hydrological signatures (i.e. spring flood peak, length and volume, base flow, flow duration curves, seasonality etc.) have been statistically elaborated and analyzed, defining areas of increased probability risk associated additionally to flooding or drought. The potential impacts of climate change on current and future water resources have been quantified by driving HBV model with current and future scenarios, respectively, for specific climate periods. This work aims to present an integrated methodology for the definition of future climate and hydrological risks and the prediction of future water resources behavior. Future water resources management could be rationally effectuated, in Mediterranean sub-catchments prone to drought or flooding, using the proposed methodology. The research reported in this paper was fully supported by the Project "Innovative solutions to climate change adaptation and governance in the water management of the Region of Crete - AQUAMAN" funded within the framework of the EEA Financial Mechanism 2009-2014.
NASA Astrophysics Data System (ADS)
Honti, Mark; Reichert, Peter; Scheidegger, Andreas; Stamm, Christian
2013-04-01
Climate change impact assessments have become more and more popular in hydrology since the middle 1980's with another boost after the publication of the IPCC AR4 report. During hundreds of impact studies a quasi-standard methodology emerged, which is mainly shaped by the growing public demand for predicting how water resources management or flood protection should change in the close future. The ``standard'' workflow considers future climate under a specific IPCC emission scenario simulated by global circulation models (GCMs), possibly downscaled by a regional climate model (RCM) and/or a stochastic weather generator. The output from the climate models is typically corrected for bias before feeding it into a calibrated hydrological model, which is run on the past and future meteorological data to analyse the impacts of climate change on the hydrological indicators of interest. The impact predictions are as uncertain as any forecast that tries to describe the behaviour of an extremely complex system decades into the future. Future climate predictions are uncertain due to the scenario uncertainty and the GCM model uncertainty that is obvious on finer resolution than continental scale. Like in any hierarchical model system, uncertainty propagates through the descendant components. Downscaling increases uncertainty with the deficiencies of RCMs and/or weather generators. Bias correction adds a strong deterministic shift to the input data. Finally the predictive uncertainty of the hydrological model ends the cascade that leads to the total uncertainty of the hydrological impact assessment. There is an emerging consensus between many studies on the relative importance of the different uncertainty sources. The prevailing perception is that GCM uncertainty dominates hydrological impact studies. There are only few studies, which found that the predictive uncertainty of hydrological models can be in the same range or even larger than climatic uncertainty. We carried out a climate change impact assessment and estimated the relative importance of the uncertainty sources. The study was performed on 2 small catchments in the Swiss Plateau with a lumped conceptual rainfall runoff model. In the climatic part we applied the standard ensemble approach to quantify uncertainty but in hydrology we used formal Bayesian uncertainty assessment method with 2 different likelihood functions. One was a time-series error model that was able to deal with the complicated statistical properties of hydrological model residuals. The second was a likelihood function for the flow quantiles directly. Due to the better data coverage and smaller hydrological complexity in one of our test catchments we had better performance from the hydrological model and thus could observe that the relative importance of different uncertainty sources varied between sites, boundary conditions and flow indicators. The uncertainty of future climate was important, but not dominant. The deficiencies of the hydrological model were on the same scale, especially for the sites and flow components where model performance for the past observations was further from optimal (Nash-Sutcliffe index = 0.5 - 0.7). The overall uncertainty of predictions was well beyond the expected change signal even for the best performing site and flow indicator.
Faunt, Claudia C.; Stamos, Christina L.; Flint, Lorraine E.; Wright, Michael T.; Burgess, Matthew K.; Sneed, Michelle; Brandt, Justin; Martin, Peter; Coes, Alissa L.
2015-11-24
This report documents and presents (1) an analysis of the conceptual model, (2) a description of the hydrologic features, (3) a compilation and analysis of water-quality data, (4) the measurement and analysis of land subsidence by using geophysical and remote sensing techniques, (5) the development and calibration of a two-dimensional borehole-groundwater-flow model to estimate aquifer hydraulic conductivities, (6) the development and calibration of a three-dimensional (3-D) integrated hydrologic flow model, (7) a water-availability analysis with respect to current climate variability and land use, and (8) potential future management scenarios. The integrated hydrologic model, referred to here as the “Borrego Valley Hydrologic Model” (BVHM), is a tool that can provide results with the accuracy needed for making water-management decisions, although potential future refinements and enhancements could further improve the level of spatial and temporal resolution and model accuracy. Because the model incorporates time-varying inflows and outflows, this tool can be used to evaluate the effects of temporal changes in recharge and pumping and to compare the relative effects of different water-management scenarios on the aquifer system. Overall, the development of the hydrogeologic and hydrologic models, data networks, and hydrologic analysis provides a basis for assessing surface and groundwater availability and potential water-resource management guidelines.
Reservoir Performance Under Future Climate For Basins With Different Hydrologic Sensitivities
NASA Astrophysics Data System (ADS)
Mateus, M. C.; Tullos, D. D.
2013-12-01
In addition to long-standing uncertainties related to variable inflows and market price of power, reservoir operators face a number of new uncertainties related to hydrologic nonstationarity, changing environmental regulations, and rapidly growing water and energy demands. This study investigates the impact, sensitivity, and uncertainty of changing hydrology on hydrosystem performance across different hydrogeologic settings. We evaluate the performance of reservoirs in the Santiam River basin, including a case study in the North Santiam Basin, with high permeability and extensive groundwater storage, and the South Santiam Basin, with low permeability, little groundwater storage and rapid runoff response. The modeling objective is to address the following study questions: (1) for the two hydrologic regimes, how does the flood management, water supply, and environmental performance of current reservoir operations change under future 2.5, 50 and 97.5 percentile streamflow projections; and (2) how much change in inflow is required to initiate a failure to meet downstream minimum or maximum flows in the future. We couple global climate model results with a rainfall-runoff model and a formal Bayesian uncertainty analysis to simulate future inflow hydrographs as inputs to a reservoir operations model. To evaluate reservoir performance under a changing climate, we calculate reservoir refill reliability, changes in flood frequency, and reservoir time and volumetric reliability of meeting minimum spring and summer flow target. Reservoir performance under future hydrology appears to vary with hydrogeology. We find higher sensitivity to floods for the North Santiam Basin and higher sensitivity to minimum flow targets for the South Santiam Basin. Higher uncertainty is related with basins with a more complex hydrologeology. Results from model simulations contribute to understanding of the reliability and vulnerability of reservoirs to a changing climate.
NASA Astrophysics Data System (ADS)
Foulon, Étienne; Rousseau, Alain N.; Gagnon, Patrick
2018-02-01
Low flow conditions are governed by short-to-medium term weather conditions or long term climate conditions. This prompts the question: given climate scenarios, is it possible to assess future extreme low flow conditions from climate data indices (CDIs)? Or should we rely on the conventional approach of using outputs of climate models as inputs to a hydrological model? Several CDIs were computed using 42 climate scenarios over the years 1961-2100 for two watersheds located in Québec, Canada. The relationship between the CDIs and hydrological data indices (HDIs; 7- and 30-day low flows for two hydrological seasons) were examined through correlation analysis to identify the indices governing low flows. Results of the Mann-Kendall test, with a modification for autocorrelated data, clearly identified trends. A partial correlation analysis allowed attributing the observed trends in HDIs to trends in specific CDIs. Furthermore, results showed that, even during the spatial validation process, the methodological framework was able to assess trends in low flow series from: (i) trends in the effective drought index (EDI) computed from rainfall plus snowmelt minus PET amounts over ten to twelve months of the hydrological snow cover season or (ii) the cumulative difference between rainfall and potential evapotranspiration over five months of the snow free season. For 80% of the climate scenarios, trends in HDIs were successfully attributed to trends in CDIs. Overall, this paper introduces an efficient methodological framework to assess future trends in low flows given climate scenarios. The outcome may prove useful to municipalities concerned with source water management under changing climate conditions.
NASA Astrophysics Data System (ADS)
Deines, A. M.; Morrison, A. M.; Menzie, C.
2016-12-01
The wide variety of ecosystem services associated with running fresh waters are dependent on an assortment of flow conditions including timing and duration of seasonal floods as well as intermittent flows, such as storm peaks. Modern methods of assessing environmental flows consider hydrological regime change by comparing actual or simulated baseline flow conditions against putatively altered regime flows. These calculated flow changes are used as inputs to models of ecosystem responses such as for fish populations, inundated habitat area, or nutrient supplies. However, common and recommended tools and software used to make flow comparisons between putative regimes lack robust mechanisms for evaluating the significance of hydrological regime change in the context of long-term (multiple decades, centuries, or greater) trends, such as climatic conditions, or the facility to determine the existence and causes of regime changes when no obvious discontinuity exists, such as the construction of a dam. As such, environmental flow decisions based on short (recent) baseline records or baseline records assumed to represent stable hydrological conditions may lead to inefficient water use and ecosystem services distribution. Here we examine long-term patterns in discharge, the frequency and severity of regional droughts, and the Atlantic Multidecadal Oscillation to better understand the occurrence and causes of hydrological regime change in rivers in the Southern United States. For each river we ask: 1) Has hydrological regime change occurred? 2) To what degree is observed regime change associated with regional climatic drivers? 3) How might environmental flows suggested by current methods (e.g. the USGS Hydroecological Integrity Assessment or the Indicators of Hydrologic Alteration software) compare with flows derived by additional consideration of long-term drivers of hydrological change? We discuss the different temporal scales through which climate can influence a hydrological regime and provide insights for evaluating or planning expected future flow regimes under potential conditions of water scarcity.
Watershed analysis of the Salmon River watershed, Washington : hydrology
Bidlake, William R.
2003-01-01
The U.S. Geological Survey analyzed selected hydrologic conditions as part of a watershed analysis of the Salmon River watershed, Washington, conducted by the Quinault Indian Nation. The selected hydrologic conditions were analyzed according to a framework of hydrologic key questions that were identified for the watershed. The key questions were posed to better understand the natural, physical, and biological features of the watershed that control hydrologic responses; to better understand current streamflow characteristics, including peak and low flows; to describe any evidence that forest harvesting and road construction have altered frequency and magnitude of peak and low flows within the watershed; to describe what is currently known about the distribution and extent of wetlands and any impacts of land management activities on wetlands; and to describe how hydrologic monitoring within the watershed might help to detect future hydrologic change, to preserve critical ecosystem functions, and to protect public and private property.
Hydrologic impacts of high severity wildfire: Learning from the past and preparing for the future
Daniel G. Neary; Karen A. Koestner; Ann Youberg
2011-01-01
Wildfire is a natural disturbance with epic potential to drastically alter watershed hydrologic condition. Basins with high-burn severity, especially those with steep previously forested terrain, have flashier hydrographs and can produce peak-flows orders of magnitude greater than pre-fire conditions. This is due to fundamental changes in the hydrology of burnt...
NASA Astrophysics Data System (ADS)
Gallice, Aurélien; Bavay, Mathias; Brauchli, Tristan; Comola, Francesco; Lehning, Michael; Huwald, Hendrik
2016-12-01
Climate change is expected to strongly impact the hydrological and thermal regimes of Alpine rivers within the coming decades. In this context, the development of hydrological models accounting for the specific dynamics of Alpine catchments appears as one of the promising approaches to reduce our uncertainty of future mountain hydrology. This paper describes the improvements brought to StreamFlow, an existing model for hydrological and stream temperature prediction built as an external extension to the physically based snow model Alpine3D. StreamFlow's source code has been entirely written anew, taking advantage of object-oriented programming to significantly improve its structure and ease the implementation of future developments. The source code is now publicly available online, along with a complete documentation. A special emphasis has been put on modularity during the re-implementation of StreamFlow, so that many model aspects can be represented using different alternatives. For example, several options are now available to model the advection of water within the stream. This allows for an easy and fast comparison between different approaches and helps in defining more reliable uncertainty estimates of the model forecasts. In particular, a case study in a Swiss Alpine catchment reveals that the stream temperature predictions are particularly sensitive to the approach used to model the temperature of subsurface flow, a fact which has been poorly reported in the literature to date. Based on the case study, StreamFlow is shown to reproduce hourly mean discharge with a Nash-Sutcliffe efficiency (NSE) of 0.82 and hourly mean temperature with a NSE of 0.78.
Amin, M Z M; Shaaban, A J; Ercan, A; Ishida, K; Kavvas, M L; Chen, Z Q; Jang, S
2017-01-01
Impacts of climate change on the hydrologic processes under future climate change conditions were assessed over Muda and Dungun watersheds of Peninsular Malaysia by means of a coupled regional climate and physically-based hydrology model utilizing an ensemble of future climate change projections. An ensemble of 15 different future climate realizations from coarse resolution global climate models' (GCMs) projections for the 21st century was dynamically downscaled to 6km resolution over Peninsular Malaysia by a regional climate model, which was then coupled with the watershed hydrology model WEHY through the atmospheric boundary layer over Muda and Dungun watersheds. Hydrologic simulations were carried out at hourly increments and at hillslope-scale in order to assess the impacts of climate change on the water balances and flooding conditions in the 21st century. The coupled regional climate and hydrology model was simulated for a duration of 90years for each of the 15 realizations. It is demonstrated that the increase in mean monthly flows due to the impact of expected climate change during 2040-2100 is statistically significant from April to May and from July to October at Muda watershed. Also, the increase in mean monthly flows is shown to be significant in November during 2030-2070 and from November to December during 2070-2100 at Dungun watershed. In other words, the impact of the expected climate change will be significant during the northeast and southwest monsoon seasons at Muda watershed and during the northeast monsoon season at Dungun watershed. Furthermore, the flood frequency analyses for both watersheds indicated an overall increasing trend in the second half of the 21st century. Copyright © 2016 Elsevier B.V. All rights reserved.
Natural flow regimes of the Ozark-Ouachita Interior Highlands region
Leasure, D. R.; Magoulick, Daniel D.; Longing, S. D.
2016-01-01
Natural flow regimes represent the hydrologic conditions to which native aquatic organisms are best adapted. We completed a regional river classification and quantitative descriptions of each natural flow regime for the Ozark–Ouachita Interior Highlands region of Arkansas, Missouri and Oklahoma. On the basis of daily flow records from 64 reference streams, seven natural flow regimes were identified with mixture model cluster analysis: Groundwater Stable, Groundwater, Groundwater Flashy, Perennial Runoff, Runoff Flashy, Intermittent Runoff and Intermittent Flashy. Sets of flow metrics were selected that best quantified nine ecologically important components of these natural flow regimes. An uncertainty analysis was performed to avoid selecting metrics strongly affected by measurement uncertainty that can result from short periods of record. Measurement uncertainties (bias, precision and accuracy) were assessed for 170 commonly used flow metrics. The ranges of variability expected for select flow metrics under natural conditions were quantified for each flow regime to provide a reference for future assessments of hydrologic alteration. A random forest model was used to predict the natural flow regimes of all stream segments in the study area based on climate and catchment characteristics, and a map was produced. The geographic distribution of flow regimes suggested distinct ecohydrological regions that may be useful for conservation planning. This project provides a hydrologic foundation for future examination of flow–ecology relationships in the region. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.
Belmar, Oscar; Velasco, Josefa; Martinez-Capel, Francisco
2011-05-01
Hydrological classification constitutes the first step of a new holistic framework for developing regional environmental flow criteria: the "Ecological Limits of Hydrologic Alteration (ELOHA)". The aim of this study was to develop a classification for 390 stream sections of the Segura River Basin based on 73 hydrological indices that characterize their natural flow regimes. The hydrological indices were calculated with 25 years of natural monthly flows (1980/81-2005/06) derived from a rainfall-runoff model developed by the Spanish Ministry of Environment and Public Works. These indices included, at a monthly or annual basis, measures of duration of droughts and central tendency and dispersion of flow magnitude (average, low and high flow conditions). Principal Component Analysis (PCA) indicated high redundancy among most hydrological indices, as well as two gradients: flow magnitude for mainstream rivers and temporal variability for tributary streams. A classification with eight flow-regime classes was chosen as the most easily interpretable in the Segura River Basin, which was supported by ANOSIM analyses. These classes can be simplified in 4 broader groups, with different seasonal discharge pattern: large rivers, perennial stable streams, perennial seasonal streams and intermittent and ephemeral streams. They showed a high degree of spatial cohesion, following a gradient associated with climatic aridity from NW to SE, and were well defined in terms of the fundamental variables in Mediterranean streams: magnitude and temporal variability of flows. Therefore, this classification is a fundamental tool to support water management and planning in the Segura River Basin. Future research will allow us to study the flow alteration-ecological response relationship for each river type, and set the basis to design scientifically credible environmental flows following the ELOHA framework.
NASA Astrophysics Data System (ADS)
Krogh, S. A.; Pomeroy, J. W.
2017-12-01
Increasing temperatures are producing higher rainfall ratios, shorter snow-covered periods, permafrost thaw, more shrub coverage, more northerly treelines and greater interaction between groundwater and surface flow in Arctic basins. How these changes will impact the hydrology of the Arctic treeline environment represents a great challenge. To diagnose the future hydrology along the current Arctic treeline, a physically based cold regions model was used to simulate the hydrology of a small basin near Inuvik, Northwest Territories, Canada. The hydrological model includes hydrological processes such as snow redistribution and sublimation by wind, canopy interception of snow/rain and sublimation/evaporation, snowmelt energy balance, active layer freeze/thaw, infiltration into frozen and unfrozen soils, evapotranspiration, horizontal flow through organic terrain and snowpack, subsurface flow and streamflow routing. The model was driven with weather simulated by a high-resolution (4 km) numerical weather prediction model under two scenarios: (1) control run, using ERA-Interim boundary conditions (2001-2013) and (2) future, using a Pseudo-Global Warming (PGW) approach based on the RCP8.5 projections perturbing the control run. Transient changes in vegetation based on recent observations and ecological expectations were then used to re-parameterise the model. Historical hydrological simulations were validated against daily streamflow, snow water equivalent and active layer thickness records, showing the model's suitability in this environment. Strong annual warming ( 6 °C) and more precipitation ( 20%) were simulated by the PGW scenario, with winter precipitation and fall temperature showing the largest seasonal increase. The joint impact of climate and transient vegetation changes on snow accumulation and redistribution, evapotranspiration, active layer development, runoff generation and hydrograph characteristics are analyzed and discussed.
NASA Astrophysics Data System (ADS)
Yaeger, Mary A.; Housh, Mashor; Cai, Ximing; Sivapalan, Murugesu
2014-12-01
To better address the dynamic interactions between human and hydrologic systems, we develop an integrated modeling framework that employs a System of Systems optimization model to emulate human development decisions which are then incorporated into a watershed model to estimate the resulting hydrologic impacts. The two models are run interactively to simulate the coevolution of coupled human-nature systems, such that reciprocal feedbacks between hydrologic processes and human decisions (i.e., human impacts on critical low flows and hydrologic impacts on human decisions on land and water use) can be assessed. The framework is applied to a Midwestern U.S. agricultural watershed, in the context of proposed biofuels development. This operation is illustrated by projecting three possible future coevolution trajectories, two of which use dedicated biofuel crops to reduce annual watershed nitrate export while meeting ethanol production targets. Imposition of a primary external driver (biofuel mandate) combined with different secondary drivers (water quality targets) results in highly nonlinear and multiscale responses of both the human and hydrologic systems, including multiple tradeoffs, impacting the future coevolution of the system in complex, heterogeneous ways. The strength of the hydrologic response is sensitive to the magnitude of the secondary driver; 45% nitrate reduction target leads to noticeable impacts at the outlet, while a 30% reduction leads to noticeable impacts that are mainly local. The local responses are conditioned by previous human-hydrologic modifications and their spatial relationship to the new biofuel development, highlighting the importance of past coevolutionary history in predicting future trajectories of change.
Statistical control in hydrologic forecasting.
H.G. Wilm
1950-01-01
With rapidly growing development and uses of water, a correspondingly great demand has developed for advance estimates of the volumes or rates of flow which are supplied by streams. Therefore much attention is being devoted to hydrologic forecasting, and numerous methods have been tested in efforts to make increasingly reliable estimates of future supplies.
Hydrologic system state at debris flow initiation in the Pitztal catchment, Austria
NASA Astrophysics Data System (ADS)
Mostbauer, Karin; Hrachowitz, Markus; Prenner, David; Kaitna, Roland
2017-04-01
Debris flows represent a severe hazard in mountain regions. Though significant effort has been made to forecast such events, the trigger conditions as well as the hydrologic disposition of a watershed at the time of debris flow occurrence are not well understood. To improve our knowledge on the connection between debris flow initiation and the hydrologic system, this study applies a semi-distributed conceptual rainfall-runoff model, linking different system state variables such as soil moisture, snowmelt, or runoff with documented debris flow events in the Pitztal watershed, western Austria. The hydrologic modelling was performed on a daily basis between 1953 and 2012. High-intensity rainfall could be identified as the dominant trigger (31 out of 43 debris flows), while triggering exclusively by low-intensity, long-lasting rainfall was only observed in one single case. The remaining events were related to snowmelt; whether all of these events where triggered by rain-on-snow, or whether some of these events were actually triggered by snowmelt only, remains unclear since the occurrence of un- resp. underrecorded rainfall was detected frequently. The usage of a conceptual hydrological model for investigating debris flow initiation constitutes a novel approach in debris flow research and was assessed as very valuable. For future studies, it is recommended to evaluate also sub-daily information. As antecedent snowmelt was found to be much more important to debris flow initiation than antecedent rainfall, it might prove beneficial to include snowmelt in the commonly used rainfall intensity-duration thresholds.
Long-term flow forecasts based on climate and hydrologic modeling: Uruguay River basin
NASA Astrophysics Data System (ADS)
Tucci, Carlos Eduardo Morelli; Clarke, Robin Thomas; Collischonn, Walter; da Silva Dias, Pedro Leite; de Oliveira, Gilvan Sampaio
2003-07-01
This paper describes a procedure for predicting seasonal flow in the Rio Uruguay drainage basin (area 75,000 km2, lying in Brazilian territory), using sequences of future daily rainfall given by the global climate model (GCM) of the Brazilian agency for climate prediction (Centro de Previsão de Tempo e Clima, or CPTEC). Sequences of future daily rainfall given by this model were used as input to a rainfall-runoff model appropriate for large drainage basins. Forecasts of flow in the Rio Uruguay were made for the period 1995-2001 of the full record, which began in 1940. Analysis showed that GCM forecasts underestimated rainfall over almost all the basin, particularly in winter, although interannual variability in regional rainfall was reproduced relatively well. A statistical procedure was used to correct for the underestimation of rainfall. When the corrected rainfall sequences were transformed to flow by the hydrologic model, forecasts of flow in the Rio Uruguay basin were better than forecasts based on historic mean or median flows by 37% for monthly flows and by 54% for 3-monthly flows.
NASA Astrophysics Data System (ADS)
Olivares, M. A.
2011-12-01
Hydropower accounts for about 50% of the installed capacity in Chile's Central Interconnected System (CIS) and new developments are envisioned in the near future. Large projects involving reservoirs are perceived negatively by the general public. In terms of operations, hydropower scheduling takes place at monthly, weekly, daily and hourly intervals, and operations at each level affect different environmental processes. Due to its ability to quickly and inexpensively respond to short-term changes in demand, hydropower reservoirs often are operated to provide power during periods of peak demand. This operational scheme, known as hydropeaking, changes the hydrologic regime by altering the rate and frequency of changes in flow magnitude on short time scales. To mitigate impacts on downstream ecosystems, operational constraints -typically minimum instream flows and maximum ramping rates- are imposed on hydropower plants. These operational restrictions limit reduce operational flexibility and can reduce the economic value of energy generation by imposing additional costs on the operation of interconnected power systems. Methods to predict the degree of hydrologic alteration rely on statistical analyses of instream flow time series. Typically, studies on hydrologic alteration use historical operational records for comparison between pre- and post-dam conditions. Efforts to assess hydrologic alteration based on future operational schemes of reservoirs are scarce. This study couples two existing models: a mid-term operations planning and a short-term economic dispatch to simulate short-term hydropower reservoir operations under different future scenarios. Scenarios of possible future configurations of the Chilean CIS are defined with emphasis on the introduction of non-conventional renewables (particularly wind energy) and large hydropower projects in Patagonia. Both models try to reproduce the actual decision making process in the Chilean Central Interconnected System (CIS). Chile's CIS is structured as a mandatory pool with audited costs and therefore the economic dispatch can be formulated as a cost minimization problem. Consequently, hydropower reservoir operations are controlled by the ISO. Reservoirs with the most potential to cause short-term hydrologic alteration were identified from existing operational records. These records have also been used to validate our simulated operations. Results in terms of daily and subdaily hydrologic alteration as well as the economic performance of the CIS are presented for alternative energy matrix scenarios. Tradeoff curves representing the compromise between indicators of hydrologic alteration and economic indicators of the CIS operation are developed.
Kennen, Jonathan G.; Henriksen, James A.; Nieswand, Steven P.
2007-01-01
The natural flow regime paradigm and parallel stream ecological concepts and theories have established the benefits of maintaining or restoring the full range of natural hydrologic variation for physiochemical processes, biodiversity, and the evolutionary potential of aquatic and riparian communities. A synthesis of recent advances in hydroecological research coupled with stream classification has resulted in a new process to determine environmental flows and assess hydrologic alteration. This process has national and international applicability. It allows classification of streams into hydrologic stream classes and identification of a set of non-redundant and ecologically relevant hydrologic indices for 10 critical sub-components of flow. Three computer programs have been developed for implementing the Hydroecological Integrity Assessment Process (HIP): (1) the Hydrologic Indices Tool (HIT), which calculates 171 ecologically relevant hydrologic indices on the basis of daily-flow and peak-flow stream-gage data; (2) the New Jersey Hydrologic Assessment Tool (NJHAT), which can be used to establish a hydrologic baseline period, provide options for setting baseline environmental-flow standards, and compare past and proposed streamflow alterations; and (3) the New Jersey Stream Classification Tool (NJSCT), designed for placing unclassified streams into pre-defined stream classes. Biological and multivariate response models including principal-component, cluster, and discriminant-function analyses aided in the development of software and implementation of the HIP for New Jersey. A pilot effort is currently underway by the New Jersey Department of Environmental Protection in which the HIP is being used to evaluate the effects of past and proposed surface-water use, ground-water extraction, and land-use changes on stream ecosystems while determining the most effective way to integrate the process into ongoing regulatory programs. Ultimately, this scientifically defensible process will help to quantify the effects of anthropogenic changes and development on hydrologic variability and help planners and resource managers balance current and future water requirements with ecological needs.
NASA Astrophysics Data System (ADS)
Groppelli, B.; Confortola, G.; Soncini, A.; Bocchiola, D.; Rosso, R.
2011-12-01
We merge hydraulic river modelling, use of suitability functions for fish guild colonization and hydrological modelling of catchment response to investigate future (until 2100) hydrological cycle and fish habitat suitability for an Alpine catchment in Italy, Serio river (drainage area 450 Km2, average altitude 1300 m a.s.l., main channel length ca. 36 km). Based upon detailed river channel morphology data for 73 river sections and direct local investigation we then set up and tune a quasi 2-D (i.e. with floodplains) hydraulic model for in channel flows hydraulics, depending upon daily in stream discharge. We then evaluate distributed values of hydraulic variables and therein composite habitat suitability indexes CS for a representative target species (brown trout, Salmo Trutta Fario L.), resulting into usable wetted area WUA for fish colonization. We consider both juvenile JUV and adults AD, and we evaluate the frequency (days in a year/season) of yearly/seasonal, spatially distributed and bulk (whole stream) habitat quality. We then provide synthetic indicators of (yearly/seasonal) suitability level and duration within the river. We then set up a minimal (T, P), properly tuned hydrological model able to mimick Serio river's hydrological cycle. We then use downscaled future precipitation and temperature from three general circulation models, GCMs (PCM, CCSM3, and HadCM3) available within the IPCC's data base chosen for the purpose based upon previous studies, to feed our hydrological model and provide projected hydrological regime of the catchment, together with modified habitat suitability. We then comment upon modified flow regime, habitat suitability as obtained and related uncertainty. The proposed results may be of use for river managers and may provide a template for investigation about future river habitat quality pending climate change.
Fatichi, Simone; Vivoni, Enrique R.; Odgen, Fred L; Ivanov, Valeriy Y; Mirus, Benjamin B.; Gochis, David; Downer, Charles W; Camporese, Matteo; Davison, Jason H; Ebel, Brian A.; Jones, Norm; Kim, Jongho; Mascaro, Giuseppe; Niswonger, Richard G.; Restrepo, Pedro; Rigon, Riccardo; Shen, Chaopeng; Sulis, Mauro; Tarboton, David
2016-01-01
Process-based hydrological models have a long history dating back to the 1960s. Criticized by some as over-parameterized, overly complex, and difficult to use, a more nuanced view is that these tools are necessary in many situations and, in a certain class of problems, they are the most appropriate type of hydrological model. This is especially the case in situations where knowledge of flow paths or distributed state variables and/or preservation of physical constraints is important. Examples of this include: spatiotemporal variability of soil moisture, groundwater flow and runoff generation, sediment and contaminant transport, or when feedbacks among various Earth’s system processes or understanding the impacts of climate non-stationarity are of primary concern. These are situations where process-based models excel and other models are unverifiable. This article presents this pragmatic view in the context of existing literature to justify the approach where applicable and necessary. We review how improvements in data availability, computational resources and algorithms have made detailed hydrological simulations a reality. Avenues for the future of process-based hydrological models are presented suggesting their use as virtual laboratories, for design purposes, and with a powerful treatment of uncertainty.
Impact of Climate Change on Mercury Transport along the Carson River-Lahontan Reservoir System
NASA Astrophysics Data System (ADS)
Flickinger, A.; Carroll, R. W. H.; Warwick, J. J.; Schumer, R.
2014-12-01
Historic mining practices have left the Carson River and Lahontan Reservoir (CRLR) system contaminated with high levels of mercury (Hg). Hg levels in Lahontan Reservoir planktivorous and predatory fish exceed federal consumption limits. Inputs of Hg to the system are mainly a result of erosion during high flow and diffusion from sediment during low flow, and the relationships between streamflow and both mercury transport and bioaccumulation are non-linear. The United States Bureau of Reclamation has produced future streamflow estimates for 2000-2099 using 112 CMIP3 climate projections and the Variable Infiltration Capacity (VIC) model. VIC results suggest that the hydrology of the system is likely to experience higher frequencies of both high and low extreme flows, and the monthly averages of future flows are expected to be higher in the winter and lower in the summer compared to observed flows. VIC daily streamflow estimates are biased-corrected using an empirical cumulative distribution function to match observed data over the historic period of 1950-1999. Future reservoir stage and outflows are modeled assuming reservoir operations are a function of river/canal inflows, previous reservoir stage and downstream agricultural demands. VIC and reservoir flows drive the CRLR Hg transport model (RIVMOD, WASP5, and MERC4). Daily output for both total and dissolved inorganic Hg and methylmercury (MeHg) are averaged at the decadal timescale to assess changes and uncertainty in predicted spatial and temporal Hg species water column concentrations as a function of altered hydrology with respect to changing climate. Future research will use CRLR output in a bioenergetics and Hg mass balance model for Sacramento blackfish (Orthodon microlepidotus), a filter feeding cyprinid found in Lahontan Reservoir. These future simulations will help to assess possible changes in ecosystem health with respect to hydrologic conditions and associated changes to Hg transport.
NASA Astrophysics Data System (ADS)
Pulido-Velazquez, David; Renau-Pruñonosa, Arianna; Llopis-Albert, Carlos; Morell, Ignacio; Collados-Lara, Antonio-Juan; Senent-Aparicio, Javier; Baena-Ruiz, Leticia
2018-05-01
Any change in the components of the water balance in a coastal aquifer, whether natural or anthropogenic, can alter the freshwater-salt water equilibrium. In this sense climate change (CC) and land use and land cover (LULC) change might significantly influence the availability of groundwater resources in the future. These coastal systems demand an integrated analysis of quantity and quality issues to obtain an appropriate assessment of hydrological impacts using density-dependent flow solutions. The aim of this work is to perform an integrated analysis of future potential global change (GC) scenarios and their hydrological impacts in a coastal aquifer, the Plana Oropesa-Torreblanca aquifer. It is a Mediterranean aquifer that extends over 75 km2 in which important historical LULC changes have been produced and are planned for the future. Future CC scenarios will be defined by using an equi-feasible and non-feasible ensemble of projections based on the results of a multi-criteria analysis of the series generated from several regional climatic models with different downscaling approaches. The hydrological impacts of these CC scenarios combined with future LULC scenarios will be assessed with a chain of models defined by a sequential coupling of rainfall-recharge models, crop irrigation requirements and irrigation return models (for the aquifer and its neighbours that feed it), and a density-dependent aquifer approach. This chain of models, calibrated using the available historical data, allow testing of the conceptual approximation of the aquifer behaviour. They are also fed with series representatives of potential global change scenarios in order to perform a sensitivity analysis regarding future scenarios of rainfall recharge, lateral flows coming from the hydraulically connected neighbouring aquifer, agricultural recharge (taking into account expected future LULC changes) and sea level rise (SLR). The proposed analysis is valuable for improving our knowledge about the aquifer, and so comprises a tool to design sustainable adaptation management strategies taking into account the uncertainty in future GC conditions and their impacts. The results show that GC scenarios produce significant increases in the variability of flow budget components and in the salinity.
Quantifying the impact of land use change on hydrological responses in the Upper Ganga Basin, India
NASA Astrophysics Data System (ADS)
Tsarouchi, Georgia-Marina; Mijic, Ana; Moulds, Simon; Chawla, Ila; Mujumdar, Pradeep; Buytaert, Wouter
2013-04-01
Quantifying how changes in land use affect the hydrological response at the river basin scale is a challenge in hydrological science and especially in the tropics where many regions are considered data sparse. Earlier work by the authors developed and used high-resolution, reconstructed land cover maps for northern India, based on satellite imagery and historic land-use maps for the years 1984, 1998 and 2010. Large-scale land use changes and their effects on landscape patterns can impact water supply in a watershed by altering hydrological processes such as evaporation, infiltration, surface runoff, groundwater discharge and stream flow. Three land use scenarios were tested to explore the sensitivity of the catchment's response to land use changes: (a) historic land use of 1984 with integrated evolution to 2010; (b) land use of 2010 remaining stable; and (c) hypothetical future projection of land use for 2030. The future scenario was produced with Markov chain analysis and generation of transition probability matrices, indicating transition potentials from one land use class to another. The study used socio-economic (population density), geographic (distances to roads and rivers, and location of protected areas) and biophysical drivers (suitability of soil for agricultural production, slope, aspect, and elevation). The distributed version of the land surface model JULES was integrated at a resolution of 0.01° for the years 1984 to 2030. Based on a sensitivity analysis, the most sensitive parameters were identified. Then, the model was calibrated against measured daily stream flow data. The impact of land use changes was investigated by calculating annual variations in hydrological components, differences in annual stream flow and surface runoff during the simulation period. The land use changes correspond to significant differences on the long-term hydrologic fluxes for each scenario. Once analysed from a future water resources perspective, the results will be beneficial in constructing decision support tools for regional land-use planning and management.
An evaluation of Dynamic TOPMODEL in natural and human-impacted catchments for low flow simulation
NASA Astrophysics Data System (ADS)
Coxon, Gemma; Freer, Jim; Lane, Rosanna; Musuuza, Jude; Woods, Ross; Wagener, Thorsten; Howden, Nicholas
2017-04-01
Models of catchment hydrology are essential tools for drought risk management, often providing input to water resource system models, aiding our understanding of low flow processes within catchments and providing low flow simulations and predictions. However, simulating low flows is challenging as hydrological systems often demonstrate threshold effects in connectivity, non-linear groundwater contributions and a greater influence of anthropogenic modifications such as surface and ground water abstractions during low flow periods. These processes are typically not well represented in commonly used hydrological models due to knowledge, data and model limitations. Hence, a better understanding of the natural and human processes that occur during low flows, how these are represented within models and how they could be improved is required to be able to provide robust and reliable predictions of future drought events. The aim of this study is to assess the skill of dynamic TOPMODEL during low flows for both natural and human-impacted catchments. Dynamic TOPMODEL was chosen for this study as it is able to explicitly characterise connectivity and fluxes across landscapes using hydrological response units (HRU's) while still maintaining flexibility in how spatially complex the model is configured and what specific functions (i.e. abstractions or groundwater stores) are represented. We apply dynamic TOPMODEL across the River Thames catchment using daily time series of observed rainfall and potential evapotranspiration data for the period 1999 - 2014, covering two major droughts in the Thames catchment. Significantly, to assess the impact of abstractions on low flows across the Thames catchment, we incorporate functions to characterise over 3,500 monthly surface water and ground water abstractions covering the simulation period into dynamic TOPMODEL. We evaluate dynamic TOPMODEL at over 90 gauging stations across the Thames catchment against multiple signatures of catchment low-flow behaviour in a 'limits of acceptability' GLUE framework. We investigate differences in model performance between signatures, different low flow periods and for natural and human impacted catchments to better understand the ability of dynamic TOPMODEL to represent low flows in space and time. Finally, we discuss future developments of dynamic TOPMODEL to improve low flow simulation and the implications of these results for modelling hydrological extremes in natural and human impacted catchments across the UK and the world.
Multidisciplinary hydrologic investigations at Yucca Mountain, Nevada
Dudley, William W.
1990-01-01
Future climatic conditions and tectonic processes have the potential to cause significant changes of the hydrologic system in the southern Great Basin, where a nuclear-waste repository is proposed for construction above the water table at Yucca Mountain, Nevada. Geothermal anomalies in the vicinity of Yucca Mountain probably result from the local and regional transport of heat by ground-water flow. Regionally and locally irregular patterns of hydraulic potential, local marsh and pond deposits, and calcite veins in faults and fractures probably are related principally to climatically imposed hydrologic conditions within the geologic and topographic framework. However, tectonic effects on the hydrologic system have also been proposed as the causes of these features, and existing data limitations preclude a full evaluation of these competing hypotheses. A broad program that integrates many disciplines of earth science is required in order to understand the relation of hydrology to past, present and future climates and tectonism.
Soncini, Andrea; Bocchiola, Daniele; Confortola, Gabriele; Minora, Umberto; Vuillermoz, Elisa; Salerno, Franco; Viviano, Gaetano; Shrestha, Dibas; Senese, Antonella; Smiraglia, Claudio; Diolaiuti, Guglielmina
2016-09-15
Assessment of future water resources under climate change is required in the Himalayas, where hydrological cycle is poorly studied and little understood. This study focuses on the upper Dudh Koshi river of Nepal (151km(2), 4200-8848ma.s.l.) at the toe of Mt. Everest, nesting the debris covered Khumbu, and Khangri Nup glaciers (62km(2)). New data gathered during three years of field campaigns (2012-2014) were used to set up a glacio-hydrological model describing stream flows, snow and ice melt, ice cover thickness and glaciers' flow dynamics. The model was validated, and used to assess changes of the hydrological cycle until 2100. Climate projections are used from three Global Climate Models used in the recent IPCC AR5 under RCP2.6, RCP4.5 and RCP8.5. Flow statistics are estimated for two reference decades 2045-2054, and 2090-2099, and compared against control run CR, 2012-2014. During CR we found a contribution of ice melt to stream flows of 55% yearly, with snow melt contributing for 19%. Future flows are predicted to increase in monsoon season, but to decrease yearly (-4% vs CR on average) at 2045-2054. At the end of century large reduction would occur in all seasons, i.e. -26% vs CR on average at 2090-2099. At half century yearly contribution of ice melt would be on average 45%, and snow melt 28%. At the end of century ice melt would be 31%, and snow contribution 39%. Glaciers in the area are projected to thin largely up to 6500ma.s.l. until 2100, reducing their volume by -50% or more, and their ice covered area by -30% or more. According to our results, in the future water resources in the upper Dudh Koshi would decrease, and depend largely upon snow melt and rainfall, so that adaptation measures to modified water availability will be required. Copyright © 2016 Elsevier B.V. All rights reserved.
Ragettli, Silvan; Immerzeel, Walter W; Pellicciotti, Francesca
2016-08-16
Mountain ranges are the world's natural water towers and provide water resources for millions of people. However, their hydrological balance and possible future changes in river flow remain poorly understood because of high meteorological variability, physical inaccessibility, and the complex interplay between climate, cryosphere, and hydrological processes. Here, we use a state-of-the art glacio-hydrological model informed by data from high-altitude observations and the latest climate change scenarios to quantify the climate change impact on water resources of two contrasting catchments vulnerable to changes in the cryosphere. The two study catchments are located in the Central Andes of Chile and in the Nepalese Himalaya in close vicinity of densely populated areas. Although both sites reveal a strong decrease in glacier area, they show a remarkably different hydrological response to projected climate change. In the Juncal catchment in Chile, runoff is likely to sharply decrease in the future and the runoff seasonality is sensitive to projected climatic changes. In the Langtang catchment in Nepal, future water availability is on the rise for decades to come with limited shifts between seasons. Owing to the high spatiotemporal resolution of the simulations and process complexity included in the modeling, the response times and the mechanisms underlying the variations in glacier area and river flow can be well constrained. The projections indicate that climate change adaptation in Central Chile should focus on dealing with a reduction in water availability, whereas in Nepal preparedness for flood extremes should be the policy priority.
Pellicciotti, Francesca
2016-01-01
Mountain ranges are the world’s natural water towers and provide water resources for millions of people. However, their hydrological balance and possible future changes in river flow remain poorly understood because of high meteorological variability, physical inaccessibility, and the complex interplay between climate, cryosphere, and hydrological processes. Here, we use a state-of-the art glacio-hydrological model informed by data from high-altitude observations and the latest climate change scenarios to quantify the climate change impact on water resources of two contrasting catchments vulnerable to changes in the cryosphere. The two study catchments are located in the Central Andes of Chile and in the Nepalese Himalaya in close vicinity of densely populated areas. Although both sites reveal a strong decrease in glacier area, they show a remarkably different hydrological response to projected climate change. In the Juncal catchment in Chile, runoff is likely to sharply decrease in the future and the runoff seasonality is sensitive to projected climatic changes. In the Langtang catchment in Nepal, future water availability is on the rise for decades to come with limited shifts between seasons. Owing to the high spatiotemporal resolution of the simulations and process complexity included in the modeling, the response times and the mechanisms underlying the variations in glacier area and river flow can be well constrained. The projections indicate that climate change adaptation in Central Chile should focus on dealing with a reduction in water availability, whereas in Nepal preparedness for flood extremes should be the policy priority. PMID:27482082
NASA Astrophysics Data System (ADS)
Vallam, P.; Qin, X. S.
2017-07-01
Flooding risk is increasing in many parts of the world and may worsen under climate change conditions. The accuracy of predicting flooding risk relies on reasonable projection of meteorological data (especially rainfall) at the local scale. The current statistical downscaling approaches face the difficulty of projecting multi-site climate information for future conditions while conserving spatial information. This study presents a combined Long Ashton Research Station Weather Generator (LARS-WG) stochastic weather generator and multi-site rainfall simulator RainSim (CLWRS) approach to investigate flow regimes under future conditions in the Kootenay Watershed, Canada. To understand the uncertainty effect stemming from different scenarios, the climate output is fed into a hydrologic model. The results showed different variation trends of annual peak flows (in 2080-2099) based on different climate change scenarios and demonstrated that the hydrological impact would be driven by the interaction between snowmelt and peak flows. The proposed CLWRS approach is useful where there is a need for projection of potential climate change scenarios.
NASA Astrophysics Data System (ADS)
Yilmaz, M. T.; Alp, E.; Aras, M.; Özaltın, A. M.; Sarıcan, Y.; Afsar, M.; Bulut, B.; Ersoy, E. N.; Karasu, İ. G.; Onen, A.
2017-12-01
Allocation of the river flow for ecosystems is very critical for sustainable management of ecosystems containing aquatic habitats in need of more water than other environments. Availability and allocation of water over such locations becomes more stressed as a result of the influence of human interventions (e.g., increased water use for irrigation) and the expected change in climate. This study investigates the current and future (until 2100) low-flow requirements over 10 subcatchments in a Mediterranean Watershed, in Turkey, using Tennant and hydrological low-flow methods. The future river flows are estimated using HBV model forced by climate projections obtained by HADGEM2, MPI-ESM-MR, and CNRM-CM5.1 models coupled with RegCM4.3 under RCP 4.5 and RCP 8.5 emission scenarios. Critical flows (i.e., Q10, Q25, Q50) are calculated using the best fit to commonly used distributions for the river flow data, while the decision between the selection of Q10, Q25, Q50 critical levels are made depending on the level of human interference made over the catchment. Total three low-flow requirement estimations are obtained over each subcatchment using the Tennant (two estimates for the low and high flow seasons for environmentally good conditions) and the hydrological low-flow methods. The highest estimate among these three methods is selected as the low-flow requirement of the subcatchment. The river flows over these 10 subcatchments range between 197hm3 and 1534hm3 while the drainage areas changing between 936 and 4505 km2. The final low-flow estimation (i.e., the highest among the three estimate) for the current conditions range between 94 hm3 and 715 hm3. The low-flow projection values between 2075 and 2099 are on average 39% lower than the 2016 values, while the steepest decline is expected between 2050 and 2074. The low flow and high flow season Tennant estimates dropped 22-25% while the hydrological method low-flow estimates dropped 32% from 2016 to 2075-2099 average, where Tennant estimates are sensitive to the precipitation projections while hydrological flow estimates are sensitive to the degree that the subcatchment flows are regulated/intervened. On the other hand, the combined low-flow estimate, the highest of three methods, dropped around 39%, reflecting combined impact of human intervention and climate change.
NASA Astrophysics Data System (ADS)
Ascott, M.; Macdonald, D.; Lapworth, D.; Tindimugaya, C.
2017-12-01
Quantification of the impact of climate change on water resources is essential for future resource planning. Unfortunately, climate change impact studies in African regions are often hindered by the extent in variability in future rainfall predictions, which also diverge from current drying trends. To overcome this limitation, "scenario-neutral" methods have been developed which stress a hydrological system using a wide range of climate futures to build a "climate response surface". We developed a hydrological model and scenario-neutral framework to quantify climate change impacts on river flows in the Katonga catchment, Uganda. Using the lumped catchment model GR4J, an acceptable calibration to historic daily flows (1966 - 2010, NSE = 0.69) was achieved. Using a delta change approach, we then systematically changed rainfall and PET inputs to develop response surfaces for key metrics, developed with Ugandan water resources planners (e.g. Q5, Q95). Scenarios from the CMIP5 models for 2030s and 2050s were then overlain on the response surface. The CMIP5 scenarios show consistent increases in temperature but large variability in rainfall increases, which results in substantial variability in increases in river flows. The developed response surface covers a wide range of climate futures beyond the CMIP5 projections, and can help water resources planners understand the sensitivity of water resource systems to future changes. When future climate scenarios are available, these can be directly overlain on the response surface without the need to re-run the hydrological model. Further work will consider using scenario-neutral approaches in more complex, semi-distributed models (e.g. SWAT), and will consider land use and socioeconomic change.
An evaluation of Dynamic TOPMODEL for low flow simulation
NASA Astrophysics Data System (ADS)
Coxon, G.; Freer, J. E.; Quinn, N.; Woods, R. A.; Wagener, T.; Howden, N. J. K.
2015-12-01
Hydrological models are essential tools for drought risk management, often providing input to water resource system models, aiding our understanding of low flow processes within catchments and providing low flow predictions. However, simulating low flows and droughts is challenging as hydrological systems often demonstrate threshold effects in connectivity, non-linear groundwater contributions and a greater influence of water resource system elements during low flow periods. These dynamic processes are typically not well represented in commonly used hydrological models due to data and model limitations. Furthermore, calibrated or behavioural models may not be effectively evaluated during more extreme drought periods. A better understanding of the processes that occur during low flows and how these are represented within models is thus required if we want to be able to provide robust and reliable predictions of future drought events. In this study, we assess the performance of dynamic TOPMODEL for low flow simulation. Dynamic TOPMODEL was applied to a number of UK catchments in the Thames region using time series of observed rainfall and potential evapotranspiration data that captured multiple historic droughts over a period of several years. The model performance was assessed against the observed discharge time series using a limits of acceptability framework, which included uncertainty in the discharge time series. We evaluate the models against multiple signatures of catchment low-flow behaviour and investigate differences in model performance between catchments, model diagnostics and for different low flow periods. We also considered the impact of surface water and groundwater abstractions and discharges on the observed discharge time series and how this affected the model evaluation. From analysing the model performance, we suggest future improvements to Dynamic TOPMODEL to improve the representation of low flow processes within the model structure.
Multimodel Uncertainty Changes in Simulated River Flows Induced by Human Impact Parameterizations
NASA Technical Reports Server (NTRS)
Liu, Xingcai; Tang, Qiuhong; Cui, Huijuan; Mu, Mengfei; Gerten Dieter; Gosling, Simon; Masaki, Yoshimitsu; Satoh, Yusuke; Wada, Yoshihide
2017-01-01
Human impacts increasingly affect the global hydrological cycle and indeed dominate hydrological changes in some regions. Hydrologists have sought to identify the human-impact-induced hydrological variations via parameterizing anthropogenic water uses in global hydrological models (GHMs). The consequently increased model complexity is likely to introduce additional uncertainty among GHMs. Here, using four GHMs, between-model uncertainties are quantified in terms of the ratio of signal to noise (SNR) for average river flow during 1971-2000 simulated in two experiments, with representation of human impacts (VARSOC) and without (NOSOC). It is the first quantitative investigation of between-model uncertainty resulted from the inclusion of human impact parameterizations. Results show that the between-model uncertainties in terms of SNRs in the VARSOC annual flow are larger (about 2 for global and varied magnitude for different basins) than those in the NOSOC, which are particularly significant in most areas of Asia and northern areas to the Mediterranean Sea. The SNR differences are mostly negative (-20 to 5, indicating higher uncertainty) for basin-averaged annual flow. The VARSOC high flow shows slightly lower uncertainties than NOSOC simulations, with SNR differences mostly ranging from -20 to 20. The uncertainty differences between the two experiments are significantly related to the fraction of irrigation areas of basins. The large additional uncertainties in VARSOC simulations introduced by the inclusion of parameterizations of human impacts raise the urgent need of GHMs development regarding a better understanding of human impacts. Differences in the parameterizations of irrigation, reservoir regulation and water withdrawals are discussed towards potential directions of improvements for future GHM development. We also discuss the advantages of statistical approaches to reduce the between-model uncertainties, and the importance of calibration of GHMs for not only better performances of historical simulations but also more robust and confidential future projections of hydrological changes under a changing environment.
Rajsekhar, Deepthi; Gorelick, Steven M
2017-08-01
In countries where severe drought is an anticipated effect of climate change and in those that heavily depend on upstream nations for fresh water, the effect of drier conditions and consequent changes in the transboundary streamflow regime induced by anthropogenic interventions and disasters leads to uncertainty in regional water security. As a case in point, we analyze Jordan's surface water resources and agricultural water demand through 2100, considering the combined impacts of climate change and land-use change driven by the Syrian conflict. We use bias-corrected regional climate simulations as input to high-resolution hydrologic models to assess three drought types: meteorological (rainfall decrease), agricultural (soil moisture deficit), and hydrologic (streamflow decline) under future scenarios. The historical baseline period (1981-2010) is compared to the future (2011-2100), divided into three 30-year periods. Comparing the baseline period to 2070-2100, average temperature increases by 4.5°C, rainfall decreases by 30%, and multiple drought-type occurrences increase from ~8 in 30 years to ~25 in 30 years. There is a significant increase in the contemporaneous occurrence of multiple drought types along with an 80% increase in simultaneous warm and dry events. Watershed simulations of future transboundary Yarmouk-Jordan River flow from Syria show that Jordan would receive 51 to 75% less Yarmouk water compared to historical flow. Recovery of Syrian irrigated agriculture to pre-conflict conditions would produce twice the decline in transboundary flow as that due to climate change. In Jordan, the confluence of limited water supply, future drought, and transboundary hydrologic impacts of land use severely challenges achieving freshwater sustainability.
Rajsekhar, Deepthi; Gorelick, Steven M.
2017-01-01
In countries where severe drought is an anticipated effect of climate change and in those that heavily depend on upstream nations for fresh water, the effect of drier conditions and consequent changes in the transboundary streamflow regime induced by anthropogenic interventions and disasters leads to uncertainty in regional water security. As a case in point, we analyze Jordan’s surface water resources and agricultural water demand through 2100, considering the combined impacts of climate change and land-use change driven by the Syrian conflict. We use bias-corrected regional climate simulations as input to high-resolution hydrologic models to assess three drought types: meteorological (rainfall decrease), agricultural (soil moisture deficit), and hydrologic (streamflow decline) under future scenarios. The historical baseline period (1981–2010) is compared to the future (2011–2100), divided into three 30-year periods. Comparing the baseline period to 2070–2100, average temperature increases by 4.5°C, rainfall decreases by 30%, and multiple drought-type occurrences increase from ~8 in 30 years to ~25 in 30 years. There is a significant increase in the contemporaneous occurrence of multiple drought types along with an 80% increase in simultaneous warm and dry events. Watershed simulations of future transboundary Yarmouk-Jordan River flow from Syria show that Jordan would receive 51 to 75% less Yarmouk water compared to historical flow. Recovery of Syrian irrigated agriculture to pre-conflict conditions would produce twice the decline in transboundary flow as that due to climate change. In Jordan, the confluence of limited water supply, future drought, and transboundary hydrologic impacts of land use severely challenges achieving freshwater sustainability. PMID:28875164
Schütte, S; Schulze, R E
2017-07-01
Significant land use changes from natural/agricultural to urban land uses have been proposed within the Mpushini/Mkhondeni sub-catchments of the uMngeni Catchment in South Africa. A better understanding of the influences which such land use changes are likely to have on hydrological flows, is required, in order to make informed land use decisions for a sustainable future. As a point of departure, an overview of linkages between urbanisation and hydrological flow responses within this sub-humid study area is given. The urban characteristics of increased impervious areas and the potential return flows from transfers of potable water from outside the catchment were identified as being important in regard to hydrological flow responses. A methodology was developed to model urban response scenarios with urban characteristics as variables, using the daily time-step process based ACRU model. This is a hydrological multi-process model and not an urban hydraulic model and it addresses the landscape as well as the channel components of a catchment, and in addition to runoff components includes evaporation and transpiration losses as outputs. For the study area strong links between proposed urbanisation and hydrological resource flow responses were found, with increases in stormflows, together with increased and more regulated baseflows, and with impacts varying markedly between dry or wet years and by season. The impacts will depend on the fractions of impervious areas, whether or not these are connected to permeable areas, the amount of imported water and water system leaks. Furthermore, the urban hydrological impacts were found to be relatively greater in more arid than humid areas because of changes in the rainfall to runoff conversion. Flow changes due to urbanisation are considered to have important environmental impacts, requiring mitigation. The methodology used in this paper could be used for other urbanising areas. Copyright © 2017 Elsevier Ltd. All rights reserved.
Markstrom, Steven L.; Niswonger, Richard G.; Regan, R. Steven; Prudic, David E.; Barlow, Paul M.
2008-01-01
The need to assess the effects of variability in climate, biota, geology, and human activities on water availability and flow requires the development of models that couple two or more components of the hydrologic cycle. An integrated hydrologic model called GSFLOW (Ground-water and Surface-water FLOW) was developed to simulate coupled ground-water and surface-water resources. The new model is based on the integration of the U.S. Geological Survey Precipitation-Runoff Modeling System (PRMS) and the U.S. Geological Survey Modular Ground-Water Flow Model (MODFLOW). Additional model components were developed, and existing components were modified, to facilitate integration of the models. Methods were developed to route flow among the PRMS Hydrologic Response Units (HRUs) and between the HRUs and the MODFLOW finite-difference cells. This report describes the organization, concepts, design, and mathematical formulation of all GSFLOW model components. An important aspect of the integrated model design is its ability to conserve water mass and to provide comprehensive water budgets for a location of interest. This report includes descriptions of how water budgets are calculated for the integrated model and for individual model components. GSFLOW provides a robust modeling system for simulating flow through the hydrologic cycle, while allowing for future enhancements to incorporate other simulation techniques.
NASA Astrophysics Data System (ADS)
Lafaysse, Matthieu; Hingray, Benoit
2010-05-01
The impact of global change on water resources is expected to be especially pronounced in mountainous areas. Future hydrological scenarios required for impact studies are classically simulated with hydrological models from future meteorological scenarios based on GCMs outputs. Future hydrological regimes of French rivers were estimated following this methodology by Boé et al. (2009) with the physical-based hydrological model SAFRAN-ISBA-MODCOU (SIM), developed by Météo-France. Scenarios obtained for the Alps seem however not very reliable due to the poor performance achieved by the model for the present climate over this region. This work presents possible improvements of SIM for a more relevant simulation of alpine catchments hydrological behavior. Results obtained for the upper Durance catchment (3580 km2) are given for illustration. This catchment is located in Southern French Alps. Its outlet is the Serre-Ponçon lake, a large dam operated for hydropower production, with a key role for water supply in southeastern France. With altitudes ranging from 700 to 4100 meters, the catchment presents highly seasonal flows: minimum and maximum discharges are observed in winter and spring respectively due to snow accumulation and melt, low flows are sustained by glacier melt in late summer (39 km2 are covered by glaciers), major floods can be observed in fall due to large liquid precipitation amounts. Two main limitations of SIM were identified for this catchment. First the 8km-side grid discretization gives a bad representation of the spatial variability of hydrological processes induced by elevation and orientation. Then, low flows are not well represented because the model doesn't include deep storage in aquifers nor ice melt from glaciers. We modified SIM accordingly. For the first point, we applied a discretization based on topography : we divided the catchment in 9 sub-catchments and further 300 meters elevation bands. The vertical variability of meteorological inputs and vegetation cover could be thus better accounted for. Then, each elevation band is divided in 7 exposure classes, in order to represent the influence on snow cover of the solar radiation spatial variability . This discretisation results in 539 Hydrological Units where hydrological processes are assumed to be homogeneous. For the second point, we first included the possibility for glacier melt in previous discretization. We next added a conceptual non-linear underground reservoir in order to simulate water retention by aquifers. These adaptations lead to a clear improvement of simulations for all the hydrometric stations. Daily simulated discharges fit well with measurements (Nash score = 0.8). The model has a good ability to simulate interannual variability and it is robust under a long simulation period (1959-2006). This encourages us to use it in a modified climate context. We studied the effect of each model improvement with a set of sensitivity tests. Accounting for elevation bands allows simulating more persistent snow cover at high altitudes, contributing later to river flows. Adding underground storage leads to delay the snowmelt runoff transfer in river. The exposure influence is not so sensitive for discharges simulation, but it gives a more accurate description of the spatial variability of snow cover. Although glaciered areas are very small compared to total basin area, a better simulation of summer low flows is obtained including a glacier melt module. Despite previous improvements, winter low flows are still slightly underestimated. As suggested by a simple sensitivity analysis, this could be partly due to the fact that the model doesn't correctly simulate basal snowmelt by ground heat flow.
Post-processing of multi-hydrologic model simulations for improved streamflow projections
NASA Astrophysics Data System (ADS)
khajehei, sepideh; Ahmadalipour, Ali; Moradkhani, Hamid
2016-04-01
Hydrologic model outputs are prone to bias and uncertainty due to knowledge deficiency in model and data. Uncertainty in hydroclimatic projections arises due to uncertainty in hydrologic model as well as the epistemic or aleatory uncertainties in GCM parameterization and development. This study is conducted to: 1) evaluate the recently developed multi-variate post-processing method for historical simulations and 2) assess the effect of post-processing on uncertainty and reliability of future streamflow projections in both high-flow and low-flow conditions. The first objective is performed for historical period of 1970-1999. Future streamflow projections are generated for 10 statistically downscaled GCMs from two widely used downscaling methods: Bias Corrected Statistically Downscaled (BCSD) and Multivariate Adaptive Constructed Analogs (MACA), over the period of 2010-2099 for two representative concentration pathways of RCP4.5 and RCP8.5. Three semi-distributed hydrologic models were employed and calibrated at 1/16 degree latitude-longitude resolution for over 100 points across the Columbia River Basin (CRB) in the pacific northwest USA. Streamflow outputs are post-processed through a Bayesian framework based on copula functions. The post-processing approach is relying on a transfer function developed based on bivariate joint distribution between the observation and simulation in historical period. Results show that application of post-processing technique leads to considerably higher accuracy in historical simulations and also reducing model uncertainty in future streamflow projections.
Kalantari, Zahra; Briel, Annemarie; Lyon, Steve W; Olofsson, Bo; Folkeson, Lennart
2014-03-15
Road drainage structures are often designed using methods that do not consider process-based representations of a landscape's hydrological response. This may create inadequately sized structures as coupled land cover and climate changes can lead to an amplified hydrological response. This study aims to quantify potential increases of runoff in response to future extreme rain events in a 61 km(2) catchment (40% forested) in southwest Sweden using a physically-based hydrological modelling approach. We simulate peak discharge and water level (stage) at two types of pipe bridges and one culvert, both of which are commonly used at Swedish road/stream intersections, under combined forest clear-cutting and future climate scenarios for 2050 and 2100. The frequency of changes in peak flow and water level varies with time (seasonality) and storm size. These changes indicate that the magnitude of peak flow and the runoff response are highly correlated to season rather than storm size. In all scenarios considered, the dimensions of the current culvert are insufficient to handle the increase in water level estimated using a physically-based modelling approach. It also appears that the water level at the pipe bridges changes differently depending on the size and timing of the storm events. The findings of the present study and the approach put forward should be considered when planning investigations on and maintenance for areas at risk of high water flows. In addition, the research highlights the utility of physically-based hydrological models to identify the appropriateness of road drainage structure dimensioning. Copyright © 2014 Elsevier B.V. All rights reserved.
The European 2015 drought from a hydrological perspective
NASA Astrophysics Data System (ADS)
Laaha, Gregor; Gauster, Tobias; Delus, Claire; Vidal, Jean-Philippe
2016-04-01
The year 2015 was hot and dry in many European countries. A timely assessment of its hydrological impacts constitutes a difficult task, because stream flow records are often not available within 2-3 years after recording. Moreover, monitoring is performed on a national or even provincial basis. There are still major barriers of data access, especially for eastern European countries. Wherever data are available, their compatibility poses a major challenge. In two companion papers we summarize a collaborative initiative of members of UNESCO's FRIEND-Water program to perform a timely Pan-European assessment of the 2015 drought. In this second part we analyse the hydrological perspective based on streamflow observations. We first describe the data access strategy and the assessment method. We than present the results consisting of a range of low flow indices calculated for about 800 gauges across Europe. We compare the characteristics of the 2015 drought with the average, long-term conditions, and with the specific conditions of the 2003 drought, which is often used as a worst-case benchmark to gauge future drought events. Overall, the hydrological 2015 drought is characterised by a much smaller spatial extend than the 2003 drought. Extreme streamflows are observed mainly in a band North of the Alps spanning from E-France to Poland. In terms of flow magnitude, Czech, E-Germany and N-Austria were most affected. In this region the low flows often had return periods of 100 years and more, indicating that the event was much more severe than the 2003 event. In terms of deficit volumes, the centre of the event was more oriented towards S-Germany. Based on a detailed assessment of the spatio-temporal characteristics at various scales, we are able to explain the different behaviour in these regions by diverging wetness preconditions in the catchments. This suggest that the sole knowledge of atmospheric indices is not sufficient to characterise hydrological drought events. We claim that assessment of impacts on water resources requires hydrological data and additional efforts of Pan-European dimension need to be undertaken to make hydrological assessments more operational in the future.
The changing hydrology of a dammed Amazon
Timpe, Kelsie; Kaplan, David
2017-01-01
Developing countries around the world are expanding hydropower to meet growing energy demand. In the Brazilian Amazon, >200 dams are planned over the next 30 years, and questions about the impacts of current and future hydropower in this globally important watershed remain unanswered. In this context, we applied a hydrologic indicator method to quantify how existing Amazon dams have altered the natural flow regime and to identify predictors of alteration. The type and magnitude of hydrologic alteration varied widely by dam, but the largest changes were to critical characteristics of the flood pulse. Impacts were largest for low-elevation, large-reservoir dams; however, small dams had enormous impacts relative to electricity production. Finally, the “cumulative” effect of multiple dams was significant but only for some aspects of the flow regime. This analysis is a first step toward the development of environmental flows plans and policies relevant to the Amazon and other megadiverse river basins. PMID:29109972
Hydrological regime modifications induced by climate change in Mediterranean area
NASA Astrophysics Data System (ADS)
Pumo, Dario; Caracciolo, Domenico; Viola, Francesco; Valerio Noto, Leonardo
2015-04-01
The knowledge of river flow regimes has a capital importance for a variety of practical applications, in water resource management, including optimal and sustainable use. Hydrological regime is highly dependent on climatic factors, among which the most important is surely the precipitation, in terms of frequency, seasonal distribution and intensity of rainfall events. The streamflow frequency regime of river basins are often summarized by flow duration curves (FDCs), that offer a simple and comprehensive graphical view of the overall historical variability associated with streamflow, and characterize the ability of the basin to provide flows of various magnitudes. Climate change is likely to lead shifts in the hydrological regime, and, consequently, in the FDCs. Staring from this premise, the primary objective of the present study is to explore the effects of potential climate changes on the hydrological regime of some small Mediterranean basins. To this aim it is here used a recent hydrological model, the ModABa model (MODel for Annual flow duration curves assessment in ephemeral small BAsins), for the probabilistic characterization of the daily streamflows in small catchments. The model has been calibrated and successively validated in a unique small catchment, where it has shown a satisfactory accuracy in reproducing the empirical FDC starting from easily derivable parameters arising from basic ecohydrological knowledge of the basin and commonly available climatic data such as daily precipitation and temperatures. Thus, this work also represents a first attempt to apply the ModABa to basins different from that used for its preliminary design in order to testing its generality. Different case studies are selected within the Sicily region; the model is first calibrated at the sites and then forced by future climatic scenarios, highlighting the principal differences emerging from the current scenario and future FDCs. The future climate scenarios are generated using a stochastic downscaling technique based on the weather generator, AWE-GEN. This methodology allows for the downscaling of an ensemble of climate model outputs deriving the frequency distribution functions of factors of change for several statistics of temperature and precipitation from outputs of General Circulation Models (GCMs). The stochastic downscaling is carried out using simulations of GCMs adopted in the IPCC 5AR, for the future periods of 2046-2065 and 2081-2100.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Werth, D.; Chen, K. F.
2013-08-22
The ability of water managers to maintain adequate supplies in coming decades depends, in part, on future weather conditions, as climate change has the potential to alter river flows from their current values, possibly rendering them unable to meet demand. Reliable climate projections are therefore critical to predicting the future water supply for the United States. These projections cannot be provided solely by global climate models (GCMs), however, as their resolution is too coarse to resolve the small-scale climate changes that can affect hydrology, and hence water supply, at regional to local scales. A process is needed to ‘downscale’ themore » GCM results to the smaller scales and feed this into a surface hydrology model to help determine the ability of rivers to provide adequate flow to meet future needs. We apply a statistical downscaling to GCM projections of precipitation and temperature through the use of a scaling method. This technique involves the correction of the cumulative distribution functions (CDFs) of the GCM-derived temperature and precipitation results for the 20{sup th} century, and the application of the same correction to 21{sup st} century GCM projections. This is done for three meteorological stations located within the Coosa River basin in northern Georgia, and is used to calculate future river flow statistics for the upper Coosa River. Results are compared to the historical Coosa River flow upstream from Georgia Power Company’s Hammond coal-fired power plant and to flows calculated with the original, unscaled GCM results to determine the impact of potential changes in meteorology on future flows.« less
Preliminary testing of flow-ecology hypotheses developed for the GCP LCC region
Brewer, Shannon K.; Davis, Mary
2014-01-01
The Ecological Limits of Hydrological Alteration (ELOHA) framework calls for the development of flow-ecology hypotheses to support protection of the flow regime from ecologically harmful alteration due to human activities. As part of a larger instream flow project for the Gulf Coast Prairie Landscape Conservation Cooperative (GCP LCC), regional flow-ecology hypotheses were developed for fish, mussels, birds, and riparian vegetation (Davis and Brewer 20141). The objective of this study was to assess the usefulness of existing ecological and hydrological data to test these hypotheses or others that may be developed in the future. Several databases related to biological collections and hydrologic data from Oklahoma, Texas, and Louisiana were compiled. State fish-community data from Oklahoma and Louisiana were summarized and paired with existing USGS gage data having at least a 40-year period of record that could be separated into reference and current conditions for comparison. The objective of this study was not to conduct exhaustive analyses of these data, the hypotheses, or analyses interpretation, but rather to use these data to determine if existing data were adequate to statistically test the regional flow-ecology hypotheses. The regional flow-ecology hypotheses were developed for the GCP LCC by a committee chaired by Shannon Brewer and Mary Davis (Davis and Brewer 2014). Existing data were useful for informing the hypotheses and suggest support for some hypotheses, but also highlight the need for additional testing and development as some results contradicted hypotheses. Results presented here suggest existing data are adequate to support some flow-ecology hypotheses; however, lack of sampling effort reported with the fish collections and the need for ecoregion-specific analyses suggest more data would be beneficial to analyses in some ecoregions. Additional fish sampling data from Texas and Louisiana will be available for future analyses and may ameliorate some of the data concerns and improve hypothesis interpretation. If the regional hydrologic model currently under development by the U.S. Geological Survey for the South-Central Climate Science Center is improved to produce daily hydrographs, it will enable use of fish data at ungaged locations. In future efforts, exhaustive analyses using these data, in addition to the development of more complex multivariate hypotheses, would be beneficial to understanding data gaps, particularly as relevant to species of conservation concern.
A national-scale seasonal hydrological forecast system: development and evaluation over Britain
NASA Astrophysics Data System (ADS)
Bell, Victoria A.; Davies, Helen N.; Kay, Alison L.; Brookshaw, Anca; Scaife, Adam A.
2017-09-01
Skilful winter seasonal predictions for the North Atlantic circulation and northern Europe have now been demonstrated and the potential for seasonal hydrological forecasting in the UK is now being explored. One of the techniques being used combines seasonal rainfall forecasts provided by operational weather forecast systems with hydrological modelling tools to provide estimates of seasonal mean river flows up to a few months ahead. The work presented here shows how spatial information contained in a distributed hydrological model typically requiring high-resolution (daily or better) rainfall data can be used to provide an initial condition for a much simpler forecast model tailored to use low-resolution monthly rainfall forecasts. Rainfall forecasts (hindcasts
) from the GloSea5 model (1996 to 2009) are used to provide the first assessment of skill in these national-scale flow forecasts. The skill in the combined modelling system is assessed for different seasons and regions of Britain, and compared to what might be achieved using other approaches such as use of an ensemble of historical rainfall in a hydrological model, or a simple flow persistence forecast. The analysis indicates that only limited forecast skill is achievable for Spring and Summer seasonal hydrological forecasts; however, Autumn and Winter flows can be reasonably well forecast using (ensemble mean) rainfall forecasts based on either GloSea5 forecasts or historical rainfall (the preferred type of forecast depends on the region). Flow forecasts using ensemble mean GloSea5 rainfall perform most consistently well across Britain, and provide the most skilful forecasts overall at the 3-month lead time. Much of the skill (64 %) in the 1-month ahead seasonal flow forecasts can be attributed to the hydrological initial condition (particularly in regions with a significant groundwater contribution to flows), whereas for the 3-month ahead lead time, GloSea5 forecasts account for ˜ 70 % of the forecast skill (mostly in areas of high rainfall to the north and west) and only 30 % of the skill arises from hydrological memory (typically groundwater-dominated areas). Given the high spatial heterogeneity in typical patterns of UK rainfall and evaporation, future development of skilful spatially distributed seasonal forecasts could lead to substantial improvements in seasonal flow forecast capability, potentially benefitting practitioners interested in predicting hydrological extremes, not only in the UK but also across Europe.
Streamflow Bias Correction for Climate Change Impact Studies: Harmless Correction or Wrecking Ball?
NASA Astrophysics Data System (ADS)
Nijssen, B.; Chegwidden, O.
2017-12-01
Projections of the hydrologic impacts of climate change rely on a modeling chain that includes estimates of future greenhouse gas emissions, global climate models, and hydrologic models. The resulting streamflow time series are used in turn as input to impact studies. While these flows can sometimes be used directly in these impact studies, many applications require additional post-processing to remove model errors. Water resources models and regulation studies are a prime example of this type of application. These models rely on specific flows and reservoir levels to trigger reservoir releases and diversions and do not function well if the unregulated streamflow inputs are significantly biased in time and/or amount. This post-processing step is typically referred to as bias-correction, even though this step corrects not just the mean but the entire distribution of flows. Various quantile-mapping approaches have been developed that adjust the modeled flows to match a reference distribution for some historic period. Simulations of future flows are then post-processed using this same mapping to remove hydrologic model errors. These streamflow bias-correction methods have received far less scrutiny than the downscaling and bias-correction methods that are used for climate model output, mostly because they are less widely used. However, some of these methods introduce large artifacts in the resulting flow series, in some cases severely distorting the climate change signal that is present in future flows. In this presentation, we discuss our experience with streamflow bias-correction methods as part of a climate change impact study in the Columbia River basin in the Pacific Northwest region of the United States. To support this discussion, we present a novel way to assess whether a streamflow bias-correction method is merely a harmless correction or is more akin to taking a wrecking ball to the climate change signal.
Water table variability and runoff generation in an eroded peatland, South Pennines, UK
NASA Astrophysics Data System (ADS)
Daniels, S. M.; Agnew, C. T.; Allott, T. E. H.; Evans, M. G.
2008-10-01
SummaryHydrological monitoring in an eroded South Pennine peatland shows that persistent and frequent water table drawdowns occur at gully edge locations, defining a deeper and thicker acrotelm than is observed in intact peatlands (an erosional acrotelm). Antecedent water table elevation is a key control on the hydrological response to precipitation events, in particular runoff percent, the timing of peak discharges and maximum water table elevations. Significant discharge is generated whilst water table elevations are relatively low at gully edge locations, and this has a strong influence on flow pathways. Four characteristics of runoff response are recognised: (i) the rapid development of macropore/pipe flow at the start of the storm; (ii) peat rewetting, water table elevation increase and continued macropore/pipe flow; (iii) maximum water table elevations and peak stream discharge with throughflow occurring within the erosional acrotelm and rapid flow through the subsurface macropore/pipe network; (iv) rapidly declining water table elevations and stream flow following the cessation of rainfall. Gully edge peats provide a key linkage between the hillslope hydrological system and channel flow so that their influence on the hydrological functioning of the peatlands is disproportionate to their aerial extent within the catchment. Future climate change may lead to further degradation of the bogs and a reinforcement of the importance of erosion gullies to runoff generation and water quality.
NASA Astrophysics Data System (ADS)
Kuras, P. K.; Weiler, M.; Alila, Y.; Spittlehouse, D.; Winkler, R.
2006-12-01
Hydrologic models have been increasingly used in forest hydrology to overcome the limitations of paired watershed experiments, where vegetative recovery and natural variability obscure the inferences and conclusions that can be drawn from such studies. Models, however, are also plagued by uncertainty stemming from a limited understanding of hydrological processes in forested catchments and parameter equifinality is a common concern. This has created the necessity to improve our understanding of how hydrological systems work, through the development of hydrological measures, analyses and models that address the question: are we getting the right answers for the right reasons? Hence, physically-based, spatially-distributed hydrologic models should be validated with high-quality experimental data describing multiple concurrent internal catchment processes under a range of hydrologic regimes. The distributed hydrology soil vegetation model (DHSVM) frequently used in forest management applications is an example of a process-based model used to address the aforementioned circumstances, and this study takes a novel approach at collectively examining the ability of a pre-calibrated model application to realistically simulate outlet flows along with the spatial-temporal variation of internal catchment processes including: continuous groundwater dynamics at 9 locations, stream and road network flow at 67 locations for six individual days throughout the freshet, and pre-melt season snow distribution. Model efficiency was improved over prior evaluations due to continuous efforts in improving the quality of meteorological data in the watershed. Road and stream network flows were very well simulated for a range of hydrological conditions, and the spatial distribution of the pre-melt season snowpack was in general agreement with observed values. The model was effective in simulating the spatial variability of subsurface flow generation, except at locations where strong stream-groundwater interactions existed, as the model is not capable of simulating such processes and subsurface flows always drain to the stream network. The model has proven overall to be quite capable in realistically simulating internal catchment processes in the watershed, which creates more confidence in future model applications exploring the effects of various forest management scenarios on the watershed's hydrological processes.
Ensemble catchment hydrological modelling for climate change impact analysis
NASA Astrophysics Data System (ADS)
Vansteenkiste, Thomas; Ntegeka, Victor; Willems, Patrick
2014-05-01
It is vital to investigate how the hydrological model structure affects the climate change impact given that future changes not in the range for which the models were calibrated or validated are likely. Thus an ensemble modelling approach which involves a diversity of models with different structures such as spatial resolutions and process descriptions is crucial. The ensemble modelling approach was applied to a set of models: from the lumped conceptual models NAM, PDM and VHM, an intermediate detailed and distributed model WetSpa, to the highly detailed and fully distributed model MIKE-SHE. Explicit focus was given to the high and low flow extremes. All models were calibrated for sub flows and quick flows derived from rainfall and potential evapotranspiration (ETo) time series. In general, all models were able to produce reliable estimates of the flow regimes under the current climate for extreme peak and low flows. An intercomparison of the low and high flow changes under changed climatic conditions was made using climate scenarios tailored for extremes. Tailoring was important for two reasons. First, since the use of many scenarios was not feasible it was necessary to construct few scenarios that would reasonably represent the range of extreme impacts. Second, scenarios would be more informative as changes in high and low flows would be easily traced to changes of ETo and rainfall; the tailored scenarios are constructed using seasonal changes that are defined using different levels of magnitude (high, mean and low) for rainfall and ETo. After simulation of these climate scenarios in the five hydrological models, close agreement was found among the models. The different models predicted similar range of peak flow changes. For the low flows, however, the differences in the projected impact range by different hydrological models was larger, particularly for the drier scenarios. This suggests that the hydrological model structure is critical in low flow predictions, more than in high flow conditions. Hence, the mechanism of the slow flow component simulation requires further attention. It is concluded that a multi-model ensemble approach where different plausible model structures are applied, is extremely useful. It improves the reliability of climate change impact results and allows decision making to be based on uncertainty assessment that includes model structure related uncertainties. References: Ntegeka, V., Baguis, P., Roulin, E., Willems, P., 2014. Developing tailored climate change scenarios for hydrological impact assessments. Journal of Hydrology, 508C, 307-321 Vansteenkiste, Th., Tavakoli, M., Ntegeka, V., Willems, P., De Smedt, F., Batelaan, O., 2013. Climate change impact on river flows and catchment hydrology: a comparison of two spatially distributed models. Hydrological Processes, 27(25), 3649-3662. Vansteenkiste, Th., Tavakoli, M., Ntegeka, V., Van Steenbergen, N., De Smedt, F., Batelaan, O., Pereira, F., Willems, P., 2014. Intercomparison of five lumped and distributed models for catchment runoff and extreme flow simulation. Journal of Hydrology, in press. Vansteenkiste, Th., Tavakoli, M., Ntegeka, V., De Smedt, F., Batelaan, O., Pereira, F., Willems, P., 2014. Intercomparison of climate scenario impact predictions by a lumped and distributed model ensemble. Journal of Hydrology, in revision.
NASA Astrophysics Data System (ADS)
Gelfan, Alexander; Kalugin, Andrei; Motovilov, Yury
2017-04-01
A regional hydrological model was setup to assess possible impact of climate change on the hydrological regime of the Amur drainage basin (the catchment area is 1 855 000 km2). The model is based on the ECOMAG hydrological modeling platform and describes spatially distributed processes of water cycle in this great basin with account for flow regulation by the Russian and Chinese reservoirs. Earlier, the regional hydrological model was intensively evaluated against 20-year streamflow data over the whole Amur basin and, being driven by 252-station meteorological observations as input data, demonstrated good performance. In this study, we firstly assessed the reliability of the model to reproduce the historical streamflow series when Global Climate Model (GCM) simulation data are used as input into the hydrological model. Data of nine GCMs involved in CMIP5 project was utilized and we found that ensemble mean of annual flow is close to the observed flow (error is about 14%) while data of separate GCMs may result in much larger errors. Reproduction of seasonal flow for the historical period turned out weaker; first of all because of large errors in simulated seasonal precipitation, so hydrological consequences of climate change were estimated just in terms of annual flow. We analyzed the hydrological projections from the climate change scenarios. The impacts were assessed in four 20-year periods: early- (2020-2039), mid- (2040-2059) and two end-century (2060-2079; 2080-2099) periods using an ensemble of nine GCMs and four Representative Concentration Pathways (RCP) scenarios. Mean annual runoff anomalies calculated as percentages of the future runoff (simulated under 36 GCM-RCP combinations of climate scenarios) to the historical runoff (simulated under the corresponding GCM outputs for the reference 1986-2005 period) were estimated. Hydrological model gave small negative runoff anomalies for almost all GCM-RCP combinations of climate scenarios and for all 20-year periods. The largest ensemble mean anomaly was about minus 8% by the end of XXI century under the most severe RCP8.5 scenario. We compared the mean annual runoff anomalies projected under the GCM-based data for the XXI century with the corresponding anomalies projected under a modified observed climatology using the delta-change (DC) method. Use of the modified observed records as driving forces for hydrological model-based projections can be considered as an alternative to the GCM-based scenarios if the latter are uncertain. The main advantage of the DC approach is its simplicity: in its simplest version only differences between present and future climates (i.e. between the long-term means of the climatic variables) are considered as DC-factors. In this study, the DC-factors for the reference meteorological series (1986-2005) of climate parameters were calculated from the GCM-based scenarios. The modified historical data were used as input into the hydrological models. For each of four 20-year period, runoff anomalies simulated under the delta-changed historical time series were compared with runoff anomalies simulated under the corresponding GCM-data with the same mean. We found that the compared projections are closely correlated. Thus, for the Amur basin, the modified observed climatology can be used as driving force for hydrological model-based projections and considered as an alternative to the GCM-based scenarios if only annual flow projections are of the interest.
Freshwater Ecosystem Services and Hydrologic Alteration in the Lower Mississippi River Basin
NASA Astrophysics Data System (ADS)
Yasarer, L.; Taylor, J.; Rigby, J.; Locke, M. A.
2017-12-01
Flowing freshwater ecosystems provide a variety of essential ecosystem services including: consumptive water for domestic, industrial, and agricultural use; transportation of goods; maintenance of aquatic biodiversity and water quality; and recreation. However, freshwater ecosystem services can oftentimes be at odds with each other. For example, the over-consumption of water for agricultural production or domestic use may alter hydrologic patterns and diminish the ability of flowing waters to sustain healthy aquatic ecosystems. In the Lower Mississippi River Basin there has been a substantial increase in groundwater-irrigated cropland acreage over the past several decades and subsequent declines in regional aquifer levels. Changes in aquifer levels potentially impact surface water hydrology throughout the region. This study tests the hypothesis that flowing water systems in lowland agricultural watersheds within the Lower Mississippi River Basin have greater hydrologic alteration compared to upland non-agricultural watersheds, particularly with declines in base flow and an increase in extreme low flows. Long-term streamflow records from USGS gauges located in predominantly agricultural and non-agricultural watersheds in Arkansas, Louisiana, Mississippi, and Tennessee were evaluated from 1969 -2016 using the Indicators of Hydrologic Alteration (IHA) software. Preliminary results from 8 non-agricultural and 5 agricultural watersheds demonstrate a substantial decline in base flow in the agricultural watersheds, which is not apparent in the non-agricultural watersheds. This exploratory study will analyze the trade-off between gains in agricultural productivity and changes in ecohydrological indicators over the last half century in diverse watersheds across the Lower Mississippi River Basin. By quantifying the changes in ecosystem services provided by flowing waters in the past, we can inform sustainable management pathways to better balance services in the future.
NASA Astrophysics Data System (ADS)
McAfee, S. A.; Woodhouse, C. A.; McCabe, G. J., Jr.; Pederson, G. T.
2016-12-01
Approximately 40 million people depend on the Colorado River, and that number is likely to grow in the future, making the River's response to projected increases in temperature and possible changes in precipitation a critical societal issue. By far the most common way of approaching the problem is synthesize results obtained by forcing a hydrological model with a set of downscaled future climate scenarios. One weakness with this type of analysis is that full hydrologic model simulations can be computationally demanding, and so the number of potential climate futures is generally somewhat limited. Here we sidestep that issue by using a very large set of synthetic climate futures to drive a simple statistical model of water year flow at Lees Ferry. 62,500 climate series, comprising 500 iterations of 125 unique combinations of summer temperature changes ranging from 0 to +4°C and summer and winter precipitation changes ranging from -20 to +20% were input into the flow model. Without substantial temperature increases, significant increases in the occurrence of very low flows (<75%) were unlikely, even with sharp decreases in temperature. Conversely, increases in precipitation, could buffer the effect of summer temperature increases up to about 3°C on mean water year flows. While very simple models like this one are inappropriate for some questions, they do provide an effective way of prioritizing and framing more complex investigations, and facilitate conversations with stakeholders about research directions.
Fossey, M; Rousseau, A N
2016-12-15
The effects of wetlands on stream flows are well established, namely mitigating flow regimes through water storage and slow water release. However, their effectiveness in reducing flood peaks and sustaining low flows is mainly driven by climate conditions and wetland type with respect to their connectivity to the hydrographic network (i.e. isolated or riparian wetlands). While some studies have demonstrated these hydrological functions/services, few of them have focused on the benefits to the hydrological regimes and their evolution under climate change (CC) and, thus, some gaps persist. The objective of this study was to further advance our knowledge with that respect. The PHYSITEL/HYDROTEL modelling platform was used to assess current and future states of watershed hydrology of the Becancour and Yamaska watersheds, Quebec, Canada. Simulation results showed that CC will induce similar changes on mean seasonal flows, namely larger and earlier spring flows leading to decreases in summer and fall flows. These expected changes will have different effects on 20-year and 100-year peak flows with respect to the considered watershed. Nevertheless, conservation of current wetland states should: (i) for the Becancour watershed, mitigate the potential increase in 2-year, 20-year and 100-year peak flows; and (ii) for the Yamaska watershed, accentuate the potential decrease in the aforementioned indicators. However, any loss of existing wetlands would be detrimental for 7-day 2-year and 10-year as well as 30-day 5-year low flows. Copyright © 2016 Elsevier Ltd. All rights reserved.
Projected Impact of Climate Change on Hydrological Regimes in the Philippines
Kanamaru, Hideki; Keesstra, Saskia; Maroulis, Jerry; David, Carlos Primo C.; Ritsema, Coen J.
2016-01-01
The Philippines is one of the most vulnerable countries in the world to the potential impacts of climate change. To fully understand these potential impacts, especially on future hydrological regimes and water resources (2010-2050), 24 river basins located in the major agricultural provinces throughout the Philippines were assessed. Calibrated using existing historical interpolated climate data, the STREAM model was used to assess future river flows derived from three global climate models (BCM2, CNCM3 and MPEH5) under two plausible scenarios (A1B and A2) and then compared with baseline scenarios (20th century). Results predict a general increase in water availability for most parts of the country. For the A1B scenario, CNCM3 and MPEH5 models predict an overall increase in river flows and river flow variability for most basins, with higher flow magnitudes and flow variability, while an increase in peak flow return periods is predicted for the middle and southern parts of the country during the wet season. However, in the north, the prognosis is for an increase in peak flow return periods for both wet and dry seasons. These findings suggest a general increase in water availability for agriculture, however, there is also the increased threat of flooding and enhanced soil erosion throughout the country. PMID:27749908
Impact of forest maintenance on water shortages: Hydrologic modeling and effects of climate change.
Luo, Pingping; Zhou, Meimei; Deng, Hongzhang; Lyu, Jiqiang; Cao, Wenqiang; Takara, Kaoru; Nover, Daniel; Geoffrey Schladow, S
2018-02-15
The importance of water quantity for domestic and industrial water supply, agriculture, and the economy more broadly has led to the development of many water quantity assessment methods. In this study, surface flow and soil water in the forested upper reaches of the Yoshino River are compared using a distributed hydrological model with Forest Maintenance Module under two scenarios; before and after forest maintenance. We also examine the impact of forest maintenance on these variables during extreme droughts. Results show that surface flow and soil water increased after forest maintenance. In addition, projections of future water resources were estimated using a hydrological model and the output from a 20km mesh Global Climate Model (GCM20). River discharge for the near-future (2015-2039) is similar to that of the present (1979-2003). Estimated river discharge for the future (2075-2099) was found to be substantially more extreme than in the current period, with 12m 3 /s higher peak discharge in August and 7m 3 /s lower in July compared to the discharges of the present period. Soil water for the future is estimated to be lower than for the present and near future in May. The methods discussed in this study can be applied in other regions and the results help elucidate the impact of forests and climate change on water resources. Copyright © 2017 Elsevier B.V. All rights reserved.
Land-use change may exacerbate climate change impacts on water resources in the Ganges basin
NASA Astrophysics Data System (ADS)
Tsarouchi, Gina; Buytaert, Wouter
2018-02-01
Quantifying how land-use change and climate change affect water resources is a challenge in hydrological science. This work aims to quantify how future projections of land-use and climate change might affect the hydrological response of the Upper Ganges river basin in northern India, which experiences monsoon flooding almost every year. Three different sets of modelling experiments were run using the Joint UK Land Environment Simulator (JULES) land surface model (LSM) and covering the period 2000-2035: in the first set, only climate change is taken into account, and JULES was driven by the CMIP5 (Coupled Model Intercomparison Project Phase 5) outputs of 21 models, under two representative concentration pathways (RCP4.5 and RCP8.5), whilst land use was held fixed at the year 2010. In the second set, only land-use change is taken into account, and JULES was driven by a time series of 15 future land-use pathways, based on Landsat satellite imagery and the Markov chain simulation, whilst the meteorological boundary conditions were held fixed at years 2000-2005. In the third set, both climate change and land-use change were taken into consideration, as the CMIP5 model outputs were used in conjunction with the 15 future land-use pathways to force JULES. Variations in hydrological variables (stream flow, evapotranspiration and soil moisture) are calculated during the simulation period. Significant changes in the near-future (years 2030-2035) hydrologic fluxes arise under future land-cover and climate change scenarios pointing towards a severe increase in high extremes of flow: the multi-model mean of the 95th percentile of streamflow (Q5) is projected to increase by 63 % under the combined land-use and climate change high emissions scenario (RCP8.5). The changes in all examined hydrological components are greater in the combined land-use and climate change experiment. Results are further presented in a water resources context, aiming to address potential implications of climate change and land-use change from a water demand perspective. We conclude that future water demands in the Upper Ganges region for winter months may not be met.
A Multi-Scale, Integrated Approach to Representing Watershed Systems
NASA Astrophysics Data System (ADS)
Ivanov, Valeriy; Kim, Jongho; Fatichi, Simone; Katopodes, Nikolaos
2014-05-01
Understanding and predicting process dynamics across a range of scales are fundamental challenges for basic hydrologic research and practical applications. This is particularly true when larger-spatial-scale processes, such as surface-subsurface flow and precipitation, need to be translated to fine space-time scale dynamics of processes, such as channel hydraulics and sediment transport, that are often of primary interest. Inferring characteristics of fine-scale processes from uncertain coarse-scale climate projection information poses additional challenges. We have developed an integrated model simulating hydrological processes, flow dynamics, erosion, and sediment transport, tRIBS+VEGGIE-FEaST. The model targets to take the advantage of the current generation of wealth of data representing watershed topography, vegetation, soil, and landuse, as well as to explore the hydrological effects of physical factors and their feedback mechanisms over a range of scales. We illustrate how the modeling system connects precipitation-hydrologic runoff partition process to the dynamics of flow, erosion, and sedimentation, and how the soil's substrate condition can impact the latter processes, resulting in a non-unique response. We further illustrate an approach to using downscaled climate change information with a process-based model to infer the moments of hydrologic variables in future climate conditions and explore the impact of climate information uncertainty.
Data standardization. The key to effective management
Wagner, C. Russell
1991-01-01
Effective management of the nation's water resources is dependent upon accurate and consistent hydrologic information. Before the emergence of environmental concerns in the 1960's, most hydrologic information was collected by the U.S. Geological Survey and other Federal agencies that used fairly consistent methods and equipment. In the past quarter century, however, increased environmental awareness has resulted in an expansion of hydrologic data collection not only by Federal agencies, but also by state and municipal governments, university investigators, and private consulting firms. The acceptance and use of standard methods of collecting and processing hydrologic data would contribute to cost savings and to greater credibility of flow information vital to responsible assessment and management of the nation's water resources. This paper traces the evolution of the requirements and uses of open-channel flow information in the U.S., and the sequence of efforts to standardize the methods used to obtain this information in the future. The variable nature of naturally flowing rivers results in continually changing hydraulic properties of their channels. Those persons responsible for measurement of water flowing in open channels (streamflow) must use a large amount of judgement in the selection of appropriate equipment and technique to obtain accurate flow information. Standardization of the methods used in the measurement of streamflow is essential to assure consistency of data, but must also allow considerable latitude for individual judgement to meet constantly changing field conditions.
NASA Astrophysics Data System (ADS)
ten Veldhuis, Marie-Claire; Schleiss, Marc
2017-04-01
Urban catchments are typically characterised by a more flashy nature of the hydrological response compared to natural catchments. Predicting flow changes associated with urbanisation is not straightforward, as they are influenced by interactions between impervious cover, basin size, drainage connectivity and stormwater management infrastructure. In this study, we present an alternative approach to statistical analysis of hydrological response variability and basin flashiness, based on the distribution of inter-amount times. We analyse inter-amount time distributions of high-resolution streamflow time series for 17 (semi-)urbanised basins in North Carolina, USA, ranging from 13 to 238 km2 in size. We show that in the inter-amount-time framework, sampling frequency is tuned to the local variability of the flow pattern, resulting in a different representation and weighting of high and low flow periods in the statistical distribution. This leads to important differences in the way the distribution quantiles, mean, coefficient of variation and skewness vary across scales and results in lower mean intermittency and improved scaling. Moreover, we show that inter-amount-time distributions can be used to detect regulation effects on flow patterns, identify critical sampling scales and characterise flashiness of hydrological response. The possibility to use both the classical approach and the inter-amount-time framework to identify minimum observable scales and analyse flow data opens up interesting areas for future research.
Austin, Samuel H.; Nelms, David L.
2017-01-01
Climate change raises concern that risks of hydrological drought may be increasing. We estimate hydrological drought probabilities for rivers and streams in the United States (U.S.) using maximum likelihood logistic regression (MLLR). Streamflow data from winter months are used to estimate the chance of hydrological drought during summer months. Daily streamflow data collected from 9,144 stream gages from January 1, 1884 through January 9, 2014 provide hydrological drought streamflow probabilities for July, August, and September as functions of streamflows during October, November, December, January, and February, estimating outcomes 5-11 months ahead of their occurrence. Few drought prediction methods exploit temporal links among streamflows. We find MLLR modeling of drought streamflow probabilities exploits the explanatory power of temporally linked water flows. MLLR models with strong correct classification rates were produced for streams throughout the U.S. One ad hoc test of correct prediction rates of September 2013 hydrological droughts exceeded 90% correct classification. Some of the best-performing models coincide with areas of high concern including the West, the Midwest, Texas, the Southeast, and the Mid-Atlantic. Using hydrological drought MLLR probability estimates in a water management context can inform understanding of drought streamflow conditions, provide warning of future drought conditions, and aid water management decision making.
An operational GLS model for hydrologic regression
Tasker, Gary D.; Stedinger, J.R.
1989-01-01
Recent Monte Carlo studies have documented the value of generalized least squares (GLS) procedures to estimate empirical relationships between streamflow statistics and physiographic basin characteristics. This paper presents a number of extensions of the GLS method that deal with realities and complexities of regional hydrologic data sets that were not addressed in the simulation studies. These extensions include: (1) a more realistic model of the underlying model errors; (2) smoothed estimates of cross correlation of flows; (3) procedures for including historical flow data; (4) diagnostic statistics describing leverage and influence for GLS regression; and (5) the formulation of a mathematical program for evaluating future gaging activities. ?? 1989.
NASA Astrophysics Data System (ADS)
Aili, T.; Soncini, A.; Bianchi, A.; Diolaiuti, G.; D'Agata, C.; Bocchiola, D.
2018-01-01
Assessment of the future water resources in the Italian Alps under climate change is required, but the hydrological cycle of the high-altitude catchments therein is poorly studied and little understood. Hydrological monitoring and modeling in the Alps is difficult, given the lack of first hand, site specific data. Here, we present a method to model the hydrological cycle of poorly monitored high-altitude catchments in the Alps, and to project forward water resources availability under climate change. Our method builds on extensive experience recently and includes (i) gathering data of climate, of cryospheric variables, and of hydrological fluxes sparsely available; (ii) robust physically based glacio-hydrological modeling; and (iii) using glacio-hydrological projections from GCM models. We apply the method in the Mallero River, in the central (Retiche) Alps of Italy. The Mallero river covers 321 km2, with altitude between 310 and 4015 m a.s.l., and it has 27 km2 of ice cover. The glaciers included in the catchment underwent large mass loss recently, thus Mallero is largely paradigmatic of the present situation of Alpine rivers. We set up a spatially explicit glacio-hydrological model, describing the cryospheric evolution and the hydrology of the area during a control run CR, from 1981 to 2007. We then gather climate projections until 2100 from three Global Climate Models of the IPCC AR5 under RCP2.6, RCP4.5, and RCP8.5. We project forward flow statistics, flow components (rainfall, snow melt, ice melt), ice cover, and volume for two reference decades, namely 2045-2054 and 2090-2099. We foresee reduction of the ice bodies from - 62 to - 98% in volume (year 2100 vs year 1981), and subsequent large reduction of ice melt contribution to stream flows (from - 61 to - 88%, 2100 vs CR). Snow melt, now covering 47% of the stream flows yearly, would also be largely reduced (from - 19 to - 56%, 2100 vs CR). The stream flows will decrease on average at 2100 (from + 1 to - 25%, with - 7%), with potential for increased flows during fall, and winter, and large decrease in summer. Our results provide a tool for consistent modeling of the cryospheric, and hydrologic behavior, and can be used for further investigation of the high-altitude catchments in the Alps.
An approach to quantum-computational hydrologic inverse analysis
O'Malley, Daniel
2018-05-02
Making predictions about flow and transport in an aquifer requires knowledge of the heterogeneous properties of the aquifer such as permeability. Computational methods for inverse analysis are commonly used to infer these properties from quantities that are more readily observable such as hydraulic head. We present a method for computational inverse analysis that utilizes a type of quantum computer called a quantum annealer. While quantum computing is in an early stage compared to classical computing, we demonstrate that it is sufficiently developed that it can be used to solve certain subsurface flow problems. We utilize a D-Wave 2X quantum annealermore » to solve 1D and 2D hydrologic inverse problems that, while small by modern standards, are similar in size and sometimes larger than hydrologic inverse problems that were solved with early classical computers. Our results and the rapid progress being made with quantum computing hardware indicate that the era of quantum-computational hydrology may not be too far in the future.« less
An approach to quantum-computational hydrologic inverse analysis.
O'Malley, Daniel
2018-05-02
Making predictions about flow and transport in an aquifer requires knowledge of the heterogeneous properties of the aquifer such as permeability. Computational methods for inverse analysis are commonly used to infer these properties from quantities that are more readily observable such as hydraulic head. We present a method for computational inverse analysis that utilizes a type of quantum computer called a quantum annealer. While quantum computing is in an early stage compared to classical computing, we demonstrate that it is sufficiently developed that it can be used to solve certain subsurface flow problems. We utilize a D-Wave 2X quantum annealer to solve 1D and 2D hydrologic inverse problems that, while small by modern standards, are similar in size and sometimes larger than hydrologic inverse problems that were solved with early classical computers. Our results and the rapid progress being made with quantum computing hardware indicate that the era of quantum-computational hydrology may not be too far in the future.
An approach to quantum-computational hydrologic inverse analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Malley, Daniel
Making predictions about flow and transport in an aquifer requires knowledge of the heterogeneous properties of the aquifer such as permeability. Computational methods for inverse analysis are commonly used to infer these properties from quantities that are more readily observable such as hydraulic head. We present a method for computational inverse analysis that utilizes a type of quantum computer called a quantum annealer. While quantum computing is in an early stage compared to classical computing, we demonstrate that it is sufficiently developed that it can be used to solve certain subsurface flow problems. We utilize a D-Wave 2X quantum annealermore » to solve 1D and 2D hydrologic inverse problems that, while small by modern standards, are similar in size and sometimes larger than hydrologic inverse problems that were solved with early classical computers. Our results and the rapid progress being made with quantum computing hardware indicate that the era of quantum-computational hydrology may not be too far in the future.« less
NASA Astrophysics Data System (ADS)
Ercan, A.; Kavvas, M. L.; Ishida, K.; Chen, Z. Q.; Amin, M. Z. M.; Shaaban, A. J.
2017-12-01
Impacts of climate change on the hydrologic processes under future climate change conditions were assessed over various watersheds of Peninsular Malaysia by means of a coupled regional climate and physically-based hydrology model that utilized an ensemble of future climate change projections. An ensemble of 15 different future climate realizations from coarse resolution global climate models' (GCMs) projections for the 21st century were dynamically downscaled to 6 km resolution over Peninsular Malaysia by a regional numerical climate model, which was then coupled with the watershed hydrology model WEHY through the atmospheric boundary layer over the selected watersheds of Peninsular Malaysia. Hydrologic simulations were carried out at hourly increments and at hillslope-scale in order to assess the impacts of climate change on the water balances and flooding conditions at the selected watersheds during the 21st century. The coupled regional climate and hydrology model was simulated for a duration of 90 years for each of the 15 realizations. It is demonstrated that the increase in mean monthly flows due to the impact of expected climate change during 2040-2100 is statistically significant at the selected watersheds. Furthermore, the flood frequency analyses for the selected watersheds indicate an overall increasing trend in the second half of the 21st century.
NASA Astrophysics Data System (ADS)
Thirel, Guillaume; de Lavenne, Alban; Wagner, Jean-Pierre; Perrin, Charles; Gerlinger, Kai; Drogue, Gilles; Renard, Benjamin
2016-04-01
Several projects studied the impact of climate change on the Rhine basin during the past years, using the CMIP3 projections (see Explore2070, FLOW MS, RheinBlick2050 or VULNAR), either on the French or German sides. These studies showed the likely decrease of low flows and a high uncertainty regarding the evolution of high flows. This may have tremendous impacts on several aspects related to discharge, including pollution, flood protection, irrigation, rivers ecosystems and drinking water. While focusing on the same basin (or part of it), many differences including the climate scenarios and models, the hydrological models and the study periods used for these projects make the outcomes of these projects difficult to compare rigorously. Therefore the MOSARH21 (stands for MOselle-SArre-RHine discharge in the 21st century) was built to update and homogenise discharge projections for the French tributaries of the Rhine basin. Two types of models were used: the physically-oriented LARSIM model, which is widely used in Germany and was used in one of the previous projects (FLOW MS), and the semi-distributed conceptual GRSD model tested on French catchments for various objectives. Through the use of these two hydrological models and multiple sets of parameters obtained by various calibrations runs, the structural and parametric uncertainties in the hydrological projections were quantified, as they tend to be neglected in climate change impact studies. The focus of the impact analysis is put on low flows, high flows and regime. Although this study considers only French tributaries of the Rhine, it will foster further cooperation on transboundary basins across Europe, and should contribute to propose better bases for the future definition of adaptation strategies between riverine countries.
Climate Change Impacts on the Upper Indus Hydrology: Sources, Shifts and Extremes
Immerzeel, W. W.; Kraaijenbrink, P. D. A.; Shrestha, A. B.; Bierkens, M. F. P.
2016-01-01
The Indus basin heavily depends on its upstream mountainous part for the downstream supply of water while downstream demands are high. Since downstream demands will likely continue to increase, accurate hydrological projections for the future supply are important. We use an ensemble of statistically downscaled CMIP5 General Circulation Model outputs for RCP4.5 and RCP8.5 to force a cryospheric-hydrological model and generate transient hydrological projections for the entire 21st century for the upper Indus basin. Three methodological advances are introduced: (i) A new precipitation dataset that corrects for the underestimation of high-altitude precipitation is used. (ii) The model is calibrated using data on river runoff, snow cover and geodetic glacier mass balance. (iii) An advanced statistical downscaling technique is used that accounts for changes in precipitation extremes. The analysis of the results focuses on changes in sources of runoff, seasonality and hydrological extremes. We conclude that the future of the upper Indus basin’s water availability is highly uncertain in the long run, mainly due to the large spread in the future precipitation projections. Despite large uncertainties in the future climate and long-term water availability, basin-wide patterns and trends of seasonal shifts in water availability are consistent across climate change scenarios. Most prominent is the attenuation of the annual hydrograph and shift from summer peak flow towards the other seasons for most ensemble members. In addition there are distinct spatial patterns in the response that relate to monsoon influence and the importance of meltwater. Analysis of future hydrological extremes reveals that increases in intensity and frequency of extreme discharges are very likely for most of the upper Indus basin and most ensemble members. PMID:27828994
Climate Change Impacts on the Upper Indus Hydrology: Sources, Shifts and Extremes.
Lutz, A F; Immerzeel, W W; Kraaijenbrink, P D A; Shrestha, A B; Bierkens, M F P
2016-01-01
The Indus basin heavily depends on its upstream mountainous part for the downstream supply of water while downstream demands are high. Since downstream demands will likely continue to increase, accurate hydrological projections for the future supply are important. We use an ensemble of statistically downscaled CMIP5 General Circulation Model outputs for RCP4.5 and RCP8.5 to force a cryospheric-hydrological model and generate transient hydrological projections for the entire 21st century for the upper Indus basin. Three methodological advances are introduced: (i) A new precipitation dataset that corrects for the underestimation of high-altitude precipitation is used. (ii) The model is calibrated using data on river runoff, snow cover and geodetic glacier mass balance. (iii) An advanced statistical downscaling technique is used that accounts for changes in precipitation extremes. The analysis of the results focuses on changes in sources of runoff, seasonality and hydrological extremes. We conclude that the future of the upper Indus basin's water availability is highly uncertain in the long run, mainly due to the large spread in the future precipitation projections. Despite large uncertainties in the future climate and long-term water availability, basin-wide patterns and trends of seasonal shifts in water availability are consistent across climate change scenarios. Most prominent is the attenuation of the annual hydrograph and shift from summer peak flow towards the other seasons for most ensemble members. In addition there are distinct spatial patterns in the response that relate to monsoon influence and the importance of meltwater. Analysis of future hydrological extremes reveals that increases in intensity and frequency of extreme discharges are very likely for most of the upper Indus basin and most ensemble members.
Effects of Climate Change on Extreme Streamflow Risks in the Olympic National Park
NASA Astrophysics Data System (ADS)
Tohver, I. M.; Lee, S.; Hamlet, A.
2011-12-01
Conventionally, natural resource management practices are designed within the framework that past conditions serve as a baseline for future conditions. However, the warmer future climate projected for the Pacific Northwest will alter the region's flood and low flow risks, posing considerable challenges to resource managers in the Olympic National Forest (ONF) and Olympic National Park (ONP). Shifts in extreme streamflow will influence two key management objectives in the ONF and ONP: the protection of wildlife and the maintenance of road infrastructure. The ONF is charged with managing habitat for species listed under the Endangered Species Act (ESA), and with maintaining the network of forest roads and culverts. Climate-induced increases in flood severity will introduce additional challenges in road and culvert design. Furthermore, the aging road infrastructure and more extreme summer low flows will compromise aquatic habitats, intrinsic to the health of threatened and endangered fish species listed under the ESA. Current practice uses estimates of Q100 (or the peak flow with an estimated 100 year return frequency) as the standard metric for stream crossing design. Simple regression models relating annual precipitation and basin area to Q100 are used in the design process. Low flow estimates are based on historical streamflow data to calculate the 7-day consecutive lowest flow with a 10-year return interval, or 7Q10. Under the projections a changing climate, these methods for estimating extreme flows are ill equipped to capture the complex and spatially varying effects of seasonal changes in temperature, precipitation, and snowpack on extreme flow risk. As an alternative approach, this study applies a physically-based hydrologic model to estimate historical and future flood risk at 1/16th degree (latitude/longitude) resolution (about 32 km2). We downscaled climate data derived from 10 global climate models to use as input for the Variable Infiltration Capacity (VIC) model, a macro-scale hydrologic model, which simulates various hydrologic variables at a daily time step. Using the VIC estimates for baseflow and run-off, we calculated Q100 and 7Q10 for the historical period and under two emission scenarios, A1B and B1, at three future time intervals: the 2020s, the 2040s and the 2080s. We also calculated Q100 and 7Q10 at the spatial scale of the 12-digit hydrologic unit codes (HUCs) as delineated by the United States Geologic Survey. The results demonstrate the sensitivity of snowpack at mid-elevation basins to a warmer climate, resulting in more severe winter flooding and lower streamflows in the summertime. These ensemble estimates of extreme streamflows will serve as a tool for management practices by providing high-resolution maps of changing risk over the ONF and ONP.
Hydrologic response of Pacific Northwest river to climate change
NASA Astrophysics Data System (ADS)
Su, F.; Cuo, L.; Wu, H.; Mantua, N.; Lettenmaier, D. P.
2009-12-01
The climate of the Pacific Northwest (PNW - which we define as the Columbia River basin and watersheds draining to the Oregon and Washington coasts) is expected to warm by approximately 0.3°C per decade in the next 100 years based on the IPCC the Fourth Assessment Report (AR4) results. PNW hydrology is particularly sensitive to a warming climate because of the dominant role of snowmelt in seasonal streamflow. Timing shifts in seasonality of flows, peak discharge, and base flows will impact water resource management, regional electrical energy production, and freshwater ecosystems. In this work we update previous studies of implications of climate change on PNW hydrology using a macroscale hydrology model driven by simulations of temperature and precipitation downscaled from runs of 20 General Circulation Models (GCMs) under two emissions scenarios (lower B1 and mid-high A1B) in the 21st century. The hydrology model is implemented at 1/16th degree spatial resolution over the entire PNW. A (statistical) bias-correction and spatial disaggregation downscaling approach is used for translating the transient monthly climate model output into continuous daily forcings for the hydrologic analysis. We evaluate projected changes in snow water equivalent, seasonal streamflow, and frequency of peak low flows over a set of case study watersheds in the region. We also compare these hydrologic projections with previous analysis based on delta downscaling method over the PNW. This research is part of a project investigating climate change impacts on the future of wild Pacific salmon, and is a pilot effort to investigate the hydrologic sensitivity of salmon bearing watersheds around the entire North Pacific Rim.
NASA Astrophysics Data System (ADS)
Ntegeka, Victor; Willems, Patrick; Baguis, Pierre; Roulin, Emmanuel
2015-04-01
It is advisable to account for a wide range of uncertainty by including the maximum possible number of climate models and scenarios for future impacts. As this is not always feasible, impact assessments are inevitably performed with a limited set of scenarios. The development of tailored scenarios is a challenge that needs more attention as the number of available climate change simulations grows. Whether these scenarios are representative enough for climate change impacts is a question that needs addressing. This study presents a methodology of constructing tailored scenarios for assessing runoff flows including extreme conditions (peak flows) from an ensemble of future climate change signals of precipitation and potential evapotranspiration (ETo) derived from the climate model simulations. The aim of the tailoring process is to formulate scenarios that can optimally represent the uncertainty spectrum of climate scenarios. These tailored scenarios have the advantage of being few in number as well as having a clear description of the seasonal variation of the climate signals, hence allowing easy interpretation of the implications of future changes. The tailoring process requires an analysis of the hydrological impacts from the likely future change signals from all available climate model simulations in a simplified (computationally less expensive) impact model. Historical precipitation and ETo time series are perturbed with the climate change signals based on a quantile perturbation technique that accounts for the changes in extremes. For precipitation, the change in wetday frequency is taken into account using a markov-chain approach. Resulting hydrological impacts from the perturbed time series are then subdivided into high, mean and low hydrological impacts using a quantile change analysis. From this classification, the corresponding precipitation and ETo change factors are back-tracked on a seasonal basis to determine precipitation-ETo covariation. The established precipitation-ETo covariations are used to inform the scenario construction process. Additionally, the back-tracking of extreme flows from driving scenarios allows for a diagnosis of the physical responses to climate change scenarios. The method is demonstrated through the application of scenarios from 10 Regional Climate Models,21 Global Climate Models and selected catchments in central Belgium. Reference Ntegeka, V., Baguis, P., Roulin, E., & Willems, P. (2014). Developing tailored climate change scenarios for hydrological impact assessments. Journal of Hydrology, 508, 307-321.
Predicting regime shifts in flow of the Colorado River
Gangopadhyay, Subhrendu; McCabe, Gregory J.
2010-01-01
The effects of continued global warming on water resources are a concern for water managers and stake holders. In the western United States, where the combined climatic demand and consumptive use of water is equal to or greater than the natural supply of water for some locations, there is growing concern regarding the sustainability of future water supplies. In addition to the adverse effects of warming on water supply, another issue for water managers is accounting for, and managing, the effects of natural climatic variability, particularly persistently dry and wet periods. Analyses of paleo-reconstructions of Upper Colorado River basin (UCRB) flow demonstrate that severe sustained droughts, and persistent pluvial periods, are a recurring characteristic of hydroclimate in the Colorado River basin. Shifts between persistently dry and wet regimes (e.g., decadal to multi-decadal variability (D2M)) have important implications for water supply and water management. In this study paleo-reconstructions of UCRB flow are used to compute the risks of shifts between persistently wet and dry regimes given the length of time in a specific regime. Results indicate that low frequency variability of hydro-climatic conditions and the statistics that describe this low frequency variability can be useful to water managers by providing information about the risk of shifting from one hydrologic regime to another. To manage water resources in the future water managers will have to understand the joint hydrologic effects of natural climate variability and global warming. These joint effects may produce future hydrologic conditions that are unprecedented in both the instrumental and paleoclimatic records.
NASA Astrophysics Data System (ADS)
Marcos-Garcia, Patricia; Pulido-Velazquez, Manuel; Lopez-Nicolas, Antonio
2016-04-01
Extreme natural phenomena, and more specifically droughts, constitute a serious environmental, economic and social issue in Southern Mediterranean countries, common in the Mediterranean Spanish basins due to the high temporal and spatial rainfall variability. Drought events are characterized by their complexity, being often difficult to identify and quantify both in time and space, and an universally accepted definition does not even exist. This fact, along with future uncertainty about the duration and intensity of the phenomena on account of climate change, makes necessary increasing the knowledge about the impacts of climate change on droughts in order to design management plans and mitigation strategies. The present abstract aims to evaluate the impact of climate change on both meteorological and hydrological droughts, through the use of a generalization of the Standardized Precipitation Index (SPI). We use the Standardized Flow Index (SFI) to assess the hydrological drought, using flow time series instead of rainfall time series. In the case of the meteorological droughts, the Standardized Precipitation and Evapotranspiration Index (SPEI) has been applied to assess the variability of temperature impacts. In order to characterize climate change impacts on droughts, we have used projections from the CORDEX project (Coordinated Regional Climate Downscaling Experiment). Future rainfall and temperature time series for short (2011-2040) and medium terms (2041-2070) were obtained, applying a quantile mapping method to correct the bias of these time series. Regarding the hydrological drought, the Témez hydrological model has been applied to simulate the impacts of future temperature and rainfall time series on runoff and river discharges. It is a conceptual, lumped and a few parameters hydrological model. Nevertheless, it is necessary to point out the time difference between the meteorological and the hydrological droughts. The case study is the Jucar river basin (Spain), a highly regulated system with a share of 80% of water use for irrigated agriculture. The results show that the climate change would increase the historical drought impacts in the river basin. Acknowledgments The study has been supported by the IMPADAPT project (CGL2013-48424-C2-1-R) with Spanish MINECO (Ministerio de Economía y Competitividad) and European FEDER funds.
The European 2015 drought from a hydrological perspective
NASA Astrophysics Data System (ADS)
Laaha, Gregor; Gauster, Tobias; Tallaksen, Lena M.; Vidal, Jean-Philippe; Stahl, Kerstin; Prudhomme, Christel; Heudorfer, Benedikt; Vlnas, Radek; Ionita, Monica; Van Lanen, Henny A. J.; Adler, Mary-Jeanne; Caillouet, Laurie; Delus, Claire; Fendekova, Miriam; Gailliez, Sebastien; Hannaford, Jamie; Kingston, Daniel; Van Loon, Anne F.; Mediero, Luis; Osuch, Marzena; Romanowicz, Renata; Sauquet, Eric; Stagge, James H.; Wong, Wai K.
2017-06-01
In 2015 large parts of Europe were affected by drought. In this paper, we analyze the hydrological footprint (dynamic development over space and time) of the drought of 2015 in terms of both severity (magnitude) and spatial extent and compare it to the extreme drought of 2003. Analyses are based on a range of low flow and hydrological drought indices derived for about 800 streamflow records across Europe, collected in a community effort based on a common protocol. We compare the hydrological footprints of both events with the meteorological footprints, in order to learn from similarities and differences of both perspectives and to draw conclusions for drought management. The region affected by hydrological drought in 2015 differed somewhat from the drought of 2003, with its center located more towards eastern Europe. In terms of low flow magnitude, a region surrounding the Czech Republic was the most affected, with summer low flows that exhibited return intervals of 100 years and more. In terms of deficit volumes, the geographical center of the event was in southern Germany, where the drought lasted a particularly long time. A detailed spatial and temporal assessment of the 2015 event showed that the particular behavior in these regions was partly a result of diverging wetness preconditions in the studied catchments. Extreme droughts emerged where preconditions were particularly dry. In regions with wet preconditions, low flow events developed later and tended to be less severe. For both the 2003 and 2015 events, the onset of the hydrological drought was well correlated with the lowest flow recorded during the event (low flow magnitude), pointing towards a potential for early warning of the severity of streamflow drought. Time series of monthly drought indices (both streamflow- and climate-based indices) showed that meteorological and hydrological events developed differently in space and time, both in terms of extent and severity (magnitude). These results emphasize that drought is a hazard which leaves different footprints on the various components of the water cycle at different spatial and temporal scales. The difference in the dynamic development of meteorological and hydrological drought also implies that impacts on various water-use sectors and river ecology cannot be informed by climate indices alone. Thus, an assessment of drought impacts on water resources requires hydrological data in addition to drought indices based solely on climate data. The transboundary scale of the event also suggests that additional efforts need to be undertaken to make timely pan-European hydrological assessments more operational in the future.
NASA Astrophysics Data System (ADS)
Mohammed, K.; Islam, A. S.; Khan, M. J. U.; Das, M. K.
2017-12-01
With the large number of hydrologic models presently available along with the global weather and geographic datasets, streamflows of almost any river in the world can be easily modeled. And if a reasonable amount of observed data from that river is available, then simulations of high accuracy can sometimes be performed after calibrating the model parameters against those observed data through inverse modeling. Although such calibrated models can succeed in simulating the general trend or mean of the observed flows very well, more often than not they fail to adequately simulate the extreme flows. This causes difficulty in tasks such as generating reliable projections of future changes in extreme flows due to climate change, which is obviously an important task due to floods and droughts being closely connected to people's lives and livelihoods. We propose an approach where the outputs of a physically-based hydrologic model are used as an input to a machine learning model to try and better simulate the extreme flows. To demonstrate this offline-coupling approach, the Soil and Water Assessment Tool (SWAT) was selected as the physically-based hydrologic model, the Artificial Neural Network (ANN) as the machine learning model and the Ganges-Brahmaputra-Meghna (GBM) river system as the study area. The GBM river system, located in South Asia, is the third largest in the world in terms of freshwater generated and forms the largest delta in the world. The flows of the GBM rivers were simulated separately in order to test the performance of this proposed approach in accurately simulating the extreme flows generated by different basins that vary in size, climate, hydrology and anthropogenic intervention on stream networks. Results show that by post-processing the simulated flows of the SWAT models with ANN models, simulations of extreme flows can be significantly improved. The mean absolute errors in simulating annual maximum/minimum daily flows were minimized from 4967 cusecs to 1294 cusecs for Ganges, from 5695 cusecs to 2115 cusecs for Brahmaputra and from 689 cusecs to 321 cusecs for Meghna. Using this approach, simulations of hydrologic variables other than streamflow can also be improved given that a decent amount of observed data for that variable is available.
Painter, Scott L.; Coon, Ethan T.; Atchley, Adam L.; ...
2016-08-11
The need to understand potential climate impacts and feedbacks in Arctic regions has prompted recent interest in modeling of permafrost dynamics in a warming climate. A new fine-scale integrated surface/subsurface thermal hydrology modeling capability is described and demonstrated in proof-of-concept simulations. The new modeling capability combines a surface energy balance model with recently developed three-dimensional subsurface thermal hydrology models and new models for nonisothermal surface water flows and snow distribution in the microtopography. Surface water flows are modeled using the diffusion wave equation extended to include energy transport and phase change of ponded water. Variation of snow depth in themore » microtopography, physically the result of wind scour, is also modeled heuristically with a diffusion wave equation. The multiple surface and subsurface processes are implemented by leveraging highly parallel community software. Fully integrated thermal hydrology simulations on the tilted open book catchment, an important test case for integrated surface/subsurface flow modeling, are presented. Fine-scale 100-year projections of the integrated permafrost thermal hydrological system on an ice wedge polygon at Barrow Alaska in a warming climate are also presented. Finally, these simulations demonstrate the feasibility of microtopography-resolving, process-rich simulations as a tool to help understand possible future evolution of the carbon-rich Arctic tundra in a warming climate.« less
NASA Astrophysics Data System (ADS)
Pasten-Zapata, Ernesto; Jones, Julie; Moggridge, Helen
2015-04-01
As climate change is expected to generate variations on the Earth's precipitation and temperature, the water cycle will also experience changes. Consequently, water users will have to be prepared for possible changes in future water availability. The main objective of this research is to evaluate the impacts of climate change on river regimes and the implications to the operation and feasibility of run of the river hydropower schemes by analyzing four UK study sites. Run of the river schemes are selected for analysis due to their higher dependence to the available river flow volumes when compared to storage hydropower schemes that can rely on previously accumulated water volumes (linked to poster in session HS5.3). Global Climate Models (GCMs) represent the main tool to assess future climate change. In this research, Regional Climate Models (RCMs), which dynamically downscale GCM outputs providing higher resolutions, are used as starting point to evaluate climate change within the study catchments. RCM daily temperature and precipitation will be downscaled to an appropriate scale for impact studies and bias corrected using different statistical methods: linear scaling, local intensity scaling, power transformation, variance scaling and delta change correction. The downscaled variables will then be coupled to hydrological models that have been previously calibrated and validated against observed daily river flow data. The coupled hydrological and climate models will then be used to simulate historic river flows that are compared to daily observed values in order to evaluate the model accuracy. As this research will employ several different RCMs (from the EURO-CORDEX simulations), downscaling and bias correction methodologies, greenhouse emission scenarios and hydrological models, the uncertainty of each element will be estimated. According to their uncertainty magnitude, a prediction of the best downscaling approach (or approaches) is expected to be obtained. The current progress of the project will be presented along with the steps to be followed in the future.
New insights for the hydrology of the Rhine based on the new generation climate models
NASA Astrophysics Data System (ADS)
Bouaziz, Laurène; Sperna Weiland, Frederiek; Beersma, Jules; Buiteveld, Hendrik
2014-05-01
Decision makers base their choices of adaptation strategies on climate change projections and their associated hydrological consequences. New insights of climate change gained under the new generation of climate models belonging to the IPCC 5th assessment report may influence (the planning of) adaption measures and/or future expectations. In this study, hydrological impacts of climate change as projected under the new generation of climate models for the Rhine were assessed. Hereto we downscaled 31 General Circulation Models (GCMs), which were developed as part of the Coupled Model Intercomparison Project Phase 5 (CMIP5), using an advanced Delta Change Method for the Rhine basin. Changes in mean monthly, maximum and minimum flows at Lobith were derived with the semi-distributed hydrological model HBV of the Rhine. The projected changes were compared to changes that were previously obtained in the trans-boundary project Rheinblick using eight CMIP3 GCMs and Regional Climate Models (RCMs) for emission scenario A1B. All eight selected CMIP3 models (scenario A1B) predicted for 2071-2100 a decrease in mean monthly flows between June and October. Similar decreases were found for some of the 31 CMIP5 models for Representative Concentration Pathways (RCPs) 4.5, 6.0 and 8.5. However, under each RCP, there were also models that projected an increase in mean flows between June and October and on average the decrease was smaller than for the eight CMIP3 models. For 2071-2100, also the mean annual minimum 7-days discharge decreased less in the CMIP5 model simulations than was projected in CMIP3. When assessing the response of mean monthly flows of the CMIP5 simulation with the CSIRO-Mk3-6-0 and HadGEM2-ES models with respect to initial conditions and RCPs, it was found that natural variability plays a dominant role in the near future (2021-2050), while changes in mean monthly flows are dominated by the radiative forcing in the far future (2071-2100). According to RCP 8.5 model simulations, the change in mean monthly flow from May to November may be half the change in mean monthly flow projected by RCP 4.5. From January to March, RCP 8.5 simulations projected higher changes in mean monthly flows than RCP 4.5 simulations. These new insights based on the CMIP5 simulations imply that for the Rhine, the mean and low flow extremes might not decrease as much in summer as was expected under CMIP3. Stresses on water availability during summer are therefore also less than expected from CMIP3.
DeGasperi, Curtis L; Berge, Hans B; Whiting, Kelly R; Burkey, Jeff J; Cassin, Jan L; Fuerstenberg, Robert R
2009-01-01
We used a retrospective approach to identify hydrologic metrics with the greatest potential for ecological relevance for use as resource management tools (i.e., hydrologic indicators) in rapidly urbanizing basins of the Puget Lowland. We proposed four criteria for identifying useful hydrologic indicators: (1) sensitive to urbanization consistent with expected hydrologic response, (2) demonstrate statistically significant trends in urbanizing basins (and not in undeveloped basins), (3) be correlated with measures of biological response to urbanization, and (4) be relatively insensitive to potentially confounding variables like basin area. Data utilized in the analysis included gauged flow and benthic macroinvertebrate data collected at 16 locations in 11 King County stream basins. Fifteen hydrologic metrics were calculated from daily average flow data and the Pacific Northwest Benthic Index of Biological Integrity (B-IBI) was used to represent the gradient of response of stream macroinvertebrates to urbanization. Urbanization was represented by percent Total Impervious Area (%TIA) and percent urban land cover (%Urban). We found eight hydrologic metrics that were significantly correlated with B-IBI scores (Low Pulse Count and Duration; High Pulse Count, Duration, and Range; Flow Reversals, TQmean, and R-B Index). Although there appeared to be a great deal of redundancy among these metrics with respect to their response to urbanization, only two of the metrics tested – High Pulse Count and High Pulse Range – best met all four criteria we established for selecting hydrologic indicators. The increase in these high pulse metrics with respect to urbanization is the result of an increase in winter high pulses and the occurrence of high pulse events during summer (increasing the frequency and range of high pulses), when practically none would have occurred prior to development. We performed an initial evaluation of the usefulness of our hydrologic indicators by calculating and comparing hydrologic metrics derived from continuous hydrologic simulations of selected basin management alternatives for Miller Creek, one of the most highly urbanized basins used in our study. We found that the preferred basin management alternative appeared to be effective in restoring some flow metrics close to simulated fully forested conditions (e.g., TQmean), but less effective in restoring other metrics such as High Pulse Count and Range. If future research continues to support our hypothesis that the flow regime, particularly High Pulse Count and Range, is an important control of biotic integrity in Puget Lowland streams, it would have significant implications for stormwater management. PMID:22457566
NASA Astrophysics Data System (ADS)
Hill, A. F.; Wilson, A. M.; Williams, M. W.
2016-12-01
The future of mountain water resources in High Asia is of high interest to water managers, development organizations and policy makers given large populations downstream reliant on snow and ice sourced river flow. Together with historical and cultural divides among ex-Soviet republics, a lack of central water management following the Soviet break-up has led to water stress as trans-boundary waters weave through and along borders. New upstream hydropower development, a thirsty downstream agricultural sector and a shrinking Aral Sea has led to increasing tension in the region. Despite these pressures and in contrast to eastern High Asia's Himalayan basins (Ganges, Brahmaputra), little attention has been given to western High Asia draining the Pamir and Tien Shan ranges (Syr Darya and Amu Darya basins) to better understand the hydrology of this vast and remote area. Difficult access and challenging terrain exacerbate challenges to working in this remote mountain region. As part of the Contributions to High Asia Runoff from Ice and Snow (CHARIS) project, we asked how does river flow source water composition change over an alpine-to-plains domain of Kyrgyzstan's Naryn River in the Syr Darya basin? In addition, what may the future hold for river flow in Central Asia given the differing responses of snow and ice to climate changes? Utilizing a Rapid Hydrologic Assessment methodology including a suite of pre-field mapping techniques we collected in situ water chemistry data at targeted, remote mountain sites over 450km of the Naryn River over an elevation gradient from glacial headwaters to the lower lying areas - places where people, hydropower and agriculture utilize water. Chemical and isotope tracers were used to separate stream flow to understand relative dependency on melt waters as the river moves downstream from glaciers and snow covered areas. This case study demonstrates a technique to acquire field data over large scales in remote regions that facilitates regional basin wide hydrologic characterization. The arid hydro-climatology of the Naryn basin also serves as an important comparison to the monsoon-dominated eastern Himalaya studies, thereby providing bookends to anticipating possible hydrologic futures across the High Asian mountain arc.
Estimating future flood frequency and magnitude in basins affected by glacier wastage.
DOT National Transportation Integrated Search
2015-03-01
We present field measurements of meteorology, hydrology and glaciers and long-term modeled projections of glacier mass balance and : stream flow informed by downscaled climate simulations. The study basins include Valdez Glacier Stream (342 km2 : ), ...
Variability of hydrologic regimes and morphology in constructed open-ditch channels
Strock, J.S.; Magner, J.A.; Richardson, W.B.; Sadowsky, M.J.; Sands, G.R.; Venterea, R.T.; ,
2004-01-01
Open-ditch ecosystems are potential transporters of considerable loads of nutrients, sediment, pathogens and pesticides from direct inflow from agricultural land to small streams and larger rivers. Our objective was to compare hydrology and channel morphology between two experimental open-ditch channels. An open-ditch research facility incorporating a paired design was constructed during 2002 near Lamberton, MN. A200-m reach of existing drainage channel was converted into a system of four parallel channels. The facility was equipped with water level control devices and instrumentation for flow monitoring and water sample collection on upstream and downstream ends of the system. Hydrographs from simulated flow during year one indicated that paired open-ditch channels responded similarly to changes in inflow. Variability in hydrologic response between open-ditches was attributed to differences in open-ditch channel bottom elevation and vegetation density. No chemical, biological, or atmospheric measurements were made during 2003. Potential future benefits of this research include improved biological diversity and integrity of open-ditch ecosystems, reduce flood peaks and increased flow during critical low-flow periods, improved and more efficient nitrogen retention within the open-ditch ecosystem, and decreased maintenance cost associated with reduced frequency of open-ditch maintenance.
Network analysis applications in hydrology
NASA Astrophysics Data System (ADS)
Price, Katie
2017-04-01
Applied network theory has seen pronounced expansion in recent years, in fields such as epidemiology, computer science, and sociology. Concurrent development of analytical methods and frameworks has increased possibilities and tools available to researchers seeking to apply network theory to a variety of problems. While water and nutrient fluxes through stream systems clearly demonstrate a directional network structure, the hydrological applications of network theory remain underexplored. This presentation covers a review of network applications in hydrology, followed by an overview of promising network analytical tools that potentially offer new insights into conceptual modeling of hydrologic systems, identifying behavioral transition zones in stream networks and thresholds of dynamical system response. Network applications were tested along an urbanization gradient in Atlanta, Georgia, USA. Peachtree Creek and Proctor Creek. Peachtree Creek contains a nest of five longterm USGS streamflow and water quality gages, allowing network application of longterm flow statistics. The watershed spans a range of suburban and heavily urbanized conditions. Summary flow statistics and water quality metrics were analyzed using a suite of network analysis techniques, to test the conceptual modeling and predictive potential of the methodologies. Storm events and low flow dynamics during Summer 2016 were analyzed using multiple network approaches, with an emphasis on tomogravity methods. Results indicate that network theory approaches offer novel perspectives for understanding long term and eventbased hydrological data. Key future directions for network applications include 1) optimizing data collection, 2) identifying "hotspots" of contaminant and overland flow influx to stream systems, 3) defining process domains, and 4) analyzing dynamic connectivity of various system components, including groundwatersurface water interactions.
Unravelling connections between river flow and large-scale climate: experiences from Europe
NASA Astrophysics Data System (ADS)
Hannah, D. M.; Kingston, D. G.; Lavers, D.; Stagge, J. H.; Tallaksen, L. M.
2016-12-01
The United Nations has identified better knowledge of large-scale water cycle processes as essential for socio-economic development and global water-food-energy security. In this context, and given the ever-growing concerns about climate change/ variability and human impacts on hydrology, there is an urgent research need: (a) to quantify space-time variability in regional river flow, and (b) to improve hydroclimatological understanding of climate-flow connections as a basis for identifying current and future water-related issues. In this paper, we draw together studies undertaken at the pan-European scale: (1) to evaluate current methods for assessing space-time dynamics for different streamflow metrics (annual regimes, low flows and high flows) and for linking flow variability to atmospheric drivers (circulation indices, air-masses, gridded climate fields and vapour flux); and (2) to propose a plan for future research connecting streamflow and the atmospheric conditions in Europe and elsewhere. We believe this research makes a useful, unique contribution to the literature through a systematic inter-comparison of different streamflow metrics and atmospheric descriptors. In our findings, we highlight the need to consider appropriate atmospheric descriptors (dependent on the target flow metric and region of interest) and to develop analytical techniques that best characterise connections in the ocean-atmosphere-land surface process chain. We call for the need to consider not only atmospheric interactions, but also the role of the river basin-scale terrestrial hydrological processes in modifying the climate signal response of river flows.
NASA Astrophysics Data System (ADS)
Fangmann, Anne; Haberlandt, Uwe
2014-05-01
In the face of climate change, the assessment of future hydrological regimes has become indispensable in the field of water resources management. Investigation of potential change is vital for proper planning, especially with regard to hydrological extremes. Commonly, projection of future streamflow is done applying process-based hydrological models, using climate model data as input, whose complex model structures generally require excessive amounts of time and effort for set-up and computation. This study aims at identifying practical alternatives to the employment of sophisticated models by considering simpler, yet sufficiently accurate methods for modeling rainfall-runoff relations with regard to hydrological extremes. The focus is thereby put on the prediction of low flow periods, which are, in contrast to flood events, characterized by extended durations and spatial dimensions. The models to be established in this study base on indicators, which characterize both meteorological and hydrological conditions within dry periods. This approach makes direct use of the coupling between atmospheric driving forces and streamflow response with the underlying presumption that low-precipitation and high-evaporation periods result in diminished flow, implying that relationships exist between the properties of both meteorological and hydrological events (duration, volume, severity etc.). Eventually, optimal combinations of meteorological indicators are sought that are suitable to predict various low flow characteristics with satisfactory accuracy. Two approaches for model specification are tested: a) multiple linear regression, and b) Fuzzy logic. The data used for this study are daily time series of mean discharge obtained from 294 gauges with variable record length situated in the federal state of Lower Saxony, Germany, as well as interpolated climate variables available for a period from 1951 to 2011. After extraction of a variety of indicators from the available discharge and climate time series on a bi-annual basis, regression and Fuzzy models are fit. Fitting is done in two variations: locally at each of the watersheds in the study area, and regionally, yielding one specific model expression for the entire study area. Models for the individual stations perform well using only the meteorological indicators as predictor variables, while the regional models require the additional input of catchment descriptors to account for the variability of the rainfall-runoff translation processes between the catchments.
Assessing the Impact of Land Use and Land Cover Change on Global Water Resources
NASA Astrophysics Data System (ADS)
Batra, N.; Yang, Y. E.; Choi, H. I.; Islam, A.; Charlotte, D. F.; Cai, X.; Kumar, P.
2007-12-01
Land use and land cover changes (LULCC) significantly modify the hydrological regime of the watersheds, affecting water resources and environment from regional to global scale. This study seeks to advance and integrate water and energy cycle observation, scientific understanding, and human impacts to assess future water availability. To achieve the research objective, we integrate and interpret past and current space based and in situ observations into a global hydrologic model (GHM). GHM is developed with enhanced spatial and temporal resolution, physical complexity, hydrologic theory and processes to quantify the impact of LULCC on physical variables: surface runoff, subsurface flow, groundwater, infiltration, ET, soil moisture, etc. Coupled with the common land model (CLM), a 3-dimensional volume averaged soil-moisture transport (VAST) model is expanded to incorporate the lateral flow and subgrid heterogeneity. The model consists of 11 soil-hydrology layers to predict lateral as well as vertical moisture flux transport based on Richard's equations. The primary surface boundary conditions (SBCs) include surface elevation and its derivatives, land cover category, sand and clay fraction profiles, bedrock depth and fractional vegetation cover. A consistent global GIS-based dataset is constructed for the SBCs of the model from existing observational datasets comprising of various resolutions, map projections and data formats. Global ECMWF data at 6-hour time steps for the period 1971 through 2000 is processed to get the forcing data which includes incoming longwave and shortwave radiation, precipitation, air temperature, pressure, wind components, boundary layer height and specific humidity. Land use land cover data, generated using IPCC scenarios for every 10 years from 2000 to 2100 is used for future assessment on water resources. Alterations due to LULCC on surface water balance components: ET, groundwater recharge and runoff are then addressed in the study. Land use change disrupts the hydrological cycle through increasing the water yield at some places leading to floods while diminishing, or even eliminating the low flow at other places.
Towards a high resolution, integrated hydrology model of North America.
NASA Astrophysics Data System (ADS)
Maxwell, R. M.; Condon, L. E.
2015-12-01
Recent studies demonstrate feedbacks between groundwater dynamics, overland flow, land surface and vegetation processes, and atmospheric boundary layer development that significantly affect local and regional climate across a range of climatic conditions. Furthermore, the type and distribution of vegetation cover alters land-atmosphere water and energy fluxes, as well as runoff generation and overland flow processes. These interactions can result in significant feedbacks on local and regional climate. In mountainous regions, recent research has shown that spatial and temporal variability in annual evapotranspiration, and thus water budgets, is strongly dependent on lateral groundwater flow; however, the full effects of these feedbacks across varied terrain (e.g. from plains to mountains) are not well understood. Here, we present a high-resolution, integrated hydrology model that covers much of continental North America and encompasses the Mississippi and Colorado watersheds. The model is run in a fully-transient manner at hourly temporal resolution incorporating fully-coupled land energy states and fluxes with integrated surface and subsurface hydrology. Connections are seen between hydrologic variables (such as water table depth) and land energy fluxes (such as latent heat) and spatial and temporal scaling is shown to span many orders of magnitude. Using these transient simulations as a proof of concept, we present a vision for future integrated simulation capabilities.
Ferris, J.G.; Knowles, D.B.; Brown, R.H.; Stallman, R.H.
1962-01-01
The development of water supplies from wells was placed on a rational basis with Darcy's development of the law governing the movement of fluids through sands and with Dupuit's application of that law to the problem of radial flow toward a pumped well. As field experience increased, confidence in the applicability of quantitative methods was gained and interest in developing solutions for more complex hydrologic problems was stimulated. An important milestone was Theis' development in 1935 of a solution for the nonsteady flow of ground water, which enabled hydrologists for the first time to predict future changes in ground-water levels resulting from pumping or recharging of wells. In the quarter century since, quantitative ground-water hydrology has been enlarging so rapidly as to discourage the preparation of comprehensive textbooks. This report surveys developments in fluid mechanics that apply to groundwater hydrology. It emphasizes concepts and principles, and the delineation of limits of applicability of mathematical models for analysis of flow systems in the field. It stresses the importance of the geologic variable and its role in governing the flow regimen. The report discusses the origin, occurrence, and motion of underground water in relation to the development of terminology and analytic expressions for selected flow systems. It describes the underlying assumptions necessary for mathematical treatment of these flow systems, with particular reference to the way in which the assumptions limit the validity of the treatment.
NASA Astrophysics Data System (ADS)
Miller, J. D.; Rickards, N. J.; Kjeldsen, T. R.; Hutchins, M.; Rowland, C.; Prudhomme, C.; Maliko, T.; Fidal, J.; Hagen-Zanker, A.
2016-12-01
The UK population is set to increase by 16% by 2035; it is therefore increasingly important to understand the impact this may have on urban populations, and in turn how this will affect river flow regimes and water quality in urban areas. A growing population is likely to lead to an increase in urban land use and impervious surfaces, the implications of which are not yet fully understood for issues such as future flood risk. The aim of this paper is to develop a greater understanding of the impacts of both an increasing population and urban extent in the context of a changing climate, and to assess the effect these may have on urban streamflow regimes and water security in the future. Flows are modelled for selected catchments in the Thames basin using URBMOD, a lumped rainfall runoff model that is able to represent both pervious and impervious surfaces, reducing infiltration in catchments where there is a greater urban extent. The model uses daily catchment average rainfall and evapotranspiration derived from gridded data, and is calibrated against long-term river flow records. Historic satellite imagery is used to train cellular automata land use models, which are then applied under different scenarios of urban development up to 2035. These changes in land use are combined with a range of climate change scenarios to give an indication of how urban flow regimes may be altered in the Thames basin over the next 20 years. Results suggest an intensification of the hydrological regime in the majority of catchments, with increases in high flow magnitudes (Q10) of up to 5%. The trend for low flows (Q90) is less clear, with some catchments displaying reductions of around 4%, whilst others show slight increased flows. We identify the main drivers behind these changes, from which the fine-scale impacts of urbanisation on water resources can be better understood. Research findings are being used to inform a regional-scale model, coupling water quantity and quality and providing insight to urban planners and stakeholders on the future urban hydrological regime in the Thames basin. Similar approaches are being used to assess impacts of anthropogenic drivers on water resources in the Cauvery basin in India, whereby the applicability of the model under very different climate and urban morphology will be tested.
Roy, Allison; Jane, Stephen F.; Hazelton, Peter D.; Richards, Todd A.; Finn, John T.; Randhir, Timothy O.
2016-01-01
With increased pressure from a growing human population, managers are challenged to understand how novel disturbances (e.g., climate change, increased water withdrawals, urbanization) may affect natural resources. The Sudbury River is a National Wild and Scenic River located in suburban Boston, Massachusetts (Northeastern US) with myriad impairments (e.g., mainstem impoundments, withdrawals, and urbanization) that is under increasing pressure from hydrologic alteration. We sampled fish, mussel, and macroinvertebrate assemblages in the Sudbury River and used species traits to investigate potential effects of past and future flow alteration on biota. Analysis of 33 years of stream gage data indicates continued hydrologic alteration of the Sudbury River, likely related to increased urbanization and water withdrawals over that time. These changes include a roughly 200% increase in rise rates of flows, an approximate 65% decrease in 1-day minimum flows, and a trend towards increasing high flow pulse counts. Biotic sampling in summer of 2014 demonstrated that the Sudbury River is now dominated by generalist species. Of five mussel species sampled, all are generalists in their habitat requirements. Though one mussel species of special concern was sampled, the most abundant species collected were the widespread Eastern elliptio (58%) and Eastern lampmussel (40%). We used the target fish community (TFC) model to assess the degree to which the fish assemblage deviated from that expected for a river with similar zoogeographic and physical features. Overall, the current community has a 22.7% similarity to the TFC. Of the four fluvial specialist species present in the TFC, only fallfish was sampled in our study. While the TFC showed that the historical assemblage was likely dominated by fluvial specialist and fluvial dependent species, the current assemblage is overwhelmingly dominated by macrohabitat generalists (90.6% of fishes sampled). These results are consistent with other studies that show shifts in assemblages from fluvial specialists to habitat generalists with hydrologic alteration. If the current trends continue, it is likely that biotic assemblages will experience increasing pressure from hydrologic alteration. While hydrologic alteration is likely impacting biotic assemblages in the Sudbury River, other factors such as high temperatures, low dissolved oxygen, high nutrients, low availability of high-quality habitat, and poor habitat connectivity may also be negatively impacting biotic assemblages. Comparisons to other rivers and a complete longitudinal habitat survey could help to identify availability of unique habitats and representativeness of this study. While this study suggests impacts of flow on biota, future studies with quantitative, habitat-specific sampling during different flow levels could help to directly identify links between hydrologic alteration and biotic impairment in the Sudbury River.
Anne W. Nolin; Jeff Phillippe; Anne Jefferson; Sarah L. Lewis
2010-01-01
While the impacts of long-term climate change trends on glacier hydrology have received much attention, little has been done to quantify direct glacier runoff contributions to streamflow. This paper presents an approach for determining glacier runoff contributions to streamflow and estimating the effects of increased temperature and decreased glacier area on future...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vernon, Christopher R.; Arntzen, Evan V.; Richmond, Marshall C.
Assessing the environmental benefits of proposed flow modification to large rivers provides invaluable insight into future hydropower project operations and relicensing activities. Providing a means to quantitatively define flow-ecology relationships is integral in establishing flow regimes that are mutually beneficial to power production and ecological needs. To compliment this effort an opportunity to create versatile tools that can be applied to broad geographic areas has been presented. In particular, integration with efforts standardized within the ecological limits of hydrologic alteration (ELOHA) is highly advantageous (Poff et al. 2010). This paper presents a geographic information system (GIS) framework for large rivermore » classification that houses a base geomorphic classification that is both flexible and accurate, allowing for full integration with other hydrologic models focused on addressing ELOHA efforts. A case study is also provided that integrates publically available National Hydrography Dataset Plus Version 2 (NHDPlusV2) data, Modular Aquatic Simulation System two-dimensional (MASS2) hydraulic data, and field collected data into the framework to produce a suite of flow-ecology related outputs. The case study objective was to establish areas of optimal juvenile salmonid rearing habitat under varying flow regimes throughout an impounded portion of the lower Snake River, USA (Figure 1) as an indicator to determine sites where the potential exists to create additional shallow water habitat. Additionally, an alternative hydrologic classification useable throughout the contiguous United States which can be coupled with the geomorphic aspect of this framework is also presented. This framework provides the user with the ability to integrate hydrologic and ecologic data into the base geomorphic aspect of this framework within a geographic information system (GIS) to output spatiotemporally variable flow-ecology relationship scenarios.« less
NASA Astrophysics Data System (ADS)
Hevesi, J. A.; Woolfenden, L. R.; Nishikawa, T.
2014-12-01
Communities in the Santa Rosa Plain watershed (SRPW), Sonoma County, CA, USA are experiencing increasing demand for limited water resources. Streamflow in the SRPW is runoff dominated; however, groundwater also is an important resource in the basin. The watershed has an area of 262 mi2 that includes natural, agricultural, and urban land uses. To evaluate the hydrologic system, an integrated hydrologic model was developed using the U.S. Geological Survey coupled groundwater and surface-water flow model, GSFLOW. The model uses a daily time step and a grid-based discretization of the SRPW consisting of 16,741 10-acre cells for 8 model layers to simulate all water budget components of the surface and subsurface hydrologic system. Simulation results indicate significant impacts on streamflow and recharge in response to the below average precipitation during the dry periods. The recharge and streamflow distributions simulated for historic dry periods were compared to future dry periods projected from 4 GCM realizations (two different GCMs and two different CO2 forcing scenarios) for the 21st century, with the dry periods defined as 3 consecutive years of below average precipitation. For many of the projected dry periods, the decreases in recharge and streamflow were greater than for the historic dry periods due to a combination of lower precipitation and increases in simulated evapotranspiration for the warmer 21st century projected by the GCM realizations. The greatest impact on streamflow for both historic and projected future dry periods is the diminished baseflow from late spring to early fall, with an increase in the percentage of intermittent and dry stream reaches. The results indicate that the coupled model is a useful tool for water managers to better understand the potential effects of future dry periods on spatially and temporally distributed streamflow and recharge, as well as other components of the water budget.
Effects of drought on forest soil structure and hydrological soil functions
NASA Astrophysics Data System (ADS)
Gimbel, K.; Puhlmann, H.; Weiler, M.
2012-04-01
Climate change is predicted to severely affect precipitation patterns across central Europe. Soil structure is closely linked to the activity of soil microbiota and plant roots, which modify flow pathways along roots, organic matter and water repellence of soils. Through shrinkage and fracturing of soil aggregates, soil structure is also responding to changing climate (in particular drought) conditions. We investigate the possible effects on biogeochemical and hydropedological processes in response to predicted future reduced precipitation, and the interaction of these processes with the biodiversity of the forest understorey and soil biota. The hypotheses of this study are: (i) drought causes a change in soil structure, which affects hydrological soil functions (water infiltration, uptake and redistribution); (ii) changes in rooting patterns and microbial community composition, in response to drought, influence the hydrological soil functions. To test our hypotheses, we built adaptive roofing systems on nine sites in Germany, which allow a flexible reduction of precipitation in order to achieve the long-term minimum precipitation of a site. Here we present first measurements of our repeated measuring/sampling campaign, which will be conducted over a period of three years. The aim of our experiments is to analyze soil pore architecture and related flow and transport behaviour with dye tracer sprinkling experiments, soil column experiments with stable isotope (deuterium, oxygen-18) enriched water, computed tomography at soil monoliths (~70 l) and multi-step outflow experiments with 100 ml soil cores. Finally, we sketch our idea how to relate the observed temporal changes of soil structure and hydrological soil functions to the observed dynamics of hydrometeorological site conditions, soil moisture and desiccation as well as changes in rooting patterns, herb layer and soil microbiotic communities. The results of this study may help to assess future behavior of the plant-soil-water-microbiology-system and may help to adjust models to predict future response to different precipitation patterns as well as help coping with existing and future emerging challenges in forest management.
Aumen, Nicholas G.; Havens, Karl E; Best, G. Ronnie; Berry, Leonard
2015-01-01
Florida’s Everglades stretch from the headwaters of the Kissimmee River near Orlando to Florida Bay. Under natural conditions in this flat landscape, water flowed slowly downstream as broad, shallow sheet flow. The ecosystem is markedly different now, altered by nutrient pollution and construction of canals, levees, and water control structures designed for flood control and water supply. These alterations have resulted in a 50 % reduction of the ecosystem’s spatial extent and significant changes in ecological function in the remaining portion. One of the world’s largest restoration programs is underway to restore some of the historic hydrologic and ecological functions of the Everglades, via a multi-billion dollar Comprehensive Everglades Restoration Plan. This plan, finalized in 2000, did not explicitly consider climate change effects, yet today we realize that sea level rise and future changes in rainfall (RF), temperature, and evapotranspiration (ET) may have system-wide impacts. This series of papers describes results of a workshop where a regional hydrologic model was used to simulate the hydrology expected in 2060 with climate changes including increased temperature, ET, and sea level, and either an increase or decrease in RF. Ecologists with expertise in various areas of the ecosystem evaluated the hydrologic outputs, drew conclusions about potential ecosystem responses, and identified research needs where projections of response had high uncertainty. Resource managers participated in the workshop, and they present lessons learned regarding how the new information might be used to guide Everglades restoration in the context of climate change.
NASA Astrophysics Data System (ADS)
Aumen, Nicholas G.; Havens, Karl E.; Best, G. Ronnie; Berry, Leonard
2015-04-01
Florida's Everglades stretch from the headwaters of the Kissimmee River near Orlando to Florida Bay. Under natural conditions in this flat landscape, water flowed slowly downstream as broad, shallow sheet flow. The ecosystem is markedly different now, altered by nutrient pollution and construction of canals, levees, and water control structures designed for flood control and water supply. These alterations have resulted in a 50 % reduction of the ecosystem's spatial extent and significant changes in ecological function in the remaining portion. One of the world's largest restoration programs is underway to restore some of the historic hydrologic and ecological functions of the Everglades, via a multi-billion dollar Comprehensive Everglades Restoration Plan. This plan, finalized in 2000, did not explicitly consider climate change effects, yet today we realize that sea level rise and future changes in rainfall (RF), temperature, and evapotranspiration (ET) may have system-wide impacts. This series of papers describes results of a workshop where a regional hydrologic model was used to simulate the hydrology expected in 2060 with climate changes including increased temperature, ET, and sea level, and either an increase or decrease in RF. Ecologists with expertise in various areas of the ecosystem evaluated the hydrologic outputs, drew conclusions about potential ecosystem responses, and identified research needs where projections of response had high uncertainty. Resource managers participated in the workshop, and they present lessons learned regarding how the new information might be used to guide Everglades restoration in the context of climate change.
NASA Technical Reports Server (NTRS)
Crow, W. T.; Chen, F.; Reichle, R. H.; Liu, Q.
2017-01-01
Recent advances in remote sensing and land data assimilation purport to improve the quality of antecedent soil moisture information available for operational hydrologic forecasting. We objectively validate this claim by calculating the strength of the relationship between storm-scale runoff ratio (i.e., total stream flow divided by total rainfall accumulation in depth units) and pre-storm surface soil moisture estimates from a range of surface soil moisture data products. Results demonstrate that both satellite-based, L-band microwave radiometry and the application of land data assimilation techniques have significantly improved the utility of surface soil moisture data sets for forecasting stream flow response to future rainfall events.
Crow, W T; Chen, F; Reichle, R H; Liu, Q
2017-06-16
Recent advances in remote sensing and land data assimilation purport to improve the quality of antecedent soil moisture information available for operational hydrologic forecasting. We objectively validate this claim by calculating the strength of the relationship between storm-scale runoff ratio (i.e., total stream flow divided by total rainfall accumulation in depth units) and pre-storm surface soil moisture estimates from a range of surface soil moisture data products. Results demonstrate that both satellite-based, L-band microwave radiometry and the application of land data assimilation techniques have significantly improved the utility of surface soil moisture data sets for forecasting stream flow response to future rainfall events.
Crow, W.T.; Chen, F.; Reichle, R.H.; Liu, Q.
2018-01-01
Recent advances in remote sensing and land data assimilation purport to improve the quality of antecedent soil moisture information available for operational hydrologic forecasting. We objectively validate this claim by calculating the strength of the relationship between storm-scale runoff ratio (i.e., total stream flow divided by total rainfall accumulation in depth units) and pre-storm surface soil moisture estimates from a range of surface soil moisture data products. Results demonstrate that both satellite-based, L-band microwave radiometry and the application of land data assimilation techniques have significantly improved the utility of surface soil moisture data sets for forecasting stream flow response to future rainfall events. PMID:29657342
NASA Astrophysics Data System (ADS)
Maxwell, Reed; Condon, Laura
2016-04-01
Recent studies demonstrate feedbacks between groundwater dynamics, overland flow, land surface and vegetation processes, and atmospheric boundary layer development that significantly affect local and regional climate across a range of climatic conditions. Furthermore, the type and distribution of vegetation cover alters land-atmosphere water and energy fluxes, as well as runoff generation and overland flow processes. These interactions can result in significant feedbacks on local and regional climate. In mountainous regions, recent research has shown that spatial and temporal variability in annual evapotranspiration, and thus water budgets, is strongly dependent on lateral groundwater flow; however, the full effects of these feedbacks across varied terrain (e.g. from plains to mountains) are not well understood. Here, we present a high-resolution, integrated hydrology model that covers much of continental North America and encompasses the Mississippi and Colorado watersheds. The model is run in a fully-transient manner at hourly temporal resolution incorporating fully-coupled land energy states and fluxes with integrated surface and subsurface hydrology. Connections are seen between hydrologic variables (such as water table depth) and land energy fluxes (such as latent heat) and spatial and temporal scaling is shown to span many orders of magnitude. Model results suggest that partitioning of plant transpiration to bare soil evaporation is a function of water table depth and later groundwater flow. Using these transient simulations as a proof of concept, we present a vision for future integrated simulation capabilities.
Graphical correlation of gaging-station records
Searcy, James K.
1960-01-01
A gaging-station record is a sample of the rate of flow of a stream at a given site. This sample can be used to estimate the magnitude and distribution of future flows if the record is long enough to be representative of the long-term flow of the stream. The reliability of a short-term record for estimating future flow characteristics can be improved through correlation with a long-term record. Correlation can be either numerical or graphical, but graphical correlation of gaging-station records has several advantages. The graphical correlation method is described in a step-by-step procedure with an illustrative problem of simple correlation, illustrative problems of three examples of multiple correlation--removing seasonal effect--and two examples of correlation of one record with two other records. Except in the problem on removal of seasonal effect, the same group of stations is used in the illustrative problems. The purpose of the problems is to illustrate the method--not to show the improvement that can result from multiple correlation as compared with simple correlation. Hydrologic factors determine whether a usable relation exists between gaging-station records. Statistics is only a tool for evaluating and using an existing relation, and the investigator must be guided by a knowledge of hydrology.
NASA Astrophysics Data System (ADS)
Liu, Dedi; Guo, Shenglian; Shao, Quanxi; Liu, Pan; Xiong, Lihua; Wang, Le; Hong, Xingjun; Xu, Yao; Wang, Zhaoli
2018-01-01
Human activities and climate change have altered the spatial and temporal distribution of water availability which is a principal prerequisite for allocation of different water resources. In order to quantify the impacts of climate change and human activities on water availability and optimal allocation of water resources, hydrological models and optimal water resource allocation models should be integrated. Given that increasing human water demand and varying water availability conditions necessitate adaptation measures, we propose a framework to assess the effects of these measures on optimal allocation of water resources. The proposed model and framework were applied to a case study of the middle and lower reaches of the Hanjiang River Basin in China. Two representative concentration pathway (RCP) scenarios (RCP2.6 and RCP4.5) were employed to project future climate, and the Variable Infiltration Capacity (VIC) hydrological model was used to simulate the variability of flows under historical (1956-2011) and future (2012-2099) conditions. The water availability determined by simulating flow with the VIC hydrological model was used to establish the optimal water resources allocation model. The allocation results were derived under an extremely dry year (with an annual average water flow frequency of 95%), a very dry year (with an annual average water flow frequency of 90%), a dry year (with an annual average water flow frequency of 75%), and a normal year (with an annual average water flow frequency of 50%) during historical and future periods. The results show that the total available water resources in the study area and the inflow of the Danjiangkou Reservoir will increase in the future. However, the uneven distribution of water availability will cause water shortage problems, especially in the boundary areas. The effects of adaptation measures, including water saving, and dynamic control of flood limiting water levels (FLWLs) for reservoir operation, were assessed and implemented to alleviate water shortages. The negative impacts from the South-to-North Water Transfer Project (Middle Route) in the mid-lower reaches of the Hanjiang River Basin can be avoided through the dynamic control of FLWLs in Danjiangkou Reservoir, under the historical and future RCP2.6 and RCP4.5 scenarios. However, the effects of adaptation measures are limited due to their own constraints, such as the characteristics of the reservoirs influencing the FLWLs. The utilization of storm water appears necessary to meet future water demand. Overall, the results indicate that the framework for assessing the effects of adaptation measures on water resources allocation might aid water resources management, not only in the study area but also in other places where water availability conditions vary due to climate change and human activities.
Mas-Pla, Josep; Font, Eva; Astui, Oihane; Menció, Anna; Rodríguez-Florit, Agustí; Folch, Albert; Brusi, David; Pérez-Paricio, Alfredo
2012-12-01
Stream flow, as a part of a basin hydrological cycle, will be sensible to water scarcity as a result of climate change. Stream vulnerability should then be evaluated as a key component of the basin water budget. Numerical flow modeling has been applied to an alluvial formation in a small mountain basin to evaluate the stream-aquifer relationship under these future scenarios. The Arbúcies River basin (116 km(2)) is located in the Catalan Inner Basins (NE Spain) and its lower reach, which is related to an alluvial aquifer, usually becomes dry during the summer period. This study seeks to determine the origin of such discharge losses whether from natural stream leakage and/or induced capture due to groundwater withdrawal. Our goal is also investigating how discharge variations from the basin headwaters, representing potential effects of climate change, may affect stream flow, aquifer recharge, and finally environmental preservation and human supply. A numerical flow model of the alluvial aquifer, based on MODFLOW and especially in the STREAM routine, reproduced the flow system after the usual calibration. Results indicate that, in the average, stream flow provides more than 50% of the water inputs to the alluvial aquifer, being responsible for the amount of stored water resources and for satisfying groundwater exploitation for human needs. Detailed simulations using daily time-steps permit setting threshold values for the stream flow entering at the beginning of the studied area so surface discharge is maintained along the whole watercourse and ecological flow requirements are satisfied as well. The effects of predicted rainfall and temperature variations on the Arbúcies River alluvial aquifer water balance are also discussed from the outcomes of the simulations. Finally, model results indicate the relevance of headwater discharge management under future climate scenarios to preserve downstream hydrological processes. They also point out that small mountain basins could be self-sufficient units so long as the response of the main hydrological components to external forces that produce water scarcity, as climate change or human pressures, is appropriately considered in water resource planning. Copyright © 2012 Elsevier B.V. All rights reserved.
Thorne, James; Boynton, Ryan; Flint, Lorraine; Flint, Alan; N'goc Le, Thuy
2012-01-01
This paper outlines the production of 270-meter grid-scale maps for 14 climate and derivative hydrologic variables for a region that encompasses the State of California and all the streams that flow into it. The paper describes the Basin Characterization Model (BCM), a map-based, mechanistic model used to process the hydrological variables. Three historic and three future time periods of 30 years (1911–1940, 1941–1970, 1971–2000, 2010–2039, 2040–2069, and 2070–2099) were developed that summarize 180 years of monthly historic and future climate values. These comprise a standardized set of fine-scale climate data that were shared with 14 research groups, including the U.S. National Park Service and several University of California groups as part of this project. We present three analyses done with the outputs from the Basin Characterization Model: trends in hydrologic variables over baseline, the most recent 30-year period; a calibration and validation effort that uses measured discharge values from 139 streamgages and compares those to Basin Characterization Model-derived projections of discharge for the same basins; and an assessment of the trends of specific hydrological variables that links historical trend to projected future change under four future climate projections. Overall, increases in potential evapotranspiration dominate other influences in future hydrologic cycles. Increased potential evapotranspiration drives decreasing runoff even under forecasts with increased precipitation, and drives increased climatic water deficit, which may lead to conversion of dominant vegetation types across large parts of the study region as well as have implications for rain-fed agriculture. The potential evapotranspiration is driven by air temperatures, and the Basin Characterization Model permits it to be integrated with a water balance model that can be derived for landscapes and summarized by watershed. These results show the utility of using a process-based model with modules representing different hydrological pathways that can be inter-linked.
NASA Astrophysics Data System (ADS)
Pradhanang, S. M.; Hasan, M. A.; Booth, P.; Fallatah, O.
2016-12-01
The monsoon and snow driven regime in the Himalayan region has received increasing attention in the recent decade regarding the effects of climate change on hydrologic regimes. Modeling streamflow in such spatially varied catchment requires proper calibration and validation in hydrologic modeling. While calibration and validation are time consuming and computationally intensive, an effective regionalized approach with multi-site information is crucial for flow estimation, especially in daily scale. In this study, we adopted a multi-site approach to calibration and validation of the Soil Water Assessment Tool (SWAT) model for the Karnali river catchment, which is characterized as being the most vulnerable catchment to climate change in the Himalayan region. APHRODITE's (Asian Precipitation - Highly-Resolved Observational Data Integration Towards Evaluation) daily gridded precipitation data, one of the accurate and reliable weather date over this region were utilized in this study. The model evaluation of the entire catchment divided into four sub-catchments, utilizing discharge records from 1963 to 2010. In previous studies, multi-site calibration used only a single set of calibration parameters for all sub-catchment of a large watershed. In this study, we introduced a technique that can incorporate different sets of calibration parameters for each sub-basin, which eventually ameliorate the flow of the whole watershed. Results show that the calibrated model with new method can capture almost identical pattern of flow over the region. The predicted daily streamflow matched the observed values, with a Nash-Sutcliffe coefficient of 0.73 during calibration and 0.71 during validation period. The method perfumed better than existing multi-site calibration methods. To assess the influence of continued climate change on hydrologic processes, we modified the weather inputs for the model using precipitation and temperature changes for two Representative Concentration Pathways (RCPs) scenarios, RCP 4.5 and 8.5. Climate simulation for RCP scenarios were conducted from 1981-2100, where 1981-2005 was considered as baseline and 2006-2100 was considered as the future projection. The result shows that probability of flooding will eventually increase in future years due to increased flow in both scenarios.
NASA Astrophysics Data System (ADS)
Kelly, Sara A.; Takbiri, Zeinab; Belmont, Patrick; Foufoula-Georgiou, Efi
2017-10-01
Complete transformations of land cover from prairie, wetlands, and hardwood forests to row crop agriculture and urban centers are thought to have caused profound changes in hydrology in the Upper Midwestern US since the 1800s. In this study, we investigate four large (23 000-69 000 km2) Midwest river basins that span climate and land use gradients to understand how climate and agricultural drainage have influenced basin hydrology over the last 79 years. We use daily, monthly, and annual flow metrics to document streamflow changes and discuss those changes in the context of precipitation and land use changes. Since 1935, flow, precipitation, artificial drainage extent, and corn and soybean acreage have increased across the region. In extensively drained basins, we observe 2 to 4 fold increases in low flows and 1.5 to 3 fold increases in high and extreme flows. Using a water budget, we determined that the storage term has decreased in intensively drained and cultivated basins by 30-200 % since 1975, but increased by roughly 30 % in the less agricultural basin. Storage has generally decreased during spring and summer months and increased during fall and winter months in all watersheds. Thus, the loss of storage and enhanced hydrologic connectivity and efficiency imparted by artificial agricultural drainage appear to have amplified the streamflow response to precipitation increases in the Midwest. Future increases in precipitation are likely to further intensify drainage practices and increase streamflows. Increased streamflow has implications for flood risk, channel adjustment, and sediment and nutrient transport and presents unique challenges for agriculture and water resource management in the Midwest. Better documentation of existing and future drain tile and ditch installation is needed to further understand the role of climate versus drainage across multiple spatial and temporal scales.
Ahmad, Zulfiqar; Ashraf, Arshad; Fryar, Alan; Akhter, Gulraiz
2011-02-01
The integration of the Geographic Information System (GIS) with groundwater modeling and satellite remote sensing capabilities has provided an efficient way of analyzing and monitoring groundwater behavior and its associated land conditions. A 3-dimensional finite element model (Feflow) has been used for regional groundwater flow modeling of Upper Chaj Doab in Indus Basin, Pakistan. The approach of using GIS techniques that partially fulfill the data requirements and define the parameters of existing hydrologic models was adopted. The numerical groundwater flow model is developed to configure the groundwater equipotential surface, hydraulic head gradient, and estimation of the groundwater budget of the aquifer. GIS is used for spatial database development, integration with a remote sensing, and numerical groundwater flow modeling capabilities. The thematic layers of soils, land use, hydrology, infrastructure, and climate were developed using GIS. The Arcview GIS software is used as additive tool to develop supportive data for numerical groundwater flow modeling and integration and presentation of image processing and modeling results. The groundwater flow model was calibrated to simulate future changes in piezometric heads from the period 2006 to 2020. Different scenarios were developed to study the impact of extreme climatic conditions (drought/flood) and variable groundwater abstraction on the regional groundwater system. The model results indicated a significant response in watertable due to external influential factors. The developed model provides an effective tool for evaluating better management options for monitoring future groundwater development in the study area.
NASA Astrophysics Data System (ADS)
Morales, Y.; Olivares, M. A.; Vargas, X.
2015-12-01
This research aims to improve the representation of stochastic water inflows to hydropower plants used in a grid-wide, power production scheduling model in central Chile. The model prescribes the operation of every plant in the system, including hydropower plants located in several basins, and uses stochastic dual dynamic programming (SDDP) with possible inflow scenarios defined from historical records. Each year of record is treated as a sample of weekly inflows to power plants, assuming this intrinsically incorporates spatial and temporal correlations, without any further autocorrelation analysis of the hydrological time series. However, standard good practice suggests the use of synthetic flows instead of raw historical records.The proposed approach generates synthetic inflow scenarios based on hydrological modeling of a few basins in the system and transposition of flows with other basins within so-called homogeneous zones. Hydrologic models use precipitation and temperature as inputs, and therefore this approach requires producing samples of those variables. Development and calibration of these models imply a greater demand of time compared to the purely statistical approach to synthetic flows. This approach requires consideration of the main uses in the basins: agriculture and hydroelectricity. Moreover a geostatistical analysis of the area is analyzed to generate a map that identifies the relationship between the points where the hydrological information is generated and other points of interest within the power system. Consideration of homogeneous zones involves a decrease in the effort required for generation of information compared with hydrological modeling of every point of interest. It is important to emphasize that future scenarios are derived through a probabilistic approach that incorporates the features of the hydrological year type (dry, normal or wet), covering the different possibilities in terms of availability of water resources. We present the results for Maule basin in Chile's Central Interconnected System (SIC).
Creating Data and Modeling Enabled Hydrology Instruction Using Collaborative Approach
NASA Astrophysics Data System (ADS)
Merwade, V.; Rajib, A.; Ruddell, B. L.; Fox, S.
2017-12-01
Hydrology instruction typically involves teaching of the hydrologic cycle and the processes associated with it such as precipitation, evapotranspiration, infiltration, runoff generation and hydrograph analysis. With the availability of observed and remotely sensed data related to many hydrologic fluxes, there is an opportunity to use these data for place based learning in hydrology classrooms. However, it is not always easy and possible for an instructor to complement an existing hydrology course with new material that requires both the time and technical expertise, which the instructor may not have. The work presented here describes an effort where students create the data and modeling driven instruction material as a part of their class assignment for a hydrology course at Purdue University. The data driven hydrology education project within Science Education Resources Center (SERC) is used as a platform to publish and share the instruction material so it can be used by future students in the same course or any other course anywhere in the world. Students in the class were divided into groups, and each group was assigned a topic such as precipitation, evapotranspiration, streamflow, flow duration curve and frequency analysis. Each student in the group was then asked to get data and do some analysis for an area with specific landuse characteristic such as urban, rural and agricultural. The student contribution were then organized into learning units such that someone can do a flow duration curve analysis or flood frequency analysis to see how it changes for rural area versus urban area. The hydrology education project within SERC cyberinfrastructure enables any other instructor to adopt this material as is or through modification to suit his/her place based instruction needs.
Hydrologic regime alteration of a Mediterranean catchment under climate change projection
NASA Astrophysics Data System (ADS)
Sellami, Haykel; Benabdallah, Sihem; La Jeunesse, Isabelle; Herrmann, Frank; Vanclooster, Marnik
2014-05-01
Most of the climate models projections for the Mediterranean basin have showed that the region will likely to experience a general tendency towards drier climate conditions with decreases in total precipitation, increases in temperature, alterations in the rainfall extreme events and droughts frequency (IPCC, 2007; Giorgi and Lionello, 2008; López-Moreno et al., 2011). The region is already suffering from water resources scarcity and vulnerability which are expected to amplify in the next century (Ludwig et al., 2011; Schneider et al., 2013). Therefore, assessing the impact of climate change on the hydrologic regime of Mediterranean catchments is with a major concern not only to scientist but also to water resources policy makers and general public. However, most of the climate change impact studies focus on the flow regime on global or regional scale rather than on the catchment scale which is more useful and more appropriate to guide practical mitigation and adaptation policy. This is because hydro-climate modeling at the local scale is confronted to the variability in climate, topography, geology, lack of observations and anthropogenic activities within the catchment. Furthermore, it is well recognized that hydrological and climate models forecasts are always affected with uncertainty making the assessment of climate change impact on Mediterranean catchment hydrology more challenging. This work aims to assess the impact of climate change on a Mediterranean catchment located in North Africa (the Chiba catchment in northeast Tunisia) through a conjunctive use of physically based hydrological model (SWAT) driven with four climate models*. Quantification of the impact of climate change has been conducted by means of the Indicators of Hydrologic Alteration (Richter et al., 1996) which are also ecologically meaningful. By comparing changes in these indicators in the reference period (1971-2000) to the projected ones in the future (2041-2070), it was possible to draw the following results. Climate change at the horizon of 2050 is likely to induce severe changes on the magnitude, frequency and extremes of the flow in the Chiba catchment. Monthly flow discharge is likely to be reduced by a median relative change (in respect to the reference period) ranging between -15% in summer to -40% in winter months. The maximum and minimum flow magnitude of different time duration (1-day, 3-days, 7-days, 30-days and 90-days) are likely to experience a significant decrease at the horizon of 2050. However, no significant change is projected in the timing of the flow. Changes in the flow duration curve suggest that the Chiba catchment is likely to face drier and more intermittent condition in the future. However, the predictions remain uncertain especially for high flows with flow percentiles equaled or exceeded less than 10% of the time. This study highlights the alarming situation that the Chiba catchment is likely to face in the future due to change in climate. More water threats and shortage are expected to occur which may threat the livelihood, the ecosystem and the local socio-economic development of the region. Therefore, the need for practical management plans that cope with those changes in climate and hydrology of the catchment is apparent. * Climate models were produced in the framework of the CLIMB project (Climate Induced Changes on the Hydrology of Mediterranean Basins; http://www.climb-fp7.eu/home/home.php). References Giorgi, F., and Lionello, P.: Climate change projections for the Mediterranean region, Global and Planetary Change, 63, 90-104, 10.1016/j.gloplacha.2007.09.005, 2008. IPCC: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 996, 2007. López-Moreno, J. I., Vicente-Serrano, S. M., Moran-Tejeda, E., Zabalza, J., Lorenzo-Lacruz, J., and García-Ruiz, J. M.: Impact of climate evolution and land use changes on water yield in the ebro basin, Hydrology and Earth System Sciences, 15, 311-322, 10.5194/hess-15-311-2011, 2011. Ludwig, R., Roson, R., Zografos, C., Kallis. Towards an inter-disciplinary research agenda on climate change, water and security in southern Europe and neighbouring countries. Environ. Sci. Policy. 14: 794-803, 10.1016/j.envsci.2011.04.003, 2011. Richter, B. D., Baumgartner, J.V., Powell, J., Braun, D. P.: Method for Assessing Hydrologic Alteration within Ecosystems, Conservation Biology, 10, 11, 1996. Schneider, C., Laizé, C. L. R., Acreman, M. C., and Flörke, M.: How will climate change modify river flow regimes in Europe? Hydrology and Earth System Sciences, 17, 325-339, 10.5194/hess-17-325-2013, 2013.
LaFontaine, Jacob H.; Hay, Lauren E.; Viger, Roland; Regan, R. Steve; Markstrom, Steven
2015-01-01
The hydrologic response to statistically downscaled general circulation model simulations of daily surface climate and land cover through 2099 was assessed for the Apalachicola-Chattahoochee-Flint River Basin located in the southeastern United States. Projections of climate, urbanization, vegetation, and surface-depression storage capacity were used as inputs to the Precipitation-Runoff Modeling System to simulate projected impacts on hydrologic response. Surface runoff substantially increased when land cover change was applied. However, once the surface depression storage was added to mitigate the land cover change and increases of surface runoff (due to urbanization), the groundwater flow component then increased. For hydrologic studies that include projections of land cover change (urbanization in particular), any analysis of runoff beyond the change in total runoff should include effects of stormwater management practices as these features affect flow timing and magnitude and may be useful in mitigating land cover change impacts on streamflow. Potential changes in water availability and how biota may respond to changes in flow regime in response to climate and land cover change may prove challenging for managers attempting to balance the needs of future development and the environment. However, these models are still useful for assessing the relative impacts of climate and land cover change and for evaluating tradeoffs when managing to mitigate different stressors.
Optimizing Use of Water Management Systems during Changes of Hydrological Conditions
NASA Astrophysics Data System (ADS)
Výleta, Roman; Škrinár, Andrej; Danáčová, Michaela; Valent, Peter
2017-10-01
When designing the water management systems and their components, there is a need of more detail research on hydrological conditions of the river basin, runoff of which creates the main source of water in the reservoir. Over the lifetime of the water management systems the hydrological time series are never repeated in the same form which served as the input for the design of the system components. The design assumes the observed time series to be representative at the time of the system use. However, it is rather unrealistic assumption, because the hydrological past will not be exactly repeated over the design lifetime. When designing the water management systems, the specialists may occasionally face the insufficient or oversized capacity design, possibly wrong specification of the management rules which may lead to their non-optimal use. It is therefore necessary to establish a comprehensive approach to simulate the fluctuations in the interannual runoff (taking into account the current dry and wet periods) in the form of stochastic modelling techniques in water management practice. The paper deals with the methodological procedure of modelling the mean monthly flows using the stochastic Thomas-Fiering model, while modification of this model by Wilson-Hilferty transformation of independent random number has been applied. This transformation usually applies in the event of significant asymmetry in the observed time series. The methodological procedure was applied on the data acquired at the gauging station of Horné Orešany in the Parná Stream. Observed mean monthly flows for the period of 1.11.1980 - 31.10.2012 served as the model input information. After extrapolation the model parameters and Wilson-Hilferty transformation parameters the synthetic time series of mean monthly flows were simulated. Those have been compared with the observed hydrological time series using basic statistical characteristics (e. g. mean, standard deviation and skewness) for testing the quality of the model simulation. The synthetic hydrological series of monthly flows were created having the same statistical properties as the time series observed in the past. The compiled model was able to take into account the diversity of extreme hydrological situations in a form of synthetic series of mean monthly flows, while the occurrence of a set of flows was confirmed, which could and may occur in the future. The results of stochastic modelling in the form of synthetic time series of mean monthly flows, which takes into account the seasonal fluctuations of runoff within the year, could be applicable in engineering hydrology (e. g. for optimum use of the existing water management system that is related to reassessment of economic risks of the system).
Kennen, Jonathan G.; Riskin, Melissa L.
2010-01-01
Changes in water demand associated with population growth and changes in land-use practices in the Pinelands region of southern New Jersey will have a direct effect on stream hydrology. The most pronounced and measurable hydrologic effect is likely to be flow reductions associated with increasing water extraction. Because water-supply needs will continue to grow along with population in the Pinelands area, the goal of maintaining a sustainable balance between the availability of water to protect existing aquatic assemblages while conserving the surficial aquifer for long-term support of human water use needs to be addressed. Although many aquatic fauna have shown resilience and resistance to short-term changes in flows associated with water withdrawals, sustained effects associated with ongoing water-development processes are not well understood. In this study, the U.S. Geological Survey sampled forty-three 100-meter-long stream reaches during high- and low-flow periods across a designed hydrologic gradient ranging from small- (4.1 square kilometers (1.6 square miles)) to medium- (66.3 square kilometers (25.6 square miles)) sized Pinelands stream basins. This design, which uses basin size as a surrogate for water availability, provided an opportunity to evaluate the possible effects of potential variation in stream hydrology on fish and aquatic-invertebrate assemblage response in New Jersey Pinelands streams where future water extraction is expected based on known build-out scenarios. Multiple-regression models derived from extracted non-metric multidimensional scaling axis scores of fish and aquatic invertebrates indicate that some variability in aquatic-assemblage composition across the hydrologic gradient is associated with anthropogenic disturbance, such as urbanization, changes in stream chemistry, and concomitant changes in high-flow runoff patterns. To account for such underlying effects in the study models, any flow parameter or assemblage attribute that was found to be significantly correlated (|rho| = 0.5000) to known anthropogenic drivers (for example, the amount of urbanization in the basin) was eliminated from analysis. A reduced set of low- and annual-flow hydrologic variables, found to be unrelated to anthropogenic influences, was used to develop assemblage-response models. Many linear (monotonic) and curvilinear bivariate flow-ecology response models were developed for fish and invertebrate assemblages. For example, the duration and magnitude of low-flow events were significant predictors of invertebrate-assemblage complexity (for example, invertebrate-species richness, Plecoptera richness, and Ephemeroptera abundance); however, response models between flow attributes and fish-assemblage structure were, in all cases, more poorly fit. Annual flow variability also was important, especially variability across mean minimum monthly flows and annual mean streamflow. In general, all response models followed upward or downward trends that would be expected given hydrologic changes in Pinelands streams. This study demonstrates that the structural and functional response of aquatic assemblages of the Pinelands ecosystem resulting from changes in water-use practices associated with population growth and increased water extraction may be predictable.
Garner, Bradley D.; Pool, D.R.; Tillman, Fred D.; Forbes, Brandon T.
2013-01-01
Water budgets were developed for the Verde Valley of central Arizona in order to evaluate the degree to which human stresses have affected the hydrologic system and might affect it in the future. The Verde Valley is a portion of central Arizona wherein concerns have been raised about water availability, particularly perennial base flow of the Verde River. The Northern Arizona Regional Groundwater Flow Model (NARGFM) was used to generate the water budgets and was run in several configurations for the 1910–2005 and 2005–2110 time periods. The resultant water budgets were subtracted from one another in order to quantify the relative changes that were attributable solely to human stresses; human stresses included groundwater withdrawals and incidental and artificial recharge but did not include, for example, human effects on the global climate. Three hypothetical and varied conditions of human stresses were developed and applied to the model for the 2005–2110 period. On the basis of this analysis, human stresses during 1910–2005 were found to have already affected the hydrologic system of the Verde Valley, and human stresses will continue to affect the hydrologic system during 2005–2110. Riparian evapotranspiration decreased and underflow into the Verde Valley increased because of human stresses, and net groundwater discharge to the Verde River in the Verde Valley decreased for the 1910–2005 model runs. The model also showed that base flow at the upstream end of the study area, as of 2005, was about 4,900 acre-feet per year less than it would have been in the absence of human stresses. At the downstream end of the Verde Valley, base flow had been reduced by about 10,000 acre-feet per year by the year 2005 because of human stresses. For the 2005–2110 period, the model showed that base flow at the downstream end of the Verde Valley may decrease by an additional 5,400 to 8,600 acre-feet per year because of past, ongoing, and hypothetical future human stresses. The process known as capture (or streamflow depletion caused by the pumping of groundwater) was the reason for these human-stress-induced changes in water-budget components.
IMPACT OF URBANIZATION ON THE HYDROLOGY OF THE POCONO CREEK WATERSHED: A MODEL STUDY
The Pocono Creek watershed located in Monroe County, PA, is threatened by high population growth and urbanization. Of concern specifically is the potential impact of future developments in the watershed on the reduction of base flow and the consequent risk of degradation of wild ...
The Inferential Structure of Actionable Science in Climatological and Hydrological Co-Productions
NASA Astrophysics Data System (ADS)
Brumble, K. C.
2016-12-01
Across the geophysical sciences, and in hydrology in particular, there is a growing emphasis on and desire to produce "actionable science" and "user-inspired" science. Fueled by the need to make research approachable, intelligible, and useful for decision-makers, policy-makers, and across disciplinary boundaries, actionable science endeavors seek to replace the traditional downward flow of information model for knowledge in the sciences. Instead the focus is on more dynamical knowledge flow between the local and contingent and the vast and complex. New methodologies which allow for the co-production of knowledge between modelers, model users, and decision-makers will be surveyed for the structure of knowledge flow present, and for innovations in communicating and handling uncertainties across traditional disciplinary boundaries. Current and possible future methods for handling sources of uncertainty and cascades of uncertainty will be addressed. Examples will be drawn from recent projects involving the interactions between climate modeling groups, hydrological modelers, and decision makers at the local and regional level in water security to try and identify key methodologies for the co-production of actionable knowledge exportable to other applications in the boundary between systems impacted by climate change.
Hydroclimatic Change in the Congo River Basin: Past, Present and Future169
NASA Astrophysics Data System (ADS)
Aloysius, N. R.
2016-12-01
Tropical regions provide habitat for the world's most diverse fauna and flora, sequester more atmospheric carbon and provide livelihood for millions of people. The hydrological cycle provides vital linkages for maintaining these ecosystem functions, yet, the understanding of its spatiotemporal variability is limited. Research on the hydrological cycle of the Congo River Basin (CRB), which encompasses the second largest rainforests, has been largely ignored. Global Climate Models (GCM) show limited skills in simulating CRB's climate and their future projections vary widely. Yet, GCMs provide the most plausible scenarios of future climate, based upon which changes in hydrologic fluxes can be predicted with the aid hydrological models. In order to address the gaps in knowledge and to highlight the research needs, we i) developed a spatially explicit hydrological model suitable for describing key hydrological processes, ii) evaluated the performance of GCMs in simulating precipitation and temperature in the region, iii) developed a set of climate change scenarios for the CRB and iv) developed a simplified modeling framework to quantify water management options for rain-fed agriculture with the objective of achieving the triple goals of sustainable development: food security, poverty alleviation and ecosystem conservation. The hydrology model, which was validated with observed stream flows at 50 locations, satisfactorily characterizes spatiotemporal variability of key fluxes. Our evaluation of 25 GCM outputs reveal that many GCMs poorly simulate regional precipitation. We implemented a statistical bias-correction method to develop precipitation and temperature projections for two future greenhouse gas emission scenarios. These climate forcings were, then, used to drive the hydrology model. Our results show that the near-term projections are not affected by emission scenarios. However, towards the mid-21st century, projections are emission scenario dependent. Available freshwater resources are projected to increase in the CRB, except in the semiarid southeast. Our findings have wider implications for climate change assessment and water resource management, because the region, with high population growth and limited capacity to adapt, are primary targets of land and water grabs. 155
NASA Astrophysics Data System (ADS)
Fang, Yilin; Leung, L. Ruby; Duan, Zhuoran; Wigmosta, Mark S.; Maxwell, Reed M.; Chambers, Jeffrey Q.; Tomasella, Javier
2017-08-01
The Amazon basin has experienced periodic droughts in the past, and intense and frequent droughts are predicted in the future. Landscape heterogeneity could play an important role in how tropical forests respond to drought by influencing water available to plants. Using the one-dimensional ACME Land Model and the three-dimensional ParFlow variably saturated flow model, numerical experiments were performed for a catchment in central Amazon to elucidate processes that influence water available for plant use and provide insights for improving Earth system models. Results from ParFlow show that topography has a dominant influence on groundwater table and runoff through lateral flow. Without any representations of lateral processes, ALM simulates very different seasonal variations in groundwater table and runoff compared to ParFlow even if it is able to reproduce the long-term spatial average groundwater table of ParFlow through simple parameter calibration. In the ParFlow simulations, even in the plateau with much deeper water table depth during the dry season in the drought year of 2005, plant transpiration is not water stressed as the soil saturation is still sufficient for the stomata to be fully open based on the empirical wilting formulation in the models. This finding is insensitive to uncertainty in atmospheric forcing and soil parameters, but the empirical wilting formulation is an important factor that should be addressed using observations and modeling of coupled plant hydraulics-soil hydrology processes in future studies. The results could be applicable to other catchments in the Amazon basin with similar seasonal variability and hydrologic regimes.
Uncertainty in hydrological signatures
NASA Astrophysics Data System (ADS)
McMillan, Hilary; Westerberg, Ida
2015-04-01
Information that summarises the hydrological behaviour or flow regime of a catchment is essential for comparing responses of different catchments to understand catchment organisation and similarity, and for many other modelling and water-management applications. Such information types derived as an index value from observed data are known as hydrological signatures, and can include descriptors of high flows (e.g. mean annual flood), low flows (e.g. mean annual low flow, recession shape), the flow variability, flow duration curve, and runoff ratio. Because the hydrological signatures are calculated from observed data such as rainfall and flow records, they are affected by uncertainty in those data. Subjective choices in the method used to calculate the signatures create a further source of uncertainty. Uncertainties in the signatures may affect our ability to compare different locations, to detect changes, or to compare future water resource management scenarios. The aim of this study was to contribute to the hydrological community's awareness and knowledge of data uncertainty in hydrological signatures, including typical sources, magnitude and methods for its assessment. We proposed a generally applicable method to calculate these uncertainties based on Monte Carlo sampling and demonstrated it for a variety of commonly used signatures. The study was made for two data rich catchments, the 50 km2 Mahurangi catchment in New Zealand and the 135 km2 Brue catchment in the UK. For rainfall data the uncertainty sources included point measurement uncertainty, the number of gauges used in calculation of the catchment spatial average, and uncertainties relating to lack of quality control. For flow data the uncertainty sources included uncertainties in stage/discharge measurement and in the approximation of the true stage-discharge relation by a rating curve. The resulting uncertainties were compared across the different signatures and catchments, to quantify uncertainty magnitude and bias, and to test how uncertainty depended on the density of the raingauge network and flow gauging station characteristics. The uncertainties were sometimes large (i.e. typical intervals of ±10-40% relative uncertainty) and highly variable between signatures. Uncertainty in the mean discharge was around ±10% for both catchments, while signatures describing the flow variability had much higher uncertainties in the Mahurangi where there was a fast rainfall-runoff response and greater high-flow rating uncertainty. Event and total runoff ratios had uncertainties from ±10% to ±15% depending on the number of rain gauges used; precipitation uncertainty was related to interpolation rather than point uncertainty. Uncertainty distributions in these signatures were skewed, and meant that differences in signature values between these catchments were often not significant. We hope that this study encourages others to use signatures in a way that is robust to data uncertainty.
Identifying natural flow regimes using fish communities
NASA Astrophysics Data System (ADS)
Chang, Fi-John; Tsai, Wen-Ping; Wu, Tzu-Ching; Chen, Hung-kwai; Herricks, Edwin E.
2011-10-01
SummaryModern water resources management has adopted natural flow regimes as reasonable targets for river restoration and conservation. The characterization of a natural flow regime begins with the development of hydrologic statistics from flow records. However, little guidance exists for defining the period of record needed for regime determination. In Taiwan, the Taiwan Eco-hydrological Indicator System (TEIS), a group of hydrologic statistics selected for fisheries relevance, is being used to evaluate ecological flows. The TEIS consists of a group of hydrologic statistics selected to characterize the relationships between flow and the life history of indigenous species. Using the TEIS and biosurvey data for Taiwan, this paper identifies the length of hydrologic record sufficient for natural flow regime characterization. To define the ecological hydrology of fish communities, this study connected hydrologic statistics to fish communities by using methods to define antecedent conditions that influence existing community composition. A moving average method was applied to TEIS statistics to reflect the effects of antecedent flow condition and a point-biserial correlation method was used to relate fisheries collections with TEIS statistics. The resulting fish species-TEIS (FISH-TEIS) hydrologic statistics matrix takes full advantage of historical flows and fisheries data. The analysis indicates that, in the watersheds analyzed, averaging TEIS statistics for the present year and 3 years prior to the sampling date, termed MA(4), is sufficient to develop a natural flow regime. This result suggests that flow regimes based on hydrologic statistics for the period of record can be replaced by regimes developed for sampled fish communities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bougamont, M.; Christoffersen, P.; Price, S. F.
Ongoing, centennial-scale flow variability within the Ross ice streams of West Antarctica suggests that the present-day positive mass balance in this region may reverse in the future. Here we use a three-dimensional ice sheet model to simulate ice flow in this region over 250 years. The flow responds to changing basal properties, as a subglacial till layer interacts with water transported in an active subglacial hydrological system. We show that a persistent weak bed beneath the tributaries of the dormant Kamb Ice Stream is a source of internal ice flow instability, which reorganizes all ice streams in this region, leadingmore » to a reduced (positive) mass balance within decades and a net loss of ice within two centuries. This hitherto unaccounted for flow variability could raise sea level by 5 mm this century. Furthermore, better constraints on future sea level change from this region will require improved estimates of geothermal heat flux and subglacial water transport.« less
Hydrological modelling improvements required in basins in the Hindukush-Karakoram-Himalayas region
NASA Astrophysics Data System (ADS)
Khan, Asif; Richards, Keith S.; McRobie, Allan; Booij, Martijn
2016-04-01
Millions of people rely on river water originating from basins in the Hindukush-Karakoram-Himalayas (HKH), where snow- and ice-melt are significant flow components. One such basin is the Upper Indus Basin (UIB), where snow- and ice-melt can contribute more than 80% of total flow. Containing some of the world's largest alpine glaciers, this basin may be highly susceptible to global warming and climate change, and reliable predictions of future water availability are vital for resource planning for downstream food and energy needs in a changing climate, but depend on significantly improved hydrological modelling. However, a critical assessment of available hydro-climatic data and hydrological modelling in the HKH region has identified five major failings in many published hydro-climatic studies, even those appearing in reputable international journals. The main weaknesses of these studies are: i) incorrect basin areas; ii) under-estimated precipitation; iii) incorrectly-defined glacier boundaries; iv) under-estimated snow-cover data; and v) use of biased melt factors for snow and ice during the summer months. This paper illustrates these limitations, which have either resulted in modelled flows being under-estimates of measured flows, leading to an implied severe water scarcity; or have led to the use of unrealistically high degree-day factors and over-estimates of glacier melt contributions, implying unrealistic melt rates. These effects vary amongst sub-basins. Forecasts obtained from these models cannot be used reliably in policy making or water resource development, and need revision. Detailed critical analysis and improvement of existing hydrological modelling may be equally necessary in other mountain regions across the world.
Charbonnel, Anaïs; Laffaille, Pascal; Biffi, Marjorie; Blanc, Frédéric; Maire, Anthony; Némoz, Mélanie; Sanchez-Perez, José Miguel; Sauvage, Sabine; Buisson, Laëtitia
2016-01-01
Species distribution models (SDMs) are the main tool to predict global change impacts on species ranges. Climate change alone is frequently considered, but in freshwater ecosystems, hydrology is a key driver of the ecology of aquatic species. At large scale, hydrology is however rarely accounted for, owing to the lack of detailed stream flow data. In this study, we developed an integrated modelling approach to simulate stream flow using the hydrological Soil and Water Assessment Tool (SWAT). Simulated stream flow was subsequently included as an input variable in SDMs along with topographic, hydrographic, climatic and land-cover descriptors. SDMs were applied to two temporally-distinct surveys of the distribution of the endangered Pyrenean desman (Galemys pyrenaicus) in the French Pyrenees: a historical one conducted from 1985 to 1992 and a current one carried out between 2011 and 2013. The model calibrated on historical data was also forecasted onto the current period to assess its ability to describe the distributional change of the Pyrenean desman that has been modelled in the recent years. First, we found that hydrological and climatic variables were the ones influencing the most the distribution of this species for both periods, emphasizing the importance of taking into account hydrology when SDMs are applied to aquatic species. Secondly, our results highlighted a strong range contraction of the Pyrenean desman in the French Pyrenees over the last 25 years. Given that this range contraction was under-estimated when the historical model was forecasted onto current conditions, this finding suggests that other drivers may be interacting with climate, hydrology and land-use changes. Our results imply major concerns for the conservation of this endemic semi-aquatic mammal since changes in climate and hydrology are expected to become more intense in the future.
Charbonnel, Anaïs; Laffaille, Pascal; Biffi, Marjorie; Blanc, Frédéric; Maire, Anthony; Némoz, Mélanie; Sanchez-Perez, José Miguel; Sauvage, Sabine
2016-01-01
Species distribution models (SDMs) are the main tool to predict global change impacts on species ranges. Climate change alone is frequently considered, but in freshwater ecosystems, hydrology is a key driver of the ecology of aquatic species. At large scale, hydrology is however rarely accounted for, owing to the lack of detailed stream flow data. In this study, we developed an integrated modelling approach to simulate stream flow using the hydrological Soil and Water Assessment Tool (SWAT). Simulated stream flow was subsequently included as an input variable in SDMs along with topographic, hydrographic, climatic and land-cover descriptors. SDMs were applied to two temporally-distinct surveys of the distribution of the endangered Pyrenean desman (Galemys pyrenaicus) in the French Pyrenees: a historical one conducted from 1985 to 1992 and a current one carried out between 2011 and 2013. The model calibrated on historical data was also forecasted onto the current period to assess its ability to describe the distributional change of the Pyrenean desman that has been modelled in the recent years. First, we found that hydrological and climatic variables were the ones influencing the most the distribution of this species for both periods, emphasizing the importance of taking into account hydrology when SDMs are applied to aquatic species. Secondly, our results highlighted a strong range contraction of the Pyrenean desman in the French Pyrenees over the last 25 years. Given that this range contraction was under-estimated when the historical model was forecasted onto current conditions, this finding suggests that other drivers may be interacting with climate, hydrology and land-use changes. Our results imply major concerns for the conservation of this endemic semi-aquatic mammal since changes in climate and hydrology are expected to become more intense in the future. PMID:27467269
Integrating Hydrology, Ecology, and Biogeochemistry in Stormwater Management: the Vermont Experience
NASA Astrophysics Data System (ADS)
Bowden, W. B.
2005-12-01
Although Vermont has had a stormwater management program since the 1970's, support for the program languished during a period intense suburban development in several counties in the state, most notably Chittenden County next to Lake Champlain. Beginning in 2000, the state renewed efforts to address concerns that stormwater runoff from suburban developments had significantly degraded streams in the area and threatened the health of the Lake. The state employs an extensive, EPA-approved biomonitoring program (based on macroinvertebrates and fish) to assess the health of streams. However, it is difficult to translate these data into targets for stormwater management or to predict how and especially when they will change as a result of future management practices. The challenge of managing stormwater in this area is further compounded by a complete lack of historical hydrologic monitoring data. Ultimately a stakeholder-driven process developed that has lead to an innovative partnership among state agencies, resource managers, NGO's, the US-EPA and scientists. Through this partnership a unique consensus evolved that management for hydrologic targets by themselves would address most of the stakeholders' concerns. The new regulations that are emerging are based on two components. The first component relies on flow-duration curves (FDC's) derived from a simple, widely-used stormwater model (P-8) for which adequate input data are available. The model was calibrated for streams in other areas for which long-term hydrologic data were available and then used to generate `synthetic' FDC's for the stormwater impaired and a suite of `attainment' (developing, but currently un-impaired) watersheds in Vermont. Statistical (cluster) analyses of synthetic FDC's provide watershed-wide targets for hydrologic reduction. Sub-watershed mapping linked to further multivariate analysis of the flow data identify specific locations to implement best management practices (BMP's) that will achieve these targets. This approach is firmly grounded in first principles of stormwater hydrology and recognition of the impacts of altered hydrology on stream ecology and biogeochemistry. Stakeholders have accepted the approach because it is objective, defensible, and subject to future, quantitative analysis and adjustment (adaptive management). This approach is not specific to Vermont and could be employed in any region.
Ebel, Brian A.; Martin, Deborah
2017-01-01
Hydrologic recovery after wildfire is critical for restoring the ecosystem services of protecting of human lives and infrastructure from hazards and delivering water supply of sufficient quality and quantity. Recovery of soil-hydraulic properties, such as field-saturated hydraulic conductivity (Kfs), is a key factor for assessing the duration of watershed-scale flash flood and debris flow risks after wildfire. Despite the crucial role of Kfs in parameterizing numerical hydrologic models to predict the magnitude of postwildfire run-off and erosion, existing quantitative relations to predict Kfsrecovery with time since wildfire are lacking. Here, we conduct meta-analyses of 5 datasets from the literature that measure or estimate Kfs with time since wildfire for longer than 3-year duration. The meta-analyses focus on fitting 2 quantitative relations (linear and non-linear logistic) to explain trends in Kfs temporal recovery. The 2 relations adequately described temporal recovery except for 1 site where macropore flow dominated infiltration and Kfs recovery. This work also suggests that Kfs can have low hydrologic resistance (large postfire changes), and moderate to high hydrologic stability (recovery time relative to disturbance recurrence interval) and resilience (recovery of hydrologic function and provision of ecosystem services). Future Kfs relations could more explicitly incorporate processes such as soil-water repellency, ground cover and soil structure regeneration, macropore recovery, and vegetation regrowth.
Cervi, Federico; Petronici, Francesca; Castellarin, Attilio; Marcaccio, Marco; Bertolini, Andrea; Borgatti, Lisa
2018-05-01
In large areas of the Italian Northern Apennines, hundreds of low-yield springs provide water for drinking and industrial purposes, with short groundwater flow paths being formed within fractured sedimentary rock units. This hydrogeological setting results in spring water discharges that closely follow meteoric water recharge patterns, leading to low-flow periods concentrated in the summer/early autumn. Therefore, the springs' outflow can be very sensitive to a shortage in water recharge, as it was the case in 2003 and 2017, when a prolonged period of drought caused severe water management issues. This work analyses how a group of such springs responds to climate change. In particular, we first validated a hydrological rainfall-runoff model on the basis of daily discharge data collected between 2013 and 2016. Then, outflows were simulated for baseline (1984-2013) and future periods (2021-2050) using weather data provided by five RCM-GCM combinations. Finally, we performed statistical analyses aiming to examine the intra-annual variability in discharge rates, low-flow indices, flow-duration curves and the length of low-flows. Results show no evidence of change in mean annual discharges, but future climate estimates suggest a slight change to seasonal discharges in the future, with a marked increase of discharge during winter and spring, and a decrease in summer and autumn. Q(95) and 7Q10 low-flow indices (i.e. the daily discharge exceeded 95% of the time and the minimum weekly discharge associated with a 10-year recurrence interval, respectively) are significantly affected by the climate change (-21.8% and -25.0%, respectively), while droughts are expected to be more frequent: the number of years with a consecutive low-flow between 51 and 100days to increase by a third, and between 101 and 150 to duplicate. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Newcomer, M. E.; Dwivedi, D.; Raberg, J.; Fox, P. M.; Nico, P. S.; Wainwright, H. M.; Conrad, M. E.; Bill, M.; Bouskill, N.; Williams, K. H.; Hubbard, S.; Steefel, C. I.
2017-12-01
Riverine systems in snow-dominated mountainous regions often express complex biogeochemistry and river nutrient indicators as a function of hydrologic variability. In early spring, meltwater infiltration from a ripened snowpack creates a hydrological gradient through hillslopes, floodplains, and hyporheic zones. During this time, these systems are more-or-less a passive filter that allows the rising limb of the hydrograph to display chemo-dynamic relationships (inversely proportional) with solutes and nutrients. During the growing season, temperatures, plants, microbes, and hydrologic gradients shift dramatically and activate hyporheic-zone biogeochemistry as a major control on water nutrient degradation. Hyporheic biogeochemical reliance on the timing of meltwater infiltration and the possibility of a longer vernal window under future climate change indicates the importance of hyporheic cycling as the dominant ecological control point on carbon and nitrogen fluxes and transformations. The objective of our study is to develop a predictive understanding of the subsurface and surface controls on hyporheic biogeochemical behavior through data-model integration. Data from our 2017 field campaign in the East River, Colorado, a pristine, mountainous watershed, were taken at key times during the rising, peak, falling, and dry limb of the hydrograph. Throughout multiple locations across this spatial and temporal gradient, we measured surface and subsurface gases, geochemistry, isotopes, and hydrological flow conditions and used this data to constrain a numerical flow and reactive transport model of the hyporheic zone that included microbial and flow feedback dynamics. Our data coupled with the predictive power of our numerical model reveal that the hyporheic zone serves dual roles throughout the year—as a net source of nutrients and solutes during the early vernal phase, shifting to a net sink of nutrients during the summer dry season. The possibility of a future lengthened vernal window motivates a better understanding of the role each ecological control point plays in processing landscape biological productivity and for understanding biogeochemical cycling in riverine systems.
Whitfield, Paul H.; Burn, Donald H.; Hannaford, Jamie; Higgins, Hélène; Hodgkins, Glenn A.; Marsh, Terry; Looser, Ulrich
2012-01-01
Identifying climate-driven trends in river flows on a global basis is hampered by a lack of long, quality time series data for rivers with relatively undisturbed regimes. This is a global problem compounded by the lack of support for essential long-term monitoring. Experience demonstrates that, with clear strategic objectives, and the support of sponsoring organizations, reference hydrologic networks can constitute an exceptionally valuable data source to effectively identify, quantify and interpret hydrological change—the speed and magnitude of which is expected to a be a primary driver of water management and flood alleviation strategies through the future—and for additional applications. Reference hydrologic networks have been developed in many countries in the past few decades. These collections of streamflow gauging stations, that are maintained and operated with the intention of observing how the hydrology of watersheds responds to variations in climate, are described. The status of networks under development is summarized. We suggest a plan of actions to make more effective use of this collection of networks.
Spatial-altitudinal and temporal variation of Degree Day Factors (DDFs) in the Upper Indus Basin
NASA Astrophysics Data System (ADS)
Khan, Asif; Attaullah, Haleema; Masud, Tabinda; Khan, Mujahid
2017-04-01
Melt contribution from snow and ice in the Hindukush-Karakoram-Himalayan (HKH) region could account for more than 80% of annual river flows in the Upper Indus Basin (UIB). Increase or decrease in precipitation, energy input and glacier reserves can significantly affect water resources of this region. Therefore improved hydrological modelling and accurate future water resources prediction are vital for food production and hydro-power generation for millions of people living downstream, and are intensively needed. In mountain regions Degree Day Factors (DDFs) significantly vary on spatial and altitudinal basis, and are primary inputs of temperature-based hydrological modelling. However previous studies have used different DDFs as calibration parameters without due attention to the physical meaning of the values employed, and these estimates possess significant variability and uncertainty. This study provides estimates of DDFs for various altitudinal zones in the UIB at sub-basin level. Snow, clean ice and ice with debris cover bear different melt rates (or DDFs), therefore areally-averaged DDFs based on snow, clean and debris-covered ice classes in various altitudinal zones have been estimated for all sub-basins of the UIB. Zonal estimates of DDFs in the current study are significantly different from earlier adopted DDFs, hence suggest a revisit of previous hydrological modelling studies. DDFs presented in current study have been validated by using Snowmelt Runoff Model (SRM) in various sub-basins with good Nash Sutcliffe coefficients (R2 > 0.85) and low volumetric errors (Dv<10%). DDFs and methods provided in the current study can be used in future improved hydrological modelling and to provide accurate predictions of future river flows changes. The methodology used for estimation of DDFs is robust, and can be adopted to produce such estimates in other regions of the, particularly in the nearby other HKH basins.
NASA Astrophysics Data System (ADS)
Webb, Ryan W.; Fassnacht, Steven R.; Gooseff, Michael N.
2018-01-01
In many mountainous regions around the world, snow and soil moisture are key components of the hydrologic cycle. Preferential flow paths of snowmelt water through snow have been known to occur for years with few studies observing the effect on soil moisture. In this study, statistical analysis of the topographical and hydrological controls on the spatiotemporal variability of snow water equivalent (SWE) and soil moisture during snowmelt was undertaken at a subalpine forested setting with north, south, and flat aspects as a seasonally persistent snowpack melts. We investigated if evidence of preferential flow paths in snow can be observed and the effect on soil moisture through measurements of snow water equivalent and near-surface soil moisture, observing how SWE and near-surface soil moisture vary on hillslopes relative to the toes of hillslopes and flat areas. We then compared snowmelt infiltration beyond the near-surface soil between flat and sloping terrain during the entire snowmelt season using soil moisture sensor profiles. This study was conducted during varying snowmelt seasons representing above-normal, relatively normal, and below-normal snow seasons in northern Colorado. Evidence is presented of preferential meltwater flow paths at the snow-soil interface on the north-facing slope causing increases in SWE downslope and less infiltration into the soil at 20 cm depth; less association is observed in the near-surface soil moisture (top 7 cm). We present a conceptualization of the meltwater flow paths that develop based on slope aspect and soil properties. The resulting flow paths are shown to divert at least 4 % of snowmelt laterally, accumulating along the length of the slope, to increase the snow water equivalent by as much as 170 % at the base of a north-facing hillslope. Results from this study show that snow acts as an extension of the vadose zone during spring snowmelt and future hydrologic investigations will benefit from studying the snow and soil together.
Hydrologic extremes - an intercomparison of multiple gridded statistical downscaling methods
NASA Astrophysics Data System (ADS)
Werner, A. T.; Cannon, A. J.
2015-06-01
Gridded statistical downscaling methods are the main means of preparing climate model data to drive distributed hydrological models. Past work on the validation of climate downscaling methods has focused on temperature and precipitation, with less attention paid to the ultimate outputs from hydrological models. Also, as attention shifts towards projections of extreme events, downscaling comparisons now commonly assess methods in terms of climate extremes, but hydrologic extremes are less well explored. Here, we test the ability of gridded downscaling models to replicate historical properties of climate and hydrologic extremes, as measured in terms of temporal sequencing (i.e., correlation tests) and distributional properties (i.e., tests for equality of probability distributions). Outputs from seven downscaling methods - bias correction constructed analogues (BCCA), double BCCA (DBCCA), BCCA with quantile mapping reordering (BCCAQ), bias correction spatial disaggregation (BCSD), BCSD using minimum/maximum temperature (BCSDX), climate imprint delta method (CI), and bias corrected CI (BCCI) - are used to drive the Variable Infiltration Capacity (VIC) model over the snow-dominated Peace River basin, British Columbia. Outputs are tested using split-sample validation on 26 climate extremes indices (ClimDEX) and two hydrologic extremes indices (3 day peak flow and 7 day peak flow). To characterize observational uncertainty, four atmospheric reanalyses are used as climate model surrogates and two gridded observational datasets are used as downscaling target data. The skill of the downscaling methods generally depended on reanalysis and gridded observational dataset. However, CI failed to reproduce the distribution and BCSD and BCSDX the timing of winter 7 day low flow events, regardless of reanalysis or observational dataset. Overall, DBCCA passed the greatest number of tests for the ClimDEX indices, while BCCAQ, which is designed to more accurately resolve event-scale spatial gradients, passed the greatest number of tests for hydrologic extremes. Non-stationarity in the observational/reanalysis datasets complicated the evaluation of downscaling performance. Comparing temporal homogeneity and trends in climate indices and hydrological model outputs calculated from downscaled reanalyses and gridded observations was useful for diagnosing the reliability of the various historical datasets. We recommend that such analyses be conducted before such data are used to construct future hydro-climatic change scenarios.
Hydrologic extremes - an intercomparison of multiple gridded statistical downscaling methods
NASA Astrophysics Data System (ADS)
Werner, Arelia T.; Cannon, Alex J.
2016-04-01
Gridded statistical downscaling methods are the main means of preparing climate model data to drive distributed hydrological models. Past work on the validation of climate downscaling methods has focused on temperature and precipitation, with less attention paid to the ultimate outputs from hydrological models. Also, as attention shifts towards projections of extreme events, downscaling comparisons now commonly assess methods in terms of climate extremes, but hydrologic extremes are less well explored. Here, we test the ability of gridded downscaling models to replicate historical properties of climate and hydrologic extremes, as measured in terms of temporal sequencing (i.e. correlation tests) and distributional properties (i.e. tests for equality of probability distributions). Outputs from seven downscaling methods - bias correction constructed analogues (BCCA), double BCCA (DBCCA), BCCA with quantile mapping reordering (BCCAQ), bias correction spatial disaggregation (BCSD), BCSD using minimum/maximum temperature (BCSDX), the climate imprint delta method (CI), and bias corrected CI (BCCI) - are used to drive the Variable Infiltration Capacity (VIC) model over the snow-dominated Peace River basin, British Columbia. Outputs are tested using split-sample validation on 26 climate extremes indices (ClimDEX) and two hydrologic extremes indices (3-day peak flow and 7-day peak flow). To characterize observational uncertainty, four atmospheric reanalyses are used as climate model surrogates and two gridded observational data sets are used as downscaling target data. The skill of the downscaling methods generally depended on reanalysis and gridded observational data set. However, CI failed to reproduce the distribution and BCSD and BCSDX the timing of winter 7-day low-flow events, regardless of reanalysis or observational data set. Overall, DBCCA passed the greatest number of tests for the ClimDEX indices, while BCCAQ, which is designed to more accurately resolve event-scale spatial gradients, passed the greatest number of tests for hydrologic extremes. Non-stationarity in the observational/reanalysis data sets complicated the evaluation of downscaling performance. Comparing temporal homogeneity and trends in climate indices and hydrological model outputs calculated from downscaled reanalyses and gridded observations was useful for diagnosing the reliability of the various historical data sets. We recommend that such analyses be conducted before such data are used to construct future hydro-climatic change scenarios.
Hydrologic and water quality impacts of biofuel feedstock production in the Ohio River Basin
Demissie, Yonas; Yan, Eugene; Wu, May
2017-07-10
Our study addresses the uncertainties related to potential changes in land use and management and associated impacts on hydrology and water quality resulting from increased production of biofuel from the conventional and cellulosic feedstock. The Soil Water Assessment Tool (SWAT) was then used to assess the impacts on regional and field scale evapotranspiration, soil moisture content, stream flow, sediment, and nutrient loadings in the Ohio River Basin. The model incorporates spatially and temporally detailed hydrologic, climate and agricultural practice data that are pertinent to simulate biofuel feedstock production, watershed hydrology and water quality. Three future biofuel production scenarios in themore » region were considered, including a feedstock projection from the DOE Billion-Ton (BT2) Study, a change in corn rotations to continuous corn, and harvest of 50% corn stover. The impacts were evaluated on the basis of relative changes in hydrology and water quality from historical baseline and future business-as-usual conditions of the basin. The overall impact on water quality is an order of magnitude higher than the impact on hydrology. For all the three future scenarios, the sub-basin results indicated an overall increase in annual evapotranspiration of up to 6%, a decrease in runoff up to 10% and minimal change in soil moisture. The sediment and phosphorous loading at both regional and field levels increased considerably (up to 40–90%) for all the biofuel feedstock scenario considered, while the nitrogen loading increased up to 45% in some regions under the BT2 Study scenario, decreased up to 10% when corn are grown continuously instead of in rotations, and changed minimally when 50% of the stover are harvested. Field level analyses revealed significant variability in hydrology and water quality impacts that can further be used to identify suitable locations for the feedstock productions without causing major impacts on water quantity and quality.« less
Hydrologic and water quality impacts of biofuel feedstock production in the Ohio River Basin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demissie, Yonas; Yan, Eugene; Wu, May
Our study addresses the uncertainties related to potential changes in land use and management and associated impacts on hydrology and water quality resulting from increased production of biofuel from the conventional and cellulosic feedstock. The Soil Water Assessment Tool (SWAT) was then used to assess the impacts on regional and field scale evapotranspiration, soil moisture content, stream flow, sediment, and nutrient loadings in the Ohio River Basin. The model incorporates spatially and temporally detailed hydrologic, climate and agricultural practice data that are pertinent to simulate biofuel feedstock production, watershed hydrology and water quality. Three future biofuel production scenarios in themore » region were considered, including a feedstock projection from the DOE Billion-Ton (BT2) Study, a change in corn rotations to continuous corn, and harvest of 50% corn stover. The impacts were evaluated on the basis of relative changes in hydrology and water quality from historical baseline and future business-as-usual conditions of the basin. The overall impact on water quality is an order of magnitude higher than the impact on hydrology. For all the three future scenarios, the sub-basin results indicated an overall increase in annual evapotranspiration of up to 6%, a decrease in runoff up to 10% and minimal change in soil moisture. The sediment and phosphorous loading at both regional and field levels increased considerably (up to 40–90%) for all the biofuel feedstock scenario considered, while the nitrogen loading increased up to 45% in some regions under the BT2 Study scenario, decreased up to 10% when corn are grown continuously instead of in rotations, and changed minimally when 50% of the stover are harvested. Field level analyses revealed significant variability in hydrology and water quality impacts that can further be used to identify suitable locations for the feedstock productions without causing major impacts on water quantity and quality.« less
Bougamont, M.; Christoffersen, P.; Price, S. F.; ...
2015-10-21
Ongoing, centennial-scale flow variability within the Ross ice streams of West Antarctica suggests that the present-day positive mass balance in this region may reverse in the future. Here we use a three-dimensional ice sheet model to simulate ice flow in this region over 250 years. The flow responds to changing basal properties, as a subglacial till layer interacts with water transported in an active subglacial hydrological system. We show that a persistent weak bed beneath the tributaries of the dormant Kamb Ice Stream is a source of internal ice flow instability, which reorganizes all ice streams in this region, leadingmore » to a reduced (positive) mass balance within decades and a net loss of ice within two centuries. This hitherto unaccounted for flow variability could raise sea level by 5 mm this century. Furthermore, better constraints on future sea level change from this region will require improved estimates of geothermal heat flux and subglacial water transport.« less
Beyond Metrics? The Role of Hydrologic Baseline Archetypes in Environmental Water Management.
Lane, Belize A; Sandoval-Solis, Samuel; Stein, Eric D; Yarnell, Sarah M; Pasternack, Gregory B; Dahlke, Helen E
2018-06-22
Balancing ecological and human water needs often requires characterizing key aspects of the natural flow regime and then predicting ecological response to flow alterations. Flow metrics are generally relied upon to characterize long-term average statistical properties of the natural flow regime (hydrologic baseline conditions). However, some key aspects of hydrologic baseline conditions may be better understood through more complete consideration of continuous patterns of daily, seasonal, and inter-annual variability than through summary metrics. Here we propose the additional use of high-resolution dimensionless archetypes of regional stream classes to improve understanding of baseline hydrologic conditions and inform regional environmental flows assessments. In an application to California, we describe the development and analysis of hydrologic baseline archetypes to characterize patterns of flow variability within and between stream classes. We then assess the utility of archetypes to provide context for common flow metrics and improve understanding of linkages between aquatic patterns and processes and their hydrologic controls. Results indicate that these archetypes may offer a distinct and complementary tool for researching mechanistic flow-ecology relationships, assessing regional patterns for streamflow management, or understanding impacts of changing climate.
NASA Astrophysics Data System (ADS)
Jiang, Sanyuan; Zhang, Qi
2017-04-01
Phosphorus losses from excessive fertilizer application and improper land exploitation were found to be the limiting factor for freshwater quality deterioration and eutrophication. Phosphorus transport from uplands to river is related to hydrological, soil erosion and sediment transport processes, which is impacted by several physiographic and meteorological factors. The objective of this study was to investigate the spatiotemporal variation of phosphorus losses and response to climate change at a typical upstream tributary (Le'An river) of Poyang Lake. To this end, a process-oriented hydrological and nutrient transport model HYPE (Hydrological Predictions for the Environment) was set up for discharge and phosphorus transport simulation at Le'An catchment. Parameter ESTimator (PEST) was combined with HYPE model for parameter sensitivity analysis and optimisation. In runoff modelling, potential evapotranspiration rate of the dominant land use (forest) is most sensitive; parameters of surface runoff rate and percolation capacity for the red soil are also very sensitive. In phosphorus transport modelling, the exponent of equation for soil erosion processes induced by surface runoff is most sensitive, coefficient of adsorption/desorption processes for red soil is also very sensitive. Flow dynamics and water balance were simulated well at all sites for the whole period (1978-1986) with NSE≥0.80 and PBIAS≤14.53%. The optimized hydrological parameter set were transferable for the independent period (2009-2010) with NSE≥0.90 and highest PBIAS of -7.44% in stream flow simulation. Seasonal dynamics and balance of stream water TP (Total Phosphorus ) concentrations were captured satisfactorily indicated by NSE≥0.53 and highest PBIAS of 16.67%. In annual scale, most phosphorus is transported via surface runoff during heavy storm flow events, which may account for about 70% of annual TP loads. Based on future climate change analysis under three different emission scenarios (RCP 2.6, RCP 4.5 and RCP 8.5), there is no considerable change in average annual rainfall amount in 2020-2035 while increasing occurrence frequency and intensity of extreme rainfall events were predicted. The validated HYPE model was run on the three emission scenarios. Overall increase of TP loads was found in future with the largest increase of annual TP loads under the high emission scenario (RCP 8.5). The outcomes of this study (i) verified the transferability of HYPE model at humid subtropical and heterogeneous catchment; (ii) revealed the sensitive hydrological and phosphorus transport processes and relevant parameters; (iii) implied more TP losses in future in response to increasing extreme rainfall events.
Hydrology of the Po River: looking for changing patterns in river discharge
NASA Astrophysics Data System (ADS)
Montanari, A.
2012-05-01
Scientists and public administrators are devoting increasing attention to the Po River, in Italy, in view of concerns related to the impact of increasing urbanisation and exploitation of water resources. A better understanding of the hydrological regime of the river is necessary to improve water resources management and flood protection. In particular, the analysis of the effects of hydrological and climatic change is crucial for planning sustainable development and economic growth. An extremely interesting issue is to inspect to what extent river flows can be naturally affected by the occurrence of long periods of water abundance or scarcity, which can be erroneously interpreted as irreversible changes due to human impact. In fact, drought and flood periods alternatively occurred in the recent past in the form of long term cycles. This paper presents advanced graphical and analytical methods to gain a better understanding of the temporal distribution of the Po River discharge. In particular, we present an analysis of river flow variability and memory properties to better understand natural patterns and in particular long term changes, which may affect the future flood risk and availability of water resources.
NASA Astrophysics Data System (ADS)
Litt, Guy Finley
As the Panama Canal Authority faces sensitivity to water shortages, managing water resources becomes crucial for the global shipping industry's security. These studies address knowledge gaps in tropical water resources to aid hydrological model development and validation. Field-based hydrological investigations in the Agua Salud Project within the Panama Canal Watershed employed multiple tools across a variety of land covers to investigate hydrological processes. Geochemical tracers informed where storm runoff in a stream comes from and identified electrical conductivity (EC) as an economical, high sample frequency tracer during small storms. EC-based hydrograph separation coupled with hydrograph recession rate analyses identified shallow and deep groundwater storage-discharge relationships that varied by season and land cover. A series of plot-scale electrical resistivity imaging geophysical experiments coupled with rainfall simulation characterized subsurface flow pathway behavior and quantified respectively increasing infiltration rates across pasture, 10 year old secondary succession forest, teak (tectona grandis), and 30 year old secondary succession forest land covers. Additional soil water, groundwater, and geochemical studies informed conceptual model development in subsurface flow pathways and groundwater, and identified future research needs.
Future climate scenarios and rainfall--runoff modelling in the Upper Gallego catchment (Spain).
Bürger, C M; Kolditz, O; Fowler, H J; Blenkinsop, S
2007-08-01
Global climate change may have large impacts on water supplies, drought or flood frequencies and magnitudes in local and regional hydrologic systems. Water authorities therefore rely on computer models for quantitative impact prediction. In this study we present kernel-based learning machine river flow models for the Upper Gallego catchment of the Ebro basin. Different learning machines were calibrated using daily gauge data. The models posed two major challenges: (1) estimation of the rainfall-runoff transfer function from the available time series is complicated by anthropogenic regulation and mountainous terrain and (2) the river flow model is weak when only climate data are used, but additional antecedent flow data seemed to lead to delayed peak flow estimation. These types of models, together with the presented downscaled climate scenarios, can be used for climate change impact assessment in the Gallego, which is important for the future management of the system.
NASA Astrophysics Data System (ADS)
Veldkamp, Ted; Ward, Philip; de Moel, Hans; Aerts, Jeroen; Muller Schmied, Hannes; Portmann, Felix; Zhao, Fang; Gerten, Dieter; Masaki, Yoshimitsu; Pokhrel, Yadu; Satoh, Yusuke; Gosling, Simon; Zaherpour, Jamal; Wada, Yoshihide
2017-04-01
Human impacts on freshwater resources and hydrological features form the core of present-day water related hazards, like flooding, droughts, water scarcity, and water quality issues. Driven by the societal and scientific needs to correctly model such water related hazards a fair amount of resources has been invested over the past decades to represent human activities and their interactions with the hydrological cycle in global hydrological models (GHMs). Use of these GHMs - including the human dimension - is widespread, especially in water resources research. Evaluation or comparative assessments of the ability of such GHMs to represent real-world hydrological conditions are, unfortunately, however often limited to (near-)natural river basins. Such studies are, therefore, not able to test the model representation of human activities and its associated impact on estimates of freshwater resources or assessments of hydrological extremes. Studies that did perform a validation exercise - including the human dimension and looking into managed catchments - either focused only on one hydrological model, and/or incorporated only a few data points (i.e. river basins) for validation. To date, a comprehensive comparative analysis that evaluates whether and where incorporating the human dimension actually improves the performance of different GHMs with respect to their representation of real-world hydrological conditions and extremes is missing. The absence of such study limits the potential benchmarking of GHMs and their outcomes in hydrological hazard and risk assessments significantly, potentially hampering incorporation of GHMs and their modelling results in actual policy making and decision support with respect to water resources management. To address this issue, we evaluate in this study the performance of five state-of-the-art GHMs that include anthropogenic activities in their modelling scheme, with respect to their representation of monthly discharges and hydrological extremes. To this end, we compared their monthly discharge simulations under a naturalized and a time-dependent human impact simulation, with monthly GRDC river discharge observations of 2,412 stations over the period 1971-2010. Evaluation metrics that were used to assess the performance of the GHMs included the modified Kling-Gupta Efficiency index, and its individual parameters describing the linear correlation coefficient, the bias ratio, and the variability ratio, as well as indicators for hydrological extremes (Q90, Q10). Our results show that inclusion of anthropogenic activities in the modelling framework generally enhances the overall performance of the GHMs studied, mainly driven by bias-improvements, and to a lesser extent due to changes in modelled hydrological variability. Whilst the inclusion of anthropogenic activities takes mainly effect in the managed catchments, a significant share of the (near-)natural catchments is influenced as well. To get estimates of hydrological extremes right, especially when looking at low-flows, inclusion of human activities is paramount. Whilst high-flow estimates are mainly decreased, impact of human activities on low-flows is ambiguous, i.e. due to the relative importance of the timing of return flows and reservoir operations. Even with inclusion of the human dimension we find, nevertheless, a persistent overestimation of hydrological extremes across all models, which should be accounted for in future assessments.
Taehee Hwang; James M. Vose; Christina Tague
2012-01-01
Lateral water flow in catchments can produce important patterns in water and nutrient fluxes and stores and also influences the long-term spatial development of forest ecosystems. Specifically, patterns of vegetation type and density along hydrologic flow paths can represent a signal of the redistribution of water and nitrogen mediated by lateral hydrologic flow. This...
How could Mosan agriculture be impacted by climate change and future droughts ?
NASA Astrophysics Data System (ADS)
Bauwens, A.; Sohier, C.; Deraedt, D.; Degré, A.
2012-04-01
Despite the great uncertainties regarding the future climatic context, lots of studies have focused on hydrological effects of climate change on the Meuse catchment. It appears that both winter high flows and summer low flows could be exacerbated. Climate change and its impacts on hydrology will thus affect various socio-economic sectors. High flows have been widely studied compared to low-flows. This poster will put the emphasis on a methodology developed in order to study impacts of droughts on agriculture. Agriculture is among the most impacted sectors due to climate change. The consequences could be both positive as negative in accordance with the range of predicted changes and the adaptation capacity of agricultural systems. Most of the existing studies related to climate change on agriculture focused on specific territory. Within the AMICE Interreg IVB project, a transnational approach has been developed to assess droughts impacts on agriculture through the Meuse basin. The project's previous works gave us a common scenario of climate trends and of the evolution of the hydrology in the Meuse basin. The methodology is based on the use of a physically-based model able to simulate the water-soil-plant continuum (derived from EPIC model). In order to be transferable from one country to another, the methodology proposed used data available at the basin scale. The UE soil data base was complemented with local information on agricultural practices and statistics. Three crops have been studied: maize, wheat and barley. The basic cultural calendar is supposed to be the same for the different countries. The methodology developed permits to study the evolution of yields, leaf area index, crops stress due to excess or lack of water through time under different scenarios build up in the frame of the project. It appears that corn is negatively affected by climate change, and thus despite the CO2 fertilization effect. Wheat and barley have similar behavior and are positively affected by climate change and CO2 fertilization. Leaf Area Index study reveals that the different crops start earlier and reach earlier maturity. These first results will be completed with other economic sectors'analysis like drinkable water production, electricity production and navigation. Therefore, the project will progress towards a better understanding of economic effects of future droughts and low-flows.
Coupled Crop/Hydrology Model to Estimate Expanded Irrigation Impact on Water Resources
NASA Astrophysics Data System (ADS)
Handyside, C. T.; Cruise, J.
2017-12-01
A coupled agricultural and hydrologic systems model is used to examine the environmental impact of irrigation in the Southeast. A gridded crop model for the Southeast is used to determine regional irrigation demand. This irrigation demand is used in a regional hydrologic model to determine the hydrologic impact of irrigation. For the Southeast to maintain/expand irrigated agricultural production and provide adaptation to climate change and climate variability it will require integrated agricultural and hydrologic system models that can calculate irrigation demand and the impact of the this demand on the river hydrology. These integrated models can be used as (1) historical tools to examine vulnerability of expanded irrigation to past climate extremes (2) future tools to examine the sustainability of expanded irrigation under future climate scenarios and (3) a real-time tool to allow dynamic water resource management. Such tools are necessary to assure stakeholders and the public that irrigation can be carried out in a sustainable manner. The system tools to be discussed include a gridded version of the crop modeling system (DSSAT). The gridded model is referred to as GriDSSAT. The irrigation demand from GriDSSAT is coupled to a regional hydrologic model developed by the Eastern Forest Environmental Threat Assessment Center of the USDA Forest Service) (WaSSI). The crop model provides the dynamic irrigation demand which is a function of the weather. The hydrologic model includes all other competing uses of water. Examples of use the crop model coupled with the hydrologic model include historical analyses which show the change in hydrology as additional acres of irrigated land are added to water sheds. The first order change in hydrology is computed in terms of changes in the Water Availability Stress Index (WASSI) which is the ratio of water demand (irrigation, public water supply, industrial use, etc.) and water availability from the hydrologic model. Also, statistics such as the number of times certain WASSI thresholds are exceeded are calculated to show the impact of expanded irrigation during times of hydrologic drought and the coincident use of water by other sectors. Also, integrated downstream impacts of irrigation are also calculated through changes in flows through the whole river systems.
NASA Astrophysics Data System (ADS)
Tijerina, D.; Gochis, D.; Condon, L. E.; Maxwell, R. M.
2017-12-01
Development of integrated hydrology modeling systems that couple atmospheric, land surface, and subsurface flow is growing trend in hydrologic modeling. Using an integrated modeling framework, subsurface hydrologic processes, such as lateral flow and soil moisture redistribution, are represented in a single cohesive framework with surface processes like overland flow and evapotranspiration. There is a need for these more intricate models in comprehensive hydrologic forecasting and water management over large spatial areas, specifically the Continental US (CONUS). Currently, two high-resolution, coupled hydrologic modeling applications have been developed for this domain: CONUS-ParFlow built using the integrated hydrologic model ParFlow and the National Water Model that uses the NCAR Weather Research and Forecasting hydrological extension package (WRF-Hydro). Both ParFlow and WRF-Hydro include land surface models, overland flow, and take advantage of parallelization and high-performance computing (HPC) capabilities; however, they have different approaches to overland subsurface flow and groundwater-surface water interactions. Accurately representing large domains remains a challenge considering the difficult task of representing complex hydrologic processes, computational expense, and extensive data needs; both models have accomplished this, but have differences in approach and continue to be difficult to validate. A further exploration of effective methodology to accurately represent large-scale hydrology with integrated models is needed to advance this growing field. Here we compare the outputs of CONUS-ParFlow and the National Water Model to each other and with observations to study the performance of hyper-resolution models over large domains. Models were compared over a range of scales for major watersheds within the CONUS with a specific focus on the Mississippi, Ohio, and Colorado River basins. We use a novel set of approaches and analysis for this comparison to better understand differences in process and bias. This intercomparison is a step toward better understanding how much water we have and interactions between surface and subsurface. Our goal is to advance our understanding and simulation of the hydrologic system and ultimately improve hydrologic forecasts.
Flanagan, Neal E; Richardson, Curtis J; Ho, Mengchi
2015-04-01
Climate change is predicted to impact river systems in the southeastern United States through alterations of temperature, patterns of precipitation and hydrology. Future climate scenarios for the southeastern United States predict (1) surface water temperatures will warm in concert with air temperature, (2) storm flows will increase and base flows will decrease, and (3) the annual pattern of synchronization between hydroperiod and water temperature will be altered. These alterations are expected to disturb floodplain plant communities, making them more vulnerable to establishment of invasive species. The primary objective of this study is to evaluate whether native and invasive riparian plant assemblages respond differently to alterations of climate and land use. To study the response of riparian wetlands to watershed and climate alterations, we utilized an existing natural experiment imbedded in gradients of temperature and hydrology-found among dammed and undammed rivers. We evaluated a suite of environmental variables related to water temperature, hydrology, watershed disturbance, and edaphic conditions to identify the strongest predictors of native and invasive species abundances. We found that native species abundance is strongly influenced by climate-driven variables such as temperature and hydrology, while invasive species abundance is more strongly influenced by site-specific factors such as land use and soil nutrient availability. The patterns of synchronization between plant phenology, annual hydrographs, and annual water temperature cycles may be key factors sustaining the viability of native riparian plant communities. Our results demonstrate the need to understand the interactions between climate, land use, and nutrient management in maintaining the species diversity of riparian plant communities. Future climate change is likely to result in diminished competitiveness of native plant species, while the competitiveness of invasive species will increase due to anthropogenic watershed disturbance and accelerated nutrient and sediment export.
NASA Astrophysics Data System (ADS)
Meaurio, Maite; Zabaleta, Ane; Boithias, Laurie; Epelde, Ane Miren; Sauvage, Sabine; Sánchez-Pérez, Jose-Miguel; Srinivasan, Raghavan; Antiguedad, Iñaki
2017-05-01
The climate changes projected for the 21st century will have consequences on the hydrological response of catchments. These changes, and their consequences, are most uncertain in the transition zones. The study area, in the Bay of Biscay, is located in the transition zone of the European Atlantic region, where hydrological impact of climate change was scarcely studied. In order to address this scarcity, the hydrological impacts of climate change on river discharge were assessed. To do so, a hydrological modelling was carried out considering 16 climate scenarios that include 5 General Circulation Models (GCM) from the 5th report of the Coupled Model Intercomparison Project (CMIP5), 2 statistical downscaling methods and 2 Representative Concentration Pathways. Projections for future discharge (2011-2100) were divided into three 30-year horizons (2030s, 2060s and 2090s) and a comparison was made between these time horizons and the baseline (1961-2000). The results show that the downscaling method used resulted in a higher source of uncertainty than GCM itself. In addition, the uncertainties inherent to the methods used at all the levels do not affect the results equally along the year. In spite of those uncertainties, general trends for the 2090s predict seasonal discharge decreases by around -17% in autumn, -16% in spring, -11% in winter and -7% in summer. These results are in line with those predicted for the Atlantic region (France and the Iberian Peninsula). Trends for extreme flows were also analysed: the most significant show an increase in the duration (days) of low flows. From an environmental point of view, and considering the need to meet the objectives established by the Water Framework Directive (WFD), this will be a major challenge for the future planning on water management.
Why understanding the impacts of the changing environment on river basin hydrology matters in Texas?
NASA Astrophysics Data System (ADS)
Gao, H.; Zhao, G.; Lee, K.; Zhang, S.; Shen, X.; Shao, M.; Nickelson, C.
2017-12-01
The State of Texas is prone to floods and droughts—both of which are expected to become more frequent, and more intensified, under a changing climate. This has a direct negative effect on agricultural productivity, which is a major revenue source for the state. Meanwhile, with the rapid population growth and economic development, the burden to Texas water resources is exacerbated by the ever increasing demands from users. From a hydrological processes perspective, the direct consequence of the increased impervious area due to urbanization is greater surface runoff and higher flood peaks. Although many reservoirs have been built during the past several decades to regulate river flows and increase water supply, the role of these reservoirs in the context of different future climate change and urbanization scenarios needs to be explored. Furthermore, phytoplankton productivity—an important indicator of coastal ecosystem health— is significantly affected by river discharge. The objective of this presentation is to reveal the importance of understanding the impacts of climate change, urbanization, and flow regulation on Texas river flows, water resources, and coastal water quality. Using state-of-the-art modeling and remote sensing techniques, we will showcase our results over representative Texas river basins and bay areas. A few examples include modeling peak flows in the San Antonio River Basin, evaluating water supply resilience under future drought and urbanization over the Dallas metropolitan area, projecting future crop yields from Texas agricultural lands, and monitoring and forecasting Chlorophyll-a concentrations over Galveston Bay. Results from these studies are expected to provide information relevant to decision making, both with regard to water resources management and to ecosystem protection.
Steinkampf, W.C.
2000-01-01
Yucca Mountain, located ~100 mi northwest of Las Vegas, Nevada, has been designated by Congress as a site to be characterized for a potential mined geologic repository for high-level radioactive waste. This field trip will examine the regional geologic and hydrologic setting for Yucca Mountain, as well as specific results of the site characterization program, The first day focuses on the regional seeing with emphasis on current and paleo hydrology, which are both of critical concern for predicting future performance of a potential repository. Morning stops will be in southern Nevada and afternoon stops will be in Death Valley. The second day will be spent at Yucca Mountain. The filed trip will visit the underground testing sites in the "Exploratory Studies Facility" and the "Busted Butte Unsaturated Zone Transport Field Test" plus several surface-based testing sites. Much of the work at the site has concentrated on studies of the unsaturated zone, and element of the hydrologic system that historically has received little attention. Discussions during the second day will comprise selected topics of Yucca Mountain geology, mic hazard in the Yucca Mountain area. Evening discussions will address modeling of regional groundwater flow, the geology and hydrology of Yucca Mountain to the performance of a potential repository. Day 3 will examine the geologic framework and hydrology of the Pahute Mesa-Oasis Valley Groundwater Basin and then will continue to Reno via Hawthorne, Nevada and the Walker Lake area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McManamay, Ryan A; Bevelhimer, Mark S; Frimpong, Dr. Emmanuel A,
2014-01-01
Classification systems are valuable to ecological management in that they organize information into consolidated units thereby providing efficient means to achieve conservation objectives. Of the many ways classifications benefit management, hypothesis generation has been discussed as the most important. However, in order to provide templates for developing and testing ecologically relevant hypotheses, classifications created using environmental variables must be linked to ecological patterns. Herein, we develop associations between a recent US hydrologic classification and fish traits in order to form a template for generating flow ecology hypotheses and supporting environmental flow standard development. Tradeoffs in adaptive strategies for fish weremore » observed across a spectrum of stable, perennial flow to unstable intermittent flow. In accordance with theory, periodic strategists were associated with stable, predictable flow, whereas opportunistic strategists were more affiliated with intermittent, variable flows. We developed linkages between the uniqueness of hydrologic character and ecological distinction among classes, which may translate into predictions between losses in hydrologic uniqueness and ecological community response. Comparisons of classification strength between hydrologic classifications and other frameworks suggested that spatially contiguous classifications with higher regionalization will tend to explain more variation in ecological patterns. Despite explaining less ecological variation than other frameworks, we contend that hydrologic classifications are still useful because they provide a conceptual linkage between hydrologic variation and ecological communities to support flow ecology relationships. Mechanistic associations among fish traits and hydrologic classes support the presumption that environmental flow standards should be developed uniquely for stream classes and ecological communities, therein.« less
Application of the Hydroecological Integrity Assessment Process for Missouri Streams
Kennen, Jonathan G.; Henriksen, James A.; Heasley, John; Cade, Brian S.; Terrell, James W.
2009-01-01
Natural flow regime concepts and theories have established the justification for maintaining or restoring the range of natural hydrologic variability so that physiochemical processes, native biodiversity, and the evolutionary potential of aquatic and riparian assemblages can be sustained. A synthesis of recent research advances in hydroecology, coupled with stream classification using hydroecologically relevant indices, has produced the Hydroecological Integrity Assessment Process (HIP). HIP consists of (1) a regional classification of streams into hydrologic stream types based on flow data from long-term gaging-station records for relatively unmodified streams, (2) an identification of stream-type specific indices that address 11 subcomponents of the flow regime, (3) an ability to establish environmental flow standards, (4) an evaluation of hydrologic alteration, and (5) a capacity to conduct alternative analyses. The process starts with the identification of a hydrologic baseline (reference condition) for selected locations, uses flow data from a stream-gage network, and proceeds to classify streams into hydrologic stream types. Concurrently, the analysis identifies a set of non-redundant and ecologically relevant hydrologic indices for 11 subcomponents of flow for each stream type. Furthermore, regional hydrologic models for synthesizing flow conditions across a region and the development of flow-ecology response relations for each stream type can be added to further enhance the process. The application of HIP to Missouri streams identified five stream types ((1) intermittent, (2) perennial runoff-flashy, (3) perennial runoff-moderate baseflow, (4) perennial groundwater-stable, and (5) perennial groundwater-super stable). Two Missouri-specific computer software programs were developed: (1) a Missouri Hydrologic Assessment Tool (MOHAT) which is used to establish a hydrologic baseline, provide options for setting environmental flow standards, and compare past and proposed hydrologic alterations; and (2) a Missouri Stream Classification Tool (MOSCT) designed for placing previously unclassified streams into one of the five pre-defined stream types.
NASA Astrophysics Data System (ADS)
Ayanshola, Ayanniyi; Olofintoye, Oluwatosin; Obadofin, Ebenezer
2018-03-01
This study presents the impact of global warming on precipitation patterns in Ilorin, Nigeria, and its implications on the hydrological balance of the Awun basin under the prevailing climate conditions. The study analyzes 39 years of rainfall and temperature data of relevant stations within the study areas. Simulated data from the Coupled Global Climate model for historical and future datasets were investigated under the A2 emission scenario. Statistical regression and a Mann-Kendall analysis were performed to determine the nature of the trends in the hydrological variables and their significance levels, while a Soil and Water Assessment Tool (SWAT) was used to estimate the water balance and derive the stream flow and yield of the Awun basin. The study revealed that while minimum and maximum temperatures in Ilorin are increasing, rainfall is generally decreasing. The assessment of the trends in the water balance parameters in the basin indicates that there is no improvement in the water yield as the population increases. This may result in major stresses to the water supply in the near future.
Analysis of magnitude and duration of floods and droughts in the context of climate change
NASA Astrophysics Data System (ADS)
Eshetu Debele, Sisay; Bogdanowicz, Ewa; Strupczewski, Witold
2016-04-01
Research and scientific information are key elements of any decision-making process. There is also a strong need for tools to describe and compare in a concise way the regime of hydrological extreme events in the context of presumed climate change. To meet these demands, two complementary methods for estimating high and low-flow frequency characteristics are proposed. Both methods deal with duration and magnitude of extreme events. The first one "flow-duration-frequency" (known as QdF) has already been applied successfully to low-flow analysis, flood flows and rainfall intensity. The second one called "duration-flow-frequency" (DqF) was proposed by Strupczewski et al. in 2010 to flood frequency analysis. The two methods differ in the treatment of flow and duration. In the QdF method the duration (d-consecutive days) is a chosen fixed value and the frequency analysis concerns the annual or seasonal series of mean value of flows exceeded (in the case of floods) or non-exceeded (in the case of droughts) within d-day period. In the second method, DqF, the flows are treated as fixed thresholds and the duration of flows exceeding (floods) and non-exceeding (droughts) these thresholds are a subject of frequency analysis. The comparison of characteristics of floods and droughts in reference period and under future climate conditions for catchments studied within the CHIHE project is presented and a simple way to show the results to non-professionals and decision-makers is proposed. The work was undertaken within the project "Climate Change Impacts on Hydrological Extremes (CHIHE)", which is supported by the Norway-Poland Grants Program administered by the Norwegian Research Council. The observed time series were provided by the Institute of Meteorology and Water Management (IMGW), Poland. Strupczewski, W. G., Kochanek, K., Markiewicz, I., Bogdanowicz, E., Weglarczyk, S., & Singh V. P. (2010). On the Tails of Distributions of Annual Peak Flow. Hydrology Research, 42, 171-192. http://dx.doi.org/10.2166/nh.2011.062
NASA Astrophysics Data System (ADS)
Lewis, Elizabeth; Kilsby, Chris; Fowler, Hayley
2014-05-01
The impact of climate change on hydrological systems requires further quantification in order to inform water management. This study intends to conduct such analysis using hydrological models. Such models are of varying forms, of which conceptual, lumped parameter models and physically-based models are two important types. The majority of hydrological studies use conceptual models calibrated against measured river flow time series in order to represent catchment behaviour. This method often shows impressive results for specific problems in gauged catchments. However, the results may not be robust under non-stationary conditions such as climate change, as physical processes and relationships amenable to change are not accounted for explicitly. Moreover, conceptual models are less readily applicable to ungauged catchments, in which hydrological predictions are also required. As such, the physically based, spatially distributed model SHETRAN is used in this study to develop a robust and reliable framework for modelling historic and future behaviour of gauged and ungauged catchments across the whole of Great Britain. In order to achieve this, a large array of data completely covering Great Britain for the period 1960-2006 has been collated and efficiently stored ready for model input. The data processed include a DEM, rainfall, PE and maps of geology, soil and land cover. A desire to make the modelling system easy for others to work with led to the development of a user-friendly graphical interface. This allows non-experts to set up and run a catchment model in a few seconds, a process that can normally take weeks or months. The quality and reliability of the extensive dataset for modelling hydrological processes has also been evaluated. One aspect of this has been an assessment of error and uncertainty in rainfall input data, as well as the effects of temporal resolution in precipitation inputs on model calibration. SHETRAN has been updated to accept gridded rainfall inputs, and UKCP09 gridded daily rainfall data has been disaggregated using hourly records to analyse the implications of using realistic sub-daily variability. Furthermore, the development of a comprehensive dataset and computationally efficient means of setting up and running catchment models has allowed for examination of how a robust parameter scheme may be derived. This analysis has been based on collective parameterisation of multiple catchments in contrasting hydrological settings and subject to varied processes. 350 gauged catchments all over the UK have been simulated, and a robust set of parameters is being sought by examining the full range of hydrological processes and calibrating to a highly diverse flow data series. The modelling system will be used to generate flow time series based on historical input data and also downscaled Regional Climate Model (RCM) forecasts using the UKCP09 Weather Generator. This will allow for analysis of flow frequency and associated future changes, which cannot be determined from the instrumental record or from lumped parameter model outputs calibrated only to historical catchment behaviour. This work will be based on the existing and functional modelling system described following some further improvements to calibration, particularly regarding simulation of groundwater-dominated catchments.
Vulnerability Assessment of Water Supply Systems: Status, Gaps and Opportunities
NASA Astrophysics Data System (ADS)
Wheater, H. S.
2015-12-01
Conventional frameworks for assessing the impacts of climate change on water resource systems use cascades of climate and hydrological models to provide 'top-down' projections of future water availability, but these are subject to high uncertainty and are model and scenario-specific. Hence there has been recent interest in 'bottom-up' frameworks, which aim to evaluate system vulnerability to change in the context of possible future climate and/or hydrological conditions. Such vulnerability assessments are generic, and can be combined with updated information from top-down assessments as they become available. While some vulnerability methods use hydrological models to estimate water availability, fully bottom-up schemes have recently been proposed that directly map system vulnerability as a function of feasible changes in water supply characteristics. These use stochastic algorithms, based on reconstruction or reshuffling methods, by which multiple water supply realizations can be generated under feasible ranges of change in water supply conditions. The paper reports recent successes, and points to areas of future improvement. Advances in stochastic modeling and optimization can address some technical limitations in flow reconstruction, while various data mining and system identification techniques can provide possibilities to better condition realizations for consistency with top-down scenarios. Finally, we show that probabilistic and Bayesian frameworks together can provide a potential basis to combine information obtained from fully bottom-up analyses with projections available from climate and/or hydrological models in a fully integrated risk assessment framework for deep uncertainty.
NASA Astrophysics Data System (ADS)
Voisin, Nathalie; Hejazi, Mohamad I.; Leung, L. Ruby; Liu, Lu; Huang, Maoyi; Li, Hong-Yi; Tesfa, Teklu
2017-05-01
Realistic representations of sectoral water withdrawals and consumptive demands and their allocation to surface and groundwater sources are important for improving modeling of the integrated water cycle. To inform future model development, we enhance the representation of water management in a regional Earth system (ES) model with a spatially distributed allocation of sectoral water demands simulated by a regional integrated assessment (IA) model to surface and groundwater systems. The integrated modeling framework (IA-ES) is evaluated by analyzing the simulated regulated flow and sectoral supply deficit in major hydrologic regions of the conterminous U.S, which differ from ES studies looking at water storage variations. Decreases in historical supply deficit are used as metrics to evaluate IA-ES model improvement in representating the complex sectoral human activities for assessing future adaptation and mitigation strategies. We also assess the spatial changes in both regulated flow and unmet demands, for irrigation and nonirrigation sectors, resulting from the individual and combined additions of groundwater and return flow modules. Results show that groundwater use has a pronounced regional and sectoral effect by reducing water supply deficit. The effects of sectoral return flow exhibit a clear east-west contrast in the hydrologic patterns, so the return flow component combined with the IA sectoral demands is a major driver for spatial redistribution of water resources and water deficits in the US. Our analysis highlights the need for spatially distributed sectoral representation of water management to capture the regional differences in interbasin redistribution of water resources and deficits.
NASA Astrophysics Data System (ADS)
Butchart-Kuhlmann, Daniel; Kralisch, Sven; Meinhardt, Markus; Fleischer, Melanie
2017-04-01
Assessing the quantity and quality of water available in water stressed environments under various potential climate and land-use changes is necessary for good water and environmental resources management and governance. Within the region covered by the Southern African Science Service Centre for Climate Change and Adaptive Land Management (SASSCAL) project, such areas are common. One goal of the SASSCAL project is to develop and provide an integrated decision support system (DSS) with which decision makers (DMs) within a given catchment can obtain objective information regarding potential changes in water flow quantity and timing. The SASSCAL DSS builds upon existing data storage and distribution capability, through the SASSCAL Information System (IS), as well as the J2000 hydrological model. Using output from validated J2000 models, the SASSCAL DSS incorporates the calculation of a range of hydrological indicators based upon Indicators of Hydrological Alteration/Environmental Flow Components (IHA/EFC) calculated for a historic time series (pre-impact) and a set of model simulations based upon a selection of possible climate and land-use change scenarios (post-impact). These indicators, obtained using the IHA software package, are then used as input for a multi-criteria decision analysis (MCDA) undertaken using the open source diviz software package. The results of these analyses will provide DMs with an indication as to how various hydrological indicators within a catchment may be altered under different future scenarios, as well providing a ranking of how each scenario is preferred according to different DM preferences. Scenarios are represented through a combination of model input data and parameter settings in J2000, and preferences are represented through criteria weighting in the MCDA. Here, the methodology is presented and applied to the J2000 Luanginga model results using a set of hypothetical decision maker preference values as input for an MCDA based on the PROMETHEE II outranking method. Future work on the SASSCAL DSS will entail automation of this process, as well as its application to other hydrological models and land-use and/or climate change scenarios.
Challenges for understanding Antarctic surface hydrology and ice-shelf stability
NASA Astrophysics Data System (ADS)
Kingslake, J.; Bell, R. E.; Banwell, A. F.; Boghosian, A.; Spergel, J.; Trusel, L. D.
2017-12-01
It is widely hypothesized that surface meltwater can contribute to ice mass loss in Antarctica through its impact on ice-shelf stability. Meltwater potentially expedites ice-shelf calving by flowing into and enlarging existing crevasses, and could even trigger ice-shelf disintegration via stresses generated by melt ponds. When ice shelves collapse, the adjacent grounded ice accelerates and thins, which contributes to sea-level rise. How these mechanisms mediate the interactions between the atmosphere, the ocean and the ice sheet is the subject of long-standing research efforts. The drainage of water across the surface of the Antarctic Ice Sheet and its ice shelves is beginning to be recognized as another important aspect of the system. Recent studies have revealed that surface meltwater drainage is more widespread than previously thought and that surface hydrological systems in Antarctica may expand and proliferate this century. Contrasting hypotheses regarding the impact of the proliferation of drainage systems on ice-shelf stability have emerged. Surface drainage could deliver meltwater to vulnerable area or export meltwater from ice shelves entirely. Which behavior dominates may have a large impact on the future response of the Antarctic Ice Sheet to atmospheric warming. We will discuss these recent discoveries and hypotheses, as well as new detailed studies of specific areas where hydrological systems are well developed, such as Amery and Nimrod Ice Shelves. We will highlight analogies that can be drawn with Greenlandic (near-)surface hydrology and, crucially, where hydrological systems on the two ice sheets are very different, leading to potentially important gaps in our understanding. Finally, we will look ahead to the key questions that we argue will need to be if we are to determine the role Antarctic surface hydrology could play in the future of the ice sheet. These include: Where does meltwater pond today and how will this change this century? What coupled glaciological-hydrological dynamics control how drainage systems will change as melt rates increase this century? How do we incorporate surface hydrology into ice-sheet models? While we may be currently unable to answer these and related questions, we aim to start the discussion on how the community can move towards answering them in the future.
Mustonen, Kaisa-Riikka; Mykrä, Heikki; Marttila, Hannu; Sarremejane, Romain; Veijalainen, Noora; Sippel, Kalle; Muotka, Timo; Hawkins, Charles P
2018-06-01
Air temperature at the northernmost latitudes is predicted to increase steeply and precipitation to become more variable by the end of the 21st century, resulting in altered thermal and hydrological regimes. We applied five climate scenarios to predict the future (2070-2100) benthic macroinvertebrate assemblages at 239 near-pristine sites across Finland (ca. 1200 km latitudinal span). We used a multitaxon distribution model with air temperature and modeled daily flow as predictors. As expected, projected air temperature increased the most in northernmost Finland. Predicted taxonomic richness also increased the most in northern Finland, congruent with the predicted northwards shift of many species' distributions. Compositional changes were predicted to be high even without changes in richness, suggesting that species replacement may be the main mechanism causing climate-induced changes in macroinvertebrate assemblages. Northern streams were predicted to lose much of the seasonality of their flow regimes, causing potentially marked changes in stream benthic assemblages. Sites with the highest loss of seasonality were predicted to support future assemblages that deviate most in compositional similarity from the present-day assemblages. Macroinvertebrate assemblages were also predicted to change more in headwaters than in larger streams, as headwaters were particularly sensitive to changes in flow patterns. Our results emphasize the importance of focusing protection and mitigation on headwater streams with high-flow seasonality because of their vulnerability to climate change. © 2018 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Cheng, Chad Shouquan; Li, Qian; Li, Guilong
2010-05-01
The synoptic weather typing approach has become popular in evaluating the impacts of climate change on a variety of environmental problems. One of the reasons is its ability to categorize a complex set of meteorological variables as a coherent index, which can facilitate analyses of local climate change impacts. The weather typing method has been applied in Environment Canada to analyze climatic change impacts on various meteorological/hydrological risks, such as freezing rain, heavy rainfall, high-/low-flow events, air pollution, and human health. These studies comprise of three major parts: (1) historical simulation modeling to verify the hazardous events, (2) statistical downscaling to provide station-scale future climate information, and (3) estimates of changes in frequency and magnitude of future hazardous meteorological/hydrological events in this century. To achieve these goals, in addition to synoptic weather typing, the modeling conceptualizations in meteorology and hydrology and various linear/nonlinear regression techniques were applied. Furthermore, a formal model result verification process has been built into the entire modeling exercise. The results of the verification, based on historical observations of the outcome variables predicted by the models, showed very good agreement. This paper will briefly summarize these research projects, focusing on the modeling exercise and results.
NASA Astrophysics Data System (ADS)
Kusangaya, Samuel; Warburton Toucher, Michele L.; van Garderen, Emma Archer
2018-02-01
Downscaled General Circulation Models (GCMs) output are used to forecast climate change and provide information used as input for hydrological modelling. Given that our understanding of climate change points towards an increasing frequency, timing and intensity of extreme hydrological events, there is therefore the need to assess the ability of downscaled GCMs to capture these extreme hydrological events. Extreme hydrological events play a significant role in regulating the structure and function of rivers and associated ecosystems. In this study, the Indicators of Hydrologic Alteration (IHA) method was adapted to assess the ability of simulated streamflow (using downscaled GCMs (dGCMs)) in capturing extreme river dynamics (high and low flows), as compared to streamflow simulated using historical climate data from 1960 to 2000. The ACRU hydrological model was used for simulating streamflow for the 13 water management units of the uMngeni Catchment, South Africa. Statistically downscaled climate models obtained from the Climate System Analysis Group at the University of Cape Town were used as input for the ACRU Model. Results indicated that, high flows and extreme high flows (one in ten year high flows/large flood events) were poorly represented both in terms of timing, frequency and magnitude. Simulated streamflow using dGCMs data also captures more low flows and extreme low flows (one in ten year lowest flows) than that captured in streamflow simulated using historical climate data. The overall conclusion was that although dGCMs output can reasonably be used to simulate overall streamflow, it performs poorly when simulating extreme high and low flows. Streamflow simulation from dGCMs must thus be used with caution in hydrological applications, particularly for design hydrology, as extreme high and low flows are still poorly represented. This, arguably calls for the further improvement of downscaling techniques in order to generate climate data more relevant and useful for hydrological applications such as in design hydrology. Nevertheless, the availability of downscaled climatic output provide the potential of exploring climate model uncertainties in different hydro climatic regions at local scales where forcing data is often less accessible but more accurate at finer spatial scales and with adequate spatial detail.
CADDIS Volume 2. Sources, Stressors and Responses: Urbanization - Hydrology
hydrologic (or flow) changes associated with urbanization, baseflow changes associated with urbanization, water withdrawals and interbasin transfers associated with urbanization, biotic responses to hydrologic (or flow) changes associated with urbanization
Ryo, Masahiro; Iwasaki, Yuichi; Yoshimura, Chihiro; Saavedra V., Oliver C.
2015-01-01
Alteration of the spatial variability of natural flow regimes has been less studied than that of the temporal variability, despite its ecological importance for river ecosystems. Here, we aimed to quantify the spatial patterns of flow regime alterations along a river network in the Sagami River, Japan, by estimating river discharge under natural and altered flow conditions. We used a distributed hydrological model, which simulates hydrological processes spatiotemporally, to estimate 20-year daily river discharge along the river network. Then, 33 hydrologic indices (i.e., Indicators of Hydrologic Alteration) were calculated from the simulated discharge to estimate the spatial patterns of their alterations. Some hydrologic indices were relatively well estimated such as the magnitude and timing of maximum flows, monthly median flows, and the frequency of low and high flow pulses. The accuracy was evaluated with correlation analysis (r > 0.4) and the Kolmogorov–Smirnov test (α = 0.05) by comparing these indices calculated from both observed and simulated discharge. The spatial patterns of the flow regime alterations varied depending on the hydrologic indices. For example, both the median flow in August and the frequency of high flow pulses were reduced by the maximum of approximately 70%, but these strongest alterations were detected at different locations (i.e., on the mainstream and the tributary, respectively). These results are likely caused by different operational purposes of multiple water control facilities. The results imply that the evaluation only at discharge gauges is insufficient to capture the alteration of the flow regime. Our findings clearly emphasize the importance of evaluating the spatial pattern of flow regime alteration on a river network where its discharge is affected by multiple water control facilities. PMID:26207997
NASA Astrophysics Data System (ADS)
Huziy, O.; Sushama, L.; Khaliq, M.; Lehner, B.; Laprise, R.; Roy, R.
2011-12-01
According to the Intergovernmental Panel on Climate Change (IPCC, 2007), an intensification of the global hydrological cycle and increase in precipitation for some regions around the world, including the northern mid- to high-latitudes, is expected in future climate. This will have an impact on mean and extreme flow characteristics, which need to be assessed for better development of adaptation strategies. Analysis of the mean and extreme streamflow characteristics for Quebec (North-eastern Canada) basins in current climate and their projected changes in future climate are assessed using a 10 member ensemble of current (1970 - 1999) and future (2041 - 2070) Canadian RCM (CRCM4) simulations. Validation of streamflow characteristics, performed by comparing modeled values with those observed, available from the Centre d'expertise hydrique du Quebec (CEHQ) shows that the model captures reasonably well the high flows. Results suggest increase in mean and 10 year return levels of 1 day high flows, which appear significant for most of the northern basins.
Gallart, F; Llorens, P; Latron, J; Cid, N; Rieradevall, M; Prat, N
2016-09-15
Hydrological data for assessing the regime of temporary rivers are often non-existent or scarce. The scarcity of flow data makes impossible to characterize the hydrological regime of temporary streams and, in consequence, to select the correct periods and methods to determine their ecological status. This is why the TREHS software is being developed, in the framework of the LIFE Trivers project. It will help managers to implement adequately the European Water Framework Directive in this kind of water body. TREHS, using the methodology described in Gallart et al. (2012), defines six transient 'aquatic states', based on hydrological conditions representing different mesohabitats, for a given reach at a particular moment. Because of its qualitative nature, this approach allows using alternative methodologies to assess the regime of temporary rivers when there are no observed flow data. These methods, based on interviews and high-resolution aerial photographs, were tested for estimating the aquatic regime of temporary rivers. All the gauging stations (13) belonging to the Catalan Internal Catchments (NE Spain) with recurrent zero-flow periods were selected to validate this methodology. On the one hand, non-structured interviews were conducted with inhabitants of villages near the gauging stations. On the other hand, the historical series of available orthophotographs were examined. Flow records measured at the gauging stations were used to validate the alternative methods. Flow permanence in the reaches was estimated reasonably by the interviews and adequately by aerial photographs, when compared with the values estimated using daily flows. The degree of seasonality was assessed only roughly by the interviews. The recurrence of disconnected pools was not detected by flow records but was estimated with some divergences by the two methods. The combination of the two alternative methods allows substituting or complementing flow records, to be updated in the future through monitoring by professionals and citizens. Copyright © 2016 Elsevier B.V. All rights reserved.
Sensitivity analysis of a ground-water-flow model
Torak, Lynn J.; ,
1991-01-01
A sensitivity analysis was performed on 18 hydrological factors affecting steady-state groundwater flow in the Upper Floridan aquifer near Albany, southwestern Georgia. Computations were based on a calibrated, two-dimensional, finite-element digital model of the stream-aquifer system and the corresponding data inputs. Flow-system sensitivity was analyzed by computing water-level residuals obtained from simulations involving individual changes to each hydrological factor. Hydrological factors to which computed water levels were most sensitive were those that produced the largest change in the sum-of-squares of residuals for the smallest change in factor value. Plots of the sum-of-squares of residuals against multiplier or additive values that effect change in the hydrological factors are used to evaluate the influence of each factor on the simulated flow system. The shapes of these 'sensitivity curves' indicate the importance of each hydrological factor to the flow system. Because the sensitivity analysis can be performed during the preliminary phase of a water-resource investigation, it can be used to identify the types of hydrological data required to accurately characterize the flow system prior to collecting additional data or making management decisions.
NASA Astrophysics Data System (ADS)
Teutschbein, Claudia; Grabs, Thomas; Karlsen, Reinert H.; Laudon, Hjalmar; Bishop, Kevin
2016-04-01
It has long been recognized that streamflow-generating processes are not only dependent on climatic conditions, but also affected by physical catchment properties such as topography, geology, soils and land cover. We hypothesize that these landscape characteristics do not only lead to highly variable hydrologic behavior of rather similar catchments under the same stationary climate conditions (Karlsen et al., 2014), but that they also play a fundamental role for the sensitivity of a catchment to a changing climate (Teutschbein et al., 2015). A multi-model ensemble based on 15 regional climate models was combined with a multi-catchment approach to explore the hydrologic sensitivity of 14 partially nested and rather similar catchments in Northern Sweden to changing climate conditions and the importance of small-scale spatial variability. Current (1981-2010) and future (2061-2090) streamflow was simulated with the HBV model. As expected, projected increases in temperature and precipitation resulted in increased total available streamflow, with lower spring and summer flows, but substantially higher winter streamflow. Furthermore, significant changes in flow durations with lower chances of both high and low flows can be expected in boreal Sweden in the future. This overall trend in projected streamflow pattern changes was comparable among the analyzed catchments while the magnitude of change differed considerably. This suggests that catchments belonging to the same region can show distinctly different degrees of hydrological responses to the same external climate change signal. We reason that differences in spatially distributed physical catchment properties at smaller scales are not only of great importance for current streamflow behavior, but also play a major role as first-order control for the sensitivity of catchments to changing climate conditions. References Karlsen, R.H., T. Grabs, K. Bishop, H. Laudon, and J. Seibert (2014). Landscape controls on spatiotemporal variability of specific discharge in a boreal region, Abstract #H52B-07 presented at 2014 Fall Meeting, AGU, San Francisco, Calif., 15-19 Dec. [Available at http://adsabs.harvard.edu/abs/2014AGUFM.H52B..07K, last accessed 11 Jan 2016]. Teutschbein, C., T. Grabs, R.H. Karlsen, H. Laudon and K. Bishop (2015). Hydrological Response to Changing Climate Conditions: Spatial Streamflow Variability in the Boreal Region, Water Resour Res, doi: 10.1002/2015WR017337. [Available at http://onlinelibrary.wiley.com/doi/10.1002/2015WR017337/abstract, last accessed 11 Jan 2016].
Water quality under increased biofuel production and future climate change and uncertainty
NASA Astrophysics Data System (ADS)
Demissie, Y. K.; Yan, E.
2015-12-01
Over the past decade, biofuel has emerged as an important renewable energy source to supplement gasoline and reduce the associated greenhouse gas emission. Many countries, for instant, have adopted biofuel production goals to blend 10% or more of gasoline with biofuels within 10 to 20 years. However, meeting these goals requires sustainable production of biofuel feedstock which can be challenging under future change in climate and extreme weather conditions, as well as the likely impacts of biofuel feedstock production on water quality and availability. To understand this interrelationship and the combined effects of increased biofuel production and climate change on regional and local water resources, we have performed watershed hydrology and water quality analyses for the Ohio River Basin. The basin is one of the major biofuel feedstock producing region in the United States, which also currently contributes about half of the flow and one third of phosphorus and nitrogen loadings to the Mississippi River that eventually flows to the Gulf of Mexico. The analyses integrate future scenarios and climate change and biofuel development through various mixes of landuse and agricultural management changes and examine their potential impacts on regional and local hydrology, water quality, soil erosion, and agriculture productivity. The results of the study are expected to provide much needed insight about the sustainability of large-scale biofuel feedstock production under the future climate change and uncertainty, and helps to further optimize the feedstock production taking into consideration the water-use efficiency.
NASA Astrophysics Data System (ADS)
Pasten Zapata, Ernesto; Moggridge, Helen; Jones, Julie; Widmann, Martin
2017-04-01
Run-of-the-River (ROR) hydropower schemes are expected to be importantly affected by climate change as they rely in the availability of river flow to generate energy. As temperature and precipitation are expected to vary in the future, the hydrological cycle will also undergo changes. Therefore, climate models based on complex physical atmospheric interactions have been developed to simulate future climate scenarios considering the atmosphere's greenhouse gas concentrations. These scenarios are classified according to the Representative Concentration Pathways (RCP) that are generated according to the concentration of greenhouse gases. This study evaluates possible scenarios for selected ROR hydropower schemes within the UK, considering three different RCPs: 2.6, 4.5 and 8.5 W/m2 for 2100 relative to pre-industrial values. The study sites cover different climate, land cover, topographic and hydropower scheme characteristics representative of the UK's heterogeneity. Precipitation and temperature outputs from state-of-the-art Regional Climate Models (RCMs) from the Euro-CORDEX project are used as input for a HEC-HMS hydrological model to simulate the future river flow available. Both uncorrected and bias-corrected RCM simulations are analyzed. The results of this project provide an insight of the possible effects of climate change towards the generation of power from the ROR hydropower schemes according to the different RCP scenarios and contrasts the results obtained from uncorrected and bias-corrected RCMs. This analysis can aid on the adaptation to climate change as well as the planning of future ROR schemes in the region.
Modelling hydrological responses of Nerbioi River Basin to Climate Change
NASA Astrophysics Data System (ADS)
Mendizabal, Maddalen; Moncho, Roberto; Chust, Guillem; Torp, Peter
2010-05-01
Future climate change will affect aquatic systems on various pathways. Regarding the hydrological cycle, which is a very important pathway, changes in hydrometeorological variables (air temperature, precipitation, evapotranspiration) in first order impact discharges. The fourth report assessment of the Intergovernmental Panel for Climate Change indicates there is evidence that the recent warming of the climate system would result in more frequent extreme precipitation events, increased winter flood likelihoods, increased and widespread melting of snow and ice, longer and more widespread droughts, and rising sea level. Available research and climate model outputs indicate a range of hydrological impacts with likely to very likely probabilities (67 to 99%). For example, it is likely that up to 20% of the world population will live in areas where river flood potential could increase by the 2080s. In Spain, within the Atlantic basin, the hydrological variability will increase in the future due to the intensification of the positive phase of the North Atlantic Oscillation (NAO) index. This might cause flood frequency decreases, but its magnitude does not decrease. The generation of flood, its duration and magnitude are closely linked to changes in winter precipitation. The climatic conditions and relief of the Iberian Peninsula favour the generation of floods. In Spain, floods had historically strong socio-economic impacts, with more than 1525 victims in the past five decades. This upward trend of hydrological variability is expected to remain in the coming decades (medium uncertainty) when the intensification of the positive phase of the NAO index (MMA, 2006) is considered. In order to adapt or minimize climate change impacts in water resources, it is necessary to use climate projections as well as hydrological modelling tools. The main objective of this paper is to evaluate and assess the hydrological response to climate changes in flow conditions in Nerbioi river basin (Basque Country, North of Spain). So that adaptation strategies can be defined. In order to fulfil this objective four subobjectives are defined: (1)selection of the future climate projections for the case study area from a wide spectrum of possibilities; (2) model the hydrological processes of the basin with a physically distributed complex hydrological model; (3) validation of the hydrological model with observation data; and (4) runoff simulation introducing regional climate model data selected. The analysis of climate models suggests that extreme precipitation in the Basque Country increased by about 10% during the twenty-first century. This increase of extreme precipitations raised discharge and water level in Nerbioi river basin. That is why in the 21st century it is expected that the flood-prone area will expand for precipitation with a return period of 50 years. In this context, it is necessary to define and evaluate different adaptation options which are already in practice or conceivable according to the current scientific knowledge. As well as evaluate the adaptation measures in terms of their ability to lower the vulnerability of water resources to climate change. For example, land use change could be a useful tool to adapt our basin systems. The land use plays an important role on the water balance of a river by varying the proportion of precipitation that runs off and the fraction that is lost by evapotranspiration. Therefore, both climate change and adaptation strategies will have an impact on the hydrodynamic conditions of rivers; particularly the changes in flow conditions will have a severe ecological, economical and social impact. As future work, adaptation measures will introduce in the future runoff simulation in order to evaluate the effectiveness and as a decision-making tool to operational organisations.
Adapting regional watershed management to climate change in Bavaria and Québec
NASA Astrophysics Data System (ADS)
Ludwig, Ralf; Muerth, Markus; Schmid, Josef; Jobst, Andreas; Caya, Daniel; Gauvin St-Denis, Blaise; Chaumont, Diane; Velazquez, Juan-Alberto; Turcotte, Richard; Ricard, Simon
2013-04-01
The international research project QBic3 (Quebec-Bavarian Collaboration on Climate Change) aims at investigating the potential impacts of climate change on the hydrology of regional scale catchments in Southern Quebec (Canada) and Bavaria (Germany). For this purpose, a hydro-meteorological modeling chain has been established, applying climatic forcing from both dynamical and statistical climate model data to an ensemble of hydrological models of varying complexity. The selection of input data, process descriptions and scenarios allows for the inter-comparison of the uncertainty ranges on selected runoff indicators; a methodology to display the relative importance of each source of uncertainty is developed and results for past runoff (1971-2000) and potential future changes (2041-2070) are obtained. Finally, the impact of hydrological changes on the operational management of dams, reservoirs and transfer systems is investigated and shown for the Bavarian case studies, namely the potential change in i) hydro-power production for the Upper Isar watershed and ii) low flow augmentation and water transfer rates at the Donau-Main transfer system in Central Franconia. Two overall findings will be presented and discussed in detail: a) the climate change response of selected hydrological indicators, especially those related to low flows, is strongly affected by the choice of the hydrological model. It can be shown that an assessment of the changes in the hydrological cycle is best represented by a complex physically based hydrological model, computationally less demanding models (usually simple, lumped and conceptual) can give a significant level of trust for selected indicators. b) the major differences in the projected climate forcing stemming from the ensemble of dynamic climate models (GCM/RCM) versus the statistical-stochastical WETTREG2010 approach. While the dynamic ensemble reveals a moderate modification of the hydrological processes in the investigated catchments, the WETTREG2010 driven runs show a severe detraction for all water operations, mainly related to a strong decline in projected precipitation in all seasons (except winter).
The importance of hydrological uncertainty assessment methods in climate change impact studies
NASA Astrophysics Data System (ADS)
Honti, M.; Scheidegger, A.; Stamm, C.
2014-08-01
Climate change impact assessments have become more and more popular in hydrology since the middle 1980s with a recent boost after the publication of the IPCC AR4 report. From hundreds of impact studies a quasi-standard methodology has emerged, to a large extent shaped by the growing public demand for predicting how water resources management or flood protection should change in the coming decades. The "standard" workflow relies on a model cascade from global circulation model (GCM) predictions for selected IPCC scenarios to future catchment hydrology. Uncertainty is present at each level and propagates through the model cascade. There is an emerging consensus between many studies on the relative importance of the different uncertainty sources. The prevailing perception is that GCM uncertainty dominates hydrological impact studies. Our hypothesis was that the relative importance of climatic and hydrologic uncertainty is (among other factors) heavily influenced by the uncertainty assessment method. To test this we carried out a climate change impact assessment and estimated the relative importance of the uncertainty sources. The study was performed on two small catchments in the Swiss Plateau with a lumped conceptual rainfall runoff model. In the climatic part we applied the standard ensemble approach to quantify uncertainty but in hydrology we used formal Bayesian uncertainty assessment with two different likelihood functions. One was a time series error model that was able to deal with the complicated statistical properties of hydrological model residuals. The second was an approximate likelihood function for the flow quantiles. The results showed that the expected climatic impact on flow quantiles was small compared to prediction uncertainty. The choice of uncertainty assessment method actually determined what sources of uncertainty could be identified at all. This demonstrated that one could arrive at rather different conclusions about the causes behind predictive uncertainty for the same hydrological model and calibration data when considering different objective functions for calibration.
Multi-model approach to assess the impact of climate change on runoff
NASA Astrophysics Data System (ADS)
Dams, J.; Nossent, J.; Senbeta, T. B.; Willems, P.; Batelaan, O.
2015-10-01
The assessment of climate change impacts on hydrology is subject to uncertainties related to the climate change scenarios, stochastic uncertainties of the hydrological model and structural uncertainties of the hydrological model. This paper focuses on the contribution of structural uncertainty of hydrological models to the overall uncertainty of the climate change impact assessment. To quantify the structural uncertainty of hydrological models, four physically based hydrological models (SWAT, PRMS and a semi- and fully distributed version of the WetSpa model) are set up for a catchment in Belgium. Each model is calibrated using four different objective functions. Three climate change scenarios with a high, mean and low hydrological impact are statistically perturbed from a large ensemble of climate change scenarios and are used to force the hydrological models. This methodology allows assessing and comparing the uncertainty introduced by the climate change scenarios with the uncertainty introduced by the hydrological model structure. Results show that the hydrological model structure introduces a large uncertainty on both the average monthly discharge and the extreme peak and low flow predictions under the climate change scenarios. For the low impact climate change scenario, the uncertainty range of the mean monthly runoff is comparable to the range of these runoff values in the reference period. However, for the mean and high impact scenarios, this range is significantly larger. The uncertainty introduced by the climate change scenarios is larger than the uncertainty due to the hydrological model structure for the low and mean hydrological impact scenarios, but the reverse is true for the high impact climate change scenario. The mean and high impact scenarios project increasing peak discharges, while the low impact scenario projects increasing peak discharges only for peak events with return periods larger than 1.6 years. All models suggest for all scenarios a decrease of the lowest flows, except for the SWAT model with the mean hydrological impact climate change scenario. The results of this study indicate that besides the uncertainty introduced by the climate change scenarios also the hydrological model structure uncertainty should be taken into account in the assessment of climate change impacts on hydrology. To make it more straightforward and transparent to include model structural uncertainty in hydrological impact studies, there is a need for hydrological modelling tools that allow flexible structures and methods to validate model structures in their ability to assess impacts under unobserved future climatic conditions.
NASA Astrophysics Data System (ADS)
Beevers, Lindsay; Collet, Lila
2017-04-01
Over the past decade there have been significant challenges to water management posed by both floods and droughts. In the UK, since 2000 flooding has caused over £5Bn worth of damage, and direct costs from the recent drought (2011-12) are estimated to be between £70-165M, arising from impacts on public and industrial water supply. Projections of future climate change suggest an increase in temperature and precipitation trends which may exacerbate the frequency and severity of such hazards, but there is significant uncertainty associated with these projections. It thus becomes urgent to assess the possible impact of these changes on extreme flows and evaluate the uncertainties related to these projections, particularly changes in the seasonality of such hazards. This paper aims to assess the changes in seasonality of peak and low flows across Great Britain as a result of climate change. It is based on the Future Flow database; an 11-member ensemble of transient river flow projections from January 1951 to December 2098. We analyse the daily river flow over the baseline (1961-1990) and the 2080s (2069-2098) for 281 gauging stations. For each ensemble member, annual maxima (AMAX) and minima (AMIN) are extracted for both time periods for each gauging station. The month of the year the AMAX and AMIN occur respectively are recorded for each of the 30 years in the past and the future time periods. The uncertainty of the AMAX and AMIN occurrence temporally (monthly) is assessed across the 11 ensemble members, as well as the changes to this temporal signal between the baseline and the 2080s. Ultimately, this work gives a national picture (spatially) of high and low flows occurrence temporally and allows the assessment of possible changes in hydrological dynamics as a result of climate change in a statistical framework. Results will quantify the uncertainty related to the Climate Model parameters which are cascaded into the modelling chain. This study highlights the issues facing hydrological cycle management, due to changing spatial and temporal trends in order to anticipate and adapt to hydro-hazard changes in an uncertain context.
Multi-metric calibration of hydrological model to capture overall flow regimes
NASA Astrophysics Data System (ADS)
Zhang, Yongyong; Shao, Quanxi; Zhang, Shifeng; Zhai, Xiaoyan; She, Dunxian
2016-08-01
Flow regimes (e.g., magnitude, frequency, variation, duration, timing and rating of change) play a critical role in water supply and flood control, environmental processes, as well as biodiversity and life history patterns in the aquatic ecosystem. The traditional flow magnitude-oriented calibration of hydrological model was usually inadequate to well capture all the characteristics of observed flow regimes. In this study, we simulated multiple flow regime metrics simultaneously by coupling a distributed hydrological model with an equally weighted multi-objective optimization algorithm. Two headwater watersheds in the arid Hexi Corridor were selected for the case study. Sixteen metrics were selected as optimization objectives, which could represent the major characteristics of flow regimes. Model performance was compared with that of the single objective calibration. Results showed that most metrics were better simulated by the multi-objective approach than those of the single objective calibration, especially the low and high flow magnitudes, frequency and variation, duration, maximum flow timing and rating. However, the model performance of middle flow magnitude was not significantly improved because this metric was usually well captured by single objective calibration. The timing of minimum flow was poorly predicted by both the multi-metric and single calibrations due to the uncertainties in model structure and input data. The sensitive parameter values of the hydrological model changed remarkably and the simulated hydrological processes by the multi-metric calibration became more reliable, because more flow characteristics were considered. The study is expected to provide more detailed flow information by hydrological simulation for the integrated water resources management, and to improve the simulation performances of overall flow regimes.
Davids, Jeffrey C; van de Giesen, Nick; Rutten, Martine
2017-07-01
Hydrologic data has traditionally been collected with permanent installations of sophisticated and accurate but expensive monitoring equipment at limited numbers of sites. Consequently, observation frequency and costs are high, but spatial coverage of the data is limited. Citizen Hydrology can possibly overcome these challenges by leveraging easily scaled mobile technology and local residents to collect hydrologic data at many sites. However, understanding of how decreased observational frequency impacts the accuracy of key streamflow statistics such as minimum flow, maximum flow, and runoff is limited. To evaluate this impact, we randomly selected 50 active United States Geological Survey streamflow gauges in California. We used 7 years of historical 15-min flow data from 2008 to 2014 to develop minimum flow, maximum flow, and runoff values for each gauge. To mimic lower frequency Citizen Hydrology observations, we developed a bootstrap randomized subsampling with replacement procedure. We calculated the same statistics, and their respective distributions, from 50 subsample iterations with four different subsampling frequencies ranging from daily to monthly. Minimum flows were estimated within 10% for half of the subsample iterations at 39 (daily) and 23 (monthly) of the 50 sites. However, maximum flows were estimated within 10% at only 7 (daily) and 0 (monthly) sites. Runoff volumes were estimated within 10% for half of the iterations at 44 (daily) and 12 (monthly) sites. Watershed flashiness most strongly impacted accuracy of minimum flow, maximum flow, and runoff estimates from subsampled data. Depending on the questions being asked, lower frequency Citizen Hydrology observations can provide useful hydrologic information.
NASA Astrophysics Data System (ADS)
Arias, M. E.; Farinosi, F.; Lee, E.; Livino, A.; Moorcroft, P. R.
2016-12-01
Brazil is the 2nd largest hydropower producer in the world, and this energy source will continue to be a priority in the country for the foreseeable decades. Yet, climate change is expected to alter the country's hydrological regime, in particular in the Amazon where most new hydropower development is occurring. In order to better assess the potential of hydropower projects in decades to come, it is important to evaluate how future hydrological regimes will affect their performance and suitability. This study quantifies the impacts of climate change and land use conversion on hydropower generation, and identifies mechanisms that could help energy planners to account for future changes. Using the largest network of dams in Brazil's national portfolio within a single watershed, the Tapaj's River, this study connects global and regional future environmental projections to daily river flows and operations of 37 dams with an overall potential capacity of 29.4 GW. We found that climate change could decrease hydropower potential by 477-665 MW (-6 to -8% from historical conditions) during the dry season, a critical loss since dams are expected to operate at only one third of capacity during this perioddue to the limited reservoir volume of most projects in the Amazon lowlands. Furthermore, deforestation is expected to increase the inter-annual variability in hydropower potential from 2,798 for baseline conditions to 3,764-3,899 (+967-1102) MW under future scenarios for the 2040s. Consideration of future hydrological conditions on individual dams showed that the magnitude and uncertainty of losses could be greater than 30 MW -equivalent to the total potential of some dams in the inventory- in 11 of the projects studied. Future hydrological conditions could also delay the period when maximum daily generation occurs by 22-29 days, which could have important implications to energy planning in Brazil because these run-of-river dams would no longer be able to meet the country's seasonal peak demand. This information on future changes to individual dams' performance could feed directly into the project selection process in order to adapt designs and operations to ensure the greatest benefits and least impacts from hydropower in the long term.
Swain, Eric D.; Gomez-Fragoso, Julieta; Torres-Gonzalez, Sigfredo
2017-01-01
Lago Loíza reservoir in east-central Puerto Rico is one of the primary sources of public water supply for the San Juan metropolitan area. To evaluate and predict the Lago Loíza water budget, an artificial neural network (ANN) technique is trained to predict river inflows. A method is developed to combine ANN-predicted daily flows with ANN-predicted 30-day cumulative flows to improve flow estimates. The ANN application trains well for representing 2007–2012 and the drier 1994–1997 periods. Rainfall data downscaled from global circulation model (GCM) simulations are used to predict 2050–2055 conditions. Evapotranspiration is estimated with the Hargreaves equation using minimum and maximum air temperatures from the downscaled GCM data. These simulated 2050–2055 river flows are input to a water budget formulation for the Lago Loíza reservoir for comparison with 2007–2012. The ANN scenarios require far less computational effort than a numerical model application, yet produce results with sufficient accuracy to evaluate and compare hydrologic scenarios. This hydrologic tool will be useful for future evaluations of the Lago Loíza reservoir and water supply to the San Juan metropolitan area.
NASA Astrophysics Data System (ADS)
Kayastha, R.; Kayastha, R. B.
2017-12-01
Unavailability of hydro meteorological data in the Himalayan regions is challenging on understanding the flow regimes. Temperature index model is simple yet the powerful glacio-hydrological model to simulate the discharge in the glacierized basin. Modified Positive Degree Day (MPDD) Model Version 2.0 is a grid-ded based semi distributed model with baseflow module is a robust melt modelling tools to estimate the discharge. MPDD model uses temperature and precipitation as a forcing datasets to simulate the discharge and also to obtain the snowmelt, icemelt, rain and baseflow contribution on total discharge. In this study two glacierized, Marsyangdi and Langtang catchment were investigated for the future hydrological regimes. Marsyangdi encompasses an area of 4026.19 sq. km with 20% glaciated area, whereas Langtang catchment with area of 354.64 sq. km with 36% glaciated area is studied to examine for the future climatic scenarios. The model simulates discharge well for the observed period; (1992-1998) in Marsyangdi and from (2007-2013) in Langtang catchment. The Nash-Sutcliffe Efficiency (NSE) for the both catchment were above 0.75 with the volume difference less than - 8 %. The snow and ice melts contribution in Marsyangdi were 4.7% and 10.2% whereas in Langtang the contribution is 15.3% and 23.4%, respectively. Rain contribution ( 40%) is higher than the baseflow contribution in total discharge in both basins. The future river discharge is also predicted using the future climate data from the regional climate models (RCMs) of CORDEX South Asia experiments for the medium stabilization scenario RCP4.5 and very high radiative forcing scenario RCP8.5 after bias correction. The projected future discharge of both catchment shows slightly increase in both scenarios with increase of snow and ice melt contribution on discharge. The result generated from the model can be utilized to understand the future hydrological regimes of the glacierized catchment also the impact of climate change on the snow and ice contribution on discharge. The future discharge projection is also helpful for the water resource management and also for the strategic planners.
Hydrologic Drought Decision Support System (HyDroDSS)
Granato, Gregory E.
2014-01-01
The hydrologic drought decision support system (HyDroDSS) was developed by the U.S. Geological Survey (USGS) in cooperation with the Rhode Island Water Resources Board (RIWRB) for use in the analysis of hydrologic variables that may indicate the risk for streamflows to be below user-defined flow targets at a designated site of interest, which is defined herein as data-collection site on a stream that may be adversely affected by pumping. Hydrologic drought is defined for this study as a period of lower than normal streamflows caused by precipitation deficits and (or) water withdrawals. The HyDroDSS is designed to provide water managers with risk-based information for balancing water-supply needs and aquatic-habitat protection goals to mitigate potential effects of hydrologic drought. This report describes the theory and methods for retrospective streamflow-depletion analysis, rank correlation analysis, and drought-projection analysis. All three methods are designed to inform decisions made by drought steering committees and decisionmakers on the basis of quantitative risk assessment. All three methods use estimates of unaltered streamflow, which is the measured or modeled flow without major withdrawals or discharges, to approximate a natural low-flow regime. Retrospective streamflow-depletion analysis can be used by water-resource managers to evaluate relations between withdrawal plans and the potential effects of withdrawal plans on streams at one or more sites of interest in an area. Retrospective streamflow-depletion analysis indicates the historical risk of being below user-defined flow targets if different pumping plans were implemented for the period of record. Retrospective streamflow-depletion analysis also indicates the risk for creating hydrologic drought conditions caused by use of a pumping plan. Retrospective streamflow-depletion analysis is done by calculating the net streamflow depletions from withdrawals and discharges and applying these depletions to a simulated record of unaltered streamflow. Rank correlation analysis in the HyDroDSS indicates the persistence of hydrologic measurements from month to month for the prediction of developing hydrologic drought conditions and quantitatively indicates which hydrologic variables may be used to indicate the onset of hydrologic drought conditions. Rank correlation analysis also indicates the potential use of each variable for estimating the monthly minimum unaltered flow at a site of interest for use in the drought-projection analysis. Rank correlation analysis in the HyDroDSS is done by calculating Spearman’s rho for paired samples and the 95-percent confidence limits of this rho value. Rank correlation analysis can be done by using precipitation, groundwater levels, measured streamflows, and estimated unaltered streamflows. Serial correlation analysis, which indicates relations between current and future values, can be done for a single site. Cross correlation analysis, which indicates relations among current values at one site and current and future values at a second site, also can be done. Drought-projection analysis in the HyDroDSS indicates the risk for being in a hydrologic drought condition during the current month and the five following months with and without pumping. Drought-projection analysis also indicates the potential effectiveness of water-conservation methods for mitigating the effect of withdrawals in the coming months on the basis of the amount of depletion caused by different pumping plans and on the risk of unaltered flows being below streamflow targets. Drought-projection analysis in the HyDroDSS is done with Monte Carlo methods by using the position analysis method. In this method the initial value of estimated unaltered streamflows is calculated by correlation to a measured hydrologic variable (monthly precipitation, groundwater levels, or streamflows from an index station identified with the rank correlation analysis). Then a pseudorandom number generator is used to create 251 six-month-long flow traces by using a bootstrap method. Serial correlation of the estimated unaltered monthly minimum streamflows determined from the rank correlation analysis is preserved within each flow trace. The sample of unaltered streamflows indicates the risk of being below flow targets in the coming months under simulated natural conditions (without historic withdrawals). The streamflow-depletion algorithms are then used to estimate risks of flow being below targets if selected pumping plans are used. This report also describes the implementation of the HyDroDSS. The HyDroDSS was developed as a Microsoft Access® database application to facilitate storage, handling, and use of hydrologic datasets with a simple graphical user interface. The program is implemented in the database by using the Visual Basic for Applications® (VBA) programming language. Program source code for the analytical techniques is provided in the HyDroDSS and in electronic text files accompanying this report. Program source code for the graphical user interface and for data-handling code, which is specific to Microsoft Access® and the HyDroDSS, is provided in the database. An installation package with a run-time version of the software is available with this report for potential users who do not have a compatible copy of Microsoft Access®. Administrative rights are needed to install this version of the HyDroDSS. A case study, to demonstrate the use of HyDroDSS and interpretation of results for a site of interest, is detailed for the USGS streamgage on the Hunt River (station 01117000) near East Greenwich in central Rhode Island. The Hunt River streamgage was used because it has a long record of streamflow and is in a well-studied basin with a substantial amount of hydrologic and water-use data including groundwater pumping for municipal water supply.
NASA Astrophysics Data System (ADS)
Schaefli, B.; Maraun, D.; Holschneider, M.
2007-12-01
Extreme hydrological events are often triggered by exceptional co-variations of the relevant hydrometeorological processes and in particular by exceptional co-oscillations at various temporal scales. Wavelet and cross wavelet spectral analysis offers promising time-scale resolved analysis methods to detect and analyze such exceptional co-oscillations. This paper presents the state-of-the-art methods of wavelet spectral analysis, discusses related subtleties, potential pitfalls and recently developed solutions to overcome them and shows how wavelet spectral analysis, if combined to a rigorous significance test, can lead to reliable new insights into hydrometeorological processes for real-world applications. The presented methods are applied to detect potentially flood triggering situations in a high Alpine catchment for which a recent re-estimation of design floods encountered significant problems simulating the observed high flows. For this case study, wavelet spectral analysis of precipitation, temperature and discharge offers a powerful tool to help detecting potentially flood producing meteorological situations and to distinguish between different types of floods with respect to the prevailing critical hydrometeorological conditions. This opens very new perspectives for the analysis of model performances focusing on the occurrence and non-occurrence of different types of high flow events. Based on the obtained results, the paper summarizes important recommendations for future applications of wavelet spectral analysis in hydrology.
Scaling Hydrologic Exchange Flows and Biogeochemical Reactions from Bedforms to Basins
NASA Astrophysics Data System (ADS)
Harvey, J. W.; Gomez-Velez, J. D.
2015-12-01
River water moves in and out of the main channel along pathways that are perpendicular to the channel's main axis that flow across or beneath the ground surface. These hydrologic exchange flows (HEFs) are difficult to measure, yet no less important than a river's downstream flow, or exchanges with the atmosphere and deeper groundwater (Harvey and Gooseff, 2015, WRR). There are very few comprehensive investigations of exchange fluxes to understand patterns with river size and relative importance of specific types of exchanges. We used the physically based model NEXSS to simulate multiple scales of hyporheic flow and their cumulative effects on solute reaction in large basins (on the order of Chesapeake Bay basin or larger). Our goal was to explain where and when particular types of hyporheic flow are important in enhancing key biogeochemical reactions, such as organic carbon respiration and denitrification. Results demonstrate that hyporheic flux (expressed per unit area of streambed) varies surprisingly little across the continuum of first-order streams to eighth-order rivers, and vertical exchange beneath small bedforms dominates in comparison with lateral flow beneath gravel bars and meanders. Also, the river's entire volume is exchanged many times with hyporheic flow within a basin, and the turnover length (after one entire river volume is exchanged) is strongly influenced by hydrogeomorphic differences between physiographic regions as well as by river size. The cumulative effects on biogeochemical reactions were assessed using a the reaction significance factor, RSF, which computes the cumulative potential for hyporheic reactions using a dimensionless index that balances reaction progress in a single hyporheic flow path against overall processing efficiency of river turnover through hyporheic flow paths of that type. Reaction significance appears to be strongly dominated by hydrologic factors rather than biogeochemical factors, and seems to be dominated by vertical exchange beneath small bedforms throughout river networks. Future implementations of NEXSS will expand the model to consider flow variation and to consider HEFs beyond hyporheic flow to include exchange with marginal surface waters such as riparian wetlands, floodplains, and ponded water.
A Framework to Assess the Cumulative Hydrological Impacts of Dams on flow Regime
NASA Astrophysics Data System (ADS)
Wang, Y.; Wang, D.
2016-12-01
In this study we proposed a framework to assess the cumulative impact of dams on hydrological regime, and the impacts of the Three Gorges Dam on flow regime in Yangtze River were investigated with the framework. We reconstructed the unregulated flow series to compare with the regulated flow series in the same period. Eco-surplus and eco-deficit and the Indicators of Hydrologic Alteration parameters were used to examine the hydrological regime change. Among IHA parameters, Wilcoxon signed-rank test and Principal Components Analysis identified the representative indicators of hydrological alterations. Eco-surplus and eco-deficit showed that the reservoir also changed the seasonal regime of the flows in autumn and winter. Annual extreme flows and October flows changes lead to negative ecological implications downstream from the Three Gorges Dam. Ecological operation for the Three Gorges Dam is necessary to mitigate the negative effects on the river ecosystem in the middle reach of Yangtze River. The framework proposed here could be a robust method to assess the cumulative impacts of reservoir operation.
NASA Astrophysics Data System (ADS)
Khatiwada, K. R.; Nepal, S.; Panthi, J., Sr.; Shrestha, M.
2015-12-01
Hydrological modelling plays an important role in understanding hydrological processes of a catchment. In the context of climate change, the understanding of hydrological characteristic of the catchment is very vital to understand how the climate change will affect the hydrological regime. This research facilitates in better understanding of the hydrological system dynamics of a himalayan mountainous catchment in western Nepal. The Karnali River, longest river flowing inside Nepal, is one of the three major basins of Nepal, having the area of 45269 sq. km. is unique. The basin has steep topography and high mountains to the northern side. The 40% of the basin is dominated by forest land while other land cover are: grass land, bare rocky land etc. About 2% of the areas in basin is covered by permanent glacier apart from that about 12% of basin has the snow and ice cover. There are 34 meteorological stations distributed across the basin. A process oriented distributed J2000 hydrologial model has been applied to understand the hydrological system dynamics. The model application provides distributed output of various hydrological components. The J2000 model applies Hydrological Response Unit (HRU) as a modelling entity. With 6861 HRU and 1010 reaches, the model was calibrated (1981-1999) and validated (2000-2004) at a daily scale using split-sample test. The model is able to capture the overall hydrological dynamics well. The rising limbs and recession limbs are simulated equally and with satisfactory ground water conditions. Based on the graphical and statistical evaluation of the model performance the model is able to simulate hydrological processes fairly well. Calibration shows that Nash Sutcliffe efficiency is 0.91, coefficient of determination is 0.92 Initial observation shows that during the pre-monsoon season(March to May) the glacial runoff is 25% of the total discharge while in the monsoon(June to September) season it is only 13%. The surface runoff contributed about 40%, 20% in subsurface while there is about 13% in the base flow. For better understanding and interpretation of the area there is still need of further coherent research and analysis for land use change and future climate change impact in the glaciered alpine catchment of Himalayan region.
NASA Astrophysics Data System (ADS)
Tauro, Flavia; Grimaldi, Salvatore
2017-04-01
Recently, several efforts have been devoted to the design and development of innovative, and often unintended, approaches for the acquisition of hydrological data. Among such pioneering techniques, this presentation reports recent advancements towards the establishment of a novel noninvasive and potentially continuous methodology based on the acquisition and analysis of images for spatially distributed observations of the kinematics of surface waters. The approach aims at enabling rapid, affordable, and accurate surface flow monitoring of natural streams. Flow monitoring is an integral part of hydrological sciences and is essential for disaster risk reduction and the comprehension of natural phenomena. However, water processes are inherently complex to observe: they are characterized by multiscale and highly heterogeneous phenomena which have traditionally demanded sophisticated and costly measurement techniques. Challenges in the implementation of such techniques have also resulted in lack of hydrological data during extreme events, in difficult-to-access environments, and at high temporal resolution. By combining low-cost yet high-resolution images and several velocimetry algorithms, noninvasive flow monitoring has been successfully conducted at highly heterogeneous scales, spanning from rills to highly turbulent streams, and medium-scale rivers, with minimal supervision by external users. Noninvasive image data acquisition has also afforded observations in high flow conditions. Latest novelties towards continuous flow monitoring at the catchment scale have entailed the development of a remote gauge-cam station on the Tiber River and integration of flow monitoring through image analysis with unmanned aerial systems (UASs) technology. The gauge-cam station and the UAS platform both afford noninvasive image acquisition and calibration through an innovative laser-based setup. Compared to traditional point-based instrumentation, images allow for generating surface flow velocity maps which fully describe the kinematics of the velocity field in natural streams. Also, continuous observations provide a close picture of the evolving dynamics of natural water bodies. Despite such promising achievements, dealing with images also involves coping with adverse illumination, massive data handling and storage, and data-intensive computing. Most importantly, establishing a novel observational technique requires estimation of the uncertainty associated to measurements and thorough comparison to existing benchmark approaches. In this presentation, we provide answers to some of these issues and perspectives for future research.
Martin, Jeffrey D.; Duwelius, Richard F.; Crawford, Charles G.
1987-01-01
The watersheds studied include mined and reclaimed; mined and unreclaimed; and unmined, agricultural land uses, and are each < 3 sq mi in area. Surface water, groundwater, and meteorologic data for the 1981 and 1982 water years were used to describe and compare hydrologic systems of the six watersheds and to identify hydrologic effects of mining and reclamation. Peak discharges were greater at the agricultural watersheds than at the unreclaimed watersheds, primarily because of large final-cut lakes in the unreclaimed watersheds. Annual runoff was greatest at the unreclaimed watersheds, intermediate at the agricultural watersheds, and least at the reclaimed watersheds. Hydrologic effects of mining were identified by comparing the hydrologic systems at mined and unreclaimed watersheds with those at unmined, agricultural watersheds. Comparisons of the hydrologic systems of these watersheds indicate that surface coal mining without reclamation has the potential to increase annual runoff, base flow, and groundwater recharge to the bedrock; reduce peak flow rates and variation in flow; lower the water table in upland areas; change the relation between surface water and groundwater divides; and create numerous, local flow systems in the shallow groundwater. Hydrologic effects of reclamation were identified by comparing the hydrologic systems at mined and reclaimed watersheds with those at mined and unreclaimed watersheds. Reclamation has the potential to decrease annual runoff, base flow, and recharge to the bedrock; increase peak flow rates, variation in flow, and response to thunderstorms; reestablish the premining relation between surface and groundwater divides; and create fewer local flow systems in the shallow groundwater. (Lantz-PTT)
Partitioning uncertainty in streamflow projections under nonstationary model conditions
NASA Astrophysics Data System (ADS)
Chawla, Ila; Mujumdar, P. P.
2018-02-01
Assessing the impacts of Land Use (LU) and climate change on future streamflow projections is necessary for efficient management of water resources. However, model projections are burdened with significant uncertainty arising from various sources. Most of the previous studies have considered climate models and scenarios as major sources of uncertainty, but uncertainties introduced by land use change and hydrologic model assumptions are rarely investigated. In this paper an attempt is made to segregate the contribution from (i) general circulation models (GCMs), (ii) emission scenarios, (iii) land use scenarios, (iv) stationarity assumption of the hydrologic model, and (v) internal variability of the processes, to overall uncertainty in streamflow projections using analysis of variance (ANOVA) approach. Generally, most of the impact assessment studies are carried out with unchanging hydrologic model parameters in future. It is, however, necessary to address the nonstationarity in model parameters with changing land use and climate. In this paper, a regression based methodology is presented to obtain the hydrologic model parameters with changing land use and climate scenarios in future. The Upper Ganga Basin (UGB) in India is used as a case study to demonstrate the methodology. The semi-distributed Variable Infiltration Capacity (VIC) model is set-up over the basin, under nonstationary conditions. Results indicate that model parameters vary with time, thereby invalidating the often-used assumption of model stationarity. The streamflow in UGB under the nonstationary model condition is found to reduce in future. The flows are also found to be sensitive to changes in land use. Segregation results suggest that model stationarity assumption and GCMs along with their interactions with emission scenarios, act as dominant sources of uncertainty. This paper provides a generalized framework for hydrologists to examine stationarity assumption of models before considering them for future streamflow projections and segregate the contribution of various sources to the uncertainty.
NASA Astrophysics Data System (ADS)
Siddique, R.; Wu, C.; Karmalkar, A.; Bradley, R. S.; Palmer, R. N.
2017-12-01
Northeastern region (NER) of the United States (US) has been projected to be a place where climate change can have the most severe impacts. These impacts include, but are not limited to, increases in the following: extreme precipitation events, temperature, flood magnitudes, flood frequencies, droughts, and sea level rise. In this study, we estimate the frequency of hydrological extremes under different climate change scenarios using regionally downscaled climate projections from a limited number of selected models from the fifth phase of Coupled Model Intercomparison Project (CMIP5). The models are chosen to minimize the loss of key climate information relevant to the NER. Precipitation and temperature from the selected models are forced into a distributed hydrological model called Hydrology Laboratory - Research Distributed Hydrological Model (HL-RDHM) to obtain streamflows for two different time regimes, near-term (20-50 years out) and long-term (50-80 years out). For this, two climate emission scenarios will be considered: RCP 4.5 and RCP 8.5. The impacts of the climate projections on the streamflows are then evaluated across different watershed scales in the NER. Among different metrics, we employ: 1) Flood Events - return period of 1 year, 10 year, 20 year, 50 year, and 100 year flood events and 2) Drought Events -low flow events associated with the 7-day 10 year low flow, number of days per month that will be below the historic monthly average, number of days per month that will be below the 25 percentile monthly historic average, changes in the 30-day and 60-day cumulative summer flows, and the timing and magnitude of spring run-off. For estimates of the climate impacts on low and high flows, only the unregulated watersheds are taken into consideration. Ensembles of streamflows obtained by forcing different climate projections are used to quantify and account for the associated uncertainties. Thus, the outcomes of this study are expected to guide regional decision makers on potential impacts of climate change on hydrological extreme events and water resources across different spatial scales within NER of the US.
NASA Astrophysics Data System (ADS)
al Aamery, N. M. H.; Mahoney, D. T.; Fox, J.
2017-12-01
Future climate change projections suggest extreme impacts on watershed hydrologic systems for some regions of the world including pronounced increases in surface runoff and instream flows. Yet, there remains a lack of research focused on how future changes in hydrologic extremes, as well as relative hydrologic mean changes, impact sediment redistribution within a watershed and sediment flux from a watershed. The authors hypothesized that variations in mean and extreme changes in turn may impact sediments in depositional and erosional dominance in a manner that may not be obvious to the watershed manager. Therefore, the objectives of this study were to investigate the inner processes connecting the combined effect of extreme climate change projections on the vegetation, upland erosion, and instream processes to produce changes in sediment redistribution within watersheds. To do so, research methods were carried out by the authors including simulating sediment processes in forecast and hindcast periods for a lowland watershed system. Publically available climate realizations from several climate factors and the Soil Water Assessment Tool (SWAT) were used to predict hydrologic conditions for the South Elkhorn Watershed in central Kentucky, USA to 2050. The results of the simulated extreme and mean hydrological components were used in simulating upland erosion with the connectivity processes consideration and thereafter used in building and simulating the instream erosion and deposition of sediment processes with the consideration of surface fine grain lamina (SFGL) layer controlling the benthic ecosystem. Results are used to suggest the dominance of erosional and depositional redistribution of sediments under different scenarios associated with extreme and mean hydrologic forecasting. The results are discussed in reference to the benthic ecology of the stream system providing insight on how water managers might consider sediment redistribution in a changing climate.
Hydrological alteration of the Upper Nakdong river under AR5 climate change scenarios
NASA Astrophysics Data System (ADS)
Kim, S.; Park, Y.; Cha, W. Y.; Okjeong, L.; Choi, J.; Lee, J.
2016-12-01
One of the tasks faced to water engineers is how to consider the climate change impact in our water resources management. Especially in South Korea, where almost all drinking water is taken from major rivers, the public attention is focused on their eco-hydrologic status. In this study, the effect of climate change on eco-hydrologic regime in the Upper Nakdong river which is one of major rivers in South Korea is investigated using SWAT. The simulation results are measured using the indicators of hydrological alteration (IHA) established by U.S. Nature Conservancy. Future climate information is obtained by scaling historical series, provided by Korean Meteorological Administration RCM (KMA RCM) and four RCP scenarios. KMA RCM has 12.5-km spatial resolution in Korean Peninsula and is produced by UK Hedley Centre regional climate model HadGEM3-RA. The RCM bias is corrected by the Kernel density distribution mapping (KDDM) method. The KDDM estimates the cumulative probability density function (CDF) of each dataset using kernel density estimation, and is implemented by quantile-mapping the CDF of a present climate variable obtained from the RCM onto that of the corresponding observed climate variable. Although the simulation results from different RCP scenarios show diverse hydrologic responses in our watershed, the mainstream of future simulation results indicate that there will be more river flow in southeast Korea. The predicted impacts of hydrological alteration caused by climate change on the aquatic ecosystem in the Upper Nakdong river will be presented. Acknowledgement This research was supported by a grant(14AWMP-B082564-01) from Advanced Water Management Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government.
NASA Astrophysics Data System (ADS)
Marhaento, H.; Booij, M. J.; Hoekstra, A. Y.
2017-12-01
Future hydrological processes in the Samin catchment (278 km2) in Java, Indonesia have been simulated using the Soil and Water Assessment Tool (SWAT) model using inputs from predicted land use distributions in the period 2030 - 2050, bias corrected Regional Climate Model (RCM) output and output of six Global Climate Models (GCMs) to include climate model uncertainty. Two land use change scenarios namely a business-as-usual (BAU) scenario, where no measures are taken to control land use change, and a controlled (CON) scenario, where the future land use follows the land use planning, were used in the simulations together with two climate change scenarios namely Representative Concentration Pathway (RCP) 4.5 and 8.5. It was predicted that in 2050 settlement and agriculture area of the study catchment will increase by 33.9% and 3.5%, respectively under the BAU scenario, whereas agriculture area and evergreen forest will increase by 15.2% and 10.2%, respectively under the CON scenario. In comparison to the baseline conditions (1983 - 2005), the predicted mean annual maximum and minimum temperature in 2030 - 2050 will increase by an average of +10C, while changes in the mean annual rainfall range from -20% to +19% under RCP 4.5 and from -25% to +15% under RCP 8.5. The results show that land use change and climate change individually will cause changes in the water balance components, but that more pronounced changes are expected if the drivers are combined, in particular for changes in annual stream flow and surface runoff. It was observed that combination of the RCP 4.5 climate scenario and BAU land use scenario resulted in an increase of the mean annual stream flow from -7% to +64% and surface runoff from +21% to +102%, which is 40% and 60% more than when land use change is acting alone. Furthermore, under the CON scenario the annual stream flow and surface runoff could be potentially reduced by up to 10% and 30%, respectively indicating the effectiveness of applied land use planning. The findings of this study will be useful for the water resource managers to mitigate future risks associated with land use and climate changes in the study catchment. Keywords: land use change, climate change, hydrological impact assessment, Samin catchment
Mapping the response of riparian vegetation to possible flow reductions in the Snake River, Idaho
Johnson, W. Carter; Dixon, Mark D.; Simons, Robert W.; Jenson, Susan; Larson, Kevin
1995-01-01
This study was initiated to determine the general effects of potential flow reductions in the middle Snake River (Swan Falls Dam downstream to the Idaho-Oregon border) on its riparian vegetation. Considerable water from the river is currently used to irrigate the adjacent Snake River Plain, and increased demand for water in the future is likely. The problem was subdivided into several research components including: field investigation of the existing riparian vegetation and river environment, hydrological modeling to calculate the effects of one flow scenario on hydrological regime, and integration of vegetation and hydrological modeling results with a Geographic Information System (GIs) to map the riverbed, island, and bank conditions under the scenario flow. Field work was conducted in summer 1990. Riparian vegetation along 40 U.S. Geological Survey cross-sections was sampled at approximately 1.25 mile intervals within the 50 mile long study area. Cross-section and flow data were provided by the U.S. Geological. Survey. GIs mapping of land/water cover using ARC/INFO was based on 1987 aerial photographs. Riverbed contour maps were produced by linking cross-section data, topographic contouring software (anudem), and GIs. The maps were used to spatially display shallow areas in the channel likely to become vegetated under reduced flow conditions. The scenario would reduce flow by approximately 20% (160 MAF) and lower the river an average of 0.5 ft. The scenario flow could cause a drop in the elevation of the riparian zone comparable to the drop in mean river level and expansion of the lower riparian zone into shallow areas of the channel. The GIs maps showed that the shallow areas of the channel more likely to become vegetated under the scenario flow are located in wide reaches near islands. Some possible ecological consequences of the scenario flow include a greater area of riparian habitat, reduced flow velocity and sedimentation in shallow channels leading to channel deactivation, increased island visitation and nest predation by predatory mammals due to loss of a water barrier between some islands and banks, and larger populations of alien plant species in the new riparian vegetation.
NASA Astrophysics Data System (ADS)
Charley, W. J.; Luna, M.
2007-12-01
The U.S. Army Corps of Engineers Corps Water Management System (CWMS) is a comprehensive data acquisition and hydrologic modeling system for short-term decision support of water control operations in real time. It encompasses data collection, validation and transformation, data storage, visualization, real time model simulation for decision-making support, and data dissemination. CWMS uses an Oracle database and Sun Solaris workstations for data processes, storage and the execution of models, with a client application (the Control and Visualization Interface, or CAVI) that can run on a Windows PC. CWMS was used by the Lower Colorado River Authority (LCRA) to make hydrologic forecasts of flows on the Lower Colorado River and operate reservoirs during the June 2007 event in Texas. The LCRA receives real-time observed gridded spatial rainfall data from OneRain, Inc. that which is a result of adjusting NexRad rainfall data with precipitation gages. This data is used, along with future precipitation estimates, for hydrologic forecasting by the rainfall-runoff modeling program HEC-HMS. Forecasted flows from HEC-HMS and combined with observed flows and reservoir information to simulate LCRA's reservoir operations and help engineers make release decisions based on the results. The river hydraulics program, HEC-RAS, computes river stages and water surface profiles for the computed flow. An inundation boundary and depth map of water in the flood plain can be calculated from the HEC-RAS results using ArcInfo. By varying future precipitation and releases, engineers can evaluate different "What if?" scenarios. What was described as an "extraordinary cluster of thunderstorms" that stalled over Burnet and Llano counties in Texas on June 27, 2007, dropped 17 to 19 inches of rainfall over a 6-hour period. The storm was classified over a 500-year event and the resulting flow over some of the smaller tributaries as a 100-year or better. CWMS was used by LCRA for flood forecasting and reservoir operations. The models accurately forecasting the flows and allowed engineers to determine that only four floodgates needed to be opened for Mansfield dam, in the Chain of Highland lakes. CWMS also forecasted the peak of the flood well before it happened. Smaller rain storms continued for a period of weeks and CWMS was used throughout the event calculating lake levels, closing of gates along with a hydro-generation schedule.
Modeling and Remote Sensing of Surface Water Dynamics in the Mekong River Basin
NASA Astrophysics Data System (ADS)
Pokhrel, Y. N.
2017-12-01
The Mekong river is one of the most complex river systems in the world that is shared by six nations in Southeast Asia. The river still remains relatively undammed (most existing dams are in the tributaries and are small), and its hydrology today is dominated by large natural flow variations that support the highly productive agricultural and riverine ecological systems; however, this is changing due to the alterations in land use and construction of new dams both in the tributaries the mainstream (16 mainstream and 110 tributary dams are planned to be completed by 2030). Understanding the changes in surface water dynamics is therefore crucial to provide realistic future predictions of changes in downstream floodplain and riverine ecology due to the construction of dams in the upstream. In this study, we use an integrated hydrological model and remote sensing data to examine the critical role of surface water systems in modulating the river-floodplain ecology in the lower reach of the basin, with a focus on the Tonle Sap lake. We present results on the changes in the seasonality and long-term trend in river-floodplain inundation extent over the past few decades. These results provide new insights on the changing hydrology of the Mekong and important implications for potential future hydrologic changes under accelerating human activities and climate change.
NASA Astrophysics Data System (ADS)
Doroszkiewicz, J. M.; Romanowicz, R. J.
2016-12-01
The standard procedure of climate change impact assessment on future hydrological extremes consists of a chain of consecutive actions, starting from the choice of GCM driven by an assumed CO2 scenario, through downscaling of climatic forcing to a catchment scale, estimation of hydrological extreme indices using hydrological modelling tools and subsequent derivation of flood risk maps with the help of a hydraulic model. Among many possible sources of uncertainty, the main are the uncertainties related to future climate scenarios, climate models, downscaling techniques and hydrological and hydraulic models. Unfortunately, we cannot directly assess the impact of these different sources of uncertainties on flood risk in future due to lack of observations of future climate realizations. The aim of this study is an assessment of a relative impact of different sources of uncertainty on the uncertainty of flood risk maps. Due to the complexity of the processes involved, an assessment of total uncertainty of maps of inundation probability might be very computer time consuming. As a way forward we present an application of a hydraulic model simulator based on a nonlinear transfer function model for the chosen locations along the river reach. The transfer function model parameters are estimated based on the simulations of the hydraulic model at each of the model cross-sections. The study shows that the application of a simulator substantially reduces the computer requirements related to the derivation of flood risk maps under future climatic conditions. Biala Tarnowska catchment, situated in southern Poland is used as a case study. Future discharges at the input to a hydraulic model are obtained using the HBV model and climate projections obtained from the EUROCORDEX project. The study describes a cascade of uncertainty related to different stages of the process of derivation of flood risk maps under changing climate conditions. In this context it takes into account the uncertainty of future climate projections, an uncertainty of flow routing model, the propagation of that uncertainty through the hydraulic model, and finally, the uncertainty related to the derivation of flood risk maps.
NASA Astrophysics Data System (ADS)
Eddy, J.; Yeager, K. M.; Barton, C.; Phillips, J. D.
2016-12-01
Natural sediment accumulation on floodplains is important to maintain water quality of streams, to support regional biodiversity as an ecotone between aquatic and terrestrial environments, and to serve as a sink for organic and inorganic carbon. Recent research suggests that land use and hydrologic connectivity play important roles in determining rates of sediment accumulation. This study hypothesizes that changes in hydrologic connectivity have a greater impact on sediment accumulation rates than changes in land use. Nine sediment cores from seven sub-basins were taken from the Savannah River Site, South Carolina, and processed for grain-size, radioisotope dating, particulate organic carbon (POC), and microscopy. Stratigraphic columns were created for all nine cores. Extensive historical records, aerial, and satellite imagery are used to identify anthropogenic disturbances which may have influenced rates of sediment accumulation, as well as to calculate the percentage of natural vegetation in 1951 and 2014. Grain-size analysis and microscopy indicate that the majority of sediment studied is sand-sized quartz; changes in grain-size classification is used to indicate potential differences in sediment sources. LiDAR and field survey data were used to identify 251 stream flow impediments that potentially affect hydrologic connectivity. Results from radioisotope dating and POC have been used to calculate sediment mass accumulation rates (SMAR; g cm-2 y-1) and linear accumulation rates (LAR; cm y-1) for each of the cores. Preliminary findings show that plots of SMAR versus the number of flow impediments have steeper slopes than plots of SMAR versus the percent difference in vegetation (from 1951 to 2014). This signifies that flow impediments, as a proxy for hydrologic connectivity, have a stronger effect on sediment accumulation rates than changes in land use. This knowledge can help future stream restoration efforts by focusing resources to more efficiently attain stated goals.
Comparison and Validation of Hydrological E-Flow Methods through Hydrodynamic Modelling
NASA Astrophysics Data System (ADS)
Kuriqi, Alban; Rivaes, Rui; Sordo-Ward, Alvaro; Pinheiro, António N.; Garrote, Luis
2017-04-01
Flow regime determines physical habitat conditions and local biotic configuration. The development of environmental flow guidelines to support the river integrity is becoming a major concern in water resources management. In this study, we analysed two sites located in southern part of Portugal, respectively at Odelouca and Ocreza Rivers, characterised by the Mediterranean climate. Both rivers are almost in pristine condition, not regulated by dams or other diversion construction. This study presents an analysis of the effect on fish habitat suitability by the implementation of different hydrological e-flow methods. To conduct this study we employed certain hydrological e-flow methods recommended by the European Small Hydropower Association (ESHA). River hydrology assessment was based on approximately 30 years of mean daily flow data, provided by the Portuguese Water Information System (SNIRH). The biological data, bathymetry, physical and hydraulic features, and the Habitat Suitability Index for fish species were collected from extensive field works. We followed the Instream Flow Incremental Methodology (IFIM) to assess the flow-habitat relationship taking into account the habitat suitability of different instream flow releases. Initially, we analysed fish habitat suitability based on natural conditions, and we used it as reference condition for other scenarios considering the chosen hydrological e-flow methods. We accomplished the habitat modelling through hydrodynamic analysis by using River-2D model. The same methodology was applied to each scenario by considering as input the e-flows obtained from each of the hydrological method employed in this study. This contribution shows the significance of ecohydrological studies in establishing a foundation for water resources management actions. Keywords: ecohydrology, e-flow, Mediterranean rivers, river conservation, fish habitat, River-2D, Hydropower.
Hydrology of coal-resource areas in the southern Wasatch Plateau, central Utah
Danielson, T.W.; Sylla, D.A.
1982-01-01
The study defines the surface and groundwater hydrology of coal-resources areas in the Southern Wasatch Plateau in Central Utah and, where possible, predicts the hydrologic impacts of underground mining. Discharge data at four streamflow gaging stations indicated that from 5 to 29% of the average annual precipitation on a drainage runs off streams, mainly during the snowmelt period (spring and summer). Most of the base flow of streams originates as spring discharge in the higher altitudes of drainages. Peak flows, average 7-day flood flows, and flood depths were related to basin characteristics in order to develop flood equations for ungaged sites. Chemical quality of surface water was suitable for most uses. Dissolved-solids concentrations ranged from 97 to 835 milligrams per liter in 61 samples collected throughout the area. Data from wells and coal-test holes, and a comprehensive spring inventory indicate that groundwater occurs in all geologic units exposed in the study area. The coal-bearing Blackhawk Formation and underlying Star Point Sandstone are saturated in most areas. Some future mining operations would require dewatering of the Star Point-Blackhawk aquifer. Most of the springs issue from the Flagstaff Limestone and North Horn Formation above the Star Point-Blackhawk aquifer. It is not known whether water in the Flagstaff and North Horn is perched. Dissolved-solids concentrations in groundwater ranged from 105 to 1,080 milligrams per liter in 87 analyzed samples. Water levels in wells, the discharge of springs, benthic invertebrates in streams, and quantity and quality of mine effluents all need to be monitored in order to detect changes in the hydrologic system caused by coal mining. (USGS)
NASA Astrophysics Data System (ADS)
Gleason, C. J.; Wada, Y.; Wang, J.
2017-12-01
Declining gauging infrastructure and fractious water politics have decreased available information about river flows globally, especially in international river basins. Remote sensing and water balance modelling are frequently cited as a potential solutions, but these techniques largely rely on the same in decline gauge data to constrain or parameterize discharge estimates, thus creating a circular approach to estimating discharge inapplicable to ungauged basins. To address this, we here combine a discontinued gauge, remotely sensed discharge estimates made via at-many-stations hydraulic geometry (AMHG) and Landsat data, and the PCR-GLOBWB hydrological model to estimate discharge for an ungauged time period for the Lower Nile (1978-present). Specifically, we first estimate initial discharges from 86 Landsat images and AMHG (1984-2015), and then use these flow estimates to tune the hydrologic model. Our tuning methodology is purposefully simple and can be easily applied to any model without the need for calibration/parameterization. The resulting tuned modelled hydrograph shows large improvement in flow magnitude over previous modelled hydrographs, and validation of tuned monthly model output flows against the historical gauge yields an RMSE of 343 m3/s (33.7%). By contrast, the original simulation had an order-of-magnitude flow error. This improvement is substantial but not perfect: modelled flows have a one-to two-month wet season lag and a negative bias. More sophisticated model calibration and training (e.g. data assimilation) is needed to improve upon our results, however, our results achieved by coupling physical models and remote sensing is a promising first step and proof of concept toward future modelling of ungauged flows. This is especially true as massive cloud computing via Google Earth Engine makes our method easily applicable to any basin without current gauges. Finally, we purposefully do not offer prescriptive solutions for Nile management, and rather hope that the methods demonstrated herein can prove useful to river stakeholders in managing their own water.
Michot, B.D.; Meselhe, E.A.; Krauss, Ken W.; Shrestha, Surendra; From, Andrew S.; Patino, Eduardo
2017-01-01
At the fringe of Everglades National Park in southwest Florida, United States, the Ten Thousand Islands National Wildlife Refuge (TTINWR) habitat has been heavily affected by the disruption of natural freshwater flow across the Tamiami Trail (U.S. Highway 41). As the Comprehensive Everglades Restoration Plan (CERP) proposes to restore the natural sheet flow from the Picayune Strand Restoration Project area north of the highway, the impact of planned measures on the hydrology in the refuge needs to be taken into account. The objective of this study was to develop a simple, computationally efficient mass balance model to simulate the spatial and temporal patterns of water level and salinity within the area of interest. This model could be used to assess the effects of the proposed management decisions on the surface water hydrological characteristics of the refuge. Surface water variations are critical to the maintenance of wetland processes. The model domain is divided into 10 compartments on the basis of their shared topography, vegetation, and hydrologic characteristics. A diversion of +10% of the discharge recorded during the modeling period was simulated in the primary canal draining the Picayune Strand forest north of the Tamiami Trail (Faka Union Canal) and this discharge was distributed as overland flow through the refuge area. Water depths were affected only modestly. However, in the northern part of the refuge, the hydroperiod, i.e., the duration of seasonal flooding, was increased by 21 days (from 115 to 136 days) for the simulation during the 2008 wet season, with an average water level rise of 0.06 m. The average salinity over a two-year period in the model area just south of Tamiami Trail was reduced by approximately 8 practical salinity units (psu) (from 18 to 10 psu), whereas the peak dry season average was reduced from 35 to 29 psu (by 17%). These salinity reductions were even larger with greater flow diversions (+20%). Naturally, the reduction in salinity diminished toward the open water areas where the daily flood tides mix in saline bay water. Partially restoring hydrologic flows to TTINWR will affect hydroperiod and salinity regimes within downslope wetlands, and perhaps serve as a management tool to reduce the speed of future encroachment of mangroves into marsh as sea levels rise.
Spatial calibration and temporal validation of flow for regional scale hydrologic modeling
USDA-ARS?s Scientific Manuscript database
Physically based regional scale hydrologic modeling is gaining importance for planning and management of water resources. Calibration and validation of such regional scale model is necessary before applying it for scenario assessment. However, in most regional scale hydrologic modeling, flow validat...
A significant nexus: Geographically isolated wetlands influence landscape hydrology
NASA Astrophysics Data System (ADS)
McLaughlin, Daniel L.; Kaplan, David A.; Cohen, Matthew J.
2014-09-01
Recent U.S. Supreme Court rulings have limited federal protections for geographically isolated wetlands (GIWs) except where a "significant nexus" to a navigable water body is demonstrated. Geographic isolation does not imply GIWs are hydrologically disconnected; indeed, wetland-groundwater interactions may yield important controls on regional hydrology. Differences in specific yield (Sy) between uplands and inundated GIWs drive differences in water level responses to precipitation and evapotranspiration, leading to frequent reversals in hydraulic gradients that cause GIWs to act as both groundwater sinks and sources. These reversals are predicted to buffer surficial aquifer dynamics and thus base flow delivery, a process we refer to as landscape hydrologic capacitance. To test this hypothesis, we connected models of soil moisture, upland water table, and wetland stage to simulate hydrology of a low-relief landscape with GIWs, and explored the influences of total wetland area, individual wetland size, climate, and soil texture on water table and base flow variation. Increasing total wetland area and decreasing individual wetland size substantially decreased water table and base flow variation (e.g., reducing base flow standard deviation by as much as 50%). GIWs also decreased the frequency of extremely high and low water tables and base flow deliveries. For the same total wetland area, landscapes with fewer (i.e., larger) wetlands exhibited markedly lower hydrologic capacitance than those with more (i.e., smaller) wetlands, highlighting the importance of small GIWs to regional hydrology. Our results suggest that GIWs buffer dynamics of the surficial aquifer and stream base flow, providing an indirect but significant nexus to the regional hydrologic system.
A balanced water layer concept for subglacial hydrology in large scale ice sheet models
NASA Astrophysics Data System (ADS)
Goeller, S.; Thoma, M.; Grosfeld, K.; Miller, H.
2012-12-01
There is currently no doubt about the existence of a wide-spread hydrological network under the Antarctic ice sheet, which lubricates the ice base and thus leads to increased ice velocities. Consequently, ice models should incorporate basal hydrology to obtain meaningful results for future ice dynamics and their contribution to global sea level rise. Here, we introduce the balanced water layer concept, covering two prominent subglacial hydrological features for ice sheet modeling on a continental scale: the evolution of subglacial lakes and balance water fluxes. We couple it to the thermomechanical ice-flow model RIMBAY and apply it to a synthetic model domain inspired by the Gamburtsev Mountains, Antarctica. In our experiments we demonstrate the dynamic generation of subglacial lakes and their impact on the velocity field of the overlaying ice sheet, resulting in a negative ice mass balance. Furthermore, we introduce an elementary parametrization of the water flux-basal sliding coupling and reveal the predominance of the ice loss through the resulting ice streams against the stabilizing influence of less hydrologically active areas. We point out, that established balance flux schemes quantify these effects only partially as their ability to store subglacial water is lacking.
NASA Astrophysics Data System (ADS)
Hartmann, A. J.; Gleeson, T. P.; Wagener, T.; Wada, Y.
2016-12-01
Karst aquifers in Europe are an important source of fresh water contributing up to half of the total drinking water supply in some countries. Karstic groundwater recharge is one of the most important components of the water balance of karst systems as it feeds the karst aquifers. Presently available large-scale hydrological models do not consider karst heterogeneity adequately. Projections of current and potential future groundwater recharge of Europe's karst aquifers are therefore unclear. In this study we compare simulations of present (1991-2010) and future (2080-2099) recharge using two different models to simulate groundwater recharge processes. One model includes karst processes (subsurface heterogeneity, lateral flow and concentrated recharge), while the other is based on the conceptual understanding of common hydrological systems (homogeneous subsurface, saturation excess overland flow). Both models are driven by the bias-corrected 5 GCMs of the ISI-MIP project (RCP8.5). To further assess sensitivity of groundwater recharge to climate variability, we calculate the elasticity of recharge rates to annual precipitation, temperature and average intensity of rainfall events, which is the median change of recharge that corresponds to the median change of these climate variables within the present and future time period, respectively. Our model comparison shows that karst regions over Europe have enhanced recharge rates with greater inter-annual variability compared to those with more homogenous subsurface properties. Furthermore, the heterogeneous representation shows stronger elasticity concerning climate variability than the homogeneous subsurface representation. This difference tends to increase towards the future. Our results suggest that water management in regions with heterogeneous subsurface can expect a higher water availability than estimated by most of the current large-scale simulations, while measures should be taken to prepare for increasingly variable groundwater recharge rates.
Hydrologic refugia, plants, and climate change.
McLaughlin, Blair C; Ackerly, David D; Klos, P Zion; Natali, Jennifer; Dawson, Todd E; Thompson, Sally E
2017-08-01
Climate, physical landscapes, and biota interact to generate heterogeneous hydrologic conditions in space and over time, which are reflected in spatial patterns of species distributions. As these species distributions respond to rapid climate change, microrefugia may support local species persistence in the face of deteriorating climatic suitability. Recent focus on temperature as a determinant of microrefugia insufficiently accounts for the importance of hydrologic processes and changing water availability with changing climate. Where water scarcity is a major limitation now or under future climates, hydrologic microrefugia are likely to prove essential for species persistence, particularly for sessile species and plants. Zones of high relative water availability - mesic microenvironments - are generated by a wide array of hydrologic processes, and may be loosely coupled to climatic processes and therefore buffered from climate change. Here, we review the mechanisms that generate mesic microenvironments and their likely robustness in the face of climate change. We argue that mesic microenvironments will act as species-specific refugia only if the nature and space/time variability in water availability are compatible with the ecological requirements of a target species. We illustrate this argument with case studies drawn from California oak woodland ecosystems. We posit that identification of hydrologic refugia could form a cornerstone of climate-cognizant conservation strategies, but that this would require improved understanding of climate change effects on key hydrologic processes, including frequently cryptic processes such as groundwater flow. © 2017 John Wiley & Sons Ltd.
A physically-based Distributed Hydrologic Model for Tropical Catchments
NASA Astrophysics Data System (ADS)
Abebe, N. A.; Ogden, F. L.
2010-12-01
Hydrological models are mathematical formulations intended to represent observed hydrological processes in a watershed. Simulated watersheds in turn vary in their nature based on their geographic location, altitude, climatic variables and geology and soil formation. Due to these variations, available hydrologic models vary in process formulation, spatial and temporal resolution and data demand. Many tropical watersheds are characterized by extensive and persistent biological activity and a large amount of rain. The Agua Salud catchments located within the Panama Canal Watershed, Panama, are such catchments identified by steep rolling topography, deep soils derived from weathered bedrock, and limited exposed bedrock. Tropical soils are highly affected by soil cracks, decayed tree roots and earthworm burrows forming a network of preferential flow paths that drain to a perched water table, which forms at a depth where the vertical hydraulic conductivity is significantly reduced near the bottom of the bioturbation layer. We have developed a physics-based, spatially distributed, multi-layered hydrologic model to simulate the dominant processes in these tropical watersheds. The model incorporates the major flow processes including overland flow, channel flow, matrix and non-Richards film flow infiltration, lateral downslope saturated matrix and non-Darcian pipe flow in the bioturbation layer, and deep saturated groundwater flow. Emphasis is given to the modeling of subsurface unsaturated zone soil moisture dynamics and the saturated preferential lateral flow from the network of macrospores. Preliminary results indicate that the model has the capability to simulate the complex hydrological processes in the catchment and will be a useful tool in the ongoing comprehensive ecohydrological studies in tropical catchments, and help improve our understanding of the hydrological effects of deforestation and aforestation.
NASA Astrophysics Data System (ADS)
Prucha, R. H.; Dayton, C. S.; Hawley, C. M.
2002-12-01
The Rocky Flats Environmental Technology Site (RFETS) in Golden, Colorado, a former Department of Energy nuclear weapons manufacturing facility, is currently undergoing closure. The natural semi-arid interaction between surface and subsurface flow at RFETS is complex and complicated by the industrial modifications to the flow system. Using a substantial site data set, a distributed parameter, fully-integrated hydrologic model was developed to assess the hydrologic impact of different hypothetical site closure configurations on the current flow system and to better understand the integrated hydrologic behavior of the system. An integrated model with this level of detail has not been previously developed in a semi-arid area, and a unique, but comprehensive, approach was required to calibrate and validate the model. Several hypothetical scenarios were developed to simulate hydrologic effects of modifying different aspects of the site. For example, some of the simulated modifications included regrading the current land surface, changing the existing surface channel network, removing subsurface trenches and gravity drain flow systems, installing a slurry wall and geotechnical cover, changing the current vegetative cover, and converting existing buildings and pavement to permeable soil areas. The integrated flow model was developed using a rigorous physically-based code so that realistic design parameters can simulate these changes. This code also permitted evaluation of changes to complex integrated hydrologic system responses that included channelized and overland flow, pond levels, unsaturated zone storage, groundwater heads and flow directions, and integrated water balances for key areas. Results generally show that channel flow offsite decreases substantially for different scenarios, while groundwater heads generally increase within the reconfigured industrial area most of which is then discharged as evapotranspiration. These changes have significant implications to site closure and operation.
Five Guidelines for Selecting Hydrological Signatures
NASA Astrophysics Data System (ADS)
McMillan, H. K.; Westerberg, I.; Branger, F.
2017-12-01
Hydrological signatures are index values derived from observed or modeled series of hydrological data such as rainfall, flow or soil moisture. They are designed to extract relevant information about hydrological behavior, such as to identify dominant processes, and to determine the strength, speed and spatiotemporal variability of the rainfall-runoff response. Hydrological signatures play an important role in model evaluation. They allow us to test whether particular model structures or parameter sets accurately reproduce the runoff generation processes within the watershed of interest. Most modeling studies use a selection of different signatures to capture different aspects of the catchment response, for example evaluating overall flow distribution as well as high and low flow extremes and flow timing. Such studies often choose their own set of signatures, or may borrow subsets of signatures used in multiple other works. The link between signature values and hydrological processes is not always straightforward, leading to uncertainty and variability in hydrologists' signature choices. In this presentation, we aim to encourage a more rigorous approach to hydrological signature selection, which considers the ability of signatures to represent hydrological behavior and underlying processes for the catchment and application in question. To this end, we propose a set of guidelines for selecting hydrological signatures. We describe five criteria that any hydrological signature should conform to: Identifiability, Robustness, Consistency, Representativeness, and Discriminatory Power. We describe an example of the design process for a signature, assessing possible signature designs against the guidelines above. Due to their ubiquity, we chose a signature related to the Flow Duration Curve, selecting the FDC mid-section slope as a proposed signature to quantify catchment overall behavior and flashiness. We demonstrate how assessment against each guideline could be used to compare or choose between alternative signature definitions. We believe that reaching a consensus on selection criteria for hydrological signatures will assist modelers to choose between competing signatures, facilitate comparison between hydrological studies, and help hydrologists to fully evaluate their models.
The validity of flow approximations when simulating catchment-integrated flash floods
NASA Astrophysics Data System (ADS)
Bout, B.; Jetten, V. G.
2018-01-01
Within hydrological models, flow approximations are commonly used to reduce computation time. The validity of these approximations is strongly determined by flow height, flow velocity and the spatial resolution of the model. In this presentation, the validity and performance of the kinematic, diffusive and dynamic flow approximations are investigated for use in a catchment-based flood model. Particularly, the validity during flood events and for varying spatial resolutions is investigated. The OpenLISEM hydrological model is extended to implement both these flow approximations and channel flooding based on dynamic flow. The flow approximations are used to recreate measured discharge in three catchments, among which is the hydrograph of the 2003 flood event in the Fella river basin. Furthermore, spatial resolutions are varied for the flood simulation in order to investigate the influence of spatial resolution on these flow approximations. Results show that the kinematic, diffusive and dynamic flow approximation provide least to highest accuracy, respectively, in recreating measured discharge. Kinematic flow, which is commonly used in hydrological modelling, substantially over-estimates hydrological connectivity in the simulations with a spatial resolution of below 30 m. Since spatial resolutions of models have strongly increased over the past decades, usage of routed kinematic flow should be reconsidered. The combination of diffusive or dynamic overland flow and dynamic channel flooding provides high accuracy in recreating the 2003 Fella river flood event. Finally, in the case of flood events, spatial modelling of kinematic flow substantially over-estimates hydrological connectivity and flow concentration since pressure forces are removed, leading to significant errors.
NASA Astrophysics Data System (ADS)
van den Bout, Bastian; Jetten, Victor
2017-04-01
Within hydrological models, flow approximations are commonly used to reduce computation time. The validity of these approximations is strongly determined by flow height, flow velocity, the spatial resolution of the model, and by the manner in which flow routing is implemented. The assumptions of these approximations can furthermore limit emergent behavior, and influence flow behavior under space-time scaling. In this presentation, the validity and performance of the kinematic, diffusive and dynamic flow approximations are investigated for use in a catchment-based flood model. Particularly, the validity during flood events and for varying spatial resolutions is investigated. The OpenLISEM hydrological model is extended to implement these flow approximations and channel flooding based on dynamic flow. The kinematic routing uses a predefined converging flow network, the diffusive and dynamic routing uses a 2D flow solution over a DEM. The channel flow in all cases is a 1D kinematic wave approximation. The flow approximations are used to recreate measured discharge in three catchments of different size in China, Spain and Italy, among which is the hydrograph of the 2003 flood event in the Fella river basin (Italy). Furthermore, spatial resolutions are varied for the flood simulation in order to investigate the influence of spatial resolution on these flow approximations. Results show that the kinematic, diffusive and dynamic flow approximation provide least to highest accuracy, respectively, in recreating measured temporal variation of the discharge. Kinematic flow, which is commonly used in hydrological modelling, substantially over-estimates hydrological connectivity in the simulations with a spatial resolution of below 30 meters. Since spatial resolutions of models have strongly increased over the past decades, usage of routed kinematic flow should be reconsidered. In the case of flood events, spatial modelling of kinematic flow substantially over-estimates hydrological connectivity and flow concentration, leading to significant errors. The combination of diffusive or dynamic overland flow and dynamic channel flooding provides high accuracy in recreating the 2003 Fella river flood event. Finally, flow approximations substantially influenced the predictive potential of the (flash) flood model.
LFSTAT - Low-Flow Analysis in R
NASA Astrophysics Data System (ADS)
Koffler, Daniel; Laaha, Gregor
2013-04-01
The calculation of characteristic stream flow during dry conditions is a basic requirement for many problems in hydrology, ecohydrology and water resources management. As opposed to floods, a number of different indices are used to characterise low flows and streamflow droughts. Although these indices and methods of calculation have been well documented in the WMO Manual on Low-flow Estimation and Prediction [1], a comprehensive software was missing which enables a fast and standardized calculation of low flow statistics. We present the new software package lfstat to fill in this obvious gap. Our software package is based on the statistical open source software R, and expands it to analyse daily stream flow data records focusing on low-flows. As command-line based programs are not everyone's preference, we also offer a plug-in for the R-Commander, an easy to use graphical user interface (GUI) provided for R which is based on tcl/tk. The functionality of lfstat includes estimation methods for low-flow indices, extreme value statistics, deficit characteristics, and additional graphical methods to control the computation of complex indices and to illustrate the data. Beside the basic low flow indices, the baseflow index and recession constants can be computed. For extreme value statistics, state-of-the-art methods for L-moment based local and regional frequency analysis (RFA) are available. The tools for deficit characteristics include various pooling and threshold selection methods to support the calculation of drought duration and deficit indices. The most common graphics for low flow analysis are available, and the plots can be modified according to the user preferences. Graphics include hydrographs for different periods, flexible streamflow deficit plots, baseflow visualisation, recession diagnostic, flow duration curves as well as double mass curves, and many more. From a technical point of view, the package uses a S3-class called lfobj (low-flow objects). This objects are usual R-data-frames including date, flow, hydrological year and possibly baseflow information. Once these objects are created, analysis can be performed by mouse-click and a script can be saved to make the analysis easily reproducible. At the moment we are offering implementation of all major methods proposed in the WMO manual on Low-flow Estimation and Predictions [1]. Future plans include a dynamic low flow report in odt-file format using odf-weave which allows automatic updates if data or analysis change. We hope to offer a tool to ease and structure the analysis of stream flow data focusing on low-flows and to make analysis transparent and communicable. The package can also be used in teaching students the first steps in low-flow hydrology. The software packages can be installed from CRAN (latest stable) and R-Forge: http://r-forge.r-project.org (development version). References: [1] Gustard, Alan; Demuth, Siegfried, (eds.) Manual on Low-flow Estimation and Prediction. Geneva, Switzerland, World Meteorological Organization, (Operational Hydrology Report No. 50, WMO-No. 1029).
Complex Greenland outlet glacier flow captured
Aschwanden, Andy; Fahnestock, Mark A.; Truffer, Martin
2016-01-01
The Greenland Ice Sheet is losing mass at an accelerating rate due to increased surface melt and flow acceleration in outlet glaciers. Quantifying future dynamic contributions to sea level requires accurate portrayal of outlet glaciers in ice sheet simulations, but to date poor knowledge of subglacial topography and limited model resolution have prevented reproduction of complex spatial patterns of outlet flow. Here we combine a high-resolution ice-sheet model coupled to uniformly applied models of subglacial hydrology and basal sliding, and a new subglacial topography data set to simulate the flow of the Greenland Ice Sheet. Flow patterns of many outlet glaciers are well captured, illustrating fundamental commonalities in outlet glacier flow and highlighting the importance of efforts to map subglacial topography. Success in reproducing present day flow patterns shows the potential for prognostic modelling of ice sheets without the need for spatially varying parameters with uncertain time evolution. PMID:26830316
Evolution of the conceptual model of unsaturated zone hydrology at Yucca Mountain, Nevada
NASA Astrophysics Data System (ADS)
Flint, Alan L.; Flint, Lorraine E.; Bodvarsson, Gudmundur S.; Kwicklis, Edward M.; Fabryka-Martin, June
2001-06-01
Yucca Mountain is an arid site proposed for consideration as the United States' first underground high-level radioactive waste repository. Low rainfall (approximately 170 mm/yr) and a thick unsaturated zone (500-1000 m) are important physical attributes of the site because the quantity of water likely to reach the waste and the paths and rates of movement of the water to the saturated zone under future climates would be major factors in controlling the concentrations and times of arrival of radionuclides at the surrounding accessible environment. The framework for understanding the hydrologic processes that occur at this site and that control how quickly water will penetrate through the unsaturated zone to the water table has evolved during the past 15 yr. Early conceptual models assumed that very small volumes of water infiltrated into the bedrock (0.5-4.5 mm/yr, or 2-3 percent of rainfall), that much of the infiltrated water flowed laterally within the upper nonwelded units because of capillary barrier effects, and that the remaining water flowed down faults with a small amount flowing through the matrix of the lower welded, fractured rocks. It was believed that the matrix had to be saturated for fractures to flow. However, accumulating evidence indicated that infiltration rates were higher than initially estimated, such as infiltration modeling based on neutron borehole data, bomb-pulse isotopes deep in the mountain, perched water analyses and thermal analyses. Mechanisms supporting lateral diversion did not apply at these higher fluxes, and the flux calculated in the lower welded unit exceeded the conductivity of the matrix, implying vertical flow of water in the high permeability fractures of the potential repository host rock, and disequilibrium between matrix and fracture water potentials. The development of numerical modeling methods and parameter values evolved concurrently with the conceptual model in order to account for the observed field data, particularly fracture flow deep in the unsaturated zone. This paper presents the history of the evolution of conceptual models of hydrology and numerical models of unsaturated zone flow at Yucca Mountain, Nevada ( Flint, A.L., Flint, L.E., Kwicklis, E.M., Bodvarsson, G.S., Fabryka-Martin, J.M., 2001. Hydrology of Yucca Mountain. Reviews of Geophysics in press). This retrospective is the basis for recommendations for optimizing the efficiency with which a viable and robust conceptual model can be developed for a complex site.
Littell, Jeremy S.; Mauger, Guillaume S.; Salathe, Eric P.; Hamlet, Alan F.; Lee, Se-Yeun; Stumbaugh, Matt R.; Elsner, Marketa; Norheim, Robert; Lutz, Eric R.; Mantua, Nathan J.
2014-01-01
The purpose of this project was to (1) provide an internally-consistent set of downscaled projections across the Western U.S., (2) include information about projection uncertainty, and (3) assess projected changes of hydrologic extremes. These objectives were designed to address decision support needs for climate adaptation and resource management actions. Specifically, understanding of uncertainty in climate projections – in particular for extreme events – is currently a key scientific and management barrier to adaptation planning and vulnerability assessment. The new dataset fills in the Northwest domain to cover a key gap in the previous dataset, adds additional projections (both from other global climate models and a comparison with dynamical downscaling) and includes an assessment of changes to flow and soil moisture extremes. This new information can be used to assess variations in impacts across the landscape, uncertainty in projections, and how these differ as a function of region, variable, and time period. In this project, existing University of Washington Climate Impacts Group (UW CIG) products were extended to develop a comprehensive data archive that accounts (in a reigorous and physically based way) for climate model uncertainty in future climate and hydrologic scenarios. These products can be used to determine likely impacts on vegetation and aquatic habitat in the Pacific Northwest (PNW) region, including WA, OR, ID, northwest MT to the continental divide, northern CA, NV, UT, and the Columbia Basin portion of western WY New data series and summaries produced for this project include: 1) extreme statistics for surface hydrology (e.g. frequency of soil moisture and summer water deficit) and streamflow (e.g. the 100-year flood, extreme 7-day low flows with a 10-year recurrence interval); 2) snowpack vulnerability as indicated by the ratio of April 1 snow water to cool-season precipitation; and, 3) uncertainty analyses for multiple climate scenarios.
Climate is changing, everything is flowing, stationarity is immortal
NASA Astrophysics Data System (ADS)
Koutsoyiannis, Demetris; Montanari, Alberto
2015-04-01
There is no doubt that climate is changing -- and ever has been. The environment is also changing and in the last decades, as a result of demographic change and technological advancement, environmental change has been accelerating. These affect also the hydrological processes, whose changes in connection with rapidly changing human systems have been the focus of the new scientific decade 2013-2022 of the International Association of Hydrological Sciences, entitled "Panta Rhei - Everything Flows". In view of the changing systems, it has recently suggested that, when dealing with water management and hydrological extremes, stationarity is no longer a proper assumption. Hence, it was proposed that hydrological processes should be treated as nonstationary. Two main reasons contributed to this perception. First, the climate models project a future hydroclimate that will be different from the current one. Second, as streamflow record become longer, they indicate the presence of upward or downward trends. However, till now hydroclimatic projections made in the recent past have not been verified. At the same time, evidence from quite longer records, instrumental or proxy, suggest that local trends are omnipresent but not monotonic; rather at some time upward trends turn to downward ones and vice versa. These observations suggest that improvident dismiss of stationarity and adoption of nonstationary descriptions based either on climate model outputs or observed trends may entail risks. The risks stem from the facts that the future can be different from what was deterministically projected, that deterministic projections are associated with an illusion of decreased uncertainty, as well as that nonstationary models fitted on observed data may have lower predictive capacity than simpler stationary ones. In most of the cases, what is actually needed is to revisit the concept of stationarity and try to apply it carefully, making it consistent with the presence of local trends, possibly incorporating information from deterministic predictions, whenever these prove to be reliable, and estimating the total predictive uncertainty.
Incorporating groundwater flow into the WEPP model
William Elliot; Erin Brooks; Tim Link; Sue Miller
2010-01-01
The water erosion prediction project (WEPP) model is a physically-based hydrology and erosion model. In recent years, the hydrology prediction within the model has been improved for forest watershed modeling by incorporating shallow lateral flow into watershed runoff prediction. This has greatly improved WEPP's hydrologic performance on small watersheds with...
Poff, N.L.; Richter, B.D.; Arthington, A.H.; Bunn, S.E.; Naiman, R.J.; Kendy, E.; Acreman, M.; Apse, C.; Bledsoe, B.P.; Freeman, Mary C.; Henriksen, J.; Jacobson, R.B.; Kennen, J.G.; Merritt, D.M.; O'Keeffe, J. H.; Olden, J.D.; Rogers, K.; Tharme, R.E.; Warner, A.
2010-01-01
The flow regime is a primary determinant of the structure and function of aquatic and riparian ecosystems for streams and rivers. Hydrologic alteration has impaired riverine ecosystems on a global scale, and the pace and intensity of human development greatly exceeds the ability of scientists to assess the effects on a river-by-river basis. Current scientific understanding of hydrologic controls on riverine ecosystems and experience gained from individual river studies support development of environmental flow standards at the regional scale. 2. This paper presents a consensus view from a group of international scientists on a new framework for assessing environmental flow needs for many streams and rivers simultaneously to foster development and implementation of environmental flow standards at the regional scale. This framework, the ecological limits of hydrologic alteration (ELOHA), is a synthesis of a number of existing hydrologic techniques and environmental flow methods that are currently being used to various degrees and that can support comprehensive regional flow management. The flexible approach allows scientists, water-resource managers and stakeholders to analyse and synthesise available scientific information into ecologically based and socially acceptable goals and standards for management of environmental flows. 3. The ELOHA framework includes the synthesis of existing hydrologic and ecological databases from many rivers within a user-defined region to develop scientifically defensible and empirically testable relationships between flow alteration and ecological responses. These relationships serve as the basis for the societally driven process of developing regional flow standards. This is to be achieved by first using hydrologic modelling to build a 'hydrologic foundation' of baseline and current hydrographs for stream and river segments throughout the region. Second, using a set of ecologically relevant flow variables, river segments within the region are classified into a few distinctive flow regime types that are expected to have different ecological characteristics. These river types can be further subclassified according to important geomorphic features that define hydraulic habitat features. Third, the deviation of current-condition flows from baseline-condition flow is determined. Fourth, flow alteration-ecological response relationships are developed for each river type, based on a combination of existing hydroecological literature, expert knowledge and field studies across gradients of hydrologic alteration. 4. Scientific uncertainty will exist in the flow alteration-ecological response relationships, in part because of the confounding of hydrologic alteration with other important environmental determinants of river ecosystem condition (e.g. temperature). Application of the ELOHA framework should therefore occur in a consensus context where stakeholders and decision-makers explicitly evaluate acceptable risk as a balance between the perceived value of the ecological goals, the economic costs involved and the scientific uncertainties in functional relationships between ecological responses and flow alteration. 5. The ELOHA framework also should proceed in an adaptive management context, where collection of monitoring data or targeted field sampling data allows for testing of the proposed flow alteration-ecological response relationships. This empirical validation process allows for a fine-tuning of environmental flow management targets. The ELOHA framework can be used both to guide basic research in hydroecology and to further implementation of more comprehensive environmental flow management of freshwater sustainability on a global scale. ?? 2009 Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Li, L.; Xu, C.-Y.; Engeland, K.
2012-04-01
With respect to model calibration, parameter estimation and analysis of uncertainty sources, different approaches have been used in hydrological models. Bayesian method is one of the most widely used methods for uncertainty assessment of hydrological models, which incorporates different sources of information into a single analysis through Bayesian theorem. However, none of these applications can well treat the uncertainty in extreme flows of hydrological models' simulations. This study proposes a Bayesian modularization method approach in uncertainty assessment of conceptual hydrological models by considering the extreme flows. It includes a comprehensive comparison and evaluation of uncertainty assessments by a new Bayesian modularization method approach and traditional Bayesian models using the Metropolis Hasting (MH) algorithm with the daily hydrological model WASMOD. Three likelihood functions are used in combination with traditional Bayesian: the AR (1) plus Normal and time period independent model (Model 1), the AR (1) plus Normal and time period dependent model (Model 2) and the AR (1) plus multi-normal model (Model 3). The results reveal that (1) the simulations derived from Bayesian modularization method are more accurate with the highest Nash-Sutcliffe efficiency value, and (2) the Bayesian modularization method performs best in uncertainty estimates of entire flows and in terms of the application and computational efficiency. The study thus introduces a new approach for reducing the extreme flow's effect on the discharge uncertainty assessment of hydrological models via Bayesian. Keywords: extreme flow, uncertainty assessment, Bayesian modularization, hydrological model, WASMOD
Governance and decision making in complex socio-hydrological systems
NASA Astrophysics Data System (ADS)
Elshorbagy, Amin; Wheater, Howard; Gober, Patricia; Hassanzadeh, Elmira
2017-04-01
The transboundary Saskatchewan River, originating in the Canadian Rockies in Alberta, flows through Saskatchewan and Manitoba and discharges its water into Lake Winnipeg. It supports irrigated agriculture, hydropower generation, flood protection, municipal water supplies, mining, recreation, and environmental services across a large area and in multiple administrative jurisdictions. Managing the region's water-based economic activities and environmental services, requires decisions at a variety of scales to incorporate competing values and priorities about water use. Current inter-provincial allocations are based on the 1969 Master Agreement of Water Apportionment whereby upstream Alberta must release one-half of the annual natural flows of the Saskatchewan River to Saskatchewan, which in turn must pass one-half of the residual natural flow to the Province of Manitoba. This analysis uses a hydro-economic simulation model, SWAMP, to examine risk-based tradeoffs in Saskatchewan for various types of water use including, agriculture, energy, and flood protection under various scenarios of water availability. The eco-hydrological effects of the scenarios on the largest inland delta in North America - the Saskatchewan River Delta - are also shown. Results enable decision makers to weigh the costs and benefits of implementing particular sector-based future development strategies. Assuming net provincial benefit as a single monetary indicator of economic value, the effects of various scenarios of environmental and policy changes are quantified Results show that improving irrigation technology and expanding irrigated lands in Alberta will positively affect the province's economic development and have compound effects downstream on hydropower generation, environmental flows and the economies of Saskatchewan and Manitoba. The implementation of similar policies in Saskatchewan will have different downstream impacts because of the large hydro-power capacity downstream in Manitoba. The model highlights the spatial tradeoffs across the three provinces and sectoral trade-offs among the differing water uses. These trade-offs represent challenging dilemmas for water management decisions in a complex system. The study reveals the need for a holistic framework of water resources analysis that can dynamically capture the feedback loops among hydrological, social, and administrative/political analysis units to support public discussion of critical water tradeoffs and a consensual water value framework to guide future development decisions.
Scale effect challenges in urban hydrology highlighted with a distributed hydrological model
NASA Astrophysics Data System (ADS)
Ichiba, Abdellah; Gires, Auguste; Tchiguirinskaia, Ioulia; Schertzer, Daniel; Bompard, Philippe; Ten Veldhuis, Marie-Claire
2018-01-01
Hydrological models are extensively used in urban water management, development and evaluation of future scenarios and research activities. There is a growing interest in the development of fully distributed and grid-based models. However, some complex questions related to scale effects are not yet fully understood and still remain open issues in urban hydrology. In this paper we propose a two-step investigation framework to illustrate the extent of scale effects in urban hydrology. First, fractal tools are used to highlight the scale dependence observed within distributed data input into urban hydrological models. Then an intensive multi-scale modelling work is carried out to understand scale effects on hydrological model performance. Investigations are conducted using a fully distributed and physically based model, Multi-Hydro, developed at Ecole des Ponts ParisTech. The model is implemented at 17 spatial resolutions ranging from 100 to 5 m. Results clearly exhibit scale effect challenges in urban hydrology modelling. The applicability of fractal concepts highlights the scale dependence observed within distributed data. Patterns of geophysical data change when the size of the observation pixel changes. The multi-scale modelling investigation confirms scale effects on hydrological model performance. Results are analysed over three ranges of scales identified in the fractal analysis and confirmed through modelling. This work also discusses some remaining issues in urban hydrology modelling related to the availability of high-quality data at high resolutions, and model numerical instabilities as well as the computation time requirements. The main findings of this paper enable a replacement of traditional methods of model calibration
by innovative methods of model resolution alteration
based on the spatial data variability and scaling of flows in urban hydrology.
Best practices for continuous monitoring of temperature and flow in wadeable streams
Stamp, Jen; Hamilton, Anna; Craddock, Michelle; Parker, Laila; Roy, Allison; Isaak, Daniel J.; Holden, Zachary; Passmore, Margaret; Bierwagen, Britta
2014-01-01
The United States Environmental Protection Agency (U.S. EPA) is working with its regional offices, states, tribes, river basin commissions and other entities to establish Regional Monitoring Networks (RMNs) for freshwater wadeable streams. To the extent possible, uninterrupted, biological, temperature and hydrologic data will be collected on an ongoing basis at RMN sites, which are primarily located on smaller, minimally disturbed forested streams. The primary purpose of this document is to provide guidance on how to collect accurate, year-round temperature and hydrologic data at ungaged wadeable stream sites. It addresses questions related to equipment needs, sensor configuration, sensor placement, installation techniques, data retrieval, and data processing. This guidance is intended to increase comparability of continuous temperature and hydrologic data collection at RMN sites and to ensure that the data are of sufficient quality to be used in future analyses. It also addresses challenges posed by year-round deployments. These data will be used for detecting temporal trends; providing information that will allow for a better understanding of relationships between biological, thermal, and hydrologic data; predicting and analyzing climate change impacts and quantifying natural variability.
NASA Astrophysics Data System (ADS)
Kollet, S. J.
2015-05-01
In this study, entropy production optimization and inference principles are applied to a synthetic semi-arid hillslope in high-resolution, physics-based simulations. The results suggest that entropy or power is indeed maximized, because of the strong nonlinearity of variably saturated flow and competing processes related to soil moisture fluxes, the depletion of gradients, and the movement of a free water table. Thus, it appears that the maximum entropy production (MEP) principle may indeed be applicable to hydrologic systems. In the application to hydrologic system, the free water table constitutes an important degree of freedom in the optimization of entropy production and may also relate the theory to actual observations. In an ensuing analysis, an attempt is made to transfer the complex, "microscopic" hillslope model into a macroscopic model of reduced complexity using the MEP principle as an interference tool to obtain effective conductance coefficients and forces/gradients. The results demonstrate a new approach for the application of MEP to hydrologic systems and may form the basis for fruitful discussions and research in future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Zhaoqing; Wang, Taiping; Voisin, Nathalie
Understanding the response of river flow and estuarine hydrodynamics to climate change, land-use/land-cover change (LULC), and sea-level rise is essential to managing water resources and stress on living organisms under these changing conditions. This paper presents a modeling study using a watershed hydrology model and an estuarine hydrodynamic model, in a one-way coupling, to investigate the estuarine hydrodynamic response to sea-level rise and change in river flow due to the effect of future climate and LULC changes in the Snohomish River estuary, Washington, USA. A set of hydrodynamic variables, including salinity intrusion points, average water depth, and salinity of themore » inundated area, were used to quantify the estuarine response to river flow and sea-level rise. Model results suggest that salinity intrusion points in the Snohomish River estuary and the average salinity of the inundated areas are a nonlinear function of river flow, although the average water depth in the inundated area is approximately linear with river flow. Future climate changes will shift salinity intrusion points further upstream under low flow conditions and further downstream under high flow conditions. In contrast, under the future LULC change scenario, the salinity intrusion point will shift downstream under both low and high flow conditions, compared to present conditions. The model results also suggest that the average water depth in the inundated areas increases linearly with sea-level rise but at a slower rate, and the average salinity in the inundated areas increases linearly with sea-level rise; however, the response of salinity intrusion points in the river to sea-level rise is strongly nonlinear.« less
NASA Astrophysics Data System (ADS)
Kibler, K. M.; Alipour, M.
2016-12-01
Achieving the universal energy access Sustainable Development Goal will require great investment in renewable energy infrastructure in the developing world. Much growth in the renewable sector will come from new hydropower projects, including small and diversion hydropower in remote and mountainous regions. Yet, human impacts to hydrological systems from diversion hydropower are poorly described. Diversion hydropower is often implemented in ungauged rivers, thus detection of impact requires flow analysis tools suited to prediction in poorly-gauged and human-altered catchments. We conduct a comprehensive analysis of hydrologic alteration in 32 rivers developed with diversion hydropower in southwestern China. As flow data are sparse, we devise an approach for estimating streamflow during pre- and post-development periods, drawing upon a decade of research into prediction in ungauged basins. We apply a rainfall-runoff model, parameterized and forced exclusively with global-scale data, in hydrologically-similar gauged and ungauged catchments. Uncertain "soft" data are incorporated through fuzzy numbers and confidence-based weighting, and a multi-criteria objective function is applied to evaluate model performance. Testing indicates that the proposed framework returns superior performance (NSE = 0.77) as compared to models parameterized by rote calibration (NSE = 0.62). Confident that the models are providing `the right answer for the right reasons', our analysis of hydrologic alteration based on simulated flows indicates statistically significant hydrologic effects of diversion hydropower across many rivers. Mean annual flows, 7-day minimum and 7-day maximum flows decreased. Frequency and duration of flow exceeding Q25 decreased while duration of flows sustained below the Q75 increased substantially. Hydrograph rise and fall rates and flow constancy increased. The proposed methodology may be applied to improve diversion hydropower design in data-limited regions.
NASA Astrophysics Data System (ADS)
Rodríguez, Estiven; Salazar, Juan Fernando; Villegas, Juan Camilo; Mercado-Bettín, Daniel
2018-07-01
Extreme flows are key components of river flow regimes that affect manifold hydrological, geomorphological and ecological processes with societal relevance. One fundamental characteristic of extreme flows in river basins is that they exhibit scaling properties which can be identified through scaling (power) laws. Understanding the physical mechanisms behind such scaling laws is a continuing challenge in hydrology, with potential implications for the prediction of river flow regimes in a changing environment and ungauged basins. After highlighting that the scaling properties are sensitive to environmental change, we develop a physical interpretation of how temporal changes in scaling exponents relate to the capacity of river basins to regulate extreme river flows. Regulation is defined here as the basins' capacity to either dampen high flows or to enhance low flows. Further, we use this framework to infer temporal changes in the regulation capacity of five large basins in tropical South America. Our results indicate that, during the last few decades, the Amazon river basin has been reducing its capacity to enhance low flows, likely as a consequence of pronounced environmental change in its south and south-eastern sub-basins. The proposed framework is widely applicable to different basins, and provides foundations for using scaling laws as empirical tools for inferring temporal changes of hydrological regulation, particularly relevant for identifying and managing hydrological consequences of environmental change.
NASA Astrophysics Data System (ADS)
Woods, R. A.
2017-12-01
Empirical evidence suggests that a shift in precipitation from snow towards rain leads to a strong decrease in long term mean river flow, for a diverse set of snow-dominated catchments across the USA (Berghuijs et al, 2014, Nature Climate Change). Mutually inconsistent hypotheses have been proposed, but no comprehensive explanations are available to explain the observations. Why does less snow apparently lead to less river flow and more evaporation? Is it caused by changes in snow cover, soil freezing, infiltration processes, timing of plant water uptake or something else? Which processes are important where? Solving this scientific puzzle will have significant follow-on impacts for hydrological models, flood risk assessment, seasonal water forecasts, and climate change impacts on water availability, ecosystem functions and other systems impacted by long-term reductions in river flow and evaporation, and their feedbacks to the water cycle.A large international research collaboration (CHIPPER, 35 groups from 15 countries) has formed to make a joint contribution to improved understanding of links between the phase of precipitation and the hydrological cycle, with a particular focus on water balance. This presentation will review progress since 2014 on the topic, outline intended future lines of investigation, and invite feedback and additional collaborations.
Modeling the Hydrologic Effects of Large-Scale Green Infrastructure Projects with GIS
NASA Astrophysics Data System (ADS)
Bado, R. A.; Fekete, B. M.; Khanbilvardi, R.
2015-12-01
Impervious surfaces in urban areas generate excess runoff, which in turn causes flooding, combined sewer overflows, and degradation of adjacent surface waters. Municipal environmental protection agencies have shown a growing interest in mitigating these effects with 'green' infrastructure practices that partially restore the perviousness and water holding capacity of urban centers. Assessment of the performance of current and future green infrastructure projects is hindered by the lack of adequate hydrological modeling tools; conventional techniques fail to account for the complex flow pathways of urban environments, and detailed analyses are difficult to prepare for the very large domains in which green infrastructure projects are implemented. Currently, no standard toolset exists that can rapidly and conveniently predict runoff, consequent inundations, and sewer overflows at a city-wide scale. We demonstrate how streamlined modeling techniques can be used with open-source GIS software to efficiently model runoff in large urban catchments. Hydraulic parameters and flow paths through city blocks, roadways, and sewer drains are automatically generated from GIS layers, and ultimately urban flow simulations can be executed for a variety of rainfall conditions. With this methodology, users can understand the implications of large-scale land use changes and green/gray storm water retention systems on hydraulic loading, peak flow rates, and runoff volumes.
NASA Astrophysics Data System (ADS)
Woods, Ross
2017-04-01
Empirical evidence suggests that a shift in precipitation from snow towards rain leads to a strong decrease in long term mean river flow, for a diverse set of snow-dominated catchments across the USA (Berghuijs et al, 2014, Nature Climate Change). Mutually inconsistent hypotheses have been proposed, but no comprehensive explanations are available to explain the observations. Why does less snow apparently lead to less river flow and more evaporation? Is it caused by changes in snow cover, soil freezing, infiltration processes, timing of plant water uptake or something else? Which processes are important where? Solving this scientific puzzle will have significant follow-on impacts for hydrological models, flood risk assessment, seasonal water forecasts, and climate change impacts on water availability, ecosystem functions and other systems impacted by long-term reductions in river flow and evaporation, and their feedbacks to the water cycle. A large international research collaboration (CHIPPER, 34 groups from 14 countries) has formed to make a joint contribution to improved understanding of links between the phase of precipitation and the hydrological cycle, with a particular focus on water balance. This presentation will review progress since 2014 on the topic, outline intended future lines of investigation, and invite feedback and additional collaborations.
The Montaguto earth flow: nine years of observation and analysis
Guerriero, L.; Revellino, R; Grelle, G.; Diodato, N; Guadagno, F.M.; Coe, Jeffrey A.
2016-01-01
This paper summarizes the methods, results, and interpretation of analyses carried out between 2006 and 2015 at the Montaguto earth flow in southern Italy. We conducted a multi-temporal analysis of earth-flow activity to reconstruct the morphological and structural evolution of the flow. Data from field mapping were combined with a geometric reconstruction of the basal slip surface in order to investigate relations between basal-slip surface geometry and deformation styles of earth-flow material. Moreover, we reconstructed the long-term pattern of earth-flow movement using both historical observations and modeled hydrologic and climatic data. Hydrologic and climatic data were used to develop a Landslide Hydrological Climatological (LHC) indicator model.
NASA Astrophysics Data System (ADS)
Vallot, Dorothée; Applegate, Patrick; Pettersson, Rickard
2013-04-01
Projecting future climate and ice sheet development requires sophisticated models and extensive field observations. Given the present state of our knowledge, it is very difficult to say what will happen with certainty. Despite the ongoing increase in atmospheric greenhouse gas concentrations, the possibility that a new ice sheet might form over Scandinavia in the far distant future cannot be excluded. The growth of a new Scandinavian Ice Sheet would have important consequences for buried nuclear waste repositories. The Greenland Analogue Project, initiated by the Swedish Nuclear Fuel and Waste Management Company (SKB), is working to assess the effects of a possible future ice sheet on groundwater flow by studying a constrained domain in Western Greenland by field measurements (including deep bedrock drilling in front of the ice sheet) combined with numerical modeling. To address the needs of the GAP project, we interpolated results from an ensemble of ice sheet model runs to the smaller and more finely resolved modeling domain used in the GAP project's hydrologic modeling. Three runs have been chosen with three fairly different positive degree-day factors among those that reproduced the modern ice margin at the borehole position. The interpolated results describe changes in hydrologically-relevant variables over two time periods, 115 ka to 80 ka, and 20 ka to 1 ka. In the first of these time periods, the ice margin advances over the model domain; in the second time period, the ice margin retreats over the model domain. The spatially-and temporally dependent variables that we treated include the ice thickness, basal melting rate, surface mass balance, basal temperature, basal thermal regime (frozen or thawed), surface temperature, and basal water pressure. The melt flux is also calculated.
NASA Astrophysics Data System (ADS)
Chen, R.; Wang, G.; Yang, Y.; Liu, J.; Han, C.; Song, Y.; Liu, Z.; Kang, E.
2018-04-01
Cryospheric changes have great effects on alpine hydrology, but these effects are still unclear owing to rare observations and suitable models in the western cold regions of China. Based on long-term field observations in the western cold regions of China, a cryospheric basin hydrological model was proposed to evaluate the cryospheric effects on streamflow in the upper Hei River basin (UHR), and the relationship between the cryosphere and streamflow was further discussed with measured data. The Norwegian Earth System Model outputs were chosen to project future streamflow under scenarios Representative Concentration Pathways (RCP)2.6, RCP4.5, and RCP8.5. The cryospheric basin hydrological model results were well validated by the measured precipitation, streamflow, evapotranspiration, soil temperature, glacier and snow cover area, and the water balance of land cover in the UHR. The moraine-talus region contributed most of the runoff (60%), even though it made up only about 20% of the area. On average, glacier and snow cover, respectively, contributed 3.5% and 25.4% of the fresh water to the streamflow in the UHR between 1960 and 2013. Because of the increased air temperature (2.9°C/54a) and precipitation (69.2 mm/54a) over the past 54 years, glacial and snowmelt runoff increased by 9.8% and 12.1%, respectively. The increase in air temperature brought forward the snowmelt flood peak and increased the winter flow due to permafrost degradation. Glaciers may disappear in the near future because of their small size, but snowmelt would increase due to increases in snowfall in the higher mountainous areas, and the basin runoff would increase slightly in the future.
Debris-flow hazards caused by hydrologic events at Mount Rainier, Washington
Vallance, James W.; Cunico, Michelle L.; Schilling, Steve P.
2003-01-01
At 4393 m, ice-clad Mount Rainier has great potential for debris flows owing to its precipitous slopes and incised steep valleys, the large volume of water stored in its glaciers, and a mantle of loose debris on its slopes. In the past 10,000 years, more than sixty Holocene lahars have occurred at Mount Rainier (Scott et al., 1985), and, in addition more than thirty debris flows not related to volcanism have occurred in historical time (Walder and Driedger, 1984). Lahars at Mount Rainier can be classed in 3 groups according to their genesis: (1) flank collapse of hydrothermally altered, water-saturated rock; (2) eruption-related release of water and loose debris; and (3) hydrologic release of water and debris (Scott et al., 1985). Lahars in the first two categories are commonly voluminous and are generally related to unrest and explosions that occur during eruptive episodes. Lahars in the third category, distinguished here as debris flows, are less voluminous than the others but occur frequently at Mount Rainier, often with little or no warning. Historically at Mount Rainier, glacial outburst floods, torrential rains, and stream capture have caused small- to moderate-size debris flows (Walder and Driedger, 1984). Such debris flows are most likely to occur in drainages that have large glaciers in them. Less commonly, a drainage diversion has triggered a debris flow in an unglaciated drainage basin. For example, the diversion of Kautz Glacier meltwater into Van Trump basin triggered debris flows on the south side of Rainier in August 2001. On the basis of historical accounts, debris flows having hydrologic origins are likely to be unheralded, and have occurred as seldom as once in 8 years and as often as four times per year at Mount Rainier (Walder and Driedger, 1984). Such debris flows are most likely to occur during periods of hot dry weather or during periods of intense rainfall, and therefore must occur during the summer and fall. They are likely to begin at or above the elevations of glacier termini and extend down valley. This report discusses potential hazards from debris flows induced by hydrologic events such as glacial outburst floods and torrential rain at Mount Rainier and the surrounding area bounded by Mount Rainier National Park. The report also shows, in the accompanying hazard-zonation maps, which areas are likely to be at risk from future such debris flows at Mount Rainier. Lahar hazards related to avalanches of altered rock and to the interactions of hot rock and ice during eruptions are discussed in Scott and Vallance (1995) and Hoblitt et al. (1998) and are not addressed in this report.
Littell, Jeremy; Pederson, Gregory T.; Gray, Stephen T.; Tjoelker, Michael; Hamlet, Alan F.; Woodhouse, Connie A.
2016-01-01
We developed Columbia River streamflow reconstructions using a network of existing, new, and updated tree-ring records sensitive to the main climatic factors governing discharge. Reconstruction quality is enhanced by incorporating tree-ring chronologies where high snowpack limits growth, which better represent the contribution of cool-season precipitation to flow than chronologies from trees positively sensitive to hydroclimate alone. The best performing reconstruction (back to 1609 CE) explains 59% of the historical variability and the longest reconstruction (back to 1502 CE) explains 52% of the variability. Droughts similar to the high-intensity, long-duration low flows observed during the 1920s and 1940s are rare, but occurred in the early 1500s and 1630s-1640s. The lowest Columbia flow events appear to be reflected in chronologies both positively and negatively related to streamflow, implying low snowpack and possibly low warm-season precipitation. High flows of magnitudes observed in the instrumental record appear to have been relatively common, and high flows from the 1680s to 1740s exceeded the magnitude and duration of observed wet periods in the late-19th and 20th Century. Comparisons between the Columbia River reconstructions and future projections of streamflow derived from global climate and hydrologic models show the potential for increased hydrologic variability, which could present challenges for managing water in the face of competing demands
Gashaw, Temesgen; Tulu, Taffa; Argaw, Mekuria; Worqlul, Abeyou W
2018-04-01
Understanding the hydrological response of a watershed to land use/land cover (LULC) changes is imperative for water resources management planning. The objective of this study was to analyze the hydrological impacts of LULC changes in the Andassa watershed for a period of 1985-2015 and to predict the LULC change impact on the hydrological status in year 2045. The hybrid land use classification technique for classifying Landsat images (1985, 2000 and 2015); Cellular-Automata Markov (CA-Markov) for prediction of the 2030 and 2045 LULC states; the Soil and Water Assessment Tool (SWAT) for hydrological modeling were employed in the analyses. In order to isolate the impacts of LULC changes, the LULC maps were used independently while keeping the other SWAT inputs constant. The contribution of each of the LULC classes was examined with the Partial Least Squares Regression (PLSR) model. The results showed that there was a continuous expansion of cultivated land and built-up area, and withdrawing of forest, shrubland and grassland during the 1985-2015 periods, which are expected to continue in the 2030 and 2045 periods. The LULC changes, which had occurred during the period of 1985 to 2015, had increased the annual flow (2.2%), wet seasonal flow (4.6%), surface runoff (9.3%) and water yield (2.4%). Conversely, the observed changes had reduced dry season flow (2.8%), lateral flow (5.7%), groundwater flow (7.8%) and ET (0.3%). The 2030 and 2045 LULC states are expected to further increase the annual and wet season flow, surface runoff and water yield, and reduce dry season flow, groundwater flow, lateral flow and ET. The change in hydrological components is a direct result of the significant transition from the vegetation to non-vegetation cover in the watershed. This suggests an urgent need to regulate the LULC in order to maintain the hydrological balance. Copyright © 2017 Elsevier B.V. All rights reserved.
An approach to measure parameter sensitivity in watershed ...
Hydrologic responses vary spatially and temporally according to watershed characteristics. In this study, the hydrologic models that we developed earlier for the Little Miami River (LMR) and Las Vegas Wash (LVW) watersheds were used for detail sensitivity analyses. To compare the relative sensitivities of the hydrologic parameters of these two models, we used Normalized Root Mean Square Error (NRMSE). By combining the NRMSE index with the flow duration curve analysis, we derived an approach to measure parameter sensitivities under different flow regimes. Results show that the parameters related to groundwater are highly sensitive in the LMR watershed, whereas the LVW watershed is primarily sensitive to near surface and impervious parameters. The high and medium flows are more impacted by most of the parameters. Low flow regime was highly sensitive to groundwater related parameters. Moreover, our approach is found to be useful in facilitating model development and calibration. This journal article describes hydrological modeling of climate change and land use changes on stream hydrology, and elucidates the importance of hydrological model construction in generating valid modeling results.
An Investigation Into the Ecohydrology of Riparian Wetlands Along the Gila River, NM, USA
NASA Astrophysics Data System (ADS)
Samson, J.; Stone, M. C.
2013-12-01
The dynamism of the Gila River, in southwestern New Mexico, USA, has resulted in the creation of a topographically diverse floodplain that supports an array of riparian wetlands. The purpose of this study is to investigate the ecohydrologic and ecohydraulic processes of two of these wetlands, in order to predict their potential response to anthropogenic or natural changes in hydrology. One represents a natural wetland and the other a wetland that exists only as a result of an anthropogenic modification to the river system. A network of 30 wells and 2 weather stations were installed in early 2013 to provide a high resolution of data on surface water and ground water hydrologic conditions. Phreatic surface contour maps were produced to aid in the visualization of sub-surface gradients. Based on these results, an electrical resistivity investigation was conducted to identify paleoflow channels as well as depth to bedrock and other potential areas of interest. These data formed the development of three dimensional ModFlow models that were used to investigate potential future stream flow scenarios on wetland hydrology. The model outputs are being used in tandem with the results of quarterly ecological surveys on vegetation, algae, benthic, and bird communities, to make predictions of potential changes in community structure and function.
Future Visions of the Brahmaputra - Establishing Hydrologic Baseline and Water Resources Context
NASA Astrophysics Data System (ADS)
Ray, P. A.; Yang, Y. E.; Wi, S.; Brown, C. M.
2013-12-01
The Brahmaputra River Basin (China-India-Bhutan-Bangladesh) is on the verge of a transition from a largely free flowing and highly variable river to a basin of rapid investment and infrastructure development. This work demonstrates a knowledge platform for the basin that compiles available data, and develops hydrologic and water resources system models of the basin. A Variable Infiltration Capacity (VIC) model of the Brahmaputra basin supplies hydrologic information of major tributaries to a water resources system model, which routes runoff generated via the VIC model through water infrastructure, and accounts for water withdrawals for agriculture, hydropower generation, municipal demand, return flows and others human activities. The system model also simulates agricultural production and the economic value of water in its various uses, including municipal, agricultural, and hydropower. Furthermore, the modeling framework incorporates plausible climate change scenarios based on the latest projections of changes to contributing glaciers (upstream), as well as changes to monsoon behavior (downstream). Water resources projects proposed in the Brahmaputra basin are evaluated based on their distribution of benefits and costs in the absence of well-defined water entitlements, and relative to a complex regional water-energy-food nexus. Results of this project will provide a basis for water sharing negotiation among the four countries and inform trans-national water-energy policy making.
NASA Astrophysics Data System (ADS)
Zhang, W.; Chen, Y.
2017-12-01
Climate change is expected to significantly alter and intensify the global hydrologic cycle, with the severe consequence of more frequent occurrence of floods and droughts. In this study, we utilize a long-term 1983-2013 hydro-climatic dataset in Illinois collected from multiple sources to characterize historical occurrence of anomalously large floods and drought events. This unique 31-year dataset covering daily and monthly variables of temperature, humidity, radiation, potential evapotranspiration, atmospheric vapor convergence, precipitation, evapotranspiration, soil moisture, groundwater depth and river flow. The analysis is based on the perspective of combined land-atmospheric interactions to understand the mechanisms of flood and drought occurrence due to anomalous precipitation and temperature conditions, and how they propagate through the entire hydrologic cycle from atmospheric water vapor to soil moisture, groundwater and river flow. The sensitivity of hydroclimatic anomalies propagation to climate factors (precipitation, temperature, radiation and humidity) are examined as exemplified from the historically water extremes such as the Mississippi floods in 1993 and 2008 and the Midwest droughts in 1988, 2005 and 2012. The findings from this study bears significant implications in understanding hydrologic response to warming climate, in particular the consensus of projected increasing occurrence of future floods and droughts.
NASA Astrophysics Data System (ADS)
Munevar, A.; Butler, S.; Anderson, R.; Rippole, J.
2008-12-01
While much of the focus on climate change impacts to water resources in the western United States has been related to snow-dominated watersheds, lower elevation basins such as the Colorado River Basin in Texas are dependent on rainfall as the predominant form of precipitation and source of supply. Water management in these basins has evolved to adapt to extreme climatic and hydrologic variability, but the impact of climate change is potentially more acute due to rapid runoff response and subsequent greater soil moisture depletion during the dry seasons. The Lower Colorado River Authority (LCRA) - San Antonio Water System (SAWS) Water Project is being studied to conserve water, develop conjunctive groundwater supplies, and capture excess and unused river flows to meet future water needs for two neighboring regions in Texas. Agricultural and other rural water needs would be met on a more reliable basis in the lower Colorado River Basin through water conservation, surface water development and limited groundwater production. Surface water would be transferred to the San Antonio area to meet municipal needs in quantities still being evaluated. Detailed studies are addressing environmental, agricultural, socioeconomic, and engineering aspects of the project. Key planning activities include evaluating instream flow criteria, water quality, bay freshwater inflow criteria, surface water availability and operating approaches, agricultural conservation measures, groundwater availability, and economics. Models used to estimate future water availability and environmental flow requirements have been developed largely based on historical observed hydrologic data. This is a common approach used by water planners as well as by many regulatory agencies for permit review. In view of the project's 80-yr planning horizon, contractual obligations, comments from the Science Review Panel, and increased public and regulatory awareness of climate change issues, the project team is exploring climate change projections and methods to assess potential impacts over the project's expected life. Following an initial qualitative risk assessment, quantitative climate scenarios were developed based on multiple coupled atmosphere-ocean general circulation model (AOGCM) simulations under a range of global emission scenarios. Projected temperature and precipitation changes were evaluated from 112 downscaled AOGCM projections. A Four scenarios were selected for detailed hydrologic evaluations using the Variable Infiltration Capacity (VIC) macroscale model. A quantile mapping procedure was applied to map future climatological period change statistics onto the long-term natural climate variability in the observed record. Simulated changes in runoff, river flow, evaporation, and evapotranspiration are used to generate adjustments to historical hydrology for assessment of potential changes to surface water availability, river water quality, riverine habitat, and Bay health. Projected temperature, precipitation, and atmospheric CO2 concentrations are used to estimate changes in agricultural demand. Sea level rise scenarios that include trends in Gulf Coast shelf subsidence are combined with changes in inflows to evaluate increased coastal erosion, upland migration of the estuary, and changes to the salinity regime. Results of the scenario-based analyses are being considered in the development of adaptive management strategies for future operations of the system and the proposed project.
Long-term land-use and land cover change and their associated impacts pose critical challenges to sustaining vital hydrological ecosystem services for future generations. In this study, a methodology was developed to characterize hydrologic impacts from future urban growth throug...
Long-term land-use and land cover change and their associated impacts pose critical challenges to sustaining vital hydrological ecosystem services for future generations. In this study, a methodology was developed to characterize hydrologic impacts from future urban growth throug...
Forecasting seasonal hydrologic response in major river basins
NASA Astrophysics Data System (ADS)
Bhuiyan, A. M.
2014-05-01
Seasonal precipitation variation due to natural climate variation influences stream flow and the apparent frequency and severity of extreme hydrological conditions such as flood and drought. To study hydrologic response and understand the occurrence of extreme hydrological events, the relevant forcing variables must be identified. This study attempts to assess and quantify the historical occurrence and context of extreme hydrologic flow events and quantify the relation between relevant climate variables. Once identified, the flow data and climate variables are evaluated to identify the primary relationship indicators of hydrologic extreme event occurrence. Existing studies focus on developing basin-scale forecasting techniques based on climate anomalies in El Nino/La Nina episodes linked to global climate. Building on earlier work, the goal of this research is to quantify variations in historical river flows at seasonal temporal-scale, and regional to continental spatial-scale. The work identifies and quantifies runoff variability of major river basins and correlates flow with environmental forcing variables such as El Nino, La Nina, sunspot cycle. These variables are expected to be the primary external natural indicators of inter-annual and inter-seasonal patterns of regional precipitation and river flow. Relations between continental-scale hydrologic flows and external climate variables are evaluated through direct correlations in a seasonal context with environmental phenomenon such as sun spot numbers (SSN), Southern Oscillation Index (SOI), and Pacific Decadal Oscillation (PDO). Methods including stochastic time series analysis and artificial neural networks are developed to represent the seasonal variability evident in the historical records of river flows. River flows are categorized into low, average and high flow levels to evaluate and simulate flow variations under associated climate variable variations. Results demonstrated not any particular method is suited to represent scenarios leading to extreme flow conditions. For selected flow scenarios, the persistence model performance may be comparable to more complex multivariate approaches, and complex methods did not always improve flow estimation. Overall model performance indicates inclusion of river flows and forcing variables on average improve model extreme event forecasting skills. As a means to further refine the flow estimation, an ensemble forecast method is implemented to provide a likelihood-based indication of expected river flow magnitude and variability. Results indicate seasonal flow variations are well-captured in the ensemble range, therefore the ensemble approach can often prove efficient in estimating extreme river flow conditions. The discriminant prediction approach, a probabilistic measure to forecast streamflow, is also adopted to derive model performance. Results show the efficiency of the method in terms of representing uncertainties in the forecasts.
Shrestha, Manoj K; Recknagel, Friedrich; Frizenschaf, Jacqueline; Meyer, Wayne
2017-07-15
Mediterranean catchments experience already high seasonal variability alternating between dry and wet periods, and are more vulnerable to future climate and land use changes. Quantification of catchment response under future changes is particularly crucial for better water resources management. This study assessed the combined effects of future climate and land use changes on water yield, total nitrogen (TN) and total phosphorus (TP) loads of the Mediterranean Onkaparinga catchment in South Australia by means of the eco-hydrological model SWAT. Six different global climate models (GCMs) under two representative concentration pathways (RCPs) and a hypothetical land use change were used for future simulations. The climate models suggested a high degree of uncertainty, varying seasonally, in both flow and nutrient loads; however, a decreasing trend was observed. Average monthly TN and TP load decreased up to -55% and -56% respectively and were found to be dependent on flow magnitude. The annual and seasonal water yield and nutrient loads may only slightly be affected by envisaged land uses, but significantly altered by intermediate and high emission scenarios, predominantly during the spring season. The combined scenarios indicated the possibility of declining flow in future but nutrient enrichment in summer months, originating mainly from the land use scenario, that may elevate the risk of algal blooms in downstream drinking water reservoir. Hence, careful planning of future water resources in a Mediterranean catchment requires the assessment of combined effects of multiple climate models and land use scenarios on both water quantity and quality. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Qiang; Gu, Xihui; Singh, Vijay P.; Chen, Xiaohong
2015-10-01
Dam-induced hydrological alterations and related ecological problems have been arousing considerable concern from hydrologists, ecologists, and policy-makers. The East River basin in China is the major provider of water resources for mega-cities within the Pearl River Delta and meets 80% of annual water demand of Hong Kong. In this study, ecodeficit and ecosurplus were analyzed to determine the ecological impact of water impoundments. Also, Do and DHRAM were employed to evaluate the degree of alteration of hydrological regimes, and ERHIs were analyzed to evaluate the influence of hydrological alterations on ecological diversity. Results indicate that: (1) the magnitude and frequency of high flows decrease and those of low flows increase due to the regulation of reservoirs; (2) variations of annual ecosurplus are mainly the result of precipitation changes and the annual ecodeficit is significantly influenced by reservoirs. However, ecodeficit and ecosurplus in other seasons, particularly autumn and winter, are more influenced by reservoir regulation; (3) impacts of reservoirs on hydrological regimes and eco-flow regimes are different from one station to another due to different degrees of influence of reservoirs on hydrological processes at different stations. The longer the distance between a reservoir and a hydrological station is, the weaker the influence the water reservoir has on the hydrological processes; (4) ecodeficit and ecosurplus can be accepted in the evaluation of alterations of hydrological processes at annual and seasonal time scales. Results of Shannon Index indicate decreasing biological diversity after the construction of water reservoirs, implying negative impacts of water reservoirs on biological diversity of a river basin and this should arouse considerable human concerns. This study provides a theoretical background for water resources management with consideration of eco-flow variations due to reservoir regulation in other highly-regulated river basins of the globe.
NASA Astrophysics Data System (ADS)
Singh, Shailesh Kumar
2014-05-01
Streamflow forecasts are essential for making critical decision for optimal allocation of water supplies for various demands that include irrigation for agriculture, habitat for fisheries, hydropower production and flood warning. The major objective of this study is to explore the Ensemble Streamflow Prediction (ESP) based forecast in New Zealand catchments and to highlights the present capability of seasonal flow forecasting of National Institute of Water and Atmospheric Research (NIWA). In this study a probabilistic forecast framework for ESP is presented. The basic assumption in ESP is that future weather pattern were experienced historically. Hence, past forcing data can be used with current initial condition to generate an ensemble of prediction. Small differences in initial conditions can result in large difference in the forecast. The initial state of catchment can be obtained by continuously running the model till current time and use this initial state with past forcing data to generate ensemble of flow for future. The approach taken here is to run TopNet hydrological models with a range of past forcing data (precipitation, temperature etc.) with current initial conditions. The collection of runs is called the ensemble. ESP give probabilistic forecasts for flow. From ensemble members the probability distributions can be derived. The probability distributions capture part of the intrinsic uncertainty in weather or climate. An ensemble stream flow prediction which provide probabilistic hydrological forecast with lead time up to 3 months is presented for Rangitata, Ahuriri, and Hooker and Jollie rivers in South Island of New Zealand. ESP based seasonal forecast have better skill than climatology. This system can provide better over all information for holistic water resource management.
Pyne, Matthew I.; Carlisle, Daren M.; Konrad, Christopher P.; Stein, Eric D.
2017-01-01
Regional classification of streams is an early step in the Ecological Limits of Hydrologic Alteration framework. Many stream classifications are based on an inductive approach using hydrologic data from minimally disturbed basins, but this approach may underrepresent streams from heavily disturbed basins or sparsely gaged arid regions. An alternative is a deductive approach, using watershed climate, land use, and geomorphology to classify streams, but this approach may miss important hydrological characteristics of streams. We classified all stream reaches in California using both approaches. First, we used Bayesian and hierarchical clustering to classify reaches according to watershed characteristics. Streams were clustered into seven classes according to elevation, sedimentary rock, and winter precipitation. Permutation-based analysis of variance and random forest analyses were used to determine which hydrologic variables best separate streams into their respective classes. Stream typology (i.e., the class that a stream reach is assigned to) is shaped mainly by patterns of high and mean flow behavior within the stream's landscape context. Additionally, random forest was used to determine which hydrologic variables best separate minimally disturbed reference streams from non-reference streams in each of the seven classes. In contrast to stream typology, deviation from reference conditions is more difficult to detect and is largely defined by changes in low-flow variables, average daily flow, and duration of flow. Our combined deductive/inductive approach allows us to estimate flow under minimally disturbed conditions based on the deductive analysis and compare to measured flow based on the inductive analysis in order to estimate hydrologic change.
NASA Astrophysics Data System (ADS)
Praskievicz, S. J.; Luo, C.
2017-12-01
Classification of rivers is useful for a variety of purposes, such as generating and testing hypotheses about watershed controls on hydrology, predicting hydrologic variables for ungaged rivers, and setting goals for river management. In this research, we present a bottom-up (based on machine learning) river classification designed to investigate the underlying physical processes governing rivers' hydrologic regimes. The classification was developed for the entire state of Alabama, based on 248 United States Geological Survey (USGS) stream gages that met criteria for length and completeness of records. Five dimensionless hydrologic signatures were derived for each gage: slope of the flow duration curve (indicator of flow variability), baseflow index (ratio of baseflow to average streamflow), rising limb density (number of rising limbs per unit time), runoff ratio (ratio of long-term average streamflow to long-term average precipitation), and streamflow elasticity (sensitivity of streamflow to precipitation). We used a Bayesian clustering algorithm to classify the gages, based on the five hydrologic signatures, into distinct hydrologic regimes. We then used classification and regression trees (CART) to predict each gaged river's membership in different hydrologic regimes based on climatic and watershed variables. Using existing geospatial data, we applied the CART analysis to classify ungaged streams in Alabama, with the National Hydrography Dataset Plus (NHDPlus) catchment (average area 3 km2) as the unit of classification. The results of the classification can be used for meeting management and conservation objectives in Alabama, such as developing statewide standards for environmental instream flows. Such hydrologic classification approaches are promising for contributing to process-based understanding of river systems.
Knochenmus, Lari A.; Yobbi, Dann K.
2001-01-01
The coastal springs in Pasco, Hernando, and Citrus Counties, Florida consist of three first-order magnitude springs and numerous smaller springs, which are points of substantial ground-water discharge from the Upper Floridan aquifer. Spring flow is proportional to the water-level altitude in the aquifer and is affected primarily by the magnitude and timing of rainfall. Ground-water levels in 206 Upper Floridan aquifer wells, and surface-water stage, flow, and specific conductance of water from springs at 10 gaging stations were measured to define the hydrologic variability (temporally and spatially) in the Coastal Springs Ground-Water Basin and adjacent parts of Pasco, Hernando, and Citrus Counties. Rainfall at 46 stations and ground-water withdrawals for three counties, were used to calculate water budgets, to evaluate long-term changes in hydrologic conditions, and to evaluate relations among the hydrologic components. Predictive equations to estimate daily spring flow were developed for eight gaging stations using regression techniques. Regression techniques included ordinary least squares and multiple linear regression techniques. The predictive equations indicate that ground-water levels in the Upper Floridan aquifer are directly related to spring flow. At tidally affected gaging stations, spring flow is inversely related to spring-pool altitude. The springs have similar seasonal flow patterns throughout the area. Water-budget analysis provided insight into the relative importance of the hydrologic components expected to influence spring flow. Four water budgets were constructed for small ground-water basins that form the Coastal Springs Ground-Water Basin. Rainfall averaged 55 inches per year and was the only source of inflow to the Basin. The pathways for outflow were evapotranspiration (34 inches per year), runoff by spring flow (8 inches per year), ground-water outflow from upward leakage (11 inches per year), and ground-water withdrawal (2 inches per year). Recharge (rainfall minus evapotranspiration) to the Upper Floridan aquifer consists of vertical leakage through the surficial deposits. Discharge is primarily through springs and diffuse upward leakage that maintains the extensive swamps along the Gulf of Mexico. The ground-water basins had slightly different partitioning of hydrologic components, reflecting variation among the regions. Trends in hydrologic data were identified using nonparametric statistical techniques to infer long-term changes in hydrologic conditions, and yielded mixed results. No trend in rainfall was detected during the past century. No trend in spring flow was detected in 1931-98. Although monotonic trends were not detected, rainfall patterns are naturally variable from month to month and year to year; this variability is reflected in ground-water levels and spring flows. A decreasing trend in ground-water levels was detected in the Weeki Wachee well (1966-98), but the trend was statistically weak. At current ground-water withdrawal rates, there is no discernible affect on ground-water levels and spring flows. Sporadic data records, lack of continuous data, and inconsistent periods of record among the hydrologic components impeded analysis of long-term changes to the hydrologic system and interrelations among components. The ongoing collection of hydrologic data from index sites could provide much needed information to assess the hydrologic factors affecting the quantity and quality of spring flow in the Coastal Springs Ground-Water Basin.
NASA Astrophysics Data System (ADS)
Dierauer, J. R.; Allen, D. M.
2016-12-01
Climate change is expected to lead to an increase in extremes, including daily maximum temperatures, heat waves, and meteorological droughts, which will likely result in shifts in the hydrological drought regime (i.e. the frequency, timing, duration, and severity of drought events). While many studies have used hydrologic models to simulate climate change impacts on water resources, only a small portion of these studies have analyzed impacts on low flows and/or hydrological drought. This study is the first to use a fully coupled groundwater-surface water (gw-sw) model to study climate change impacts on hydrological drought. Generic catchment-scale gw-sw models were created for each of the six major eco-regions in British Columbia using the MIKE-SHE/MIKE-11 modelling code. Daily precipitation and temperature time series downscaled using bias-correction spatial disaggregation for the simulated period of 1950-2100 were obtained from the Pacific Climate Institute Consortium (PCIC). Streamflow and groundwater drought events were identified from the simulated time series for each catchment model using the moving window quantile threshold. The frequency, timing, duration, and severity of drought events were compared between the reference period (1961-2000) and two future time periods (2031-2060, 2071-2100). Results show how hydrological drought regimes across the different British Columbia eco-regions will be impacted by climate change.
The influence of regional hydrology on nesting behavior and nest fate of the American alligator
Ugarte, Cristina A.; Bass, Oron L.; Nuttle, William; Mazzotti, Frank J.; Rice, Kenneth G.; Fujisaki, Ikuko; Whelan, Kevin R.T.
2013-01-01
Hydrologic conditions are critical to the nesting behavior and reproductive success of crocodilians. In South Florida, USA, growing human settlement has led to extensive surface water management and modification of historical water flows in the wetlands, which have affected regional nesting of the American alligator (Alligator mississippiensis). Although both natural and anthropogenic factors are considered to determine hydrologic conditions, the aspects of hydrological patterns that affect alligator nest effort, flooding (partial and complete), and failure (no hatchling) are unclear. We deconstructed annual hydrological patterns using harmonic models that estimated hydrological matrices including mean, amplitude, timing of peak, and periodicity of surface water depth and discharge and examined their effects on alligator nesting using survey data from Shark Slough, Everglades National Park, from 1985 to 2005. Nest effort increased in years with higher mean and lesser periodicity of water depth. A greater proportion of nests were flooded and failed when peak discharge occurred earlier in the year. Also, nest flooding rates were greater in years with greater periodicity of water depth, and nest failure rate was greater when mean discharge was higher. This study guides future water management decisions to mitigate negative impacts on reproduction of alligators and provides wildlife managers with a tool for assessing and modifying annual water management plans to conserve crocodilians and other wetland species.
An intermediate-scale model for thermal hydrology in low-relief permafrost-affected landscapes
Jan, Ahmad; Coon, Ethan T.; Painter, Scott L.; ...
2017-07-10
Integrated surface/subsurface models for simulating the thermal hydrology of permafrost-affected regions in a warming climate have recently become available, but computational demands of those new process-rich simu- lation tools have thus far limited their applications to one-dimensional or small two-dimensional simulations. We present a mixed-dimensional model structure for efficiently simulating surface/subsurface thermal hydrology in low-relief permafrost regions at watershed scales. The approach replaces a full three-dimensional system with a two-dimensional overland thermal hydrology system and a family of one-dimensional vertical columns, where each column represents a fully coupled surface/subsurface thermal hydrology system without lateral flow. The system is then operatormore » split, sequentially updating the overland flow system without sources and the one-dimensional columns without lateral flows. We show that the app- roach is highly scalable, supports subcycling of different processes, and compares well with the corresponding fully three-dimensional representation at significantly less computational cost. Those advances enable recently developed representations of freezing soil physics to be coupled with thermal overland flow and surface energy balance at scales of 100s of meters. Furthermore developed and demonstrated for permafrost thermal hydrology, the mixed-dimensional model structure is applicable to integrated surface/subsurface thermal hydrology in general.« less
NASA Astrophysics Data System (ADS)
Jarihani, B.
2015-12-01
Digital Elevation Models (DEMs) that accurately replicate both landscape form and processes are critical to support modeling of environmental processes. Pre-processing analysis of DEMs and extracting characteristics of the watershed (e.g., stream networks, catchment delineation, surface and subsurface flow paths) is essential for hydrological and geomorphic analysis and sediment transport. This study investigates the status of the current remotely-sensed DEMs in providing advanced morphometric information of drainage basins particularly in data sparse regions. Here we assess the accuracy of three available DEMs: (i) hydrologically corrected "H-DEM" of Geoscience Australia derived from the Shuttle Radar Topography Mission (SRTM) data; (ii) the Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model (ASTER GDEM) version2 1-arc-second (~30 m) data; and (iii) the 9-arc-second national GEODATA DEM-9S ver3 from Geoscience Australia and the Australian National University. We used ESRI's geospatial data model, Arc Hydro and HEC-GeoHMS, designed for building hydrologic information systems to synthesize geospatial and temporal water resources data that support hydrologic modeling and analysis. A coastal catchment in northeast Australia was selected as the study site where very high resolution LiDAR data are available for parts of the area as reference data to assess the accuracy of other lower resolution datasets. This study provides morphometric information for drainage basins as part of the broad research on sediment flux from coastal basins to Great Barrier Reef, Australia. After applying geo-referencing and elevation corrections, stream and sub basins were delineated for each DEM. Then physical characteristics for streams (i.e., length, upstream and downstream elevation, and slope) and sub-basins (i.e., longest flow lengths, area, relief and slopes) were extracted and compared with reference datasets from LiDAR. Results showed that, in the absence of high-precision and high resolution DEM data, ASTER GDEM or SRTM DEM can be used to extract common morphometric relationship which are widely used for hydrological and geomorphological modelling.
Nishikawa, Tracy
2013-01-01
The Santa Rosa Plain is home to approximately half of the population of Sonoma County, California, and faces growth in population and demand for water. Water managers are confronted with the challenge of meeting the increasing water demand with a combination of water sources, including local groundwater, whose future availability could be uncertain. To meet this challenge, water managers are seeking to acquire the knowledge and tools needed to understand the likely effects of future groundwater development in the Santa Rosa Plain and to identify efficient strategies for surface- and groundwater management that will ensure the long-term viability of the water supply. The U.S. Geological Survey, in cooperation with the Sonoma County Water Agency and other stakeholders in the area (cities of Cotati, Rohnert Park, Santa Rosa, and Sebastopol, town of Windsor, Cal-American Water Company, and the County of Sonoma), undertook this study to characterize the hydrology of the Santa Rosa Plain and to develop tools to better understand and manage the groundwater system. The objectives of the study are: (1) to develop an updated assessment of the hydrogeology and geochemistry of the Santa Rosa Plain; (2) to develop a fully coupled surface-water and groundwater-flow model for the Santa Rosa Plain watershed; and (3) to evaluate the potential hydrologic effects of alternative groundwater-management strategies for the basin. The purpose of this report is to describe the surface-water and groundwater hydrology, hydrogeology, and water-quality characteristics of the Santa Rosa Plain watershed and to develop a conceptual model of the hydrologic system in support of the first objective. The results from completing the second and third objectives will be described in a separate report.
NASA Astrophysics Data System (ADS)
Hartmann, Andreas; Gleeson, Tom; Wada, Yoshihide; Wagener, Thorsten
2017-04-01
Karst aquifers in Europe are an important source of fresh water contributing up to half of the total drinking water supply in some countries. Karstic groundwater recharge is one of the most important components of the water balance of karst systems as it feeds the karst aquifers. Presently available large-scale hydrological models do not consider karst heterogeneity adequately. Projections of current and potential future groundwater recharge of Europe's karst aquifers are therefore unclear. In this study we compare simulations of present (1991-2010) and future (2080-2099) recharge using two different models to simulate groundwater recharge processes. One model includes karst processes (subsurface heterogeneity, lateral flow and concentrated recharge), while the other is based on the conceptual understanding of common hydrological systems (homogeneous subsurface, saturation excess overland flow). Both models are driven by the bias-corrected 5 GCMs of the ISI-MIP project (RCP8.5). To further assess sensitivity of groundwater recharge to climate variability, we calculate the elasticity of recharge rates to annual precipitation, temperature and average intensity of rainfall events, which is the median change of recharge that corresponds to the median change of these climate variables within the present and future time period, respectively. Our model comparison shows that karst regions over Europe have enhanced recharge rates with greater inter-annual variability compared to those with more homogenous subsurface properties. Furthermore, the heterogeneous representation shows stronger elasticity concerning climate variability than the homogeneous subsurface representation. This difference tends to increase towards the future. Our results suggest that water management in regions with heterogeneous subsurface can expect a higher water availability than estimated by most of the current large-scale simulations, while measures should be taken to prepare for increasingly variable groundwater recharge rates.
NASA Astrophysics Data System (ADS)
Zhang, Qiang; Zhang, Zongjiao; Shi, Peijun; Singh, Vijay P.; Gu, Xihui
2018-01-01
The Yellow River is the second largest river in China and is the important source for water supply in the northwestern and northern China. It is often regarded as the mother river of China. Owing to climatic change and intensifying human activities, such as increasing withdrawal of water for meeting growing agricultural irrigation needs since 1986, the flow of Yellow River has decreased, with serious impacts on the ecological environment. Using multiple hydrological indicators and Flow Duration Curve (DFC)-based ecodeficit and ecosurplus, this study investigates the impact of hydrological alterations, such as the impact of water reservoirs or dams, on downstream ecological instream flow. Results indicate that: (1) due to the impoundment and hydrological regulations of water reservoirs, occurrence rates and magnitudes of high flow regimes have decreased and the decrease is also found in the magnitudes of low flow events. These changes tend to be more evident from the upper to the lower Yellow River basin; (2) human activities tend to enhance the instream flow variability, particularly after the 1980s;(3) the ecological environment in different parts of the Yellow River basin is under different degrees of ecological risk. In general, lower to higher ecological risk can be detected due to hydrological alterations from the upper to the lower Yellow River basin. This shows that conservation of ecological environment and river health is facing a serious challenge in the lower Yellow River basin; (4) ecological instream flow indices, such as ecodeficit and ecosurplus, and IHA32 hydrological indicators are in strong relationships, suggesting that ecodeficit and ecosurplus can be regarded as appropriate ecological indicators for developing measures for mitigating the adverse impact of human activities on the conservation of ecological environment in the Yellow River basin.
Scaling Stream Flow Response to Forest Disturbance: the SID Project
NASA Astrophysics Data System (ADS)
Buttle, J. M.; Beall, F. D.; Creed, I. F.; Gordon, A. M.; Mackereth, R.; McLaughlin, J. W.; Sibley, P. K.
2004-05-01
We do not have a good understanding of the hydrologic implications of forest harvesting in Ontario, either for current or alternative management approaches. Attempts to address these implications face a three-fold problem: data on hydrologic response to forest disturbance in Ontario are lacking; most studies of these responses have been in regions with forest cover and hydrologic conditions that differ from the Ontario context; and these studies have generally been conducted at relatively small scales (<1 km2). It is generally assumed that hydrologic changes induced by forest disturbance should diminish with increasing scale due to the buffering capacity of large drainage basins. Recent modeling exercises and reanalysis of paired-basin results call this widespread applicability of this assumption into question, with important implications for assessing the cumulative impacts of forest disturbance on basin stream flow. The SID (Scalable Indicators of Disturbance) project combines stream flow monitoring across basin scales with the RHESSys modeling framework to identify forest disturbance impacts on stream flow characteristics in Ontario's major forest ecozones. As a precursor to identifying stream flow response to forest disturbance, we are examining the relative control of basin geology, topography, typology and topology on stream flow characteristics under undisturbed conditions. This will assist in identifying the dominant hydrologic processes controlling basin stream flow that must be incorporated into the RHESSys model framework in order to emulate forest disturbance and its hydrologic impacts. We present preliminary results on stream flow characteristics in a low-relief boreal forest landscape, and explore how the dominant processes influencing these characteristics change with basin scale in this landscape under both reference and disturbance conditions.
NASA Astrophysics Data System (ADS)
Zhang, Zhicai; Chen, Xi; Wang, Jinli
2016-04-01
Karst hydrodynamic behaviour is complex because of special karst geology and geomorphology. The permeable multi-media consisting of soil, epikarst fractures and conduits has a key influence on karst hydrological processes. Spatial heterogeneity is high due to special landforms of vertical shafts, caves and sinkholes, which leads to a high dynamic variability of hydrological processes in space and time, and frequent exchange of surface water and groundwater. Underground water in different reach were sampled over the 1996-2001 in a karst catchment of Houzhai, with 81km2, located in Guizhou province of southwest China. Samples were analysed for water temperature, pH, conductivity and four solute concentrations. The monitoring sought to assess the combined utility of flow discharge and natural geochemical tracers in upscaling flow structure understanding in karst area. Based on previous researches and field investigation, the catchment characteristics were explored with the use of a GIS. Both flow discharge and solute concentrations exhibited clear seasonal patterns at every groundwater sampling sites. The variations of flow and chemistry are more dramatic in upstream site with less soil cover and more sinkholes development, which affect the hydrological pathways significantly. There was clear evidence that the differences in geology and soil were the main controls on hydrology and flow chemistry, which was spatially variable in different sites of underground channel. Conceptual flow structures in main hydrological response units for different area in the catchment were developed according to the variation of discharge and flow chemistry.
Barker, R.A.; Pernik, Maribeth
1994-01-01
The Southeastern Coastal Plain aquifer system is a coastward-sloping, wedge-shaped sand and gravel reservoir exposed in outcrop to a humid climate and drained by an extensive surface-water network. Ground-water pumpage has increased to about 765 cubic feet per second since 1900, causing water-level declines of more than 150 feet in places, while base flow to major streams has decreased about 350 cubic feet per second. The water-level declines and adjustments in recharge and discharge are not expected to seriously restrict future ground-water development.
USDA-ARS?s Scientific Manuscript database
Long-term land-use and land cover change and their associated impacts pose critical challenges to sustaining vital hydrological ecosystem services for future generations. In this study, a methodology was developed to characterize potential hydrologic impacts from future urban growth through time. Fu...
Long-term land-use and land cover change and their associated impacts pose critical challenges to sustaining vital hydrological ecosystem services for future generations. In this study, a methodology was developed to characterize potential hydrologic impacts from future urban gro...
A Hybrid of Optical Remote Sensing and Hydrological Modeling Improves Water Balance Estimation
NASA Astrophysics Data System (ADS)
Gleason, Colin J.; Wada, Yoshihide; Wang, Jida
2018-01-01
Declining gauging infrastructure and fractious water politics have decreased available information about river flows globally. Remote sensing and water balance modeling are frequently cited as potential solutions, but these techniques largely rely on these same in-decline gauge data to make accurate discharge estimates. A different approach is therefore needed, and we here combine remotely sensed discharge estimates made via at-many-stations hydraulic geometry (AMHG) and the PCR-GLOBWB hydrological model to estimate discharge over the Lower Nile. Specifically, we first estimate initial discharges from 87 Landsat images and AMHG (1984-2015), and then use these flow estimates to tune the model, all without using gauge data. The resulting tuned modeled hydrograph shows a large improvement in flow magnitude: validation of the tuned monthly hydrograph against a historical gauge (1978-1984) yields an RMSE of 439 m3/s (40.8%). By contrast, the original simulation had an order-of-magnitude flow error. This improvement is substantial but not perfect: tuned flows have a 1-2 month wet season lag and a negative base flow bias. Accounting for this 2 month lag yields a hydrograph RMSE of 270 m3/s (25.7%). Thus, our results coupling physical models and remote sensing is a promising first step and proof of concept toward future modeling of ungauged flows, especially as developments in cloud computing for remote sensing make our method easily applicable to any basin. Finally, we purposefully do not offer prescriptive solutions for Nile management, and rather hope that the methods demonstrated herein can prove useful to river stakeholders in managing their own water.
The Importance of Studying Past Extreme Floods to Prepare for Uncertain Future Extremes
NASA Astrophysics Data System (ADS)
Burges, S. J.
2016-12-01
Hoyt and Langbein, 1955 in their book `Floods' wrote: " ..meteorologic and hydrologic conditions will combine to produce superfloods of unprecedented magnitude. We have every reason to believe that in most rivers past floods may not be an accurate measure of ultimate flood potentialities. It is this superflood with which we are always most concerned". I provide several examples to offer some historical perspective on assessing extreme floods. In one example, flooding in the Miami Valley, OH in 1913 claimed 350 lives. The engineering and socio-economic challenges facing the Morgan Engineering Co in how to mitigate against future flood damage and loss of life when limited information was available provide guidance about ways to face an uncertain hydroclimate future, particularly one of a changed climate. A second example forces us to examine mixed flood populations and illustrates the huge uncertainty in assigning flood magnitude and exceedance probability to extreme floods in such cases. There is large uncertainty in flood frequency estimates; knowledge of the total flood hydrograph, not the peak flood flow rate alone, is what is needed for hazard mitigation assessment or design. Some challenges in estimating the complete flood hydrograph in an uncertain future climate, including demands on hydrologic models and their inputs, are addressed.
NASA Astrophysics Data System (ADS)
Vega-Jácome, Fiorella; Lavado-Casimiro, Waldo Sven; Felipe-Obando, Oscar Gustavo
2018-04-01
Hydrological changes were assessed considering possible changes in precipitation and regulation or hydraulic diversion projects developed in the basin since 1960s in terms of improving water supply of the Rimac River, which is the main source of fresh water of Peru's capital. To achieve this objective, a trend analysis of precipitation and flow series was assessed using the Mann-Kendall test. Subsequently, the Eco-flow and Indicators of Hydrologic Alteration (IHA) methods were applied for the characterization and quantification of the hydrological change in the basin, considering for the analysis, a natural period (1920-1960) and an altered period (1961-2012). Under this focus, daily hydrologic information of the "Chosica R-2" station (from 1920 to 2013) and monthly rainfall information related to 14 stations (from 1964 to 2013) were collected. The results show variations in the flow seasonality of the altered period in relation to the natural period and a significant trend to increase (decrease) minimum flows (maximum flows) during the analyzed period. The Eco-flow assessment shows a predominance of Eco-deficit from December to May (rainy season), strongly related to negative anomalies of precipitation. In addition, a predominance of Eco-surplus was found from June to November (dry season) with a behavior opposite to precipitation, attributed to the regulations and diversion in the basin during that period. In terms of magnitude, the IHA assessment identified an increase of 51% in the average flows during the dry season and a reduction of 10% in the average flows during the rainy season (except December and May). Furthermore, the minimum flows increased by 35% with shorter duration and frequency, and maximum flows decreased by 29% with more frequency but less duration. Although there are benefits of regulation and diversion for developing anthropic activities, the fact that hydrologic alterations may result in significant modifications in the Rimac River ecosystem must be taken into account.
Hydrologic characteristics of freshwater mussel habitat: novel insights from modeled flows
Drew, C. Ashton; Eddy, Michele; Kwak, Thomas J.; Cope, W. Gregory; Augspurger, Tom
2018-01-01
The ability to model freshwater stream habitat and species distributions is limited by the spatially sparse flow data available from long-term gauging stations. Flow data beyond the immediate vicinity of gauging stations would enhance our ability to explore and characterize hydrologic habitat suitability. The southeastern USA supports high aquatic biodiversity, but threats, such as landuse alteration, climate change, conflicting water-resource demands, and pollution, have led to the imperilment and legal protection of many species. The ability to distinguish suitable from unsuitable habitat conditions, including hydrologic suitability, is a key criterion for successful conservation and restoration of aquatic species. We used the example of the critically endangered Tar River Spinymussel (Parvaspina steinstansana) and associated species to demonstrate the value of modeled flow data (WaterFALL™) to generate novel insights into population structure and testable hypotheses regarding hydrologic suitability. With ordination models, we: 1) identified all catchments with potentially suitable hydrology, 2) identified 2 distinct hydrologic environments occupied by the Tar River Spinymussel, and 3) estimated greater hydrological habitat niche breadth of assumed surrogate species associates at the catchment scale. Our findings provide the first demonstrated application of complete, continuous, regional modeled hydrologic data to freshwater mussel distribution and management. This research highlights the utility of modeling and data-mining methods to facilitate further exploration and application of such modeled environmental conditions to inform aquatic species management. We conclude that such an approach can support landscape-scale management decisions that require spatial information at fine resolution (e.g., enhanced National Hydrology Dataset catchments) and broad extent (e.g., multiple river basins).
NASA Astrophysics Data System (ADS)
Neill, A. J.; Tetzlaff, D.; Strachan, N.; Soulsby, C.
2016-12-01
The non-linearities of runoff generation processes are strongly influenced by the connectivity of hillslopes and channel networks, particularly where overland flow is an important runoff mechanism. Despite major advances in understanding hydrological connectivity and runoff generation, the role of connectivity in the contamination of potable water supplies by faecal pathogens from grazing animals remains unclear. This is a water quality issue with serious implications for public health. Here, we sought to understand the dynamics of hydrological connectivity, flow paths and linked faecal pathogen transport in a montane catchment in Scotland with high deer populations. We firstly calibrated, within an uncertainty framework, a parsimonious tracer-aided hydrological model to daily discharge and stream isotope data. The model, developed on the basis of past empirical and tracer studies, conceptualises the catchment as three interacting hydrological source areas (dynamic saturation zone, dynamic hillslope, and groundwater) for which water fluxes, water ages and storage-based connectivity can be simulated. We next coupled several faecal indicator organism (FIO; a common indicator of faecal pathogen contamination) behaviour and transport schemes to the robust hydrological models. A further calibration was then undertaken based on the ability of each coupled model to simulate daily FIO concentrations. This gave us a final set of coupled behavioural models from which we explored how in-stream FIO dynamics could be related to the changing connectivity between the three hydrological source areas, flow paths, water ages and consequent dominant runoff generation processes. We found that high levels of FIOs were transient and episodic, and strongly correlated with periods of high connectivity through overland flow. This non-linearity in connectivity and FIO flux was successfully captured within our dynamic, tracer-aided hydrological model.
NASA Astrophysics Data System (ADS)
Patnaik, S.; Biswal, B.; Sharma, V. C.
2017-12-01
River flow varies greatly in space and time, and the single biggest challenge for hydrologists and ecologists around the world is the fact that most rivers are either ungauged or poorly gauged. Although it is relatively easier to predict long-term average flow of a river using the `universal' zero-parameter Budyko model, lack of data hinders short-term flow prediction at ungauged locations using traditional hydrological models as they require observed flow data for model calibration. Flow prediction in ungauged basins thus requires a dynamic 'zero-parameter' hydrological model. One way to achieve this is to regionalize a dynamic hydrological model's parameters. However, a regionalization method based zero-parameter dynamic hydrological model is not `universal'. An alternative attempt was made recently to develop a zero-parameter dynamic model by defining an instantaneous dryness index as a function of antecedent rainfall and solar energy inputs with the help of a decay function and using the original Budyko function. The model was tested first in 63 US catchments and later in 50 Indian catchments. The median Nash-Sutcliffe efficiency (NSE) was found to be close to 0.4 in both the cases. Although improvements need to be incorporated in order to use the model for reliable prediction, the main aim of this study was to rather understand hydrological processes. The overall results here seem to suggest that the dynamic zero-parameter Budyko model is `universal.' In other words natural catchments around the world are strikingly similar to each other in the way they respond to hydrologic inputs; we thus need to focus more on utilizing catchment similarities in hydrological modelling instead of over parameterizing our models.
Quantitative and qualitative synthesis of socio-hydrological research
NASA Astrophysics Data System (ADS)
Xu, L.; Gober, P.; Wheater, H. S.; Kajikawa, Y.
2017-12-01
The challenge of climate change adaptation has raised awareness of the feedbacks and interconnections in complex human-natural coupled water systems. This has reinforced the call for a socio-hydrological approach to better understand, and represent in models, the associated system dynamics. Such models can potentially provide the tools to link knowledge about complex water systems to decision-making and policy frameworks. Socio-hydrology, as the subfield of human-natural coupled systems analysis, has been dramatically developed in the past few years. The purpose of this study is to empirically examine work that has been framed under the umbrella of socio-hydrology, to provide insights into the participants and their disciplinary perspectives, and to draw conclusions about where the field is headed. In doing so, we used a combined quantitative and qualitative approach to synthesise current knowledge of socio-hydrology and to propose some promising future directions in this subfield of water sciences. The general statistics of the existing literature showed that socio-hydrological research has become an emerging topic and is drawing more concern and engagement of hydrologists. However, the participation of social scientists is inadequate and greater cross-disciplinary integration is desirable. Current concerns in this subfield of water research centre on two basic challenges: (1) the need to embrace the social dimensions of water-related risks, and (2) the importance of interactions and feedbacks in dynamic socio-hydrological systems. A third challenge identified here relates to the large-scale implications of 1) and 2) above, i.e. virtual water flows as a mechanism to track the human use of water at the global scale. Accordingly, we propose five potential directions with regard to socio-hydrological models, interdisciplinary collaboration and transdisciplinary studies, the science-policy interface, resilience in socio-hydrological systems, and data sharing for human-water system studies.
NASA Astrophysics Data System (ADS)
Schellekens, Jaap; van Gils, Jos; Christophe, Christophe; Sperna-Weiland, Frederiek; Winsemius, Hessel
2013-04-01
The ability to quickly link a complete water quality model to any distributed hydrological model can be of great value. It provides the hydrological modeller with more information on the performance of the model by being able to add particle tracing and independent mass balance calculations to an existing distributed hydrological model. It also allows for full catchment water quality calculations forced by emissions to different hydrological compartments, taking into account the relevant processes in the different compartments of the hydrological model. A combined distributed hydrological model and hydrochemical model (Delwaq) have been combined within the modeling framework OpenStreams to model large scale hydrological processes in the Rhine basin upstream of the Dutch border at Lobith. Several models have been setup to evaluate (1) the origin of high and low flows in the Rhine basin based on subcatchment contribution and (2) the contribution of different land covers to the total flow with special reference to urban land cover. In addition (3) the relative share of fast and slow runoff components in the total river discharge has been quantified, as well as the age of these two fractions, both as a function of time. Finally (4) the transmission of a pollutant released in infiltrating water and undergoing sorption has been simulated, as a first test for implementing full water quality modelling. The results of a thirty-five year run using daily time steps for 1975 to 2010 were analysed for monthly average contribution to the total flow of each subcatchment and the different land cover types both for average flow conditions and for the top ten and bottom ten flow percentiles. Furthermore, a number of high and low flow events have been analysed in detail. They reveal the large contribution of the basin area upstream of Basel to the dry season flow, especially during the driest summers. Flood conditions in the basin have a more varied origin with the Moselle being the main contributor. The amount of urban land cover (6.7%) generated a fairly large amount of (quick) runoff. In times up to 21 % of the flow at Lobith is generated in urban areas. The location of urban areas (in general close to the river) in combination with the associated impermeable surfaces most probably cause the relatively large contribution of urban areas. The fast runoff fraction at Lobith has an average age between 5 and 25 days, depending on the hydrology within the year, while the slow runoff fraction shows an average age between 300 and 600 days, again depending on the hydrology within the year. The time needed to flush out 90% of the total volume of water from the basin is about 20 years.
One-Water Hydrologic Flow Model (MODFLOW-OWHM)
Hanson, Randall T.; Boyce, Scott E.; Schmid, Wolfgang; Hughes, Joseph D.; Mehl, Steffen W.; Leake, Stanley A.; Maddock, Thomas; Niswonger, Richard G.
2014-01-01
The One-Water Hydrologic Flow Model (MF-OWHM) is a MODFLOW-based integrated hydrologic flow model (IHM) that is the most complete version, to date, of the MODFLOW family of hydrologic simulators needed for the analysis of a broad range of conjunctive-use issues. Conjunctive use is the combined use of groundwater and surface water. MF-OWHM allows the simulation, analysis, and management of nearly all components of human and natural water movement and use in a physically-based supply-and-demand framework. MF-OWHM is based on the Farm Process for MODFLOW-2005 (MF-FMP2) combined with Local Grid Refinement (LGR) for embedded models to allow use of the Farm Process (FMP) and Streamflow Routing (SFR) within embedded grids. MF-OWHM also includes new features such as the Surface-water Routing Process (SWR), Seawater Intrusion (SWI), and Riparian Evapotrasnpiration (RIP-ET), and new solvers such as Newton-Raphson (NWT) and nonlinear preconditioned conjugate gradient (PCGN). This IHM also includes new connectivities to expand the linkages for deformation-, flow-, and head-dependent flows. Deformation-dependent flows are simulated through the optional linkage to simulated land subsidence with a vertically deforming mesh. Flow-dependent flows now include linkages between the new SWR with SFR and FMP, as well as connectivity with embedded models for SFR and FMP through LGR. Head-dependent flows now include a modified Hydrologic Flow Barrier Package (HFB) that allows optional transient HFB capabilities, and the flow between any two layers that are adjacent along a depositional or erosional boundary or displaced along a fault. MF-OWHM represents a complete operational hydrologic model that fully links the movement and use of groundwater, surface water, and imported water for consumption by irrigated agriculture, but also of water used in urban areas and by natural vegetation. Supply and demand components of water use are analyzed under demand-driven and supply-constrained conditions. From large- to small-scale settings, MF-OWHM has the unique set of capabilities to simulate and analyze historical, present, and future conjunctive-use conditions. MF-OWHM is especially useful for the analysis of agricultural water use where few data are available for pumpage, land use, or agricultural information. The features presented in this IHM include additional linkages with SFR, SWR, Drain-Return (DRT), Multi-Node Wells (MNW1 and MNW2), and Unsaturated-Zone Flow (UZF). Thus, MF-OWHM helps to reduce the loss of water during simulation of the hydrosphere and helps to account for “all of the water everywhere and all of the time.” In addition to groundwater, surface-water, and landscape budgets, MF-OWHM provides more options for observations of land subsidence, hydraulic properties, and evapotranspiration (ET) than previous models. Detailed landscape budgets combined with output of estimates of actual evapotranspiration facilitates linkage to remotely sensed observations as input or as additional observations for parameter estimation or water-use analysis. The features of FMP have been extended to allow for temporally variable water-accounting units (farms) that can be linked to land-use models and the specification of both surface-water and groundwater allotments to facilitate sustainability analysis and connectivity to the Groundwater Management Process (GWM). An example model described in this report demonstrates the application of MF-OWHM with the addition of land subsidence and a vertically deforming mesh, delayed recharge through an unsaturated zone, rejected infiltration in a riparian area, changes in demand caused by deficiency in supply, and changes in multi-aquifer pumpage caused by constraints imposed through the Farm Process and the MNW2 Package, and changes in surface water such as runoff, streamflow, and canal flows through SFR and SWR linkages.
Wicklein, Shaun M.; Schiffer, Donna M.
2002-01-01
Hydrologic and water-quality data have been collected within the 177-square-mile Reedy Creek, Florida, watershed, beginning as early as 1939, but the data have not been used to evaluate relations among land use, hydrology, and water quality. A model of the Reedy Creek watershed was developed and applied to the period January 1990 to December 1995 to provide a computational foundation for evaluating the effects of future land-use changes on hydrology and water quality in the watershed. The Hydrological Simulation Program-Fortran (HSPF) model was used to simulate hydrology and water quality of runoff for pervious land areas, impervious land areas, and stream reaches. Six land-use types were used to characterize the hydrology and water quality of pervious and impervious land areas in the Reedy Creek watershed: agriculture, rangeland, forest, wetlands, rapid infiltration basins, and urban areas. Hydrologic routing and water-quality reactions were simulated to characterize hydrologic and water-quality processes and the movement of runoff and its constituents through the main stream channels and their tributaries. Because of the complexity of the stream system within the Reedy Creek Improvement District (RCID) (hydraulic structures, retention ponds) and the anticipated difficulty of modeling the system, an approach of calibrating the model parameters for a subset of the gaged watersheds and confirming the usefulness of the parameters by simulating the remainder of the gaged sites was selected for this study. Two sub-watersheds (Whittenhorse Creek and Davenport Creek) were selected for calibration because both have similar land use to watersheds within the RCID (with the exception of urban areas). Given the lack of available rainfall data, the hydrologic calibration of the Whittenhorse Creek and Davenport Creek sub-watersheds was considered acceptable (for monthly data, correlation coefficients, 0.86 and 0.88, and coefficients of model-fit efficiency, 0.72 and 0.74, respectively). The hydrologic model was tested by applying the parameter sets developed for Whittenhorse Creek and Davenport Creek to other land areas within the Reedy Creek watershed, and by comparing the simulated results to observed data sets for Reedy Creek near Vineland, Bonnet Creek near Vineland, and Reedy Creek near Loughman. The hydrologic model confirmation for Reedy Creek near Vineland (correlation coefficient, 0.91, and coefficient of model fit efficiency, 0.78, for monthly flows) was acceptable. Flows for Bonnet Creek near Vineland were substantially under simulated. Consideration of the ground-water contribution to Bonnet Creek could improve the water balance simulation for Bonnet Creek near Vineland. On longer time scales (monthly or over the 72-month simulation period), simulated discharges for Reedy Creek near Loughman agreed well with observed data (correlation coefficient, 0.88). For monthly flows the coefficient of model-fit efficiency was 0.77. On a shorter time scale (less than a month), however, storm volumes were greatly over simulated and low flows (less than 8 cubic feet per second) were greatly under simulated. A primary reason for the poor results at low flows is the diversion of an unknown amount of water from the RCID at the Bonnet Creek near Kissimmee site. Selection of water-quality constituents for simulation was based primarily on the availability of water-quality data. Dissolved oxygen, nitrogen, and phosphorus species were simulated. Representation of nutrient cycling in HSPF also required simulation of biochemical oxygen demand and phytoplankton populations. The correlation coefficient for simulated and observed daily mean dissolved oxygen concentration values at Reedy Creek near Vineland was 0.633. Simulated time series of total phosphorus, phosphate, ammonia nitrogen, and nitrate nitrogen generally agreed well with periodically observed values for the Whittenhorse Creek and Davenport Creek sites. Simulated water-quality c
Whitehead, P G; Sarkar, S; Jin, L; Futter, M N; Caesar, J; Barbour, E; Butterfield, D; Sinha, R; Nicholls, R; Hutton, C; Leckie, H D
2015-06-01
This study investigates the potential impacts of future climate and socio-economic change on the flow and nitrogen fluxes of the Ganga river system. This is the first basin scale water quality study for the Ganga considering climate change at 25 km resolution together with socio-economic scenarios. The revised dynamic, process-based INCA model was used to simulate hydrology and water quality within the complex multi-branched river basins. All climate realizations utilized in the study predict increases in temperature and rainfall by the 2050s with significant increase by the 2090s. These changes generate associated increases in monsoon flows and increased availability of water for groundwater recharge and irrigation, but also more frequent flooding. Decreased concentrations of nitrate and ammonia are expected due to increased dilution. Different future socio-economic scenarios were found to have a significant impact on water quality at the downstream end of the Ganga. A less sustainable future resulted in a deterioration of water quality due to the pressures from higher population growth, land use change, increased sewage treatment discharges, enhanced atmospheric nitrogen deposition, and water abstraction. However, water quality was found to improve under a more sustainable strategy as envisaged in the Ganga clean-up plan.
Macroscale hydrologic modeling of ecologically relevant flow metrics
NASA Astrophysics Data System (ADS)
Wenger, Seth J.; Luce, Charles H.; Hamlet, Alan F.; Isaak, Daniel J.; Neville, Helen M.
2010-09-01
Stream hydrology strongly affects the structure of aquatic communities. Changes to air temperature and precipitation driven by increased greenhouse gas concentrations are shifting timing and volume of streamflows potentially affecting these communities. The variable infiltration capacity (VIC) macroscale hydrologic model has been employed at regional scales to describe and forecast hydrologic changes but has been calibrated and applied mainly to large rivers. An important question is how well VIC runoff simulations serve to answer questions about hydrologic changes in smaller streams, which are important habitat for many fish species. To answer this question, we aggregated gridded VIC outputs within the drainage basins of 55 streamflow gages in the Pacific Northwest United States and compared modeled hydrographs and summary metrics to observations. For most streams, several ecologically relevant aspects of the hydrologic regime were accurately modeled, including center of flow timing, mean annual and summer flows and frequency of winter floods. Frequencies of high and low flows in the summer were not well predicted, however. Predictions were worse for sites with strong groundwater influence, and some sites showed errors that may result from limitations in the forcing climate data. Higher resolution (1/16th degree) modeling provided small improvements over lower resolution (1/8th degree). Despite some limitations, the VIC model appears capable of representing several ecologically relevant hydrologic characteristics in streams, making it a useful tool for understanding the effects of hydrology in delimiting species distributions and predicting the potential effects of climate shifts on aquatic organisms.
How will climate change affect watershed mercury export in a representative Coastal Plain watershed?
NASA Astrophysics Data System (ADS)
Golden, H. E.; Knightes, C. D.; Conrads, P. A.; Feaster, T.; Davis, G. M.; Benedict, S. T.; Bradley, P. M.
2012-12-01
Future climate change is expected to drive variations in watershed hydrological processes and water quality across a wide range of physiographic provinces, ecosystems, and spatial scales. How such shifts in climatic conditions will impact watershed mercury (Hg) dynamics and hydrologically-driven Hg transport is a significant concern. We simulate the responses of watershed hydrological and total Hg (HgT) fluxes and concentrations to a unified set of past and future climate change projections in a Coastal Plain basin using multiple watershed models. We use two statistically downscaled global precipitation and temperature models, ECHO, a hybrid of the ECHAM4 and HOPE-G models, and the Community Climate System Model (CCSM3) across two thirty-year simulations (1980 to 2010 and 2040 to 2070). We apply three watershed models to quantify and bracket potential changes in hydrologic and HgT fluxes, including the Visualizing Ecosystems for Land Management Assessment Model for Hg (VELMA-Hg), the Grid Based Mercury Model (GBMM), and TOPLOAD, a water quality constituent model linked to TOPMODEL hydrological simulations. We estimate a decrease in average annual HgT fluxes in response to climate change using the ECHO projections and an increase with the CCSM3 projections in the study watershed. Average monthly HgT fluxes increase using both climate change projections between in the late spring (March through May), when HgT concentrations and flow are high. Results suggest that hydrological transport associated with changes in precipitation and temperature is the primary mechanism driving HgT flux response to climate change. Our multiple model/multiple projection approach allows us to bracket the relative response of HgT fluxes to climate change, thereby illustrating the uncertainty associated with the projections. In addition, our approach allows us to examine potential variations in climate change-driven water and HgT export based on different conceptualizations of watershed HgT dynamics and the representative mathematical structures underpinning existing watershed Hg models.
NASA Astrophysics Data System (ADS)
Stern, M. A.; Flint, L. E.; Flint, A. L.; Wright, S. A.; Minear, J. T.
2014-12-01
A watershed model of the Sacramento River Basin, CA was developed to simulate streamflow and suspended sediment transport to the San Francisco Bay Delta (SFBD) for fifty years (1958-2008) using the Hydrological Simulation Program - FORTRAN (HSPF). To compensate for the large model domain and sparse data, rigorous meteorological development and characterization of hydraulic geometry were employed to spatially distribute climate and hydrologic processes in unmeasured locations. Parameterization techniques sought to include known spatial information for tributaries such as soil information and slope, and then parameters were scaled up or down during calibration to retain the spatial characteristics of the land surface in un-gaged areas. Accuracy was assessed by comparing model calibration to measured streamflow. Calibration and validation of the Sacramento River ranged from "good" to "very good" performance based upon a "goodness-of-fit" statistical guideline. Model calibration to measured sediment loads were underestimated on average by 39% for the Sacramento River, and model calibration to suspended sediment concentrations were underestimated on average by 22% for the Sacramento River. Sediment loads showed a slight decreasing trend from 1958-2008 and was significant (p < 0.0025) in the lower 50% of stream flows. Hypothetical climate change scenarios were developed using the Climate Assessment Tool (CAT). Several wet and dry scenarios coupled with temperature increases were imposed on the historical base conditions to evaluate sensitivity of streamflow and sediment on potential changes in climate. Wet scenarios showed an increase of 9.7 - 17.5% in streamflow, a 7.6 - 17.5% increase in runoff, and a 30 - 93% increase in sediment loads. The dry scenarios showed a roughly 5% decrease in flow and runoff, and a 16 - 18% decrease in sediment loads. The base hydrology was most sensitive to a temperature increase of 1.5 degrees Celsius and an increase in storm intensity and frequency. The complete calibrated HSPF model will use future climate scenarios to make projections of potential hydrologic and sediment trends to the SFBD from 2000-2100.
NASA Astrophysics Data System (ADS)
Han, Bangshuai; Benner, Shawn G.; Bolte, John P.; Vache, Kellie B.; Flores, Alejandro N.
2017-07-01
Humans have significantly altered the redistribution of water in intensively managed hydrologic systems, shifting the spatiotemporal patterns of surface water. Evaluating water availability requires integration of hydrologic processes and associated human influences. In this study, we summarize the development and evaluation of an extensible hydrologic model that explicitly integrates water rights to spatially distribute irrigation waters in a semi-arid agricultural region in the western US, using the Envision integrated modeling platform. The model captures both human and biophysical systems, particularly the diversion of water from the Boise River, which is the main water source that supports irrigated agriculture in this region. In agricultural areas, water demand is estimated as a function of crop type and local environmental conditions. Surface water to meet crop demand is diverted from the stream reaches, constrained by the amount of water available in the stream, the water-rights-appropriated amount, and the priority dates associated with particular places of use. Results, measured by flow rates at gaged stream and canal locations within the study area, suggest that the impacts of irrigation activities on the magnitude and timing of flows through this intensively managed system are well captured. The multi-year averaged diverted water from the Boise River matches observations well, reflecting the appropriation of water according to the water rights database. Because of the spatially explicit implementation of surface water diversion, the model can help diagnose places and times where water resources are likely insufficient to meet agricultural water demands, and inform future water management decisions.
McManamay, Ryan A.; Frimpong, Emmanuel A.
2015-01-01
Lotic fish have developed life history strategies adapted to the natural variation in stream flow regimes. The natural timing, duration, and magnitude of flow events has contributed to the diversity, production, and composition of fish assemblages over time. Studies evaluating the role of hydrology in structuring fish assemblages have been more common at the local or regional scale with very few studies conducted at the continental scale. Furthermore, quantitative linkages between natural hydrologic patterns and fish assemblages are rarely used to make predictions of ecological consequences of hydrologic alterations. We ask two questions: (1) what is the relative role ofmore » hydrology in structuring fish assemblages at large scales? and (2) can relationships between fish assemblages and natural hydrology be utilized to predict fish assemblage responses to hydrologic disturbance? We developed models to relate fish life histories and reproductive strategies to landscape and hydrologic variables separately and then combined. Models were then used to predict the ecological consequences of altered hydrology due to dam regulation. Although hydrology plays a considerable role in structuring fish assemblages, the performance of models using only hydrologic variables was lower than that of models constructed using landscape variables. Isolating the relative importance of hydrology in structuring fish assemblages at the continental scale is difficult since hydrology is interrelated to many landscape factors. By applying models to dam-regulated hydrologic data, we observed some consistent predicted responses in fish life history strategies and modes of reproduction. In agreement with existing literature, equilibrium strategists are predicted to increase following dam regulation, whereas opportunistic and periodic species are predicted to decrease. In addition, dam regulation favors the selection of reproductive strategies with extended spawning seasons and preference for stable conditions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McManamay, Ryan A.; Frimpong, Emmanuel A.
Lotic fish have developed life history strategies adapted to the natural variation in stream flow regimes. The natural timing, duration, and magnitude of flow events has contributed to the diversity, production, and composition of fish assemblages over time. Studies evaluating the role of hydrology in structuring fish assemblages have been more common at the local or regional scale with very few studies conducted at the continental scale. Furthermore, quantitative linkages between natural hydrologic patterns and fish assemblages are rarely used to make predictions of ecological consequences of hydrologic alterations. We ask two questions: (1) what is the relative role ofmore » hydrology in structuring fish assemblages at large scales? and (2) can relationships between fish assemblages and natural hydrology be utilized to predict fish assemblage responses to hydrologic disturbance? We developed models to relate fish life histories and reproductive strategies to landscape and hydrologic variables separately and then combined. Models were then used to predict the ecological consequences of altered hydrology due to dam regulation. Although hydrology plays a considerable role in structuring fish assemblages, the performance of models using only hydrologic variables was lower than that of models constructed using landscape variables. Isolating the relative importance of hydrology in structuring fish assemblages at the continental scale is difficult since hydrology is interrelated to many landscape factors. By applying models to dam-regulated hydrologic data, we observed some consistent predicted responses in fish life history strategies and modes of reproduction. In agreement with existing literature, equilibrium strategists are predicted to increase following dam regulation, whereas opportunistic and periodic species are predicted to decrease. In addition, dam regulation favors the selection of reproductive strategies with extended spawning seasons and preference for stable conditions.« less
Meta-analysis on Macropore Flow Velocity in Soils
NASA Astrophysics Data System (ADS)
Liu, D.; Gao, M.; Li, H. Y.; Chen, X.; Leung, L. R.
2017-12-01
Macropore flow is ubiquitous in the soils and an important hydrologic process that is not well explained using traditional hydrologic theories. Macropore Flow Velocity (MFV) is an important parameter used to describe macropore flow and quantify its effects on runoff generation and solute transport. However, the dominant factors controlling MFV are still poorly understood and the typical ranges of MFV measured at the field are not defined clearly. To address these issues, we conducted a meta-analysis based on a database created from 246 experiments on MFV collected from 76 journal articles. For a fair comparison, a conceptually unified definition of MFV is introduced to convert the MFV measured with different approaches and at various scales including soil core, field, trench or hillslope scales. The potential controlling factors of MFV considered include scale, travel distance, hydrologic conditions, site factors, macropore morphologies, soil texture, and land use. The results show that MFV is about 2 3 orders of magnitude larger than the corresponding values of saturated hydraulic conductivity. MFV is much larger at the trench and hillslope scale than at the field profile and soil core scales and shows a significant positive correlation with the travel distance. Generally, higher irrigation intensity tends to trigger faster MFV, especially at field profile scale, where MFV and irrigation intensity have significant positive correlation. At the trench and hillslope scale, the presence of large macropores (diameter>10 mm) is a key factor determining MFV. The geometric mean of MFV for sites with large macropores was found to be about 8 times larger than those without large macropores. For sites with large macropores, MFV increases with the macropore diameter. However, no noticeable difference in MFV has been observed among different soil texture and land use. Comparing the existing equations to describe MFV, the Poiseuille equation significantly overestimated the observed values, while the Manning-type equations generate reasonable values. The insights from this study will shed light on future field campaigns and modeling of macropore flow.
NASA Astrophysics Data System (ADS)
Jarmain, C.; Everson, C. S.; Gush, M. B.; Clulow, A. D.
2009-09-01
The contribution of hydrological research in South Africa in quantifying green water flows for improved Integrated Land and Water Resources Management is reviewed. Green water refers to water losses from land surfaces through transpiration (seen as a productive use) and evaporation from bare soil (seen as a non-productive use). In contrast, blue water flows refer to streamflow (surface water) and groundwater / aquifer recharge. Over the past 20 years, a number of methods have been used to quantify the green water and blue water flows. These include micrometeorological techniques (e.g. Bowen ratio energy balance, eddy covariance, surface renewal, scintillometry, lysimetry), field scale models (e.g. SWB, SWAP), catchment scale hydrological models (e.g. ACRU, SWAT) and more recently remote sensing based models (e.g. SEBAL, SEBS). The National Water Act of South Africa of 1998 requires that water resources are managed, protected and used (developed, conserved and controlled) in an equitable way which is beneficial to the public. The quantification of green water flows in catchments under different land uses has been pivotal in (a) regulating streamflow reduction activities (e.g. forestry) and the management of alien invasive plants, (b) protecting riparian and wetland areas through the provision of an ecological reserve, (c) assessing and improving the water use efficiency of irrigated pastures, fruit tree orchards and vineyards, (d) quantifying the potential impact of future land uses like bio-fuels (e.g. Jatropha) on water resources, (e) quantifying water losses from open water bodies, and (f) investigating "biological” mitigation measures to reduce the impact of polluted water resources as a result of various industries (e.g. mining). This paper therefore captures the evolution of measurement techniques applied across South Africa, the impact these results have had on water use and water use efficiency and the extent to which it supported the National Water Act of South Africa.
NASA Astrophysics Data System (ADS)
Bellmore, Rebecca A.; Harrison, John A.; Needoba, Joseph A.; Brooks, Erin S.; Kent Keller, C.
2015-10-01
Agricultural practices have altered watershed-scale dissolved organic matter (DOM) dynamics, including in-stream concentration, biodegradability, and total catchment export. However, mechanisms responsible for these changes are not clear, and field-scale processes are rarely directly linked to the magnitude and quality of DOM that is transported to surface water. In a small (12 ha) agricultural catchment in eastern Washington State, we tested the hypothesis that hydrologic connectivity in a catchment is the dominant control over the concentration and quality of DOM exported to surface water via artificial subsurface drainage. Concentrations of dissolved organic carbon (DOC) and humic-like components of DOM decreased while the Fluorescence Index and Freshness Index increased with depth through the soil profile. In drain discharge, these characteristics were significantly correlated with drain flow across seasons and years, with drain DOM resembling deep sources during low-flow and shallow sources during high flow, suggesting that DOM from shallow sources bypasses removal processes when hydrologic connectivity in the catchment is greatest. Assuming changes in streamflow projected for the Palouse River (which contains the study catchment) under the A1B climate scenario (rapid growth, dependence on fossil fuel, and renewable energy sources) apply to the study catchment, we project greater interannual variability in annual DOC export in the future, with significant increases in the driest years. This study highlights the variability in DOM inputs from agricultural soil to surface water on daily to interannual time scales, pointing to the need for a more nuanced understanding of agricultural impacts on DOM dynamics in surface water.
Waibel, Michael S.; Gannett, Marshall W.; Chang, Heejun; Hulbe, Christina L.
2013-01-01
We examine the spatial variability of the response of aquifer systems to climate change in and adjacent to the Cascade Range volcanic arc in the Deschutes Basin, Oregon using downscaled global climate model projections to drive surface hydrologic process and groundwater flow models. Projected warming over the 21st century is anticipated to shift the phase of precipitation toward more rain and less snow in mountainous areas in the Pacific Northwest, resulting in smaller winter snowpack and in a shift in the timing of runoff to earlier in the year. This will be accompanied by spatially variable changes in the timing of groundwater recharge. Analysis of historic climate and hydrologic data and modeling studies show that groundwater plays a key role in determining the response of stream systems to climate change. The spatial variability in the response of groundwater systems to climate change, particularly with regard to flow-system scale, however, has generally not been addressed in the literature. Here we simulate the hydrologic response to projected future climate to show that the response of groundwater systems can vary depending on the location and spatial scale of the flow systems and their aquifer characteristics. Mean annual recharge averaged over the basin does not change significantly between the 1980s and 2080s climate periods given the ensemble of global climate models and emission scenarios evaluated. There are, however, changes in the seasonality of groundwater recharge within the basin. Simulation results show that short-flow-path groundwater systems, such as those providing baseflow to many headwater streams, will likely have substantial changes in the timing of discharge in response changes in seasonality of recharge. Regional-scale aquifer systems with flow paths on the order of many tens of kilometers, in contrast, are much less affected by changes in seasonality of recharge. Flow systems at all spatial scales, however, are likely to reflect interannual changes in total recharge. These results provide insights into the possible impacts of climate change to other regional aquifer systems, and the streams they support, where discharge points represent a range of flow system scales.
NASA Astrophysics Data System (ADS)
Liu, Yang; Cao, Sheng-Le
2017-06-01
It was known that hydrological regime was the main influencing factor of river ecosystem, but the regime of different flow rates of urban rivers was poorly understood. We collected daily inflows at the Huangtai station of the Xiaoqing River from 1960 to 2014 and divided the data into three periods. Then we calculated hydrological parameters by the method of EFCs (Environmental Flow Components) and analyzed the tendency and change rates of each component respectively in the three periods. Combined with the ecological significance of environmental flow components, we identified the small and medium flood had the greatest impact on the river regime and ecosystem. And then we used the hydraulic parameters in the good ecosystem period as control conditions, to calculate the ecological threshold of the flow component under the current situation. This study could provide technical support for restoring and improving hydrological regime and ecological environment of the Xiaoqing River in Jinan city.
A Model for Wetland Hydrology: Description and Validation
R.S. Mansell; S.A. Bloom; Ge Sun
2000-01-01
WETLANDS, a multidimensional model describing water flow in variably saturated soil and evapotranspiration, was used to simulate successfully 3-years of local hydrology for a cypress pond located within a relatively flat Coastal Plain pine forest landscape. Assumptions included negligible net regional groundwater flow and radially symmetric local flow impinging on a...
NASA Astrophysics Data System (ADS)
José Polo, María; José Pérez-Palazón, María; Saénz de Rodrigáñez, Marta; Pimentel, Rafael; Arheimer, Berit
2017-04-01
Global hydrological models provide scientists and technicians with distributed data over medium to large areas from which assessment of water resource planning and use can be easily performed. However, scale conflicts between global models' spatial resolution and the local significant spatial scales in heterogeneous areas usually pose a constraint for the direct use and application of these models' results. The SWICCA (Service for Water Indicators in Climate Change Adaptation) Platform developed under the Copernicus Climate Change Service (C3S) offers a wide range of both climate and hydrological indicators obtained on a global scale with different time and spatial resolutions. Among the different study cases supporting the SWICCA demonstration of local impact assessment, the Sierra Nevada study case (South Spain) is a representative example of mountainous coastal catchments in the Mediterranean region. This work shows the lessons learnt during the study case development to derive local impact indicator tailored to suit the local end-users of water resource in this snow-dominated area. Different approaches were followed to select the most accurate method to downscale the global data and variables to the local level in a highly abrupt topography, in a sequential step approach. 1) SWICCA global climate variable downscaling followed by river flow simulation from a local hydrological model in selected control points in the catchment, together with 2) SWICCA global river flow values downscaling to the control points followed by corrections with local transfer functions were both tested against the available local river flow series of observations during the reference period. This test was performed for the different models and the available spatial resolutions included in the SWICCA platform. From the results, the second option, that is, the use of SWICCA river flow variables, performed the best approximations, once the local transfer functions were applied to the global values and an additional correction was performed based on the relative anomalies obtained instead of the absolute values. This approach was used to derive the future projections of selected local indicators for each end-user in the area under different climate change scenarios. Despite the spatial scale conflicts, the SWICCA river flow indicators (simulated by the E-HYPEv3.1.2 model) succeeded in approximating the observations during the reference period 1970-2000 when provided on a catchment scale, once local transfer functions and further anomaly correction were performed. Satisfactory results were obtained on a monthly scale for river flow in the main stream of the watershed, and on a daily scale for the headwater streams. The accessibility to the hydrological model WiMMed, which includes a snow module, locally validated in the study area has been crucial to downscale the SWICCA results and prove their usefulness.
Evolution of the conceptual model of unsaturated zone hydrology at Yucca Mountain, Nevada
Flint, Alan L.; Flint, Lorraine E.; Bodvarsson, Gudmundur S.; Kwicklis, Edward M.; Fabryka-Martin, June
2001-01-01
Yucca Mountain is an arid site proposed for consideration as the United States’ first underground high-level radioactive waste repository. Low rainfall (approximately 170 mm/yr) and a thick unsaturated zone (500–1000 m) are important physical attributes of the site because the quantity of water likely to reach the waste and the paths and rates of movement of the water to the saturated zone under future climates would be major factors in controlling the concentrations and times of arrival of radionuclides at the surrounding accessible environment. The framework for understanding the hydrologic processes that occur at this site and that control how quickly water will penetrate through the unsaturated zone to the water table has evolved during the past 15 yr. Early conceptual models assumed that very small volumes of water infiltrated into the bedrock (0.5–4.5 mm/yr, or 2–3 percent of rainfall), that much of the infiltrated water flowed laterally within the upper nonwelded units because of capillary barrier effects, and that the remaining water flowed down faults with a small amount flowing through the matrix of the lower welded, fractured rocks. It was believed that the matrix had to be saturated for fractures to flow. However, accumulating evidence indicated that infiltration rates were higher than initially estimated, such as infiltration modeling based on neutron borehole data, bomb-pulse isotopes deep in the mountain, perched water analyses and thermal analyses. Mechanisms supporting lateral diversion did not apply at these higher fluxes, and the flux calculated in the lower welded unit exceeded the conductivity of the matrix, implying vertical flow of water in the high permeability fractures of the potential repository host rock, and disequilibrium between matrix and fracture water potentials. The development of numerical modeling methods and parameter values evolved concurrently with the conceptual model in order to account for the observed field data, particularly fracture flow deep in the unsaturated zone. This paper presents the history of the evolution of conceptual models of hydrology and numerical models of unsaturated zone flow at Yucca Mountain, Nevada (Flint, A.L., Flint, L.E., Kwicklis, E.M., Bodvarsson, G.S., Fabryka-Martin, J.M., 2001. Hydrology of Yucca Mountain. Reviews of Geophysics in press). This retrospective is the basis for recommendations for optimizing the efficiency with which a viable and robust conceptual model can be developed for a complex site.
NASA Astrophysics Data System (ADS)
Ruffell, Alastair
2014-05-01
An unusual application of hydrological understanding to a police search is described. The lacustrine search for a missing person provided reports of bottom-water currents in the lake and contradictory indications from cadaver dogs. A hydrological model of the area was developed using pre-existing information from side scan sonar, a desktop hydrogeological study and deployment of water penetrating radar (WPR). These provided a hydrological theory for the initial search involving subaqueous groundwater flow, focused on an area of bedrock surrounded by sediment, on the lake floor. The work shows the value a hydrological explanation has to a police search operation (equally to search and rescue). With hindsight, the desktop study should have preceded the search, allowing better understanding of water conditions. The ultimate reason for lacustrine flow in this location is still not proven, but the hydrological model explained the problems encountered in the initial search.
NASA Astrophysics Data System (ADS)
Davids, J. C.; Rutten, M.; Van De Giesen, N.
2016-12-01
Hydrologic data has traditionally been collected with permanent installations of sophisticated and relatively accurate but expensive monitoring equipment at limited numbers of sites. Consequently, the spatial coverage of the data is limited and costs are high. Achieving adequate maintenance of sophisticated monitoring equipment often exceeds local technical and resource capacity, and permanently deployed monitoring equipment is susceptible to vandalism, theft, and other hazards. Rather than using expensive, vulnerable installations at a few points, SmartPhones4Water (S4W), a form of Citizen Hydrology, leverages widely available mobile technology to gather hydrologic data at many sites in a manner that is repeatable and scalable. However, there is currently a limited understanding of the impact of decreased observational frequency on the accuracy of key streamflow statistics like minimum flow, maximum flow, and runoff. As a first step towards evaluating the tradeoffs between traditional continuous monitoring approaches and emerging Citizen Hydrology methods, we randomly selected 50 active U.S. Geological Survey (USGS) streamflow gauges in California. We used historical 15 minute flow data from 01/01/2008 through 12/31/2014 to develop minimum flow, maximum flow, and runoff values (7 year total) for each gauge. In order to mimic lower frequency Citizen Hydrology observations, we developed a bootstrap randomized subsampling with replacement procedure. We calculated the same statistics, along with their respective distributions, from 50 subsample iterations with four different subsampling intervals (i.e. daily, three day, weekly, and monthly). Based on our results we conclude that, depending on the types of questions being asked, and the watershed characteristics, Citizen Hydrology streamflow measurements can provide useful and accurate information. Depending on watershed characteristics, minimum flows were reasonably estimated with subsample intervals ranging from daily to monthly. However, maximum flows in most cases were poorly characterized, even at daily subsample intervals. In general, runoff volumes were accurately estimated from daily, three day, weekly, and even in some cases, monthly observations.
NASA Astrophysics Data System (ADS)
Setegn, S. G.; Mahmoudi, M.; Lawrence, A.; Duque, N.
2015-12-01
The Applied Research Center at Florida International University (ARC-FIU) is supporting the soil and groundwater remediation efforts of the U.S. Department of Energy (DOE) Savannah River Site (SRS) by developing a surface water model to simulate the hydrology and the fate and transport of contaminants and sediment in the Tims Branch watershed. Hydrological models are useful tool in water and land resource development and decision-making for watershed management. Moreover, simulation of hydrological processes improves understanding of the environmental dynamics and helps to manage and protect water resources and the environment. MIKE SHE, an advanced integrated modeling system is used to simulate the hydrological processes of the Tim Branch watershed with the objective of developing an integrated modeling system to improve understanding of the physical, chemical and biological processes within the Tims Branch watershed. MIKE SHE simulates water flow in the entire land based phase of the hydrological cycle from rainfall to river flow, via various flow processes such as, overland flow, infiltration, evapotranspiration, and groundwater flow. In this study a MIKE SHE model is developed and applied to the Tim branch watershed to study the watershed response to storm events and understand the water balance of the watershed under different climatic and catchment characteristics. The preliminary result of the integrated model indicated that variation in the depth of overland flow highly depend on the amount and distribution of rainfall in the watershed. The ultimate goal of this project is to couple the MIKE SHE and MIKE 11 models to integrate the hydrological component in the land phase of hydrological cycle and stream flow process. The coupled MIKE SHE/MIKE 11 model will further be integrated with an Ecolab module to represent a range of water quality, contaminant transport, and ecological processes with respect to the stream, surface water and groundwater in the Tims Branch watershed at Savannah River Site.
Investigating hydrologic alteration as a mechanism of fish assemblage shifts in urbanizing streams
Roy, A.H.; Freeman, Mary C.; Freeman, B.J.; Wenger, S.J.; Ensign, W.E.; Meyer, J.L.
2005-01-01
Stream biota in urban and suburban settings are thought to be impaired by altered hydrology; however, it is unknown what aspects of the hydrograph alter fish assemblage structure and which fishes are most vulnerable to hydrologic alterations in small streams. We quantified hydrologic variables and fish assemblages in 30 small streams and their subcatchments (area 8–20 km2) in the Etowah River Catchment (Georgia, USA). We stratified streams and their subcatchments into 3 landcover categories based on imperviousness (<10%, 10–20%, >20% of subcatchment), and then estimated the degree of hydrologic alteration based on synoptic measurements of baseflow yield. We derived hydrologic variables from stage gauges at each study site for 1 y (January 2003–2004). Increased imperviousness was positively correlated with the frequency of storm events and rates of the rising and falling limb of the hydrograph (i.e., storm “flashiness”) during most seasons. Increased duration of low flows associated with imperviousness only occurred during the autumn low-flow period, and this measure corresponded with increased richness of lentic tolerant species. Altered storm flows in summer and autumn were related to decreased richness of endemic, cosmopolitan, and sensitive fish species, and decreased abundance of lentic tolerant species. Species predicted to be sensitive to urbanization, based on specific life-history or habitat requirements, also were related to stormflow variables and % fine bed sediment in riffles. Overall, hydrologic variables explained 22 to 66% of the variation in fish assemblage richness and abundance. Linkages between hydrologic alteration and fish assemblages were potentially complicated by contrasting effects of elevated flows on sediment delivery and scour, and mediating effects of high stream gradient on sediment delivery from elevated flows. However, stormwater management practices promoting natural hydrologic regimes are likely to reduce the impacts of catchment imperviousness on stream fish assemblages.
NASA Astrophysics Data System (ADS)
Van Tiel, Marit; Van Loon, Anne; Wanders, Niko; Vis, Marc; Teuling, Ryan; Stahl, Kerstin
2017-04-01
In glacierized catchments, snowpack and glaciers function as an important storage of water and hydrographs of highly glacierized catchments in mid- and high latitudes thus show a clear seasonality with low flows in winter and high flows in summer. Due to the ongoing climate change we expect this type of storage capacity to decrease with resultant consequences for the discharge regime. In this study we focus on streamflow droughts, here defined as below average water availability specifically in the high flow season, and which methods are most suitable to characterize future streamflow droughts as regimes change. Two glacierized catchments, Nigardsbreen (Norway) and Wolverine (Alaska), are used as case study and streamflow droughts are compared between two periods, 1975-2004 and 2071-2100. Streamflow is simulated with the HBV light model, calibrated on observed discharge and seasonal glacier mass balances, for two climate change scenarios (RCP 4.5 & RCP 8.5). In studies on future streamflow drought often the same variable threshold of the past has been applied to the future, but in regions where a regime shift is expected this method gives severe "droughts" in the historic high-flow period. We applied the new alternative transient variable threshold, a threshold that adapts to the changing hydrological regime and is thus better able to cope with this issue, but has never been thoroughly tested in glacierized catchments. As the glacier area representation in the hydrological modelling can also influence the modelled discharge and the derived streamflow droughts, we evaluated in this study both the difference between the historical variable threshold (HVT) and transient variable threshold (TVT) and two different glacier area conceptualisations (constant area (C) and dynamical area (D)), resulting in four scenarios: HVT-C, HVT-D, TVT-C and TVT-D. Results show a drastic decrease in the number of droughts in the HVT-C scenario due to increased glacier melt. The deficit volume is expected to be up to almost eight times larger in the future compared to the historical period (Wolverine, +674%) in the HVT-D scenario, caused by the regime shift. Using the TVT the drought characteristics between the C and D scenarios and between future and historic droughts are more similar. However, when using the TVT, causing factors of future droughts, anomalies in temperature and/or precipitation, can be analysed. This study highlights the different conclusions that may be drawn on future streamflow droughts in glacierized catchments depending on methodological choices. They could be used to answer different questions: the TVT for analysing drought processes in the future, the HVT to assess changes between historical and future periods, the constant area conceptualisation to analyse the effect of short term climate variability and the dynamical glacier area to model realistic future discharges in glacierized catchments.
William G. Kepner; I. Shea Burns; David C Goodrich; D. Phillip Guertin; Gabriel S. Sidman; Lainie R. Levick; Wison W.S. Yee; Melissa M.A. Scianni; Clifton S. Meek; Jared B. Vollmer
2016-01-01
Long-term land-use and land cover change and their associated impacts pose critical challenges to sustaining vital hydrological ecosystem services for future generations. In this study, a methodology was developed to characterize potential hydrologic impacts from future urban growth through time. Future growth is represented by housing density maps generated in decadal...
Davis, C.A.; Austin, J.E.; Buhl, D.A.
2006-01-01
In the Platte River Valley of central Nebraska, USA, riparian grasslands (also known as wet meadows) have been severely impacted by a reduction in river flows, causing lower ground-water levels and altered seasonal hydroperiods. The potential impacts of these hydrologic changes, as well as the environmental factors that influence wet meadow soil invertebrate communities, are not well understood. An understanding of the ecological processes that influence these invertebrate communities is crucial for maintaining and restoring wet meadows along the Platte River. Our objectives were to describe the soil invertebrate community of wet meadows throughout the growing season and to examine the relative roles of abiotic factors in determining patterns in invertebrate community structure. We conducted the study in 12 wet meadows along the Platte River during 1999 and 2000. We identified 73 invertebrate taxa; 39 were considered soil inhabitants. Total biomass was primarily composed of earthworms, Scarabaeidae, Isopoda, and Elateridae, with earthworms and Scarabaeidae accounting for >82%. Differences in river flow and precipitation patterns influenced some soil invertebrates. Earthworms and Scarabaeidae declined dramatically from 1999 (wet year) to 2000 (dry year). The topographic gradient created by the ridge-swale complex affected several soil invertebrate taxa; Scarabaeidae, Diplopoda, and Lepidoptera biomasses were greatest on drier ridges, while Tipulidae and Isopoda biomasscs were greatest in wetter sloughs. Responses of earthworm taxa to the topographic gradient were variable, but generally, greater biomasses occurred on ridges and mid-elevations. Water-table depth and soil moisture were the most important variables influencing wet meadow soil invertebrates. Because these communities are linked to the hydrologic processes of the Platte River, future alterations of wet meadow hydrology could shift the distribution patterns of many of these invertebrates and possibly eliminate more moisture-tolerant taxa. To maintain wet meadows and their biotic communities, flow management should focus on regaining as much as possible of the former hydrograph through properly timed flows that provide an adequate hydrologic regime for wet meadows. In addition, restoration of wet meadows will depend on restoring the natural topography of wet meadows. ?? 2006, The Society of Wetland Scientists.
Pan-Arctic river discharge: Prioritizing monitoring of future climate change hot spots
NASA Astrophysics Data System (ADS)
Bring, Arvid; Shiklomanov, Alexander; Lammers, Richard B.
2017-01-01
The Arctic freshwater cycle is changing rapidly, which will require adequate monitoring of river flows to detect, observe, and understand changes and provide adaptation information. There has, however, been little detail about where the greatest flow changes are projected, and where monitoring therefore may need to be strengthened. In this study, we used a set of recent climate model runs and an advanced macro-scale hydrological model to analyze how flows across the continental pan-Arctic are projected to change and where the climate models agree on significant changes. We also developed a method to identify where monitoring stations should be placed to observe these significant changes, and compared this set of suggested locations with the existing network of monitoring stations. Overall, our results reinforce earlier indications of large increases in flow over much of the Arctic, but we also identify some areas where projections agree on significant changes but disagree on the sign of change. For monitoring, central and eastern Siberia, Alaska, and central Canada are hot spots for the highest changes. To take advantage of existing networks, a number of stations across central Canada and western and central Siberia could form a prioritized set. Further development of model representation of high-latitude hydrology would improve confidence in the areas we identify here. Nevertheless, ongoing observation programs may consider these suggested locations in efforts to improve monitoring of the rapidly changing Arctic freshwater cycle.
Pan-Arctic River Discharge: Where Can We Improve Monitoring of Future Change?
NASA Astrophysics Data System (ADS)
Bring, A.; Shiklomanov, A. I.; Lammers, R. B.
2016-12-01
The Arctic freshwater cycle is changing rapidly, which will require adequate monitoring of river flow to detect, observe and understand changes and provide adaptation information. There has however been little detail about where the greatest flow changes are projected, and where monitoring therefore may need to be strengthened. In this study, we used a set of recent climate model runs and an advanced macro-scale hydrological model to analyze how flows across the continental pan-Arctic are projected to change, and where the climate models agree on significant changes. We also developed a method to identify where monitoring stations should be placed to observe these significant changes, and compared this set of suggested locations with the existing network of monitoring stations. Overall, our results reinforce earlier indications of large increases in flow over much of the Arctic, but we also identify some areas where projections agree on significant changes but disagree on the sign of change. For monitoring, central and eastern Siberia, Alaska and central Canada are hot spots for the highest changes. To take advantage of existing networks, a number of stations across central Canada and western and central Siberia could form a prioritized set. Further development of model representation of high-latitude hydrology would improve confidence in the areas we identify here. Nevertheless, ongoing observation programs may consider these suggested locations in efforts to improve monitoring of the rapidly changing Arctic freshwater cycle.
Urban Infrastructure, Channel-Floodplain Morphology and Flood Flow Patterns
NASA Astrophysics Data System (ADS)
Miller, A. J.; Smith, J. A.; Nelson, C. B.
2006-12-01
The relationship between the channel and the floodplain in urban settings is heavily influenced by (1) altered watershed hydrologic response and frequency distribution of flows, (2) channel enlargement resulting from altered hydrology under conditions of limited sediment supply, (3) direct modification of channels and floodplains for purposes of erosion mitigation, flood protection, commercial development and creation of public amenities, (4) valley constrictions and flow obstructions associated with bridges, culverts, road embankments and other types of floodplain encroachment causing fragmentation or longitudinal segmentation of the riparian corridor. Field observation of inundation patterns associated with recurring floods in the Baltimore metropolitan area is used in combination with 2-dimensional hydraulic modeling to simulate patterns of floodplain inundation and to explore the relationships between magnitude and shape of the flood hydrograph, morphology of the urban channel-floodplain system, and the frequency and extent of floodplain inundation. Case studies include a July 2004 flood associated with a 300-year 2-hour rainfall in a small (14.2 km2) urban watershed, as well as several other events caused by summer thunderstorms with shorter recurrence intervals that generated an extraordinary flood response. The influence of urban infrastructure on flood inundation and flow patterns is expressed in terms of altered (and hysteretic) stage-discharge relationships, stepped flood profiles, rapid longitudinal attenuation of flood waves, and transient flow reversals at confluences and constrictions. Given the current level of interest in restoration measures these patterns merit consideration in planning future development and mitigation efforts.
Validation of a national hydrological model
NASA Astrophysics Data System (ADS)
McMillan, H. K.; Booker, D. J.; Cattoën, C.
2016-10-01
Nationwide predictions of flow time-series are valuable for development of policies relating to environmental flows, calculating reliability of supply to water users, or assessing risk of floods or droughts. This breadth of model utility is possible because various hydrological signatures can be derived from simulated flow time-series. However, producing national hydrological simulations can be challenging due to strong environmental diversity across catchments and a lack of data available to aid model parameterisation. A comprehensive and consistent suite of test procedures to quantify spatial and temporal patterns in performance across various parts of the hydrograph is described and applied to quantify the performance of an uncalibrated national rainfall-runoff model of New Zealand. Flow time-series observed at 485 gauging stations were used to calculate Nash-Sutcliffe efficiency and percent bias when simulating between-site differences in daily series, between-year differences in annual series, and between-site differences in hydrological signatures. The procedures were used to assess the benefit of applying a correction to the modelled flow duration curve based on an independent statistical analysis. They were used to aid understanding of climatological, hydrological and model-based causes of differences in predictive performance by assessing multiple hypotheses that describe where and when the model was expected to perform best. As the procedures produce quantitative measures of performance, they provide an objective basis for model assessment that could be applied when comparing observed daily flow series with competing simulated flow series from any region-wide or nationwide hydrological model. Model performance varied in space and time with better scores in larger and medium-wet catchments, and in catchments with smaller seasonal variations. Surprisingly, model performance was not sensitive to aquifer fraction or rain gauge density.
Quantifying Direct and Indirect Impact of Future Climate on Sub-Arctic Hydrology
NASA Astrophysics Data System (ADS)
Endalamaw, A. M.; Bolton, W. R.; Young-Robertson, J. M.; Morton, D.; Hinzman, L. D.
2016-12-01
Projected future climate will have a significant impact on the hydrology of interior Alaskan sub-arctic watersheds, directly though the changes in precipitation and temperature patterns, and indirectly through the cryospheric and ecological impacts. Although the latter is the dominant factor controlling the hydrological processes in the interior Alaska sub-arctic, it is often overlooked in many climate change impact studies. In this study, we aim to quantify and compare the direct and indirect impact of the projected future climate on the hydrology of the interior Alaskan sub-arctic watersheds. The Variable Infiltration Capacity (VIC) meso-scale hydrological model will be implemented to simulate the hydrological processes, including runoff, evapotranspiration, and soil moisture dynamics in the Chena River Basin (area = 5400km2), located in the interior Alaska sub-arctic region. Permafrost and vegetation distribution will be derived from the Geophysical Institute Permafrost Lab (GIPL) model and the Lund-Potsdam-Jena Dynamic Global Model (LPJ) model, respectively. All models will be calibrated and validated using historical data. The Scenario Network for Alaskan and Arctic Planning (SNAP) 5-model average projected climate data products will be used as forcing data for each of these models. The direct impact of climate change on hydrology is estimated using surface parameterization derived from the present day permafrost and vegetation distribution, and future climate forcing from SNAP projected climate data products. Along with the projected future climate, outputs of GIPL and LPJ will be incorporated into the VIC model to estimate the indirect and overall impact of future climate on the hydrology processes in the interior Alaskan sub-arctic watersheds. Finally, we will present the potential hydrological and ecological changes by the end of the 21st century.
NASA Astrophysics Data System (ADS)
Paltan, H.; Allen, M. R.; Haustein, K.; Dadson, S. J.
2017-12-01
The Conference of the Parties of the United Nations Framework Convention on Climate Change (UNFCC) in its Paris Agreement in December 2015 agreed to hold the increase in the global average temperature to well below 2.0 °C above pre- industrial levels. Nonetheless it is not yet clear how hydrological risks would change when this threshold is reached. In consequence, this may have important repercussions to existent or planned infrastructure as their functioning and the service they provide may be undermined if they do not adapt to shifts in water variability and, thus compromising global water security. In this study, we estimate the way in which hydrological risks will differ in a world 2 °C warmer. We used multi-ensembles outputs from 4 general circulation models (AOGCMs) participating in the HAPPI experimental protocol to generate global future river flows. From here we calculate extreme value probabilistics to calculate the increase in the frequency of the 100-year return period flow. Globally, we find that areas such as China and South Asia will be severly affecteed. Additional important changes are detected in Eastern Europe and in the area sorrounding the Gulf of California. Lastly, as a case study we show the implications of this climate target in the hydropower and transport infrastructure of Myanmar. We find that about 40% of mapped hydropower sites are in areas where the historical 100-year return period flow will significantly increase their frequency. We also find that about 30% of the roads and about 35% of the rail network of Myanmar are importantly exposed to such increases. We expect that this study is an initial step to analyse the propagation of hydrological risk associated with the Paris outcome; and thus, offer a tool to detect vulnerable population groups and economic sectors.
Walker, John F.; Hunt, Randall J.; Markstrom, Steven L.; Hay, Lauren E.; Doherty, John
2009-01-01
A major focus of the U.S. Geological Survey’s Trout Lake Water, Energy, and Biogeochemical Budgets (WEBB) project is the development of a watershed model to allow predictions of hydrologic response to future conditions including land-use and climate change. The coupled groundwater/surface-water model GSFLOW was chosen for this purpose because it could easily incorporate an existing groundwater flow model and it provides for simulation of surface-water processes. The Trout Lake watershed in northern Wisconsin is underlain by a highly conductive outwash sand aquifer. In this area, streamflow is dominated by groundwater contributions; however, surface runoff occurs during intense rainfall periods and spring snowmelt. Surface runoff also occurs locally near stream/lake areas where the unsaturated zone is thin. A diverse data set, collected from 1992 to 2007 for the Trout Lake WEBB project and the co-located and NSF-funded North Temperate Lakes LTER project, includes snowpack, solar radiation, potential evapotranspiration, lake levels, groundwater levels, and streamflow. The timeseries processing software TSPROC (Doherty 2003) was used to distill the large time series data set to a smaller set of observations and summary statistics that captured the salient hydrologic information. The timeseries processing reduced hundreds of thousands of observations to less than 5,000. Model calibration included specific predictions for several lakes in the study area using the PEST parameter estimation suite of software (Doherty 2007). The calibrated model was used to simulate the hydrologic response in the study lakes to a variety of climate change scenarios culled from the IPCC Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Solomon et al. 2007). Results from the simulations indicate climate change could result in substantial changes to the lake levels and components of the hydrologic budget of a seepage lake in the flow system. For a drainage lake lower in the flow system, the impacts of climate change are diminished.
NASA Astrophysics Data System (ADS)
Takamoto, N.; Shimada, J.
2014-12-01
The paleohydrological information can become important to predict hydrological conditions in the future. In Japan, which hydrologically is characterized by relatively small catchment scales with steep relief of topography under humid temperate climatic conditions, the residence time of the groundwater should be relatively short. Thus the paleohydrological information preserved in the groundwater aquifer should also be limited compared with the continental aquifer. However, regarding groundwater in clay and silt sediments have low-permeability characteristic, archiving the paleohydrologic information at the time of deposition is expected. Therefore, in this study, cores were drilled into Holocene clay and silt deposits (Site K-1 and Site K-2) in the Lake Kasumigaurain Japan, where the depositional rate 10,000 years ago was rapid and it has been affected strongly by sea level changes including transgression and regression. By using the obtained core samples and extracted pore water from the cores, paleohydrologic information was investigated, and it was tried to understand hydrologic environments at the study area during a Holocene. In addition, groundwater flow and solute transport simulation were conducted to reproduce profiles of pore water. Results of investigation show that the profiles of pore water contents reflect sea level change and the difference in hydrological environment at that time at each site. The content of the paleo-brackish water in the culmination of transgression was about 14,000 mg/l in Cl-, -13.0‰ in δD and -2.6‰ in δ18O. It is allowed better understanding paleohydrological information by studying not only inorganic chemistry contents and stable isotopes of pore water and also the diatom fossils and groundwater flow and solute transport simulation. We will characterize the paleohydrological information of the study area acquired by those investigations and analysis.
Bedinger, M.S.; Sargent, Kenneth A.; Reed, J.E.
1984-01-01
The U.S. Geological Survey's program for geologic and hydrologic evaluation of physiographic provinces to identify areas potentially suitable for locating repository sites for disposal of high-level nuclear wastes was announced to the Governors of the eight States in the Basin and Range Province on May 5, 1981. Representatives of Arizona, California, Idaho, New Mexico, Nevada, Oregon, Texas, and Utah, were invited to cooperate with the Federal Government in the evaluation process. Each Governor was requested to nominate an Earth scientist to represent the State in a province working group composed of State and U.S. Geological Survey representatives. This report, Part I of a three-part report, provides the background, introduction and scope of the study. This part also includes a discussion of geologic and hydrologic guidelines that will be used in the evaluation process and illustrates geohydrologic environments and the effect of individual factors in providing multiple natural barriers to radionuclide migration.Part II is a reconnaissance characterization of the geologic and hydrologic factors to be used in the initial screening of the Basin and Range Province. Part III will be the initial evaluation of the Province and will identify regions that appear suitable for further study.The plan for study of the Province includes a stepwise screening process by which successively smaller land units are considered in increasing detail. Each step involves characterization of the geology and hydrology and selection of subunits for more intensive characterization. Selection of subunits for further study is by evaluation of geologic and hydrologic conditions following a set of guidelines. By representation on the Province Working Group, the States participate in a consultation and review role in: (1) Establishing geologic and hydrologic guidelines, and (2) characterizing and evaluating the Province. The States also participate in compilation of geologic and hydrologic data used in characterizing the Province.The current (1983) needs for a high-level radioactive waste repository include: (1) Disposal in a mined repository; (2) retrievability of the waste for as much as 50 years; and (3) confidence of isolation of the waste from the accessible environment. Isolation of the waste needs to be assured using geologic and hydrologic conditions that: (1) Minimize risk of inadvertent future intrusions by man; (2) minimize the possibility of disturbance by processes that would expose the waste or increase its mobility; and (3) provide a system of natural barriers to the migration of waste by ground water. The guidelines adopted by the Province Working Group are designed to provide a standard with which these conditions can be compared.The guidelines can be grouped into four principal categories: (1) Potential host media, (2) ground-water conditions, (3) tectonic conditions, and. (4) occurrence of natural resources. Ideally the host medium constitutes the first natural barrier to migration of radionculides. The host medium ideally should be a rock type that prevents or retards dissolution and transport of radionuclides. Rocks in both the saturated and unsaturated zones may have desirable characteristics for host media. Rocks-other than the host-in the ground-water flow path from the repository ideally should be major barriers to radionuclide migration. Confining beds of low permeability might be present to retard the rate of flow between more permeable beds. Additionally, sorption of radionuclides by materials such as clays and zeolites in the flow path can further retard the flow of radionuclides by several orders of magnitude. Tectonic conditions in an area should not present a probable cause for exhumation or increased mobility of radioactive waste. Natural resources are a factor for consideration because of the problem of future human intrusion and exposure to radioactivity in the quest for minerals, oil, gas, water, and geothermal resources.The ultimate evaluation of the suitability of a geohydrologic environment for developing a mined repository needs to assess all geologic and hydrologic characteristics and their interaction in providing confidence that a geohydrologic environment will effectively isolate radionuclides from human access. Several hypothetical settings with typical geohydrologic conditions in the Basin and Range Province are used to illustrate the effect of multiple barriers in the isolation of radionuclides.
Some aspects of river flow in northern New South Wales, Australia
NASA Astrophysics Data System (ADS)
Ward, R. C.
1984-03-01
A number of catchment and hydrological characteristics are examined for a 385,000 km 2 study area in northern New South Wales. This study area spans the Great Divide and data selected from the archives of the New South Wales Water Resources Commission illustrate the marked contrasts in the character and variability of streamflow between coastal rivers draining comparatively small steeply sloping basins east of the Great Divide and the larger river systems draining the more extensive semi-arid basins of the western slopes. Particular attention is paid to comparisons of annual flows, flow-duration curves, seasonal flow regimes, flood flow and low flows. The study not only confirms the hydrological contrasts between two distinct geographical regions but also emphasises the rigorous data requirements of hydrological studies in areas of high variability of precipitation and streamflow.
Shanley, James B.; Sebestyen, Stephen D.; McDonnell, Jeffrey J.; McGlynn, Brian L.; Dunne, Thomas
2015-01-01
The Sleepers River Research Watershed (SRRW) in Vermont, USA, has been the site of active hydrologic research since 1959 and was the setting where Dunne and Black demonstrated the importance and controls of saturation-excess overland flow (SOF) on streamflow generation. Here, we review the early studies from the SRRW and show how they guided our conceptual approach to hydrologic research at the SRRW during the most recent 25 years. In so doing, we chronicle a shift in the field from early studies that relied exclusively on hydrometric measurements to today's studies that include chemical and isotopic approaches to further elucidate streamflow generation mechanisms. Highlights of this evolution in hydrologic understanding include the following: (i) confirmation of the importance of SOF to streamflow generation, and at larger scales than first imagined; (ii) stored catchment water dominates stream response, except under unusual conditions such as deep frozen ground; (iii) hydrometric, chemical and isotopic approaches to hydrograph separation yield consistent and complementary results; (iv) nitrate and sulfate isotopic compositions specific to atmospheric inputs constrain new water contributions to streamflow; and (v) convergent areas, or ‘hillslope hollows’, contribute disproportionately to event hydrographs. We conclude by summarizing some remaining challenges that lead us to a vision for the future of research at the SRRW to address fundamental questions in the catchment sciences.
LFSTAT - An R-Package for Low-Flow Analysis
NASA Astrophysics Data System (ADS)
Koffler, D.; Laaha, G.
2012-04-01
When analysing daily streamflow data focusing on low flow and drought, the state of the art is well documented in the Manual on Low-Flow Estimation and Prediction [1] published by the WMO. While it is clear what has to be done, it is not so clear how to preform the analysis and make the calculation as reproducible as possible. Our software solution expands the high preforming statistical open source software package R to analyse daily stream flow data focusing on low-flows. As command-line based programs are not everyone's preference, we also offer a plug-in for the R-Commander, an easy to use graphical user interface (GUI) to analyse data in R. Functionality includes estimation of the most important low-flow indices. Beside standardly used flow indices also BFI and Recession constants can be computed. The main applications of L-moment based Extreme value analysis and regional frequency analysis (RFA) are available. Calculation of streamflow deficits is another important feature. The most common graphics are prepared and can easily be modified according to the users preferences. Graphics include hydrographs for different periods, flexible streamflow deficit plots, baseflow visualisation, flow duration curves as well as double mass curves just to name a few. The package uses a S3-class called lfobj (low-flow objects). Once this objects are created, analysis can be preformed by mouse-click, and a script can be saved to make the analysis easy reproducible. At the moment we are offering implementation of all major methods proposed in the WMO manual on Low-flow Estimation and Predictions. Future plans include e.g. report export in odt-file using odf-weave. We hope to offer a tool to ease and structure the analysis of stream flow data focusing on low-flows and to make analysis transparent and communicable. The package is designed for hydrological research and water management practice, but can also be used in teaching students the first steps in low-flow hydrology.
Olsen, J B; Beacham, T D; Wetklo, M; Seeb, L W; Smith, C T; Flannery, B G; Wenburg, J K
2010-04-01
Adult Chinook salmon Oncorhynchus tshawytscha navigate in river systems using olfactory cues that may be influenced by hydrologic factors such as flow and the number, size and spatial distribution of tributaries. Thus, river hydrology may influence both homing success and the level of straying (gene flow), which in turn influences population structure. In this study, two methods of multivariate analysis were used to examine the extent to which four indicators of hydrology and waterway distance explained population structure of O. tshawytscha in the Yukon River. A partial Mantel test showed that the indicators of hydrology were positively associated with broad-scale (Yukon basin) population structure, when controlling for the influence of waterway distance. Multivariate multiple regression showed that waterway distance, supplemented with the number and flow of major drainage basins, explained more variation in broad-scale population structure than any single indicator. At an intermediate spatial scale, indicators of hydrology did not appear to influence population structure after accounting for waterway distance. These results suggest that habitat changes in the Yukon River, which alter hydrology, may influence the basin-wide pattern of population structure in O. tshawytscha. Further research is warranted on the role of hydrology in concert with waterway distance in influencing population structure in Pacific salmon.
NASA Astrophysics Data System (ADS)
Bennett, K. E.; Schnorbus, M.; Werner, A. T.; Music, B.; Caya, D.; Rodenhuis, D. R.
2009-12-01
Uncertainties in the projections of future hydrologic change can be assessed using a suite of tools, thereby allowing researchers to focus on improvement to identifiable sources of uncertainty. A pareto set of optimal hydrologic parameterizations was run for three BC watersheds (Fraser, Peace and Columbia) for a range of downscaled Global Climate Model (GCM) emission scenarios to illustrate the uncertainty in hydrologic response to climate change. Results show varying responses of hydrologic regimes across geographic landscapes. Uncertainties in streamflow and water balance (runoff, evapo-transpiration, snow water equivalent, soil moisture) were analysed by forcing the Variable Infiltration Capacity (VIC) hydrologic model, run under twenty-five optimal parameter solution sets using six Bias-Corrected Statistically Downscaled (BCSD) GCM emission scenario projections for the 2050s and the 2080s. Projected changes by the 2050s include increased winter flows, increases and decreases in freshet magnitude depending on the scenario, and decreases in summer flows persisting until September. Winter runoff had the greatest range between GCM emission scenarios, while the hydrologic parameters within individual GCM emission scenarios had a winter runoff range an order of magnitude smaller. Evapo-transpiration, snow water equivalent and soil moisture exhibited a spread of ~10% or less. Streamflow changes by the 2080s lie outside the natural range of historic variability over the winter and spring. Results indicate that the changes projected between GCM emission scenarios are greater than the differences between the hydrologic model parameterizations. An alternate tool, the Canadian Regional Climate Model (CRCM) has been set up for these watersheds and various runs have been analysed to determine the range and variability present and to examine these results in comparison to the hydrologic model projections. The CRCM range and variability is an improvement over the Canadian GCM and thus requires less bias correction. However, without downscaling the CRCM results are still coarser than what is required to drive macroscale hydrologic models, such as VIC. Applying these tools has illustrated the importance of focusing on improved downscaling efforts, including downscaling CRCM results rather than CGCM data. Tools for decision-making in the face of uncertainty are emerging as a priority for the climate change impacts community, and there is a need to focus on incorporating uncertainty information along with the projection of impacts. Assessing uncertainty across a range of regimes and geographic regions can assist to identify the main sources of uncertainty and allow researchers to focus on improving those sources using more robust methodological approaches and tools.
NASA Astrophysics Data System (ADS)
Acar, O.; Franz, K.; Simpkins, W. W.
2013-12-01
Extended drought conditions that affected much of the U.S. throughout 2012 and continued into 2013 are bringing climate change to the forefront of public attention. Long-term effects of an extended dry spell on groundwater is especially concerning as these resources are essential for meeting drinking water demands, supporting agricultural and industrial activities, and maintaining water levels in rivers and lakes. Thus, the impact of extended drought conditions on the entire hydrologic cycle needs to be well understood to guide future resource and land management decisions. This study aims to explore the impact of extended drought conditions on groundwater resources in a representative Iowa watershed using Regional Climate Model scenarios implemented through HydroGeoSphere, a physically-based, surface water-groundwater model. Estimating the impacts of climate changes on groundwater resources requires representation of the full hydrological system, i.e. the connection between the atmospheric and surface-subsurface processes, in a realistic way. In the HydroGeoSphere model, surface and subsurface flow equations are solved simultaneously, and the interdependence of processes like actual evapotranspiration and recharge is handled explicitly. Using such state-of-the-art modeling tools, we seek to address the consequences of changing climate extremes (that have already been experienced and expected to continue over long periods in the future) on the hydrologic cycle of our pilot study area, the South Fork watershed in north-central Iowa. The results will provide a baseline for investigating mitigation strategies in agricultural practices and water use due to changes in the wet and dry cycles of the regional hydrologic cycle.
Linking climate change projections for an Alaskan watershed to future coho salmon production.
Leppi, Jason C; Rinella, Daniel J; Wilson, Ryan R; Loya, Wendy M
2014-06-01
Climate change is predicted to dramatically change hydrologic processes across Alaska, but estimates of how these impacts will influence specific watersheds and aquatic species are lacking. Here, we linked climate, hydrology, and habitat models within a coho salmon (Oncorhynchus kisutch) population model to assess how projected climate change could affect survival at each freshwater life stage and, in turn, production of coho salmon smolts in three subwatersheds of the Chuitna (Chuit) River watershed, Alaska. Based on future climate scenarios and projections from a three-dimensional hydrology model, we simulated coho smolt production over a 20-year span at the end of the century (2080-2100). The direction (i.e., positive vs. negative) and magnitude of changes in smolt production varied substantially by climate scenario and subwatershed. Projected smolt production decreased in all three subwatersheds under the minimum air temperature and maximum precipitation scenario due to elevated peak flows and a resulting 98% reduction in egg-to-fry survival. In contrast, the maximum air temperature and minimum precipitation scenario led to an increase in smolt production in all three subwatersheds through an increase in fry survival. Other climate change scenarios led to mixed responses, with projected smolt production increasing and decreasing in different subwatersheds. Our analysis highlights the complexity inherent in predicting climate-change-related impacts to salmon populations and demonstrates that population effects may depend on interactions between the relative magnitude of hydrologic and thermal changes and their interactions with features of the local habitat. © 2013 The Authors. Global Change Biology published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Fouad, Geoffrey; Skupin, André; Hope, Allen
2016-04-01
The flow duration curve (FDC) is one of the most widely used tools to quantify streamflow. Its percentile flows are often required for water resource applications, but these values must be predicted for ungauged basins with insufficient or no streamflow data. Regional regression is a commonly used approach for predicting percentile flows that involves identifying hydrologic regions and calibrating regression models to each region. The independent variables used to describe the physiographic and climatic setting of the basins are a critical component of regional regression, yet few studies have investigated their effect on resulting predictions. In this study, the complexity of the independent variables needed for regional regression is investigated. Different levels of variable complexity are applied for a regional regression consisting of 918 basins in the US. Both the hydrologic regions and regression models are determined according to the different sets of variables, and the accuracy of resulting predictions is assessed. The different sets of variables include (1) a simple set of three variables strongly tied to the FDC (mean annual precipitation, potential evapotranspiration, and baseflow index), (2) a traditional set of variables describing the average physiographic and climatic conditions of the basins, and (3) a more complex set of variables extending the traditional variables to include statistics describing the distribution of physiographic data and temporal components of climatic data. The latter set of variables is not typically used in regional regression, and is evaluated for its potential to predict percentile flows. The simplest set of only three variables performed similarly to the other more complex sets of variables. Traditional variables used to describe climate, topography, and soil offered little more to the predictions, and the experimental set of variables describing the distribution of basin data in more detail did not improve predictions. These results are largely reflective of cross-correlation existing in hydrologic datasets, and highlight the limited predictive power of many traditionally used variables for regional regression. A parsimonious approach including fewer variables chosen based on their connection to streamflow may be more efficient than a data mining approach including many different variables. Future regional regression studies may benefit from having a hydrologic rationale for including different variables and attempting to create new variables related to streamflow.
NASA Astrophysics Data System (ADS)
Trudeau, M. P.; Richardson, Murray
2016-10-01
We conducted an empirical hydrological analysis of high-temporal resolution streamflow records for 27 watersheds within 11 river systems in the Greater Toronto Region of the Canadian Great Lakes basin. Our objectives were to model the event-scale flow response of watersheds to urbanization and to test for scale and threshold effects. Watershed areas ranged from 37.5 km2 to 806 km2 and urban percent land cover ranged from less than 0.1-87.6%. Flow records had a resolution of 15-min increments and were available over a 42-year period, allowing for detailed assessment of changes in event-scale flow response with increasing urban land use during the post-freshet period (May 26 to November 15). Empirical statistical models were developed for flow characteristics including total runoff, runoff coefficient, eightieth and ninety-fifth percentile rising limb event runoff and mean rising limb event acceleration. Changes in some of these runoff metrics began at very low urban land use (<4%). Urban land use had a very strong influence on total runoff and event-scale hydrologic characteristics, with the exception of 80th percentile flows, which had a curvilinear relationship with urban cover. Event flow acceleration increased with increasing urban cover, thus causing 80th percentile runoff depths to be reached sooner. These results indicate the potential for compromised water balance when cumulative changes are considered at the watershed scale. No abrupt or threshold changes in hydrologic characteristics were identified along the urban land use gradient. A positive interaction of urban percent land use and watershed size indicated a scale effect on total runoff. Overall, the results document compromised hydrologic stability attributable to urbanization during a period with no detectable change in rainfall patterns. They also corroborate literature recommendations for spatially distributed low impact urban development techniques; measures would be needed throughout the urbanized area of a watershed to dampen event-scale hydrologic responses to urbanization. Additional research is warranted into event-scale hydrologic trends with urbanization in other regions, in particular rising limb event flow accelerations.
NASA Astrophysics Data System (ADS)
Hahm, W. J.; Wang, J.; Druhan, J. L.; Rempe, D.; Dietrich, W. E.
2017-12-01
Stream solute concentration-discharge (C-Q) relationships integrate catchment-scale hydrologic and geochemical processes, potentially yielding valuable information about runoff generation and weathering mechanisms. However, recent compilations have established that chemostasis—the condition where solute concentrations are invariant across large ranges of runoff—is observed in watersheds of diverse lithology, climate, and topography, suggesting an equifinality of the C-Q relationship independent of hydrologic process. Here we explore C-Q signals in contrasting catchments of the Eel River Critical Zone (CZ) Observatory in the Northern California Coast Ranges, where, unlike most watersheds where chemostasis has been observed, hillslope hydrologic processes are well characterized via years of intensive hydrologic monitoring. Our two catchments in the Franciscan Complex have radically different runoff generation mechanisms arising from differences in CZ structure: at Elder Creek (Coastal Belt), rain passes vertically as unsaturated flow through soil, saprolite, and a thick weathered rock zone before perching as groundwater on fresh bedrock and flowing laterally through fractures to generate streamflow, resulting in nearly chemostatic major cation behavior (power law C-Q slopes (B) ≈ 0 to -0.1). At Dry Creek (Central Belt), the thin (2 to 3 m) hydrologically active CZ completely saturates in most storm events, generating saturation overland flow across the landscape. New data from Dry Creek reveal log-log C-Q relationships for major cations that exhibit negative curvature, indicating a trend towards increasing dilution at higher flow rates and a possible C-Q signature of overland flow. High geomorphic channel drainage density (16.9 km/km2) results in short flow paths and, presumably, short water hillslope residence times at high runoff when overland flow dominates (> 50 mm d-1). Surprisingly, even at these high runoff rates, pure dilution does not occur (high runoff B ≈ -0.5), suggesting a role for extremely rapid cation exchange reactions and equilibration as water flows over and through the soil surface, and underscoring limitations on the ability to interpret hydrologic processes from C-Q behavior.
NASA Astrophysics Data System (ADS)
Lebedeva, Luidmila; Semenova, Olga
2015-04-01
Frozen ground distribution and its properties control the presence of aquifuge and aquifers. Correct representation of interactions between infiltrating water, ground ice, permafrost or seasonal freezing table and river flow is challenging for hydrological modelling in cold regions. Observational data of ground water levels, thawing depths in different landscapes or topographical units and meteorological information with high temporal and spatial resolution are required to analyze seasonal and interannual evolution of groundwater in active layer and its linkage to river flow. Such data are extremely rare in vast and remote regions of Russia. There are few historical datasets inherited from former USSR containing unique collection of long-term daily observations of water fluxes, frozen ground characteristics and groundwater levels. The data from three water balance stations were employed in our study with overall goal to analyze co-evolution of thawing layer, shallow groundwater and river flow by data processing and process-based modelling. Three instrumented small watersheds are situated in continuous, discontinuous permafrost zones and at the territory with seasonally frozen ground. They present different climates, landscapes and geology. The Kolyma water-balance station is located in mountainous region of continuous permafrost in North-Eastern Russia. The watershed area of 22 km2 is covered by bare rocks, mountain tundra, sparse larch forest and wet larch forest depending on slope aspect and inclination. The Bomnak water-balance station (22 km2) is situated in discontinuous permafrost zone in upper part of the Amur River basin and characterized by unmerged permafrost. Dominant landscapes are birch forest and bogs. The Pribaltiyskaya water-balance station (40 km2) located in Latvia is characterized by seasonally frozen ground and is covered by mixed forest and arable land. Process-based Hydrograph model was employed in the study. The model was developed specifically for cold regions. It describes all essential processes of land hydrological cycle including detailed algorithm of water and heat dynamics in soil accounting for water phase change. The model parameters relate to basin characteristics and could be assessed in the field. It allows avoiding parameters calibration and transferring model parameterization schemes to ungauged basins in similar conditions. The model was applied and tested against internal states of watersheds (snow, soil thawing/freezing, etc.) and runoff. Different role of frozen ground in formation of shallow groundwater and river flow in continuous, discontinuous and non-permafrost area is highlighted by comparative analysis of observations and simulations in three studied basins. The changes of fractional input of surface and subsurface components into river flow during warm seasons were assessed for each watershed. We concluded that verified hydrological model with meaningful parameters that adequately describe river flow formation and internal hydrological processes and ground freezing/thawing in the catchment could be used in scenario simulations, future predictions and transferring the results between scales.
NASA Astrophysics Data System (ADS)
Krogh, Sebastian A.; Pomeroy, John W.; Marsh, Philip
2017-07-01
A better understanding of cold regions hydrological processes and regimes in transitional environments is critical for predicting future Arctic freshwater fluxes under climate and vegetation change. A physically based hydrological model using the Cold Regions Hydrological Model platform was created for a small Arctic basin in the tundra-taiga transition region. The model represents snow redistribution and sublimation by wind and vegetation, snowmelt energy budget, evapotranspiration, subsurface flow through organic terrain, infiltration to frozen soils, freezing and thawing of soils, permafrost and streamflow routing. The model was used to reconstruct the basin water cycle over 28 years to understand and quantify the mass fluxes controlling its hydrological regime. Model structure and parameters were set from the current understanding of Arctic hydrology, remote sensing, field research in the basin and region, and calibration against streamflow observations. Calibration was restricted to subsurface hydraulic and storage parameters. Multi-objective evaluation of the model using observed streamflow, snow accumulation and ground freeze/thaw state showed adequate simulation. Significant spatial variability in the winter mass fluxes was found between tundra, shrubs and forested sites, particularly due to the substantial blowing snow redistribution and sublimation from the wind-swept upper basin, as well as sublimation of canopy intercepted snow from the forest (about 17% of snowfall). At the basin scale, the model showed that evapotranspiration is the largest loss of water (47%), followed by streamflow (39%) and sublimation (14%). The models streamflow performance sensitivity to a set of parameter was analysed, as well as the mean annual mass balance uncertainty associated with these parameters.
NASA Astrophysics Data System (ADS)
Hund, S. V.; Johnson, M. S.; Steyn, D. G.; Keddie, T.; Morillas, L.
2015-12-01
Water supply is highly disputed in the tropics of northwestern Costa Rica where rainfall exhibits high seasonal variability and long annual dry seasons. Water shortages are common during the dry season, and water conflicts emerge between domestic water users, intensively irrigated agriculture, the tourism industry, and ecological flows. Climate change may further increase the variability of precipitation and the risk for droughts, and pose challenges for small rural agricultural communities experiencing water stress. To adapt to seasonal droughts and improve resilience of communities to future changes, it is essential to increase understanding of interactions between components of the coupled hydrological-social system. Yet, hydrological monitoring and data on water use within developing countries of the humid tropics is limited. To address these challenges and contribute to extended monitoring networks, low-cost and open-source monitoring platforms were developed based off Arduino microelectronic boards and software and combined with hydrological sensors to monitor river stage and groundwater levels in two watersheds of Guanacaste, Costa Rica. Hydrologic monitoring stations are located in remote locations and powered by solar panels. Monitoring efforts were made possible through collaboration with local rural communities, and complemented with a mix of digitized water extraction data and community water use narratives to increase understanding of water use and challenges. We will present the development of the Arduino logging system, results of water supply in relation to water use for both the wet and dry season, and discuss these results within a socio-hydrological system context.
GIS-based hydrologic modeling offers a convenient means of assessing the impacts associated with land-cover/use change for environmental planning efforts. Alternative future scenarios can be used as input to hydrologic models and compared with existing conditions to evaluate pot...
NASA Astrophysics Data System (ADS)
Honings, J.; Seyoum, W. M.
2017-12-01
Understanding the response of water cycle dynamics to climate change and human activity is essential for best management of water resources. This study used the USDA Soil-Water Assessment Tool (SWAT) to measure and predict major water balance variables including stream discharge, potential aquifer recharge, and surface storage in a small-scale watershed ( 2,930 km²) in Central Illinois. The Mackinaw River drains the study watershed, which is predominantly tile-drained agricultural land. Two reservoirs, Evergreen Lake and Lake Bloomington, and the Mahomet Aquifer in the watershed are used for public water supply. Tiles modify watershed hydrology by efficiently draining water from saturated soil to streams, which increases total streamflow and reduces direct aquifer recharge from precipitation. To assess how the watershed is affected by future climate change, this study used high-resolution climate projection data ( 12 km) in a calibrated and validated SWAT hydrologic model. Using General Circulation Models, four (4) representative concentration pathways (RCPs) developed by the IPCC Coupled Model Intercomparison Project Fifth Assessment Report (CMIP5) were used for prediction of precipitation, mean, minimum, and maximum temperature for the watershed. Temperature predictions for 2050 were warmer for RCPs 2.6 and 8.0 (+0.69°C and +1.8°C), coinciding with increased precipitation rates (+2.5% and +4.3%). End of century projections indicate warmer mean temperatures (+0.66°C and +4.9°C) for RCPs 2.6 and 8.0. By 2099, precipitation predictions are wetter for RCP 8.0 (+10%), but drier for RCP 2.6 (-2%) from the baseline. Preliminary model calibration (R2 value = 0.7) results showed an annual average watershed yield of 32.8 m³/s at the outlet with average potential recharge of 18% of total precipitation. Tile flow comprises 10 to 30% of total flow in the watershed simulations. Predicted hydrologic variables for the extreme scenarios at mid- and end of century indicate +4.1% total flow and +4.8% recharge for RCP 2.6, compared to +4.5% total flow and +11% recharge for RCP 8.0. Effects of tile drainage and other management practices in the watershed will be examined under climate change scenarios. Model results will be used to aid future decisions involving water resource consumption and agricultural management.
Hydrologic Extremes and Risk Assessment under Non-stationarity
NASA Astrophysics Data System (ADS)
Mondal, A.
2015-12-01
In the context of hydrologic designs, robust assessment and communication of risk is crucial to ascertain a sustainable water future. Traditional methods for defining return period, risk or reliability assumes a stationary regime which may no longer be valid because of natural or man-made changes. Reformulations are suggested in recent literature to account for non-stationarity in the definition of hydrologic risk, as time evolves. This study presents a comparative analysis of design levels under non-stationarity based on time varying annual exceedance probabilities, waiting time of a hazardous event, number of hazardous events and probability of failure. A case study application is shown for peak streamflow in the flood-prone delta area of the Krishna River in India where an increasing trend in annual maximum flows are observed owing to persistent silting. Considerable disagreement is found between the design magnitudes of flood obtained by the different definitions of hydrologic risk. Such risk is also found to be highly sensitive to the assumed design life period and projections of trend in that period or beyond. Additionally, some critical points on the assumption of a deterministic non-stationary model for an observed natural process are also discussed. The findings highlight the necessity for a unifying framework for assessment and communication of hydrologic risk under transient hydro-climatic conditions. The concepts can also be extended to other applications such as regional hydrologic frequency analysis or development of precipitation intensity-duration-frequency relationships for infrastructure design.
Levich, R.A.; Linden, R.M.; Patterson, R.L.; Stuckless, J.S.
2000-01-01
Yucca Mountain, located ~100 mi northwest of Las Vegas, Nevada, has been designated by Congress as a site to be characterized for a potential mined geologic repository for high-level radioactive waste. This field trip will examine the regional geologic and hydrologic setting for Yucca Mountain, as well as specific results of the site characterization program. The first day focuses on the regional setting with emphasis on current and paleo hydrology, which are both of critical concern for predicting future performance of a potential repository. Morning stops will be southern Nevada and afternoon stops will be in Death Valley. The second day will be spent at Yucca Mountain. The field trip will visit the underground testing sites in the "Exploratory Studies Facility" and the "Busted Butte Unsaturated Zone Transport Field Test" plus several surface-based testing sites. Much of the work at the site has concentrated on studies of the unsaturated zone, an element of the hydrologic system that historically has received little attention. Discussions during the second day will compromise selected topics of Yucca Mountain geology, hydrology and geochemistry and will include the probabilistic volcanic hazard analysis and the seismicity and seismic hazard in the Yucca Mountain area. Evening discussions will address modeling of regional groundwater flow, the results of recent hydrologic studies by the Nye County Nuclear Waste Program Office, and the relationship of the geology and hydrology of Yucca Mountain to the performance of a potential repository. Day 3 will examine the geologic framework and hydrology of the Pahute Mesa-Oasis Valley Groundwater Basin and then will continue to Reno via Hawthorne, Nevada and the Walker Lake area.
Untenable nonstationarity: An assessment of the fitness for purpose of trend tests in hydrology
NASA Astrophysics Data System (ADS)
Serinaldi, Francesco; Kilsby, Chris G.; Lombardo, Federico
2018-01-01
The detection and attribution of long-term patterns in hydrological time series have been important research topics for decades. A significant portion of the literature regards such patterns as 'deterministic components' or 'trends' even though the complexity of hydrological systems does not allow easy deterministic explanations and attributions. Consequently, trend estimation techniques have been developed to make and justify statements about tendencies in the historical data, which are often used to predict future events. Testing trend hypothesis on observed time series is widespread in the hydro-meteorological literature mainly due to the interest in detecting consequences of human activities on the hydrological cycle. This analysis usually relies on the application of some null hypothesis significance tests (NHSTs) for slowly-varying and/or abrupt changes, such as Mann-Kendall, Pettitt, or similar, to summary statistics of hydrological time series (e.g., annual averages, maxima, minima, etc.). However, the reliability of this application has seldom been explored in detail. This paper discusses misuse, misinterpretation, and logical flaws of NHST for trends in the analysis of hydrological data from three different points of view: historic-logical, semantic-epistemological, and practical. Based on a review of NHST rationale, and basic statistical definitions of stationarity, nonstationarity, and ergodicity, we show that even if the empirical estimation of trends in hydrological time series is always feasible from a numerical point of view, it is uninformative and does not allow the inference of nonstationarity without assuming a priori additional information on the underlying stochastic process, according to deductive reasoning. This prevents the use of trend NHST outcomes to support nonstationary frequency analysis and modeling. We also show that the correlation structures characterizing hydrological time series might easily be underestimated, further compromising the attempt to draw conclusions about trends spanning the period of records. Moreover, even though adjusting procedures accounting for correlation have been developed, some of them are insufficient or are applied only to some tests, while some others are theoretically flawed but still widely applied. In particular, using 250 unimpacted stream flow time series across the conterminous United States (CONUS), we show that the test results can dramatically change if the sequences of annual values are reproduced starting from daily stream flow records, whose larger sizes enable a more reliable assessment of the correlation structures.
NASA Astrophysics Data System (ADS)
Sharma, Keshav Prasad
1997-10-01
Land-use and climatic changes are of major concern in the Himalayan region because of their potential impacts on a predominantly agriculture-based economy and a regional hydrology dominated by strong seasonality. Such concerns are not limited to any particular basin but exist throughout the region including the downstream plain areas. As a representative basin of the Himalayas, we studied the Kosi basin (54,000 km2) located in the mountainous area of the central Himalayan region. We analyzed climatic and hydrologic information to assess the impacts of existing and potential future land-use and climatic changes over the basin. The assessment of anthropogenic inputs showed that the population grew at a compound growth rate of about one percent per annum over the basin during the last four decades. The comparison of land-use data based on the surveys made in the 1960s, and the surveys of 1978-79 did not reveal noticeable trends in land-use change. Analysis of meteorological and hydrological trends using parametric and nonparametric statistics for monthly data from 1947 to 1993 showed some increasing tendency for temperature and precipitation. Statistical tests of hydrological trends indicated an overall decrease of discharge along mainstem Kosi River and its major tributaries. The decreasing trends of streamflow were more significant during low-flow months. Statistical analysis of homogeneity showed that the climatological as well as the hydrological trends were more localized in nature lacking distinct basinwide significance. Statistical analysis of annual sediment time series, available for a single station on the Kosi River did not reveal a significant trend. We used water balance, statistical correlation, and distributed deterministic modeling approaches to analyze the hydrological sensitivity of the basin to possible land-use and climatic changes. The results indicated a stronger influence of basin characteristics compared to climatic characteristics on flow regime. Among the climatic variables, hydrologic response was much more sensitive to changes in precipitation, and the response was more significant in the drier areas of the basin. Rapid retreat of glaciers due to potential global warming was shown to be as important as projected deforestation scenarios in regulating sediment flux over the basin.
Asquith, W.H.; Mosier, J. G.; Bush, P.W.
1997-01-01
The watershed simulation model Hydrologic Simulation Program—Fortran (HSPF) was used to generate simulated flow (runoff) from the 13 watersheds to the six bay systems because adequate gaged streamflow data from which to estimate freshwater inflows are not available; only about 23 percent of the adjacent contributing watershed area is gaged. The model was calibrated for the gaged parts of three watersheds—that is, selected input parameters (meteorologic and hydrologic properties and conditions) that control runoff were adjusted in a series of simulations until an adequate match between model-generated flows and a set (time series) of gaged flows was achieved. The primary model input is rainfall and evaporation data and the model output is a time series of runoff volumes. After calibration, simulations driven by daily rainfall for a 26-year period (1968–93) were done for the 13 watersheds to obtain runoff under current (1983–93), predevelopment (pre-1940 streamflow and pre-urbanization), and future (2010) land-use conditions for estimating freshwater inflows and for comparing runoff under the three land-use conditions; and to obtain time series of runoff from which to estimate time series of freshwater inflows for trend analysis.
Coon, William F.
2003-01-01
A computer model of hydrologic and water-quality processes of the Irondequoit Creek basin in Monroe and Ontario Counties, N.Y., was developed during 2000-02 to enable water-resources managers to simulate the effects of future development and stormwater-detention basins on peak flows and water quality of Irondequoit Creek and its tributaries. The model was developed with the program Hydrological Simulation Program-Fortran (HSPF) such that proposed or hypothetical land-use changes and instream stormwater-detention basins could be simulated, and their effects on peak flows and loads of total suspended solids, total phosphorus, ammonia-plus-organic nitrogen, and nitrate-plus-nitrite nitrogen could be analyzed, through an interactive computer program known as Generation and Analysis of Model Simulation Scenarios for Watersheds (GenScn). This report is a user's manual written to guide the Irondequoit Creek Watershed Collaborative in (1) the creation of land-use and flow-detention scenarios for simulation by the HSPF model, and (2) the use of GenScn to analyze the results of these simulations. These analyses can, in turn, aid the group in making basin-wide water-resources-management decisions.
National-scale analysis of simulated hydrological droughts (1891-2015)
NASA Astrophysics Data System (ADS)
Rudd, Alison C.; Bell, Victoria A.; Kay, Alison L.
2017-07-01
Droughts are phenomena that affect people and ecosystems in a variety of ways. One way to help with resilience to future droughts is to understand the characteristics of historic droughts and how these have changed over the recent past. Although, on average, Great Britain experiences a relatively wet climate it is also prone to periods of low rainfall which can lead to droughts. Until recently research into droughts of Great Britain has been neglected compared to other natural hazards such as storms and floods. This study is the first to use a national-scale gridded hydrological model to characterise droughts across Great Britain over the last century. Firstly, the model performance at low flows is assessed and it is found that the model can simulate low flows well in many catchments across Great Britain. Next, the threshold level method is applied to time series of monthly mean river flow and soil moisture to identify historic droughts (1891-2015). It is shown that the national-scale gridded output can be used to identify historic drought periods. A quantitative assessment of drought characteristics shows that groundwater-dependent areas typically experience more severe droughts, which have longer durations rather than higher intensities. There is substantial spatial and temporal variability in the drought characteristics, but there are no consistent changes through time.
NASA Astrophysics Data System (ADS)
Cullis, James D. S.; Gillis, Carole-Anne; Bothwell, Max L.; Kilroy, Cathy; Packman, Aaron; Hassan, Marwan
2012-06-01
The benthic, mat-forming diatomDidymosphenia geminata has the unique ability to produce large amounts of algal biomass under oligotrophic conditions in cold, fast flowing streams and rivers. This presents an ecological paradox that challenges our current understanding of stream ecosystem dynamics. Our understanding of the drivers of D. geminata ecology is still limited. Here we present a conceptual model for the blooming behavior and persistence of this species to advance scientific understanding of strategies for life in fast flowing oligotrophic waters and support the design of future research and mitigation measures for nuisance algal blooms. The conceptual model is based on a synthesis of data and ideas from a range of disciplines including hydrology, geomorphology, biogeochemistry, and ecology. The conceptual model highlights the role of water chemistry, river morphology, and flow thresholds in defining the habitat window for D. geminata. We propose that bed disturbance is a primary control on accumulation and persistence of D. geminataand that the removal threshold can be determined by synthesizing site-specific information on hydrology and geomorphology. Further, we propose that a key to understanding the didymo paradox is the separation of cellular reproduction and mat morphology with specific controls acting in respect of the different processes.
NASA Astrophysics Data System (ADS)
Murphy, K. W.; Ellis, A. W.
2017-12-01
The sustainability of water resource systems in the western United States has previously been brought into question by drought concerns and how it will be influenced by future climate change. Although decadal droughts are observed in instrumental records, the data are typically too short and the droughts too few to render the range of hydroclimatic variability that might impact modern water resource systems in the future. Natural modes of variability are not well represented in climate models, which limits the applicability of their downscaled projections in a region of interest since drought risk would be understated. Paleoclimate data have provided evidence of megadroughts from centuries ago whose hydrologic manifestations of climate variability could readily reoccur again in the future. These can be applied to research into watershed hydrologic response and resource system resilience - past, present, and future. A 645-year tree ring reconstruction of stream flow for the Salt and Verde River watersheds in central Arizona has revealed several drought periods, some more severe than seen in the 129-year instrumental record, including a late 16th century megadrought which affected large portions of the United States. This research study translated the tree ring record into net basin water supply which drives a reservoir operations simulation model to assess how the resource system performs under such severe drought. Regional climate change scenarios were developed from the observation that watershed climate sensitivity has been twice the global warming response. These were applied to the watersheds' temperature sensitivities and precipitation elasticities (reported at AGU2014) to obtain detailed renditions of hydrologic response should megadrought reoccur in a future climate. This provided one of the first rigorous projections of surface water supply under future climate change that amplifies the impact of megadrought arising from modes of climate variability often seen in the western United States. The implications to a large reservoir system serving 40% of water demand in the metropolitan Phoenix, Arizona area is reported which enables decision making for future adaptation planning.
IMPACTS OF LAND USE ON HYDROLOGIC FLOW PERMANENCE IN HEADWATER STREAMS
Extensive urbanization in the watershed can alter the stream hydrology by increasing peak runoff frequency and reducing base flows, causing subsequent impairment of stream community structure. In addition, development effectively eliminates some headwater streams, being piped an...
Martin, Jeffrey D.; Duwelius, Richard F.; Crawford, Charles G.
1990-01-01
Hydrologic effects of mining and reclamation were identified by comparing the hydrologic systems at mined and reclaimed watersheds with those at unmined agricultural watersheds. The presence or absence of a large final-cut lake in the reclaimed watershed greatly influences the hydrologic systems and the effects of mining and reclamation. Surface coal mining and reclamation can decrease base flow, annual runoff, and peak flow rates; increase the variability of flow and recharge to the bedrock; reestablish the premining relation between surface- and ground-water divides; and lower the water table in upland areas.
Quantifying human impact on hydrological drought using an Earth System Model
NASA Astrophysics Data System (ADS)
van Huijgevoort, Marjolein; Chaney, Nathaniel; Malyshev, Sergey; Shevliakova, Elena; Milly, Chris
2017-04-01
Predicting the human impact on the present and future hydrological cycle remains a significant scientific challenge. Anthropogenic impact includes water management practices like diverting water for irrigation, abstraction of groundwater, and reservoirs. Hydrological extremes, in particular, are heavily affected by water management practices, due to the existing stress on the system during droughts and floods. Therefore, to prepare adaptation plans for hydrological extremes in the future, it is essential to account for water management and other human influences in Earth System Models. In this study we have implemented water management practices in the state-of-the-art GFDL land model, which includes terrestrial water, energy, and carbon balances. Both irrigation practices and reservoirs have been added in the land surface model component of the model. Irrigation amounts are determined from the soil water balance, the evaporative demand of the vegetation and fractional coverage of croplands. The resulting water demand is fulfilled by abstractions from surface water and groundwater. Reservoir outflow is dynamically coupled to the downstream water demand and available reservoir storage. Retrospective model simulations over the contiguous United States indicate a strong human influence on hydrological drought. A water management attribution analysis shows a significant impact on the water availability, mostly in the Midwest of the United States and California. Implementation of reservoirs alters the flow regime, thereby decreasing the short-term drought impact, however, in the case of multi-year drought, impacts are delayed due to the dependency on the reservoir outflow. Irrigation, on the other hand, decreases the water availability in rivers due to increased evapotranspiration leading to a higher drought impact. The average increase in evapotranspiration amounted up to 2 mm/day for cropland areas in California and Texas. Overall, the results show the importance of including water management in global scale models. This new modelling framework can be used to understand how humans will impact future water availability, water scarcity, and drought. Next steps will include coupled model simulations to investigate the human impact on feedbacks in land-atmosphere interactions.
Future change of water vaiables from HadGEM2-AO simulation
NASA Astrophysics Data System (ADS)
Kim, Moon-Hyun; Kang, Hyun-Suk; Lee, Johan; Baek, Hee-Jeong; Cho, Chunho
2013-04-01
Complex global models developed for climate prediction are now applied to the future climate projection in a number of global modeling centers around the world. In climate prediction aspects, an atmosphere-ocean coupled model (one-tier climate system) has been recognized to exhibit useful skill for a global or certain regions (Graham et al., 2005). Wang et al. (2005) demonstrates that an AGCM coupled with an ocean model, simulates realistic SST-rainfall relationships for the Asia during the summer period. Also the transition from two-tier to one-tier approach in climate prediction are mainly caused by recent progresses in development of coupled climate models and enlargement of understanding air-sea interactions obtained from international collaborative efforts such as TOGA (the Tropical Ocean-Global Atmosphere) program (Wang et al., 2009). Meanwhile, water resource including river outflow in association with surface and sub-surface water flow is an important part of the global hydrological cycle, and is affected by climate variability and change through recharge processes (Chen et al., 2002), as well as by human interventions in many locations (Petheram et al., 2001). Also, water is critical resource to the social, economic and environmental aspects, and advances of these core elements requires improved water resource management. Better management and use of water need to abundant real time hydro-meteorological (river and weather) information as well as accurate water resource forecasting (Barrett, 1990). For this reason, many studies have recently carrying out the water resource prediction and estimation using hydrology and climate model. For example, Shiklomanov et al. (2011) predicted that water resource in Russian territory increases about 8-10% during 2010-2020 using the unit hydrograph (UH) model based on hydrologic rainfall-runoff model. Anderson et al. (2000) explained the probabilistic seasonal prediction of drought with a simplified climate model coupled hydrology-atmosphere for water resource planning. Arora et al. (1999) and Oki and Sud (1998) developed a method for routing river flows through GCM grid cells. Accordingly, reliable forecasts are expected to help water managers and users with long lead time decisions, leading to greater water use efficiency and better risk management (Wang, 2012). SO, we analysed hydrological cycle and drought index from precipitation, evaporation, runoff, soil moisture, river outflow, and so on using atmosphere-ocean coupled model which called by HadGEM2-AO. Details and added information by this climate projection system about the future water cycle's change will be presented at the workshop. Acknowledgments: This research has been supported by project NIMR-2013-B-2 of the National Institute of Meteorological Research in Korea Meteorological Administration.
Long‐term land‐use and land cover change and their associated impacts pose critical challenges to sustaining vital hydrological ecosystem services for future generations. In this study, a methodology was developed on the San Pedro River Basin to characterize hydrologi...
Modeling the influence of climate change on watershed systems: Adaptation through targeted practices
NASA Astrophysics Data System (ADS)
Dudula, John; Randhir, Timothy O.
2016-10-01
Climate change may influence hydrologic processes of watersheds (IPCC, 2013) and increased runoff may cause flooding, eroded stream banks, widening of stream channels, increased pollutant loading, and consequently impairment of aquatic life. The goal of this study was to quantify the potential impacts of climate change on watershed hydrologic processes and to evaluate scale and effectiveness of management practices for adaptation. We simulate baseline watershed conditions using the Hydrological Simulation Program Fortran (HSPF) simulation model to examine the possible effects of changing climate on watershed processes. We also simulate the effects of adaptation and mitigation through specific best management strategies for various climatic scenarios. With continuing low-flow conditions and vulnerability to climate change, the Ipswich watershed is the focus of this study. We quantify fluxes in runoff, evapotranspiration, infiltration, sediment load, and nutrient concentrations under baseline and climate change scenarios (near and far future). We model adaptation options for mitigating climate effects on watershed processes using bioretention/raingarden Best Management Practices (BMPs). It was observed that climate change has a significant impact on watershed runoff and carefully designed and maintained BMPs at subwatershed scale can be effective in mitigating some of the problems related to stormwater runoff. Policy options include implementation of BMPs through education and incentives for scale-dependent and site specific bioretention units/raingardens to increase the resilience of the watershed system to current and future climate change.
Changing Hydrology in Glacier-fed High Altitude Andean Peatbogs
NASA Astrophysics Data System (ADS)
Slayback, D. A.; Yager, K.; Baraer, M.; Mohr, K. I.; Argollo, J.; Wigmore, O.; Meneses, R. I.; Mark, B. G.
2012-12-01
Montane peatbogs in the glacierized Andean highlands of Peru and Bolivia provide critical forage for camelids (llama and alpaca) in regionally extensive pastoral agriculture systems. During the long dry season, these wetlands often provide the only available green forage. A key question for the future of these peatbog systems, and the livelihoods they support, is the impact of climate change and glacier recession on their hydrology, and thus forage production. We have already documented substantial regional glacier recession, of, on average, approximately 30% of surface area over the past two decades. As glaciers begin to retreat under climate change, there is initially a period of increased meltwater outflow, culminating in a period of "peak water", and followed by a continual decline in outflows. Based on previous work, we know that some glaciers in the region have already passed peak water conditions, and are now declining. To better understand the impacts of these processes on peatbog hydrology and productivity, we have begun collecting a variety of surface data at several study sites in both Bolivia and Peru. These include precipitation, stream flow, water levels, water chemistry and isotope analyses, and peatbog biodiversity and biomass. These measurements will be used in conjunction with a regional model driven by satellite data to predict likely future impacts. We will present the results from these initial surface measurements, and an overview of satellite datasets to be used in the regional model.
Multi-model ensemble simulations of low flows in Europe under a 1.5, 2, and 3 degree global warming
NASA Astrophysics Data System (ADS)
Marx, A.; Kumar, R.; Thober, S.; Zink, M.; Wanders, N.; Wood, E. F.; Pan, M.; Sheffield, J.; Samaniego, L. E.
2017-12-01
There is growing evidence that climate change will alter water availability in Europe. Here, we investigate how hydrological low flows are affected under different levels of future global warming (i.e., 1.5, 2 and 3 K). The analysis is based on a multi-model ensemble of 45 hydrological simulations based on three RCPs (rcp2p6, rcp6p0, rcp8p5), five CMIP5 GCMs (GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM-CHEM, NorESM1-M) and three state-of-the-art hydrological models (HMs: mHM, Noah-MP, and PCR-GLOBWB). High resolution model results are available at the unprecedented spatial resolution of 5 km across the pan-European domain at daily temporal resolution. Low river flow is described as the percentile of daily streamflow that is exceeded 90% of the time. It is determined separately for each GCM/HM combinations and the warming scenarios. The results show that the change signal amplifies with increasing warming levels. Low flows decrease in the Mediterranean, while they increase in the Alpine and Northern regions. In the Mediterranean, the level of warming amplifies the signal from -12% under 1.5 K to -35% under 3 K global warming largely due to the projected decreases in annual precipitation. In contrast, the signal is amplified from +22% (1.5 K) to +45% (3 K) because of the reduced snow melt contribution. The changes in low flows are significant for regions with relatively large change signals and under higher levels of warming. Nevertheless, it is not possible to distinguish climate induced differences in low flows between 1.5 and 2 K warming because of the large variability inherent in the multi-model ensemble. The contribution by the GCMs to the uncertainty in the Alpine and Northern region as well as the Mediterranean, the uncertainty contribution by the HMs is partly higher than those by the GCMs due to different representations of processes such as snow, soil moisture and evapotranspiration.
NASA Astrophysics Data System (ADS)
Covino, T. P.; Wegener, P.; Weiss, T.; Wohl, E.; Rhoades, C.
2017-12-01
River networks of mountain landscapes tend to be dominated by steep, valley-confined channels that have limited floodplain area and low hydrologic buffering capacity. Interspersed between the narrow segments are wide, low-gradient segments where extensive floodplains, wetlands, and riparian areas can develop. Although they tend to be limited in their frequency relative to the narrow valley segments, the low-gradient, wide portions of mountain channel networks can be particularly important to hydrologic buffering and can be sites of high nutrient retention and ecosystem productivity. Hydrologic buffering along the wide valley segments is dependent on lateral hydrologic connectivity between the river and floodplain, however these connections have been increasingly severed as a result of various land and water management practices. We evaluated the role of river-floodplain connectivity in influencing water, dissolved organic carbon (DOC), and nutrient flux in river networks of the Colorado Rockies. We found that disconnected segments with limited floodplain/riparian area had limited buffering capacity, while connected segments exhibited variable source-sink dynamics as a function of flow. Specifically, connected segments were typically a sink for water, DOC, and nutrients during high flows, and subsequently became a source as flows decreased. Shifts in river-floodplain hydrologic connectivity across flows related to higher and more variable aquatic ecosystem metabolism rates along connected relative to disconnected segments. Our data suggest that lateral hydrologic connectivity in wide valleys can enhance hydrologic and biogeochemical buffering, and promote high rates of aquatic ecosystem metabolism. While hydrologic disconnection in one river-floodplain system is unlikely to influence water resources at larger scales, the cumulative effects of widespread disconnection may be substantial. Because intact river-floodplain (i.e., connected) systems provide numerous hydrologic and ecologic benefits, understanding the dynamics and cumulative effects of disconnection is an important step toward improved water resource and ecosystem management.
Past and future changes in climate and hydrological indicators in the US Northeast
Hayhoe, K.; Wake, C.P.; Huntington, T.G.; Luo, L.; Schwartz, M.D.; Sheffield, J.; Wood, E.; Anderson, B.; Bradbury, J.; DeGaetano, A.; Troy, T.J.; Wolfe, D.
2007-01-01
To assess the influence of global climate change at the regional scale, we examine past and future changes in key climate, hydrological, and biophysical indicators across the US Northeast (NE). We first consider the extent to which simulations of twentieth century climate from nine atmosphere-ocean general circulation models (AOGCMs) are able to reproduce observed changes in these indicators. We then evaluate projected future trends in primary climate characteristics and indicators of change, including seasonal temperatures, rainfall and drought, snow cover, soil moisture, streamflow, and changes in biometeorological indicators that depend on threshold or accumulated temperatures such as growing season, frost days, and Spring Indices (SI). Changes in indicators for which temperature-related signals have already been observed (seasonal warming patterns, advances in high-spring streamflow, decreases in snow depth, extended growing seasons, earlier bloom dates) are generally reproduced by past model simulations and are projected to continue in the future. Other indicators for which trends have not yet been observed also show projected future changes consistent with a warmer climate (shrinking snow cover, more frequent droughts, and extended low-flow periods in summer). The magnitude of temperature-driven trends in the future are generally projected to be higher under the Special Report on Emission Scenarios (SRES) mid-high (A2) and higher (A1FI) emissions scenarios than under the lower (B1) scenario. These results provide confidence regarding the direction of many regional climate trends, and highlight the fundamental role of future emissions in determining the potential magnitude of changes we can expect over the coming century. ?? Springer-Verlag 2006.
Classical and generalized Horton laws for peak flows in rainfall-runoff events.
Gupta, Vijay K; Ayalew, Tibebu B; Mantilla, Ricardo; Krajewski, Witold F
2015-07-01
The discovery of the Horton laws for hydrologic variables has greatly lagged behind geomorphology, which began with Robert Horton in 1945. We define the classical and the generalized Horton laws for peak flows in rainfall-runoff events, which link self-similarity in network geomorphology with river basin hydrology. Both the Horton laws are tested in the Iowa River basin in eastern Iowa that drains an area of approximately 32 400 km(2) before it joins the Mississippi River. The US Geological Survey continuously monitors the basin through 34 stream gauging stations. We select 51 rainfall-runoff events for carrying out the tests. Our findings support the existence of the classical and the generalized Horton laws for peak flows, which may be considered as a new hydrologic discovery. Three different methods are illustrated for estimating the Horton peak-flow ratio due to small sample size issues in peak flow data. We illustrate an application of the Horton laws for diagnosing parameterizations in a physical rainfall-runoff model. The ideas and developments presented here offer exciting new directions for hydrologic research and education.
A blueprint for using climate change predictions in an eco-hydrological study
NASA Astrophysics Data System (ADS)
Caporali, E.; Fatichi, S.; Ivanov, V. Y.
2009-12-01
There is a growing interest to extend climate change predictions to smaller, catchment-size scales and identify their implications on hydrological and ecological processes. Small scale processes are, in fact, expected to mediate climate changes, producing local effects and feedbacks that can interact with the principal consequences of the change. This is particularly applicable, when a complex interaction, such as the inter-relationship between the hydrological cycle and vegetation dynamics, is considered. This study presents a blueprint methodology for studying climate change impacts, as inferred from climate models, on eco-hydrological dynamics at the catchment scale. Climate conditions, present or future, are imposed through input hydrometeorological variables for hydrological and eco-hydrological models. These variables are simulated with an hourly weather generator as an outcome of a stochastic downscaling technique. The generator is parameterized to reproduce the climate of southwestern Arizona for present (1961-2000) and future (2081-2100) conditions. The methodology provides the capability to generate ensemble realizations for the future that take into account the heterogeneous nature of climate predictions from different models. The generated time series of meteorological variables for the two scenarios corresponding to the current and mean expected future serve as input to a coupled hydrological and vegetation dynamics model, “Tethys-Chloris”. The hydrological model reproduces essential components of the land-surface hydrological cycle, solving the mass and energy budget equations. The vegetation model parsimoniously parameterizes essential plant life-cycle processes, including photosynthesis, phenology, carbon allocation, and tissue turnover. The results for the two mean scenarios are compared and discussed in terms of changes in the hydrological balance components, energy fluxes, and indices of vegetation productivity The need to account for uncertainties in projections of future climate is discussed and a methodology for propagating these uncertainties into the probability density functions of changes in eco-hydrological variables is presented.
Integrating Flow, Form, and Function for Improved Environmental Water Management
NASA Astrophysics Data System (ADS)
Albin Lane, Belize Arela
Rivers are complex, dynamic natural systems. The performance of river ecosystem functions, such as habitat availability and sediment transport, depends on the interplay of hydrologic dynamics (flow) and geomorphic settings (form). However, most river restoration studies evaluate the role of either flow or form without regard for their dynamic interactions. Despite substantial recent interest in quantifying environmental water requirements to support integrated water management efforts, the absence of quantitative, transferable relationships between river flow, form, and ecosystem functions remains a major limitation. This research proposes a novel, process-driven methodology for evaluating river flow-form-function linkages in support of basin-scale environmental water management. This methodology utilizes publically available geospatial and time-series data and targeted field data collection to improve basic understanding of river systems with limited data and resource requirements. First, a hydrologic classification system is developed to characterize natural hydrologic variability across a highly altered, physio-climatically diverse landscape. Next, a statistical analysis is used to characterize reach-scale geomorphic variability and to investigate the utility of topographic variability attributes (TVAs, subreach-scale undulations in channel width and depth), alongside traditional reach-averaged attributes, for distinguishing dominant geomorphic forms and processes across a hydroscape. Finally, the interacting roles of flow (hydrologic regime, water year type, and hydrologic impairment) and form (channel morphology) are quantitatively evaluated with respect to ecosystem functions related to hydrogeomorphic processes, aquatic habitat, and riparian habitat. Synthetic river corridor generation is used to evaluate and isolate the role of distinct geomorphic attributes without the need for intensive topographic surveying. This three-part methodology was successfully applied in the Sacramento Basin of California, USA, a large, heavily altered Mediterranean-montane basin. A spatially-explicit hydrologic classification of California distinguished eight natural hydrologic regimes representing distinct flow sources, hydrologic characteristics, and rainfall-runoff controls. A hydro-geomorphic sub-classification of the Sacramento Basin based on stratified random field surveys of 161 stream reaches distinguished nine channel types consisting of both previously identified and new channel types. Results indicate that TVAs provide a quantitative basis for interpreting non-uniform as well as uniform geomorphic processes to better distinguish linked channel forms and functions of ecological significance. Finally, evaluation of six ecosystem functions across alternative flow-form scenarios in the Yuba River watershed highlights critical tradeoffs in ecosystem performance and emphasizes the significance of spatiotemporal diversity of flow and form for maintaining ecosystem integrity. The methodology developed in this dissertation is broadly applicable and extensible to other river systems and ecosystem functions, where findings can be used to characterize complex controls on river ecosystems, assess impacts of proposed flow and form alterations, and inform river restoration strategies. Overall, this research improves scientific understanding of the linkages between hydrology, geomorphology, and river ecosystems to more efficiently allocate scare water resources for human and environmental objectives across natural and built landscapes.
Long-term strategies of climate change adaptation to manage flooding events in urban areas
NASA Astrophysics Data System (ADS)
Pouget, Laurent; Russo, Beniamino; Redaño, Angel; Ribalaygua, Jaime
2010-05-01
Heavy and sudden rainfalls regularly affect the Mediterranean area, so a great number of people and buildings are exposed to the risk of rain-generated floods. Climate change is expected to modify this risk and, in the case that extreme rainfalls increase in frequencies and intensity, this could result in important damages, particularly in urban areas. This paper presents a project that aims to determine adaptation strategies to future flood risks in urban areas. It has been developed by a panel of water companies (R+i Alliance funding), and includes the evaluation of the climate change impact on the extreme rainfall, the use of innovative modelling tools to accurately forecast the flood risk and, finally, the definition of a pro-active and long-term planning against floods. This methodology has been applied in the city of Barcelona. Current climate models give some projections that are not directly applicable for flood risk studies, either because they do not have an adequate spatial and temporal resolution, or because they do not consider some important local factors, such as orography. These points have been considered within the project, when developing the design storms corresponding to future climatic conditions (e.g. years 2030 or 2050). The methodology uses statistical downscaling techniques based on global climate models predictions, including corrections for extreme events and convective storms, as well as temporal downscaling based on historical observations. The design storms created are used in combination with the predictions of sea level rise and land use evolutions to determine the future risk of flooding in the area of study. Once the boundary conditions are known, an accurate flood hazard assessment is done. It requires a local knowledge of the flow parameters in the whole analyzed domain. In urban catchments, in order to fulfill this requirement, powerful hydrological and hydraulic tools and detailed topographic data represent the unique way for a local estimation of the flow parameters (flow depth, flow velocity, flood duration, etc.). If urban floods are caused by heavy rainfall events and a quick hydrological response of the catchment, the approach to elaborate a flood hazard assessment study should take into account the drainage system capacity, too (in terms of effectiveness of surface drainage structures, as well as storm sewerages). In these cases, the hydrological modelling of the involved subcatchments should be linked to the runoff propagation 2D modelling on the urban surface and the hydraulics of the storm sewers (dual drainage modelling) through a coupled 2D/1D approach. The design storm created and the 2D/1D modelling approach have been used to simulate the future flood risk in the city of Barcelona. From the simulation results, it is possible to understand the flooding processes and the risk associated. It is therefore possible to develop some long-term adaptation strategies to reduce the flood risk for current and future climatic conditions, such as structural measures (e.g. improvement of the stormwater network) and non-structural measures (e.g. enhancement of the flood warning system).
NASA Astrophysics Data System (ADS)
Lohse, K. A.; Sanderman, J.; Amundson, R. G.
2005-12-01
Patterns of precipitation and runoff in California are changing and likely to influence the structure and functioning of watersheds. Studies have demonstrated that hydrologic flushing during seasonal transitions in Mediterranean ecosystems can exert a strong control on nitrogen (N) export, yet few studies have examined the influence of different hydrological flow paths on rates and forms of nitrogen (N) losses. Here we illuminate the influence of variations in precipitation and hydrological pathways on the rate and form of N export along a toposequence of a well-characterized Mediterranean catchment in northern California. As a part of a larger study examining particulate and dissolved carbon loss, we analyzed seasonal patterns of dissolved organic nitrogen (DON), nitrate and ammonium concentrations in rainfall, throughfall, matrix and preferential flow, and stream samples over the course of one water year. We also analyzed seasonal soil N dynamics along this toposequence. During the transition to the winter rain season, but prior to any soil water displacement to the stream, DON and nitrate moved through near-surface soils as preferential flow. Once hillslope soils became saturated, saturated subsurface flow flushed nitrate from the hollow resulting in high stream nitrate/DON concentrations. Between storms, stream nitrate/DON concentrations were lower and appeared to reflect deep subsurface water flow chemistry. During the transition to the wet season, rates of soil nitrate production were high in the hollow relative to the hillslope soils. In the spring, these rates systematically declined as soil moisture decreased. Results from our study suggest seasonal fluctuations in soil moisture control soil N cycling and seasonal changes in the hydrological connection between hillslope soils and streams control the seasonal production and export of hydrologic N.
Hydrological disposition of flash flood and debris flows events in an Alpine watershed in Austria
NASA Astrophysics Data System (ADS)
Prenner, David; Kaitna, Roland; Mostbauer, Karin; Hrachowitz, Markus
2017-04-01
Debris flows and flash floods including intensive bedload transport represent severe hazards in the Alpine environment of Austria. For neither of these processes, explicit rainfall thresholds - even for specific regions - are available. This may be due to insufficient data on the temporal and spatial variation of precipitation, but probably also due to variations of the geomorphic and hydrological disposition of a watershed to produce such processes in the course of a rainfall event. In this contribution we investigate the importance of the hydrological system state for triggering debris flows and flash floods in the Ill/Suggadin watershed (500 km2), Austria, by analyzing the effects of dynamics in system state variables such as soil moisture, snow pack, or ground water level. The analysis is based on a semi-distributed conceptual rainfall-runoff model, spatially discretizing the watershed according to the available precipitation observations, elevation, topographic considerations and land cover. Input data are available from six weather stations on a daily basis ranging back to 1947. A Thiessen polygon decomposition results in six individual precipitation zones with a maximum area of about 130 km2. Elevation specific behavior of the quantities temperature and precipitation is covered through an elevation-resolved computation every 200 m. Spatial heterogeneity is considered by distinct hydrological response units for bare rock, forest, grassland, and riparian zone. To reduce numerical smearing on the hydrological results, the Implicit Euler scheme was used to discretize the balance equations. For model calibration we utilized runoff hydrographs, snow cover data as well as prior parameter and process constraints. The obtained hydrological output variables are linked to documented observed flash flood and debris flow events by means of a multivariate logistic regression. We present a summary about the daily hydrological disposition of experiencing a flash flood or debris flow event in each precipitation zone of the Ill/Suggadin region over almost 65 years. Furthermore, we will provide an interpretation of the occurred hydrological trigger patterns and show a frequency ranking. The outcomes of this study shall lead to an improved forecasting and differentiation of trigger conditions leading to debris flows and flash floods.
Raffensperger, Jeff P.; Baker, Anna C.; Blomquist, Joel D.; Hopple, Jessica A.
2017-06-26
Quantitative estimates of base flow are necessary to address questions concerning the vulnerability and response of the Nation’s water supply to natural and human-induced change in environmental conditions. An objective of the U.S. Geological Survey National Water-Quality Assessment Project is to determine how hydrologic systems are affected by watershed characteristics, including land use, land cover, water use, climate, and natural characteristics (geology, soil type, and topography). An important component of any hydrologic system is base flow, generally described as the part of streamflow that is sustained between precipitation events, fed to stream channels by delayed (usually subsurface) pathways, and more specifically as the volumetric discharge of water, estimated at a measurement site or gage at the watershed scale, which represents groundwater that discharges directly or indirectly to stream reaches and is then routed to the measurement point.Hydrograph separation using a recursive digital filter was applied to 225 sites in the Chesapeake Bay watershed. The recursive digital filter was chosen for the following reasons: it is based in part on the assumption that groundwater acts as a linear reservoir, and so has a physical basis; it has only two adjustable parameters (alpha, obtained directly from recession analysis, and beta, the maximum value of the base-flow index that can be modeled by the filter), which can be determined objectively and with the same physical basis of groundwater reservoir linearity, or that can be optimized by applying a chemical-mass-balance constraint. Base-flow estimates from the recursive digital filter were compared with those from five other hydrograph-separation methods with respect to two metrics: the long-term average fraction of streamflow that is base flow, or base-flow index, and the fraction of days where streamflow is entirely base flow. There was generally good correlation between the methods, with some biased slightly high and some biased slightly low compared to the recursive digital filter. There were notable differences between the days at base flow estimated by the different methods, with the recursive digital filter having a smaller range of values. This was attributed to how the different methods determine cessation of quickflow (the part of streamflow which is not base flow).For 109 Chesapeake Bay watershed sites with available specific conductance data, the parameters of the filter were optimized using a chemical-mass-balance constraint and two different models for the time-dependence of base-flow specific conductance. Sixty-seven models were deemed acceptable and the results compared well with non-optimized results. There are a number of limitations to the optimal hydrograph-separation approach resulting from the assumptions implicit in the conceptual model, the mathematical model, and the approach taken to impose chemical mass balance (including tracer choice). These limitations may be evidenced by poor model results; conversely, poor model fit may provide an indication that two-component separation does not adequately describe the hydrologic system’s runoff response.The results of this study may be used to address a number of questions regarding the role of groundwater in understanding past changes in stream-water quality and forecasting possible future changes, such as the timing and magnitude of land-use and management practice effects on stream and groundwater quality. Ongoing and future modeling efforts may benefit from the estimates of base flow as calibration targets or as a means to filter chemical data to model base-flow loads and trends. Ultimately, base-flow estimation might provide the basis for future work aimed at improving the ability to quantify groundwater discharge, not only at the scale of a gaged watershed, but at the scale of individual reaches as well.
Masterson, John P.; Pope, Jason P.; Fienen, Michael N.; Monti, Jr., Jack; Nardi, Mark R.; Finkelstein, Jason S.
2016-08-31
The U.S. Geological Survey developed a groundwater flow model for the Northern Atlantic Coastal Plain aquifer system from Long Island, New York, to northeastern North Carolina as part of a detailed assessment of the groundwater availability of the area and included an evaluation of how these resources have changed over time from stresses related to human uses and climate trends. The assessment was necessary because of the substantial dependency on groundwater for agricultural, industrial, and municipal needs in this area.The three-dimensional, groundwater flow model developed for this investigation used the numerical code MODFLOW–NWT to represent changes in groundwater pumping and aquifer recharge from predevelopment (before 1900) to future conditions, from 1900 to 2058. The model was constructed using existing hydrogeologic and geospatial information to represent the aquifer system geometry, boundaries, and hydraulic properties of the 19 separate regional aquifers and confining units within the Northern Atlantic Coastal Plain aquifer system and was calibrated using an inverse modeling parameter-estimation (PEST) technique.The parameter estimation process was achieved through history matching, using observations of heads and flows for both steady-state and transient conditions. A total of 8,868 annual water-level observations from 644 wells from 1986 to 2008 were combined into 29 water-level observation groups that were chosen to focus the history matching on specific hydrogeologic units in geographic areas in which distinct geologic and hydrologic conditions were observed. In addition to absolute water-level elevations, the water-level differences between individual measurements were also included in the parameter estimation process to remove the systematic bias caused by missing hydrologic stresses prior to 1986. The total average residual of –1.7 feet was normally distributed for all head groups, indicating minimal bias. The average absolute residual value of 12.3 feet is about 3 percent of the total observed water-level range throughout the aquifer system.Streamflow observation data of base flow conditions were derived for 153 sites from the U.S. Geological Survey National Hydrography Dataset Plus and National Water Information System. An average residual of about –8 cubic feet per second and an average absolute residual of about 21 cubic feet per second for a range of computed base flows of about 417 cubic feet per second were calculated for the 122 sites from the National Hydrography Dataset Plus. An average residual of about 10 cubic feet per second and an average absolute residual of about 34 cubic feet per second were calculated for the 568 flow measurements in the 31 sites obtained from the National Water Information System for a range in computed base flows of about 1,141 cubic feet per second.The numerical representation of the hydrogeologic information used in the development of this regional flow model was dependent upon how the aquifer system and simulated hydrologic stresses were discretized in space and time. Lumping hydraulic parameters in space and hydrologic stresses and time-varying observational data in time can limit the capabilities of this tool to simulate how the groundwater flow system responds to changes in hydrologic stresses, particularly at the local scale.
NASA Astrophysics Data System (ADS)
Flint, A. L.; Flint, L. E.
2010-12-01
The characterization of hydrologic response to current and future climates is of increasing importance to many countries around the world that rely heavily on changing and uncertain water supplies. Large-scale models that can calculate a spatially distributed water balance and elucidate groundwater recharge and surface water flows for large river basins provide a basis of estimates of changes due to future climate projections. Unfortunately many regions in the world have very sparse data for parameterization or calibration of hydrologic models. For this study, the Tigris and Euphrates River basins were used for the development of a regional water balance model at 180-m spatial scale, using the Basin Characterization Model, to estimate historical changes in groundwater recharge and surface water flows in the countries of Turkey, Syria, Iraq, Iran, and Saudi Arabia. Necessary input parameters include precipitation, air temperature, potential evapotranspiration (PET), soil properties and thickness, and estimates of bulk permeability from geologic units. Data necessary for calibration includes snow cover, reservoir volumes (from satellite data and historic, pre-reservoir elevation data) and streamflow measurements. Global datasets for precipitation, air temperature, and PET were available at very large spatial scales (50 km) through the world scale databases, finer scale WorldClim climate data, and required downscaling to fine scales for model input. Soils data were available through world scale soil maps but required parameterization on the basis of textural data to estimate soil hydrologic properties. Soil depth was interpreted from geomorphologic interpretation and maps of quaternary deposits, and geologic materials were categorized from generalized geologic maps of each country. Estimates of bedrock permeability were made on the basis of literature and data on driller’s logs and adjusted during calibration of the model to streamflow measurements where available. Results of historical water balance calculations throughout the Tigris and Euphrates River basins will be shown along with details of processing input data to provide spatial continuity and downscaling. Basic water availability analysis for recharge and runoff is readily available from a determinisitic solar radiation energy balance model and a global potential evapotranspiration model and global estimates of precipitation and air temperature. Future climate estimates can be readily applied to the same water and energy balance models to evaluate future water availability for countries around the globe.
Hydrological flow predictions in ungauged and sparsely gauged watersheds use regionalization or classification of hydrologically similar watersheds to develop empirical relationships between hydrologic, climatic, and watershed variables. The watershed classifications may be based...
Chapter 1: Hydrologic exchange flows and their ecological consequences in river corridors
Harvey, Judson
2016-01-01
The actively flowing waters of streams and rivers remain in close contact with surrounding off-channel and subsurface environments. These hydrologic linkages between relatively fast flowing channel waters, with more slowly flowing waters off-channel and in the subsurface, are collectively referred to as hydrologic exchange flows (HEFs). HEFs include surface exchange with a channel’s marginal areas and subsurface flow through the streambed (hyporheic flow), as well as storm-driven bank storage and overbank flows onto floodplains. HEFs are important, not only for storing water and attenuating flood peaks, but also for their role in influencing water conservation, water quality improvement, and related outcomes for ecological values and services of aquatic ecosystems. Biogeochemical opportunities for chemical transformations are increased by HEFs as a result of the prolonged contact between flowing waters and geochemically and microbially active surfaces of sediments and vegetation. Chemical processing is intensified and water quality is often improved by removal of excess nutrients, metals, and organic contaminants from flowing waters. HEFs also are important regulators of organic matter decomposition, nutrient recycling, and stream metabolism that helps establish a balanced and resilient aquatic food web. The shallow and protected storage zones associated with HEFs support nursery and feeding areas for aquatic organisms that sustain aquatic biological diversity. Understanding of these varied roles for HEFs has been driven by the related disciplines of stream ecology, fluvial geomorphology, surface-water hydraulics, and groundwater hydrology. A current research emphasis is on the role that HEFs play in altered flow regimes, including restoration to achieve diverse goals, such as expanding aquatic habitats and managing dissolved and suspended river loads to reduce over-fertilization of coastal waters and offset wetland loss. New integrative concepts and models are emerging (eg, hydrologic connectivity) that emphasize HEF functions in river corridors over a wide range of spatial and temporal scales.
A modeling approach to establish environmental flow threshold in ungauged semidiurnal tidal river
NASA Astrophysics Data System (ADS)
Akter, A.; Tanim, A. H.
2018-03-01
Due to shortage of flow monitoring data in ungauged semidiurnal river, 'environmental flow' (EF) determination based on its key component 'minimum low flow' is always difficult. For EF assessment this study selected a reach immediately after the Halda-Karnafuli confluence, a unique breeding ground for Indian Carp fishes of Bangladesh. As part of an ungauged tidal river, EF threshold establishment faces challenges in changing ecological paradigms with periodic change of tides and hydrologic alterations. This study describes a novel approach through modeling framework comprising hydrological, hydrodynamic and habitat simulation model. The EF establishment was conceptualized according to the hydrologic process of an ungauged semi-diurnal tidal regime in four steps. Initially, a hydrologic model coupled with a hydrodynamic model to simulate flow considering land use changes effect on streamflow, seepage loss of channel, friction dominated tidal decay as well as lack of long term flow characteristics. Secondly, to define hydraulic habitat feature, a statistical analysis on derived flow data was performed to identify 'habitat suitability'. Thirdly, to observe the ecological habitat behavior based on the identified hydrologic alteration, hydraulic habitat features were investigated. Finally, based on the combined habitat suitability index flow alteration and ecological response relationship was established. Then, the obtained EF provides a set of low flow indices of desired regime and thus the obtained discharge against maximum Weighted Usable Area (WUA) was defined as EF threshold for the selected reach. A suitable EF regime condition was obtained within flow range 25-30.1 m3/s i.e., around 10-12% of the mean annual runoff of 245 m3/s and these findings are within researchers' recommendation of minimum flow requirement. Additionally it was observed that tidal characteristics are dominant process in semi-diurnal regime. However, during the study period (2010-2015) the validated model with those reported observations can provide guidance for the decision support system (DSS) to maintain EF range in an ungauged tidal river.
Green roof hydrologic performance and modeling: a review.
Li, Yanling; Babcock, Roger W
2014-01-01
Green roofs reduce runoff from impervious surfaces in urban development. This paper reviews the technical literature on green roof hydrology. Laboratory experiments and field measurements have shown that green roofs can reduce stormwater runoff volume by 30 to 86%, reduce peak flow rate by 22 to 93% and delay the peak flow by 0 to 30 min and thereby decrease pollution, flooding and erosion during precipitation events. However, the effectiveness can vary substantially due to design characteristics making performance predictions difficult. Evaluation of the most recently published study findings indicates that the major factors affecting green roof hydrology are precipitation volume, precipitation dynamics, antecedent conditions, growth medium, plant species, and roof slope. This paper also evaluates the computer models commonly used to simulate hydrologic processes for green roofs, including stormwater management model, soil water atmosphere and plant, SWMS-2D, HYDRUS, and other models that are shown to be effective for predicting precipitation response and economic benefits. The review findings indicate that green roofs are effective for reduction of runoff volume and peak flow, and delay of peak flow, however, no tool or model is available to predict expected performance for any given anticipated system based on design parameters that directly affect green roof hydrology.
Trends and variability in the hydrological regime of the Mackenzie River Basin
NASA Astrophysics Data System (ADS)
Abdul Aziz, Omar I.; Burn, Donald H.
2006-03-01
Trends and variability in the hydrological regime were analyzed for the Mackenzie River Basin in northern Canada. The procedure utilized the Mann-Kendall non-parametric test to detect trends, the Trend Free Pre-Whitening (TFPW) approach for correcting time-series data for autocorrelation and a bootstrap resampling method to account for the cross-correlation structure of the data. A total of 19 hydrological and six meteorological variables were selected for the study. Analysis was conducted on hydrological data from a network of 54 hydrometric stations and meteorological data from a network of 10 stations. The results indicated that several hydrological variables exhibit a greater number of significant trends than are expected to occur by chance. Noteworthy were strong increasing trends over the winter month flows of December to April as well as in the annual minimum flow and weak decreasing trends in the early summer and late fall flows as well as in the annual mean flow. An earlier onset of the spring freshet is noted over the basin. The results are expected to assist water resources managers and policy makers in making better planning decisions in the Mackenzie River Basin.
Wetland Hydrological Connectivity: A Classification Approach ...
Connectivity has become a major focus of hydrological and ecological studies. Connectivity influences fluxes between landscape elements, while isolation reduces flows between elements. Thus connectivity can be an important characteristic controlling ecosystem services. Hydrologic connectivity is particularly significant, since movement of chemical constituents and biota flows are often associated with water flow. While wetlands have many important on-site functions, the degree to which they are connected to other ecosystems is a controlling influence on the effect these waters have on the larger landscape. Specifically, wetlands with high connectivity can serve as sources (e.g., net exporters of dissolved carbon), while those with low connectivity can function as sinks (e.g., net importers of suspended sediments). Here we focus on so-called “geographically isolated wetlands” (GIWs), or wetlands that are completely surrounded by uplands. While these wetlands normally lack surface water connections, they can be hydrologically connected to downstream waters through intermittent surface flow or groundwater. To help quantify connectivity of GIWs with downstream waters, we developed a system to classify GIWs based on type, magnitude, and frequency of hydrologic connectivity. We determine type (overland, shallow groundwater, or deep groundwater connectivity) by considering soil and bedrock permeability. For magnitude, we developed indices to repre
Minimum Flows and Levels Method of the St. Johns River Water Management District, Florida, USA
NASA Astrophysics Data System (ADS)
Neubauer, Clifford P.; Hall, Greeneville B.; Lowe, Edgar F.; Robison, C. Price; Hupalo, Richard B.; Keenan, Lawrence W.
2008-12-01
The St. Johns River Water Management District (SJRWMD) has developed a minimum flows and levels (MFLs) method that has been applied to rivers, lakes, wetlands, and springs. The method is primarily focused on ecological protection to ensure systems meet or exceed minimum eco-hydrologic requirements. MFLs are not calculated from past hydrology. Information from elevation transects is typically used to determine MFLs. Multiple MFLs define a minimum hydrologic regime to ensure that high, intermediate, and low hydrologic conditions are protected. MFLs are often expressed as statistics of long-term hydrology incorporating magnitude (flow and/or level), duration (days), and return interval (years). Timing and rates of change, the two other critical hydrologic components, should be sufficiently natural. The method is an event-based, non-equilibrium approach. The method is used in a regulatory water management framework to ensure that surface and groundwater withdrawals do not cause significant harm to the water resources and ecology of the above referenced system types. MFLs are implemented with hydrologic water budget models that simulate long-term system hydrology. The method enables a priori hydrologic assessments that include the cumulative effects of water withdrawals. Additionally, the method can be used to evaluate management options for systems that may be over-allocated or for eco-hydrologic restoration projects. The method can be used outside of the SJRWMD. However, the goals, criteria, and indicators of protection used to establish MFLs are system-dependent. Development of regionally important criteria and indicators of protection may be required prior to use elsewhere.
Terrain representation impact on periurban catchment morphological properties
NASA Astrophysics Data System (ADS)
Rodriguez, F.; Bocher, E.; Chancibault, K.
2013-04-01
SummaryModelling the hydrological behaviour of suburban catchments requires an estimation of environmental features, including land use and hydrographic networks. Suburban areas display a highly heterogeneous composition and encompass many anthropogenic elements that affect water flow paths, such as ditches, sewers, culverts and embankments. The geographical data available, either raster or vector data, may be of various origins and resolutions. Urban databases often offer very detailed data for sewer networks and 3D streets, yet the data covering rural zones may be coarser. This study is intended to highlight the sensitivity of geographical data as well as the data discretisation method used on the essential features of a periurban catchment, i.e. the catchment border and the drainage network. Three methods are implemented for this purpose. The first is the DEM (for digital elevation model) treatment method, which has traditionally been applied in the field of catchment hydrology. The second is based on urban database analysis and focuses on vector data, i.e. polygons and segments. The third method is a TIN (or triangular irregular network), which provides a consistent description of flow directions from an accurate representation of slope. It is assumed herein that the width function is representative of the catchment's hydrological response. The periurban Chézine catchment, located within the Nantes metropolitan area in western France, serves as the case study. The determination of both the main morphological features and the hydrological response of a suburban catchment varies significantly according to the discretization method employed, especially on upstream rural areas. Vector- and TIN-based methods allow representing the higher drainage density of urban areas, and consequently reveal the impact of these areas on the width function, since the DEM method fails. TINs seem to be more appropriate to take streets into account, because it allows a finer representation of topographical discontinuities. These results may help future developments of distributed hydrological models on periurban areas.
Yihdego, Yohannes; Webb, John
2016-05-01
Forecast evaluation is an important topic that addresses the development of reliable hydrological probabilistic forecasts, mainly through the use of climate uncertainties. Often, validation has no place in hydrology for most of the times, despite the parameters of a model are uncertain. Similarly, the structure of the model can be incorrectly chosen. A calibrated and verified dynamic hydrologic water balance spreadsheet model has been used to assess the effect of climate variability on Lake Burrumbeet, southeastern Australia. The lake level has been verified to lake level, lake volume, lake surface area, surface outflow and lake salinity. The current study aims to increase lake level confidence model prediction through historical validation for the year 2008-2013, under different climatic scenario. Based on the observed climatic condition (2008-2013), it fairly matches with a hybridization of scenarios, being the period interval (2008-2013), corresponds to both dry and wet climatic condition. Besides to the hydrologic stresses uncertainty, uncertainty in the calibrated model is among the major drawbacks involved in making scenario simulations. In line with this, the uncertainty in the calibrated model was tested using sensitivity analysis and showed that errors in the model can largely be attributed to erroneous estimates of evaporation and rainfall, and surface inflow to a lesser. The study demonstrates that several climatic scenarios should be analysed, with a combination of extreme climate, stream flow and climate change instead of one assumed climatic sequence, to improve climate variability prediction in the future. Performing such scenario analysis is a valid exercise to comprehend the uncertainty with the model structure and hydrology, in a meaningful way, without missing those, even considered as less probable, ultimately turned to be crucial for decision making and will definitely increase the confidence of model prediction for management of the water resources.
Flathead River Basin Hydrologic Observatory, Northern Rocky Mountains
NASA Astrophysics Data System (ADS)
Woessner, W. W.; Running, S. W.; Potts, D. F.; Kimball, J. S.; Deluca, T. H.; Fagre, D. B.; Makepeace, S.; Hendrix, M. S.; Lorang, M. S.; Ellis, B. K.; Lafave, J.; Harper, J.
2004-12-01
We are proposing the 22, 515 km2 glacially-sculpted Flathead River Basin located in Montana and British Columbia as a Hydrologic Observatory. This hydrologic landscape is diverse and includes large pristine watersheds, rapidly developing intermountain valleys, and a 95 km2 regulated reservoir and 510 km2 lake. The basin has a topographic gradient of over 2,339 m, and spans high alpine to arid climatic zones and a range of biomes. Stream flows are snow-melt dominated and underpinned by groundwater baseflow. The site headwaters contain 37 glaciers and thousands of square kilometers of watersheds in which fire and disease are the only disturbances. In contrast, the HO also contains watersheds at multiple scales that were dominated by glaciers within the last 100 years but are now glacier free, impacted by timber harvests and fires of varying ages to varying degrees, modified by water management practices including irrigation diversion and dams, and altered by development for homes, cities and agriculture. This Observatory provides a sensitive monitor of historic and future climatic shifts, air shed influences and impacts, and the consequences of land and water management practices on the hydrologic system. The HO watersheds are some of the only pristine watersheds left in the contiguous U.S.. They provide critical habitat for key species including the native threaten bull trout and lynx, and the listed western cutthroat trout, bald eagle, gray wolf and the grizzly bear. For the last several thousand years this system has been dominated by snow-melt runoff and moderated by large quantities of water stored in glacial ice. However, the timing and magnitude of droughts and summer flows have changed dramatically. With the information that can be gleaned from sediment cores and landscape records at different scales, this HO provides scientists with opportunities to establish baseline watershed conditions and data on natural hydrologic variability within the system. Such a context frames the current and further observations and assists with translating measured changes into links with the varied HO ecosystems.
Stream hydrologic response to increased urbanization in Mid-Atlantic watersheds
Urban development alters stream hydrology; resulting in increases in the Richard-Baker Flashiness index, peak flow, and the number of flood events for many watersheds throughout the U.S. To better understand and predict the relationship between stream flow patterns and watershed ...
Flood events across the North Atlantic region - past development and future perspectives
NASA Astrophysics Data System (ADS)
Matti, Bettina; Dieppois, Bastien; Lawler, Damian; Dahlke, Helen E.; Lyon, Steve W.
2016-04-01
Flood events have a large impact on humans, both socially and economically. An increase in winter and spring flooding across much of northern Europe in recent years opened up the question of changing underlying hydro-climatic drivers of flood events. Predicting the manifestation of such changes is difficult due to the natural variability and fluctuations in northern hydrological systems caused by large-scale atmospheric circulations, especially under altered climate conditions. Improving knowledge on the complexity of these hydrological systems and their interactions with climate is essential to be able to determine drivers of flood events and to predict changes in these drivers under altered climate conditions. This is particularly true for the North Atlantic region where both physical catchment properties and large-scale atmospheric circulations have a profound influence on floods. This study explores changes in streamflow across North Atlantic region catchments. An emphasis is placed on high-flow events, namely the timing and magnitude of past flood events, and selected flood percentiles were tested for stationarity by applying a flood frequency analysis. The issue of non-stationarity of flood return periods is important when linking streamflow to large-scale atmospheric circulations. Natural fluctuations in these circulations are found to have a strong influence on the outcome causing natural variability in streamflow records. Long time series and a multi-temporal approach allows for determining drivers of floods and linking streamflow to large-scale atmospheric circulations. Exploring changes in selected hydrological signatures consistency was found across much of the North Atlantic region suggesting a shift in flow regime. The lack of an overall regional pattern suggests that how catchments respond to changes in climatic drivers is strongly influenced by their physical characteristics. A better understanding of hydrological response to climate drivers is essential for example for forecasting purposes.
NASA Astrophysics Data System (ADS)
Ajami, H.; Sharma, A.
2016-12-01
A computationally efficient, semi-distributed hydrologic modeling framework is developed to simulate water balance at a catchment scale. The Soil Moisture and Runoff simulation Toolkit (SMART) is based upon the delineation of contiguous and topologically connected Hydrologic Response Units (HRUs). In SMART, HRUs are delineated using thresholds obtained from topographic and geomorphic analysis of a catchment, and simulation elements are distributed cross sections or equivalent cross sections (ECS) delineated in first order sub-basins. ECSs are formulated by aggregating topographic and physiographic properties of the part or entire first order sub-basins to further reduce computational time in SMART. Previous investigations using SMART have shown that temporal dynamics of soil moisture are well captured at a HRU level using the ECS delineation approach. However, spatial variability of soil moisture within a given HRU is ignored. Here, we examined a number of disaggregation schemes for soil moisture distribution in each HRU. The disaggregation schemes are either based on topographic based indices or a covariance matrix obtained from distributed soil moisture simulations. To assess the performance of the disaggregation schemes, soil moisture simulations from an integrated land surface-groundwater model, ParFlow.CLM in Baldry sub-catchment, Australia are used. ParFlow is a variably saturated sub-surface flow model that is coupled to the Common Land Model (CLM). Our results illustrate that the statistical disaggregation scheme performs better than the methods based on topographic data in approximating soil moisture distribution at a 60m scale. Moreover, the statistical disaggregation scheme maintains temporal correlation of simulated daily soil moisture while preserves the mean sub-basin soil moisture. Future work is focused on assessing the performance of this scheme in catchments with various topographic and climate settings.
NASA Astrophysics Data System (ADS)
Kappas, Martin; Nguyen Hong, Quang; Thanh, Nga Pham Thi; Thu, Hang Le Thi; Nguyen Vu, Giang; Degener, Jan; Rafiei Emam, Ammar
2017-04-01
There has been an increasing attention to the large trans-boundary Mekong river basin due to various problems related to water management and flood control, for instance. Vietnam Mekong delta is located at the downstream of the river basin where is affected most by this human-induced reduction in flows from the upstream. On the other hand, the flood plain of nine anastomosing channels is increasingly effected by the seawater intrusion due to sea level rising of climate change. This results in negative impacts of salinization, drought, and floods, while formerly flooding had frequently brought positive natural gain of irrigation water and alluvial aggradation. In this research, our aim is to predict flooding for the better water management adaptation and control. We applied the model HEC-SSP 2.1 to analyze flood flow frequency, two-dimensional unsteady flow calculations in HEC-RAS 5.0 for simulating a floodplain inundation. Remote sensing-based water level (Jason-2) and inundation map were used for validation and comparison with the model simulations. The results revealed a reduction of water level at all the monitoring stations, particularly in the last decade. In addition, a trend of the inundation extension gradually declined, but in some periods it remained severe due to water release from upstream reservoirs during the rainy season (October-November). We found an acceptable agreement between the HEC-RAS and remote sensing flooding maps (around 70%). Based on the flood routine analysis, we could conclude that the water level will continue lower and lead to a trend of drought and salinization harsher in the near future. Keywords: Mekong delta, flood control, inundation, water management, hydrological modelling, remote sensing
Towards a delimitation of southwestern Nigeria into hydrological regions
NASA Astrophysics Data System (ADS)
Ogunkoya, O. O.
1988-05-01
Fifteen third-order drainage basins (1:50,000) on the Basement Complex rocks of southwestern Nigeria are classified into hydrological regions using hydrologic response parameters of average daily mean specific discharge ( QA); daily mean specific discharges equalled or exceeded 90% ( Q90), 50% ( Q50) and 10% ( Q10) of the study period; variability index of flow ( VI); recession constant ( K) of flow from peak discharge at the end of the rainy season to minimum discharge in the dry season; total annual runoff ( RO); total runoff within the dry season ( DSRO); dry season runoff as a percentage of total annual runoff (% DSRO); runoff coefficient ( ROC); and, number of days during the study period when there was no flow ( NFD). An ordination technique and a classification algorithm derived from cluster analysis technique and incorporating the analysis of variance (ANOVA) tests to determine the level of significance of the homogeneity of derived classes, were used to classify the fifteen basins into five hydrologically homogeneous regions. The constituent basins of each region were observed to share common basin geology. It was observed that those drainage basins having at least 50% of their basin area underlain by quartzitic rocks form two groups and have the most desirable or optimal hydrologic response patterns, desirability or optimality being in terms of ability to potentially meet water resource development requirements (i.e. high perennial discharge, low variability and large groundwater contribution to stream flow). The basins predominantly underlain by granite-gneisses and amphibolitic rocks have much poorer hydrologic response patterns. Hydrological regionalization in southwestern Nigeria appears to be influenced by drainage basin geology while percentage area of the basin underlain by massive quartzites could be used as an index of occurrence of desirable hydrologic response pattern.
Simulations of ecosystem hydrological processes using a unified multi-scale model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xiaofan; Liu, Chongxuan; Fang, Yilin
2015-01-01
This paper presents a unified multi-scale model (UMSM) that we developed to simulate hydrological processes in an ecosystem containing both surface water and groundwater. The UMSM approach modifies the Navier–Stokes equation by adding a Darcy force term to formulate a single set of equations to describe fluid momentum and uses a generalized equation to describe fluid mass balance. The advantage of the approach is that the single set of the equations can describe hydrological processes in both surface water and groundwater where different models are traditionally required to simulate fluid flow. This feature of the UMSM significantly facilitates modelling ofmore » hydrological processes in ecosystems, especially at locations where soil/sediment may be frequently inundated and drained in response to precipitation, regional hydrological and climate changes. In this paper, the UMSM was benchmarked using WASH123D, a model commonly used for simulating coupled surface water and groundwater flow. Disney Wilderness Preserve (DWP) site at the Kissimmee, Florida, where active field monitoring and measurements are ongoing to understand hydrological and biogeochemical processes, was then used as an example to illustrate the UMSM modelling approach. The simulations results demonstrated that the DWP site is subject to the frequent changes in soil saturation, the geometry and volume of surface water bodies, and groundwater and surface water exchange. All the hydrological phenomena in surface water and groundwater components including inundation and draining, river bank flow, groundwater table change, soil saturation, hydrological interactions between groundwater and surface water, and the migration of surface water and groundwater interfaces can be simultaneously simulated using the UMSM. Overall, the UMSM offers a cross-scale approach that is particularly suitable to simulate coupled surface and ground water flow in ecosystems with strong surface water and groundwater interactions.« less
NASA Astrophysics Data System (ADS)
Gallart, Francesc; Llorens, Pilar; Cid, Núria; latron, Jérôme; Bonada, Núria; Prat, Narcís
2017-04-01
The evaluation of the hydrological alteration of a stream due to human activities is a first step to assess its overall quality and to design management strategies for its potential restoration. This task is currently made comparing impacted against unimpacted hydrographs, with the help of software tools, such as the IHA (Indicators of Hydrologic Alteration). Then, the environmental evaluation of the hydrological alteration is to be made in terms of its expectable menace for the original biological communities and/or its help for the spread of invasive species. However, when the regime of the target stream is not perennial, there are four main difficulties for implementing methods for assessing hydrological alteration: i) the main hydrological features relevant for biological communities in a temporary stream are not quantitative (discharges) but qualitative (temporal patterns of states such as flowing water, stagnant pools or lack of surface water), ii) stream flow records do not inform on the temporal occurrence of stagnant pools, which act as refugees for many species during the cessation of flow, iii) as most of the temporary streams are ungauged, the evaluation of their regime must be determined by using alternative methods such as remote sensing or citizen science, and iv) the biological quality assessment of the ecological status of a temporary stream must be conducted following a sampling schedule adapted to the flow regime and using adequate reference conditions. In order to overcome these challenges using an operational approach, the TREHS freely available software tool has been developed within the EU LIFE TRIVERS project (LIFE13 ENV/ES/000341). This software allows for the input of information coming from flow simulations obtained using any rainfall-runoff model (to set an unimpacted reference stream regime) and compares them with the information obtained from flow gauging records, interviews made to local citizens, instantaneous observations made by individuals, and by interpretation of aerial photographs. Up to six metrics defining the permanence of water flow, the presence of stagnant pools and their temporal patterns of occurrence are used to determine the natural and observed river regime, and to assess the degree of hydrological alteration. Here, given the lack of agreed standards to evaluate the ecological relevance of the observed alterations, the thresholds that define quality class boundaries are provisional and may be updated using expert knowledge. Finally, the software characterizes the differences between the natural and actual regimes, performs a diagnosis of the hydrological status (degree of hydrologic alteration) along with an assessment of the significance and robustness of the diagnosis, and recommends the best period for biological quality samplings.
How can a modular Master Program in Hydrology provide a framework for future education challenges?
NASA Astrophysics Data System (ADS)
Weiler, Markus; Lange, Jens
2010-05-01
A new Master program in Hydrology started at the University of Freiburg in 2008 as a continuation of the Diploma program in Hydrology due to the proposed changes according to the Bologna ac-cord. This imposed formation provided a perfect opportunity to develop a new program that is able to meet the challenges of future hydrology students to work in a nonstationary world due to climate and land use change. A modular program with individual three week hydrological courses was es-tablished, which builds on a general bachelor knowledge in natural sciences. Besides broad theory, students are taught in all relevant methods of hydrological field data collection and laboratory analy-sis. Recurrently, practical data analysis is carried out using freeware software tools. Examples in-clude time series analysis, (geo-)statistics and independently programmed water balance models including uncertainty assessments. Students work on data sets of different climatic zones and are made aware of hydrological problem areas around the globe. Hence, graduates know how to collect, analyse and evaluate hydrological information and may prepare their own, independent tools to pre-dict future changes. In addition, the new modular program includes instructors from the industry and public authorities to provide the students a broad perspective of their future profession. Finally, the new program allows directly to teach university students and practicing hydrologists together to provide evolving methods in hydrology to the practitioners and to allow contacts to professional for the university students.
Characteristics and Impact of Imperviousness From a GIS-based Hydrological Perspective
NASA Astrophysics Data System (ADS)
Moglen, G. E.; Kim, S.
2005-12-01
With the concern that imperviousness can be differently quantified depending on data sources and methods, this study assessed imperviousness estimates using two different data sources: land use and land cover. Year 2000 land use developed by the Maryland Department of Planning was utilized to estimate imperviousness by assigning imperviousness coefficients to unique land use categories. These estimates were compared with imperviousness estimates based on satellite-derived land cover from the 2001 National Land Cover Dataset. Our study developed the relationships between these two estimates in the form of regression equations to convert imperviousness derived from one data source to the other. The regression equations are considered reliable, based on goodness-of-fit measures. Furthermore, this study examined how quantitatively different imperviousness estimates affect the prediction of hydrological response both in the flow regime and in the thermal regime. We assessed the relationships between indicators of hydrological response and imperviousness-descriptors. As indicators of flow variability, coefficient of variance, lag-one autocorrelation, and mean daily flow change were calculated based on measured mean daily stream flow from the water year 1997 to 2003. For thermal variability, indicators such as percent-days of surge, degree-day, and mean daily temperature difference were calculated base on measured stream temperature over several basins in Maryland. To describe imperviousness through the hydrological process, GIS-based spatially distributed hydrological models were developed based on a water-balance method and the SCS-CN method. Imperviousness estimates from land use and land cover were used as predictors in these models to examine the effect of imperviousness using different data sources on the prediction of hydrological response. Indicators of hydrological response were also regressed on aggregate imperviousness. This allowed for identifying if hydrological response is more sensitive to spatially distributed imperviousness or aggregate (lumped) imperviousness. The regressions between indicators of hydrological response and imperviousness-descriptors were evaluated by examining goodness-of-fit measures such as explained variance or relative standard error. The results show that imperviousness estimates using land use are better predictors of flow variability and thermal variability than imperviousness estimates using land cover. Also, this study reveals that flow variability is more sensitive to spatially distributed models than lumped models, while thermal variability is equally responsive to both models. The findings from this study can be further examined from a policy perspective with regard to policies that are based on a threshold concept for imperviousness impacts on the ecological and hydrological system.
Comparison of different hydrological similarity measures to estimate flow quantiles
NASA Astrophysics Data System (ADS)
Rianna, M.; Ridolfi, E.; Napolitano, F.
2017-07-01
This paper aims to evaluate the influence of hydrological similarity measures on the definition of homogeneous regions. To this end, several attribute sets have been analyzed in the context of the Region of Influence (ROI) procedure. Several combinations of geomorphological, climatological, and geographical characteristics are also used to cluster potentially homogeneous regions. To verify the goodness of the resulting pooled sites, homogeneity tests arecarried out. Through a Monte Carlo simulation and a jack-knife procedure, flow quantiles areestimated for the regions effectively resulting as homogeneous. The analysis areperformed in both the so-called gauged and ungauged scenarios to analyze the effect of hydrological measures on flow quantiles estimation.
NASA Astrophysics Data System (ADS)
Wen, Li; Macdonald, Rohan; Morrison, Tim; Hameed, Tahir; Saintilan, Neil; Ling, Joanne
2013-09-01
The Macquarie Marshes is an intermittently flooded wetland complex covering nearly 200,000 ha. It is one of the largest semi-permanent wetland systems in the Murray-Darling Basin, Australia, and portions of the Marshes are listed as internationally important under the Ramsar Convention. Previous studies indicate that the Marshes have undergone accelerated ecological degradation since the 1980s. The ecological degradation is documented in declining biodiversity, encroaching of terrestrial species, colonisation of exotic species, and deterioration of floodplain forests. There is strong evidence that reduction in river flows is the principal cause of the decrease in ecological values. Although the streams are relatively well gauged and modelled, the lack of hydrological records within the Marshes hampers any attempts to quantitatively investigate the relationship between hydrological variation and ecosystem integrity. To enable a better understanding of the long-term hydrological variations within the key wetland systems, and in particular, to investigate the impacts of the different water management policies (e.g. environmental water) on wetlands, a river system model including the main wetland systems was needed. The morphological complex nature of the Marshes means that the approximation of hydrological regimes within wetlands using stream hydrographs would have been difficult and inaccurate. In this study, we built a coupled 1D/2D MIKE FLOOD floodplain hydrodynamic model based on a 1 m DEM derived from a LiDAR survey. Hydrological characteristics of key constituent wetlands such as the correlation between water level and inundation area, relationships between stream and wetlands and among wetlands were estimated using time series extracted from hydrodynamic simulations. These relationships were then introduced into the existing river hydrological model (IQQM) to represent the wetlands. The model was used in this study to simulate the daily behaviours of inflow/outflow, volume, and inundated area for key wetlands within the Marshes under natural conditions and recent water management practices for the period of July 1 1991 to June 30 2009. The results revealed that the recent water management practices have induced large changes to wetland hydrology. The most noticeable changes include the dramatic reductions in high flows (i.e. flows with less than 25% exceedence, reduction ranges from 85% to 98% of the high flow peak depending on the location), areal inundation extent (ranging from 13% to 79% depending on climatic conditions), and flow rising/falling rates (over 90% for high flows). Our analysis also highlighted that the impacts of water management practices on some of the flow variables for wetland habitats contrasted with those for instream habitats. For example, we did not find any evident alterations in the low flows (i.e. 75% exceedence) attributable to water management.
NASA Astrophysics Data System (ADS)
Abebe, N. A.; Ogden, F. L.
2011-12-01
Watersheds vary in their nature based on their geographic location, altitude, climate, geology, soils, and land use/land cover. These variations lead to differences in the conceptualization and formulation of hydrological models intended to represent the expected hydrological processes in a given catchment. Watersheds in the tropics are characterized by intensive and persistent biological activity and a large amount of rainfall. Our study focuses on the Agua Salud project catchments located in the Panama Canal Watershed, Panama, which have steep rolling topography, deep soils derived from weathered bedrock, and limited exposed bedrock. These catchments are also highly affected by soil cracks, decayed tree roots and animal burrows that form a network of preferential flow paths. One hypothesis is that these macropores conduct interflow during heavy rainfall, when a transient perched water table forms at a depth where the vertical hydraulic conductivity is significantly reduced near the bottom of the bioturbation layer. We have developed a physics-based, spatially distributed, multi-layered hydrologic model to simulate the dominant flow processes, including overland flow, channel flow, vertical matrix and non-Richards film flow, lateral downslope saturated matrix and non-Darcian pipe flow in the bioturbation layer and deep saturated groundwater flow. In our model formulation, we use the model to examine a variety of hydrological processes which we anticipate may occur. Emphasis is given to the modeling of the soil moisture dynamics in the bioturbation layer, development of lateral preferential flow and activation of the macropores and exchange of water at the interface between a bioturbation layer and a second layer below it. We consider interactions between surface water, ground water, channel water and perched water in the riparian zone cells with the aim of understanding likely runoff generation mechanisms. Results show that inclusion of as many different flow processes as possible during conceptualization and during model development helps to reject infeasible scenarios/hypotheses, and suggests further watershed-scale studies to improve our understanding of the hydrologic behavior of these poorly understood catchments.
Lee, S; Yeo, I-Y; Lang, M W; Sadeghi, A M; McCarty, G W; Moglen, G E; Evenson, G R
2018-06-07
Despite recognizing the importance of wetlands in the Coastal Plain of the Chesapeake Bay Watershed (CBW) in terms of ecosystem services, our understanding of wetland functions has mostly been limited to individual wetlands and overall catchment-scale wetland functions have rarely been investigated. This study is aimed at assessing the cumulative impacts of wetlands on watershed hydrology for an agricultural watershed within the Coastal Plain of the CBW using the Soil and Water Assessment Tool (SWAT). We employed two improved wetland modules for enhanced representation of physical processes and spatial distribution of riparian wetlands (RWs) and geographically isolated wetlands (GIWs). This study focused on GIWs as their hydrological impacts on watershed hydrology are poorly understood and GIWs are poorly protected. Multiple wetland scenarios were prepared by removing all or portions of the baseline GIW condition indicated by the U.S. Fish and Wildlife Service National Wetlands Inventory geospatial dataset. We further compared the impacts of GIWs and RWs on downstream flow (i.e., streamflow at the watershed outlet). Our simulation results showed that GIWs strongly influenced downstream flow by altering water transport mechanisms in upstream areas. Loss of all GIWs reduced both water routed to GIWs and water infiltrated into the soil through the bottom of GIWs, leading to an increase in surface runoff of 9% and a decrease in groundwater flow of 7% in upstream areas. These changes resulted in increased variability of downstream flow in response to extreme flow conditions. GIW loss also induced an increase in month to month variability of downstream flow and a decrease in the baseflow contribution to streamflow. Loss of all GIWs was shown to cause a greater fluctuation of downstream flow than loss of all RWs for this study site, due to a greater total water storage capacity of GIWs. Our findings indicate that GIWs play a significant role in controlling hydrological processes in upstream areas and downstream flow and, therefore, protecting GIWs is important for enhanced hydrological resilience to extreme flow conditions in this region. Copyright © 2018 Elsevier Ltd. All rights reserved.
Reservoir operations under climate change: Storage capacity options to mitigate risk
NASA Astrophysics Data System (ADS)
Ehsani, Nima; Vörösmarty, Charles J.; Fekete, Balázs M.; Stakhiv, Eugene Z.
2017-12-01
Observed changes in precipitation patterns, rising surface temperature, increases in frequency and intensity of floods and droughts, widespread melting of ice, and reduced snow cover are some of the documented hydrologic changes associated with global climate change. Climate change is therefore expected to affect the water supply-demand balance in the Northeast United States and challenge existing water management strategies. The hydrological implications of future climate will affect the design capacity and operating characteristics of dams. The vulnerability of water resources systems to floods and droughts will increase, and the trade-offs between reservoir releases to maintain flood control storage, drought resilience, ecological flow, human water demand, and energy production should be reconsidered. We used a Neural Networks based General Reservoir Operation Scheme to estimate the implications of climate change for dams on a regional scale. This dynamic daily reservoir module automatically adapts to changes in climate and re-adjusts the operation of dams based on water storage level, timing, and magnitude of incoming flows. Our findings suggest that the importance of dams in providing water security in the region will increase. We create an indicator of the Effective Degree of Regulation (EDR) by dams on water resources and show that it is expected to increase, particularly during drier months of year, simply as a consequence of projected climate change. The results also indicate that increasing the size and number of dams, in addition to modifying their operations, may become necessary to offset the vulnerabilities of water resources systems to future climate uncertainties. This is the case even without considering the likely increase in future water demand, especially in the most densely populated regions of the Northeast.
Marshall, Frank E.; Wingard, G. Lynn; Pitts, Patrick A.
2014-01-01
Disruption of the natural patterns of freshwater flow into estuarine ecosystems occurred in many locations around the world beginning in the twentieth century. To effectively restore these systems, establishing a pre-alteration perspective allows managers to develop science-based restoration targets for salinity and hydrology. This paper describes a process to develop targets based on natural hydrologic functions by coupling paleoecology and regression models using the subtropical Greater Everglades Ecosystem as an example. Paleoecological investigations characterize the circa 1900 CE (pre-alteration) salinity regime in Florida Bay based on molluscan remains in sediment cores. These paleosalinity estimates are converted into time series estimates of paleo-based salinity, stage, and flow using numeric and statistical models. Model outputs are weighted using the mean square error statistic and then combined. Results indicate that, in the absence of water management, salinity in Florida Bay would be about 3 to 9 salinity units lower than current conditions. To achieve this target, upstream freshwater levels must be about 0.25 m higher than indicated by recent observed data, with increased flow inputs to Florida Bay between 2.1 and 3.7 times existing flows. This flow deficit is comparable to the average volume of water currently being diverted from the Everglades ecosystem by water management. The products (paleo-based Florida Bay salinity and upstream hydrology) provide estimates of pre-alteration hydrology and salinity that represent target restoration conditions. This method can be applied to any estuarine ecosystem with available paleoecologic data and empirical and/or model-based hydrologic data.
Variational Assimilation of Sparse and Uncertain Satellite Data For 1D Saint-Venant River Models
NASA Astrophysics Data System (ADS)
Garambois, P. A.; Brisset, P.; Monnier, J.; Roux, H.
2016-12-01
Profusion of satellites are providing increasingly accurate measurements of continental water cyle, and water bodies variations while in situ observability is declining. The future Surface Water and Ocean Topography (SWOT) mission will provide maps of river surface elevations widths and slopes with an almost global coverage and temporal revisits. This will offer the possibility to address a larger variety of inverse problems in surface hydrology. Data assimilation techniques, that are broadly used in several scientific fields, aim to optimally combine models, system observations and prior information. Variational assimilation consists in iterative minimization of a discrepency measure between model outputs and observations, here for retrieving boundary conditions and parameters of a 1D Saint Venant model. Nevertheless, inferring river discharge and hydraulic parameters thanks to the observation of river surface is not straightforward. This is particularly true in the case of sparse and uncertain observations of flow state variables since they are governed by nonlinear physical processes. This paper investigates the identifiability of hydraulic controls given sparse and uncertain satellite observations of a river. The identifiability of river discharge alone and with roughness is tested for several spatio temporal patterns of river observations, including SWOT like observations. A new 1D Shallow water model with variational data assimilation, within the DassFlow chain is presented as well as postprocessing and observation operator dedicated to the future SWOT and SWOT simulator data. In view to decrease inverse problem dimensionality discharge is represented in a reduced basis. Moreover we introduce an original and reduced parametrization of the flow resistance that can account for various flow regimes along with a cross section design dedicated to remote sensing. We show which discharge temporal frequencies can be identified w.r.t observation ones and at which accuracy. Eventually the important question of the discharge identifiability potential between observation times and depending on the spatio-temporal sampling is adressed with respect to the wave lengths of the hydrological signals.
Evaluation of flood inundation in Crystal Springs Creek, Portland, Oregon
Stonewall, Adam; Hess, Glen
2016-05-25
Efforts to improve fish passage have resulted in the replacement of six culverts in Crystal Springs Creek in Portland, Oregon. Two more culverts are scheduled to be replaced at Glenwood Street and Bybee Boulevard (Glenwood/Bybee project) in 2016. Recently acquired data have allowed for a more comprehensive understanding of the hydrology of the creek and the topography of the watershed. To evaluate the impact of the culvert replacements and recent hydrologic data, a Hydrologic Engineering Center-River Analysis System hydraulic model was developed to estimate water-surface elevations during high-flow events. Longitudinal surface-water profiles were modeled to evaluate current conditions and future conditions using the design plans for the culverts to be installed in 2016. Additional profiles were created to compare with the results from the most recent flood model approved by the Federal Emergency Management Agency for Crystal Springs Creek and to evaluate model sensitivity.Model simulation results show that water-surface elevations during high-flow events will be lower than estimates from previous models, primarily due to lower estimates of streamflow associated with the 0.01 and 0.002 annual exceedance probability (AEP) events. Additionally, recent culvert replacements have resulted in less ponding behind crossings. Similarly, model simulation results show that the proposed replacement culverts at Glenwood Street and Bybee Boulevard will result in lower water-surface elevations during high-flow events upstream of the proposed project. Wider culverts will allow more water to pass through crossings, resulting in slightly higher water-surface elevations downstream of the project during high-flows than water-surface elevations that would occur under current conditions. For the 0.01 AEP event, the water-surface elevations downstream of the Glenwood/Bybee project will be an average of 0.05 ft and a maximum of 0.07 ft higher than current conditions. Similarly, for the 0.002 AEP event, the water-surface elevations will be an average of 0.04 ft and a maximum of 0.19 ft higher than current conditions.
NASA Astrophysics Data System (ADS)
Parhizkar, M.; Therrien, R.; Molson, J. W. H.; Lemieux, J. M.; Fortier, R.; Talbot Poulin, M. C.; Therrien, P.; Ouellet, M.
2016-12-01
The rate of permafrost degradation in northern Quebec, Canada, has increased over the last two decades due to climate warming, which is expected to significantly modify the hydrogeologic and thermal regimes. Groundwater accessibility is also expected to increase and could become a significant source of drinking water for northern communities. In this project, an integrated surface water / groundwater flow model, HydroGeoSphere, is being applied to a 2 km2catchment in northern Quebec to assess the effect of future climate change on thermo-hydrological conditions as well as on changes in groundwater availability for northern communities. The catchment is located in a discontinuous but widespread permafrost zone near Umiujaq (northern Quebec, Canada) where the subsurface consists of a 10-30 m-thick coarse-grained glaciofluvial layer forming a good aquifer beneath a permafrost-rich silty marine unit. A conceptual thermo-hydrological model of the catchment has been built from field data collected over 5 years, including hydraulic heads, stream flow rates, subsurface geology, as well as ground temperatures and thermal fluxes around two 10-20 m-thick permafrost mounds. The integrated 3D numerical model includes variably-saturated groundwater flow with transient recharge, as well as advective-conductive heat transport driven by transient air temperatures (varying from about -40 to +30 ºC) and a geothermal heat flux of 60 mW/m2. The model is calibrated to observed heads and temperatures by coupling PEST with HydroGeoSphere, allowing changes in hydraulic and thermal conductivities. Preliminary results are consistent with the available observed data, however non-uniqueness remains an important issue. The simulations are providing useful predictions of the permafrost thaw rate and associated changes to the hydrogeological flow system, including increased aquifer recharge following permafrost thaw.
Zyvoloski, G.; Kwicklis, E.; Eddebbarh, A.-A.; Arnold, B.; Faunt, C.; Robinson, B.A.
2003-01-01
This paper presents several different conceptual models of the Large Hydraulic Gradient (LHG) region north of Yucca Mountain and describes the impact of those models on groundwater flow near the potential high-level repository site. The results are based on a numerical model of site-scale saturated zone beneath Yucca Mountain. This model is used for performance assessment predictions of radionuclide transport and to guide future data collection and modeling activities. The numerical model is calibrated by matching available water level measurements using parameter estimation techniques, along with more informal comparisons of the model to hydrologic and geochemical information. The model software (hydrologic simulation code FEHM and parameter estimation software PEST) and model setup allows for efficient calibration of multiple conceptual models. Until now, the Large Hydraulic Gradient has been simulated using a low-permeability, east-west oriented feature, even though direct evidence for this feature is lacking. In addition to this model, we investigate and calibrate three additional conceptual models of the Large Hydraulic Gradient, all of which are based on a presumed zone of hydrothermal chemical alteration north of Yucca Mountain. After examining the heads and permeabilities obtained from the calibrated models, we present particle pathways from the potential repository that record differences in the predicted groundwater flow regime. The results show that Large Hydraulic Gradient can be represented with the alternate conceptual models that include the hydrothermally altered zone. The predicted pathways are mildly sensitive to the choice of the conceptual model and more sensitive to the quality of calibration in the vicinity on the repository. These differences are most likely due to different degrees of fit of model to data, and do not represent important differences in hydrologic conditions for the different conceptual models. ?? 2002 Elsevier Science B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Semenova, O. M.; Lebedeva, L. S.; Nesterova, N. V.; Vinogradova, T. A.
2015-06-01
Twelve mountainous basins of the Vitim Plateau (Eastern Siberia, Russia) with areas ranging from 967 to 18 200 km2 affected by extensive fires in 2003 (from 13 to 78% of burnt area) were delineated based on MODIS Burned Area Product. The studied area is characterized by scarcity of hydrometeorological observations and complex hydrological processes. Combined analysis of monthly series of flow and precipitation was conducted to detect short-term fire impact on hydrological response of the basins. The idea of basin-analogues which have significant correlation of flow with "burnt" watersheds in stationary (pre-fire) period with the assumption that fire impact produced an outlier of established dependence was applied. Available data allowed for qualitative detection of fire-induced changes at two basins from twelve studied. Summer flow at the Amalat and Vitimkan Rivers (22 and 78% proportion of burnt area in 2003, respectively) increased by 40-50% following the fire.The impact of fire on flow from the other basins was not detectable.The hydrological model Hydrograph was applied to simulate runoff formation processes for stationary pre-fire and non-stationary post-fire conditions. It was assumed that landscape properties changed after the fire suggest a flow increase. These changes were used to assess the model parameters which allowed for better model performance in the post-fire period.
Patrick, Christopher J; Yuan, Lester L
2017-07-01
Flow alteration is widespread in streams, but current understanding of the effects of differences in flow characteristics on stream biological communities is incomplete. We tested hypotheses about the effect of variation in hydrology on stream communities by using generalized additive models to relate watershed information to the values of different flow metrics at gauged sites. Flow models accounted for 54-80% of the spatial variation in flow metric values among gauged sites. We then used these models to predict flow metrics in 842 ungauged stream sites in the mid-Atlantic United States that were sampled for fish, macroinvertebrates, and environmental covariates. Fish and macroinvertebrate assemblages were characterized in terms of a suite of metrics that quantified aspects of community composition, diversity, and functional traits that were expected to be associated with differences in flow characteristics. We related modeled flow metrics to biological metrics in a series of stressor-response models. Our analyses identified both drying and base flow instability as explaining 30-50% of the observed variability in fish and invertebrate community composition. Variations in community composition were related to variations in the prevalence of dispersal traits in invertebrates and trophic guilds in fish. The results demonstrate that we can use statistical models to predict hydrologic conditions at bioassessment sites, which, in turn, we can use to estimate relationships between flow conditions and biological characteristics. This analysis provides an approach to quantify the effects of spatial variation in flow metrics using readily available biomonitoring data. © 2017 by the Ecological Society of America.
Satellite Altimetry based River Forecasting of Transboundary Flow
NASA Astrophysics Data System (ADS)
Hossain, F.; Siddique-E-Akbor, A.; Lee, H.; Shum, C.; Biancamaria, S.
2012-12-01
Forecasting of this transboundary flow in downstream nations however remains notoriously difficult due to the lack of basin-wide in-situ hydrologic measurements or its real-time sharing among nations. In addition, human regulation of upstream flow through diversion projects and dams, make hydrologic models less effective for forecasting on their own. Using the Ganges-Brahmaputra (GB) basin as an example, this study assesses the feasibility of using JASON-2 satellite altimetry for forecasting such transboundary flow at locations further inside the downstream nation of Bangladesh by propagating forecasts derived from upstream (Indian) locations through a hydrodynamic river model. The 5-day forecast of river levels at upstream boundary points inside Bangladesh are used to initialize daily simulation of the hydrodynamic river model and yield the 5-day forecast river level further downstream inside Bangladesh. The forecast river levels are then compared with the 5-day-later "now cast" simulation by the river model based on in-situ river level at the upstream boundary points in Bangladesh. Future directions for satellite-based forecasting of flow are also briefly overviewed.round tracks or virtual stations of JASON-2 (J2) altimeter over the GB basin shown in yellow lines. The locations where the track crosses a river and used for deriving forecasting rating curves is shown with a circle and station number (magenta- Brahmaputra basin; blue - Ganges basin). Circles without a station number represent the broader view of sampling by JASON-2 if all the ground tracks on main stem rivers and neighboring tributaries of Ganges and Brahmaputra are considered.
Climate change impact on the management of water resources in the Seine River basin, France
NASA Astrophysics Data System (ADS)
Dorchies, David; Thirel, Guillaume; Chauveau, Mathilde; Jay-Allemand, Maxime; Perrin, Charles; Dehay, Florine
2013-04-01
It is today commonly accepted that adaptation strategies will be needed to cope with the hydrological consequences of projected climate change. The main objective of the IWRM-Net Climaware project is to design adaptation strategies for various socio-economic sectors and evaluate their relevance at the European scale. Within the project, the Seine case study focuses on dam management. The Seine River basin at Paris (43800km²) shows major socio-economic stakes in France. Due to its important and growing demography, the number of industries depending on water resources or located on the river sides, and the developed agricultural sector, the consequences of droughts and floods may be dramatic. To mitigate the extreme hydrological events, a system of four large multi-purpose reservoirs was built in the upstream part of the basin between 1949 and 1990. The IPCC reports indicate modifications of the climate conditions in northern France in the future. An increase of mean temperature is very likely, and the rainfall patterns could be modified: the uncertainty on future trends is still high, but summer periods could experience lower quantities of rainfall. Anticipating these changes are crucial: will the present reservoirs system be adapted to these conditions? Here we propose to evaluate the capacity of the Seine River reservoirs to withstand future projected climate conditions using the current management rules. For this study a modeling chain was designed. We used two hydrological models: GR4J, a lumped model used as a benchmark, and TGR, a semi-distributed model. TGR was tuned to explicitly account for reservoir management rules. Seven climatic models forced by the moderate A1B IPCC scenario and downscaled using a weather-type method (DSCLIM, Pagé et al., 2009), were used. A quantile-quantile type method was applied to correct bias in climate simulations. A model to mimic the way reservoirs are managed was also developed. The evolution of low flows, high flows and annual flows were assessed under natural condition (i.e. without the inclusion of the reservoirs in the models). Then, the impact of reservoirs and their management were accounted for in the modeling chain. Results will be discussed relatively to future hydro-climatic conditions and current mitigation objectives within the basin. Reference: Pagé, C., L. Terray et J. Boé, 2009: dsclim: A software package to downscale climate scenarios at regional scale using a weather-typing based statistical methodology. Technical Report TR/CMGC/09/21, SUC au CERFACS, URA CERFACS/CNRS No1875, Toulouse, France. Link : http://www.cerfacs.fr/~page/dsclim/dsclim_doc-latest.pdf
Quantifying the sources of uncertainty in an ensemble of hydrological climate-impact projections
NASA Astrophysics Data System (ADS)
Aryal, Anil; Shrestha, Sangam; Babel, Mukand S.
2018-01-01
The objective of this paper is to quantify the various sources of uncertainty in the assessment of climate change impact on hydrology in the Tamakoshi River Basin, located in the north-eastern part of Nepal. Multiple climate and hydrological models were used to simulate future climate conditions and discharge in the basin. The simulated results of future climate and river discharge were analysed for the quantification of sources of uncertainty using two-way and three-way ANOVA. The results showed that temperature and precipitation in the study area are projected to change in near- (2010-2039), mid- (2040-2069) and far-future (2070-2099) periods. Maximum temperature is likely to rise by 1.75 °C under Representative Concentration Pathway (RCP) 4.5 and by 3.52 °C under RCP 8.5. Similarly, the minimum temperature is expected to rise by 2.10 °C under RCP 4.5 and by 3.73 °C under RCP 8.5 by the end of the twenty-first century. Similarly, the precipitation in the study area is expected to change by - 2.15% under RCP 4.5 and - 2.44% under RCP 8.5 scenarios. The future discharge in the study area was projected using two hydrological models, viz. Soil and Water Assessment Tool (SWAT) and Hydrologic Engineering Center's Hydrologic Modelling System (HEC-HMS). The SWAT model projected discharge is expected to change by small amount, whereas HEC-HMS model projected considerably lower discharge in future compared to the baseline period. The results also show that future climate variables and river hydrology contain uncertainty due to the choice of climate models, RCP scenarios, bias correction methods and hydrological models. During wet days, more uncertainty is observed due to the use of different climate models, whereas during dry days, the use of different hydrological models has a greater effect on uncertainty. Inter-comparison of the impacts of different climate models reveals that the REMO climate model shows higher uncertainty in the prediction of precipitation and, consequently, in the prediction of future discharge and maximum probable flood.
Sishodia, Rajendra P; Shukla, Sanjay; Wani, Suhas P; Graham, Wendy D; Jones, James W
2018-09-01
Simultaneous effects of future climate and irrigation intensification on surface and groundwater systems are not well understood. Efforts are needed to understand the future groundwater availability and associated surface flows under business-as-usual management to formulate policy changes to improve water sustainability. We combine measurements with integrated modeling (MIKE SHE/MIKE11) to evaluate the effects of future climate (2040-2069), with and without irrigation expansion, on water levels and flows in an agricultural watershed in low-storage crystalline aquifer region of south India. Demand and supply management changes, including improved efficiency of irrigation water as well as energy uses, were evaluated. Increased future rainfall (7-43%, from 5 Global Climate Models) with no further expansion of irrigation wells increased the groundwater recharge (10-55%); however, most of the recharge moved out of watershed as increased baseflow (17-154%) with a small increase in net recharge (+0.2mm/year). When increased rainfall was considered with projected increase in irrigation withdrawals, both hydrologic extremes of well drying and flooding were predicted. A 100-year flow event was predicted to be a 5-year event in the future. If irrigation expansion follows the historical trends, earlier and more frequent well drying, a source of farmers' distress in India, was predicted to worsen in the future despite the recharge gains from increased rainfall. Storage and use of excess flows, improved irrigation efficiency with flood to drip conversion in 25% of irrigated area, and reduced energy subsidy (free electricity for 3.5h compared to 7h/day; $1 billion savings) provided sufficient water savings to support future expansion in irrigated areas while mitigating well drying as well as flooding. Reductions in energy subsidy to fund the implementation of economically desirable (high benefit-cost ratio) demand (drip irrigation) and supply (water capture and storage) management was recommended to achieve a sustainable food-water-energy nexus in semi-arid regions. Copyright © 2018 Elsevier B.V. All rights reserved.
Factors Influencing the Sahelian Paradox at the Local Watershed Scale: Causal Inference Insights
NASA Astrophysics Data System (ADS)
Van Gordon, M.; Groenke, A.; Larsen, L.
2017-12-01
While the existence of paradoxical rainfall-runoff and rainfall-groundwater correlations are well established in the West African Sahel, the hydrologic mechanisms involved are poorly understood. In pursuit of mechanistic explanations, we perform a causal inference analysis on hydrologic variables in three watersheds in Benin and Niger. Using an ensemble of techniques, we compute the strength of relationships between observational soil moisture, runoff, precipitation, and temperature data at seasonal and event timescales. Performing analysis over a range of time lags allows dominant time scales to emerge from the relationships between variables. By determining the time scales of hydrologic connectivity over vertical and lateral space, we show differences in the importance of overland and subsurface flow over the course of the rainy season and between watersheds. While previous work on the paradoxical hydrologic behavior in the Sahel focuses on surface processes and infiltration, our results point toward the importance of subsurface flow to rainfall-runoff relationships in these watersheds. The hypotheses generated from our ensemble approach suggest that subsequent explorations of mechanistic hydrologic processes in the region include subsurface flow. Further, this work highlights how an ensemble approach to causal analysis can reveal nuanced relationships between variables even in poorly understood hydrologic systems.
Assessment of Regional Variation in Streamflow Responses ...
Aquatic ecosystems are sensitive to the modification of hydrologic regimes, experiencing declines in stream health as the streamflow regime is altered during urbanization. This study uses streamflow records to quantify the type and magnitude of hydrologic changes across urbanization gradients in nine U.S. cities (Atlanta, GA, Baltimore, MD, Boston, MA, Detroit, MI, Raleigh, NC, St. Paul, MN, Pittsburgh, PA, Phoenix, AZ, and Portland, OR) in two physiographic settings. Results indicate similar development trajectories among urbanization gradients, but heterogeneity in the type and magnitude of hydrologic responses to this apparently uniform urban pattern. Similar urban patterns did not confer similar hydrologic function. Study watersheds in landscapes with level slopes and high soil permeability had less frequent high-flow events, longer high-flow durations, lower flashiness response, and lower flow maxima compared to similarly developed watersheds in landscape with steep slopes and low soil permeability. Our results suggest that physical characteristics associated with level topography and high water-storage capacity buffer the severity of hydrologic changes associated with urbanization. Urbanization overlain upon a diverse set of physical templates creates multiple pathways toward hydrologic impairment; therefore, we caution against the use of the urban homogenization framework in examining geophysically dominated processes. This paper shows cities how to utili
Hopkins, Kristina G; Morse, Nathaniel B; Bain, Daniel J; Bettez, Neil D; Grimm, Nancy B; Morse, Jennifer L; Palta, Monica M; Shuster, William D; Bratt, Anika R; Suchy, Amanda K
2015-03-03
Aquatic ecosystems are sensitive to the modification of hydrologic regimes, experiencing declines in stream health as the streamflow regime is altered during urbanization. This study uses streamflow records to quantify the type and magnitude of hydrologic changes across urbanization gradients in nine U.S. cities (Atlanta, GA, Baltimore, MD, Boston, MA, Detroit, MI, Raleigh, NC, St. Paul, MN, Pittsburgh, PA, Phoenix, AZ, and Portland, OR) in two physiographic settings. Results indicate similar development trajectories among urbanization gradients, but heterogeneity in the type and magnitude of hydrologic responses to this apparently uniform urban pattern. Similar urban patterns did not confer similar hydrologic function. Study watersheds in landscapes with level slopes and high soil permeability had less frequent high-flow events, longer high-flow durations, lower flashiness response, and lower flow maxima compared to similarly developed watersheds in landscape with steep slopes and low soil permeability. Our results suggest that physical characteristics associated with level topography and high water-storage capacity buffer the severity of hydrologic changes associated with urbanization. Urbanization overlain upon a diverse set of physical templates creates multiple pathways toward hydrologic impairment; therefore, we caution against the use of the urban homogenization framework in examining geophysically dominated processes.
Effect of spatial organisation behaviour on upscaling the overland flow formation in an arable land
NASA Astrophysics Data System (ADS)
Silasari, Rasmiaditya; Blöschl, Günter
2014-05-01
Overland flow during rainfall events on arable land is important to investigate as it affects the land erosion process and water quality in the river. The formation of overland flow may happen through different ways (i.e. Hortonian overland flow, saturation excess overland flow) which is influenced by the surface and subsurface soil characteristics (i.e. land cover, soil infiltration rate). As the soil characteristics vary throughout the entire catchment, it will form distinct spatial patterns with organised or random behaviour. During the upscaling of hydrological processes from plot to catchment scale, this behaviour will become substantial since organised patterns will result in higher spatial connectivity and thus higher conductivity. However, very few of the existing studies explicitly address this effect of spatial organisations of the patterns in upscaling the hydrological processes to the catchment scale. This study will assess the upscaling of overland flow formation with concerns of spatial organisation behaviour of the patterns by application of direct field observations under natural conditions using video camera and soil moisture sensors and investigation of the underlying processes using a physical-based hydrology model. The study area is a Hydrological Open Air Laboratory (HOAL) located at Petzenkirchen, Lower Austria. It is a 64 ha catchment with land use consisting of arable land (87%), forest (6%), pasture (5%) and paved surfaces (2%). A video camera is installed 7m above the ground on a weather station mast in the middle of the arable land to monitor the overland flow patterns during rainfall events in a 2m x 6m plot scale. Soil moisture sensors with continuous measurement at different depth (5, 10, 20 and 50cm) are installed at points where the field is monitored by the camera. The patterns of overland flow formation and subsurface flow state at the plot scale will be generated using a coupled surface-subsurface flow physical-based hydrology model. The observation data will be assimilated into the model to verify the corresponding processes between surface and subsurface flow during the rainfall events. The patterns of conductivity then will be analyzed at catchment scale using the spatial stochastic analysis based on the classification of soil characteristics of the entire catchment. These patterns of conductivity then will be applied in the model at catchment scale to see how the organisational behaviour can affect the spatial connectivity of the hydrological processes and the results of the catchment response. A detailed modelling of the underlying processes in the physical-based model will allow us to see the direct effect of the spatial connectivity to the occurring surface and subsurface flow. This will improve the analysis of the effect of spatial organisations of the patterns in upscaling the hydrological processes from plot to catchment scale.
Developing New Modelling Tools for Environmental Flow Assessment in Regulated Salmon Rivers
NASA Astrophysics Data System (ADS)
Geris, Josie; Soulsby, Chris; Tetzlaff, Doerthe
2013-04-01
There is a strong political drive in Scotland to meet all electricity demands from renewable sources by 2020. In Scotland, hydropower generation has a long history and is a key component of this strategy. However, many rivers sustain freshwater communities that have both high conservation status and support economically important Atlantic salmon fisheries. Both new and existing hydropower schemes must be managed in accordance with the European Union's Water Framework Directive (WFD), which requires that all surface water bodies achieve good ecological status or maintain good ecological potential. Unfortunately, long-term river flow monitoring is sparse in the Scottish Highlands and there are limited data for defining environmental flows. The River Tay is the most heavily regulated catchment in the UK. To support hydropower generation, it has an extensive network of inter- and intra- catchment transfers, in addition to a large number of regulating reservoirs for which abstraction legislation often only requires minimum compensation flows. The Tay is also considered as one of Scotland's most important rivers for Atlantic salmon (Salmo salar), and there is considerable uncertainty as to how best change reservoir operations to improve the ecological potential of the river system. It is now usually considered that environmental flows require more than a minimum compensation flow, and instead should cover a range of hydrological flow aspects that represent ecologically relevant streamflow attributes, including magnitude, timing, duration, frequency and rate of change. For salmon, these hydrological indices are of particular interest, with requirements varying at different stages of their life cycle. To meet the WFD requirements, rationally alter current abstraction licences and provide an evidence base for regulating new hydropower schemes, advanced definitions for abstraction limits and ecologically appropriate flow releases are desirable. However, a good understanding of the natural flow variability and the hydrological impacts of the regulation is unavailable, partly because pre-regulation data of existing hydropower schemes are lacking. Here we develop a novel modelling approach for characterising natural flow regimes and defining hydrological flow indices. This allows us to quantitatively assess the impacts of hydropower to better inform environmental flow requirements for the Atlantic salmon river ecosystem. Results are presented for the River Lyon (390 km2), a regulated headwater catchment of the River Tay. The HBV hydrological rainfall-runoff model is used to simulate flows, based on calibrated parameters from regulated flow data, with the current hydropower scheme active. For this, the HBV model is adapted to be able to incorporate water transfers and regulated flows. The natural hydrological indices are derived from the simulated pre-regulation data, and compared with those of the regulated data to investigate the impact of the regulation on these at different critical times for Atlantic salmon. The sensitivity of the system to change is also investigated to explore the extent to which flow variables can be modified without major degradation to the river's ecosystem, while still maintaining viable hydropower generation. The modelling approach presented will provide the basis for assessing impacts on hydrological flow indices and informing environmental flows in regions with similar heavily regulated mountain river ecosystems.
NASA Astrophysics Data System (ADS)
Sebestyen, S. D.; Campbell, J. L.; Shanley, J. B.; Pourmokhtarian, A.; Driscoll, C. T.; Boyer, E. W.
2009-12-01
There is a need to understand how climate variability and change affect nutrient delivery to surface waters. We analyzed long-term records of hydrochemical data to explore how the forms, concentrations, and loadings of nitrogen in forest streams throughout the northern USA vary with catchment wetness. We considered projected changes in growing season length and precipitation patterns to simulate future climate scenarios and to assess how stream nitrate loading responds to hydrological forcing under different climate change scenarios. At the Sleepers River Research Watershed in northeastern Vermont, model results suggest that stream nutrient loadings over the next century will respond to hydrological forcing during climate change that affects the amount of water that flows through the landscape. For example, growing season stream water yield (+20%) and nitrate loadings (+57%) increase in response to greater amounts of precipitation (+28%) during a warmer climate with a longer growing season (+43 days). We further explore these findings by presenting model results from a biogeochemical process model (PnET-BGC) to separate changes that are due to biogeochemical cycling and the effects of hydrological forcing. Our findings suggest that nitrogen cycling and transport will intensify during anthropogenic climate forcing, thereby affecting the timing and magnitude of annual stream nutrient loadings in northern forests of the USA.
Modelling water use in global hydrological models: review, challenges and directions
NASA Astrophysics Data System (ADS)
Bierkens, M. F.; de Graaf, I.; Wada, Y.; Wanders, N.; Van Beek, L. P.
2017-12-01
During the late 1980s and early 1990s, awareness of the shortage of global water resources lead to the first detailed global water resources assessments using regional statistics of water use and observations of meteorological and hydrological variables. Shortly thereafter, the first macroscale hydrological models (MHM) appeared. In these models, blue water (i.e., surface water and renewable groundwater) availability was calculated by accumulating runoff over a stream network and comparing it with population densities or with estimated water demand for agriculture, industry and households. In this talk we review the evolution of human impact modelling in global land models with a focus on global water resources, touching upon developments of the last 15 years: i.e. calculating human water scarcity; estimating groundwater depletion; adding dams and reservoirs; fully integrating water use (demand, withdrawal, consumption, return flow) in the hydrology; simulating the effects of land use change. We show example studies for each of these steps. We identify We identify major challenges that hamper the further development of integrated water resources modelling. Examples of these are: 1) simulating reservoir operations; 2) including local infrastructure and redistribution; 3) using the correct allocations rules; 4) projecting future water demand and water use. For each of these challenges we signify promising directions for further research.
Woolfenden, Linda R.; Nishikawa, Tracy
2014-01-01
Water managers in the Santa Rosa Plain face the challenge of meeting increasing water demand with a combination of Russian River water, which has uncertainties in its future availability; local groundwater resources; and ongoing and expanding recycled water and water from other conservation programs. To address this challenge, the U.S. Geological Survey, in cooperation with the Sonoma County Water Agency, the cities of Cotati, Rohnert Park, Santa Rosa, and Sebastopol, the town of Windsor, the California American Water Company, and the County of Sonoma, undertook development of a fully coupled groundwater and surface-water model to better understand and to help manage the hydrologic resources in the Santa Rosa Plain watershed. The purpose of this report is to (1) describe the construction and calibration of the fully coupled groundwater and surface-water flow model for the Santa Rosa Plain watershed, referred to as the Santa Rosa Plain hydrologic model; (2) present results from simulation of the Santa Rosa Plain hydrologic model, including water budgets, recharge distributions, streamflow, and the effect of pumping on water-budget components; and (3) present the results from using the model to evaluate the potential hydrologic effects of climate change and variability without pumpage for water years 2011-99 and with projected pumpage for water years 2011-40.
International Virtual Observatory System for Water Resources Information
NASA Astrophysics Data System (ADS)
Leinenweber, Lewis; Bermudez, Luis
2013-04-01
Sharing, accessing, and integrating hydrologic and climatic data have been identified as a critical need for some time. The current state of data portals, standards, technologies, activities, and expertise can be leverage to develop an initial operational capability for a virtual observatory system. This system will allow to link observations data with stream networks and models, and to solve semantic inconsistencies among communities. Prototyping a virtual observatory system is an inter-disciplinary, inter-agency and international endeavor. The Open Geospatial Consortium (OGC) within the OGC Interoperability Program provides the process and expertise to run such collaborative effort. The OGC serves as a global forum for the collaboration of developers and users of spatial data products and services, and to advance the development of international standards for geospatial interoperability. The project coordinated by OGC that is advancing an international virtual observatory system for water resources information is called Climatology-Hydrology Information Sharing Pilot, Phase 1 (CHISP-1). It includes observations and forecasts in the U.S. and Canada levering current networks and capabilities. It is designed to support the following use cases: 1) Hydrologic modeling for historical and near-future stream flow and groundwater conditions. Requires the integration of trans-boundary stream flow and groundwater well data, as well as national river networks (US NHD and Canada NHN) from multiple agencies. Emphasis will be on time series data and real-time flood monitoring. 2) Modeling and assessment of nutrient load into the lakes. Requires accessing water-quality data from multiple agencies and integrating with stream flow information for calculating loads. Emphasis on discrete sampled water quality observations, linking those to specific NHD stream reaches and catchments, and additional metadata for sampled data. The key objectives of these use cases are: 1) To link observations data to the stream network, enabling queries of conditions upstream from a given location to return all relevant gages and well locations. This is currently not practical with the data sources available. 2) To bridge differences in semantics across information models and processes used by the various data producers, to improve the hydrologic and water quality modeling capabilities. Other expected benefits to be derived from this project include: - Leverage a large body of existing data holdings and related activities of multiple agencies in the US and Canada. - Influence data and metadata standards used internationally for web-based information sharing, through multiple agency cooperation and OGC standards setting process. - Reduction of procurement risk through partnership-based development of an initial operating capability verses the cost for building a fully operational system using a traditional "waterfall approach". - Identification and clarification of what is possible, and of the key technical and non-technical barriers to continued progress in sharing and integrating hydrologic and climatic information. - Promote understanding and strengthen ties within the hydro-climatic community. This is anticipated to be the first phase of a multi-phase project, with future work on forecasting the hydrologic consequences of extreme weather events, and enabling more sophisticated water quality modeling.
Hydrological and hydroclimatic regimes in the Ouergha watershed
NASA Astrophysics Data System (ADS)
Msatef, Karim; Benaabidate, Lahcen; Bouignane, Aziz
2018-05-01
This work consists in studying the hydrological and hydroclimatic regime of the Ouergha watershed and frequency analysis of extreme flows and extreme rainfall for peak estimation and return periods, in order to prevention and forecasting against risks (flood...). Hydrological regime analysis showed a regime of the rain type, characterized by rainfed abundance with very high winter flows, so strong floods. The annual module and the different coefficients show hydroclimatic fluctuations in relation to a semihumid climate. The water balance has highlighted the importance of the volumes of water conveyed upstream than downstream, thus confirming the morphometric parameters of watershed and the lithological nature. Frequency study of flows and extreme rainfall showed that these flows governed by dissymmetrical laws based on methods Gumbel, GEV, Gamma and Log Pearson III.
Importance of return flow as a component of water use
Trotta, L.C.; Horn, M.S.
1990-01-01
Understanding the relation between the hydrologjc cycle and water use is important for effective water-resources management. The hydrologic cycle is the natural pathway of water from evaporation to precipitation to infiltration or runoff and to storage from which evaporation can again occur. The science of water use is the study of human influences on the hydrologic cycle. Human activities affect the hydrologic cycle by changing the quantity, distribution, and quality of available water. Quantifying return flow is useful to water managers in evaluating such changes. Return flow is often thought of as what runs down the drain, or what is leftover after the water's purpose has been served. As innocuous as that may sound, return flow plays a significant part in the overall water-use picture.
Modeling the Effects of Land Use and Climate Change on Streamflow in the Delaware River Basin
NASA Astrophysics Data System (ADS)
Kwon, P. Y. S.; Endreny, T. A.; Kroll, C. N.; Williamson, T. N.
2014-12-01
Forest-cover loss and drinking-water reservoirs in the upper Delaware River Basin of New York may alter summer low streamflows, which could degrade the in-stream habitat for the endangered dwarf wedgemussel. Our project analyzes how flow statistics change with land-cover change for 30-year increments of model-simulated streamflow hydrographs for three watersheds of concern to the National Park Service: the East Branch, West Branch, and main stem of the Delaware River. We use four treatments for land cover ranging from historical high to low forest cover. We subject each land cover to adjusted GCM climate scenarios for 1600, 1900, 1940, and 2040 to isolate land cover from potential climate-change effects. Hydrographs are simulated using the Water Availability Tool for Environmental Resources (WATER), a TOPMODEL-based United States Geological Survey hydrologic decision-support tool, which uses the variable-source-area concept and water budgets to generate streamflow. Model parameters for each watershed change with land-use, and capture differences in soil-physical properties that control how rainfall infiltrates, evaporates, transpires, is stored in the soil, and moves to the stream. Our results analyze flow statistics used as indicators of hydrologic alteration, and access streamflow events below the critical flow needed to provide sustainable habitat for dwarf wedgemussels. These metrics will demonstrate how changes in climate and land use might affect flow statistics. Initial results show that the 1940 WATER simulation outputs generally match observed unregulated low flows from that time period, while performance for regulated flow from the same time period and from 1600, 1900, and 2040 require model input adjustments. Our study will illustrate how increased forest cover could potentially restore in-stream habitat for the endangered dwarf wedgemussel for current and future climate conditions.
What did the Romans ever do for us? Putting humans in global land models
NASA Astrophysics Data System (ADS)
Bierkens, M. F.; Wada, Y.; Dermody, B.; Van Beek, L. P.
2016-12-01
During the late 1980s and early 1990s, awareness of the shortage of global water resources lead to the first detailed global water resources assessments using regional statistics of water use and observations of meteorological and hydrological variables. Shortly thereafter, the first macroscale hydrological models (MHM) appeared. In these models, blue water (i.e., surface water and renewable groundwater) availability was calculated by accumulating runoff over a stream network and comparing it with population densities or with estimated water demand for agriculture, industry and households. In this talk we review the evolution of human impact modelling in global land models with a focus on global water resources, touching upon developments of the last 15 years: i.e. calculating human water scarcity; estimating groundwater depletion; adding dams and reservoirs; fully integrating water use (abstraction, application, consumption, return flow) in the hydrology; simulating the effects of land use change. We identify four major challenges that hamper the further development of integrated water resources modelling and thus prohibit realistic projections of the future terrestrial water cycle in the Anthropocene. These are: 1) including the ability to model infrastructural changes and measures; 2) projecting future water demand and water use and associated measures; 3) including virtual water trade; 4) including land use change and landscape change. While all these challenges will likely benefit from hydro-economics and the newly developing field of socio-hydrology, we also show that especially for challenges 3 and 4 lessons can be drawn from the (pre)historic past. To make this point we provide two case studies: one modelling the virtual water trade in the Roman Empire and one modelling human-landscape interaction in prehistoric Calabria (Italy).
Riparian responses to extreme climate and land-use change scenarios.
Fernandes, Maria Rosário; Segurado, Pedro; Jauch, Eduardo; Ferreira, Maria Teresa
2016-11-01
Climate change will induce alterations in the hydrological and landscape patterns with effects on riparian ecotones. In this study we assess the combined effect of an extreme climate and land-use change scenario on riparian woody structure and how this will translate into a future risk of riparian functionality loss. The study was conducted in the Tâmega catchment of the Douro basin. Boosted Regression Trees (BRTs) were used to model two riparian landscape indicators related with the degree of connectivity (Mean Width) and complexity (Area Weighted Mean Patch Fractal Dimension). Riparian data were extracted by planimetric analysis of high spatial-resolution Word Imagery Layer (ESRI). Hydrological, climatic and land-use variables were obtained from available datasets and generated with process-based modeling using current climate data (2008-2014), while also considering the high-end RCP8.5 climate-change and "Icarus" socio-economic scenarios for the 2046-2065 time slice. Our results show that hydrological and land-use changes strongly influence future projections of riparian connectivity and complexity, albeit to diverse degrees and with differing effects. A harsh reduction in average flows may impair riparian zones while an increase in extreme rain events may benefit connectivity by promoting hydrologic dynamics with the surrounding floodplains. The expected increase in broad-leaved woodlands and mixed forests may enhance the riparian galleries by reducing the agricultural pressure on the area in the vicinity of the river. According to our results, 63% of river segments in the Tâmega basin exhibited a moderate risk of functionality loss, 16% a high risk, and 21% no risk. Weaknesses and strengths of the method are highlighted and results are discussed based on a resilience perspective with regard to riparian ecosystems. Copyright © 2016 Elsevier B.V. All rights reserved.
Indigenous Waters: Applying the SWAT Hydrological Model to the Lumbee River Watershed
NASA Astrophysics Data System (ADS)
Painter, J.; Singh, N.; Martin, K. L.; Vose, J. M.; Wear, D. N.; Emanuel, R. E.
2016-12-01
Hydrological modeling can reveal insight about how rainfall becomes streamflow in a watershed comprising heterogeneous soils, terrain and land cover. Modeling can also help disentangle predicted impacts of climate and land use change on hydrological processes. We applied a hydrological model to the Lumbee River watershed, also known as the Lumber River Watershed, in the coastal plain of North Carolina (USA) to better understand how streamflow may be impacted by predicted climate and land use change in the mid-21st century. The Lumbee River flows through a predominantly Native American community, which may be affected by changing water resources during this period. The long-term goal of our project is to predict the effects of climate and land use change on the Lumbee River watershed and on the Native community that relies upon the river. We applied the Soil & Water Assessment Tool for ArcGIS (ArcSWAT), which was calibrated to historical climate and USGS streamflow data during the late 20th century, and we determined frequency distributions for key model parameters that best predicted streamflow during this time period. After calibrating and validating the model during the historical period, we identified land use and climate projections to represent a range of future conditions in the watershed. Specifically, we selected downscaled climate forcing data from four general circulation models running the RCP8.5 scenario. We also selected land use projections from a cornerstone scenario of the USDA Forest Service's Southern Forest Futures Project. This presentation reports on our methods for propagating parameter and climatic uncertainty through model predictions, and it reports on spatial patterns of land use change predicted by the cornerstone scenario.
A Non-Stationary Approach for Estimating Future Hydroclimatic Extremes Using Monte-Carlo Simulation
NASA Astrophysics Data System (ADS)
Byun, K.; Hamlet, A. F.
2017-12-01
There is substantial evidence that observed hydrologic extremes (e.g. floods, extreme stormwater events, and low flows) are changing and that climate change will continue to alter the probability distributions of hydrologic extremes over time. These non-stationary risks imply that conventional approaches for designing hydrologic infrastructure (or making other climate-sensitive decisions) based on retrospective analysis and stationary statistics will become increasingly problematic through time. To develop a framework for assessing risks in a non-stationary environment our study develops a new approach using a super ensemble of simulated hydrologic extremes based on Monte Carlo (MC) methods. Specifically, using statistically downscaled future GCM projections from the CMIP5 archive (using the Hybrid Delta (HD) method), we extract daily precipitation (P) and temperature (T) at 1/16 degree resolution based on a group of moving 30-yr windows within a given design lifespan (e.g. 10, 25, 50-yr). Using these T and P scenarios we simulate daily streamflow using the Variable Infiltration Capacity (VIC) model for each year of the design lifespan and fit a Generalized Extreme Value (GEV) probability distribution to the simulated annual extremes. MC experiments are then used to construct a random series of 10,000 realizations of the design lifespan, estimating annual extremes using the estimated unique GEV parameters for each individual year of the design lifespan. Our preliminary results for two watersheds in Midwest show that there are considerable differences in the extreme values for a given percentile between conventional MC and non-stationary MC approach. Design standards based on our non-stationary approach are also directly dependent on the design lifespan of infrastructure, a sensitivity which is notably absent from conventional approaches based on retrospective analysis. The experimental approach can be applied to a wide range of hydroclimatic variables of interest.
Findings and Challenges in Fine-Resolution Large-Scale Hydrological Modeling
NASA Astrophysics Data System (ADS)
Her, Y. G.
2017-12-01
Fine-resolution large-scale (FL) modeling can provide the overall picture of the hydrological cycle and transport while taking into account unique local conditions in the simulation. It can also help develop water resources management plans consistent across spatial scales by describing the spatial consequences of decisions and hydrological events extensively. FL modeling is expected to be common in the near future as global-scale remotely sensed data are emerging, and computing resources have been advanced rapidly. There are several spatially distributed models available for hydrological analyses. Some of them rely on numerical methods such as finite difference/element methods (FDM/FEM), which require excessive computing resources (implicit scheme) to manipulate large matrices or small simulation time intervals (explicit scheme) to maintain the stability of the solution, to describe two-dimensional overland processes. Others make unrealistic assumptions such as constant overland flow velocity to reduce the computational loads of the simulation. Thus, simulation efficiency often comes at the expense of precision and reliability in FL modeling. Here, we introduce a new FL continuous hydrological model and its application to four watersheds in different landscapes and sizes from 3.5 km2 to 2,800 km2 at the spatial resolution of 30 m on an hourly basis. The model provided acceptable accuracy statistics in reproducing hydrological observations made in the watersheds. The modeling outputs including the maps of simulated travel time, runoff depth, soil water content, and groundwater recharge, were animated, visualizing the dynamics of hydrological processes occurring in the watersheds during and between storm events. Findings and challenges were discussed in the context of modeling efficiency, accuracy, and reproducibility, which we found can be improved by employing advanced computing techniques and hydrological understandings, by using remotely sensed hydrological observations such as soil moisture and radar rainfall depth and by sharing the model and its codes in public domain, respectively.
Multi-decadal Hydrological Retrospective: Case study of Amazon floods and droughts
NASA Astrophysics Data System (ADS)
Wongchuig Correa, Sly; Paiva, Rodrigo Cauduro Dias de; Espinoza, Jhan Carlo; Collischonn, Walter
2017-06-01
Recently developed methodologies such as climate reanalysis make it possible to create a historical record of climate systems. This paper proposes a methodology called Hydrological Retrospective (HR), which essentially simulates large rainfall datasets, using this as input into hydrological models to develop a record of past hydrology, making it possible to analyze past floods and droughts. We developed a methodology for the Amazon basin, where studies have shown an increase in the intensity and frequency of hydrological extreme events in recent decades. We used eight large precipitation datasets (more than 30 years) as input for a large scale hydrological and hydrodynamic model (MGB-IPH). HR products were then validated against several in situ discharge gauges controlling the main Amazon sub-basins, focusing on maximum and minimum events. For the most accurate HR, based on performance metrics, we performed a forecast skill of HR to detect floods and droughts, comparing the results with in-situ observations. A statistical temporal series trend was performed for intensity of seasonal floods and droughts in the entire Amazon basin. Results indicate that HR could represent most past extreme events well, compared with in-situ observed data, and was consistent with many events reported in literature. Because of their flow duration, some minor regional events were not reported in literature but were captured by HR. To represent past regional hydrology and seasonal hydrological extreme events, we believe it is feasible to use some large precipitation datasets such as i) climate reanalysis, which is mainly based on a land surface component, and ii) datasets based on merged products. A significant upward trend in intensity was seen in maximum annual discharge (related to floods) in western and northwestern regions and for minimum annual discharge (related to droughts) in south and central-south regions of the Amazon basin. Because of the global coverage of rainfall datasets, this methodology can be transferred to other regions for better estimation of future hydrological behavior and its impact on society.
Hydrology and water quality of the copper-nickel study region, northeastern Minnesota
Siegel, Donald I.; Ericson, Donald W.
1980-01-01
Data were collected on the hydrology of the Copper-Nickel study region to identify the location and nature of groundwater resources, determine the flow characteristics and general quality of the major streams, and determine the potential effects of mining copper and nickel on the hydrologic stream. Groundwater generally occurs in local flow systems within surficial deposits and in fractures in the upper few hundred feet of bedrock. Yields commonly range from 1 to 5 gallons per minute from wells in surficial materials and bedrock, but can be as much as 1,000 gallons per minute from wells in the sand and gravel aquifer underlying the Embarrass River valley. Groundwater generally is calcium-magnesium bicarbonate types. Over a mineralized zone, groundwater has concentrations of copper and nickel greater than 5 micrograms per liter. The average annual runoff from streams in the study area is about 10 inches. About 60% of the annual runoff occurs during snowmelt in spring. Flood peaks are reduced in streams that have surface storage available in on-channel lakes and wetlands. Specific conductance in streams can exceed 250 micromhos per centimeter at 25 Celsius where mine dewatering supplements natural discharge. Estimated groundwater discharge to projected copper-nickel mines ranges from less than 25 to about 2,000 gallons per minute. The introduction of trace metals from future mining activities to the groundwater system can be reduced if tailings basins and stockpiles are located on material which has low permeability, such as till, peat, or bedrock. (USGS)
Cryosphere, climate and capitalism: drivers of Central Asian water stress
NASA Astrophysics Data System (ADS)
Hill, A. F.; Minbaeva, C.; Wilson, A. M.; Satylkanov, R.; Armstrong, R. L.
2017-12-01
The importance of meltwater to Central Asia's trans-boundary rivers and groundwater reserves suggests future water stress for the region. Climate is likely to induce shifts in water supply volume and delivery timing, while a complex fabric of socio-political factors complicates water management and adaptation strategies. To clarify the drivers of water stress over a large scale (440km, 4,200m elevation change), we conducted a socio-hydrologic study of Krygyzstan's Naryn River in the Tien Shan mountains, headwater stem of the Syr Darya and source of the disappearing Aral Sea. Using a combination of geochemical sampling, hydro-chemical mixing models, remote sensing image processing and community surveys, we characterized both the social and hydrologic controls of water supplies from glacier snout to downstream areas where people, hydropower and agriculture utilize water. We find melt-sourced water dominates hydrologic inputs to both surface flow and groundwater from headwaters to reservoir, suggesting high sensitivity of water supply to a warming climate. On a regional scale, the importance of melt to trans-boundary river flow serving thirsty downstream countries may increase hostility between already tense neighbors. Water stress on the basin level, however, is currently less impacted by supply than by access, agricultural knowledge deficiencies and infrastructure issues that are relic from the post-Soviet transition in the 1990s. The interplay of these factors suggests the need for creative and proactive water management adaptation planning in the Naryn basin and throughout similar melt-reliant areas of arid Central Asia.
NASA Astrophysics Data System (ADS)
Regier, Peter; Briceño, Henry; Jaffé, Rudolf
2016-12-01
Urban and agricultural development of the South Florida peninsula has disrupted historic freshwater flow in the Everglades, a hydrologically connected ecosystem stretching from central Florida to the Gulf of Mexico, USA. Current system-scale restoration efforts aim to restore natural hydrologic regimes to reestablish pre-drainage ecosystem functioning through increased water availability, quality and timing. Aquatic transport of carbon in this ecosystem, primarily as dissolved organic carbon (DOC), plays a critical role in biogeochemical cycling and food-web dynamics, and will be affected both by water management policies and climate change. To better understand DOC dynamics in South Florida estuaries and how hydrology, climate and water management may affect them, 14 years of monthly data collected in the Shark River estuary were used to examine DOC flux dynamics in a broader environmental context. Multivariate statistical methods were applied to long-term datasets for hydrology, water quality and climate to untangle the interconnected environmental drivers that control DOC export at monthly and annual scales. DOC fluxes were determined to be primarily controlled by hydrology but also by seasonality and long-term climate patterns and episodic weather events. A four-component model (salinity, rainfall, inflow, Atlantic Multidecadal Oscillation) capable of predicting DOC fluxes (R2 = 0.84, p < 0.0001, n = 155) was established and applied to potential climate change scenarios for the Everglades to assess DOC flux response to climate and restoration variables. The majority of scenario runs indicated that DOC export from the Everglades is expected to decrease due to future changes in rainfall, water management and salinity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wan, Wenhua; Zhao, Jianshi; Li, Hong-Yi
Hydrological drought is a substantial negative deviation from normal hydrologic conditions and is influenced by climate and human activities such as water management. By perturbing the streamflow regime, climate change and water management may significantly alter drought characteristics in the future. Here we utilize a high-resolution integrated modeling framework that represents water management in terms of both local surface water extraction and reservoir regulation, and use the Standardized Streamflow Index (SSI) to quantify hydrological drought. We explore the impacts of water management on hydrological drought over the contiguous US in a warming climate with and without emissions mitigation. Despite themore » uncertainty of climate change impacts, local surface water extraction consistently intensifies drought that dominates at the regional to national scale. However, reservoir regulation alleviates drought by enhancing summer flow downstream of reservoirs. The relative dominance of drought intensification or relief is largely determined by the water demand, with drought intensification dominating in regions with intense water demand such as the Great Plains and California, while drought relief dominates in regions with low water demand. At the national level, water management increases the spatial extent of extreme drought despite some alleviations of moderate to severe drought. In an emissions mitigation scenario with increased irrigation demand for bioenergy production, water management intensifies drought more than the business-as-usual scenario at the national level, so the impacts of emissions mitigation must be evaluated by considering its benefit in reducing warming and evapotranspiration against its effects on increasing water demand and intensifying drought.« less
NASA Astrophysics Data System (ADS)
Kudo, K.; Hasegawa, H.; Nakatsugawa, M.
2017-12-01
This study addresses evaluation of water quality change of brackish lake based on the estimation of hydrological quantities resulting from long-term hydrologic process accompanying climate change. For brackish lakes, such as Lake Abashiri in Eastern Hokkaido, there are concerns about water quality deterioration due to increases in water temperature and salinity. For estimating some hydrological quantities in the Abashiri River basin, including Lake Abashiri, we propose the following methods: 1) MRI-NHRCM20, a regional climate model based on the Representative Concentration Pathways adopted by IPCC AR5, 2) generalized extreme value distribution for correcting bias, 3) kriging adopted variogram for downscaling and 4) Long term Hydrologic Assessment model considering Snow process (LoHAS). In addition, we calculate the discharge from Abashiri River into Lake Abashiri by using estimated hydrological quantities and a tank model, and simulate impacts on water quality of Lake Abashiri due to climate change by setting necessary conditions, including the initial conditions of water temperature and water quality, the pollution load from the inflow rivers, the duration of ice cover and salt pale boundary. The result of the simulation of water quality indicates that climate change is expected to raise the water temperature of the lake surface by approximately 4°C and increase salinity of surface of the lake by approximately 4psu, also if salt pale boundary in the lake raises by approximately 2-m, the concentration of COD, T-N and T-P in the bottom of the lake might increase. The processes leading to these results are likely to be as follows: increased river water flows in along salt pale boundary in lake, causing dynamic flow of surface water; saline bottom water is entrained upward, where it mixes with surface water; and the shear force acting at salt pale boundary helps to increase the supply of salts from bottom saline water to the surface water. In the future, we will conduct similar simulations for a larger area that includes the mouth of Abashiri River. The accuracy of flow field simulation for Lake Abashiri will increase when calculations incorporate the effects of climate change on tide level, water temperature and salinity at the river mouth.
Doing ecohydrology backward: Inferring wetland flow and hydroperiod from landscape patterns
NASA Astrophysics Data System (ADS)
Acharya, Subodh; Kaplan, David A.; Jawitz, James W.; Cohen, Matthew J.
2017-07-01
Human alterations to hydrology have globally impacted wetland ecosystems. Preventing or reversing these impacts is a principal focus of restoration efforts. However, restoration effectiveness is often hampered by limited information on historical landscape properties and hydrologic regime. To help address this gap, we developed a novel statistical approach for inferring flows and inundation frequency (i.e., hydroperiod, HP) in wetlands where changes in spatial vegetation and geomorphic patterns have occurred due to hydrologic alteration. We developed an analytical expression for HP as a transformation of the landscape-scale stage-discharge relationship. We applied this model to the Everglades "ridge-slough" (RS) landscape, a patterned, lotic peatland in southern Florida that has been drastically degraded by compartmentalization, drainage, and flow diversions. The new method reliably estimated flow and HP for a range of RS landscape patterns. Crucially, ridge-patch anisotropy and elevation above sloughs were strong drivers of flow-HP relationships. Increasing ridge heights markedly increased flow required to achieve sufficient HP to support peat accretion. Indeed, ridge heights inferred from historical accounts would require boundary flows 3-4 times greater than today, which agrees with restoration flow estimates from more complex, spatially distributed models. While observed loss of patch anisotropy allows HP targets to be met with lower flows, such landscapes likely fail to support other ecological functions. This work helps inform restoration flows required to restore stable ridge-slough patterning and positive peat accretion in this degraded ecosystem, and, more broadly, provides tools for exploring interactions between landscape and hydrology in lotic wetlands and floodplains.
NASA Astrophysics Data System (ADS)
Ji, P.; Yuan, X.
2017-12-01
Located in the northern Tibetan Plateau, Sanjiangyuan is the headwater region of the Yellow River, Yangtze River and Mekong River. Besides climate change, natural and human-induced land cover change (e.g., Graze for Grass Project) is also influencing the regional hydro-climate and hydrological extremes significantly. To quantify their impacts, a land surface model (LSM) with consideration of soil moisture-lateral surface flow interaction and quasi-three-dimensional subsurface flow, is used to conduct long-term high resolution simulations driven by China Meteorological Administration Land Data Assimilation System forcing data and different land cover scenarios. In particular, the role of surface and subsurface lateral flows is also analyzed by comparing with typical one-dimensional models. Lateral flows help to simulate soil moisture variability caused by topography at hyper-resolution (e.g., 100m), which is also essential for simulating hydrological extremes including soil moisture dryness/wetness and high/low flows. The LSM will also be coupled with a regional climate model to simulate the effect of natural and anthropogenic land cover change on regional climate, with particular focus on the land-atmosphere coupling at different resolutions with different configurations in modeling land surface hydrology.
Modelling white-water rafting suitability in a hydropower regulated Alpine River.
Carolli, Mauro; Zolezzi, Guido; Geneletti, Davide; Siviglia, Annunziato; Carolli, Fabiano; Cainelli, Oscar
2017-02-01
Cultural and recreational river ecosystem services and their relations with the flow regime are still poorly investigated. We develop a modelling-based approach to assess recreational flow requirements and the spatially distributed river suitability for white-water rafting, a typical service offered by mountain streams, with potential conflicts of interest with hydropower regulation. The approach is based on the principles of habitat suitability modelling using water depth as the main attribute, with preference curves defined through interviews with local rafting guides. The methodology allows to compute streamflow thresholds for conditions of suitability and optimality of a river reach in relation to rafting. Rafting suitability response to past, present and future flow management scenarios can be predicted on the basis of a hydrological model, which is incorporated in the methodology and is able to account for anthropic effects. Rafting suitability is expressed through a novel metric, the "Rafting hydro-suitability index" (RHSI) which quantifies the cumulative duration of suitable and optimal conditions for rafting. The approach is applied on the Noce River (NE Italy), an Alpine River regulated by hydropower production and affected by hydropeaking, which influences suitability at a sub-daily scale. A dedicated algorithm is developed within the hydrological model to resemble hydropeaking conditions with daily flow data. In the Noce River, peak flows associated with hydropeaking support rafting activities in late summer, highlighting the dual nature of hydropeaking in regulated rivers. Rafting suitability is slightly reduced under present, hydropower-regulated flow conditions compared to an idealized flow regime characterised by no water abstractions. Localized water abstractions for small, run-of-the-river hydropower plants are predicted to negatively affect rafting suitability. The proposed methodology can be extended to support decision making for flow management in hydropower regulated streams, as it has the potential to quantify the response of different ecosystem services to flow regulation. Copyright © 2016 Elsevier B.V. All rights reserved.
Nerantzaki, S D; Giannakis, G V; Efstathiou, D; Nikolaidis, N P; Sibetheros, I Α; Karatzas, G P; Zacharias, I
2015-12-15
Mediterranean semi-arid watersheds are characterized by a climate type with long periods of drought and infrequent but high-intensity rainfalls. These factors lead to the formation of temporary flow tributaries which present flashy hydrographs with response times ranging from minutes to hours and high erosion rates with significant sediment transport. Modeling of suspended sediment concentration in such watersheds is of utmost importance due to flash flood phenomena, during which, large quantities of sediments and pollutants are carried downstream. The aim of this study is to develop a modeling framework for suspended sediment transport in a karstic watershed and assess the impact of climate change on flow, soil erosion and sediment transport in a hydrologically complex and intensively managed Mediterranean watershed. The Soil and Water Assessment Tool (SWAT) model was coupled with a karstic flow and suspended sediment model in order to simulate the hydrology and sediment yield of the karstic springs and the whole watershed. Both daily flow data (2005-2014) and monthly sediment concentration data (2011-2014) were used for model calibration. The results showed good agreement between observed and modeled values for both flow and sediment concentration. Flash flood events account for 63-70% of the annual sediment export depending on a wet or dry year. Simulation results for a set of IPCC "A1B" climate change scenarios suggested that major decreases in surface flow (69.6%) and in the flow of the springs (76.5%) take place between the 2010-2049 and 2050-2090 time periods. An assessment of the future ecological flows revealed that the frequency of minimum flow events increases over the years. The trend of surface sediment export during these periods is also decreasing (54.5%) but the difference is not statistically significant due to the variability of the sediment. On the other hand, sediment originating from the springs is not affected significantly by climate change. Copyright © 2015 Elsevier B.V. All rights reserved.
Tracer-Test Planning Using the Efficient Hydrologic Tracer-Test Design (Ehtd) Program (2005)
Hydrological tracer testing is the most reliable diagnostic technique available for establishing flow trajectories and hydrologic connections and for determining basic hydraulic and geometric parameters necessary for establishing operative solute-transport processes. Tracer-test ...
Tracer-Test Planning Using the Efficient Hydrologic Tracer-Test Design (Ehtd) Program (2003)
Hydrological tracer testing is the most reliable diagnostic technique available for establishing flow trajectories and hydrologic connections and for determining basic hydraulic and geometric parameters necessary for establishing operative solute-transport processes. Tracer-test ...
Deriving flow directions for coarse-resolution (1-4 km) gridded hydrologic modeling
NASA Astrophysics Data System (ADS)
Reed, Seann M.
2003-09-01
The National Weather Service Hydrology Laboratory (NWS-HL) is currently testing a grid-based distributed hydrologic model at a resolution (4 km) commensurate with operational, radar-based precipitation products. To implement distributed routing algorithms in this framework, a flow direction must be assigned to each model cell. A new algorithm, referred to as cell outlet tracing with an area threshold (COTAT) has been developed to automatically, accurately, and efficiently assign flow directions to any coarse-resolution grid cells using information from any higher-resolution digital elevation model. Although similar to previously published algorithms, this approach offers some advantages. Use of an area threshold allows more control over the tendency for producing diagonal flow directions. Analyses of results at different output resolutions ranging from 300 m to 4000 m indicate that it is possible to choose an area threshold that will produce minimal differences in average network flow lengths across this range of scales. Flow direction grids at a 4 km resolution have been produced for the conterminous United States.
Water and the Earth System in the Anthropocene: Evolution of Socio-Hydrology
NASA Astrophysics Data System (ADS)
Sivapalan, M.; Bloeschl, G.
2014-12-01
Over the past century, hydrological science has evolved through distinct eras as judged by ideas, information sources, technological advances and societal influences: Empirical Era which was data based with little theory, Systems Era that focused on input-output relationships, Process Era with a focus on processes, and the Geosciences Era where hydrology was considered an Earth System science. We argue that as the human footprint on earth becomes increasingly dominant, we are moving into a Co-evolution Era. Co-evolution implies that the components of the Earth system are intimately intertwined at many time scales - fast scales of immediate feedbacks that translate into slow scale interdependencies and trends. These involve feedbacks between the atmosphere, biota, soils and landforms, mediated by water flow and transport processes. The human factor is becoming a key component of this coupled system. While there is a long tradition of considering effects of water on humans, and vice versa, the new thrust on socio-hydrology has a number of defining characteristics that sets it apart from traditional approaches: - Capturing feedbacks of human-natural water system in a dynamic way (slow and fast processes) to go beyond prescribing human factors as mere boundary conditions. These feedbacks will be essential to understand how the system may evolve in the future into new, perhaps previously unobserved, states. - Quantifying system dynamics in a generalizable way. So far, water resources assessment has been context dependent, tied to local conditions. While for immediate decision making this is undoubtedly essential, for more scientific inquiry, a more uniform knowledge base is indispensable. - Not necessarily predictive. The coupled human-nature system is inherently non-linear, which may prohibit predictability in the traditional sense. The socio-hydrologic approach may still be predictive in a statistical sense and, perhaps even more importantly, it may yet reveal possible futures not predicted by traditional forecasts, yet essential for long-term decision making. Guided by these overarching arguments, and a review of recent progress, we will present a structured overview of socio-hydrology, framing the theoretical, observational and methodological challenges that lie ahead and ways to address them.
Coupling of Processes and Data in PennState Integrated Hydrologic Modeling (PIHM) System
NASA Astrophysics Data System (ADS)
Kumar, M.; Duffy, C.
2007-12-01
Full physical coupling, "natural" numerical coupling and parsimonious but accurate data coupling is needed to comprehensively and accurately capture the interaction between different components of a hydrologic continuum. Here we present a physically based, spatially distributed hydrologic model that incorporates all the three coupling strategies. Physical coupling of interception, snow melt, transpiration, overland flow, subsurface flow, river flow, macropore based infiltration and stormflow, flow through and over hydraulic structures likes weirs and dams, and evaporation from interception, ground and overland flow is performed. All the physically coupled components are numerically coupled through semi-discrete form of ordinary differential equations, that define each hydrologic process, using Finite-Volume based approach. The fully implicit solution methodology using CVODE solver solves for all the state variables simultaneously at each adaptive time steps thus providing robustness, stability and accuracy. The accurate data coupling is aided by use of constrained unstructured meshes, flexible data model and use of PIHMgis. The spatial adaptivity of decomposed domain and temporal adaptivity of the numerical solver facilitates capture of varied spatio-temporal scales that are inherent in hydrologic process interactions. The implementation of the model has been performed on a meso-scale Little-Juniata Watershed. Model results are validated by comparison of streamflow at multiple locations. We discuss some of the interesting hydrologic interactions between surface, subsurface and atmosphere witnessed during the year long simulation such as a) inverse relationship between evaporation from interception storage and transpiration b) relative influence of forcing (precipitation, temperature and radiation) and source (soil moisture and overland flow) on evaporation c) influence of local topography on gaining, loosing or "flow-through" behavior of river-aquifer interactions d) role of macropores on base flow during wetting and drying conditions. In addition to its use as a potential predictive and exploratory science tool, we present a test case for the application of model in water management by mapping of water table decline index for the whole watershed. Also discussed will be the efficient parallelization strategy of the model for high spatio-temporal resolution simulations.
NASA Astrophysics Data System (ADS)
Wu, Qiusheng; Lane, Charles R.
2017-07-01
In traditional watershed delineation and topographic modeling, surface depressions are generally treated as spurious features and simply removed from a digital elevation model (DEM) to enforce flow continuity of water across the topographic surface to the watershed outlets. In reality, however, many depressions in the DEM are actual wetland landscape features with seasonal to permanent inundation patterning characterized by nested hierarchical structures and dynamic filling-spilling-merging surface-water hydrological processes. Differentiating and appropriately processing such ecohydrologically meaningful features remains a major technical terrain-processing challenge, particularly as high-resolution spatial data are increasingly used to support modeling and geographic analysis needs. The objectives of this study were to delineate hierarchical wetland catchments and model their hydrologic connectivity using high-resolution lidar data and aerial imagery. The graph-theory-based contour tree method was used to delineate the hierarchical wetland catchments and characterize their geometric and topological properties. Potential hydrologic connectivity between wetlands and streams were simulated using the least-cost-path algorithm. The resulting flow network delineated potential flow paths connecting wetland depressions to each other or to the river network on scales finer than those available through the National Hydrography Dataset. The results demonstrated that our proposed framework is promising for improving overland flow simulation and hydrologic connectivity analysis.
Study of Basin Recession Characteristics and Groundwater Storage Properties
NASA Astrophysics Data System (ADS)
Yen-Bo, Chen; Cheng-Haw, Lee
2017-04-01
Stream flow and groundwater storage are freshwater resources that human live on.In this study, we discuss southern area basin recession characteristics and Kao-Ping River basin groundwater storage, and hope to supply reference to Taiwan water resource management. The first part of this study is about recession characteristics. We apply Brutsaert (2008) low flow analysis model to establish two recession data pieces sifting models, including low flow steady period model and normal condition model. Within individual event analysis, group event analysis and southern area basin recession assessment, stream flow and base flow recession characteristics are parameterized. The second part of this study is about groundwater storage. Among main basin in southern Taiwan, there are sufficient stream flow and precipitation gaging station data about Kao-Ping River basin and extensive drainage data, and data about different hydrological characteristics between upstream and downstream area. Therefore, this study focuses on Kao-Ping River basin and accesses groundwater storage properties. Taking residue of groundwater volume in dry season into consideration, we use base flow hydrograph to access periodical property of groundwater storage, in order to establish hydrological period conceptual model. With groundwater storage and precipitation accumulative linearity quantified by hydrological period conceptual model, their periodical changing and alternation trend properties in each drainage areas of Kao-Ping River basin have been estimated. Results of this study showed that the recession time of stream flow is related to initial flow rate of the recession events. The recession time index is lower when the flow is stream flow, not base flow, and the recession time index is higher in low flow steady flow period than in normal recession condition. By applying hydrological period conceptual model, groundwater storage could explicitly be analyzed and compared with precipitation, by only using stream flow data. Keywords: stream flow, base flow, recession characteristics, groundwater storage
NASA Astrophysics Data System (ADS)
Moore, Joel; Lichtner, Peter C.; White, Art F.; Brantley, Susan L.
2012-09-01
The reactive transport model FLOTRAN was used to forward-model weathering profiles developed on granitic outwash alluvium over 40-3000 ka from the Merced, California (USA) chronosequence as well as deep granitic regolith developed over 800 ka near Davis Run, Virginia (USA). Baseline model predictions that used laboratory rate constants (km), measured fluid flow velocities (v), and BET volumetric surface areas for the parent material (AB,mo) were not consistent with measured profiles of plagioclase, potassium feldspar, and quartz. Reaction fronts predicted by the baseline model are deeper and thinner than the observed, consistent with faster rates of reaction in the model. Reaction front depth in the model depended mostly upon saturated versus unsaturated hydrologic flow conditions, rate constants controlling precipitation of secondary minerals, and the average fluid flow velocity (va). Unsaturated hydrologic flow conditions (relatively open with respect to CO2(g)) resulted in the prediction of deeper reaction fronts and significant differences in the separation between plagioclase and potassium feldspar reaction fronts compared to saturated hydrologic flow (relatively closed with respect to CO2(g)). Under saturated or unsaturated flow conditions, the rate constant that controls precipitation rates of secondary minerals must be reduced relative to laboratory rate constants to match observed reaction front depths and measured pore water chemistry. Additionally, to match the observed reaction front depths, va was set lower than the measured value, v, for three of the four profiles. The reaction front gradients in mineralogy and pore fluid chemistry could only be modeled accurately by adjusting values of the product kmAB,mo. By assuming km values were constrained by laboratory data, field observations were modeled successfully with TST-like rate equations by dividing measured values of AB,mo by factors from 50 to 1700. Alternately, with sigmoidal or Al-inhibition rate models, this adjustment factor ranges from 5 to 170. Best-fit models of the wetter, hydrologically saturated Davis Run profile required a smaller adjustment to AB,mo than the drier hydrologically unsaturated Merced profiles. We attributed the need for large adjustments in va and AB,mo necessary for the Merced models to more complex hydrologic flow that decreased the reactive surface area in contact with bulk flow water, e.g., dead-end pore spaces containing fluids that are near or at chemical equilibrium. Thus, rate models from the laboratory can successfully predict weathering over millions of years, but work is needed to understand how to incorporate changes in what controls the relationship between reactive surface area and hydrologic flow.
NASA Astrophysics Data System (ADS)
Beskow, Samuel; de Mello, Carlos Rogério; Vargas, Marcelle M.; Corrêa, Leonardo de L.; Caldeira, Tamara L.; Durães, Matheus F.; de Aguiar, Marilton S.
2016-10-01
Information on stream flows is essential for water resources management. The stream flow that is equaled or exceeded 90% of the time (Q90) is one the most used low stream flow indicators in many countries, and its determination is made from the frequency analysis of stream flows considering a historical series. However, stream flow gauging network is generally not spatially sufficient to meet the necessary demands of technicians, thus the most plausible alternative is the use of hydrological regionalization. The objective of this study was to couple the artificial intelligence techniques (AI) K-means, Partitioning Around Medoids (PAM), K-harmonic means (KHM), Fuzzy C-means (FCM) and Genetic K-means (GKA), with measures of low stream flow seasonality, for verification of its potential to delineate hydrologically homogeneous regions for the regionalization of Q90. For the performance analysis of the proposed methodology, location attributes from 108 watersheds situated in southern Brazil, and attributes associated with their seasonality of low stream flows were considered in this study. It was concluded that: (i) AI techniques have the potential to delineate hydrologically homogeneous regions in the context of Q90 in the study region, especially the FCM method based on fuzzy logic, and GKA, based on genetic algorithms; (ii) the attributes related to seasonality of low stream flows added important information that increased the accuracy of the grouping; and (iii) the adjusted mathematical models have excellent performance and can be used to estimate Q90 in locations lacking monitoring.
NASA Astrophysics Data System (ADS)
Bawden, A. J.; Burn, D. H.; Prowse, T. D.
2012-12-01
Climate variability and change can have profound impacts on the hydrologic regime of a watershed. These effects are likely to be especially severe in regions particularly sensitive to changes in climate, such as the Canadian north, or when there are other stresses on the hydrologic regime, such as may occur when there are large withdrawals from, or land-use changes within, a watershed. A recent report of the Intergovernmental Panel on Climate Change (IPCC) stressed that future climate is likely to accelerate the hydrologic cycle and hence may affect water security in certain locations. For some regions, this will mean enhanced access to water resources, but because the effects will not be spatially uniform, other regions will experience reduced access. Understanding these patterns is critical for water managers and government agencies in western Canada - an area of highly contrasting hydroclimatic regimes and overlapping water-use and jurisdictional borders - as adapting to climate change may require reconsideration of inter-regional transfers and revised allocation of water resources to competing industrial sectors, including agriculture, hydroelectric production, and oil and gas. This research involves the detection and examination of spatial and temporal streamflow trends in western Canadian rivers as a response to changing climatic factors, including temperature, precipitation, snowmelt, and the synoptic patterns controlling these drivers. The study area, known as the CROCWR region, extends from the Pacific coast of British Columbia as far east as the Saskatchewan-Manitoba border and from the Canada-United States international border through a large portion of the Northwest Territories. This analysis examines hydrologic trends in monthly and annual streamflow for a collection of 34 hydrometric gauging stations believed to adequately represent the overall effects of climate variability and change on flows in western Canada by means of the Mann-Kendall non-parametric trend test. Large-scale spatial patterns are determined through examination of trends and contrasts between upper and lower reaches of individual sub-basins, as well as via analysis of streamflow redistributions within the CROCWR region as an entirety (i.e. north, south, east and/or west-moving patterns). Results are used to predict future implications of hydroclimatic variability and change on western Canada's water resources and recommend measures to be taken by water managers in response to these changes. This research is part of a larger hydroclimatic study that includes an analysis of the climatic drivers contributing to shifting flow regimes in western Canada as well as a study of the controlling synoptic patterns and teleconnections associated with changes in these driving forces.
Matherne, Anne Marie; Stewart, Anne M.
2012-01-01
The U.S. Geological Survey (USGS), in cooperation with San Miguel County, New Mexico, conducted a study to assess publicly available information regarding the hydrologic resources of San Miguel County and to identify data gaps in that information and hydrologic information that could aid in the management of available water resources. The USGS operates four continuous annual streamgages in San Miguel County. Monthly discharge at these streamgages is generally bimodally distributed, with most runoff corresponding to spring runoff and to summer monsoonal rains. Data compiled since 1951 on the geology and groundwater resources of San Miguel County are generally consistent with the original characterization of depth and availability of groundwater resources and of source aquifers. Subsequent exploratory drilling identified deep available groundwater in some locations. Most current (2011) development of groundwater resources is in western San Miguel County, particularly in the vicinity of El Creston hogback, the hogback ridge just west of Las Vegas, where USGS groundwater-monitoring wells indicate that groundwater levels are declining. Regarding future studies to address identified data gaps, the ability to evaluate and quantify surface-water resources, both as runoff and as potential groundwater recharge, could be enhanced by expanding the network of streamgages and groundwater-monitoring wells throughout the county. A series of seepage surveys along the lengths of the rivers could help to determine locations of surface-water losses to and gains from the local groundwater system and could help to quantify the component of streamflow attributable to irrigation return flow; associated synoptic water-quality sampling could help to identify potential effects to water quality attributable to irrigation return flow. Effects of groundwater withdrawals on streamflow could be assessed by constructing monitoring wells along transects between production wells and stream reaches of interest to monitor decline or recovery of the water table, to quantify the timing and extent of water-table response, and to identify the spatial extent of capture zones. Assessment of groundwater potential could be aided by a county-wide distribution of water-level information and by a series of maps of groundwater potential, compiled for each individual aquifer, including saline aquifers, for which the potential for municipal use through desalination could be explored. A county-wide geographic information system hydrologic geodatabase could provide a comprehensive picture of water use in San Miguel County and could be used by San Miguel County as a decision-support tool for future management decisions.
NASA Astrophysics Data System (ADS)
Steenhuis, T. S.; Azzaino, Z.; Hoang, L.; Pacenka, S.; Worqlul, A. W.; Mukundan, R.; Stoof, C.; Owens, E. M.; Richards, B. K.
2017-12-01
The New York City source watersheds in the Catskill Mountains' humid, temperate climate has long-term hydrological and water quality monitoring data It is one of the few catchments where implementation of source and landscape management practices has led to decreased phosphorus concentration in the receiving surface waters. One of the reasons is that landscape measures correctly targeted the saturated variable source runoff areas (VSA) in the valley bottoms as the location where most of the runoff and other nonpoint pollutants originated. Measures targeting these areas were instrumental in lowering phosphorus concentration. Further improvements in water quality can be made based on a better understanding of the flow processes and water table fluctuations in the VSA. For that reason, we instrumented a self-contained upland variable source watershed with a landscape characteristic of a soil underlain by glacial till at shallow depth similar to the Catskill watersheds. In this presentation, we will discuss our experimental findings and present a mathematical model. Variable source areas have a small slope making gravity the driving force for the flow, greatly simplifying the simulation of the flow processes. The experimental data and the model simulations agreed for both outflow and water table fluctuations. We found that while the flows to the outlet were similar throughout the year, the discharge of the VSA varies greatly. This was due to transpiration by the plants which became active when soil temperatures were above 10oC. We found that shortly after the temperature increased above 10oC the baseflow stopped and only surface runoff occurred when rainstorms exceeded the storage capacity of the soil in at least a portion of the variable source area. Since plant growth in the variable source area was a major variable determining the base flow behavior, changes in temperature in the future - affecting the duration of the growing season - will affect baseflow and related transport of nutrient and other chemicals many times more than small temperature related increases in potential evaporation rate. This in turn will directly change the water availability and pollutant transport in the many surface source watersheds with variable source area hydrology.
Simulating low-flow conditions in an arctic watershed using WaSiM
NASA Astrophysics Data System (ADS)
Daanen, R. P.; Gaedeke, A.; Liljedahl, A. K.; Arp, C. D.; Whitman, M. S.; Jones, B. M.; Cai, L.; Alexeev, V. A.
2017-12-01
The goal of this study is to identify the magnitude, timing, and duration of low-flow conditions under scenarios of summer drought throughout the 4500-km2 Fish Creek watershed, which is set entirely on the Arctic Coastal Plain of northern Alaska. The hydrologic response of streams in this region to drought conditions is not well understood, but likely varies by stream size, upstream lake extent, and geologic setting. We used a physically based model, Water Balance Simulation Model (WaSiM) to simulate river discharge, surface runoff, active layer depth, soil temperatures, water levels, groundwater levels, groundwater flow, and snow distribution. We found that 7-day low flows were strongly affected by scenarios of drought or wet conditions. The 10-year-period scenarios were generated by selecting dry or wet years from a reanalysis dataset. Starting conditions for the simulations were based on a control run with average atmospheric conditions. Connectivity of lakes with better feeding conditions for fish significantly decreased in the scenarios of both summer and winter drought. The overall memory of the hydrologic network seems to be on the order of two to three years, based on the time to reach equilibrium hydrological conditions. This suggests that lake level fluctuation and water harvest could have a long-term effect on the connectivity of lakes. Climate change could strongly affect this system, and increased future water use could add more pressure on fish populations. Snowmelt is a major component of the water balance in a typical Arctic watershed and fish tend to migrate to their summer feeding lakes during the spring. Mid-summer periods without significant rainfall prove most limiting on fish movement, and during this time headwater lakes supply the majority of streamflow and are often the habitat destination for foraging fish. Models that predict connectivity of these lakes to downstream networks during low-flow conditions will help identify where lake water extraction for winter water supply should be managed more conservatively. A better understanding of how these responses vary in this watershed will help guide management of fish habitat and lake water extraction in the National Petroleum Reserve - Alaska (NPR-A), where the Fish Creek watershed is located.
NASA Astrophysics Data System (ADS)
Vema, Vamsikrishna; Sudheer, K. P.; Chaubey, I.
2017-08-01
Watershed hydrological models are effective tools for simulating the hydrological processes in the watershed. Although there are a plethora of hydrological models, none of them can be directly applied to make water conservation decisions in irregularly bounded areas that do not confirm to topographically defined ridge lines. This study proposes a novel hydrological model that can be directly applied to any catchment, with or without ridge line boundaries. The model is based on the water balance concept, and a linear function concept to approximate the cross-boundary flow from upstream areas to the administrative catchment under consideration. The developed model is tested in 2 watersheds - Riesel Experimental Watershed and a sub-basin of Cedar Creek Watershed in Texas, USA. Hypothetical administrative catchments that did not confirm to the location of ridge lines were considered for verifying the efficacy of the model for hydrologic simulations. The linear function concept used to account the cross boundary flow was based on the hypothesis that the flow coming from outside the boundary to administrative area was proportional to the flow generated in the boundary grid cell. The model performance was satisfactory with an NSE and r2 of ≥0.80 and a PBIAS of <25 in all the cases. The simulated hydrographs for the administrative catchments of the watersheds were in good agreement with the observed hydrographs, indicating a satisfactory performance of the model in the administratively bounded areas.
Boyce, Scott E.; Hanson, Randall T.
2015-01-01
The MODFLOW-2005 (MF) family of hydrologic simulators has diverged into multiple versions designed for specific needs, thus limiting their use to their respective designs. The One-Water Hydrologic Flow Model (MF-OWHM v1.0) is an integrated hydrologic flow model that is an enhanced fusion of multiple MF versions. While maintaining compatibility with existing MF versions, MF-OWHM includes: linkages for coupled heads, flows, and deformation; facilitation of self-updating models, additional observation and parameter options for higher-order calibrations; and redesigned code for faster simulations. This first release of MF-OWHM incorporates MODFLOW-2005 and the Farm Process (MF-FMP2), with new features (FMP3), combined with Local Grid Refinement (MF-LGR), Streamflow Routing (SFR), Surfacewater Routing Process (SWR), Seawater Intrusion (SWI), Riparian Evapotranspiration (RIP-ET), the Newton Formulation (MF-NWT), and more. MF-OWHM represents a complete integrated hydrologic model that fully links the movement and use of groundwater, surface water, and imported water for consumption by agriculture and natural vegetation on the landscape, and for potable and other uses. By retaining and keeping track of the water during simulation of the hydrosphere, MF-OWHM accounts for “all of the water everywhere and all of the time.” This provides the foundation needed to address integrated hydrologic problems such as evaluation of conjunctive-use alternatives and sustainability analysis, including potential adaptation and mitigation strategies, and best management practices.
Improving Long-term Post-wildfire hydrologic simulations using ParFlow
NASA Astrophysics Data System (ADS)
Lopez, S. R.; Kinoshita, A. M.
2015-12-01
Wildfires alter the natural hydrologic processes within a watershed. After vegetation is burned, the combustion of organic material and debris settles into the soil creating a hydrophobic layer beneath the soil surface with varying degree of thickness and depth. Vegetation regrowth rates vary as a function of radiative exposure, burn severity, and precipitation patterns. Hydrologic models used by the Burned Area Emergency Response (BAER) teams use input data and model calibration constraints that are generally either one-dimensional, empirically-based models, or two-dimensional, conceptually-based models with lumped parameter distributions. These models estimate runoff measurements at the watershed outlet; however, do not provide a distributed hydrologic simulation at each point within the watershed. This work uses ParFlow, a three-dimensional, distributed hydrologic model to (1) correlate burn severity with hydrophobicity, (2) evaluate vegetation recovery rate on water components, and (3) improve flood prediction for managers to help with resource allocation and management operations in burned watersheds. ParFlow is applied to Devil Canyon (43 km2) in San Bernardino, California, which was 97% burned in the 2003 Old Fire. The model set-up uses a 30m-cell size resolution over a 6.7 km by 6.4 km lateral extent. The subsurface reaches 30 m and is assigned a variable cell thickness. Variable subsurface thickness allows users to explicitly consider the degree of recovery throughout the stages of regrowth. Burn severity maps from remotely sensed imagery are used to assign initial hydrophobic layer parameters and thickness. Vegetation regrowth is represented with satellite an Enhanced Vegetation Index. Pre and post-fire hydrologic response is evaluated using runoff measurements at the watershed outlet, and using water component (overland flow, lateral flow, baseflow) measurements.
NASA Astrophysics Data System (ADS)
Zhong, Jun; Li, Siliang; Yue, Fujun; Ding, Hu
2016-04-01
The geochemistry of the riverine waters could provide an insight in understanding the surface processes, such as chemical weathering and carbon cycle. As the headwater of Chanjiang (Yangtze) River, Jinsha River flows on the southestern Qinhai-Tibet Plateau at high altitute (from 1000m to 4600m) above the major areas of human impact and carries important information on this erosive region. In spite of being impacted by monsoonal climate and with significant variations of discharge, the temporal variations of compositions of main ions and chemical weathering of Jinsha River are rarely documented. In this study, a systematic investigation on the seasonal and episodic water geochemistry (major ions and δ13CDIC) of the outlet of Jinsha River basin were carried out with the purpose of 1) characterizing temporal variations of aqueous geochemistry and its controlling factors, 2) quantifying rock weathering and associated CO2 consumption rates, and 3) exploring the impact of hydrological controls on chemical weathering of the Jinsha River Basin. The results show that the concentrations of Ca, Mg, HCO3 and NO3 are generally decreased during monsoon season, while that of Cl, Na, SO4, K are relative higher in monsoon season than in dry season, which may be mainly caused by hydrological condition, i.e., with increased runoff, more surficial evaporate dissolved water and salt lake water of the Basin flow into the river. Moreover, due to increased contribution of soil CO2and fast decomposition of organic matters, δ13CDIC in the high-flow period has more negative values than in low-flow period, and shows a negative relation with the concentration of DOC. An increasing of Ca concentrations was found with shift of the δ13CDIC values, positively, indicating the precipitation might be occured. Meanwhile, the dissolution of gypsum and anhydrite might enhance the calcium precipition. The forward model results show that the weathering rates of silicate and carbonate as well as that of related CO2 consumption have a positive relation with water discharge, highlighting the hydrological controls on chemical weathering and CO2 consumption rates, which should be considered in the future study in river basins impacted by monsoon climate. This work was supported by The China National Science Fund for Outstanding Young Scholars (Grant No. 41422303).
GIS-based hydrologic modeling offers a convenient means of assessing the impacts associated with land-cover/use change for environmental planning efforts. Future scenarios can be developed through a combination of modifications to the land-cover/use maps used to parameterize hydr...
Spatial and Temporal Self-Calibration of a Hydroeconomic Model
NASA Astrophysics Data System (ADS)
Howitt, R. E.; Hansen, K. M.
2008-12-01
Hydroeconomic modeling of water systems where risk and reliability of water supply are of critical importance must address explicitly how to model water supply uncertainty. When large fluctuations in annual precipitation and significant variation in flows by location are present, a model which solves with perfect foresight of future water conditions may be inappropriate for some policy and research questions. We construct a simulation-optimization model with limited foresight of future water conditions using positive mathematical programming and self-calibration techniques. This limited foresight netflow (LFN) model signals the value of storing water for future use and reflects a more accurate economic value of water at key locations, given that future water conditions are unknown. Failure to explicitly model this uncertainty could lead to undervaluation of storage infrastructure and contractual mechanisms for managing water supply risk. A model based on sequentially updated information is more realistic, since water managers make annual storage decisions without knowledge of yet to be realized future water conditions. The LFN model runs historical hydrological conditions through the current configuration of the California water system to determine the economically efficient allocation of water under current economic conditions and infrastructure. The model utilizes current urban and agricultural demands, storage and conveyance infrastructure, and the state's hydrological history to indicate the scarcity value of water at key locations within the state. Further, the temporal calibration penalty functions vary by year type, reflecting agricultural water users' ability to alter cropping patterns in response to water conditions. The model employs techniques from positive mathematical programming (Howitt, 1995; Howitt, 1998; Cai and Wang, 2006) to generate penalty functions that are applied to deviations from observed data. The functions are applied to monthly flows across key nodes on the network and to annual carryover storage at ground and surface water storage facilities. To our knowledge, this is the first hydroeconomic model to perform spatial and temporal calibration simultaneously. The base for the LFN model is CALVIN, a hydroeconomic optimization model of the California water system developed at the University of California, Davis (Draper, et al. 2003). The LFN model, programmed in GAMS, is nonlinear, which permits incorporation of dynamic groundwater pumping costs that reflect head elevation. Hydropower production, also nonlinear in storage levels, could be added in the future. In this paper, we describe model implementation and performance over a sequence of water years drawn from the historical hydrologic record in California. Preliminary findings indicate that calibration occurs within acceptable limits and simulations replicate base case results well. Cai, X., and Wang, D. 2006. "Calibrating Holistic Water Resources-Economic Models." Journal of Water Resources Planning and Management November-December. Draper, A.J., M.W. Jenkins, K.W. Kirby, J.R. Lund, and R.E. Howitt. 2003. "Economic-Engineering Optimization for California Water Management." Journal of Water Resources Planning and Management 129(3):155-164. Howitt, R.E. 1995. "Positive Mathematical Programming." American Journal of Agricultural Economics 77:329-342. Howitt, R.E. 1998. "Self-Calibrating Network Flow Models." Working Paper, Department of Agricultural and Resource Economics, University of California, Davis. October 1998. class="ab'>
Hydrologic data and description of a hydrologic monitoring plan for the Borax Lake area, Oregon
Schneider, Tiffany Rae; McFarland, William D.
1995-01-01
Information from field visits was used to develop a monitoring plan. The plan would include monitoring Borax Lake by measuring discharge, stage, evaporation, temperature, and specific conductance; water-quality sampling and analysis; and monitoring shallow ground-water levels near Borax Lake using shallow piezometers. Minimally, one hot spring in North Borax Lake Spring Group 1 would be monitored for temperature and specific conductance and sampled for water-quality analysis. In addition, two flowing wells would be monitored for water levels, temperature, specific conductance, and discharge and sampled for water-quality analysis. The construction characteristics of these wells must be verified before long-term data collection begins. In the future, it may be helpful to monitor shallow and (or) deep observation wells drilled into the thermal aquifer to understand the possible effects of geothermal development on Borax Lake and nearby springs.
Forest practices and stream flow in western Oregon.
R. Dennis. Harr
1976-01-01
Forest management activities, including roadbuilding, clearcut logging, and broadcast burning, can change certain portions of the forest hydrologic cycle. Watershed studies and other hydrologic research in the Coast and western Cascade Ranges of Oregon have shown that these changes may increase annual water yield up to 62 centimeters, double minimum flows in summer,...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drici, Warda
2004-02-01
This report documents the analysis of the available hydrologic data conducted in support of the development of a Corrective Action Unit (CAU) groundwater flow model for Central and Western Pahute Mesa: CAUs 101 and 102.
Perspectives on climate change, mountain hydrology, and water resources in the Oregon Cascades, USA
A.W. Nolin
2012-01-01
From both social and environmental perspectives, water is the main connection between highland and lowland processes in mountain watersheds: Water flows downhill while human impacts flow uphill. For example, in the Oregon Cascades mountain range, geology, vegetation, and climate influence the hydrologic connections within watersheds. Geology determines which watersheds...
The concept of hydrologic landscapes
Winter, T.C.
2001-01-01
Hydrologic landscapes are multiples or variations of fundamental hydrologic landscape units. A fundamental hydrologic landscape unit is defined on the basis of land-surface form, geology, and climate. The basic land-surface form of a fundamental hydrologic landscape unit is an upland separated from a lowland by an intervening steeper slope. Fundamental hydrologic landscape units have a complete hydrologic system consisting of surface runoff, ground-water flow, and interaction with atmospheric water. By describing actual landscapes in terms of land-surface slope, hydraulic properties of soils and geologic framework, and the difference between precipitation and evapotranspiration, the hydrologic system of actual landscapes can be conceptualized in a uniform way. This conceptual framework can then be the foundation for design of studies and data networks, syntheses of information on local to national scales, and comparison of process research across small study units in a variety of settings. The Crow Wing River watershed in central Minnesota is used as an example of evaluating stream discharge in the context of hydrologic landscapes. Lake-research watersheds in Wisconsin, Minnesota, North Dakota, and Nebraska are used as an example of using the hydrologic-landscapes concept to evaluate the effect of ground water on the degree of mineralization and major-ion chemistry of lakes that lie within ground-water flow systems.
Spatially explicit scenario analysis for hydrologic services in an urbanizing agricultural watershed
NASA Astrophysics Data System (ADS)
Qiu, J.; Booth, E.; Carpenter, S. R.; Turner, M.
2013-12-01
The sustainability of hydrologic services (benefits to people generated by terrestrial ecosystem effects on freshwater) is challenged by changes in climate and land use. Despite the importance of hydrologic services, few studies have investigated how the provision of ecosystem services related to freshwater quantity and quality may vary in magnitude and spatial pattern for alternative future trajectories. Such analyses may provide useful information for sustaining freshwater resources in the face of a complex and uncertain future. We analyzed the supply of multiple hydrologic services from 2010 to 2070 across a large urbanizing agricultural watershed in the Upper Midwest of the United States, and asked the following: (i) What are the potential trajectories for the supply of hydrologic services under contrasting but plausible future scenarios? (ii) Where on the landscape is the delivery of hydrologic services most vulnerable to future changes? The Nested Watershed scenario represents extreme climate change (warmer temperatures and more frequent extreme events) and a concerted response from institutions, whereas in the Investment in Innovation scenario, climate change is less severe and technological innovations play a major role. Despite more extreme climate in the Nested Watershed scenario, all hydrologic services (i.e., freshwater supply, surface water quality, flood regulation) were maintained or enhanced (~30%) compared to the 2010 baseline, by strict government interventions that prioritized freshwater resources. Despite less extreme climate in the Investment in Innovation scenario and advances in green technology, only surface water quality and flood regulation were maintained or increased (~80%); freshwater supply declined by 25%, indicating a potential future tradeoff between water quality and quantity. Spatially, the locations of greatest vulnerability (i.e., decline) differed by service and among scenarios. In the Nested Watershed scenario, although freshwater supply and surface water quality were sustained or enhanced overall, these hydrologic services declined in ~60% and 20% of the landscape, respectively. The greatest improvement for most hydrologic services corresponded to areas of restored wetland, forest and perennial crops, which were less vulnerable to future degradation. In the Investment in Innovation scenario, freshwater supply declined in almost the entire watershed; improvement of surface water quality and flood regulation occurred mainly in urban areas, where highly engineered systems made them less vulnerable. Overall, our results indicated that hydrologic services will respond differently to future climate and land-use change, and sustaining one may involve tradeoffs of another. Technological progress can conserve particular services but might not be the panacea for the future. How society reacts in the face of changes can have an important role in determining the pathways to the future and the provision and spatial patterns of ecosystem services.
Explicit modeling of groundwater-surface water interactions using a simple bucket-type model
NASA Astrophysics Data System (ADS)
Staudinger, Maria; Carlier, Claire; Brunner, Philip; Seibert, Jan
2017-04-01
Longer dry spells can become critical for water supply and groundwater dependent ecosystems. During these dry spells groundwater is often the most relevant source for streams. Hence, the hydrological behavior of a catchment is often dominated by groundwater surface water interactions, which can vary considerably in space and time. While classical hydrological approaches hardly consider this spatial dependence, quantitative, hydrogeological modeling approaches can couple surface runoff processes and groundwater processes. Hydrogeological modeling can help to gain an improved understanding of catchment processes during low flow. However, due to their complex parametrization and large computational requirements, such hydrogeological models are difficult to employ at catchment scale, particularly for a larger set of catchments. Then bucket-type hydrological models remain a practical alternative. In this study we combine the strengths of both the hydrogeological and bucket-type hydrological models to better understand low flow processes and ultimately to use this knowledge for low flow projections. Bucket-type hydrological models have traditionally not been developed with focus on the simulation of low flow. One consequence is that interactions between surface and groundwater are not explicitly considered. Water fluxes in bucket-type hydrological models are commonly simulated only in one direction, namely from the groundwater to the stream but not from the stream to the groundwater. This latter flux, however, can become more important during low flow situations. We therefore further developed the bucket-type hydrological model HBV to simulate low flow situations by allowing for exchange in both directions i.e. also from the stream to the groundwater. The additional HBV exchange box is developed by using a variety of synthetic hydrogeological models as training set that were generated using a fully coupled, physically based hydrogeological model. In this way processes that occur in different spatial settings within the catchment are translated to functional relationships and effective parameter values for the conceptual exchange box can be extracted. Here, we show the development and evaluation of the HBV exchange box. We further show a first application in real catchments and evaluate the model performance by comparing the simulations to benchmark models that do not consider groundwater surface water interaction.
Avian community responses to variability in river hydrology.
Royan, Alexander; Hannah, David M; Reynolds, S James; Noble, David G; Sadler, Jonathan P
2013-01-01
River flow is a major driver of morphological structure and community dynamics in riverine-floodplain ecosystems. Flow influences in-stream communities through changes in water velocity, depth, temperature, turbidity and nutrient fluxes, and perturbations in the organisation of lower trophic levels are cascaded through the food web, resulting in shifts in food availability for consumer species. River birds are sensitive to spatial and phenological mismatches with aquatic prey following flow disturbances; however, the role of flow as a determinant of riparian ecological structure remains poorly known. This knowledge is crucial to help to predict if, and how, riparian communities will be influenced by climate-induced changes in river flow characterised by more extreme high (i.e. flood) and/or low (i.e. drought) flow events. Here, we combine national-scale datasets of river bird surveys and river flow archives to understand how hydrological disturbance has affected the distribution of riparian species at higher trophic levels. Data were analysed for 71 river locations using a Generalized Additive Model framework and a model averaging procedure. Species had complex but biologically interpretable associations with hydrological indices, with species' responses consistent with their ecology, indicating that hydrological-disturbance has implications for higher trophic levels in riparian food webs. Our quantitative analysis of river flow-bird relationships demonstrates the potential vulnerability of riparian species to the impacts of changing flow variability and represents an important contribution in helping to understand how bird communities might respond to a climate change-induced increase in the intensity of floods and droughts. Moreover, the success in relating parameters of river flow variability to species' distributions highlights the need to include river flow data in climate change impact models of species' distributions.
Assessing Hydrologic Impacts of Future Land Cover Change ...
Long‐term land‐use and land cover change and their associated impacts pose critical challenges to sustaining vital hydrological ecosystem services for future generations. In this study, a methodology was developed on the San Pedro River Basin to characterize hydrologic impacts from future urban growth through time. This methodology was then expanded and utilized to characterize the changing hydrology on the South Platte River Basin. Future urban growth is represented by housingdensity maps generated in decadal intervals from 2010 to 2100, produced by the U.S. Environmental Protection Agency (EPA) Integrated Climate and Land‐Use Scenarios (ICLUS) project. ICLUS developed future housing density maps by adapting the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) social, economic, and demographic storylines to the conterminous United States. To characterize hydrologic impacts from future growth, the housing density maps were reclassified to National Land Cover Database (NLCD) 2006 land cover classes and used to parameterize the Soil and Water Assessment Tool (SWAT) using the Automated Geospatial Watershed Assessment (AGWA) tool. The objectives of this project were to 1) develop and describe a methodology for adapting the ICLUS data for use in AGWA as anapproach to evaluate basin‐wide impacts of development on water‐quantity and ‐quality, 2) present initial results from the application of the methodology to
NASA Astrophysics Data System (ADS)
Dixon, Emily M.; Elwood Madden, Andrew S.; Hausrath, Elisabeth M.; Elwood Madden, Megan E.
2015-04-01
Jarosite flow-through dissolution experiments were conducted in ultrapure water (UPW), pH 2 sulfuric acid, and saturated NaCl and CaCl2 brines at 295-298 K to investigate how hydrologic variables may affect jarosite preservation and reaction products on Mars. K+-based dissolution rates in flowing UPW did not vary significantly with flow rate, indicating that mineral surface reactions control dissolution rates over the range of flow rates investigated. In all of the solutions tested, hydrologic variables do not significantly affect extent of jarosite alteration; therefore, jarosite is equally likely to be preserved in flowing or stagnant waters on Mars. However, increasing flow rate did affect the mineralogy and accumulation of secondary reaction products. Iron release rates in dilute solutions increased as the flow rate increased, likely due to nanoscale iron (hydr)oxide transport in flowing water. Anhydrite formed in CaCl2 brine flow-through experiments despite low temperatures, while metastable gypsum and bassanite were observed in batch experiments. Therefore, observations of the hydration state of calcium sulfate minerals on Mars may provide clues to unravel past salinity and hydrologic conditions as well as temperatures and vapor pressures.
Hydrology of area 2, Eastern Coal Province, Pennsylvania and New York
Herb, W.J.; Brown, D.E.; Shaw, L.C.; Stoner, J.E.; Felbinger, J.K.
1983-01-01
Provisions of the Surface Mining Control and Reclamation Act of 1977 recognized a nationwide need for hydrologic information in mined and potentially mined areas. This report is designed to be useful to mine owners, operators, regulatory authorities, citizens groups, and others by presenting information on existing hydrologic conditions and by identifying additional sources of hydrologic information. General hydrologic information is presented in a brief text accompanied by a map, chart, graph, or other illustration for each of a series of water-resourcesrelated topics. The summation of the topical discussions provides a description of the hydrology of the area. The Eastern Coal Province has been divided into 24 hydrologic study areas which are shown on the cover of this report. The divisions are based on hydrologic factors, location, and size. Hydrologic units (surface drainage basins) or parts of units are combined to form each study area. Study Area 2 covers northwestern Pennsylvania and a small part of southwestern New York. Most exposed bedrock is of Pennsylvanian, Mi;;sissippian, or Devonian ages. Glacial drift covers most of the bedrock in the northwestern part of the area. During 1979, more than 7 million tons of bituminous coal was produced from about 230 mines in Area 2 counties. Over 99 percent of the area's coal production is from surface mining. Streamflow data are available for 18 continuousrecord stations; 1 crest-stage, partial-record station; 1 low-flow, partial-record station; and 65 miscellaneous sites. Water-quality data are available for 78 locations. Streams having the highest median specific conductance, highest median dissolved-solids concentrations, lowest median pH, highest median total-iron concentration, highest median total-manganese concentration, and highest dissolved-sulfate concentrations were found in Clarion County, the leading coal-producing county in the area. Statistics on low flow, mean flow, peak flow, and flow duration for gaging stations can be computed from recorded mean daily flows. Similar statistics can be estimated for ungaged streams by regression and graphical techniques. Five ground-water observation wells are being operated in Area 2. Ground-water levels fluctuate seasonally. Depth to water increases with well depth in upland areas and decreases with well depth in valleys. Well yields in the area range from less than 1 to more than 2,000 gallons per minute. Wells in unconsolidated materials usually have higher yields. Ground-water quality is adequate for most domestic purposes, except locally. Additional water-data information are available through: (1) The National Water Data Exchange, (2) The National Water Data Storage and Retrieva
Effects of landuse change on the hydrologic regime of the Mae Chaem river basin, NW Thailand
NASA Astrophysics Data System (ADS)
Thanapakpawin, P.; Richey, J.; Thomas, D.; Rodda, S.; Campbell, B.; Logsdon, M.
2007-02-01
SummaryConflicts between upland shifting cultivation, upland commercial crops, and lowland irrigated agriculture cause water resource tension in the Mae Chaem watershed in Chiang Mai, Thailand. In this paper, we assess hydrologic regimes of the Mae Chaem River with landuse change. Three plausible future forest-to-crop expansion scenarios and a scenario of crop-to-forest reversal were developed based on the landcover transition from 1989 to 2000, with emphasis on influences of elevation bands and irrigation diversion. Basin hydrologic responses were simulated using the Distributed Hydrology Soil Vegetation Model (DHSVM). Meteorological data from six weather stations inside and adjacent to the Mae Chaem watershed during the period 1993-2000 were the climate inputs. Computed stream flow was compared to observed discharge at Ban Mae Mu gauge on Mae Mu river, Ban Mae Suk gauge on Mae Suk river, and at Kaeng Ob Luang, located downstream from the district town in Mae Chaem. With current assumptions, expansion of highland crop fields led to slightly higher regulated annual and wet-season water yields compared to similar expansion in the lowland-midland zone. Actual downstream water availability was sensitive to irrigation diversion. This modeling approach can be a useful tool for water allocation for small watersheds undergoing rapid commercialization, because it alerts land managers to the potential range of water supply in wet and dry seasons, and provides information on spatial distribution of basin hydrologic components.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McManamay, Ryan A; Orth, Dr. Donald J; Dolloff, Dr. Charles A
2013-01-01
In order for habitat restoration in regulated rivers to be effective at large scales, broadly applicable frameworks are needed that provide measurable objectives and contexts for management. The Ecological Limits of Hydrologic Alteration (ELOHA) framework was created as a template to assess hydrologic alterations, develop relationships between altered streamflow and ecology, and establish environmental flow standards. We tested the utility of ELOHA in informing flow restoration applications for fish and riparian communities in regulated rivers in the Upper Tennessee River Basin (UTRB). We followed the steps of ELOHA to generate flow alteration-ecological response relationships and then determined whether those relationshipsmore » could predict fish and riparian responses to flow restoration in the Cheoah River, a regulated system within the UTRB. Although ELOHA provided a robust template to construct hydrologic information and predict hydrology for ungaged locations, our results do not support the assertion that over-generalized univariate relationships between flow and ecology can produce results sufficient to guide management in regulated rivers. After constructing multivariate models, we successfully developed predictive relationships between flow alterations and fish/riparian responses. In accordance with model predictions, riparian encroachment displayed consistent decreases with increases in flow magnitude in the Cheoah River; however, fish richness did not increase as predicted four years post- restoration. Our results suggest that altered temperature and substrate and the current disturbance regime may have reduced opportunities for fish species colonization. Our case study highlights the need for interdisciplinary science in defining environmental flows for regulated rivers and the need for adaptive management approaches once flows are restored.« less
Projected increases in the annual flood pulse of the Western Amazon
NASA Astrophysics Data System (ADS)
Zulkafli, Zed; Buytaert, Wouter; Manz, Bastian; Véliz Rosas, Claudia; Willems, Patrick; Lavado-Casimiro, Waldo; Guyot, Jean-Loup; Santini, William
2016-01-01
The impact of a changing climate on the Amazon basin is a subject of intensive research because of its rich biodiversity and the significant role of rainforests in carbon cycling. Climate change has also a direct hydrological impact, and increasing efforts have focused on understanding the hydrological dynamics at continental and subregional scales, such as the Western Amazon. New projections from the Coupled Model Inter-comparison Project Phase 5 ensemble indicate consistent climatic warming and increasing seasonality of precipitation in the Peruvian Amazon basin. Here we use a distributed land surface model to quantify the potential impact of this change in the climate on the hydrological regime of the upper Amazon river. Using extreme value analysis, historical and future projections of the annual minimum, mean, and maximum river flows are produced for a range of return periods between 1 and 100 yr. We show that the RCP 4.5 and 8.5 scenarios of climate change project an increased severity of the wet season flood pulse (7.5% and 12% increases respectively for the 100 yr return floods). These findings agree with previously projected increases in high extremes under the Special Report on Emissions Scenarios climate projections, and are important to highlight due to the potential consequences on reproductive processes of in-stream species, swamp forest ecology, and socio-economy in the floodplain, amidst a growing literature that more strongly emphasises future droughts and their impact on the viability of the rainforest system over greater Amazonia.
Impacts of urbanisation on urban-rural water cycle: a China case study
NASA Astrophysics Data System (ADS)
Wang, Mingna; Singh, Shailesh Kumar; Zhang, Jun-e.; Khu, Soon Thiam
2016-04-01
Urbanization, which essentially create more impervious surface, is an inevitable part of modern societal development throughout the world. It produces several changes in the natural hydrological cycle by adding several processes. A better understanding of the impacts of urbanization, will allow policy makers to balance development and environment sustainability needs. It also helps underdeveloped countries make strategic decisions in their development process. The objective of this study is to understand and quantify the sensitivity of the urban-rural water cycle to urbanisation. A coupled hydrological model, MODCYCLE, was set up to simulate the effect of changes in landuse on daily streamflow and groundwater and applied to the Tianjin municipality, a rapidly urbanising mega-city on the east coast of China. The model uses landuse, land cover, soil, meteorological and climatic data to represent important parameters in the catchment. The fraction of impervious surface was used as a surrogate to quantify the degree of landuse change. In this work, we analysed the water cycle process under current urbanization situation in Tianjin. A number of different future development scenarios on based on increasing urbanisation intensity is explored. The results show that the expansion of urban areas had a great influence on generation of flow process and on ET, and the surface runoff was most sensitive to urbanisation. The results of these scenarios-based study about future urbanisation on hydrological system will help planners and managers in taking proper decisions regarding sustainable development.
NASA Astrophysics Data System (ADS)
Hävermark, Saga; Santos Ferreira, Carla Sofia; Kalantari, Zahra; Di Baldassarre, Giuliano
2016-04-01
Many river basis around the world are rapidly changing together with societal development. Such developments may involve changes in land use, which in turn affect the surrounding environment in various ways. Since the start of industrialisation, the urban areas have extended worldwide. Urbanization can influence hydrological processes by decreasing evapotranspiration, infiltration and groundwater recharge as well as increasing runoff and overland flow. It is therefore of uttermost importance to understand the relationship between land use and hydrology. Although several studies have been investigating the impacts of urbanization on streamflow over the last decades, less is known on how urbanization affects hydrological processes in peri-urban areas, characterized by a complex mosaic of different land uses. This study aimed to model the impact of land use changes, specifically urbanization and commercial forest plantation, on the hydrological responses of the small Ribeira dos Covões peri-urban catchment (6,2 km2) located in central Portugal. The catchment has undergone rapid land use changes between 1958 and 2012 associated with the conversion of agricultural fields (cover area decreased from 48% to 4%) into woodland and urban areas, which increased from 44% to 56% and from 8% to 40%, respectively. For the study, the fully-distributed, physically-based modelling system MIKE SHE was used. The model was designed to examine both how past land use changes might have affected the streamflow and to investigate the impacts on hydrology of possible future scenarios, including a 50 %, 60 % and 70 % urban cover. To this end, a variety of data including daily rainfall since 1958 and forward, daily potential evapotranspiration from 2009 to 2013, monthly temperature averages from 1971 to 2013, land use for the years 1958, 1973, 1979, 1990, 1995, 2002, 2007 and 2012, streamflow from the hydrological years 2008 to 2013, catchment topography and soil types were used. The model was calibrated for the hydrological years 2008 to 2010 and validated for the three following years using streamflow data. The impact of future land use changes was analysed by investigating the impact of the size and location of the urban areas within the catchment. Modelling results are expected to support the decision making process in planning and developing new urban areas.
Coupled hydrological and geochemical process evolution at the Landscape Evolution Observatory
NASA Astrophysics Data System (ADS)
Troch, P. A. A.
2015-12-01
Predictions of hydrologic and biogeochemical responses to natural and anthropogenic forcing at the landscape scale are highly uncertain due to the effects of heterogeneity on the scaling of reaction, flow and transport phenomena. The physical, chemical and biological structures and processes controlling reaction, flow and transport in natural landscapes interact at multiple space and time scales and are difficult to quantify. The current paradigm of hydrological and geochemical theory is that process descriptions derived from observations at small scales in controlled systems can be applied to predict system response at much larger scales, as long as some 'equivalent' or 'effective' values of the scale-dependent parameters can be identified. Furthermore, natural systems evolve in time in a way that is hard to observe in short-run laboratory experiments or in natural landscapes with unknown initial conditions and time-variant forcing. The spatial structure of flow pathways along hillslopes determines the rate, extent and distribution of geochemical reactions (and biological colonization) that drive weathering, the transport and precipitation of solutes and sediments, and the further evolution of soil structure. The resulting evolution of structures and processes, in turn, produces spatiotemporal variability of hydrological states and flow pathways. There is thus a need for experimental research to improve our understanding of hydrology-biogeochemistry interactions and feedbacks at appropriate spatial scales larger than laboratory soil column experiments. Such research is complicated in real-world settings because of poorly constrained impacts of initial conditions, climate variability, ecosystems dynamics, and geomorphic evolution. The Landscape Evolution Observatory (LEO) at Biosphere 2 offers a unique research facility that allows real-time observations of incipient hydrologic and biogeochemical response under well-constrained initial conditions and climate forcing. The LEO allows to close the water, carbon and energy budgets at hillslope scales, thereby enabling elucidation of the tight coupling between the time water spends along subsurface flow paths and geochemical weathering reactions, including the feedbacks between flow and pedogenesis.
Wildfire as a hydrological and geomorphological agent
NASA Astrophysics Data System (ADS)
Shakesby, R. A.; Doerr, S. H.
2006-02-01
Wildfire can lead to considerable hydrological and geomorphological change, both directly by weathering bedrock surfaces and changing soil structure and properties, and indirectly through the effects of changes to the soil and vegetation on hydrological and geomorphological processes. This review summarizes current knowledge and identifies research gaps focusing particularly on the contribution of research from the Mediterranean Basin, Australia and South Africa over the last two decades or so to the state of knowledge mostly built on research carried out in the USA. Wildfire-induced weathering rates have been reported to be high relative to other weathering processes in fire-prone terrain, possibly as much as one or two magnitudes higher than frost action, with important implications for cosmogenic-isotope dating of the length of rock exposure. Wildfire impacts on soil properties have been a major focus of interest over the last two decades. Fire usually reduces soil aggregate stability and can induce, enhance or destroy soil water repellency depending on the temperature reached and its duration. These changes have implications for infiltration, overland flow and rainsplash detachment. A large proportion of publications concerned with fire impacts have focused on post-fire soil erosion by water, particularly at small scales. These have shown elevated, sometimes extremely large post-fire losses before geomorphological stability is re-established. Soil losses per unit area are generally negatively related to measurement scale reflecting increased opportunities for sediment storage at larger scales. Over the last 20 years, there has been much improvement in the understanding of the forms, causes and timing of debris flow and landslide activity on burnt terrain. Advances in previously largely unreported processes (e.g. bio-transfer of sediment and wind erosion) have also been made. Post-fire hydrological effects have generally also been studied at small rather than large scales, with soil water repellency effects on infiltration and overland flow being a particular focus. At catchment scales, post-fire accentuated peakflow has received more attention than changes in total flow, reflecting easier measurement and the greater hazard posed by the former. Post-fire changes to stream channels occur over both short and long terms with complex feedback mechanisms, though research to date has been limited. Research gaps identified include the need to: (1) develop a fire severity index relevant to soil changes rather than to degree of biomass destruction; (2) isolate the hydrological and geomorphological impacts of fire-induced soil water repellency changes from other important post-fire changes (e.g. litter and vegetation destruction); (3) improve knowledge of the hydrological and geomorphological impacts of wildfire in a wider range of fire-prone terrain types; (4) solve important problems in the determination and analysis of hillslope and catchment sediment yields including poor knowledge about soil losses other than at small spatial and short temporal scales, the lack of a clear measure of the degradational significance of post-fire soil losses, and confusion arising from errors in and lack of scale context for many quoted post-fire soil erosion rates; and (5) increase the research effort into past and potential future hydrological and geomorphological changes resulting from wildfire.
Mount Baker lahars and debris flows, ancient, modern, and future
Tucker, David S; Scott, Kevin M.; Grossman, Eric E.; Linneman, Scott
2014-01-01
Holocene lahars and large debris flows (>106 m3) have left recognizable deposits in the Middle Fork Nooksack valley. A debris flow in 2013 resulting from a landslide in a Little Ice Age moraine had an estimated volume of 100,000 m3, yet affected turbidity for the entire length of the river, and produced a slug of sediment that is currently being reworked and remobilized in the river system. Deposits of smaller-volume debris flows, deposited as terraces in the upper valley, may be entirely eroded within a few years. Consequently, the geologic record of small debris flows such as those that occurred in 2013 is probably very fragmentary. Small debris flows may still have significant impacts on hydrology, biology, and human uses of rivers downstream. Impacts include the addition of waves of fine sediment to stream loads, scouring or burying salmon-spawning gravels, forcing unplanned and sudden closure of municipal water intakes, damaging or destroying trail crossings, extending river deltas into estuaries, and adding to silting of harbors near river mouths.
Long-term data set analysis of stable isotopic composition in German rivers
NASA Astrophysics Data System (ADS)
Reckerth, Anne; Stichler, Willibald; Schmidt, Axel; Stumpp, Christine
2017-09-01
Stable isotopes oxygen-18 (18O) and deuterium (2H) are commonly used to investigate hydrological processes in catchments. However, only a few isotope studies have been conducted on a large scale and rarely over long time periods. The objective of this study was to identify the spatial and seasonal variability of isotopic composition in river water and how it is affected by geographical and hydrological factors. The stable isotopic composition of river water has been measured in nine large river catchments in Germany for a time period of 12 years or 26 years. We conducted time series and correlation analyses to identify spatial and temporal patterns of the isotopic composition in the rivers. Further, we compared it to isotopic composition in local precipitation and catchments characteristics. In the majority of the rivers, the spatial and temporal patterns of precipitation were directly reflected in river water. The isotopic signals of the river water were time shifted and show attenuated amplitudes. Further deviations from isotopic compositions in local precipitation were observed in catchments with complex flow systems. These deviations were attributed to catchment processes and influences like evaporation, damming and storage. The seasonality of the isotopic composition was mainly determined by the discharge regimes of the rivers. We found correlations between isotopic long-term averages and catchment altitude as well as latitude and longitude, resulting in a northwest-southeast gradient. Furthermore, it was shown that long-term averages of d-excess were inversely related to flow length and catchment size, which indicates that evaporation enrichment has an impact on the isotopic composition even in catchments of humid climates. This study showed that isotopic composition in rivers can serve as a proxy for the local precipitation and can be utilized as an indicator for hydrological processes even in large river basins. In future, such long time series will help to also understand the impact of changes in the hydrological cycle on the larger scales. They can also be used for calibration and validation of flow and transport models at catchment and sub-catchment scale.
Surface flow observations from a gauge-cam station on the Tiber river
NASA Astrophysics Data System (ADS)
Tauro, Flavia; Porfiri, Maurizio; Petroselli, Andrea; Grimaldi, Salvatore
2016-04-01
Understanding the kinematic organization of natural water bodies is central to hydrology and environmental engineering practice. Reliable and continuous flow observations are essential to comprehend flood generation and propagation mechanisms, erosion dynamics, sediment transport, and drainage network evolution. In engineering practice, flood warning systems largely rely on real-time discharge measurements, and flow velocity monitoring is important for the design and management of hydraulic structures, such as reservoirs and hydropower plants. Traditionally, gauging stations have been equipped with water level meters, and stage-discharge relationships (rating curves) have been established through few direct discharge measurements. Only in rare instances, monitoring stations have integrated radar technology for local measurement of surface flow velocity. Establishing accurate rating curves depends on the availability of a comprehensive range of discharge values, including measurements recorded during extreme events. However, discharge values during high-flow events are often difficult or even impossible to obtain, thereby hampering the reliability of discharge predictions. Fully remote observations have been enabled in the past ten years through optics-based velocimetry techniques. Such methodologies enable the estimation of the surface flow velocity field over extended regions from the motion of naturally occurring debris or floaters dragged by the current. Resting on the potential demonstrated by such approaches, here, we present a novel permanent gauge-cam station for the observation of the flow velocity field in the Tiber river. This new station captures one-minute videos every 10 minutes over an area of up to 20.6 × 15.5m2. In a feasibility study, we demonstrate that experimental images analyzed via particle tracking velocimetry and particle image velocimetry can be used to obtain accurate surface flow velocity estimations in close agreement with radar records. Future efforts will be devoted to the development of a comprehensive testbed infrastructure for investigating the potential of multiple optics-based approaches for surface hydrology.
NASA Astrophysics Data System (ADS)
Bocquillon, C.; Masson, J. M.
1983-01-01
In the upper catchment of the River Loire, France, the construction of five reservoir dams has been planned to sustain the low flows in the Loire valley. The management of these reservoirs, to be built successively, must be approached from partial or complete points of view in order to establish the daily draft decisions at every stage of the project. A hydrological criteria concerning the low flows at a station in the valley (namely the "objective point") is used to judge the results. It is possible to determine the optimal carry-over storage for this criterion with the use of a long series of simulated inflows to reservoirs and annual deficits, when the future conditions are presumed to be known. The statistical analysis of the results helps in the formulation of the objectives for long-term Q1 assuring the carry-over storage for a predetermined risk of failure. This objective for long-term Q1 will not hold good if the low flow is severe. Thus some deterministic and statistical hypotheses have been used to formulate an objective for the mean term of flow Q2 ( tj) which is calculated each day tj and adjusted to the hydrological conditions of the year. The target draft Cb at the objective point is the minimum of the pair [( Q1, Q2 ( tj)]. Water is discharged each day to meet this target flow, while maintaining all the constraints of the flows downstream to the reservoirs. It takes into account the time needed for transfer of water and permits a good prediction of either the flow propagation in the upper watershed or the evolution of the inflows from downstream catchments. A modular model is used to calculate the daily flow. The results obtained from simulation were satisfactory.
NASA Astrophysics Data System (ADS)
Llorens, Pilar; Gallart, Francesc; Latron, Jérôme; Cid, Núria; Rieradevall, Maria; Prat, Narcís
2016-04-01
Aquatic life in temporary streams is strongly conditioned by the temporal variability of the hydrological conditions that control the occurrence and connectivity of diverse mesohabitats. In this context, the software TREHS (Temporary Rivers' Ecological and Hydrological Status) has been developed, in the framework of the LIFE Trivers project, to help managers for adequately implement the Water Framework Directive in this type of water bodies. TREHS, using the methodology described in Gallart et al (2012), defines six temporal 'aquatic states', based on the hydrological conditions representing different mesohabitats, for a given reach at a particular moment. Nevertheless, hydrological data for assessing the regime of temporary streams are often non-existent or scarce. The scarcity of flow data makes frequently impossible the characterization of temporary streams hydrological regimes and, as a consequence, the selection of the correct periods and methods to determine their ecological status. Because of its qualitative nature, the TREHS approach allows the use of alternative methodologies to assess the regime of temporary streams in the lack of observed flow data. However, to adapt the TREHS to this qualitative data both the temporal scheme (from monthly to seasonal) as well as the number of aquatic states (from 6 to 3) have been modified. Two alternatives complementary methodologies were tested within the TREHS framework to assess the regime of temporary streams: interviews and aerial photographs. All the gauging stations (13) belonging to the Catalan Internal Catchments (NE, Spain) with recurrent zero flows periods were selected to validate both methodologies. On one hand, non-structured interviews were carried out to inhabitants of villages and small towns near the gauging stations. Flow permanence metrics for input into TREHS were drawn from the notes taken during the interviews. On the other hand, the historical series of available aerial photographs (typically 10) were examined. In this case, flow permanence metrics were estimated as the proportion of photographs presenting stream flow. Results indicate that for streams being more than 25% of the time dry, interviews systematically underestimated flow, but the qualitative information given by inhabitants was of great interest to understand river dynamics. On the other hand, the use of aerial photographs gave a good estimation of flow permanence, but the seasonality was conditioned to the capture date of the aerial photographs. For these reasons, we recommend to use both methodologies together.
ERIC Educational Resources Information Center
Sharp, John M.
1977-01-01
Lists many recent research projects in hydrology, including flow in fractured media, improvements in remote-sensing techniques, effects of urbanization on water resources, and developments in drainage basins. (MLH)
A new method for calculating ecological flow: Distribution flow method
NASA Astrophysics Data System (ADS)
Tan, Guangming; Yi, Ran; Chang, Jianbo; Shu, Caiwen; Yin, Zhi; Han, Shasha; Feng, Zhiyong; Lyu, Yiwei
2018-04-01
A distribution flow method (DFM) and its ecological flow index and evaluation grade standard are proposed to study the ecological flow of rivers based on broadening kernel density estimation. The proposed DFM and its ecological flow index and evaluation grade standard are applied into the calculation of ecological flow in the middle reaches of the Yangtze River and compared with traditional calculation method of hydrological ecological flow, method of flow evaluation, and calculation result of fish ecological flow. Results show that the DFM considers the intra- and inter-annual variations in natural runoff, thereby reducing the influence of extreme flow and uneven flow distributions during the year. This method also satisfies the actual runoff demand of river ecosystems, demonstrates superiority over the traditional hydrological methods, and shows a high space-time applicability and application value.
NASA Astrophysics Data System (ADS)
Wei, Zhen-lei; Xu, Yue-Ping; Sun, Hong-yue; Xie, Wei; Wu, Gang
2018-05-01
Excessive water in a channel is an important factor that triggers channelized debris flows. Floods and debris flows often occur in a cascading manner, and thus, calculating the amount of runoff accurately is important for predicting the occurrence of debris flows. In order to explore the runoff-rainfall relationship, we placed two measuring facilities at the outlet of a small, debris flow-prone headwater catchment to explore the hydrological response of the catchment. The runoff responses generally consisted of a rapid increase in runoff followed by a slower decrease. The peak runoff often occurred after the rainfall ended. The runoff discharge data were simulated by two different modeling approaches, i.e., the NAM model and the Hydrologic Engineering Center-Hydrologic Modeling System (HEC-HMS) model. The results showed that the NAM model performed better than the HEC-HMS model. The NAM model provided acceptable simulations, while the HEC-HMS model did not. Then, we coupled the calculated results of the NAM model with an empirically based debris flow initiation model to obtain a new integrated cascading disaster modeling system to provide improved disaster preparedness and hazard management. In this case study, we found that the coupled model could correctly predict the occurrence of debris flows. Furthermore, we evaluated the effect of the range of input parameter values on the hydrographical shape of the runoff. We also used the grey relational analysis to conduct a sensitivity analysis of the parameters of the model. This study highlighted the important connections between rainfall, hydrological processes, and debris flow, and it provides a useful prototype model system for operational forecasting of debris flows.
Combining information from multiple flood projections in a hierarchical Bayesian framework
NASA Astrophysics Data System (ADS)
Le Vine, Nataliya
2016-04-01
This study demonstrates, in the context of flood frequency analysis, the potential of a recently proposed hierarchical Bayesian approach to combine information from multiple models. The approach explicitly accommodates shared multimodel discrepancy as well as the probabilistic nature of the flood estimates, and treats the available models as a sample from a hypothetical complete (but unobserved) set of models. The methodology is applied to flood estimates from multiple hydrological projections (the Future Flows Hydrology data set) for 135 catchments in the UK. The advantages of the approach are shown to be: (1) to ensure adequate "baseline" with which to compare future changes; (2) to reduce flood estimate uncertainty; (3) to maximize use of statistical information in circumstances where multiple weak predictions individually lack power, but collectively provide meaningful information; (4) to diminish the importance of model consistency when model biases are large; and (5) to explicitly consider the influence of the (model performance) stationarity assumption. Moreover, the analysis indicates that reducing shared model discrepancy is the key to further reduction of uncertainty in the flood frequency analysis. The findings are of value regarding how conclusions about changing exposure to flooding are drawn, and to flood frequency change attribution studies.
Design and implementation of CUAHSI WaterML and WaterOneFlow Web Services
NASA Astrophysics Data System (ADS)
Valentine, D. W.; Zaslavsky, I.; Whitenack, T.; Maidment, D.
2007-12-01
WaterOneFlow is a term for a group of web services created by and for the Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI) community. CUAHSI web services facilitate the retrieval of hydrologic observations information from online data sources using the SOAP protocol. CUAHSI Water Markup Language (below referred to as WaterML) is an XML schema defining the format of messages returned by the WaterOneFlow web services. \
NASA Astrophysics Data System (ADS)
Livneh, B.; Hoerling, M. P.
2014-12-01
The occurrence of drought is associated with agricultural loss, water supply shortfalls, and other economic impacts. Here we explore the physical relationships between precipitation deficits, high temperatures, and hydrologic responses as a pathway to better anticipate drought impacts. Current methodologies to predict hydrologic scarcity include local monitoring of river flows, remote sensing of land-surface wetness, drought indices, expert judgment, climate indices (e.g. SST-relationships) and the application of hydrologic models. At longer lead times, predictions of drought have most frequently been made on the basis of GCM ensembles, with subsequent downscaling of those to scales over which hydrologic predictions can be made. This study focuses on two important aspects of drought. First, we explore the causal hydro-climatic timeline of a drought event, namely (a) the lack of precipitation, which serves to reduce soil moisture and produce (b) a skewed Bowen ratio, i.e. comparatively more sensible heating (warming) with less ET, resulting in (c) anomalously warm conditions. We seek to assess the extent to which the lack of precipitation contributes to warming temperatures, and the further effects of that warming on hydrology and the severity of drought impacts. An ensemble of GCM simulations will be used to explore the evolution of the land surface energy budget during a recent Great Plains drought event, which will subsequently be used to drive a hydrologic model. Second, we examine the impacts of the critical assumptions relating climatic variables with water demand, specifically the relationship between potential evapotranspiration (PET) and temperature. The common oversimplification in relating PET to temperature is explored against a more physically consistent energy balance estimate of PET, using the Penman-Monteith approach and the hydrologic impacts are presented. Results from this work are anticipated to have broad relevance for future water management and planning, to better characterize drought impacts.
Hydrologic regimes as potential drivers of morphologic divergence in fish
Bruckerhoff, Lindsey; Magoulick, Daniel D.
2017-01-01
Fishes often exhibit phenotypic divergence across gradients of abiotic and biotic selective pressures. In streams, many of the known selective pressures driving phenotypic differentiation are largely influenced by hydrologic regimes. Because flow regimes drive so many attributes of lotic systems, we hypothesized fish exhibit phenotypic divergence among streams with different flow regimes. We used a comparative field study to investigate the morphological divergence of Campostoma anomalom (central stonerollers) among streams characterized by highly variable, intermittent flow regimes and streams characterized by relatively stable, groundwater flow regimes. We also conducted a mesocosm experiment to compare the plastic effects of one component of flow regimes, water velocity, on morphology of fish from different flow regimes. We observed differences in shape between flow regimes likely driven by differences in allometric growth patterns. Although we observed differences in morphology across flow regimes in the field, C. anomalum did not exhibit morphologic plasticity in response to water velocity alone. This study contributes to the understanding of how complex environmental factors drive phenotypic divergence and may provide insight into the evolutionary consequences of disrupting natural hydrologic patterns, which are increasingly threatened by climate change and anthropogenic alterations.
HYDROLOGY AND LANDSCAPE CONNECTIVITY OF VERNAL POOLS
Vernal pools are shaped by hydrologic processes which influence many aspects of pool function. The hydrologic budget of a pool can be summarized by a water balance equation that relates changes in the amount of water in the pool to precipitation, ground- and surface-water flows, ...
Aquifer systems in the Great Basin region of Nevada, Utah, and adjacent states: A study plan
Harrill, James R.; Welch, Alan H.; Prudic, David E.; Thomas, James M.; Carman, Rita L.; Plume, Russell W.; Gates, Joseph S.; Mason, James L.
1983-01-01
The Great Basin Regional Aquifer Study includes about 140,000 square miles in parts of Nevada, Utah, California, Idaho, Oregon, and Arizona. Within that area, 240 hydrographic areas occupy structural depressions formed primarily by basin-and-range faulting. The principal aquifers are in basin- fill deposits; however, permeable carbonate rocks underlie valleys in much of eastern Nevada and western Utah and are significant regional aquifers. Anticipated future water needs require a better understanding of the resource so that wise management will be possible. In October 1980, the U.S Geological Survey started a 4-year study to (1) describe the ground-water systems as they existed under natural conditions and as they exist today, (2) analyze the changes that have led to the systems' present condition, (3) tie the results of this and previous studies together in a regional analysis, and (4) provide means by which effects of future ground-water development can be estimated.A plan of work is presented that describes the general approach to be taken in this study. It defines (1) the major task necessary to meet objectives and (2) constraints on the scope of work. The approach has been strongly influenced by the diverse nature of ground-water flow systems and the large number of basins. A detailed appraisal of 240 individual areas would require more resources than are available. Consequently, the general approach is to study selected "typical" areas and key hydrologic processes. Effort during the first 3 years will be directed toward describing the regional hydrology, conducting detailed studies of "type" areas, and studying selected hydrologic processes. Effort during the final year will be directed toward developing a regional analyses of results.Special studies that will address hydrologic processes, key components of the ground-water system, and improved use of technology include evaluations of regional geochemistry, regional hydrogeology, recharge, ground-water discharge, and the use of remote sensing. Areas selected for study using ground-water flow models include the regional carbonate-rock province in eastern Nevada and western Utah, six valleys Las Vegas, Carson, Paradise, Dixie, Smith Creek, and Stagecoach in Nevada, plus Jordan Valley, the Milford area, and Tule Valley in Utah.
Steuer, Jeffrey J.; Stensvold, Krista A.; Gregory, Mark B.
2010-01-01
We investigated the relations among 83 hydrologic condition metrics (HCMs) and changes in algal, invertebrate, and fish communities in five metropolitan areas across the continental United States. We used a statistical approach that employed Spearman correlation and regression tree analysis to identify five HCMs that are strongly associated with observed biological variation along a gradient of urbanization. The HCMs related to average flow magnitude, high-flow magnitude, high-flow event frequency, high-flow duration, and rate of change of stream cross-sectional area were most consistently associated with changes in aquatic communities. Although our investigation used an urban gradient design with short hydrologic periods of record (≤1 year) of hourly cross-sectional area time series, these five HCMs were consistent with previous investigations using long-term daily-flow records. The ecological sampling day often was included in the hydrologic period. Regression tree models explained up to 73, 92, and 79% of variance for specific algal, invertebrate, and fish community metrics, respectively. National models generally were not as statistically significant as models for individual metropolitan areas. High-flow event frequency, a hydrologic metric found to be transferable across stream type and useful for classifying habitat by previous research, was found to be the most ecologically relevant HCM; transformation by precipitation increased national-scale applicability. We also investigated the relation between measures of stream flashiness and land-cover indicators of urbanization and found that land-cover characteristic and pattern variables, such as road density, percent wetland, and proximity of developed land, were strongly related to HCMs at both a metropolitan and national scale and, therefore, may be effective land-use management options in addition to wholesale impervious-area reduction.
NASA Astrophysics Data System (ADS)
Boyce, S. E.; Hanson, R. T.
2015-12-01
The One-Water Hydrologic Flow Model (MF-OWHM) is a MODFLOW-based integrated hydrologic flow model that is the most complete version, to date, of the MODFLOW family of hydrologic simulators needed for the analysis of a broad range of conjunctive-use issues. MF-OWHM fully links the movement and use of groundwater, surface water, and imported water for consumption by agriculture and natural vegetation on the landscape, and for potable and other uses within a supply-and-demand framework. MF-OWHM is based on the Farm Process for MODFLOW-2005 combined with Local Grid Refinement, Streamflow Routing, Surface-water Routing Process, Seawater Intrusion, Riparian Evapotranspiration, and the Newton-Raphson solver. MF-OWHM also includes linkages for deformation-, flow-, and head-dependent flows; additional observation and parameter options for higher-order calibrations; and redesigned code for facilitation of self-updating models and faster simulation run times. The next version of MF-OWHM, currently under development, will include a new surface-water operations module that simulates dynamic reservoir operations, the conduit flow process for karst aquifers and leaky pipe networks, a new subsidence and aquifer compaction package, and additional features and enhancements to enable more integration and cross communication between traditional MODFLOW packages. By retaining and tracking the water within the hydrosphere, MF-OWHM accounts for "all of the water everywhere and all of the time." This philosophy provides more confidence in the water accounting by the scientific community and provides the public a foundation needed to address wider classes of problems such as evaluation of conjunctive-use alternatives and sustainability analysis, including potential adaptation and mitigation strategies, and best management practices. By Scott E. Boyce and Randall T. Hanson
Artificial intelligence based models for stream-flow forecasting: 2000-2015
NASA Astrophysics Data System (ADS)
Yaseen, Zaher Mundher; El-shafie, Ahmed; Jaafar, Othman; Afan, Haitham Abdulmohsin; Sayl, Khamis Naba
2015-11-01
The use of Artificial Intelligence (AI) has increased since the middle of the 20th century as seen in its application in a wide range of engineering and science problems. The last two decades, for example, has seen a dramatic increase in the development and application of various types of AI approaches for stream-flow forecasting. Generally speaking, AI has exhibited significant progress in forecasting and modeling non-linear hydrological applications and in capturing the noise complexity in the dataset. This paper explores the state-of-the-art application of AI in stream-flow forecasting, focusing on defining the data-driven of AI, the advantages of complementary models, as well as the literature and their possible future application in modeling and forecasting stream-flow. The review also identifies the major challenges and opportunities for prospective research, including, a new scheme for modeling the inflow, a novel method for preprocessing time series frequency based on Fast Orthogonal Search (FOS) techniques, and Swarm Intelligence (SI) as an optimization approach.
NASA Astrophysics Data System (ADS)
Kuwayama, Y.; Brozovic, N.
2012-12-01
Groundwater pumping from aquifers can reduce the flow of surface water in nearby streams through a process known as stream depletion. In the United States, recent awareness of this externality has led to intra- and inter-state conflict and rapidly-changing water management policies and institutions. A factor that complicates the design of groundwater management policies to protect streams is the spatial heterogeneity of the stream depletion externality; the marginal damage of groundwater use on stream flows depends crucially on the location of pumping relative to streams. Under these circumstances, economic theory predicts that spatially differentiated policies can achieve an aggregate reduction in stream depletion cost effectively. However, whether spatially differentiated policies offer significant abatement cost savings and environmental improvements over simpler, alternative policies is an empirical question. In this paper, we analyze whether adopting a spatially differentiated groundwater permit system can lead to significant savings in compliance costs while meeting targets on stream protection. Using a population data set of active groundwater wells in the Nebraska portion of the Republican River Basin, we implement an optimization model of each well owner's crop choice, land use, and irrigation decisions to determine the distribution of regulatory costs. We model the externality of pumping on streams by employing an analytical solution from the hydrology literature that determines reductions in stream flow caused by groundwater pumping over space and time. The economic and hydrologic model components are then combined into one optimization framework, which allows us to measure farmer abatement costs and stream flow benefits under a constrained optimal market that features spatially differentiated, tradable groundwater permits. We compare this outcome to the efficiency of alternative second-best policies, including spatially uniform permit markets and pumping restrictions based on geographic zones. Our analysis considers static policies for which abatement is fixed over time, as well as dynamic policies that allow abatement to vary over time and future compliance costs to be subject to a discount rate. We find that if current levels of stream flow in the Republican River Basin are held fixed, regulators can generate most of the potential abatement cost savings by establishing a one-to-one tradable permit system that does not account for spatial heterogeneity. We obtain this surprising result because the agronomic and climatic parameters in our data set that determine farmer abatement costs are spatially correlated with hydrologic parameters that determine the marginal damage of groundwater use on streams. However, we also find that if future legal or ecological circumstances require regulators to increase significantly the protection of streams from current levels, spatially differentiated policies will generate sizable cost savings compared to policies that ignore spatial heterogeneity.
NASA Astrophysics Data System (ADS)
Jiao, Y.; Yuan, X.; Yang, D.
2017-12-01
During the past five decades, significant decreasing trends in streamflow records were observed at many hydrological gauges within the middle reaches of the Yellow River basin, China, leading to an intensified water resource shortage and a rising hydrological drought risk. This phenomenon is generally considered as a consequence of climate changes and human interventions, such as greenhouse gas emissions, regional land use/cover changes, dam and reservoir constructions and direct water withdrawals. There are many studies on the attribution of streamflow decline and hydrological drought change in this region, while a consolidated conclusion is missing.In this study, we focus on historical and future hydrological drought characteristics over a semi-arid watershed located in the middle reaches of the Yellow River basin. Daily climate simulations from several IPCC CMIP5 models were collected to drive a newly developed eco-hydrological model CLM-GBHM with detailed description of river network and sub-basin topological relationship, to simulate streamflow series under different forcings and scenarios. The standard streamflow index was calculated and used to figure out the characteristics (e.g., frequency, duration and severity) of both historical and future hydrological droughts. The causes and contributions in terms of natural and anthropogenic influences will be investigated based on an optimal fingerprinting method, and the relative importance of internal variability, model and scenario uncertainties for future projections will also be estimated using a separation method. This study will facilitate the implementation of adaptation strategies for hydrological drought over the semi-arid watershed in a changing environment.
Rapp, Jennifer L.; Reilly, Pamela A.
2017-11-14
BackgroundThe U.S. Geological Survey (USGS), in cooperation with the Virginia Department of Environmental Quality (DEQ), reviewed a previously compiled set of linear regression models to assess their utility in defining the response of the aquatic biological community to streamflow depletion.As part of the 2012 Virginia Healthy Watersheds Initiative (HWI) study conducted by Tetra Tech, Inc., for the U.S. Environmental Protection Agency (EPA) and Virginia DEQ, a database with computed values of 72 hydrologic metrics, or indicators of hydrologic alteration (IHA), 37 fish metrics, and 64 benthic invertebrate metrics was compiled and quality assured. Hydrologic alteration was represented by simulation of streamflow record for a pre-water-withdrawal condition (baseline) without dams or developed land, compared to the simulated recent-flow condition (2008 withdrawal simulation) including dams and altered landscape to calculate a percent alteration of flow. Biological samples representing the existing populations represent a range of alteration in the biological community today.For this study, all 72 IHA metrics, which included more than 7,272 linear regression models, were considered. This extensive dataset provided the opportunity for hypothesis testing and prioritization of flow-ecology relations that have the potential to explain the effect(s) of hydrologic alteration on biological metrics in Virginia streams.
Kourgialas, Nektarios N; Dokou, Zoi; Karatzas, George P
2015-05-01
The purpose of this study was to create a modeling management tool for the simulation of extreme flow events under current and future climatic conditions. This tool is a combination of different components and can be applied in complex hydrogeological river basins, where frequent flood and drought phenomena occur. The first component is the statistical analysis of the available hydro-meteorological data. Specifically, principal components analysis was performed in order to quantify the importance of the hydro-meteorological parameters that affect the generation of extreme events. The second component is a prediction-forecasting artificial neural network (ANN) model that simulates, accurately and efficiently, river flow on an hourly basis. This model is based on a methodology that attempts to resolve a very difficult problem related to the accurate estimation of extreme flows. For this purpose, the available measurements (5 years of hourly data) were divided in two subsets: one for the dry and one for the wet periods of the hydrological year. This way, two ANNs were created, trained, tested and validated for a complex Mediterranean river basin in Crete, Greece. As part of the second management component a statistical downscaling tool was used for the creation of meteorological data according to the higher and lower emission climate change scenarios A2 and B1. These data are used as input in the ANN for the forecasting of river flow for the next two decades. The final component is the application of a meteorological index on the measured and forecasted precipitation and flow data, in order to assess the severity and duration of extreme events. Copyright © 2015 Elsevier Ltd. All rights reserved.
CEREF: A hybrid data-driven model for forecasting annual streamflow from a socio-hydrological system
NASA Astrophysics Data System (ADS)
Zhang, Hongbo; Singh, Vijay P.; Wang, Bin; Yu, Yinghao
2016-09-01
Hydrological forecasting is complicated by flow regime alterations in a coupled socio-hydrologic system, encountering increasingly non-stationary, nonlinear and irregular changes, which make decision support difficult for future water resources management. Currently, many hybrid data-driven models, based on the decomposition-prediction-reconstruction principle, have been developed to improve the ability to make predictions of annual streamflow. However, there exist many problems that require further investigation, the chief among which is the direction of trend components decomposed from annual streamflow series and is always difficult to ascertain. In this paper, a hybrid data-driven model was proposed to capture this issue, which combined empirical mode decomposition (EMD), radial basis function neural networks (RBFNN), and external forces (EF) variable, also called the CEREF model. The hybrid model employed EMD for decomposition and RBFNN for intrinsic mode function (IMF) forecasting, and determined future trend component directions by regression with EF as basin water demand representing the social component in the socio-hydrologic system. The Wuding River basin was considered for the case study, and two standard statistical measures, root mean squared error (RMSE) and mean absolute error (MAE), were used to evaluate the performance of CEREF model and compare with other models: the autoregressive (AR), RBFNN and EMD-RBFNN. Results indicated that the CEREF model had lower RMSE and MAE statistics, 42.8% and 7.6%, respectively, than did other models, and provided a superior alternative for forecasting annual runoff in the Wuding River basin. Moreover, the CEREF model can enlarge the effective intervals of streamflow forecasting compared to the EMD-RBFNN model by introducing the water demand planned by the government department to improve long-term prediction accuracy. In addition, we considered the high-frequency component, a frequent subject of concern in EMD-based forecasting, and results showed that removing high-frequency component is an effective measure to improve forecasting precision and is suggested for use with the CEREF model for better performance. Finally, the study concluded that the CEREF model can be used to forecast non-stationary annual streamflow change as a co-evolution of hydrologic and social systems with better accuracy. Also, the modification about removing high-frequency can further improve the performance of the CEREF model. It should be noted that the CEREF model is beneficial for data-driven hydrologic forecasting in complex socio-hydrologic systems, and as a simple data-driven socio-hydrologic forecasting model, deserves more attention.
NASA Astrophysics Data System (ADS)
Ewen, Tracy; Seibert, Jan
2015-04-01
One of the best ways to engage students and instill enthusiasm for hydrology is to expose them to hands-on learning. A focus on hydrology field research can be used to develop context-rich and active learning, and help solidify idealized learning where students are introduced to individual processes through textbook examples, often neglecting process interactions and an appreciation for the complexity of the system. We introduced a field course where hydrological measurement techniques are used to study processes such as snow hydrology and runoff generation, while also introducing students to field research and design of their own field project. Additionally, we produced short films of each of these research-based field excursions, with in-house film expertise. These films present a short overview of field methods applied in alpine regions and will be used for our larger introductory hydrology courses, exposing students to field research at an early stage, and for outreach activities, including for potential high school students curious about hydrology. In the field course, students design a low-budget experiment with the aim of going through the different steps of a 'real' scientific project, from formulating the research question to presenting their results. During the field excursions, students make discharge measurements in several alpine streams with a salt tracer to better understand the spatial characteristics of an alpine catchment, where source waters originate and how they contribute to runoff generation. Soil moisture measurements taken by students in this field excursion were used to analyze spatial soil moisture patterns in the alpine catchment and subsequently used in a publication. Another field excursion repeats a published experiment, where preferential soil flow paths are studied using a tracer and compared to previously collected data. For each field excursion, observational data collected by the students is uploaded to an online database we developed, where students can also retrieve data from past excursions to further analyze and compare their data. At each of the field sites, weather stations were installed and a webviewer allows access to realtime data from data loggers, allowing students to explore how processes relate to climatic conditions. Together, these field excursions give students the necessary tools they will need to carry out field research of their own in future projects, whether in academia or industry, while the short films give potential or first-year students an impression of what hydrology is all about and hopefully inspire them to become future hydrologists.
Modeled streamflow metrics on small, ungaged stream reaches in the Upper Colorado River Basin
Reynolds, Lindsay V.; Shafroth, Patrick B.
2016-01-20
Modeling streamflow is an important approach for understanding landscape-scale drivers of flow and estimating flows where there are no streamgage records. In this study conducted by the U.S. Geological Survey in cooperation with Colorado State University, the objectives were to model streamflow metrics on small, ungaged streams in the Upper Colorado River Basin and identify streams that are potentially threatened with becoming intermittent under drier climate conditions. The Upper Colorado River Basin is a region that is critical for water resources and also projected to experience large future climate shifts toward a drying climate. A random forest modeling approach was used to model the relationship between streamflow metrics and environmental variables. Flow metrics were then projected to ungaged reaches in the Upper Colorado River Basin using environmental variables for each stream, represented as raster cells, in the basin. Last, the projected random forest models of minimum flow coefficient of variation and specific mean daily flow were used to highlight streams that had greater than 61.84 percent minimum flow coefficient of variation and less than 0.096 specific mean daily flow and suggested that these streams will be most threatened to shift to intermittent flow regimes under drier climate conditions. Map projection products can help scientists, land managers, and policymakers understand current hydrology in the Upper Colorado River Basin and make informed decisions regarding water resources. With knowledge of which streams are likely to undergo significant drying in the future, managers and scientists can plan for stream-dependent ecosystems and human water users.
NASA Astrophysics Data System (ADS)
Gardner, W. P.
2016-12-01
In this presentation the definition of hydraulic connection will be explored with a focus on the role of deep groundwater in streamflow generation and its time and space limits. Regional groundwater flow paths can be important sources of baseflow and potentially event response in surface water systems. This deep groundwater discharge plays an important role in determining how the watershed responds to climatic forcing, whether watersheds are a carbon source or sink and can be significant for watershed geochemistry and nutrient loading. These flow paths potentially "connect" to surface water systems and saturated soil zones at large distances, and over long time scales. However, these flow paths are challenging to detect, especially with hydraulic techniques. Here we will discuss some of the basic physical processes that affect the hydraulic signal along a groundwater flow path and their implications for the definition of hydrologic connection. Methods of measuring hydraulic connection using groundwater head response and their application in detecting regional groundwater discharge will be discussed. Environmental tracers are also a powerful method for identifying connected flowpaths in groundwater systems, and are commonly used to determine flow connection and flow rates in groundwater studies. Isotopic tracer methods for detecting deep, regional flow paths in watersheds will be discussed, along with observations of deep groundwater discharge in shallow alluvial systems around the world. The goal of this talk is to discuss hydraulic and hydrologic connection from a groundwater hydrologist's perspective, spark conversation on the meaning of hydrologic connection, the processes which govern hydraulic response and methods to measure flow connections and flux.
Completion Report for Model Evaluation Well ER-5-5: Corrective Action Unit 98: Frenchman Flat
DOE Office of Scientific and Technical Information (OSTI.GOV)
NSTec Underground Test Area and Boreholes Programs and Operations
2013-01-18
Model Evaluation Well ER-5-5 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of Nevada Environmental Management Operations at the Nevada National Security Site (formerly known as the Nevada Test Site). The well was drilled in July and August 2012 as part of a model evaluation well program in the Frenchman Flat area of Nye County, Nevada. The primary purpose of the well was to provide detailed geologic, hydrogeologic, chemical, and radiological data that can be used to test and build confidence in the applicability of the Frenchman Flat Corrective Action Unitmore » flow and transport models for their intended purpose. In particular, this well was designed to obtain data to evaluate the uncertainty in model forecasts of contaminant migration from the upgradient underground nuclear test MILK SHAKE, conducted in Emplacement Hole U-5k in 1968, which were considered to be uncertain due to the unknown extent of a basalt lava-flow aquifer present in this area. Well ER-5-5 is expected to provide information to refine the Phase II Frenchman Flat hydrostratigraphic framework model, if necessary, as well as to support future groundwater flow and transport modeling. The 31.1-centimeter (cm) diameter hole was drilled to a total depth of 331.3 meters (m). The completion string, set at the depth of 317.2 m, consists of 16.8-cm stainless-steel casing hanging from 19.4-cm carbon-steel casing. The 16.8-cm stainless-steel casing has one slotted interval open to the basalt lava-flow aquifer and limited intervals of the overlying and underlying alluvial aquifer. A piezometer string was also installed in the annulus between the completion string and the borehole wall. The piezometer is composed of 7.3-cm stainless-steel tubing suspended from 6.0-cm carbon-steel tubing. The piezometer string was landed at 319.2 m, to monitor the basalt lava-flow aquifer. Data collected during and shortly after hole construction include composite drill cuttings samples collected every 3.0 m, various geophysical logs, preliminary water quality measurements, and water-level measurements. The well penetrated 331.3 m of Quaternary–Tertiary alluvium, including an intercalated layer of saturated basalt lava rubble. No well development or hydrologic testing was conducted in this well immediately after completion; however, a preliminary water level was measured in the piezometer string at the depth of 283.4 m on September 25, 2012. No tritium above the minimum detection limit of the field instruments was detected in this hole. Future well development, sampling, and hydrologic testing planned for this well will provide more accurate hydrologic information for this site. The stratigraphy, general lithology, and water level were as expected, though the expected basalt lava-flow aquifer is basalt rubble and not the dense, fractured lava as modeled. The lack of tritium transport is likely due to the difference in hydraulic properties of the basalt lava-flow rubble encountered in the well, compared to those of the fractured aquifer used in the flow and transport models.« less
Prediction of Hydrologic Characteristics for Ungauged Catchments to Support Hydroecological Modeling
NASA Astrophysics Data System (ADS)
Bond, Nick R.; Kennard, Mark J.
2017-11-01
Hydrologic variability is a fundamental driver of ecological processes and species distribution patterns within river systems, yet the paucity of gauges in many catchments means that streamflow data are often unavailable for ecological survey sites. Filling this data gap is an important challenge in hydroecological research. To address this gap, we first test the ability to spatially extrapolate hydrologic metrics calculated from gauged streamflow data to ungauged sites as a function of stream distance and catchment area. Second, we examine the ability of statistical models to predict flow regime metrics based on climate and catchment physiographic variables. Our assessment focused on Australia's largest catchment, the Murray-Darling Basin (MDB). We found that hydrologic metrics were predictable only between sites within ˜25 km of one another. Beyond this, correlations between sites declined quickly. We found less than 40% of fish survey sites from a recent basin-wide monitoring program (n = 777 sites) to fall within this 25 km range, thereby greatly limiting the ability to utilize gauge data for direct spatial transposition of hydrologic metrics to biological survey sites. In contrast, statistical model-based transposition proved effective in predicting ecologically relevant aspects of the flow regime (including metrics describing central tendency, high- and low-flows intermittency, seasonality, and variability) across the entire gauge network (median R2 ˜ 0.54, range 0.39-0.94). Modeled hydrologic metrics thus offer a useful alternative to empirical data when examining biological survey data from ungauged sites. More widespread use of these statistical tools and modeled metrics could expand our understanding of flow-ecology relationships.
Gatlin, Michael R.; Long, James M.; Turton, Donald J.
2015-01-01
The natural flow regime is important for structuring streams and their resident ichthyofauna and alterations to this regime can have cascading consequences. We sought to determine if changes in hydrology could be attributed to changes in precipitation in a minimally altered watershed (Lee Creek). The stream flow regime was analyzed using Indicators of Hydrologic Alteration (IHA) software, and data from a nearby climate station were used to summarize concurrent precipitation patterns. We discovered that Lee Creek hydrology had become flashier (i.e., increased frequency of extreme events of shorter duration) since 1992 coincident with changes in precipitation patterns. Specifically, our results show fewer but more intense rain events within the Lee Creek watershed. Our research provides evidence that climate-induced changes to the natural flow regime are currently underway and additional research on its effects on the fish community is warranted.
A new algorithm for grid-based hydrologic analysis by incorporating stormwater infrastructure
NASA Astrophysics Data System (ADS)
Choi, Yosoon; Yi, Huiuk; Park, Hyeong-Dong
2011-08-01
We developed a new algorithm, the Adaptive Stormwater Infrastructure (ASI) algorithm, to incorporate ancillary data sets related to stormwater infrastructure into the grid-based hydrologic analysis. The algorithm simultaneously considers the effects of the surface stormwater collector network (e.g., diversions, roadside ditches, and canals) and underground stormwater conveyance systems (e.g., waterway tunnels, collector pipes, and culverts). The surface drainage flows controlled by the surface runoff collector network are superimposed onto the flow directions derived from a DEM. After examining the connections between inlets and outfalls in the underground stormwater conveyance system, the flow accumulation and delineation of watersheds are calculated based on recursive computations. Application of the algorithm to the Sangdong tailings dam in Korea revealed superior performance to that of a conventional D8 single-flow algorithm in terms of providing reasonable hydrologic information on watersheds with stormwater infrastructure.
Panta Rhei-Everything flows: Global Hotspots of Human-Water Interactions
NASA Astrophysics Data System (ADS)
Di Baldassarre, G.; Srinivasan, V.; Tian, F.; Mohamed, Y.; Krueger, T.; Kreibich, H.; Liu, J.; Troy, T. J.; AghaKouchak, A.
2017-12-01
Panta Rhei-Everything Flows is the scientific decade (2013-2022) of the International Association of Hydrological Sciences (IAHS). This initiative aims to reach an improved interpretation of the processes governing the water cycle by focusing on their changing dynamics in connection with rapidly changing human systems (Montanari et al., 2013; McMillan et al., 2016). More than 400 water scientists have been involved in Panta Rhei so far, and several working groups have produced significant outcomes. In this presentation, we first summarize some key achievements of this initiative by showing how they have advanced our understanding of the way in which humans impact on, and respond to, hydrological change. Then, we suggest simple indicators to characterize interactions between water and human systems. These indicators aim to capture the relevance of human-water interactions and their potential to generate negative effects, such as water crises or unintended consequences. Finally, we show an application of these indicators to global hotspots, i.e. contrasting case studies from around the world. Our goal is to facilitate a community-wide effort in collecting and sharing essential data to map the role of human-water interactions across social and hydrological conditions. ReferencesMontanari et al. (2013) Panta Rhei—Everything Flows: Change in hydrology and society—The IAHS Scientific Decade 2013-2022, Hydrological Sciences Journal, 58(6), 1256-1275. McMillan et al. (2016) Panta Rhei 2013-2015: Global perspectives on hydrology, society and change. Hydrological sciences journal 61(7), 1174-1191.
NASA Astrophysics Data System (ADS)
Wu, Fu-Chun; Chang, Ching-Fu; Shiau, Jenq-Tzong
2015-05-01
The full range of natural flow regime is essential for sustaining the riverine ecosystems and biodiversity, yet there are still limited tools available for assessment of flow regime alterations over a spectrum of temporal scales. Wavelet analysis has proven useful for detecting hydrologic alterations at multiple scales via the wavelet power spectrum (WPS) series. The existing approach based on the global WPS (GWPS) ratio tends to be dominated by the rare high-power flows so that alterations of the more frequent low-power flows are often underrepresented. We devise a new approach based on individual deviations between WPS (DWPS) that are root-mean-squared to yield the global DWPS (GDWPS). We test these two approaches on the three reaches of the Feitsui Reservoir system (Taiwan) that are subjected to different classes of anthropogenic interventions. The GDWPS reveal unique features that are not detected with the GWPS ratios. We also segregate the effects of individual subflow components on the overall flow regime alterations using the subflow GDWPS. The results show that the daily hydropeaking waves below the reservoir not only intensified the flow oscillations at daily scale but most significantly eliminated subweekly flow variability. Alterations of flow regime were most severe below the diversion weir, where the residual hydropeaking resulted in a maximum impact at daily scale while the postdiversion null flows led to large hydrologic alterations over submonthly scales. The smallest impacts below the confluence reveal that the hydrologic alterations at scales longer than 2 days were substantially mitigated with the joining of the unregulated tributary flows, whereas the daily-scale hydrologic alteration was retained because of the hydropeaking inherited from the reservoir releases. The proposed DWPS approach unravels for the first time the details of flow regime alterations at these intermediate scales that are overridden by the low-frequency high-power flows when the long-term averaged GWPS are used.