Sample records for future forecasting system

  1. Forecasting, Forecasting

    Treesearch

    Michael A. Fosberg

    1987-01-01

    Future improvements in the meteorological forecasts used in fire management will come from improvements in three areas: observational systems, forecast techniques, and postprocessing of forecasts and better integration of this information into the fire management process.

  2. Superensemble forecasts of dengue outbreaks

    PubMed Central

    Kandula, Sasikiran; Shaman, Jeffrey

    2016-01-01

    In recent years, a number of systems capable of predicting future infectious disease incidence have been developed. As more of these systems are operationalized, it is important that the forecasts generated by these different approaches be formally reconciled so that individual forecast error and bias are reduced. Here we present a first example of such multi-system, or superensemble, forecast. We develop three distinct systems for predicting dengue, which are applied retrospectively to forecast outbreak characteristics in San Juan, Puerto Rico. We then use Bayesian averaging methods to combine the predictions from these systems and create superensemble forecasts. We demonstrate that on average, the superensemble approach produces more accurate forecasts than those made from any of the individual forecasting systems. PMID:27733698

  3. Short-Term State Forecasting-Based Optimal Voltage Regulation in Distribution Systems: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Rui; Jiang, Huaiguang; Zhang, Yingchen

    2017-05-17

    A novel short-term state forecasting-based optimal power flow (OPF) approach for distribution system voltage regulation is proposed in this paper. An extreme learning machine (ELM) based state forecaster is developed to accurately predict system states (voltage magnitudes and angles) in the near future. Based on the forecast system states, a dynamically weighted three-phase AC OPF problem is formulated to minimize the voltage violations with higher penalization on buses which are forecast to have higher voltage violations in the near future. By solving the proposed OPF problem, the controllable resources in the system are optimally coordinated to alleviate the potential severemore » voltage violations and improve the overall voltage profile. The proposed approach has been tested in a 12-bus distribution system and simulation results are presented to demonstrate the performance of the proposed approach.« less

  4. Assessment of Folsom Lake Watershed response to historical and potential future climate scenarios

    USGS Publications Warehouse

    Carpenter, Theresa M.; Georgakakos, Konstantine P.

    2000-01-01

    An integrated forecast-control system was designed to allow the profitable use of ensemble forecasts for the operational management of multi-purpose reservoirs. The system ingests large-scale climate model monthly precipitation through the adjustment of the marginal distribution of reservoir-catchment precipitation to reflect occurrence of monthly climate precipitation amounts in the extreme terciles of their distribution. Generation of ensemble reservoir inflow forecasts is then accomplished with due account for atmospheric- forcing and hydrologic- model uncertainties. These ensemble forecasts are ingested by the decision component of the integrated system, which generates non- inferior trade-off surfaces and, given management preferences, estimates of reservoir- management benefits over given periods. In collaboration with the Bureau of Reclamation and the California Nevada River Forecast Center, the integrated system is applied to Folsom Lake in California to evaluate the benefits for flood control, hydroelectric energy production, and low flow augmentation. In addition to retrospective studies involving the historical period 1964-1993, system simulations were performed for the future period 2001-2030, under a control (constant future greenhouse-gas concentrations assumed at the present levels) and a greenhouse-gas- increase (1-% per annum increase assumed) scenario. The present paper presents and validates ensemble 30-day reservoir- inflow forecasts under a variety of situations. Corresponding reservoir management results are presented in Yao and Georgakakos, A., this issue. Principle conclusions of this paper are that the integrated system provides reliable ensemble inflow volume forecasts at the 5-% confidence level for the majority of the deciles of forecast frequency, and that the use of climate model simulations is beneficial mainly during high flow periods. It is also found that, for future periods with potential sharp climatic increases of precipitation amount and to maintain good reliability levels, operational ensemble inflow forecasting should involve atmospheric forcing from appropriate climatic periods.

  5. An investigation into incident duration forecasting for FleetForward

    DOT National Transportation Integrated Search

    2000-08-01

    Traffic condition forecasting is the process of estimating future traffic conditions based on current and archived data. Real-time forecasting is becoming an important tool in Intelligent Transportation Systems (ITS). This type of forecasting allows ...

  6. Seasonal forecasting of groundwater levels in natural aquifers in the United Kingdom

    NASA Astrophysics Data System (ADS)

    Mackay, Jonathan; Jackson, Christopher; Pachocka, Magdalena; Brookshaw, Anca; Scaife, Adam

    2014-05-01

    Groundwater aquifers comprise the world's largest freshwater resource and provide resilience to climate extremes which could become more frequent under future climate changes. Prolonged dry conditions can induce groundwater drought, often characterised by significantly low groundwater levels which may persist for months to years. In contrast, lasting wet conditions can result in anomalously high groundwater levels which result in flooding, potentially at large economic cost. Using computational models to produce groundwater level forecasts allows appropriate management strategies to be considered in advance of extreme events. The majority of groundwater level forecasting studies to date use data-based models, which exploit the long response time of groundwater levels to meteorological drivers and make forecasts based only on the current state of the system. Instead, seasonal meteorological forecasts can be used to drive hydrological models and simulate groundwater levels months into the future. Such approaches have not been used in the past due to a lack of skill in these long-range forecast products. However systems such as the latest version of the Met Office Global Seasonal Forecast System (GloSea5) are now showing increased skill up to a 3-month lead time. We demonstrate the first groundwater level ensemble forecasting system using a multi-member ensemble of hindcasts from GloSea5 between 1996 and 2009 to force 21 simple lumped conceptual groundwater models covering most of the UK's major aquifers. We present the results from this hindcasting study and demonstrate that the system can be used to forecast groundwater levels with some skill up to three months into the future.

  7. Satellite based Ocean Forecasting, the SOFT project

    NASA Astrophysics Data System (ADS)

    Stemmann, L.; Tintoré, J.; Moneris, S.

    2003-04-01

    The knowledge of future oceanic conditions would have enormous impact on human marine related areas. For such reasons, a number of international efforts are being carried out to obtain reliable and manageable ocean forecasting systems. Among the possible techniques that can be used to estimate the near future states of the ocean, an ocean forecasting system based on satellite imagery is developped through the Satelitte based Ocean ForecasTing project (SOFT). SOFT, established by the European Commission, considers the development of a forecasting system of the ocean space-time variability based on satellite data by using Artificial Intelligence techniques. This system will be merged with numerical simulation approaches, via assimilation techniques, to get a hybrid SOFT-numerical forecasting system of improved performance. The results of the project will provide efficient forecasting of sea-surface temperature structures, currents, dynamic height, and biological activity associated to chlorophyll fields. All these quantities could give valuable information on the planning and management of human activities in marine environments such as navigation, fisheries, pollution control, or coastal management. A detailed identification of present or new needs and potential end-users concerned by such an operational tool is being performed. The project would study solutions adapted to these specific needs.

  8. Demand forecasting for automotive sector in Malaysia by system dynamics approach

    NASA Astrophysics Data System (ADS)

    Zulkepli, Jafri; Fong, Chan Hwa; Abidin, Norhaslinda Zainal

    2015-12-01

    In general, Proton as an automotive company needs to forecast future demand of the car to assist in decision making related to capacity expansion planning. One of the forecasting approaches that based on judgemental or subjective factors is normally used to forecast the demand. As a result, demand could be overstock that eventually will increase the operation cost; or the company will face understock, which resulted losing their customers. Due to automotive industry is very challenging process because of high level of complexity and uncertainty involved in the system, an accurate tool to forecast the future of automotive demand from the modelling perspective is required. Hence, the main objective of this paper is to forecast the demand of automotive Proton car industry in Malaysia using system dynamics approach. Two types of intervention namely optimistic and pessimistic experiments scenarios have been tested to determine the capacity expansion that can prevent the company from overstocking. Finding from this study highlighted that the management needs to expand their production for optimistic scenario, whilst pessimistic give results that would otherwise. Finally, this study could help Proton Edar Sdn. Bhd (PESB) to manage the long-term capacity planning in order to meet the future demand of the Proton cars.

  9. Comparison of the economic impact of different wind power forecast systems for producers

    NASA Astrophysics Data System (ADS)

    Alessandrini, S.; Davò, F.; Sperati, S.; Benini, M.; Delle Monache, L.

    2014-05-01

    Deterministic forecasts of wind production for the next 72 h at a single wind farm or at the regional level are among the main end-users requirement. However, for an optimal management of wind power production and distribution it is important to provide, together with a deterministic prediction, a probabilistic one. A deterministic forecast consists of a single value for each time in the future for the variable to be predicted, while probabilistic forecasting informs on probabilities for potential future events. This means providing information about uncertainty (i.e. a forecast of the PDF of power) in addition to the commonly provided single-valued power prediction. A significant probabilistic application is related to the trading of energy in day-ahead electricity markets. It has been shown that, when trading future wind energy production, using probabilistic wind power predictions can lead to higher benefits than those obtained by using deterministic forecasts alone. In fact, by using probabilistic forecasting it is possible to solve economic model equations trying to optimize the revenue for the producer depending, for example, on the specific penalties for forecast errors valid in that market. In this work we have applied a probabilistic wind power forecast systems based on the "analog ensemble" method for bidding wind energy during the day-ahead market in the case of a wind farm located in Italy. The actual hourly income for the plant is computed considering the actual selling energy prices and penalties proportional to the unbalancing, defined as the difference between the day-ahead offered energy and the actual production. The economic benefit of using a probabilistic approach for the day-ahead energy bidding are evaluated, resulting in an increase of 23% of the annual income for a wind farm owner in the case of knowing "a priori" the future energy prices. The uncertainty on price forecasting partly reduces the economic benefit gained by using a probabilistic energy forecast system.

  10. The Future Impact of Vietnam Era Veterans on Inpatient Acute Care and Mental Health Product Lines at a Veterans Affairs Medical Center

    DTIC Science & Technology

    2000-06-20

    smoothing and regression which includes curve fitting are two principle forecasting model types utilized in the vast majority of forecasting applications ... model were compared against the VA Office of Policy and Planning forecasting study commissioned with the actuarial firm of Milliman & Robertson (M & R... Application to the Veterans Healthcare System The development of a model to forecast future VEV needs, utilization, and cost of the Acute Care and

  11. Short-Term Load Forecasting Based Automatic Distribution Network Reconfiguration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Huaiguang; Ding, Fei; Zhang, Yingchen

    In a traditional dynamic network reconfiguration study, the optimal topology is determined at every scheduled time point by using the real load data measured at that time. The development of the load forecasting technique can provide an accurate prediction of the load power that will happen in a future time and provide more information about load changes. With the inclusion of load forecasting, the optimal topology can be determined based on the predicted load conditions during a longer time period instead of using a snapshot of the load at the time when the reconfiguration happens; thus, the distribution system operatormore » can use this information to better operate the system reconfiguration and achieve optimal solutions. This paper proposes a short-term load forecasting approach to automatically reconfigure distribution systems in a dynamic and pre-event manner. Specifically, a short-term and high-resolution distribution system load forecasting approach is proposed with a forecaster based on support vector regression and parallel parameters optimization. The network reconfiguration problem is solved by using the forecasted load continuously to determine the optimal network topology with the minimum amount of loss at the future time. The simulation results validate and evaluate the proposed approach.« less

  12. Short-Term Load Forecasting-Based Automatic Distribution Network Reconfiguration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Huaiguang; Ding, Fei; Zhang, Yingchen

    In a traditional dynamic network reconfiguration study, the optimal topology is determined at every scheduled time point by using the real load data measured at that time. The development of the load forecasting technique can provide an accurate prediction of the load power that will happen in a future time and provide more information about load changes. With the inclusion of load forecasting, the optimal topology can be determined based on the predicted load conditions during a longer time period instead of using a snapshot of the load at the time when the reconfiguration happens; thus, the distribution system operatormore » can use this information to better operate the system reconfiguration and achieve optimal solutions. This paper proposes a short-term load forecasting approach to automatically reconfigure distribution systems in a dynamic and pre-event manner. Specifically, a short-term and high-resolution distribution system load forecasting approach is proposed with a forecaster based on support vector regression and parallel parameters optimization. The network reconfiguration problem is solved by using the forecasted load continuously to determine the optimal network topology with the minimum amount of loss at the future time. The simulation results validate and evaluate the proposed approach.« less

  13. Rate of recovery from perturbations as a means to forecast future stability of living systems.

    PubMed

    Ghadami, Amin; Gourgou, Eleni; Epureanu, Bogdan I

    2018-06-18

    Anticipating critical transitions in complex ecological and living systems is an important need because it is often difficult to restore a system to its pre-transition state once the transition occurs. Recent studies demonstrate that several indicators based on changes in ecological time series can indicate that the system is approaching an impending transition. An exciting question is, however, whether we can predict more characteristics of the future system stability using measurements taken away from the transition. We address this question by introducing a model-less forecasting method to forecast catastrophic transition of an experimental ecological system. The experiment is based on the dynamics of a yeast population, which is known to exhibit a catastrophic transition as the environment deteriorates. By measuring the system's response to perturbations prior to transition, we forecast the distance to the upcoming transition, the type of the transition (i.e., catastrophic/non-catastrophic) and the future equilibrium points within a range near the transition. Experimental results suggest a strong potential for practical applicability of this approach for ecological systems which are at risk of catastrophic transitions, where there is a pressing need for information about upcoming thresholds.

  14. Demand forecasting for automotive sector in Malaysia by system dynamics approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zulkepli, Jafri, E-mail: zhjafri@uum.edu.my; Abidin, Norhaslinda Zainal, E-mail: nhaslinda@uum.edu.my; Fong, Chan Hwa, E-mail: hfchan7623@yahoo.com

    In general, Proton as an automotive company needs to forecast future demand of the car to assist in decision making related to capacity expansion planning. One of the forecasting approaches that based on judgemental or subjective factors is normally used to forecast the demand. As a result, demand could be overstock that eventually will increase the operation cost; or the company will face understock, which resulted losing their customers. Due to automotive industry is very challenging process because of high level of complexity and uncertainty involved in the system, an accurate tool to forecast the future of automotive demand frommore » the modelling perspective is required. Hence, the main objective of this paper is to forecast the demand of automotive Proton car industry in Malaysia using system dynamics approach. Two types of intervention namely optimistic and pessimistic experiments scenarios have been tested to determine the capacity expansion that can prevent the company from overstocking. Finding from this study highlighted that the management needs to expand their production for optimistic scenario, whilst pessimistic give results that would otherwise. Finally, this study could help Proton Edar Sdn. Bhd (PESB) to manage the long-term capacity planning in order to meet the future demand of the Proton cars.« less

  15. Theoretical Models for Aircraft Availability: Classical Approach to Identification of Trends, Seasonality, and System Constraints in the Development of Realized Models

    DTIC Science & Technology

    2004-03-01

    predicting future events ( Heizer and Render , 1999). Forecasting techniques fall into two major categories, qualitative and quantitative methods...Globemaster III.” Excerpt from website. www.globalsecurity.org/military /systems/ aircraft/c-17-history.htm. 2003. Heizer , Jay, and Barry Render ...of the past data used to make the forecast ( Heizer , et. al., 1999). Explanatory forecasting models assume that the variable being forecasted

  16. 7 CFR 1710.300 - General.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... forecast. The forecast should be used by the board of directors and the manager to guide the system towards... projected results of future actions planned by the borrower's board of directors; (2) The financial goals... type of large power loads, projections of future borrowings and the associated interest, projected...

  17. 7 CFR 1710.300 - General.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... forecast. The forecast should be used by the board of directors and the manager to guide the system towards... projected results of future actions planned by the borrower's board of directors; (2) The financial goals... type of large power loads, projections of future borrowings and the associated interest, projected...

  18. Short-Term Load Forecasting Based Automatic Distribution Network Reconfiguration: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Huaiguang; Ding, Fei; Zhang, Yingchen

    In the traditional dynamic network reconfiguration study, the optimal topology is determined at every scheduled time point by using the real load data measured at that time. The development of load forecasting technique can provide accurate prediction of load power that will happen in future time and provide more information about load changes. With the inclusion of load forecasting, the optimal topology can be determined based on the predicted load conditions during the longer time period instead of using the snapshot of load at the time when the reconfiguration happens, and thus it can provide information to the distribution systemmore » operator (DSO) to better operate the system reconfiguration to achieve optimal solutions. Thus, this paper proposes a short-term load forecasting based approach for automatically reconfiguring distribution systems in a dynamic and pre-event manner. Specifically, a short-term and high-resolution distribution system load forecasting approach is proposed with support vector regression (SVR) based forecaster and parallel parameters optimization. And the network reconfiguration problem is solved by using the forecasted load continuously to determine the optimal network topology with the minimum loss at the future time. The simulation results validate and evaluate the proposed approach.« less

  19. Satellite temperature monitoring and prediction system

    NASA Technical Reports Server (NTRS)

    Barnett, U. R.; Martsolf, J. D.; Crosby, F. L.

    1980-01-01

    The paper describes the Florida Satellite Freeze Forecast System (SFFS) in its current state. All data collection options have been demonstrated, and data collected over a three year period have been stored for future analysis. Presently, specific minimum temperature forecasts are issued routinely from November through March. The procedures for issuing these forecast are discussed. The automated data acquisition and processing system is described, and the physical and statistical models employed are examined.

  20. Forecasting the absolute and relative shortage of physicians in Japan using a system dynamics model approach

    PubMed Central

    2013-01-01

    Background In Japan, a shortage of physicians, who serve a key role in healthcare provision, has been pointed out as a major medical issue. The healthcare workforce policy planner should consider future dynamic changes in physician numbers. The purpose of this study was to propose a physician supply forecasting methodology by applying system dynamics modeling to estimate future absolute and relative numbers of physicians. Method We constructed a forecasting model using a system dynamics approach. Forecasting the number of physician was performed for all clinical physician and OB/GYN specialists. Moreover, we conducted evaluation of sufficiency for the number of physicians and sensitivity analysis. Result & conclusion As a result, it was forecast that the number of physicians would increase during 2008–2030 and the shortage would resolve at 2026 for all clinical physicians. However, the shortage would not resolve for the period covered. This suggests a need for measures for reconsidering the allocation system of new entry physicians to resolve maldistribution between medical departments, in addition, for increasing the overall number of clinical physicians. PMID:23981198

  1. Forecasting the absolute and relative shortage of physicians in Japan using a system dynamics model approach.

    PubMed

    Ishikawa, Tomoki; Ohba, Hisateru; Yokooka, Yuki; Nakamura, Kozo; Ogasawara, Katsuhiko

    2013-08-27

    In Japan, a shortage of physicians, who serve a key role in healthcare provision, has been pointed out as a major medical issue. The healthcare workforce policy planner should consider future dynamic changes in physician numbers. The purpose of this study was to propose a physician supply forecasting methodology by applying system dynamics modeling to estimate future absolute and relative numbers of physicians. We constructed a forecasting model using a system dynamics approach. Forecasting the number of physician was performed for all clinical physician and OB/GYN specialists. Moreover, we conducted evaluation of sufficiency for the number of physicians and sensitivity analysis. As a result, it was forecast that the number of physicians would increase during 2008-2030 and the shortage would resolve at 2026 for all clinical physicians. However, the shortage would not resolve for the period covered. This suggests a need for measures for reconsidering the allocation system of new entry physicians to resolve maldistribution between medical departments, in addition, for increasing the overall number of clinical physicians.

  2. FHWA travel analysis framework : development of VMT forecasting models for use by the Federal Highway Administration

    DOT National Transportation Integrated Search

    2014-05-12

    This document details the process that the Volpe National Transportation Systems Center (Volpe) used to develop travel forecasting models for the Federal Highway Administration (FHWA). The purpose of these models is to allow FHWA to forecast future c...

  3. Projecting technology change to improve space technology planning and systems management

    NASA Astrophysics Data System (ADS)

    Walk, Steven Robert

    2011-04-01

    Projecting technology performance evolution has been improving over the years. Reliable quantitative forecasting methods have been developed that project the growth, diffusion, and performance of technology in time, including projecting technology substitutions, saturation levels, and performance improvements. These forecasts can be applied at the early stages of space technology planning to better predict available future technology performance, assure the successful selection of technology, and improve technology systems management strategy. Often what is published as a technology forecast is simply scenario planning, usually made by extrapolating current trends into the future, with perhaps some subjective insight added. Typically, the accuracy of such predictions falls rapidly with distance in time. Quantitative technology forecasting (QTF), on the other hand, includes the study of historic data to identify one of or a combination of several recognized universal technology diffusion or substitution patterns. In the same manner that quantitative models of physical phenomena provide excellent predictions of system behavior, so do QTF models provide reliable technological performance trajectories. In practice, a quantitative technology forecast is completed to ascertain with confidence when the projected performance of a technology or system of technologies will occur. Such projections provide reliable time-referenced information when considering cost and performance trade-offs in maintaining, replacing, or migrating a technology, component, or system. This paper introduces various quantitative technology forecasting techniques and illustrates their practical application in space technology and technology systems management.

  4. A global flash flood forecasting system

    NASA Astrophysics Data System (ADS)

    Baugh, Calum; Pappenberger, Florian; Wetterhall, Fredrik; Hewson, Tim; Zsoter, Ervin

    2016-04-01

    The sudden and devastating nature of flash flood events means it is imperative to provide early warnings such as those derived from Numerical Weather Prediction (NWP) forecasts. Currently such systems exist on basin, national and continental scales in Europe, North America and Australia but rely on high resolution NWP forecasts or rainfall-radar nowcasting, neither of which have global coverage. To produce global flash flood forecasts this work investigates the possibility of using forecasts from a global NWP system. In particular we: (i) discuss how global NWP can be used for flash flood forecasting and discuss strengths and weaknesses; (ii) demonstrate how a robust evaluation can be performed given the rarity of the event; (iii) highlight the challenges and opportunities in communicating flash flood uncertainty to decision makers; and (iv) explore future developments which would significantly improve global flash flood forecasting. The proposed forecast system uses ensemble surface runoff forecasts from the ECMWF H-TESSEL land surface scheme. A flash flood index is generated using the ERIC (Enhanced Runoff Index based on Climatology) methodology [Raynaud et al., 2014]. This global methodology is applied to a series of flash floods across southern Europe. Results from the system are compared against warnings produced using the higher resolution COSMO-LEPS limited area model. The global system is evaluated by comparing forecasted warning locations against a flash flood database of media reports created in partnership with floodlist.com. To deal with the lack of objectivity in media reports we carefully assess the suitability of different skill scores and apply spatial uncertainty thresholds to the observations. To communicate the uncertainties of the flash flood system output we experiment with a dynamic region-growing algorithm. This automatically clusters regions of similar return period exceedence probabilities, thus presenting the at-risk areas at a spatial resolution appropriate to the NWP system. We then demonstrate how these warning areas could eventually complement existing global systems such as the Global Flood Awareness System (GloFAS), to give warnings of flash floods. This work demonstrates the possibility of creating a global flash flood forecasting system based on forecasts from existing global NWP systems. Future developments, in post-processing for example, will need to address an under-prediction bias, for extreme point rainfall, that is innate to current-generation global models.

  5. Space weather forecasting: Past, Present, Future

    NASA Astrophysics Data System (ADS)

    Lanzerotti, L. J.

    2012-12-01

    There have been revolutionary advances in electrical technologies over the last 160 years. The historical record demonstrates that space weather processes have often provided surprises in the implementation and operation of many of these technologies. The historical record also demonstrates that as the complexity of systems increase, including their interconnectedness and interoperability, they can become more susceptible to space weather effects. An engineering goal, beginning during the decades following the 1859 Carrington event, has been to attempt to forecast solar-produced disturbances that could affect technical systems, be they long grounded conductor-based or radio-based or required for exploration, or the increasingly complex systems immersed in the space environment itself. Forecasting of space weather events involves both frontier measurements and models to address engineering requirements, and industrial and governmental policies that encourage and permit creativity and entrepreneurship. While analogies of space weather forecasting to terrestrial weather forecasting are frequently made, and while many of the analogies are valid, there are also important differences. This presentation will provide some historical perspectives on the forecast problem, a personal assessment of current status of several areas including important policy issues, and a look into the not-too-distant future.

  6. Application of global weather and climate model output to the design and operation of wind-energy systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curry, Judith

    This project addressed the challenge of providing weather and climate information to support the operation, management and planning for wind-energy systems. The need for forecast information is extending to longer projection windows with increasing penetration of wind power into the grid and also with diminishing reserve margins to meet peak loads during significant weather events. Maintenance planning and natural gas trading is being influenced increasingly by anticipation of wind generation on timescales of weeks to months. Future scenarios on decadal time scales are needed to support assessment of wind farm siting, government planning, long-term wind purchase agreements and the regulatorymore » environment. The challenge of making wind forecasts on these longer time scales is associated with a wide range of uncertainties in general circulation and regional climate models that make them unsuitable for direct use in the design and planning of wind-energy systems. To address this challenge, CFAN has developed a hybrid statistical/dynamical forecasting scheme for delivering probabilistic forecasts on time scales from one day to seven months using what is arguably the best forecasting system in the world (European Centre for Medium Range Weather Forecasting, ECMWF). The project also provided a framework to assess future wind power through developing scenarios of interannual to decadal climate variability and change. The Phase II research has successfully developed an operational wind power forecasting system for the U.S., which is being extended to Europe and possibly Asia.« less

  7. Experimental Forecasts of Wildfire Pollution at the Canadian Meteorological Centre

    NASA Astrophysics Data System (ADS)

    Pavlovic, Radenko; Beaulieu, Paul-Andre; Chen, Jack; Landry, Hugo; Cousineau, Sophie; Moran, Michael

    2016-04-01

    Environment and Climate Change Canada's Canadian Meteorological Centre Operations division (CMCO) has been running an experimental North American air quality forecast system with near-real-time wildfire emissions since 2014. This system, named FireWork, also takes anthropogenic and other natural emission sources into account. FireWork 48-hour forecasts are provided to CMCO forecasters and external partners in Canada and the U.S. twice daily during the wildfire season. This system has proven to be very useful in capturing short- and long-range smoke transport from wildfires over North America. Several upgrades to the FireWork system have been made since 2014 to accommodate the needs of operational AQ forecasters and to improve system performance. In this talk we will present performance statistics and some case studies for the 2014 and 2015 wildfire seasons. We will also describe current limitations of the FireWork system and ongoing and future work planned for this air quality forecast system.

  8. Assessing skill of a global bimonthly streamflow ensemble prediction system

    NASA Astrophysics Data System (ADS)

    van Dijk, A. I.; Peña-Arancibia, J.; Sheffield, J.; Wood, E. F.

    2011-12-01

    Ideally, a seasonal streamflow forecasting system might be conceived of as a system that ingests skillful climate forecasts from general circulation models and propagates these through thoroughly calibrated hydrological models that are initialised using hydrometric observations. In practice, there are practical problems with each of these aspects. Instead, we analysed whether a comparatively simple hydrological model-based Ensemble Prediction System (EPS) can provide global bimonthly streamflow forecasts with some skill and if so, under what circumstances the greatest skill may be expected. The system tested produces ensemble forecasts for each of six annual bimonthly periods based on the previous 30 years of global daily gridded 1° resolution climate variables and an initialised global hydrological model. To incorporate some of the skill derived from ocean conditions, a post-EPS analog method was used to sample from the ensemble based on El Niño Southern Oscillation (ENSO), Indian Ocean Dipole (IOD), North Atlantic Oscillation (NAO) and Pacific Decadal Oscillation (PDO) index values observed prior to the forecast. Forecasts skill was assessed through a hind-casting experiment for the period 1979-2008. Potential skill was calculated with reference to a model run with the actual forcing for the forecast period (the 'perfect' model) and was compared to actual forecast skill calculated for each of the six forecast times for an average 411 Australian and 51 pan-tropical catchments. Significant potential skill in bimonthly forecasts was largely limited to northern regions during the snow melt period, seasonally wet tropical regions at the transition of wet to dry season, and the Indonesian region where rainfall is well correlated to ENSO. The actual skill was approximately 34-50% of the potential skill. We attribute this primarily to limitations in the model structure, parameterisation and global forcing data. Use of better climate forecasts and remote sensing observations of initial catchment conditions should help to increase actual skill in future. Future work also could address the potential skill gain from using weather and climate forecasts and from a calibrated and/or alternative hydrological model or model ensemble. The approach and data might be useful as a benchmark for joint seasonal forecasting experiments planned under GEWEX.

  9. Probabilistic short-term forecasting of eruption rate at Kīlauea Volcano using a physics-based model

    NASA Astrophysics Data System (ADS)

    Anderson, K. R.

    2016-12-01

    Deterministic models of volcanic eruptions yield predictions of future activity conditioned on uncertainty in the current state of the system. Physics-based eruption models are well-suited for deterministic forecasting as they can relate magma physics with a wide range of observations. Yet, physics-based eruption forecasting is strongly limited by an inadequate understanding of volcanic systems, and the need for eruption models to be computationally tractable. At Kīlauea Volcano, Hawaii, episodic depressurization-pressurization cycles of the magma system generate correlated, quasi-exponential variations in ground deformation and surface height of the active summit lava lake. Deflations are associated with reductions in eruption rate, or even brief eruptive pauses, and thus partly control lava flow advance rates and associated hazard. Because of the relatively well-understood nature of Kīlauea's shallow magma plumbing system, and because more than 600 of these events have been recorded to date, they offer a unique opportunity to refine a physics-based effusive eruption forecasting approach and apply it to lava eruption rates over short (hours to days) time periods. A simple physical model of the volcano ascribes observed data to temporary reductions in magma supply to an elastic reservoir filled with compressible magma. This model can be used to predict the evolution of an ongoing event, but because the mechanism that triggers events is unknown, event durations are modeled stochastically from previous observations. A Bayesian approach incorporates diverse data sets and prior information to simultaneously estimate uncertain model parameters and future states of the system. Forecasts take the form of probability distributions for eruption rate or cumulative erupted volume at some future time. Results demonstrate the significant uncertainties that still remain even for short-term eruption forecasting at a well-monitored volcano - but also the value of a physics-based, mixed deterministic-probabilistic eruption forecasting approach in reducing and quantifying these uncertainties.

  10. Future Weather Forecasting in the Year 2020-Investing in Technology Today: Improving Weather and Environmental Predictions

    NASA Technical Reports Server (NTRS)

    Anthes, Richard; Schoeberl, Mark

    2000-01-01

    Fast-forward twenty years to the nightly simultaneous TV/webcast. Accurate 8-14 day regional forecasts will be available as will be a whole host of linked products including economic impact, travel, energy usage, etc. On-demand, personalized street-level forecasts will be downloaded into your PDA. Your home system will automatically update the products of interest to you (e.g. severe storm forecasts, hurricane predictions, etc). Short and long range climate forecasts will be used by your "Quicken 2020" to make suggest changes in your "futures" investment portfolio. Through a lively and informative multi-media presentation, leading Space-Earth Science Researchers and Technologists will share their vision for the year 2020, offering a possible futuristic forecast enabled through the application of new technologies under development today. Copies of the 'broadcast' will be available on Beta Tape for your own future use. If sufficient interest exists, the program may also be made available for broadcasters wishing to do stand-ups with roll-ins from the San Francisco meeting for their viewers back home.

  11. Short-Term Distribution System State Forecast Based on Optimal Synchrophasor Sensor Placement and Extreme Learning Machine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Huaiguang; Zhang, Yingchen

    This paper proposes an approach for distribution system state forecasting, which aims to provide an accurate and high speed state forecasting with an optimal synchrophasor sensor placement (OSSP) based state estimator and an extreme learning machine (ELM) based forecaster. Specifically, considering the sensor installation cost and measurement error, an OSSP algorithm is proposed to reduce the number of synchrophasor sensor and keep the whole distribution system numerically and topologically observable. Then, the weighted least square (WLS) based system state estimator is used to produce the training data for the proposed forecaster. Traditionally, the artificial neural network (ANN) and support vectormore » regression (SVR) are widely used in forecasting due to their nonlinear modeling capabilities. However, the ANN contains heavy computation load and the best parameters for SVR are difficult to obtain. In this paper, the ELM, which overcomes these drawbacks, is used to forecast the future system states with the historical system states. The proposed approach is effective and accurate based on the testing results.« less

  12. A seasonal hydrologic ensemble prediction system for water resource management

    NASA Astrophysics Data System (ADS)

    Luo, L.; Wood, E. F.

    2006-12-01

    A seasonal hydrologic ensemble prediction system, developed for the Ohio River basin, has been improved and expanded to several other regions including the Eastern U.S., Africa and East Asia. The prediction system adopts the traditional Extended Streamflow Prediction (ESP) approach, utilizing the VIC (Variable Infiltration Capacity) hydrological model as the central tool for producing ensemble prediction of soil moisture, snow and streamflow with lead times up to 6-month. VIC is forced by observed meteorology to estimate the hydrological initial condition prior to the forecast, but during the forecast period the atmospheric forcing comes from statistically downscaled, seasonal forecast from dynamic climate models. The seasonal hydrologic ensemble prediction system is currently producing realtime seasonal hydrologic forecast for these regions on a monthly basis. Using hindcasts from a 19-year period (1981-1999), during which seasonal hindcasts from NCEP Climate Forecast System (CFS) and European Union DEMETER project are available, we evaluate the performance of the forecast system over our forecast regions. The evaluation shows that the prediction system using the current forecast approach is able to produce reliable and accurate precipitation, soil moisture and streamflow predictions. The overall skill is much higher then the traditional ESP. In particular, forecasts based on multiple climate model forecast are more skillful than single model-based forecast. This emphasizes the significant need for producing seasonal climate forecast with multiple climate models for hydrologic applications. Forecast from this system is expected to provide very valuable information about future hydrologic states and associated risks for end users, including water resource management and financial sectors.

  13. Bayesian flood forecasting methods: A review

    NASA Astrophysics Data System (ADS)

    Han, Shasha; Coulibaly, Paulin

    2017-08-01

    Over the past few decades, floods have been seen as one of the most common and largely distributed natural disasters in the world. If floods could be accurately forecasted in advance, then their negative impacts could be greatly minimized. It is widely recognized that quantification and reduction of uncertainty associated with the hydrologic forecast is of great importance for flood estimation and rational decision making. Bayesian forecasting system (BFS) offers an ideal theoretic framework for uncertainty quantification that can be developed for probabilistic flood forecasting via any deterministic hydrologic model. It provides suitable theoretical structure, empirically validated models and reasonable analytic-numerical computation method, and can be developed into various Bayesian forecasting approaches. This paper presents a comprehensive review on Bayesian forecasting approaches applied in flood forecasting from 1999 till now. The review starts with an overview of fundamentals of BFS and recent advances in BFS, followed with BFS application in river stage forecasting and real-time flood forecasting, then move to a critical analysis by evaluating advantages and limitations of Bayesian forecasting methods and other predictive uncertainty assessment approaches in flood forecasting, and finally discusses the future research direction in Bayesian flood forecasting. Results show that the Bayesian flood forecasting approach is an effective and advanced way for flood estimation, it considers all sources of uncertainties and produces a predictive distribution of the river stage, river discharge or runoff, thus gives more accurate and reliable flood forecasts. Some emerging Bayesian forecasting methods (e.g. ensemble Bayesian forecasting system, Bayesian multi-model combination) were shown to overcome limitations of single model or fixed model weight and effectively reduce predictive uncertainty. In recent years, various Bayesian flood forecasting approaches have been developed and widely applied, but there is still room for improvements. Future research in the context of Bayesian flood forecasting should be on assimilation of various sources of newly available information and improvement of predictive performance assessment methods.

  14. Uses and Applications of Climate Forecasts for Power Utilities.

    NASA Astrophysics Data System (ADS)

    Changnon, Stanley A.; Changnon, Joyce M.; Changnon, David

    1995-05-01

    The uses and potential applications of climate forecasts for electric and gas utilities were assessed 1) to discern needs for improving climate forecasts and guiding future research, and 2) to assist utilities in making wise use of forecasts. In-depth structured interviews were conducted with 56 decision makers in six utilities to assess existing and potential uses of climate forecasts. Only 3 of the 56 use forecasts. Eighty percent of those sampled envisioned applications of climate forecasts, given certain changes and additional information. Primary applications exist in power trading, load forecasting, fuel acquisition, and systems planning, with slight differences in interests between utilities. Utility staff understand probability-based forecasts but desire climatological information related to forecasted outcomes, including analogs similar to the forecasts, and explanations of the forecasts. Desired lead times vary from a week to three months, along with forecasts of up to four seasons ahead. The new NOAA forecasts initiated in 1995 provide the lead times and longer-term forecasts desired. Major hindrances to use of forecasts are hard-to-understand formats, lack of corporate acceptance, and lack of access to expertise. Recent changes in government regulations altered the utility industry, leading to a more competitive world wherein information about future weather conditions assumes much more value. Outreach efforts by government forecast agencies appear valuable to help achieve the appropriate and enhanced use of climate forecasts by the utility industry. An opportunity for service exists also for the private weather sector.

  15. Applications of a shadow camera system for energy meteorology

    NASA Astrophysics Data System (ADS)

    Kuhn, Pascal; Wilbert, Stefan; Prahl, Christoph; Garsche, Dominik; Schüler, David; Haase, Thomas; Ramirez, Lourdes; Zarzalejo, Luis; Meyer, Angela; Blanc, Philippe; Pitz-Paal, Robert

    2018-02-01

    Downward-facing shadow cameras might play a major role in future energy meteorology. Shadow cameras directly image shadows on the ground from an elevated position. They are used to validate other systems (e.g. all-sky imager based nowcasting systems, cloud speed sensors or satellite forecasts) and can potentially provide short term forecasts for solar power plants. Such forecasts are needed for electricity grids with high penetrations of renewable energy and can help to optimize plant operations. In this publication, two key applications of shadow cameras are briefly presented.

  16. Evolving forecasting classifications and applications in health forecasting

    PubMed Central

    Soyiri, Ireneous N; Reidpath, Daniel D

    2012-01-01

    Health forecasting forewarns the health community about future health situations and disease episodes so that health systems can better allocate resources and manage demand. The tools used for developing and measuring the accuracy and validity of health forecasts commonly are not defined although they are usually adapted forms of statistical procedures. This review identifies previous typologies used in classifying the forecasting methods commonly used in forecasting health conditions or situations. It then discusses the strengths and weaknesses of these methods and presents the choices available for measuring the accuracy of health-forecasting models, including a note on the discrepancies in the modes of validation. PMID:22615533

  17. Proceedings of the First National Workshop on the Global Weather Experiment: Current Achievements and Future Directions, volume 2, part 1

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Topics covered include: data systems and quality; analysis and assimilation techniques; impacts on forecasts; tropical forecasts; analysis intercomparisons; improvements in predictability; and heat sources and sinks.

  18. Comparison of Wind Power and Load Forecasting Error Distributions: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodge, B. M.; Florita, A.; Orwig, K.

    2012-07-01

    The introduction of large amounts of variable and uncertain power sources, such as wind power, into the electricity grid presents a number of challenges for system operations. One issue involves the uncertainty associated with scheduling power that wind will supply in future timeframes. However, this is not an entirely new challenge; load is also variable and uncertain, and is strongly influenced by weather patterns. In this work we make a comparison between the day-ahead forecasting errors encountered in wind power forecasting and load forecasting. The study examines the distribution of errors from operational forecasting systems in two different Independent Systemmore » Operator (ISO) regions for both wind power and load forecasts at the day-ahead timeframe. The day-ahead timescale is critical in power system operations because it serves the unit commitment function for slow-starting conventional generators.« less

  19. Nambe Pueblo Water Budget and Forecasting model.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brainard, James Robert

    2009-10-01

    This report documents The Nambe Pueblo Water Budget and Water Forecasting model. The model has been constructed using Powersim Studio (PS), a software package designed to investigate complex systems where flows and accumulations are central to the system. Here PS has been used as a platform for modeling various aspects of Nambe Pueblo's current and future water use. The model contains three major components, the Water Forecast Component, Irrigation Scheduling Component, and the Reservoir Model Component. In each of the components, the user can change variables to investigate the impacts of water management scenarios on future water use. The Watermore » Forecast Component includes forecasting for industrial, commercial, and livestock use. Domestic demand is also forecasted based on user specified current population, population growth rates, and per capita water consumption. Irrigation efficiencies are quantified in the Irrigated Agriculture component using critical information concerning diversion rates, acreages, ditch dimensions and seepage rates. Results from this section are used in the Water Demand Forecast, Irrigation Scheduling, and the Reservoir Model components. The Reservoir Component contains two sections, (1) Storage and Inflow Accumulations by Categories and (2) Release, Diversion and Shortages. Results from both sections are derived from the calibrated Nambe Reservoir model where historic, pre-dam or above dam USGS stream flow data is fed into the model and releases are calculated.« less

  20. Florida Model Information eXchange System (MIXS).

    DOT National Transportation Integrated Search

    2013-08-01

    Transportation planning largely relies on travel demand forecasting, which estimates the number and type of vehicles that will use a roadway at some point in the future. Forecasting estimates are made by computer models that use a wide variety of dat...

  1. The NRL relocatable ocean/acoustic ensemble forecast system

    NASA Astrophysics Data System (ADS)

    Rowley, C.; Martin, P.; Cummings, J.; Jacobs, G.; Coelho, E.; Bishop, C.; Hong, X.; Peggion, G.; Fabre, J.

    2009-04-01

    A globally relocatable regional ocean nowcast/forecast system has been developed to support rapid implementation of new regional forecast domains. The system is in operational use at the Naval Oceanographic Office for a growing number of regional and coastal implementations. The new system is the basis for an ocean acoustic ensemble forecast and adaptive sampling capability. We present an overview of the forecast system and the ocean ensemble and adaptive sampling methods. The forecast system consists of core ocean data analysis and forecast modules, software for domain configuration, surface and boundary condition forcing processing, and job control, and global databases for ocean climatology, bathymetry, tides, and river locations and transports. The analysis component is the Navy Coupled Ocean Data Assimilation (NCODA) system, a 3D multivariate optimum interpolation system that produces simultaneous analyses of temperature, salinity, geopotential, and vector velocity using remotely-sensed SST, SSH, and sea ice concentration, plus in situ observations of temperature, salinity, and currents from ships, buoys, XBTs, CTDs, profiling floats, and autonomous gliders. The forecast component is the Navy Coastal Ocean Model (NCOM). The system supports one-way nesting and multiple assimilation methods. The ensemble system uses the ensemble transform technique with error variance estimates from the NCODA analysis to represent initial condition error. Perturbed surface forcing or an atmospheric ensemble is used to represent errors in surface forcing. The ensemble transform Kalman filter is used to assess the impact of adaptive observations on future analysis and forecast uncertainty for both ocean and acoustic properties.

  2. Hydrological Forecasting Practices in Brazil

    NASA Astrophysics Data System (ADS)

    Fan, Fernando; Paiva, Rodrigo; Collischonn, Walter; Ramos, Maria-Helena

    2016-04-01

    This work brings a review on current hydrological and flood forecasting practices in Brazil, including the main forecasts applications, the different kinds of techniques that are currently being employed and the institutions involved on forecasts generation. A brief overview of Brazil is provided, including aspects related to its geography, climate, hydrology and flood hazards. A general discussion about the Brazilian practices on hydrological short and medium range forecasting is presented. Detailed examples of some hydrological forecasting systems that are operational or in a research/pre-operational phase using the large scale hydrological model MGB-IPH are also presented. Finally, some suggestions are given about how the forecasting practices in Brazil can be understood nowadays, and what are the perspectives for the future.

  3. Short-term load forecasting using neural network for future smart grid application

    NASA Astrophysics Data System (ADS)

    Zennamo, Joseph Anthony, III

    Short-term load forecasting of power system has been a classic problem for a long time. Not merely it has been researched extensively and intensively, but also a variety of forecasting methods has been raised. This thesis outlines some aspects and functions of smart meter. It also presents different policies and current statuses as well as future projects and objectives of SG development in several countries. Then the thesis compares main aspects about latest products of smart meter from different companies. Lastly, three types of prediction models are established in MATLAB to emulate the functions of smart grid in the short-term load forecasting, and then their results are compared and analyzed in terms of accuracy. For this thesis, more variables such as dew point temperature are used in the Neural Network model to achieve more accuracy for better short-term load forecasting results.

  4. Current and future data assimilation development in the Copernicus Atmosphere Monitoring Service

    NASA Astrophysics Data System (ADS)

    Engelen, R. J.; Ades, M.; Agusti-panareda, A.; Flemming, J.; Inness, A.; Kipling, Z.; Parrington, M.; Peuch, V. H.

    2017-12-01

    The European Copernicus Atmosphere Monitoring Service (CAMS) operationally provides daily forecasts of global atmospheric composition and regional air quality. The global forecasting system is using ECMWF's Integrated Forecasting System (IFS), which is used for numerical weather prediction and which has been extended with modules for atmospheric chemistry, aerosols and greenhouse gases. The system assimilates observations from more than 60 satellite sensors to constrain both the meteorology and the atmospheric composition species. While an operational forecasting system needs to be robust and reliable, it also needs to stay state-of-the-art to provide the best possible forecasts. Continuous development is therefore an important component of the CAMS systems. We will present on-going efforts on improving the 4D-Var data assimilation system, such as using ensemble data assimilation to improve the background error covariances and more accurate use of satellite observations. We will also outline plans for including emissions in the daily CAMS analyses, which is an area where research activities have a large potential to feed into operational applications.

  5. Integrating Remote Sensing and Disease Surveillance to Forecast Malaria Epidemics

    NASA Astrophysics Data System (ADS)

    Wimberly, M. C.; Beyane, B.; DeVos, M.; Liu, Y.; Merkord, C. L.; Mihretie, A.

    2015-12-01

    Advance information about the timing and locations of malaria epidemics can facilitate the targeting of resources for prevention and emergency response. Early detection methods can detect incipient outbreaks by identifying deviations from expected seasonal patterns, whereas early warning approaches typically forecast future malaria risk based on lagged responses to meteorological factors. A critical limiting factor for implementing either of these approaches is the need for timely and consistent acquisition, processing and analysis of both environmental and epidemiological data. To address this need, we have developed EPIDEMIA - an integrated system for surveillance and forecasting of malaria epidemics. The EPIDEMIA system includes a public health interface for uploading and querying weekly surveillance reports as well as algorithms for automatically validating incoming data and updating the epidemiological surveillance database. The newly released EASTWeb 2.0 software application automatically downloads, processes, and summaries remotely-sensed environmental data from multiple earth science data archives. EASTWeb was implemented as a component of the EPIDEMIA system, which combines the environmental monitoring data and epidemiological surveillance data into a unified database that supports both early detection and early warning models. Dynamic linear models implemented with Kalman filtering were used to carry out forecasting and model updating. Preliminary forecasts have been disseminated to public health partners in the Amhara Region of Ethiopia and will be validated and refined as the EPIDEMIA system ingests new data. In addition to continued model development and testing, future work will involve updating the public health interface to provide a broader suite of outbreak alerts and data visualization tools that are useful to our public health partners. The EPIDEMIA system demonstrates a feasible approach to synthesizing the information from epidemiological surveillance systems and remotely-sensed environmental monitoring systems to improve malaria epidemic detection and forecasting.

  6. From Research to Operations: Transitioning Noaa's Lake Erie Harmful Algal Bloom Forecast System

    NASA Astrophysics Data System (ADS)

    Kavanaugh, K. E.; Stumpf, R. P.

    2016-02-01

    A key priority of NOAA's Harmful Algal Bloom Operational Forecast System (HAB-OFS) is to leverage the Ecological Forecasting Roadmap to systematically transition to operations scientifically mature HAB forecasts in regions of the country where there is a strong user need identified and an operational framework can be supported. While in the demonstration phase, the Lake Erie HAB forecast has proven its utility. Over the next two years, NOAA will be transitioning the Lake Erie HAB forecast to operations with an initial operating capability established in the HAB OFS' operational infrastructure by the 2016 bloom season. Blooms of cyanobacteria are a recurring problem in Lake Erie, and the dominant bloom forming species, Microcystis aeruginosa, produces a toxin called microcystin that is poisonous to humans, livestock and pets. Once the toxins have contaminated the source water used for drinking water, it is costly for public water suppliers to remove them. As part of the Lake Erie HAB forecast demonstration, NOAA has provided information regarding the cyanobacterial blooms in a biweekly Experimental HAB Bulletin, which includes information about the current and forecasted distribution, toxicity, potential for vertical mixing or scum formation, mixing of the water column, and predictions of bloom decline. Coastal resource managers, public water suppliers and public health officials use the Experimental HAB Bulletins to respond to and mitigate the impacts of cyanobacterial blooms. The transition to operations will benefit stakeholders through ensuring that future Lake Erie HAB forecast products are sustained, systematic, reliable, and robust. Once operational, the forecasts will continue to be assessed and improvements will be made based on the results of emerging scientific research. In addition, the lessons learned from the Lake Erie transition will be used to streamline the process for future HAB forecasts presently in development.

  7. Research and Development for Technology Evolution Potential Forecasting System

    NASA Astrophysics Data System (ADS)

    Gao, Changqing; Cao, Shukun; Wang, Yuzeng; Ai, Changsheng; Ze, Xiangbo

    Technology forecasting is a powerful weapon for many enterprises to gain an animate future. Evolutionary potential radar plot is a necessary step of some valuable methods to help the technology managers with right technical strategy. A software system for Technology Evolution Potential Forecasting (TEPF) with automatic radar plot drawing is introduced in this paper. The framework of the system and the date structure describing the concrete evolution pattern are illustrated in details. And the algorithm for radar plot drawing is researched. It is proved that the TEPF system is an effective tool during the technology strategy analyzing process with a referenced case study.

  8. Climate Forecasts and Water Resource Management: Applications for a Developing Country

    NASA Astrophysics Data System (ADS)

    Brown, C.; Rogers, P.

    2002-05-01

    While the quantity of water on the planet earth is relatively constant, the demand for water is continuously increasing. Population growth leads to linear increases in water demand, and economic growth leads to further demand growth. Strzepek et al. calculate that with a United Nations mean population estimate of 8.5 billion people by 2025 and globally balanced economic growth, water use could increase by 70% over that time (Strzepek et al., 1995). For developing nations especially, supplying water for this growing demand requires the construction of new water supply infrastructure. The prospect of designing and constructing long life-span infrastructure is clouded by the uncertainty of future climate. The availability of future water resources is highly dependent on future climate. With realization of the nonstationarity of climate, responsible design emphasizes resiliency and robustness of water resource systems (IPCC, 1995; Gleick et al., 1999). Resilient systems feature multiple sources and complex transport and distribution systems, and so come at a high economic and environmental price. A less capital-intense alternative to creating resilient and robust water resource systems is the use of seasonal climate forecasts. Such forecasts provide adequate lead time and accuracy to allow water managers and water-based sectors such as agriculture or hydropower to optimize decisions for the expected water supply. This study will assess the use of seasonal climate forecasts from regional climate models as a method to improve water resource management in systems with limited water supply infrastructure

  9. An approach to forecasting health expenditures, with application to the U.S. Medicare system.

    PubMed

    Lee, Ronald; Miller, Timoth

    2002-10-01

    To quantify uncertainty in forecasts of health expenditures. Stochastic time series models are estimated for historical variations in fertility, mortality, and health spending per capita in the United States, and used to generate stochastic simulations of the growth of Medicare expenditures. Individual health spending is modeled to depend on the number of years until death. A simple accounting model is developed for forecasting health expenditures, using the U.S. Medicare system as an example. Medicare expenditures are projected to rise from 2.2 percent of GDP (gross domestic product) to about 8 percent of GDP by 2075. This increase is due in equal measure to increasing health spending per beneficiary and to population aging. The traditional projection method constructs high, medium, and low scenarios to assess uncertainty, an approach that has many problems. Using stochastic forecasting, we find a 95 percent probability that Medicare spending in 2075 will fall between 4 percent and 18 percent of GDP, indicating a wide band of uncertainty. Although there is substantial uncertainty about future mortality decline, it contributed little to uncertainty about future Medicare spending, since lower mortality both raises the number of elderly, tending to raise spending, and is associated with improved health of the elderly, tending to reduce spending. Uncertainty about fertility, by contrast, leads to great uncertainty about the future size of the labor force, and therefore adds importantly to uncertainty about the health-share of GDP. In the shorter term, the major source of uncertainty is health spending per capita. History is a valuable guide for quantifying our uncertainty about future health expenditures. The probabilistic model we present has several advantages over the high-low scenario approach to forecasting. It indicates great uncertainty about future Medicare expenditures relative to GDP.

  10. An Operational System for Surveillance and Ecological Forecasting of West Nile Virus Outbreaks

    NASA Astrophysics Data System (ADS)

    Wimberly, M. C.; Davis, J. K.; Vincent, G.; Hess, A.; Hildreth, M. B.

    2017-12-01

    Mosquito-borne disease surveillance has traditionally focused on tracking human cases along with the abundance and infection status of mosquito vectors. For many of these diseases, vector and host population dynamics are also sensitive to climatic factors, including temperature fluctuations and the availability of surface water for mosquito breeding. Thus, there is a potential to strengthen surveillance and predict future outbreaks by monitoring environmental risk factors using broad-scale sensor networks that include earth-observing satellites. The South Dakota Mosquito Information System (SDMIS) project combines entomological surveillance with gridded meteorological data from NASA's North American Land Data Assimilation System (NLDAS) to generate weekly risk maps for West Nile virus (WNV) in the north-central United States. Critical components include a mosquito infection model that smooths the noisy infection rate and compensates for unbalanced sampling, and a human infection model that combines the entomological risk estimates with lagged effects of meteorological variables from the North American Land Data Assimilation System (NLDAS). Two types of forecasts are generated: long-term forecasts of statewide risk extending through the entire WNV season, and short-term forecasts of the geographic pattern of WNV risk in the upcoming week. Model forecasts are connected to public health actions through decision support matrices that link predicted risk levels to a set of phased responses. In 2016, the SDMIS successfully forecast an early start to the WNV season and a large outbreak of WNV cases following several years of low transmission. An evaluation of the 2017 forecasts will also be presented. Our experiences with the SDMIS highlight several important lessons that can inform future efforts at disease early warning. These include the value of integrating climatic models with recent observations of infection, the critical role of automated workflows to facilitate the timely integration of multiple data streams, the need for effective synthesis and visualization of forecasts, and the importance of linking forecasts to specific public health responses.

  11. Real-time forecasting at weekly timescales of the SST and SLA of the Ligurian Sea with a satellite-based ocean forecasting (SOFT) system

    NASA Astrophysics Data System (ADS)

    ÁLvarez, A.; Orfila, A.; Tintoré, J.

    2004-03-01

    Satellites are the only systems able to provide continuous information on the spatiotemporal variability of vast areas of the ocean. Relatively long-term time series of satellite data are nowadays available. These spatiotemporal time series of satellite observations can be employed to build empirical models, called satellite-based ocean forecasting (SOFT) systems, to forecast certain aspects of future ocean states. SOFT systems can predict satellite-observed fields at different timescales. The forecast skill of SOFT systems forecasting the sea surface temperature (SST) at monthly timescales has been extensively explored in previous works. In this work we study the performance of two SOFT systems forecasting, respectively, the SST and sea level anomaly (SLA) at weekly timescales, that is, providing forecasts of the weekly averaged SST and SLA fields with 1 week in advance. The SOFT systems were implemented in the Ligurian Sea (Western Mediterranean Sea). Predictions from the SOFT systems are compared with observations and with the predictions obtained from persistence models. Results indicate that the SOFT system forecasting the SST field is always superior in terms of predictability to persistence. Minimum prediction errors in the SST are obtained during winter and spring seasons. On the other hand, the biggest differences between the performance of SOFT and persistence models are found during summer and autumn. These changes in the predictability are explained on the basis of the particular variability of the SST field in the Ligurian Sea. Concerning the SLA field, no improvements with respect to persistence have been found for the SOFT system forecasting the SLA field.

  12. Product demand forecasts using wavelet kernel support vector machine and particle swarm optimization in manufacture system

    NASA Astrophysics Data System (ADS)

    Wu, Qi

    2010-03-01

    Demand forecasts play a crucial role in supply chain management. The future demand for a certain product is the basis for the respective replenishment systems. Aiming at demand series with small samples, seasonal character, nonlinearity, randomicity and fuzziness, the existing support vector kernel does not approach the random curve of the sales time series in the space (quadratic continuous integral space). In this paper, we present a hybrid intelligent system combining the wavelet kernel support vector machine and particle swarm optimization for demand forecasting. The results of application in car sale series forecasting show that the forecasting approach based on the hybrid PSOWv-SVM model is effective and feasible, the comparison between the method proposed in this paper and other ones is also given, which proves that this method is, for the discussed example, better than hybrid PSOv-SVM and other traditional methods.

  13. Forecasting in the presence of expectations

    NASA Astrophysics Data System (ADS)

    Allen, R.; Zivin, J. G.; Shrader, J.

    2016-05-01

    Physical processes routinely influence economic outcomes, and actions by economic agents can, in turn, influence physical processes. This feedback creates challenges for forecasting and inference, creating the potential for complementarity between models from different academic disciplines. Using the example of prediction of water availability during a drought, we illustrate the potential biases in forecasts that only take part of a coupled system into account. In particular, we show that forecasts can alter the feedbacks between supply and demand, leading to inaccurate prediction about future states of the system. Although the example is specific to drought, the problem of feedback between expectations and forecast quality is not isolated to the particular model-it is relevant to areas as diverse as population assessments for conservation, balancing the electrical grid, and setting macroeconomic policy.

  14. Weather Forecasting Systems and Methods

    NASA Technical Reports Server (NTRS)

    Mecikalski, John (Inventor); MacKenzie, Wayne M., Jr. (Inventor); Walker, John Robert (Inventor)

    2014-01-01

    A weather forecasting system has weather forecasting logic that receives raw image data from a satellite. The raw image data has values indicative of light and radiance data from the Earth as measured by the satellite, and the weather forecasting logic processes such data to identify cumulus clouds within the satellite images. For each identified cumulus cloud, the weather forecasting logic applies interest field tests to determine a score indicating the likelihood of the cumulus cloud forming precipitation and/or lightning in the future within a certain time period. Based on such scores, the weather forecasting logic predicts in which geographic regions the identified cumulus clouds will produce precipitation and/or lighting within during the time period. Such predictions may then be used to provide a weather map thereby providing users with a graphical illustration of the areas predicted to be affected by precipitation within the time period.

  15. Probabilistic empirical prediction of seasonal climate: evaluation and potential applications

    NASA Astrophysics Data System (ADS)

    Dieppois, B.; Eden, J.; van Oldenborgh, G. J.

    2017-12-01

    Preparing for episodes with risks of anomalous weather a month to a year ahead is an important challenge for governments, non-governmental organisations, and private companies and is dependent on the availability of reliable forecasts. The majority of operational seasonal forecasts are made using process-based dynamical models, which are complex, computationally challenging and prone to biases. Empirical forecast approaches built on statistical models to represent physical processes offer an alternative to dynamical systems and can provide either a benchmark for comparison or independent supplementary forecasts. Here, we present a new evaluation of an established empirical system used to predict seasonal climate across the globe. Forecasts for surface air temperature, precipitation and sea level pressure are produced by the KNMI Probabilistic Empirical Prediction (K-PREP) system every month and disseminated via the KNMI Climate Explorer (climexp.knmi.nl). K-PREP is based on multiple linear regression and built on physical principles to the fullest extent with predictive information taken from the global CO2-equivalent concentration, large-scale modes of variability in the climate system and regional-scale information. K-PREP seasonal forecasts for the period 1981-2016 will be compared with corresponding dynamically generated forecasts produced by operational forecast systems. While there are many regions of the world where empirical forecast skill is extremely limited, several areas are identified where K-PREP offers comparable skill to dynamical systems. We discuss two key points in the future development and application of the K-PREP system: (a) the potential for K-PREP to provide a more useful basis for reference forecasts than those based on persistence or climatology, and (b) the added value of including K-PREP forecast information in multi-model forecast products, at least for known regions of good skill. We also discuss the potential development of stakeholder-driven applications of the K-PREP system, including empirical forecasts for circumboreal fire activity.

  16. A Short-Term and High-Resolution System Load Forecasting Approach Using Support Vector Regression with Hybrid Parameters Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Huaiguang

    This work proposes an approach for distribution system load forecasting, which aims to provide highly accurate short-term load forecasting with high resolution utilizing a support vector regression (SVR) based forecaster and a two-step hybrid parameters optimization method. Specifically, because the load profiles in distribution systems contain abrupt deviations, a data normalization is designed as the pretreatment for the collected historical load data. Then an SVR model is trained by the load data to forecast the future load. For better performance of SVR, a two-step hybrid optimization algorithm is proposed to determine the best parameters. In the first step of themore » hybrid optimization algorithm, a designed grid traverse algorithm (GTA) is used to narrow the parameters searching area from a global to local space. In the second step, based on the result of the GTA, particle swarm optimization (PSO) is used to determine the best parameters in the local parameter space. After the best parameters are determined, the SVR model is used to forecast the short-term load deviation in the distribution system.« less

  17. Frontiers of Remote Sensing of the Oceans and Troposphere from Air and Space Platforms

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Several areas of remote sensing are addressed including: future satellite systems; air-sea interaction/wind; ocean waves and spectra/S.A.R.; atmospheric measurements (particulates and water vapor); synoptic and weather forecasting; topography; bathymetry; sea ice; and impact of remote sensing on synoptic analysis/forecasting.

  18. Socio-Political Forecasting: Who Needs It?

    ERIC Educational Resources Information Center

    Burnett, D. Jack

    1978-01-01

    Socio-political forecasting, a new dimension to university planning that can provide universities time to prepare for the impact of social and political changes, is examined. The four elements in the process are scenarios of the future, the probability/diffusion matrix, the profile of significant value-system changes, and integration and…

  19. Forecast of jet engine exhaust emissions for future high altitude commercial aircraft

    NASA Technical Reports Server (NTRS)

    Grobman, J.; Ingebo, R. D.

    1974-01-01

    Projected minimum levels of engine exhaust emissions that may be practicably achievable for future commercial aircraft operating at high altitude cruise conditions are presented. The forecasts are based on: (1) current knowledge of emission characteristics of combustors and augmentors; (2) the current status of combustion research in emission reduction technology; (3) predictable trends in combustion systems and operating conditions as required for projected engine designs that are candidates for advanced subsonic or supersonic commercial aircraft. Results are presented for cruise conditions in terms of an emission index, g pollutant/kg fuel. Two sets of engine exhaust emission predictions are presented: the first, based on an independent NASA study and the second, based on the consensus of an ad hoc committee composed of industry, university, and government representatives. The consensus forecasts are in general agreement with the NASA forecasts.

  20. Forecast of jet engine exhaust emissions for future high altitude commercial aircraft

    NASA Technical Reports Server (NTRS)

    Grobman, J.; Ingebo, R. D.

    1974-01-01

    Projected minimum levels of engine exhaust emissions that may be practicably achievable for future commercial aircraft operating at high altitude cruise conditions are presented. The forecasts are based on: (1) current knowledge of emission characteristics of combustors and augmentors; (2) the current status of combustion research in emission reduction technology; and (3) predictable trends in combustion systems and operating conditions as required for projected engine designs that are candidates for advanced subsonic or supersonic commercial aircraft. Results are presented for cruise conditions in terms of an emission index, g pollutant/kg fuel. Two sets of engine exhaust emission predictions are presented: the first, based on an independent NASA study and the second, based on the consensus of an ad hoc committee composed of industry, university, and government representatives. The consensus forecasts are in general agreement with the NASA forecasts.

  1. Forecasting and Maximizing Post-Secondary Futures: Dilemmas Over Negative Futures and Their Hidden Costs.

    ERIC Educational Resources Information Center

    Hoffman, Benjamin B.

    Forecasting models for maximizing postsecondary futures and applications of the model are considered. The forecasting of broad human futures has many parallels to human futures in the field of medical prognosis. The concept of "exasperated negative" is used to refer to the suppression of critical information about a negative future with…

  2. First Assessment of Itaipu Dam Ensemble Inflow Forecasting System

    NASA Astrophysics Data System (ADS)

    Mainardi Fan, Fernando; Machado Vieira Lisboa, Auder; Gomes Villa Trinidad, Giovanni; Rógenes Monteiro Pontes, Paulo; Collischonn, Walter; Tucci, Carlos; Costa Buarque, Diogo

    2017-04-01

    Inflow forecasting for Hydropower Plants (HPP) Dams is one of the prominent uses for hydrological forecasts. A very important HPP in terms of energy generation for South America is the Itaipu Dam, located in the Paraná River, between Brazil and Paraguay countries, with a drainage area of 820.000km2. In this work, we present the development of an ensemble forecasting system for Itaipu, operational since November 2015. The system is based in the MGB-IPH hydrological model, includes hydrodynamics simulations of the main river, and is run every day morning forced by seven different rainfall forecasts: (i) CPTEC-ETA 15km; (ii) CPTEC-BRAMS 5km; (iii) SIMEPAR WRF Ferrier; (iv) SIMEPAR WRF Lin; (v) SIMEPAR WRF Morrison; (vi) SIMEPAR WRF WDM6; (vii) SIMEPAR MEDIAN. The last one (vii) corresponds to the median value of SIMEPAR WRF model versions (iii to vi) rainfall forecasts. Besides the developed system, the "traditional" method for inflow forecasting generation for the Itaipu Dam is also run every day. This traditional method consists in the approximation of the future inflow based on the discharge tendency of upstream telemetric gauges. Nowadays, after all the forecasts are run, the hydrology team of Itaipu develop a consensus forecast, based on all obtained results, which is the one used for the Itaipu HPP Dam operation. After one year of operation a first evaluation of the Ensemble Forecasting System was conducted. Results show that the system performs satisfactory for rising flows up to five days lead time. However, some false alarms were also issued by most ensemble members in some cases. And not in all cases the system performed better than the traditional method, especially during hydrograph recessions. In terms of meteorological forecasts, some members usage are being discontinued. In terms of the hydrodynamics representation, it seems that a better information of rivers cross section could improve hydrographs recession curves forecasts. Those opportunities for improvements are currently being addressed in the system next update.

  3. Will the NP workforce grow in the future? New forecasts and implications for healthcare delivery.

    PubMed

    Auerbach, David I

    2012-07-01

    The nurse practitioner (NP) workforce has been a focus of considerable policy interest recently, particularly as the Patient Protection and Affordable Care Act may place additional demands on the healthcare professional workforce. The NP workforce has been growing rapidly in recent years, but fluctuation in enrollments in the past decades has resulted in a wide range of forecasts. To forecast the future NP workforce using a novel method that has been applied to the registered nurse and physician workforces and is robust to fluctuating enrollment trends. An age-cohort regression-based model was applied to the current and historical workforce, which was then forecasted to future years assuming stable age effects and a continuation of recent cohort trends. A total of 6798 NPs who were identified as having completed NP training in the National Sample Survey of Registered Nurses between 1992 and 2008. The future workforce is projected to grow to 244,000 in 2025, an increase of 94% from 128,000 in 2008. If NPs are defined more restrictively as those who self-identify their position title as "NP," supply is projected to grow from 86,000 to 198,000 (130%) over this period. The large projected increase in NP supply is higher and more grounded than other forecasts and has several implications: NPs will likely fulfill a substantial amount of future demand for care. Furthermore, as the ratio of NPs to Nurse Practitioners to physicians will surely grow, there could be implications for quality of care and for the configuration of future care delivery systems.

  4. The forecasting research of early warning systems for atmospheric pollutants: A case in Yangtze River Delta region

    NASA Astrophysics Data System (ADS)

    Song, Yiliao; Qin, Shanshan; Qu, Jiansheng; Liu, Feng

    2015-10-01

    The issue of air quality regarding PM pollution levels in China is a focus of public attention. To address that issue, to date, a series of studies is in progress, including PM monitoring programs, PM source apportionment, and the enactment of new ambient air quality index standards. However, related research concerning computer modeling for PM future trends estimation is rare, despite its significance to forecasting and early warning systems. Thereby, a study regarding deterministic and interval forecasts of PM is performed. In this study, data on hourly and 12 h-averaged air pollutants are applied to forecast PM concentrations within the Yangtze River Delta (YRD) region of China. The characteristics of PM emissions have been primarily examined and analyzed using different distribution functions. To improve the distribution fitting that is crucial for estimating PM levels, an artificial intelligence algorithm is incorporated to select the optimal parameters. Following that step, an ANF model is used to conduct deterministic forecasts of PM. With the identified distributions and deterministic forecasts, different levels of PM intervals are estimated. The results indicate that the lognormal or gamma distributions are highly representative of the recorded PM data with a goodness-of-fit R2 of approximately 0.998. Furthermore, the results of the evaluation metrics (MSE, MAPE and CP, AW) also show high accuracy within the deterministic and interval forecasts of PM, indicating that this method enables the informative and effective quantification of future PM trends.

  5. A cross impact methodology for the assessment of US telecommunications system with application to fiber optics development: Executive summary

    NASA Technical Reports Server (NTRS)

    Martino, J. P.; Lenz, R. C., Jr.; Chen, K. L.

    1979-01-01

    A cross impact model of the U.S. telecommunications system was developed. For this model, it was necessary to prepare forecasts of the major segments of the telecommunications system, such as satellites, telephone, TV, CATV, radio broadcasting, etc. In addition, forecasts were prepared of the traffic generated by a variety of new or expanded services, such as electronic check clearing and point of sale electronic funds transfer. Finally, the interactions among the forecasts were estimated (the cross impacts). Both the forecasts and the cross impacts were used as inputs to the cross impact model, which could then be used to stimulate the future growth of the entire U.S. telecommunications system. By varying the inputs, technology changes or policy decisions with regard to any segment of the system could be evaluated in the context of the remainder of the system. To illustrate the operation of the model, a specific study was made of the deployment of fiber optics, throughout the telecommunications system.

  6. A cross impact methodology for the assessment of US telecommunications system with application to fiber optics development, volume 1

    NASA Technical Reports Server (NTRS)

    Martino, J. P.; Lenz, R. C., Jr.; Chen, K. L.; Kahut, P.; Sekely, R.; Weiler, J.

    1979-01-01

    A cross impact model of the U.S. telecommunications system was developed. It was necessary to prepare forecasts of the major segments of the telecommunications system, such as satellites, telephone, TV, CATV, radio broadcasting, etc. In addition, forecasts were prepared of the traffic generated by a variety of new or expanded services, such as electronic check clearing and point of sale electronic funds transfer. Finally, the interactions among the forecasts were estimated (the cross impact). Both the forecasts and the cross impacts were used as inputs to the cross impact model, which could then be used to stimulate the future growth of the entire U.S. telecommunications system. By varying the inputs, technology changes or policy decisions with regard to any segment of the system could be evaluated in the context of the remainder of the system. To illustrate the operation of the model, a specific study was made of the deployment of fiber optics throughout the telecommunications system.

  7. Ensemble Streamflow Prediction in Korea: Past and Future 5 Years

    NASA Astrophysics Data System (ADS)

    Jeong, D.; Kim, Y.; Lee, J.

    2005-05-01

    The Ensemble Streamflow Prediction (ESP) approach was first introduced in 2000 by the Hydrology Research Group (HRG) at Seoul National University as an alternative probabilistic forecasting technique for improving the 'Water Supply Outlook' That is issued every month by the Ministry of Construction and Transportation in Korea. That study motivated the Korea Water Resources Corporation (KOWACO) to establish their seasonal probabilistic forecasting system for the 5 major river basins using the ESP approach. In cooperation with the HRG, the KOWACO developed monthly optimal multi-reservoir operating systems for the Geum river basin in 2004, which coupled the ESP forecasts with an optimization model using sampling stochastic dynamic programming. The user interfaces for both ESP and SSDP have also been designed for the developed computer systems to become more practical. More projects for developing ESP systems to the other 3 major river basins (i.e. the Nakdong, Han and Seomjin river basins) was also completed by the HRG and KOWACO at the end of December 2004. Therefore, the ESP system has become the most important mid- and long-term streamflow forecast technique in Korea. In addition to the practical aspects, resent research experience on ESP has raised some concerns into ways of improving the accuracy of ESP in Korea. Jeong and Kim (2002) performed an error analysis on its resulting probabilistic forecasts and found that the modeling error is dominant in the dry season, while the meteorological error is dominant in the flood season. To address the first issue, Kim et al. (2004) tested various combinations and/or combining techniques and showed that the ESP probabilistic accuracy could be improved considerably during the dry season when the hydrologic models were combined and/or corrected. In addition, an attempt was also made to improve the ESP accuracy for the flood season using climate forecast information. This ongoing project handles three types of climate forecast information: (1) the Monthly Industrial Meteorology Information Magazine (MIMIM) of the Korea Meteorological Administration (2) the Global Data Assimilation Prediction System (GDAPS), and (3) the US National Centers for Environmental Prediction (NCEP). Each of these forecasts is issued in a unique format: (1) MIMIM is a most-probable-event forecast, (2) GDAPS is a single series of deterministic forecasts, and (3) NCEP is an ensemble of deterministic forecasts. Other minor issues include how long the initial conditions influences the ESP accuracy, and how many ESP scenarios are needed to obtain the best accuracy. This presentation also addresses some future research that is needed for ESP in Korea.

  8. A national framework for flood forecasting model assessment for use in operations and investment planning over England and Wales

    NASA Astrophysics Data System (ADS)

    Moore, Robert J.; Wells, Steven C.; Cole, Steven J.

    2016-04-01

    It has been common for flood forecasting systems to be commissioned at a catchment or regional level in response to local priorities and hydrological conditions, leading to variety in system design and model choice. As systems mature and efficiencies of national management are sought, there can be a drive towards system rationalisation, gaining an overview of model performance and consideration of simplification through model-type convergence. Flood forecasting model assessments, whilst overseen at a national level, may be commissioned and managed at a catchment and regional level, take a variety of forms and be large in number. This presents a challenge when an integrated national assessment is required to guide operational use of flood forecasts and plan future investment in flood forecasting models and supporting hydrometric monitoring. This contribution reports on how a nationally consistent framework for flood forecasting model performance has been developed to embrace many past, ongoing and future assessments for local river systems by engineering consultants across England & Wales. The outcome is a Performance Summary for every site model assessed which, on a single page, contains relevant catchment information for context, a selection of overlain forecast and observed hydrographs and a set of performance statistics with associated displays of novel condensed form. One display provides performance comparison with other models that may exist for the site. The performance statistics include skill scores for forecasting events (flow/level threshold crossings) of differing severity/rarity, indicating their probability and likely timing, which have real value in an operational setting. The local models assessed can be of any type and span rainfall-runoff (conceptual and transfer function) and flow routing (hydrological and hydrodynamic) forms. Also accommodated by the framework is the national G2G (Grid-to-Grid) distributed hydrological model, providing area-wide coverage across the fluvial rivers of England and Wales, which can be assessed at gauged sites. Thus the performance of the national G2G model forecasts can be directly compared with that from the local models. The Performance Summary for each site model is complemented by a national spatial analysis of model performance stratified by model-type, geographical region and forecast lead-time. The map displays provide an extensive evidence-base that can be interrogated, through a Flood Forecasting Model Performance web portal, to reveal fresh insights into comparative performance across locations, lead-times and models. This work was commissioned by the Environment Agency in partnership with Natural Resources Wales and the Flood Forecasting Centre for England and Wales.

  9. RE-Europe, a large-scale dataset for modeling a highly renewable European electricity system

    PubMed Central

    Jensen, Tue V.; Pinson, Pierre

    2017-01-01

    Future highly renewable energy systems will couple to complex weather and climate dynamics. This coupling is generally not captured in detail by the open models developed in the power and energy system communities, where such open models exist. To enable modeling such a future energy system, we describe a dedicated large-scale dataset for a renewable electric power system. The dataset combines a transmission network model, as well as information for generation and demand. Generation includes conventional generators with their technical and economic characteristics, as well as weather-driven forecasts and corresponding realizations for renewable energy generation for a period of 3 years. These may be scaled according to the envisioned degrees of renewable penetration in a future European energy system. The spatial coverage, completeness and resolution of this dataset, open the door to the evaluation, scaling analysis and replicability check of a wealth of proposals in, e.g., market design, network actor coordination and forecasting of renewable power generation. PMID:29182600

  10. RE-Europe, a large-scale dataset for modeling a highly renewable European electricity system.

    PubMed

    Jensen, Tue V; Pinson, Pierre

    2017-11-28

    Future highly renewable energy systems will couple to complex weather and climate dynamics. This coupling is generally not captured in detail by the open models developed in the power and energy system communities, where such open models exist. To enable modeling such a future energy system, we describe a dedicated large-scale dataset for a renewable electric power system. The dataset combines a transmission network model, as well as information for generation and demand. Generation includes conventional generators with their technical and economic characteristics, as well as weather-driven forecasts and corresponding realizations for renewable energy generation for a period of 3 years. These may be scaled according to the envisioned degrees of renewable penetration in a future European energy system. The spatial coverage, completeness and resolution of this dataset, open the door to the evaluation, scaling analysis and replicability check of a wealth of proposals in, e.g., market design, network actor coordination and forecasting of renewable power generation.

  11. RE-Europe, a large-scale dataset for modeling a highly renewable European electricity system

    NASA Astrophysics Data System (ADS)

    Jensen, Tue V.; Pinson, Pierre

    2017-11-01

    Future highly renewable energy systems will couple to complex weather and climate dynamics. This coupling is generally not captured in detail by the open models developed in the power and energy system communities, where such open models exist. To enable modeling such a future energy system, we describe a dedicated large-scale dataset for a renewable electric power system. The dataset combines a transmission network model, as well as information for generation and demand. Generation includes conventional generators with their technical and economic characteristics, as well as weather-driven forecasts and corresponding realizations for renewable energy generation for a period of 3 years. These may be scaled according to the envisioned degrees of renewable penetration in a future European energy system. The spatial coverage, completeness and resolution of this dataset, open the door to the evaluation, scaling analysis and replicability check of a wealth of proposals in, e.g., market design, network actor coordination and forecasting of renewable power generation.

  12. Unmanned Aircraft System (UAS) service demand 2015 - 2035 : literature review & projections of future usage, technical report, version 1.0 - February 2014

    DOT National Transportation Integrated Search

    2014-02-01

    This report assesses opportunities, risks, and challenges attendant to future development and deployment of UAS within the National Airspace System (NAS) affecting UAS forecast growth from 2015 to 2035. Analysis of four key areas is performed: techno...

  13. Seasonal Forecast Skill And Teleconnections Over East Africa

    NASA Astrophysics Data System (ADS)

    MacLeod, D.; Palmer, T.

    2017-12-01

    Many people living in East Africa are significantly exposed to risks arising from climate variability. The region experiences two rainy seasons and poor performance of either or both of these (such as seen recently in 2016/17) reduces agricultural productivity and threatens food security. In combination with other factors this can lead to famine. By utilizing seasonal climate forecasts, preparatory actions can be taken in order to mitigate the risks arising from such climate variability. As part of the project ForPAc: "Towards forecast-based preparedness action", we are working with humanitarian agencies in Kenya to build such early warning systems on subseasonal-to-seasonal timescales. Here, the seasonal predictability and forecast skill of the two East African rainy seasons will be presented. Results from the new ECMWF operational forecasting system SEAS5 will be shown and compared to the previous System 4. Analysis of a new 110 year long atmosphere-only simulation will also be discussed, demonstrating impacts of atmosphere-ocean coupling as well as putting operational forecast skill in a long-term context. Particular focus will be given to the model representation of teleconnections of seasonal climate with global sea surface temperatures; highlighting sources of forecast error and informing future model development.

  14. Towards smart energy systems: application of kernel machine regression for medium term electricity load forecasting.

    PubMed

    Alamaniotis, Miltiadis; Bargiotas, Dimitrios; Tsoukalas, Lefteri H

    2016-01-01

    Integration of energy systems with information technologies has facilitated the realization of smart energy systems that utilize information to optimize system operation. To that end, crucial in optimizing energy system operation is the accurate, ahead-of-time forecasting of load demand. In particular, load forecasting allows planning of system expansion, and decision making for enhancing system safety and reliability. In this paper, the application of two types of kernel machines for medium term load forecasting (MTLF) is presented and their performance is recorded based on a set of historical electricity load demand data. The two kernel machine models and more specifically Gaussian process regression (GPR) and relevance vector regression (RVR) are utilized for making predictions over future load demand. Both models, i.e., GPR and RVR, are equipped with a Gaussian kernel and are tested on daily predictions for a 30-day-ahead horizon taken from the New England Area. Furthermore, their performance is compared to the ARMA(2,2) model with respect to mean average percentage error and squared correlation coefficient. Results demonstrate the superiority of RVR over the other forecasting models in performing MTLF.

  15. An operational ensemble prediction system for catchment rainfall over eastern Africa spanning multiple temporal and spatial scales

    NASA Astrophysics Data System (ADS)

    Riddle, E. E.; Hopson, T. M.; Gebremichael, M.; Boehnert, J.; Broman, D.; Sampson, K. M.; Rostkier-Edelstein, D.; Collins, D. C.; Harshadeep, N. R.; Burke, E.; Havens, K.

    2017-12-01

    While it is not yet certain how precipitation patterns will change over Africa in the future, it is clear that effectively managing the available water resources is going to be crucial in order to mitigate the effects of water shortages and floods that are likely to occur in a changing climate. One component of effective water management is the availability of state-of-the-art and easy to use rainfall forecasts across multiple spatial and temporal scales. We present a web-based system for displaying and disseminating ensemble forecast and observed precipitation data over central and eastern Africa. The system provides multi-model rainfall forecasts integrated to relevant hydrological catchments for timescales ranging from one day to three months. A zoom-in features is available to access high resolution forecasts for small-scale catchments. Time series plots and data downloads with forecasts, recent rainfall observations and climatological data are available by clicking on individual catchments. The forecasts are calibrated using a quantile regression technique and an optimal multi-model forecast is provided at each timescale. The forecast skill at the various spatial and temporal scales will discussed, as will current applications of this tool for managing water resources in Sudan and optimizing hydropower operations in Ethiopia and Tanzania.

  16. An Approach to Forecasting Health Expenditures, with Application to the U.S. Medicare System

    PubMed Central

    Lee, Ronald; Miller, Timothy

    2002-01-01

    Objective To quantify uncertainty in forecasts of health expenditures. Study Design Stochastic time series models are estimated for historical variations in fertility, mortality, and health spending per capita in the United States, and used to generate stochastic simulations of the growth of Medicare expenditures. Individual health spending is modeled to depend on the number of years until death. Data Sources/Study Setting A simple accounting model is developed for forecasting health expenditures, using the U.S. Medicare system as an example. Principal Findings Medicare expenditures are projected to rise from 2.2 percent of GDP (gross domestic product) to about 8 percent of GDP by 2075. This increase is due in equal measure to increasing health spending per beneficiary and to population aging. The traditional projection method constructs high, medium, and low scenarios to assess uncertainty, an approach that has many problems. Using stochastic forecasting, we find a 95 percent probability that Medicare spending in 2075 will fall between 4 percent and 18 percent of GDP, indicating a wide band of uncertainty. Although there is substantial uncertainty about future mortality decline, it contributed little to uncertainty about future Medicare spending, since lower mortality both raises the number of elderly, tending to raise spending, and is associated with improved health of the elderly, tending to reduce spending. Uncertainty about fertility, by contrast, leads to great uncertainty about the future size of the labor force, and therefore adds importantly to uncertainty about the health-share of GDP. In the shorter term, the major source of uncertainty is health spending per capita. Conclusions History is a valuable guide for quantifying our uncertainty about future health expenditures. The probabilistic model we present has several advantages over the high–low scenario approach to forecasting. It indicates great uncertainty about future Medicare expenditures relative to GDP. PMID:12479501

  17. Improving the effectiveness of real-time flood forecasting through Predictive Uncertainty estimation: the multi-temporal approach

    NASA Astrophysics Data System (ADS)

    Barbetta, Silvia; Coccia, Gabriele; Moramarco, Tommaso; Todini, Ezio

    2015-04-01

    The negative effects of severe flood events are usually contrasted through structural measures that, however, do not fully eliminate flood risk. Non-structural measures, such as real-time flood forecasting and warning, are also required. Accurate stage/discharge future predictions with appropriate forecast lead-time are sought by decision-makers for implementing strategies to mitigate the adverse effects of floods. Traditionally, flood forecasting has been approached by using rainfall-runoff and/or flood routing modelling. Indeed, both types of forecasts, cannot be considered perfectly representing future outcomes because of lacking of a complete knowledge of involved processes (Todini, 2004). Nonetheless, although aware that model forecasts are not perfectly representing future outcomes, decision makers are de facto implicitly assuming the forecast of water level/discharge/volume, etc. as "deterministic" and coinciding with what is going to occur. Recently the concept of Predictive Uncertainty (PU) was introduced in hydrology (Krzysztofowicz, 1999), and several uncertainty processors were developed (Todini, 2008). PU is defined as the probability of occurrence of the future realization of a predictand (water level/discharge/volume) conditional on: i) prior observations and knowledge, ii) the available information obtained on the future value, typically provided by one or more forecast models. Unfortunately, PU has been frequently interpreted as a measure of lack of accuracy rather than the appropriate tool allowing to take the most appropriate decisions, given a model or several models' forecasts. With the aim to shed light on the benefits for appropriately using PU, a multi-temporal approach based on the MCP approach (Todini, 2008; Coccia and Todini, 2011) is here applied to stage forecasts at sites along the Upper Tiber River. Specifically, the STAge Forecasting-Rating Curve Model Muskingum-based (STAFOM-RCM) (Barbetta et al., 2014) along with the Rating-Curve Model in Real Time (RCM-RT) (Barbetta and Moramarco, 2014) are used to this end. Both models without considering rainfall information explicitly considers, at each time of forecast, the estimate of lateral contribution along the river reach for which the stage forecast is performed at downstream end. The analysis is performed for several reaches using different lead times according to the channel length. Barbetta, S., Moramarco, T., Brocca, L., Franchini, M. and Melone, F. 2014. Confidence interval of real-time forecast stages provided by the STAFOM-RCM model: the case study of the Tiber River (Italy). Hydrological Processes, 28(3),729-743. Barbetta, S. and Moramarco, T. 2014. Real-time flood forecasting by relating local stage and remote discharge. Hydrological Sciences Journal, 59(9 ), 1656-1674. Coccia, G. and Todini, E. 2011. Recent developments in predictive uncertainty assessment based on the Model Conditional Processor approach. Hydrology and Earth System Sciences, 15, 3253-3274. doi:10.5194/hess-15-3253-2011. Krzysztofowicz, R. 1999. Bayesian theory of probabilistic forecasting via deterministic hydrologic model, Water Resour. Res., 35, 2739-2750. Todini, E. 2004. Role and treatment of uncertainty in real-time flood forecasting. Hydrological Processes 18(14), 2743_2746. Todini, E. 2008. A model conditional processor to assess predictive uncertainty in flood forecasting. Intl. J. River Basin Management, 6(2): 123-137.

  18. A Space Weather Forecasting System with Multiple Satellites Based on a Self-Recognizing Network

    PubMed Central

    Tokumitsu, Masahiro; Ishida, Yoshiteru

    2014-01-01

    This paper proposes a space weather forecasting system at geostationary orbit for high-energy electron flux (>2 MeV). The forecasting model involves multiple sensors on multiple satellites. The sensors interconnect and evaluate each other to predict future conditions at geostationary orbit. The proposed forecasting model is constructed using a dynamic relational network for sensor diagnosis and event monitoring. The sensors of the proposed model are located at different positions in space. The satellites for solar monitoring equip with monitoring devices for the interplanetary magnetic field and solar wind speed. The satellites orbit near the Earth monitoring high-energy electron flux. We investigate forecasting for typical two examples by comparing the performance of two models with different numbers of sensors. We demonstrate the prediction by the proposed model against coronal mass ejections and a coronal hole. This paper aims to investigate a possibility of space weather forecasting based on the satellite network with in-situ sensing. PMID:24803190

  19. A space weather forecasting system with multiple satellites based on a self-recognizing network.

    PubMed

    Tokumitsu, Masahiro; Ishida, Yoshiteru

    2014-05-05

    This paper proposes a space weather forecasting system at geostationary orbit for high-energy electron flux (>2 MeV). The forecasting model involves multiple sensors on multiple satellites. The sensors interconnect and evaluate each other to predict future conditions at geostationary orbit. The proposed forecasting model is constructed using a dynamic relational network for sensor diagnosis and event monitoring. The sensors of the proposed model are located at different positions in space. The satellites for solar monitoring equip with monitoring devices for the interplanetary magnetic field and solar wind speed. The satellites orbit near the Earth monitoring high-energy electron flux. We investigate forecasting for typical two examples by comparing the performance of two models with different numbers of sensors. We demonstrate the prediction by the proposed model against coronal mass ejections and a coronal hole. This paper aims to investigate a possibility of space weather forecasting based on the satellite network with in-situ sensing.

  20. Interval forecasting of cyber-attacks on industrial control systems

    NASA Astrophysics Data System (ADS)

    Ivanyo, Y. M.; Krakovsky, Y. M.; Luzgin, A. N.

    2018-03-01

    At present, cyber-security issues of industrial control systems occupy one of the key niches in a state system of planning and management Functional disruption of these systems via cyber-attacks may lead to emergencies related to loss of life, environmental disasters, major financial and economic damage, or disrupted activities of cities and settlements. There is then an urgent need to develop protection methods against cyber-attacks. This paper studied the results of cyber-attack interval forecasting with a pre-set intensity level of cyber-attacks. Interval forecasting is the forecasting of one interval from two predetermined ones in which a future value of the indicator will be obtained. For this, probability estimates of these events were used. For interval forecasting, a probabilistic neural network with a dynamic updating value of the smoothing parameter was used. A dividing bound of these intervals was determined by a calculation method based on statistical characteristics of the indicator. The number of cyber-attacks per hour that were received through a honeypot from March to September 2013 for the group ‘zeppo-norcal’ was selected as the indicator.

  1. Forecasting the Future Food Service World of Work. Final Report. Volume II. Centralized Food Service Systems. Service Management Reports.

    ERIC Educational Resources Information Center

    Powers, Thomas F., Ed.; Swinton, John R., Ed.

    Volume II of a three-volume study on the future of the food service industry considers the effects that centralized food production will have on the future of food production systems. Based on information from the Fair Acres Project and the Michigan State University Vegetable Processing Center, the authors describe the operations of a centralized…

  2. Projections of global health outcomes from 2005 to 2060 using the International Futures integrated forecasting model

    PubMed Central

    Hughes, Barry B; Peterson, Cecilia M; Rothman, Dale S; Solórzano, José R; Mathers, Colin D; Dickson, Janet R

    2011-01-01

    Abstract Objective To develop an integrated health forecasting model as part of the International Futures (IFs) modelling system. Methods The IFs model begins with the historical relationships between economic and social development and cause-specific mortality used by the Global Burden of Disease project but builds forecasts from endogenous projections of these drivers by incorporating forward linkages from health outcomes back to inputs like population and economic growth. The hybrid IFs system adds alternative structural formulations for causes not well served by regression models and accounts for changes in proximate health risk factors. Forecasts are made to 2100 but findings are reported to 2060. Findings The base model projects that deaths from communicable diseases (CDs) will decline by 50%, whereas deaths from both non-communicable diseases (NCDs) and injuries will more than double. Considerable cross-national convergence in life expectancy will occur. Climate-induced fluctuations in agricultural yield will cause little excess childhood mortality from CDs, although other climate−health pathways were not explored. An optimistic scenario will produce 39 million fewer deaths in 2060 than a pessimistic one. Our forward linkage model suggests that an optimistic scenario would result in a 20% per cent increase in gross domestic product (GDP) per capita, despite one billion additional people. Southern Asia would experience the greatest relative mortality reduction and the largest resulting benefit in per capita GDP. Conclusion Long-term, integrated health forecasting helps us understand the links between health and other markers of human progress and offers powerful insight into key points of leverage for future improvements. PMID:21734761

  3. Projections of global health outcomes from 2005 to 2060 using the International Futures integrated forecasting model.

    PubMed

    Hughes, Barry B; Kuhn, Randall; Peterson, Cecilia M; Rothman, Dale S; Solórzano, José R; Mathers, Colin D; Dickson, Janet R

    2011-07-01

    To develop an integrated health forecasting model as part of the International Futures (IFs) modelling system. The IFs model begins with the historical relationships between economic and social development and cause-specific mortality used by the Global Burden of Disease project but builds forecasts from endogenous projections of these drivers by incorporating forward linkages from health outcomes back to inputs like population and economic growth. The hybrid IFs system adds alternative structural formulations for causes not well served by regression models and accounts for changes in proximate health risk factors. Forecasts are made to 2100 but findings are reported to 2060. The base model projects that deaths from communicable diseases (CDs) will decline by 50%, whereas deaths from both non-communicable diseases (NCDs) and injuries will more than double. Considerable cross-national convergence in life expectancy will occur. Climate-induced fluctuations in agricultural yield will cause little excess childhood mortality from CDs, although other climate-health pathways were not explored. An optimistic scenario will produce 39 million fewer deaths in 2060 than a pessimistic one. Our forward linkage model suggests that an optimistic scenario would result in a 20% per cent increase in gross domestic product (GDP) per capita, despite one billion additional people. Southern Asia would experience the greatest relative mortality reduction and the largest resulting benefit in per capita GDP. Long-term, integrated health forecasting helps us understand the links between health and other markers of human progress and offers powerful insight into key points of leverage for future improvements.

  4. Aviation Forecasting in ICAO

    NASA Technical Reports Server (NTRS)

    Mcmahon, J.

    1972-01-01

    Opinions or plans of qualified experts in the field are used for forecasting future requirements for air navigational facilities and services of international civil aviation. ICAO periodically collects information from Stators and operates on anticipated future operations, consolidates this information, and forecasts the future level of activity at different airports.

  5. Decreasing the temporal complexity for nonlinear, implicit reduced-order models by forecasting

    DOE PAGES

    Carlberg, Kevin; Ray, Jaideep; van Bloemen Waanders, Bart

    2015-02-14

    Implicit numerical integration of nonlinear ODEs requires solving a system of nonlinear algebraic equations at each time step. Each of these systems is often solved by a Newton-like method, which incurs a sequence of linear-system solves. Most model-reduction techniques for nonlinear ODEs exploit knowledge of system's spatial behavior to reduce the computational complexity of each linear-system solve. However, the number of linear-system solves for the reduced-order simulation often remains roughly the same as that for the full-order simulation. We propose exploiting knowledge of the model's temporal behavior to (1) forecast the unknown variable of the reduced-order system of nonlinear equationsmore » at future time steps, and (2) use this forecast as an initial guess for the Newton-like solver during the reduced-order-model simulation. To compute the forecast, we propose using the Gappy POD technique. As a result, the goal is to generate an accurate initial guess so that the Newton solver requires many fewer iterations to converge, thereby decreasing the number of linear-system solves in the reduced-order-model simulation.« less

  6. Seasonal scale water deficit forecasting in Africa and the Middle East using NASA's Land Information System (LIS)

    NASA Astrophysics Data System (ADS)

    Peters-Lidard, C. D.; Arsenault, K. R.; Shukla, S.; Getirana, A.; McNally, A.; Koster, R. D.; Zaitchik, B. F.; Badr, H. S.; Roningen, J. M.; Kumar, S.; Funk, C. C.

    2017-12-01

    A seamless and effective water deficit monitoring and early warning system is critical for assessing food security in Africa and the Middle East. In this presentation, we report on the ongoing development and validation of a seasonal scale water deficit forecasting system based on NASA's Land Information System (LIS) and seasonal climate forecasts. First, our presentation will focus on the implementation and validation of drought and water availability monitoring products in the region. Next, it will focus on evaluating drought and water availability forecasts. Finally, details will be provided of our ongoing collaboration with end-user partners in the region (e.g., USAID's Famine Early Warning Systems Network, FEWS NET), on formulating meaningful early warning indicators, effective communication and seamless dissemination of the products through NASA's web-services. The water deficit forecasting system thus far incorporates NASA GMAO's Catchment and the Noah Multi-Physics (MP) LSMs. In addition, the LSMs' surface and subsurface runoff are routed through the Hydrological Modeling and Analysis Platform (HyMAP) to simulate surface water dynamics. To establish a climatology from 1981-2015, the two LSMs are driven by NASA/GMAO's Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2), and the USGS and UCSB Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) daily rainfall dataset. Comparison of the models' energy and hydrological budgets with independent observations suggests that major droughts are well-reflected in the climatology. The system uses seasonal climate forecasts from NASA's GEOS-5 (the Goddard Earth Observing System Model-5) and NCEP's Climate Forecast System-2, and it produces forecasts of soil moisture, ET and streamflow out to 6 months in the future. Forecasts of those variables are formulated in terms of indicators to provide forecasts of drought and water availability in the region. Current work suggests that for the Blue Nile basin, (1) the combination of GEOS-5 and CFSv2 is equivalent in skill to the full North American Multimodel Ensemble (NMME); and (2) the seasonal water deficit forecasting system skill for both soil moisture and streamflow anomalies is greater than the standard Ensemble Streamflow Prediction (ESP) approach.

  7. Understanding causality and uncertainty in volcanic observations: An example of forecasting eruptive activity on Soufrière Hills Volcano, Montserrat

    NASA Astrophysics Data System (ADS)

    Sheldrake, T. E.; Aspinall, W. P.; Odbert, H. M.; Wadge, G.; Sparks, R. S. J.

    2017-07-01

    Following a cessation in eruptive activity it is important to understand how a volcano will behave in the future and when it may next erupt. Such an assessment can be based on the volcano's long-term pattern of behaviour and insights into its current state via monitoring observations. We present a Bayesian network that integrates these two strands of evidence to forecast future eruptive scenarios using expert elicitation. The Bayesian approach provides a framework to quantify the magmatic causes in terms of volcanic effects (i.e., eruption and unrest). In October 2013, an expert elicitation was performed to populate a Bayesian network designed to help forecast future eruptive (in-)activity at Soufrière Hills Volcano. The Bayesian network was devised to assess the state of the shallow magmatic system, as a means to forecast the future eruptive activity in the context of the long-term behaviour at similar dome-building volcanoes. The findings highlight coherence amongst experts when interpreting the current behaviour of the volcano, but reveal considerable ambiguity when relating this to longer patterns of volcanism at dome-building volcanoes, as a class. By asking questions in terms of magmatic causes, the Bayesian approach highlights the importance of using short-term unrest indicators from monitoring data as evidence in long-term forecasts at volcanoes. Furthermore, it highlights potential biases in the judgements of volcanologists and identifies sources of uncertainty in terms of magmatic causes rather than scenario-based outcomes.

  8. The Nature and Variability of Ensemble Sensitivity Fields that Diagnose Severe Convection

    NASA Astrophysics Data System (ADS)

    Ancell, B. C.

    2017-12-01

    Ensemble sensitivity analysis (ESA) is a statistical technique that uses information from an ensemble of forecasts to reveal relationships between chosen forecast metrics and the larger atmospheric state at various forecast times. A number of studies have employed ESA from the perspectives of dynamical interpretation, observation targeting, and ensemble subsetting toward improved probabilistic prediction of high-impact events, mostly at synoptic scales. We tested ESA using convective forecast metrics at the 2016 HWT Spring Forecast Experiment to understand the utility of convective ensemble sensitivity fields in improving forecasts of severe convection and its individual hazards. The main purpose of this evaluation was to understand the temporal coherence and general characteristics of convective sensitivity fields toward future use in improving ensemble predictability within an operational framework.The magnitude and coverage of simulated reflectivity, updraft helicity, and surface wind speed were used as response functions, and the sensitivity of these functions to winds, temperatures, geopotential heights, and dew points at different atmospheric levels and at different forecast times were evaluated on a daily basis throughout the HWT Spring Forecast experiment. These sensitivities were calculated within the Texas Tech real-time ensemble system, which possesses 42 members that run twice daily to 48-hr forecast time. Here we summarize both the findings regarding the nature of the sensitivity fields and the evaluation of the participants that reflects their opinions of the utility of operational ESA. The future direction of ESA for operational use will also be discussed.

  9. Time series analysis of malaria in Afghanistan: using ARIMA models to predict future trends in incidence.

    PubMed

    Anwar, Mohammad Y; Lewnard, Joseph A; Parikh, Sunil; Pitzer, Virginia E

    2016-11-22

    Malaria remains endemic in Afghanistan. National control and prevention strategies would be greatly enhanced through a better ability to forecast future trends in disease incidence. It is, therefore, of interest to develop a predictive tool for malaria patterns based on the current passive and affordable surveillance system in this resource-limited region. This study employs data from Ministry of Public Health monthly reports from January 2005 to September 2015. Malaria incidence in Afghanistan was forecasted using autoregressive integrated moving average (ARIMA) models in order to build a predictive tool for malaria surveillance. Environmental and climate data were incorporated to assess whether they improve predictive power of models. Two models were identified, each appropriate for different time horizons. For near-term forecasts, malaria incidence can be predicted based on the number of cases in the four previous months and 12 months prior (Model 1); for longer-term prediction, malaria incidence can be predicted using the rates 1 and 12 months prior (Model 2). Next, climate and environmental variables were incorporated to assess whether the predictive power of proposed models could be improved. Enhanced vegetation index was found to have increased the predictive accuracy of longer-term forecasts. Results indicate ARIMA models can be applied to forecast malaria patterns in Afghanistan, complementing current surveillance systems. The models provide a means to better understand malaria dynamics in a resource-limited context with minimal data input, yielding forecasts that can be used for public health planning at the national level.

  10. Spaceborne sensors (1983-2000 AD): A forecast of technology

    NASA Technical Reports Server (NTRS)

    Kostiuk, T.; Clark, B. P.

    1984-01-01

    A technical review and forecast of space technology as it applies to spaceborne sensors for future NASA missions is presented. A format for categorization of sensor systems covering the entire electromagnetic spectrum, including particles and fields is developed. Major generic sensor systems are related to their subsystems, components, and to basic research and development. General supporting technologies such as cryogenics, optical design, and data processing electronics are addressed where appropriate. The dependence of many classes of instruments on common components, basic R&D and support technologies is also illustrated. A forecast of important system designs and instrument and component performance parameters is provided for the 1983-2000 AD time frame. Some insight into the scientific and applications capabilities and goals of the sensor systems is also given.

  11. Toward Improved Land Surface Initialization in Support of Regional WRF Forecasts at the Kenya Meteorological Service (KMS)

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; Mungai, John; Sakwa, Vincent; Kabuchanga, Eric; Zavodsky, Bradley T.; Limaye, Ashutosh S.

    2014-01-01

    SPoRT/SERVIR/RCMRD/KMS Collaboration: Builds off strengths of each organization. SPoRT: Transition of satellite, modeling and verification capabilities; SERVIR-Africa/RCMRD: International capacity-building expertise; KMS: Operational organization with regional weather forecasting expertise in East Africa. Hypothesis: Improved land-surface initialization over Eastern Africa can lead to better temperature, moisture, and ultimately precipitation forecasts in NWP models. KMS currently initializes Weather Research and Forecasting (WRF) model with NCEP/Global Forecast System (GFS) model 0.5-deg initial / boundary condition data. LIS will provide much higher-resolution land-surface data at a scale more representative to regional WRF configuration. Future implementation of real-time NESDIS/VIIRS vegetation fraction to further improve land surface representativeness.

  12. Forecasting the response of Earth's surface to future climatic and land use changes: A review of methods and research needs

    DOE PAGES

    Pelletier, Jon D.; Murray, A. Brad; Pierce, Jennifer L.; ...

    2015-07-14

    In the future, Earth will be warmer, precipitation events will be more extreme, global mean sea level will rise, and many arid and semiarid regions will be drier. Human modifications of landscapes will also occur at an accelerated rate as developed areas increase in size and population density. We now have gridded global forecasts, being continually improved, of the climatic and land use changes (C&LUC) that are likely to occur in the coming decades. However, besides a few exceptions, consensus forecasts do not exist for how these C&LUC will likely impact Earth-surface processes and hazards. In some cases, we havemore » the tools to forecast the geomorphic responses to likely future C&LUC. Fully exploiting these models and utilizing these tools will require close collaboration among Earth-surface scientists and Earth-system modelers. This paper assesses the state-of-the-art tools and data that are being used or could be used to forecast changes in the state of Earth's surface as a result of likely future C&LUC. We also propose strategies for filling key knowledge gaps, emphasizing where additional basic research and/or collaboration across disciplines are necessary. The main body of the paper addresses cross-cutting issues, including the importance of nonlinear/threshold-dominated interactions among topography, vegetation, and sediment transport, as well as the importance of alternate stable states and extreme, rare events for understanding and forecasting Earth-surface response to C&LUC. Five supplements delve into different scales or process zones (global-scale assessments and fluvial, aeolian, glacial/periglacial, and coastal process zones) in detail.« less

  13. Observation impact studies with the Mercator Ocean analysis and forecasting systems

    NASA Astrophysics Data System (ADS)

    Remy, E. D.; Le Traon, P. Y.; Lellouche, J. M.; Drevillon, M.; Turpin, V.; Benkiran, M.

    2016-02-01

    Mercator Ocean produces and delivers in real-time ocean analysis and forecasts on a daily basis. The quality of the analysis highly relies on the availability and quality of the assimilated observations.Tools are developed to estimate the impact of the present network and to help designing the future evolutions of the observing systems in the context of near real time production of ocean analysis and forecasts. OSE and OSSE are the main approaches used in this context. They allow the assessment of the efficiency of a given data set to constrain the ocean model circulation through the data assimilation process. Illustrations will mainly focus on the present and future evolution of the Argo observation network and altimetry constellation, including the potential impact of future SWOT data. Our systems show clear sensitivities to observation array changes, mainly depending on the specified observation error and regional dynamic. Impact on non observed variables can be important and are important to evaluate. Dedicated diagnostics has to be define to measure the improvements bring by each data set. Alternative approaches to OSE and OSSE are also explored: approximate computation of DFS will be presented and discussed. Limitations of each approach will be discussed in the context of real time operation.

  14. Modeling and Forecasting Influenza-like Illness (ILI) in Houston, Texas Using Three Surveillance Data Capture Mechanisms.

    PubMed

    Paul, Susannah; Mgbere, Osaro; Arafat, Raouf; Yang, Biru; Santos, Eunice

    2017-01-01

    Objective The objective was to forecast and validate prediction estimates of influenza activity in Houston, TX using four years of historical influenza-like illness (ILI) from three surveillance data capture mechanisms. Background Using novel surveillance methods and historical data to estimate future trends of influenza-like illness can lead to early detection of influenza activity increases and decreases. Anticipating surges gives public health professionals more time to prepare and increase prevention efforts. Methods Data was obtained from three surveillance systems, Flu Near You, ILINet, and hospital emergency center (EC) visits, with diverse data capture mechanisms. Autoregressive integrated moving average (ARIMA) models were fitted to data from each source for week 27 of 2012 through week 26 of 2016 and used to forecast influenza-like activity for the subsequent 10 weeks. Estimates were then compared to actual ILI percentages for the same period. Results Forecasted estimates had wide confidence intervals that crossed zero. The forecasted trend direction differed by data source, resulting in lack of consensus about future influenza activity. ILINet forecasted estimates and actual percentages had the least differences. ILINet performed best when forecasting influenza activity in Houston, TX. Conclusion Though the three forecasted estimates did not agree on the trend directions, and thus, were considered imprecise predictors of long-term ILI activity based on existing data, pooling predictions and careful interpretations may be helpful for short term intervention efforts. Further work is needed to improve forecast accuracy considering the promise forecasting holds for seasonal influenza prevention and control, and pandemic preparedness.

  15. CEREF: A hybrid data-driven model for forecasting annual streamflow from a socio-hydrological system

    NASA Astrophysics Data System (ADS)

    Zhang, Hongbo; Singh, Vijay P.; Wang, Bin; Yu, Yinghao

    2016-09-01

    Hydrological forecasting is complicated by flow regime alterations in a coupled socio-hydrologic system, encountering increasingly non-stationary, nonlinear and irregular changes, which make decision support difficult for future water resources management. Currently, many hybrid data-driven models, based on the decomposition-prediction-reconstruction principle, have been developed to improve the ability to make predictions of annual streamflow. However, there exist many problems that require further investigation, the chief among which is the direction of trend components decomposed from annual streamflow series and is always difficult to ascertain. In this paper, a hybrid data-driven model was proposed to capture this issue, which combined empirical mode decomposition (EMD), radial basis function neural networks (RBFNN), and external forces (EF) variable, also called the CEREF model. The hybrid model employed EMD for decomposition and RBFNN for intrinsic mode function (IMF) forecasting, and determined future trend component directions by regression with EF as basin water demand representing the social component in the socio-hydrologic system. The Wuding River basin was considered for the case study, and two standard statistical measures, root mean squared error (RMSE) and mean absolute error (MAE), were used to evaluate the performance of CEREF model and compare with other models: the autoregressive (AR), RBFNN and EMD-RBFNN. Results indicated that the CEREF model had lower RMSE and MAE statistics, 42.8% and 7.6%, respectively, than did other models, and provided a superior alternative for forecasting annual runoff in the Wuding River basin. Moreover, the CEREF model can enlarge the effective intervals of streamflow forecasting compared to the EMD-RBFNN model by introducing the water demand planned by the government department to improve long-term prediction accuracy. In addition, we considered the high-frequency component, a frequent subject of concern in EMD-based forecasting, and results showed that removing high-frequency component is an effective measure to improve forecasting precision and is suggested for use with the CEREF model for better performance. Finally, the study concluded that the CEREF model can be used to forecast non-stationary annual streamflow change as a co-evolution of hydrologic and social systems with better accuracy. Also, the modification about removing high-frequency can further improve the performance of the CEREF model. It should be noted that the CEREF model is beneficial for data-driven hydrologic forecasting in complex socio-hydrologic systems, and as a simple data-driven socio-hydrologic forecasting model, deserves more attention.

  16. A short-term and high-resolution distribution system load forecasting approach using support vector regression with hybrid parameters optimization

    DOE PAGES

    Jiang, Huaiguang; Zhang, Yingchen; Muljadi, Eduard; ...

    2016-01-01

    This paper proposes an approach for distribution system load forecasting, which aims to provide highly accurate short-term load forecasting with high resolution utilizing a support vector regression (SVR) based forecaster and a two-step hybrid parameters optimization method. Specifically, because the load profiles in distribution systems contain abrupt deviations, a data normalization is designed as the pretreatment for the collected historical load data. Then an SVR model is trained by the load data to forecast the future load. For better performance of SVR, a two-step hybrid optimization algorithm is proposed to determine the best parameters. In the first step of themore » hybrid optimization algorithm, a designed grid traverse algorithm (GTA) is used to narrow the parameters searching area from a global to local space. In the second step, based on the result of the GTA, particle swarm optimization (PSO) is used to determine the best parameters in the local parameter space. After the best parameters are determined, the SVR model is used to forecast the short-term load deviation in the distribution system. The performance of the proposed approach is compared to some classic methods in later sections of the paper.« less

  17. JPSS Proving Ground Activities with NASA's Short-term Prediction Research and Transition (SPoRT) Center

    NASA Astrophysics Data System (ADS)

    Schultz, L. A.; Smith, M. R.; Fuell, K.; Stano, G. T.; LeRoy, A.; Berndt, E.

    2015-12-01

    Instruments aboard the Joint Polar Satellite System (JPSS) series of satellites will provide imagery and other data sets relevant to operational weather forecasts. To prepare current and future weather forecasters in application of these data sets, Proving Ground activities have been established that demonstrate future JPSS capabilities through use of similar sensors aboard NASA's Terra and Aqua satellites, and the S-NPP mission. As part of these efforts, NASA's Short-term Prediction Research and Transition (SPoRT) Center in Huntsville, Alabama partners with near real-time providers of S-NPP products (e.g., NASA, UW/CIMSS, UAF/GINA, etc.) to demonstrate future capabilities of JPSS. This includes training materials and product distribution of multi-spectral false color composites of the visible, near-infrared, and infrared bands of MODIS and VIIRS. These are designed to highlight phenomena of interest to help forecasters digest the multispectral data provided by the VIIRS sensor. In addition, forecasters have been trained on the use of the VIIRS day-night band, which provides imagery of moonlit clouds, surface, and lights emitted by human activities. Hyperspectral information from the S-NPP/CrIS instrument provides thermodynamic profiles that aid in the detection of extremely cold air aloft, helping to map specific aviation hazards at high latitudes. Hyperspectral data also support the estimation of ozone concentration, which can highlight the presence of much drier stratospheric air, and map its interaction with mid-latitude or tropical cyclones to improve predictions of their strengthening or decay. Proving Ground activities are reviewed, including training materials and methods that have been provided to forecasters, and forecaster feedback on these products that has been acquired through formal, detailed assessment of their applicability to a given forecast threat or task. Future opportunities for collaborations around the delivery of training are proposed, along with other applications of multispectral data and derived, more quantitative products.

  18. Verification of ECMWF System 4 for seasonal hydrological forecasting in a northern climate

    NASA Astrophysics Data System (ADS)

    Bazile, Rachel; Boucher, Marie-Amélie; Perreault, Luc; Leconte, Robert

    2017-11-01

    Hydropower production requires optimal dam and reservoir management to prevent flooding damage and avoid operation losses. In a northern climate, where spring freshet constitutes the main inflow volume, seasonal forecasts can help to establish a yearly strategy. Long-term hydrological forecasts often rely on past observations of streamflow or meteorological data. Another alternative is to use ensemble meteorological forecasts produced by climate models. In this paper, those produced by the ECMWF (European Centre for Medium-Range Forecast) System 4 are examined and bias is characterized. Bias correction, through the linear scaling method, improves the performance of the raw ensemble meteorological forecasts in terms of continuous ranked probability score (CRPS). Then, three seasonal ensemble hydrological forecasting systems are compared: (1) the climatology of simulated streamflow, (2) the ensemble hydrological forecasts based on climatology (ESP) and (3) the hydrological forecasts based on bias-corrected ensemble meteorological forecasts from System 4 (corr-DSP). Simulated streamflow computed using observed meteorological data is used as benchmark. Accounting for initial conditions is valuable even for long-term forecasts. ESP and corr-DSP both outperform the climatology of simulated streamflow for lead times from 1 to 5 months depending on the season and watershed. Integrating information about future meteorological conditions also improves monthly volume forecasts. For the 1-month lead time, a gain exists for almost all watersheds during winter, summer and fall. However, volume forecasts performance for spring varies from one watershed to another. For most of them, the performance is close to the performance of ESP. For longer lead times, the CRPS skill score is mostly in favour of ESP, even if for many watersheds, ESP and corr-DSP have comparable skill. Corr-DSP appears quite reliable but, in some cases, under-dispersion or bias is observed. A more complex bias-correction method should be further investigated to remedy this weakness and take more advantage of the ensemble forecasts produced by the climate model. Overall, in this study, bias-corrected ensemble meteorological forecasts appear to be an interesting source of information for hydrological forecasting for lead times up to 1 month. They could also complement ESP for longer lead times.

  19. Should we use seasonnal meteorological ensemble forecasts for hydrological forecasting? A case study for nordic watersheds in Canada.

    NASA Astrophysics Data System (ADS)

    Bazile, Rachel; Boucher, Marie-Amélie; Perreault, Luc; Leconte, Robert; Guay, Catherine

    2017-04-01

    Hydro-electricity is a major source of energy for many countries throughout the world, including Canada. Long lead-time streamflow forecasts are all the more valuable as they help decision making and dam management. Different techniques exist for long-term hydrological forecasting. Perhaps the most well-known is 'Extended Streamflow Prediction' (ESP), which considers past meteorological scenarios as possible, often equiprobable, future scenarios. In the ESP framework, those past-observed meteorological scenarios (climatology) are used in turn as the inputs of a chosen hydrological model to produce ensemble forecasts (one member corresponding to each year in the available database). Many hydropower companies, including Hydro-Québec (province of Quebec, Canada) use variants of the above described ESP system operationally for long-term operation planning. The ESP system accounts for the hydrological initial conditions and for the natural variability of the meteorological variables. However, it cannot consider the current initial state of the atmosphere. Climate models can help remedy this drawback. In the context of a changing climate, dynamical forecasts issued from climate models seem to be an interesting avenue to improve upon the ESP method and could help hydropower companies to adapt their management practices to an evolving climate. Long-range forecasts from climate models can also be helpful for water management at locations where records of past meteorological conditions are short or nonexistent. In this study, we compare 7-month hydrological forecasts obtained from climate model outputs to an ESP system. The ESP system mimics the one used operationally at Hydro-Québec. The dynamical climate forecasts are produced by the European Center for Medium range Weather Forecasts (ECMWF) System4. Forecasts quality is assessed using numerical scores such as the Continuous Ranked Probability Score (CRPS) and the Ignorance score and also graphical tools such as the reliability diagram. This study covers 10 nordic watersheds. We show that forecast performance according to the CRPS varies with lead-time but also with the period of the year. The raw forecasts from the ECMWF System4 display important biases for both temperature and precipitation, which need to be corrected. The linear scaling method is used for this purpose and is found effective. Bias correction improves forecasts performance, especially during the summer when the precipitations are over-estimated. According to the CRPS, bias corrected forecasts from System4 show performances comparable to those of the ESP system. However, the Ignorance score, which penalizes the lack of calibration (under-dispersive forecasts in this case) more severely than the CRPS, provides a different outlook for the comparison of the two systems. In fact, according to the Ignorance score, the ESP system outperforms forecasts based on System4 in most cases. This illustrates that the joint use of several metrics is crucial to assess the quality of a forecasts system thoroughly. Globally, ESP provide reliable forecasts which can be over-dispersed whereas bias corrected ECMWF System4 forecasts are sharper but at the risk of missing events.

  20. The ecological forecast horizon, and examples of its uses and determinants

    PubMed Central

    Petchey, Owen L; Pontarp, Mikael; Massie, Thomas M; Kéfi, Sonia; Ozgul, Arpat; Weilenmann, Maja; Palamara, Gian Marco; Altermatt, Florian; Matthews, Blake; Levine, Jonathan M; Childs, Dylan Z; McGill, Brian J; Schaepman, Michael E; Schmid, Bernhard; Spaak, Piet; Beckerman, Andrew P; Pennekamp, Frank; Pearse, Ian S; Vasseur, David

    2015-01-01

    Forecasts of ecological dynamics in changing environments are increasingly important, and are available for a plethora of variables, such as species abundance and distribution, community structure and ecosystem processes. There is, however, a general absence of knowledge about how far into the future, or other dimensions (space, temperature, phylogenetic distance), useful ecological forecasts can be made, and about how features of ecological systems relate to these distances. The ecological forecast horizon is the dimensional distance for which useful forecasts can be made. Five case studies illustrate the influence of various sources of uncertainty (e.g. parameter uncertainty, environmental variation, demographic stochasticity and evolution), level of ecological organisation (e.g. population or community), and organismal properties (e.g. body size or number of trophic links) on temporal, spatial and phylogenetic forecast horizons. Insights from these case studies demonstrate that the ecological forecast horizon is a flexible and powerful tool for researching and communicating ecological predictability. It also has potential for motivating and guiding agenda setting for ecological forecasting research and development. PMID:25960188

  1. Expert and Knowledge Based Systems.

    ERIC Educational Resources Information Center

    Demaid, Adrian; Edwards, Lyndon

    1987-01-01

    Discusses the nature and current state of knowledge-based systems and expert systems. Describes an expert system from the viewpoints of a computer programmer and an applications expert. Addresses concerns related to materials selection and forecasts future developments in the teaching of materials engineering. (ML)

  2. Evaluating Snow Data Assimilation Framework for Streamflow Forecasting Applications Using Hindcast Verification

    NASA Astrophysics Data System (ADS)

    Barik, M. G.; Hogue, T. S.; Franz, K. J.; He, M.

    2012-12-01

    Snow water equivalent (SWE) estimation is a key factor in producing reliable streamflow simulations and forecasts in snow dominated areas. However, measuring or predicting SWE has significant uncertainty. Sequential data assimilation, which updates states using both observed and modeled data based on error estimation, has been shown to reduce streamflow simulation errors but has had limited testing for forecasting applications. In the current study, a snow data assimilation framework integrated with the National Weather System River Forecasting System (NWSRFS) is evaluated for use in ensemble streamflow prediction (ESP). Seasonal water supply ESP hindcasts are generated for the North Fork of the American River Basin (NFARB) in northern California. Parameter sets from the California Nevada River Forecast Center (CNRFC), the Differential Evolution Adaptive Metropolis (DREAM) algorithm and the Multistep Automated Calibration Scheme (MACS) are tested both with and without sequential data assimilation. The traditional ESP method considers uncertainty in future climate conditions using historical temperature and precipitation time series to generate future streamflow scenarios conditioned on the current basin state. We include data uncertainty analysis in the forecasting framework through the DREAM-based parameter set which is part of a recently developed Integrated Uncertainty and Ensemble-based data Assimilation framework (ICEA). Extensive verification of all tested approaches is undertaken using traditional forecast verification measures, including root mean square error (RMSE), Nash-Sutcliffe efficiency coefficient (NSE), volumetric bias, joint distribution, rank probability score (RPS), and discrimination and reliability plots. In comparison to the RFC parameters, the DREAM and MACS sets show significant improvement in volumetric bias in flow. Use of assimilation improves hindcasts of higher flows but does not significantly improve performance in the mid flow and low flow categories.

  3. The transport forecast - an important stage of transport management

    NASA Astrophysics Data System (ADS)

    Dragu, Vasile; Dinu, Oana; Oprea, Cristina; Alina Roman, Eugenia

    2017-10-01

    The transport system is a powerful system with varying loads in operation coming from changes in freight and passenger traffic in different time periods. The variations are due to the specific conditions of organization and development of socio-economic activities. The causes of varying loads can be included in three groups: economic, technical and organizational. The assessing of transport demand variability leads to proper forecast and development of the transport system, knowing that the market price is determined on equilibrium between supply and demand. The reduction of transport demand variability through different technical solutions, organizational, administrative, legislative leads to an increase in the efficiency and effectiveness of transport. The paper presents a new way of assessing the future needs of transport through dynamic series. Both researchers and practitioners in transport planning can benefit from the research results. This paper aims to analyze in an original approach how a good transport forecast can lead to a better management in transport, with significant effects on transport demand full meeting in quality terms. The case study shows how dynamic series of statistics can be used to identify the size of future demand addressed to the transport system.

  4. DEFENDER: Detecting and Forecasting Epidemics Using Novel Data-Analytics for Enhanced Response.

    PubMed

    Thapen, Nicholas; Simmie, Donal; Hankin, Chris; Gillard, Joseph

    2016-01-01

    In recent years social and news media have increasingly been used to explain patterns in disease activity and progression. Social media data, principally from the Twitter network, has been shown to correlate well with official disease case counts. This fact has been exploited to provide advance warning of outbreak detection, forecasting of disease levels and the ability to predict the likelihood of individuals developing symptoms. In this paper we introduce DEFENDER, a software system that integrates data from social and news media and incorporates algorithms for outbreak detection, situational awareness and forecasting. As part of this system we have developed a technique for creating a location network for any country or region based purely on Twitter data. We also present a disease nowcasting (forecasting the current but still unknown level) approach which leverages counts from multiple symptoms, which was found to improve the nowcasting accuracy by 37 percent over a model that used only previous case data. Finally we attempt to forecast future levels of symptom activity based on observed user movement on Twitter, finding a moderate gain of 5 percent over a time series forecasting model.

  5. Improved Weather and Power Forecasts for Energy Operations - the German Research Project EWeLiNE

    NASA Astrophysics Data System (ADS)

    Lundgren, Kristina; Siefert, Malte; Hagedorn, Renate; Majewski, Detlev

    2014-05-01

    The German energy system is going through a fundamental change. Based on the energy plans of the German federal government, the share of electrical power production from renewables should increase to 35% by 2020. This means that, in the near future at certain times renewable energies will provide a major part of Germany's power production. Operating a power supply system with a large share of weather-dependent power sources in a secure way requires improved power forecasts. One of the most promising strategies to improve the existing wind power and PV power forecasts is to optimize the underlying weather forecasts and to enhance the collaboration between the meteorology and energy sectors. Deutscher Wetterdienst addresses these challenges in collaboration with Fraunhofer IWES within the research project EWeLiNE. The overarching goal of the project is to improve the wind and PV power forecasts by combining improved power forecast models and optimized weather forecasts. During the project, the numerical weather prediction models COSMO-DE and COSMO-DE-EPS (Ensemble Prediction System) by Deutscher Wetterdienst will be generally optimized towards improved wind power and PV forecasts. For instance, it will be investigated whether the assimilation of new types of data, e.g. power production data, can lead to improved weather forecasts. With regard to the probabilistic forecasts, the focus is on the generation of ensembles and ensemble calibration. One important aspect of the project is to integrate the probabilistic information into decision making processes by developing user-specified products. In this paper we give an overview of the project and present first results.

  6. Operational wind shear detection and warning - The 'CLAWS' experience at Denver and future objectives

    NASA Technical Reports Server (NTRS)

    Mccarthy, John; Wilson, James W.; Hjelmfelt, Mark R.

    1986-01-01

    An operational wind shear detection and warning experiment was conducted at Denver's Stapleton International Airport in summer 1984. Based on meteorological interpretation of scope displays from a Doppler weather radar, warnings were transmitted to the air traffic control tower via voice radio. Analyses of results indicated real skill in daily microburst forecasts and very short-term (less than 5-min) warnings. Wind shift advisories with 15-30 min forecasts, permitted more efficient runway reconfigurations. Potential fuel savings were estimated at $875,000/yr at Stapleton. The philosophy of future development toward an automated, operational system is discussed.

  7. Consumption Behavior Analytics-Aided Energy Forecasting and Dispatch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yingchen; Yang, Rui; Jiang, Huaiguang

    For decades, electricity customers have been treated as mere recipients of electricity in vertically integrated power systems. However, as customers have widely adopted distributed energy resources and other forms of customer participation in active dispatch (such as demand response) have taken shape, the value of mining knowledge from customer behavior patterns and using it for power system operation is increasing. Further, the variability of renewable energy resources has been considered a liability to the grid. However, electricity consumption has shown the same level of variability and uncertainty, and this is sometimes overlooked. This article investigates data analytics and forecasting methodsmore » to identify correlations between electricity consumption behavior and distributed photovoltaic (PV) output. The forecasting results feed into a predictive energy management system that optimizes energy consumption in the near future to balance customer demand and power system needs.« less

  8. A computerized system to measure and predict air quality for emission control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crooks, G.; Ciccone, A.; Frattolillo, P.

    1997-12-31

    A Supplementary Emission Control (SEC) system has been developed on behalf of the Association Industrielle de l`Est de Montreal (AIEM). The objective of the SEC is to avoid exceedences of the Montreal Urban Community (MUC) 24 hour ambient Air Quality Standard (AQS) for sulphur dioxide in the industrial East Montreal area. The SEC system is comprised of: 3 continuous SO{sub 2} monitoring stations with data loggers and remote communications; a meteorological tower with data logger and modem for acquiring local meteorology; communications with Environment Canada to download meteorological forecast data; a polling PC for data retrieval; and Windows NT basedmore » software running on the AIEM computer server. The SEC software utilizes relational databases to store and maintain measured SO{sub 2} concentration data, emission data, as well as observed and forecast meteorological data. The SEC system automatically executes a numerical dispersion model to forecast SO{sub 2} concentrations up to six hours in the future. Based on measured SO{sub 2} concentrations at the monitoring stations and the six hour forecast concentrations, the system determines if local sources should reduce their emission levels to avoid potential exceedences of the AQS. The SEC system also includes a Graphical User Interface (GUI) for user access to the system. The SEC system and software are described, and the accuracy of the system at forecasting SO{sub 2} concentrations is examined.« less

  9. Development and Use of the Hydrologic Ensemble Forecast System by the National Weather Service to Support the New York City Water Supply

    NASA Astrophysics Data System (ADS)

    Shedd, R.; Reed, S. M.; Porter, J. H.

    2015-12-01

    The National Weather Service (NWS) has been working for several years on the development of the Hydrologic Ensemble Forecast System (HEFS). The objective of HEFS is to provide ensemble river forecasts incorporating the best precipitation and temperature forcings at any specific time horizon. For the current implementation, this includes the Global Ensemble Forecast System (GEFS) and the Climate Forecast System (CFSv2). One of the core partners that has been working with the NWS since the beginning of the development phase of HEFS is the New York City Department of Environmental Protection (NYCDEP) which is responsible for the complex water supply system for New York City. The water supply system involves a network of reservoirs in both the Delaware and Hudson River basins. At the same time that the NWS was developing HEFS, NYCDEP was working on enhancing the operations of their water supply reservoirs through the development of a new Operations Support Tool (OST). OST is designed to guide reservoir system operations to ensure an adequate supply of high-quality drinking water for the city, as well as to meet secondary objectives for reaches downstream of the reservoirs assuming the primary water supply goals can be met. These secondary objectives include fisheries and ecosystem support, enhanced peak flow attenuation beyond that provided natively by the reservoirs, salt front management, and water supply for other cities. Since January 2014, the NWS Northeast and Middle Atlantic River Forecast Centers have provided daily one year forecasts from HEFS to NYCDEP. OST ingests these forecasts, couples them with near-real-time environmental and reservoir system data, and drives models of the water supply system. The input of ensemble forecasts results in an ensemble of model output, from which information on the range and likelihood of possible future system states can be extracted. This type of probabilistic information provides system managers with additional information not available from deterministic forecasts and allows managers to better assess risk, and provides greater context for decision-making than has been available in the past. HEFS has allowed NYCDEP water supply managers to make better decisions on reservoir operations than they likely would have in the past, using only deterministic forecasts.

  10. Forecasting the regional distribution and sufficiency of physicians in Japan with a coupled system dynamics-geographic information system model.

    PubMed

    Ishikawa, Tomoki; Fujiwara, Kensuke; Ohba, Hisateru; Suzuki, Teppei; Ogasawara, Katsuhiko

    2017-09-12

    In Japan, the shortage of physicians has been recognized as a major medical issue. In our previous study, we reported that the absolute shortage will be resolved in the long term, but maldistribution among specialties will persist. To address regional shortage, several Japanese medical schools increased existing quota and established "regional quotas." This study aims to assist policy makers in designing effective policies; we built a model for forecasting physician numbers by region to evaluate future physician supply-demand balances. For our case study, we selected Hokkaido Prefecture in Japan, a region displaying disparities in healthcare services availability between urban and rural areas. We combined a system dynamics (SD) model with geographic information system (GIS) technology to analyze the dynamic change in spatial distribution of indicators. For Hokkaido overall and for each secondary medical service area (SMSA) within the prefecture, we analyzed the total number of practicing physicians. For evaluating absolute shortage and maldistribution, we calculated sufficiency levels and Gini coefficient. Our study covered the period 2010-2030 in 5-year increments. According to our forecast, physician shortage in Hokkaido Prefecture will largely be resolved by 2020. Based on current policies, we forecast that four SMSAs in Hokkaido will continue to experience physician shortages past that date, but only one SMSA would still be understaffed in 2030. The results show the possibility that diminishing imbalances between SMSAs would not necessarily mean that regional maldistribution would be eliminated, as seen from the sufficiency levels of the various SMSAs. Urgent steps should be taken to place doctors in areas where our forecasting model predicts that physician shortages could occur in the future.

  11. Forecast first: An argument for groundwater modeling in reverse

    USGS Publications Warehouse

    White, Jeremy

    2017-01-01

    Numerical groundwater models are important compo-nents of groundwater analyses that are used for makingcritical decisions related to the management of ground-water resources. In this support role, models are oftenconstructed to serve a specific purpose that is to provideinsights, through simulation, related to a specific func-tion of a complex aquifer system that cannot be observeddirectly (Anderson et al. 2015).For any given modeling analysis, several modelinput datasets must be prepared. Herein, the datasetsrequired to simulate the historical conditions are referredto as the calibration model, and the datasets requiredto simulate the model’s purpose are referred to as theforecast model. Future groundwater conditions or otherunobserved aspects of the groundwater system may besimulated by the forecast model—the outputs of interestfrom the forecast model represent the purpose of themodeling analysis. Unfortunately, the forecast model,needed to simulate the purpose of the modeling analysis,is seemingly an afterthought—calibration is where themajority of time and effort are expended and calibrationis usually completed before the forecast model is evenconstructed. Herein, I am proposing a new groundwatermodeling workflow, referred to as the “forecast first”workflow, where the forecast model is constructed at anearlier stage in the modeling analysis and the outputsof interest from the forecast model are evaluated duringsubsequent tasks in the workflow.

  12. Forecasting Emergency Department Crowding: An External, Multi-Center Evaluation

    PubMed Central

    Hoot, Nathan R.; Epstein, Stephen K.; Allen, Todd L.; Jones, Spencer S.; Baumlin, Kevin M.; Chawla, Neal; Lee, Anna T.; Pines, Jesse M.; Klair, Amandeep K.; Gordon, Bradley D.; Flottemesch, Thomas J.; LeBlanc, Larry J.; Jones, Ian; Levin, Scott R.; Zhou, Chuan; Gadd, Cynthia S.; Aronsky, Dominik

    2009-01-01

    Objective To apply a previously described tool to forecast ED crowding at multiple institutions, and to assess its generalizability for predicting the near-future waiting count, occupancy level, and boarding count. Methods The ForecastED tool was validated using historical data from five institutions external to the development site. A sliding-window design separated the data for parameter estimation and forecast validation. Observations were sampled at consecutive 10-minute intervals during 12 months (n = 52,560) at four sites and 10 months (n = 44,064) at the fifth. Three outcome measures – the waiting count, occupancy level, and boarding count – were forecast 2, 4, 6, and 8 hours beyond each observation, and forecasts were compared to observed data at corresponding times. The reliability and calibration were measured following previously described methods. After linear calibration, the forecasting accuracy was measured using the median absolute error (MAE). Results The tool was successfully used for five different sites. Its forecasts were more reliable, better calibrated, and more accurate at 2 hours than at 8 hours. The reliability and calibration of the tool were similar between the original development site and external sites; the boarding count was an exception, which was less reliable at four out of five sites. Some variability in accuracy existed among institutions; when forecasting 4 hours into the future, the MAE of the waiting count ranged between 0.6 and 3.1 patients, the MAE of the occupancy level ranged between 9.0 and 14.5% of beds, and the MAE of the boarding count ranged between 0.9 and 2.7 patients. Conclusion The ForecastED tool generated potentially useful forecasts of input and throughput measures of ED crowding at five external sites, without modifying the underlying assumptions. Noting the limitation that this was not a real-time validation, ongoing research will focus on integrating the tool with ED information systems. PMID:19716629

  13. GEOS S2S-2_1: GMAO's New High Resolution Seasonal Prediction System

    NASA Technical Reports Server (NTRS)

    Molod, Andrea; Akella, Santha; Andrews, Lauren; Barahona, Donifan; Borovikov, Anna; Chang, Yehui; Cullather, Richard; Hackert, Eric; Kovach, Robin; Koster, Randal; hide

    2017-01-01

    A new version of the modeling and analysis system used to produce sub-seasonal to seasonal forecasts has just been released by the NASA Goddard Global Modeling and Assimilation Office. The new version runs at higher atmospheric resolution (approximately 12 degree globally), contains a substantially improved model description of the cryosphere, and includes additional interactive earth system model components (aerosol model). In addition, the Ocean data assimilation system has been replaced with a Local Ensemble Transform Kalman Filter. Here will describe the new system, along with the plans for the future (GEOS S2S-3_0) which will include a higher resolution ocean model and more interactive earth system model components (interactive vegetation, biomass burning from fires). We will also present results from a free-running coupled simulation with the new system and results from a series of retrospective seasonal forecasts. Results from retrospective forecasts show significant improvements in surface temperatures over much of the northern hemisphere and a much improved prediction of sea ice extent in both hemispheres. The precipitation forecast skill is comparable to previous S2S systems, and the only trade off is an increased double ITCZ, which is expected as we go to higher atmospheric resolution.

  14. Assessment of an ensemble seasonal streamflow forecasting system for Australia

    NASA Astrophysics Data System (ADS)

    Bennett, James C.; Wang, Quan J.; Robertson, David E.; Schepen, Andrew; Li, Ming; Michael, Kelvin

    2017-11-01

    Despite an increasing availability of skilful long-range streamflow forecasts, many water agencies still rely on simple resampled historical inflow sequences (stochastic scenarios) to plan operations over the coming year. We assess a recently developed forecasting system called forecast guided stochastic scenarios (FoGSS) as a skilful alternative to standard stochastic scenarios for the Australian continent. FoGSS uses climate forecasts from a coupled ocean-land-atmosphere prediction system, post-processed with the method of calibration, bridging and merging. Ensemble rainfall forecasts force a monthly rainfall-runoff model, while a staged hydrological error model quantifies and propagates hydrological forecast uncertainty through forecast lead times. FoGSS is able to generate ensemble streamflow forecasts in the form of monthly time series to a 12-month forecast horizon. FoGSS is tested on 63 Australian catchments that cover a wide range of climates, including 21 ephemeral rivers. In all perennial and many ephemeral catchments, FoGSS provides an effective alternative to resampled historical inflow sequences. FoGSS generally produces skilful forecasts at shorter lead times ( < 4 months), and transits to climatology-like forecasts at longer lead times. Forecasts are generally reliable and unbiased. However, FoGSS does not perform well in very dry catchments (catchments that experience zero flows more than half the time in some months), sometimes producing strongly negative forecast skill and poor reliability. We attempt to improve forecasts through the use of (i) ESP rainfall forcings, (ii) different rainfall-runoff models, and (iii) a Bayesian prior to encourage the error model to return climatology forecasts in months when the rainfall-runoff model performs poorly. Of these, the use of the prior offers the clearest benefit in very dry catchments, where it moderates strongly negative forecast skill and reduces bias in some instances. However, the prior does not remedy poor reliability in very dry catchments. Overall, FoGSS is an attractive alternative to historical inflow sequences in all but the driest catchments. We discuss ways in which forecast reliability in very dry catchments could be improved in future work.

  15. Total Electron Content forecast model over Australia

    NASA Astrophysics Data System (ADS)

    Bouya, Zahra; Terkildsen, Michael; Francis, Matthew

    Ionospheric perturbations can cause serious propagation errors in modern radio systems such as Global Navigation Satellite Systems (GNSS). Forecasting ionospheric parameters is helpful to estimate potential degradation of the performance of these systems. Our purpose is to establish an Australian Regional Total Electron Content (TEC) forecast model at IPS. In this work we present an approach based on the combined use of the Principal Component Analysis (PCA) and Artificial Neural Network (ANN) to predict future TEC values. PCA is used to reduce the dimensionality of the original TEC data by mapping it into its eigen-space. In this process the top- 5 eigenvectors are chosen to reflect the directions of the maximum variability. An ANN approach was then used for the multicomponent prediction. We outline the design of the ANN model with its parameters. A number of activation functions along with different spectral ranges and different numbers of Principal Components (PCs) were tested to find the PCA-ANN models reaching the best results. Keywords: GNSS, Space Weather, Regional, Forecast, PCA, ANN.

  16. Short-term load forecasting of power system

    NASA Astrophysics Data System (ADS)

    Xu, Xiaobin

    2017-05-01

    In order to ensure the scientific nature of optimization about power system, it is necessary to improve the load forecasting accuracy. Power system load forecasting is based on accurate statistical data and survey data, starting from the history and current situation of electricity consumption, with a scientific method to predict the future development trend of power load and change the law of science. Short-term load forecasting is the basis of power system operation and analysis, which is of great significance to unit combination, economic dispatch and safety check. Therefore, the load forecasting of the power system is explained in detail in this paper. First, we use the data from 2012 to 2014 to establish the partial least squares model to regression analysis the relationship between daily maximum load, daily minimum load, daily average load and each meteorological factor, and select the highest peak by observing the regression coefficient histogram Day maximum temperature, daily minimum temperature and daily average temperature as the meteorological factors to improve the accuracy of load forecasting indicators. Secondly, in the case of uncertain climate impact, we use the time series model to predict the load data for 2015, respectively, the 2009-2014 load data were sorted out, through the previous six years of the data to forecast the data for this time in 2015. The criterion for the accuracy of the prediction is the average of the standard deviations for the prediction results and average load for the previous six years. Finally, considering the climate effect, we use the BP neural network model to predict the data in 2015, and optimize the forecast results on the basis of the time series model.

  17. Flood Risk Assessment and Forecasting for the Ganges-Brahmaputra-Meghna River Basins

    NASA Astrophysics Data System (ADS)

    Hopson, T. M.; Priya, S.; Young, W.; Avasthi, A.; Clayton, T. D.; Brakenridge, G. R.; Birkett, C. M.; Riddle, E. E.; Broman, D.; Boehnert, J.; Sampson, K. M.; Kettner, A.; Singh, D.

    2017-12-01

    During the 2017 South Asia monsoon, torrential rains and catastrophic floods affected more than 45 million people, including 16 million children, across the Ganges-Brahmaputra-Meghna (GBM) basins. The basin is recognized as one of the world's most disaster-prone regions, with severe floods occurring almost annually causing extreme loss of life and property. In light of this vulnerability, the World Bank and collaborators have contributed toward reducing future flood impacts through recent developments to improve operational preparedness for such events, as well as efforts in more general preparedness and resilience building through planning based on detailed risk assessments. With respect to improved event-specific flood preparedness through operational warnings, we discuss a new forecasting system that provides probability-based flood forecasts developed for more than 85 GBM locations. Forecasts are available online, along with near-real-time data maps of rainfall (predicted and actual) and river levels. The new system uses multiple data sets and multiple models to enhance forecasting skill, and provides improved forecasts up to 16 days in advance of the arrival of high waters. These longer lead times provide the opportunity to save both lives and livelihoods. With sufficient advance notice, for example, farmers can harvest a threatened rice crop or move vulnerable livestock to higher ground. Importantly, the forecasts not only predict future water levels but indicate the level of confidence in each forecast. Knowing whether the probability of a danger-level flood is 10 percent or 90 percent helps people to decide what, if any, action to take. With respect to efforts in general preparedness and resilience building, we also present a recent flood risk assessment, and how it provides, for the first time, a numbers-based view of the impacts of different size floods across the Ganges basin. The findings help identify priority areas for tackling flood risks (for example, relocating levees, improving flood warning systems, or boosting overall economic resilience). The assessment includes the locations and numbers of people at risk, as well as the locations and value of buildings, roads and railways, and crops at risk. An accompanying atlas includes easy-to-use risk maps and tables for the Ganges basins.

  18. Demonstrating the Alaska Ocean Observing System in Prince William Sound

    NASA Astrophysics Data System (ADS)

    Schoch, G. Carl; McCammon, Molly

    2013-07-01

    The Alaska Ocean Observing System and the Oil Spill Recovery Institute developed a demonstration project over a 5 year period in Prince William Sound. The primary goal was to develop a quasi-operational system that delivers weather and ocean information in near real time to diverse user communities. This observing system now consists of atmospheric and oceanic sensors, and a new generation of computer models to numerically simulate and forecast weather, waves, and ocean circulation. A state of the art data management system provides access to these products from one internet portal at http://www.aoos.org. The project culminated in a 2009 field experiment that evaluated the observing system and performance of the model forecasts. Observations from terrestrial weather stations and weather buoys validated atmospheric circulation forecasts. Observations from wave gages on weather buoys validated forecasts of significant wave heights and periods. There was an emphasis on validation of surface currents forecasted by the ocean circulation model for oil spill response and search and rescue applications. During the 18 day field experiment a radar array mapped surface currents and drifting buoys were deployed. Hydrographic profiles at fixed stations, and by autonomous vehicles along transects, were made to acquire measurements through the water column. Terrestrial weather stations were the most reliable and least costly to operate, and in situ ocean sensors were more costly and considerably less reliable. The radar surface current mappers were the least reliable and most costly but provided the assimilation and validation data that most improved ocean circulation forecasts. We describe the setting of Prince William Sound and the various observational platforms and forecast models of the observing system, and discuss recommendations for future development.

  19. GEOS S2S-2_1: The GMAO new high resolution Seasonal Prediction System

    NASA Astrophysics Data System (ADS)

    Molod, A.; Vikhliaev, Y. V.; Hackert, E. C.; Kovach, R. M.; Zhao, B.; Cullather, R. I.; Marshak, J.; Borovikov, A.; Li, Z.; Barahona, D.; Andrews, L. C.; Chang, Y.; Schubert, S. D.; Koster, R. D.; Suarez, M.; Akella, S.

    2017-12-01

    A new version of the modeling and analysis system used to produce subseasonalto seasonal forecasts has just been released by the NASA/Goddard GlobalModeling and Assimilation Office. The new version runs at higher atmospheric resolution (approximately 1/2 degree globally), contains a subtantially improvedmodel description of the cryosphere, and includes additional interactive earth system model components (aerosol model). In addition, the Ocean data assimilationsystem has been replaced with a Local Ensemble Transform Kalman Filter.Here will describe the new system, along with the plans for the future (GEOS S2S-3_0) which will include a higher resolution ocean model and more interactive earth system model components (interactive vegetation, biomass burning from fires). We will alsopresent results from a free-running coupled simulation with the new system and resultsfrom a series of retrospective seasonal forecasts.Results from retrospective forecasts show significant improvements in surface temperaturesover much of the northern hemisphere and a much improved prediction of sea ice extent in bothhemispheres. The precipitation forecast skill is comparable to previous S2S systems, andthe only tradeoff is an increased "double ITCZ", which is expected as we go to higher atmospheric resolution.

  20. Financial Risk Reduction and Management of Water Reservoirs Using Forecasts: A Case for Pernambuco, Brazil

    NASA Astrophysics Data System (ADS)

    Kumar, I.; Josset, L.; e Silva, E. C.; Possas, J. M. C.; Asfora, M. C.; Lall, U.

    2017-12-01

    The financial health and sustainability, ensuring adequate supply, and adapting to climate are fundamental challenges faced by water managers. These challenges are worsened in semi-arid regions with socio-economic pressures, seasonal supply of water, and projected increase in intensity and frequency of droughts. Over time, probabilistic rainfall forecasts are improving and for water managers, it could be key in addressing the above challenges. Using forecasts can also help make informed decisions about future infrastructure. The study proposes a model to minimize cost of water supply (including cost of deficit) given ensemble forecasts. The model can be applied to seasonal to annual ensemble forecasts, to determine the least cost solution. The objective of the model is to evaluate the resiliency and cost associated to supplying water. A case study is conducted in one of the largest reservoirs (Jucazinho) in Pernambuco state, Brazil, and four other reservoirs, which provide water to nineteen municipalities in the Jucazinho system. The state has been in drought since 2011, and the Jucazinho reservoir, has been empty since January 2017. The importance of climate adaptation along with risk management and financial sustainability are important to the state as it is extremely vulnerable to droughts, and has seasonal streamflow. The objectives of the case study are first, to check if streamflow forecasts help reduce future supply costs by comparing k-nearest neighbor ensemble forecasts with a fixed release policy. Second, to determine the value of future infrastructure, a new source of supply from Rio São Francisco, considered to mitigate drought conditions. The study concludes that using forecasts improve the supply and financial sustainability of water, by reducing cost of failure. It also concludes that additional infrastructure can help reduce the risks of failure significantly, but does not guarantee supply during prolonged droughts like the one experienced currently.

  1. Improved Weather Forecasting for the Dynamic Scheduling System of the Green Bank Telescope

    NASA Astrophysics Data System (ADS)

    Henry, Kari; Maddalena, Ronald

    2018-01-01

    The Robert C Byrd Green Bank Telescope (GBT) uses a software system that dynamically schedules observations based on models of vertical weather forecasts produced by the National Weather Service (NWS). The NWS provides hourly forecasted values for ~60 layers that extend into the stratosphere over the observatory. We use models, recommended by the Radiocommunication Sector of the International Telecommunications Union, to derive the absorption coefficient in each layer for each hour in the NWS forecasts and for all frequencies over which the GBT has receivers, 0.1 to 115 GHz. We apply radiative transfer models to derive the opacity and the atmospheric contributions to the system temperature, thereby deriving forecasts applicable to scheduling radio observations for up to 10 days into the future. Additionally, the algorithms embedded in the data processing pipeline use historical values of the forecasted opacity to calibrate observations. Until recently, we have concentrated on predictions for high frequency (> 15 GHz) observing, as these need to be scheduled carefully around bad weather. We have been using simple models for the contribution of rain and clouds since we only schedule low-frequency observations under these conditions. In this project, we wanted to improve the scheduling of the GBT and data calibration at low frequencies by deriving better algorithms for clouds and rain. To address the limitation at low frequency, the observatory acquired a Radiometrics Corporation MP-1500A radiometer, which operates in 27 channels between 22 and 30 GHz. By comparing 16 months of measurements from the radiometer against forecasted system temperatures, we have confirmed that forecasted system temperatures are indistinguishable from those measured under good weather conditions. Small miss-calibrations of the radiometer data dominate the comparison. By using recalibrated radiometer measurements, we looked at bad weather days to derive better models for forecasting the contribution of clouds to the opacity and system temperatures. We will show how these revised algorithms should help us improve both data calibration and the accuracy of scheduling low-frequency observations.

  2. A national-scale seasonal hydrological forecast system: development and evaluation over Britain

    NASA Astrophysics Data System (ADS)

    Bell, Victoria A.; Davies, Helen N.; Kay, Alison L.; Brookshaw, Anca; Scaife, Adam A.

    2017-09-01

    Skilful winter seasonal predictions for the North Atlantic circulation and northern Europe have now been demonstrated and the potential for seasonal hydrological forecasting in the UK is now being explored. One of the techniques being used combines seasonal rainfall forecasts provided by operational weather forecast systems with hydrological modelling tools to provide estimates of seasonal mean river flows up to a few months ahead. The work presented here shows how spatial information contained in a distributed hydrological model typically requiring high-resolution (daily or better) rainfall data can be used to provide an initial condition for a much simpler forecast model tailored to use low-resolution monthly rainfall forecasts. Rainfall forecasts (hindcasts) from the GloSea5 model (1996 to 2009) are used to provide the first assessment of skill in these national-scale flow forecasts. The skill in the combined modelling system is assessed for different seasons and regions of Britain, and compared to what might be achieved using other approaches such as use of an ensemble of historical rainfall in a hydrological model, or a simple flow persistence forecast. The analysis indicates that only limited forecast skill is achievable for Spring and Summer seasonal hydrological forecasts; however, Autumn and Winter flows can be reasonably well forecast using (ensemble mean) rainfall forecasts based on either GloSea5 forecasts or historical rainfall (the preferred type of forecast depends on the region). Flow forecasts using ensemble mean GloSea5 rainfall perform most consistently well across Britain, and provide the most skilful forecasts overall at the 3-month lead time. Much of the skill (64 %) in the 1-month ahead seasonal flow forecasts can be attributed to the hydrological initial condition (particularly in regions with a significant groundwater contribution to flows), whereas for the 3-month ahead lead time, GloSea5 forecasts account for ˜ 70 % of the forecast skill (mostly in areas of high rainfall to the north and west) and only 30 % of the skill arises from hydrological memory (typically groundwater-dominated areas). Given the high spatial heterogeneity in typical patterns of UK rainfall and evaporation, future development of skilful spatially distributed seasonal forecasts could lead to substantial improvements in seasonal flow forecast capability, potentially benefitting practitioners interested in predicting hydrological extremes, not only in the UK but also across Europe.

  3. Wind Energy Management System Integration Project Incorporating Wind Generation and Load Forecast Uncertainties into Power Grid Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makarov, Yuri V.; Huang, Zhenyu; Etingov, Pavel V.

    2010-09-01

    The power system balancing process, which includes the scheduling, real time dispatch (load following) and regulation processes, is traditionally based on deterministic models. Since the conventional generation needs time to be committed and dispatched to a desired megawatt level, the scheduling and load following processes use load and wind power production forecasts to achieve future balance between the conventional generation and energy storage on the one side, and system load, intermittent resources (such as wind and solar generation) and scheduled interchange on the other side. Although in real life the forecasting procedures imply some uncertainty around the load and windmore » forecasts (caused by forecast errors), only their mean values are actually used in the generation dispatch and commitment procedures. Since the actual load and intermittent generation can deviate from their forecasts, it becomes increasingly unclear (especially, with the increasing penetration of renewable resources) whether the system would be actually able to meet the conventional generation requirements within the look-ahead horizon, what the additional balancing efforts would be needed as we get closer to the real time, and what additional costs would be incurred by those needs. In order to improve the system control performance characteristics, maintain system reliability, and minimize expenses related to the system balancing functions, it becomes necessary to incorporate the predicted uncertainty ranges into the scheduling, load following, and, in some extent, into the regulation processes. It is also important to address the uncertainty problem comprehensively, by including all sources of uncertainty (load, intermittent generation, generators’ forced outages, etc.) into consideration. All aspects of uncertainty such as the imbalance size (which is the same as capacity needed to mitigate the imbalance) and generation ramping requirement must be taken into account. The latter unique features make this work a significant step forward toward the objective of incorporating of wind, solar, load, and other uncertainties into power system operations. In this report, a new methodology to predict the uncertainty ranges for the required balancing capacity, ramping capability and ramp duration is presented. Uncertainties created by system load forecast errors, wind and solar forecast errors, generation forced outages are taken into account. The uncertainty ranges are evaluated for different confidence levels of having the actual generation requirements within the corresponding limits. The methodology helps to identify system balancing reserve requirement based on a desired system performance levels, identify system “breaking points”, where the generation system becomes unable to follow the generation requirement curve with the user-specified probability level, and determine the time remaining to these potential events. The approach includes three stages: statistical and actual data acquisition, statistical analysis of retrospective information, and prediction of future grid balancing requirements for specified time horizons and confidence intervals. Assessment of the capacity and ramping requirements is performed using a specially developed probabilistic algorithm based on a histogram analysis incorporating all sources of uncertainty and parameters of a continuous (wind forecast and load forecast errors) and discrete (forced generator outages and failures to start up) nature. Preliminary simulations using California Independent System Operator (California ISO) real life data have shown the effectiveness of the proposed approach. A tool developed based on the new methodology described in this report will be integrated with the California ISO systems. Contractual work is currently in place to integrate the tool with the AREVA EMS system.« less

  4. An online tool for Operational Probabilistic Drought Forecasting System (OPDFS): a Statistical-Dynamical Framework

    NASA Astrophysics Data System (ADS)

    Zarekarizi, M.; Moradkhani, H.; Yan, H.

    2017-12-01

    The Operational Probabilistic Drought Forecasting System (OPDFS) is an online tool recently developed at Portland State University for operational agricultural drought forecasting. This is an integrated statistical-dynamical framework issuing probabilistic drought forecasts monthly for the lead times of 1, 2, and 3 months. The statistical drought forecasting method utilizes copula functions in order to condition the future soil moisture values on the antecedent states. Due to stochastic nature of land surface properties, the antecedent soil moisture states are uncertain; therefore, data assimilation system based on Particle Filtering (PF) is employed to quantify the uncertainties associated with the initial condition of the land state, i.e. soil moisture. PF assimilates the satellite soil moisture data to Variable Infiltration Capacity (VIC) land surface model and ultimately updates the simulated soil moisture. The OPDFS builds on the NOAA's seasonal drought outlook by offering drought probabilities instead of qualitative ordinal categories and provides the user with the probability maps associated with a particular drought category. A retrospective assessment of the OPDFS showed that the forecasting of the 2012 Great Plains and 2014 California droughts were possible at least one month in advance. The OPDFS offers a timely assistance to water managers, stakeholders and decision-makers to develop resilience against uncertain upcoming droughts.

  5. Forecasts of county-level land uses under three future scenarios: a technical document supporting the Forest Service 2010 RPA Assessment

    Treesearch

    David N. Wear

    2011-01-01

    Accurately forecasting future forest conditions and the implications for ecosystem services depends on understanding land use dynamics. In support of the 2010 Renewable Resources Planning Act (RPA) Assessment, we forecast changes in land uses for the coterminous United States in response to three scenarios. Our land use models forecast urbanization in response to the...

  6. Optimal Day-Ahead Scheduling of a Hybrid Electric Grid Using Weather Forecasts

    DTIC Science & Technology

    2013-12-01

    ahead scheduling, Weather forecast , Wind power , Photovoltaic Power 15. NUMBER OF PAGES 107 16. PRICE CODE 17. SECURITY CLASSIFICATION OF...cost can be reached by accurately anticipating the future renewable power productions. This thesis suggests the use of weather forecasts to establish...reached by accurately anticipating the future renewable power productions. This thesis suggests the use of weather forecasts to establish day-ahead

  7. Components of a Model for Forecasting Future Status of Selected Social Indicators. Department of Education Project on Social Indicators. Technical Report No. 3.

    ERIC Educational Resources Information Center

    Collazo, Andres; And Others

    Since a great number of variables influence future educational outcomes, forecasting possible trends is a complex task. One such model, the cross-impact matrix, has been developed. The use of this matrix in forecasting future values of social indicators of educational outcomes is described. Variables associated with educational outcomes are used…

  8. A study of the economic benefits of meteorological satellite data

    NASA Technical Reports Server (NTRS)

    Suchman, D.; Auvine, B. A.; Hinton, B. H.

    1980-01-01

    Satellite data, while most useful in data poor areas, serves to fine tune forecasts in data rich areas. It consequently has a resulting significant economic benefit because, as previously stated, even one improved forecast per client per year can save each client thousands of dollars. Multiply this by several hundred clients and the dollar savings are sizeable. The great educational value which experience with satellite data gives undoubtedly leads to improved forecasts. Any type of future satellite data delivery system should take into account the needs and facilities of the user community to make it most useful.

  9. Wave ensemble forecast in the Western Mediterranean Sea, application to an early warning system.

    NASA Astrophysics Data System (ADS)

    Pallares, Elena; Hernandez, Hector; Moré, Jordi; Espino, Manuel; Sairouni, Abdel

    2015-04-01

    The Western Mediterranean Sea is a highly heterogeneous and variable area, as is reflected on the wind field, the current field, and the waves, mainly in the first kilometers offshore. As a result of this variability, the wave forecast in these regions is quite complicated to perform, usually with some accuracy problems during energetic storm events. Moreover, is in these areas where most of the economic activities take part, including fisheries, sailing, tourism, coastal management and offshore renewal energy platforms. In order to introduce an indicator of the probability of occurrence of the different sea states and give more detailed information of the forecast to the end users, an ensemble wave forecast system is considered. The ensemble prediction systems have already been used in the last decades for the meteorological forecast; to deal with the uncertainties of the initial conditions and the different parametrizations used in the models, which may introduce some errors in the forecast, a bunch of different perturbed meteorological simulations are considered as possible future scenarios and compared with the deterministic forecast. In the present work, the SWAN wave model (v41.01) has been implemented for the Western Mediterranean sea, forced with wind fields produced by the deterministic Global Forecast System (GFS) and Global Ensemble Forecast System (GEFS). The wind fields includes a deterministic forecast (also named control), between 11 and 21 ensemble members, and some intelligent member obtained from the ensemble, as the mean of all the members. Four buoys located in the study area, moored in coastal waters, have been used to validate the results. The outputs include all the time series, with a forecast horizon of 8 days and represented in spaghetti diagrams, the spread of the system and the probability at different thresholds. The main goal of this exercise is to be able to determine the degree of the uncertainty of the wave forecast, meaningful between the 5th and the 8th day of the prediction. The information obtained is then included in an early warning system, designed in the framework of the European project iCoast (ECHO/SUB/2013/661009) with the aim of set alarms in coastal areas depending on the wave conditions, the sea level, the flooding and the run up in the coast.

  10. Evaluation and economic value of winter weather forecasts

    NASA Astrophysics Data System (ADS)

    Snyder, Derrick W.

    State and local highway agencies spend millions of dollars each year to deploy winter operation teams to plow snow and de-ice roadways. Accurate and timely weather forecast information is critical for effective decision making. Students from Purdue University partnered with the Indiana Department of Transportation to create an experimental winter weather forecast service for the 2012-2013 winter season in Indiana to assist in achieving these goals. One forecast product, an hourly timeline of winter weather hazards produced daily, was evaluated for quality and economic value. Verification of the forecasts was performed with data from the Rapid Refresh numerical weather model. Two objective verification criteria were developed to evaluate the performance of the timeline forecasts. Using both criteria, the timeline forecasts had issues with reliability and discrimination, systematically over-forecasting the amount of winter weather that was observed while also missing significant winter weather events. Despite these quality issues, the forecasts still showed significant, but varied, economic value compared to climatology. Economic value of the forecasts was estimated to be 29.5 million or 4.1 million, depending on the verification criteria used. Limitations of this valuation system are discussed and a framework is developed for more thorough studies in the future.

  11. A preliminary study of the statistical analyses and sampling strategies associated with the integration of remote sensing capabilities into the current agricultural crop forecasting system

    NASA Technical Reports Server (NTRS)

    Sand, F.; Christie, R.

    1975-01-01

    Extending the crop survey application of remote sensing from small experimental regions to state and national levels requires that a sample of agricultural fields be chosen for remote sensing of crop acreage, and that a statistical estimate be formulated with measurable characteristics. The critical requirements for the success of the application are reviewed in this report. The problem of sampling in the presence of cloud cover is discussed. Integration of remotely sensed information about crops into current agricultural crop forecasting systems is treated on the basis of the USDA multiple frame survey concepts, with an assumed addition of a new frame derived from remote sensing. Evolution of a crop forecasting system which utilizes LANDSAT and future remote sensing systems is projected for the 1975-1990 time frame.

  12. Technical note: Combining quantile forecasts and predictive distributions of streamflows

    NASA Astrophysics Data System (ADS)

    Bogner, Konrad; Liechti, Katharina; Zappa, Massimiliano

    2017-11-01

    The enhanced availability of many different hydro-meteorological modelling and forecasting systems raises the issue of how to optimally combine this great deal of information. Especially the usage of deterministic and probabilistic forecasts with sometimes widely divergent predicted future streamflow values makes it even more complicated for decision makers to sift out the relevant information. In this study multiple streamflow forecast information will be aggregated based on several different predictive distributions, and quantile forecasts. For this combination the Bayesian model averaging (BMA) approach, the non-homogeneous Gaussian regression (NGR), also known as the ensemble model output statistic (EMOS) techniques, and a novel method called Beta-transformed linear pooling (BLP) will be applied. By the help of the quantile score (QS) and the continuous ranked probability score (CRPS), the combination results for the Sihl River in Switzerland with about 5 years of forecast data will be compared and the differences between the raw and optimally combined forecasts will be highlighted. The results demonstrate the importance of applying proper forecast combination methods for decision makers in the field of flood and water resource management.

  13. A clustering-based fuzzy wavelet neural network model for short-term load forecasting.

    PubMed

    Kodogiannis, Vassilis S; Amina, Mahdi; Petrounias, Ilias

    2013-10-01

    Load forecasting is a critical element of power system operation, involving prediction of the future level of demand to serve as the basis for supply and demand planning. This paper presents the development of a novel clustering-based fuzzy wavelet neural network (CB-FWNN) model and validates its prediction on the short-term electric load forecasting of the Power System of the Greek Island of Crete. The proposed model is obtained from the traditional Takagi-Sugeno-Kang fuzzy system by replacing the THEN part of fuzzy rules with a "multiplication" wavelet neural network (MWNN). Multidimensional Gaussian type of activation functions have been used in the IF part of the fuzzyrules. A Fuzzy Subtractive Clustering scheme is employed as a pre-processing technique to find out the initial set and adequate number of clusters and ultimately the number of multiplication nodes in MWNN, while Gaussian Mixture Models with the Expectation Maximization algorithm are utilized for the definition of the multidimensional Gaussians. The results corresponding to the minimum and maximum power load indicate that the proposed load forecasting model provides significantly accurate forecasts, compared to conventional neural networks models.

  14. Measuring and forecasting great tsunamis by GNSS-based vertical positioning of multiple ships

    NASA Astrophysics Data System (ADS)

    Inazu, D.; Waseda, T.; Hibiya, T.; Ohta, Y.

    2016-12-01

    Vertical ship positioning by the Global Navigation Satellite System (GNSS) was investigated for measuring and forecasting great tsunamis. We first examined existing GNSS vertical position data of a navigating vessel. The result indicated that by using the kinematic Precise Point Positioning (PPP) method, tsunamis greater than 10^-1 m can be detected from the vertical position of the ship. Based on Automatic Identification System (AIS) data, tens of cargo ships and tankers are regularly identified navigating over the Nankai Trough, southwest of Japan. We then assumed that a future Nankai Trough great earthquake tsunami will be observed by ships at locations based on AIS data. The tsunami forecast capability by these virtual offshore tsunami measurements was examined. A conventional Green's function based inversion was used to determine the initial tsunami height distribution. Tsunami forecast tests over the Nankai Trough were carried out using simulated tsunami data of the vertical positions of multiple cargo ships/tankers on a certain day, and of the currently operating observations by deep-sea pressure gauges and Global Positioning System (GPS) buoys. The forecast capability of ship-based tsunami height measurements alone was shown to be comparable to or better than that using the existing offshore observations.

  15. Combining a Spatial Model and Demand Forecasts to Map Future Surface Coal Mining in Appalachia

    PubMed Central

    Strager, Michael P.; Strager, Jacquelyn M.; Evans, Jeffrey S.; Dunscomb, Judy K.; Kreps, Brad J.; Maxwell, Aaron E.

    2015-01-01

    Predicting the locations of future surface coal mining in Appalachia is challenging for a number of reasons. Economic and regulatory factors impact the coal mining industry and forecasts of future coal production do not specifically predict changes in location of future coal production. With the potential environmental impacts from surface coal mining, prediction of the location of future activity would be valuable to decision makers. The goal of this study was to provide a method for predicting future surface coal mining extents under changing economic and regulatory forecasts through the year 2035. This was accomplished by integrating a spatial model with production demand forecasts to predict (1 km2) gridded cell size land cover change. Combining these two inputs was possible with a ratio which linked coal extraction quantities to a unit area extent. The result was a spatial distribution of probabilities allocated over forecasted demand for the Appalachian region including northern, central, southern, and eastern Illinois coal regions. The results can be used to better plan for land use alterations and potential cumulative impacts. PMID:26090883

  16. Future sea ice conditions and weather forecasts in the Arctic: Implications for Arctic shipping.

    PubMed

    Gascard, Jean-Claude; Riemann-Campe, Kathrin; Gerdes, Rüdiger; Schyberg, Harald; Randriamampianina, Roger; Karcher, Michael; Zhang, Jinlun; Rafizadeh, Mehrad

    2017-12-01

    The ability to forecast sea ice (both extent and thickness) and weather conditions are the major factors when it comes to safe marine transportation in the Arctic Ocean. This paper presents findings focusing on sea ice and weather prediction in the Arctic Ocean for navigation purposes, in particular along the Northeast Passage. Based on comparison with the observed sea ice concentrations for validation, the best performing Earth system models from the Intergovernmental Panel on Climate Change (IPCC) program (CMIP5-Coupled Model Intercomparison Project phase 5) were selected to provide ranges of potential future sea ice conditions. Our results showed that, despite a general tendency toward less sea ice cover in summer, internal variability will still be large and shipping along the Northeast Passage might still be hampered by sea ice blocking narrow passages. This will make sea ice forecasts on shorter time and space scales and Arctic weather prediction even more important.

  17. DEFENDER: Detecting and Forecasting Epidemics Using Novel Data-Analytics for Enhanced Response

    PubMed Central

    Simmie, Donal; Hankin, Chris; Gillard, Joseph

    2016-01-01

    In recent years social and news media have increasingly been used to explain patterns in disease activity and progression. Social media data, principally from the Twitter network, has been shown to correlate well with official disease case counts. This fact has been exploited to provide advance warning of outbreak detection, forecasting of disease levels and the ability to predict the likelihood of individuals developing symptoms. In this paper we introduce DEFENDER, a software system that integrates data from social and news media and incorporates algorithms for outbreak detection, situational awareness and forecasting. As part of this system we have developed a technique for creating a location network for any country or region based purely on Twitter data. We also present a disease nowcasting (forecasting the current but still unknown level) approach which leverages counts from multiple symptoms, which was found to improve the nowcasting accuracy by 37 percent over a model that used only previous case data. Finally we attempt to forecast future levels of symptom activity based on observed user movement on Twitter, finding a moderate gain of 5 percent over a time series forecasting model. PMID:27192059

  18. An Overview of the National Weather Service National Water Model

    NASA Astrophysics Data System (ADS)

    Cosgrove, B.; Gochis, D.; Clark, E. P.; Cui, Z.; Dugger, A. L.; Feng, X.; Karsten, L. R.; Khan, S.; Kitzmiller, D.; Lee, H. S.; Liu, Y.; McCreight, J. L.; Newman, A. J.; Oubeidillah, A.; Pan, L.; Pham, C.; Salas, F.; Sampson, K. M.; Sood, G.; Wood, A.; Yates, D. N.; Yu, W.

    2016-12-01

    The National Weather Service (NWS) Office of Water Prediction (OWP), in conjunction with the National Center for Atmospheric Research (NCAR) and the NWS National Centers for Environmental Prediction (NCEP) recently implemented version 1.0 of the National Water Model (NWM) into operations. This model is an hourly cycling uncoupled analysis and forecast system that provides streamflow for 2.7 million river reaches and other hydrologic information on 1km and 250m grids. It will provide complementary hydrologic guidance at current NWS river forecast locations and significantly expand guidance coverage and type in underserved locations. The core of this system is the NCAR-supported community Weather Research and Forecasting (WRF)-Hydro hydrologic model. It ingests forcing from a variety of sources including Multi-Sensor Multi-Radar (MRMS) radar-gauge observed precipitation data and High Resolution Rapid Refresh (HRRR), Rapid Refresh (RAP), Global Forecast System (GFS) and Climate Forecast System (CFS) forecast data. WRF-Hydro is configured to use the Noah-Multi Parameterization (Noah-MP) Land Surface Model (LSM) to simulate land surface processes. Separate water routing modules perform diffusive wave surface routing and saturated subsurface flow routing on a 250m grid, and Muskingum-Cunge channel routing down National Hydrogaphy Dataset Plus V2 (NHDPlusV2) stream reaches. River analyses and forecasts are provided across a domain encompassing the Continental United States (CONUS) and hydrologically contributing areas, while land surface output is available on a larger domain that extends beyond the CONUS into Canada and Mexico (roughly from latitude 19N to 58N). The system includes an analysis and assimilation configuration along with three forecast configurations. These include a short-range 15 hour deterministic forecast, a medium-Range 10 day deterministic forecast and a long-range 30 day 16-member ensemble forecast. United Sates Geologic Survey (USGS) streamflow observations are assimilated into the analysis and assimilation configuration, and all four configurations benefit from the inclusion of 1,260 reservoirs. An overview of the National Water Model will be given, along with information on ongoing evaluation activities and plans for future NWM enhancements.

  19. Toward Sub-seasonal to Seasonal Arctic Sea Ice Forecasting Using the Regional Arctic System Model (RASM)

    NASA Astrophysics Data System (ADS)

    Kamal, S.; Maslowski, W.; Roberts, A.; Osinski, R.; Cassano, J. J.; Seefeldt, M. W.

    2017-12-01

    The Regional Arctic system model has been developed and used to advance the current state of Arctic modeling and increase the skill of sea ice forecast. RASM is a fully coupled, limited-area model that includes the atmosphere, ocean, sea ice, land hydrology and runoff routing components and the flux coupler to exchange information among them. Boundary conditions are derived from NCEP Climate Forecasting System Reanalyses (CFSR) or Era Iterim (ERA-I) for hindcast simulations or from NCEP Coupled Forecast System Model version 2 (CFSv2) for seasonal forecasts. We have used RASM to produce sea ice forecasts for September 2016 and 2017, in contribution to the Sea Ice Outlook (SIO) of the Sea Ice Prediction Network (SIPN). Each year, we produced three SIOs for the September minimum, initialized on June 1, July 1 and August 1. In 2016, predictions used a simple linear regression model to correct for systematic biases and included the mean September sea ice extent, the daily minimum and the week of the minimum. In 2017, we produced a 12-member ensemble on June 1 and July 1, and 28-member ensemble August 1. The predictions of September 2017 included the pan-Arctic and regional Alaskan sea ice extent, daily and monthly mean pan-Arctic maps of sea ice probability, concentration and thickness. No bias correction was applied to the 2017 forecasts. Finally, we will also discuss future plans for RASM forecasts, which include increased resolution for model components, ecosystem predictions with marine biogeochemistry extensions (mBGC) to the ocean and sea ice components, and feasibility of optional boundary conditions using the Navy Global Environmental Model (NAVGEM).

  20. First Results of the Regional Earthquake Likelihood Models Experiment

    USGS Publications Warehouse

    Schorlemmer, D.; Zechar, J.D.; Werner, M.J.; Field, E.H.; Jackson, D.D.; Jordan, T.H.

    2010-01-01

    The ability to successfully predict the future behavior of a system is a strong indication that the system is well understood. Certainly many details of the earthquake system remain obscure, but several hypotheses related to earthquake occurrence and seismic hazard have been proffered, and predicting earthquake behavior is a worthy goal and demanded by society. Along these lines, one of the primary objectives of the Regional Earthquake Likelihood Models (RELM) working group was to formalize earthquake occurrence hypotheses in the form of prospective earthquake rate forecasts in California. RELM members, working in small research groups, developed more than a dozen 5-year forecasts; they also outlined a performance evaluation method and provided a conceptual description of a Testing Center in which to perform predictability experiments. Subsequently, researchers working within the Collaboratory for the Study of Earthquake Predictability (CSEP) have begun implementing Testing Centers in different locations worldwide, and the RELM predictability experiment-a truly prospective earthquake prediction effort-is underway within the U. S. branch of CSEP. The experiment, designed to compare time-invariant 5-year earthquake rate forecasts, is now approximately halfway to its completion. In this paper, we describe the models under evaluation and present, for the first time, preliminary results of this unique experiment. While these results are preliminary-the forecasts were meant for an application of 5 years-we find interesting results: most of the models are consistent with the observation and one model forecasts the distribution of earthquakes best. We discuss the observed sample of target earthquakes in the context of historical seismicity within the testing region, highlight potential pitfalls of the current tests, and suggest plans for future revisions to experiments such as this one. ?? 2010 The Author(s).

  1. First Results of the Regional Earthquake Likelihood Models Experiment

    NASA Astrophysics Data System (ADS)

    Schorlemmer, Danijel; Zechar, J. Douglas; Werner, Maximilian J.; Field, Edward H.; Jackson, David D.; Jordan, Thomas H.

    2010-08-01

    The ability to successfully predict the future behavior of a system is a strong indication that the system is well understood. Certainly many details of the earthquake system remain obscure, but several hypotheses related to earthquake occurrence and seismic hazard have been proffered, and predicting earthquake behavior is a worthy goal and demanded by society. Along these lines, one of the primary objectives of the Regional Earthquake Likelihood Models (RELM) working group was to formalize earthquake occurrence hypotheses in the form of prospective earthquake rate forecasts in California. RELM members, working in small research groups, developed more than a dozen 5-year forecasts; they also outlined a performance evaluation method and provided a conceptual description of a Testing Center in which to perform predictability experiments. Subsequently, researchers working within the Collaboratory for the Study of Earthquake Predictability (CSEP) have begun implementing Testing Centers in different locations worldwide, and the RELM predictability experiment—a truly prospective earthquake prediction effort—is underway within the U.S. branch of CSEP. The experiment, designed to compare time-invariant 5-year earthquake rate forecasts, is now approximately halfway to its completion. In this paper, we describe the models under evaluation and present, for the first time, preliminary results of this unique experiment. While these results are preliminary—the forecasts were meant for an application of 5 years—we find interesting results: most of the models are consistent with the observation and one model forecasts the distribution of earthquakes best. We discuss the observed sample of target earthquakes in the context of historical seismicity within the testing region, highlight potential pitfalls of the current tests, and suggest plans for future revisions to experiments such as this one.

  2. Stakeholders' perceptions of social-ecological systems and the information they use in the management of freshwater resources in Guanacaste, Costa Rica

    NASA Astrophysics Data System (ADS)

    Wong-Parodi, G.; Babcock, M.; Small, M.; Grossmann, I.

    2014-12-01

    Climate change is expected to increase the chances of drought, and shift precipitation patterns in seasonally dry places. In some places, the heuristics or "rules of thumb" that stakeholders use may no longer be reliable for the effective management of water resources. This can have dire consequences for social and ecological systems, especially in developing countries. Scientists and policymakers view climate forecasts as one way for improving informed decision-making about freshwater resources. However, successful communication requires that stakeholders understand and are able to use such information. To develop effective communications, it is critical to characterize stakeholders' understanding of social-ecological systems as related to water, the type of information used to inform management decisions, and the perceived value of forecast information. To achieve our objective, we conducted 40 semi-structured interviews with farmers, water managers, hydroelectric utilities, local climate experts, tourism industry representatives, and members of the general public in the semi-arid region of Guanacaste, Costa Rica. People believe that they have enough water at this time however they believe that the region will become much drier in the future, which they attribute to climate change, El Nino/La Nina, and deforestation. With respect to the value of forecast information, we found that the scale of decision-making (e.g., irrigation district versus small farmer) was associated with a stakeholders' level of "technical sophistication" and trust in government. In future work, we will evaluate the prevalence of these beliefs and practices in the larger population in order to identify effective ways to tailor the presentation of forecast information for different audiences. This work provides insight into the development of forecast communications to improve the management of resources in development countries in the face of a changing climate.

  3. A Study on Predictive Analytics Application to Ship Machinery Maintenance

    DTIC Science & Technology

    2013-09-01

    Looking at the nature of the time series forecasting method , it would be better applied to offline analysis . The application for real- time online...other system attributes in future. Two techniques of statistical analysis , mainly time series models and cumulative sum control charts, are discussed in...statistical tool employed for the two techniques of statistical analysis . Both time series forecasting as well as CUSUM control charts are shown to be

  4. Projected electric power demands for the Potomac Electric Power Company

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, J.W.

    1975-07-01

    Included are chapters on the background of the Potomac Electric Power Company, forecasting future power demand, demand modeling, accuracy of market predictions, and total power system requirements. (DG)

  5. Using Flow Charts to Visualize the Decision-Making Process in Space Weather Forecasting

    NASA Astrophysics Data System (ADS)

    Aung, M. T. Y.; Myat, T.; Zheng, Y.; Mays, M. L.; Ngwira, C.; Damas, M. C.

    2016-12-01

    Our society today relies heavily on technological systems such as satellites, navigation systems, power grids and aviation. These systems are very sensitive to space weather disturbances. When Earth-directed space weather driven by the Sun arrives at the Earth, it causes changes to the Earth's radiation environment and the magnetosphere. Strong disturbances in the magnetosphere of the Earth are responsible for geomagnetic storms that can last from hours to days depending on strength of storms. Geomagnetic storms can severely impact critical infrastructure on Earth, such as the electric power grid, and Solar Energetic Particles that can endanger life in outer space. How can we lessen these adverse effects? They can be lessened through the early warning signals sent by space weather forecasters before CME or high-speed stream arrives. A space weather forecaster's duty is to send predicted notifications to high-tech industries and NASA missions so that they could take extra measures for protection. NASA space weather forecasters make prediction decisions by following certain steps and processes from the time an event occurs at the sun all the way to the impact locations. However, there has never been a tool that helps these forecasters visualize the decision process until now. A flow chart is created to help forecasters visualize the decision process. This flow chart provides basic knowledge of space weather and can be used to train future space weather forecasters. It also helps to cut down the training period and increase consistency in forecasting. The flow chart is also a great reference for people who are already familiar with space weather.

  6. Efficient ensemble forecasting of marine ecology with clustered 1D models and statistical lateral exchange: application to the Red Sea

    NASA Astrophysics Data System (ADS)

    Dreano, Denis; Tsiaras, Kostas; Triantafyllou, George; Hoteit, Ibrahim

    2017-07-01

    Forecasting the state of large marine ecosystems is important for many economic and public health applications. However, advanced three-dimensional (3D) ecosystem models, such as the European Regional Seas Ecosystem Model (ERSEM), are computationally expensive, especially when implemented within an ensemble data assimilation system requiring several parallel integrations. As an alternative to 3D ecological forecasting systems, we propose to implement a set of regional one-dimensional (1D) water-column ecological models that run at a fraction of the computational cost. The 1D model domains are determined using a Gaussian mixture model (GMM)-based clustering method and satellite chlorophyll-a (Chl-a) data. Regionally averaged Chl-a data is assimilated into the 1D models using the singular evolutive interpolated Kalman (SEIK) filter. To laterally exchange information between subregions and improve the forecasting skills, we introduce a new correction step to the assimilation scheme, in which we assimilate a statistical forecast of future Chl-a observations based on information from neighbouring regions. We apply this approach to the Red Sea and show that the assimilative 1D ecological models can forecast surface Chl-a concentration with high accuracy. The statistical assimilation step further improves the forecasting skill by as much as 50%. This general approach of clustering large marine areas and running several interacting 1D ecological models is very flexible. It allows many combinations of clustering, filtering and regression technics to be used and can be applied to build efficient forecasting systems in other large marine ecosystems.

  7. Development of demand forecasting tool for natural resources recouping from municipal solid waste.

    PubMed

    Zaman, Atiq Uz; Lehmann, Steffen

    2013-10-01

    Sustainable waste management requires an integrated planning and design strategy for reliable forecasting of waste generation, collection, recycling, treatment and disposal for the successful development of future residential precincts. The success of the future development and management of waste relies to a high extent on the accuracy of the prediction and on a comprehensive understanding of the overall waste management systems. This study defies the traditional concepts of waste, in which waste was considered as the last phase of production and services, by putting forward the new concept of waste as an intermediate phase of production and services. The study aims to develop a demand forecasting tool called 'zero waste index' (ZWI) for measuring the natural resources recouped from municipal solid waste. The ZWI (ZWI demand forecasting tool) quantifies the amount of virgin materials recovered from solid waste and subsequently reduces extraction of natural resources. In addition, the tool estimates the potential amount of energy, water and emissions avoided or saved by the improved waste management system. The ZWI is tested in a case study of waste management systems in two developed cities: Adelaide (Australia) and Stockholm (Sweden). The ZWI of waste management systems in Adelaide and Stockholm is 0.33 and 0.17 respectively. The study also enumerates per capita energy savings of 2.9 GJ and 2.83 GJ, greenhouse gas emissions reductions of 0.39 tonnes (CO2e) and 0.33 tonnes (CO2e), as well as water savings of 2.8 kL and 0.92 kL in Adelaide and Stockholm respectively.

  8. Performance assessment of a Bayesian Forecasting System (BFS) for real-time flood forecasting

    NASA Astrophysics Data System (ADS)

    Biondi, D.; De Luca, D. L.

    2013-02-01

    SummaryThe paper evaluates, for a number of flood events, the performance of a Bayesian Forecasting System (BFS), with the aim of evaluating total uncertainty in real-time flood forecasting. The predictive uncertainty of future streamflow is estimated through the Bayesian integration of two separate processors. The former evaluates the propagation of input uncertainty on simulated river discharge, the latter computes the hydrological uncertainty of actual river discharge associated with all other possible sources of error. A stochastic model and a distributed rainfall-runoff model were assumed, respectively, for rainfall and hydrological response simulations. A case study was carried out for a small basin in the Calabria region (southern Italy). The performance assessment of the BFS was performed with adequate verification tools suited for probabilistic forecasts of continuous variables such as streamflow. Graphical tools and scalar metrics were used to evaluate several attributes of the forecast quality of the entire time-varying predictive distributions: calibration, sharpness, accuracy, and continuous ranked probability score (CRPS). Besides the overall system, which incorporates both sources of uncertainty, other hypotheses resulting from the BFS properties were examined, corresponding to (i) a perfect hydrological model; (ii) a non-informative rainfall forecast for predicting streamflow; and (iii) a perfect input forecast. The results emphasize the importance of using different diagnostic approaches to perform comprehensive analyses of predictive distributions, to arrive at a multifaceted view of the attributes of the prediction. For the case study, the selected criteria revealed the interaction of the different sources of error, in particular the crucial role of the hydrological uncertainty processor when compensating, at the cost of wider forecast intervals, for the unreliable and biased predictive distribution resulting from the Precipitation Uncertainty Processor.

  9. Advanced, Cost-Based Indices for Forecasting the Generation of Photovoltaic Power

    NASA Astrophysics Data System (ADS)

    Bracale, Antonio; Carpinelli, Guido; Di Fazio, Annarita; Khormali, Shahab

    2014-01-01

    Distribution systems are undergoing significant changes as they evolve toward the grids of the future, which are known as smart grids (SGs). The perspective of SGs is to facilitate large-scale penetration of distributed generation using renewable energy sources (RESs), encourage the efficient use of energy, reduce systems' losses, and improve the quality of power. Photovoltaic (PV) systems have become one of the most promising RESs due to the expected cost reduction and the increased efficiency of PV panels and interfacing converters. The ability to forecast power-production information accurately and reliably is of primary importance for the appropriate management of an SG and for making decisions relative to the energy market. Several forecasting methods have been proposed, and many indices have been used to quantify the accuracy of the forecasts of PV power production. Unfortunately, the indices that have been used have deficiencies and usually do not directly account for the economic consequences of forecasting errors in the framework of liberalized electricity markets. In this paper, advanced, more accurate indices are proposed that account directly for the economic consequences of forecasting errors. The proposed indices also were compared to the most frequently used indices in order to demonstrate their different, improved capability. The comparisons were based on the results obtained using a forecasting method based on an artificial neural network. This method was chosen because it was deemed to be one of the most promising methods available due to its capability for forecasting PV power. Numerical applications also are presented that considered an actual PV plant to provide evidence of the forecasting performances of all of the indices that were considered.

  10. An investigation of the role of current and future remote sensing data systems in numerical meteorology

    NASA Technical Reports Server (NTRS)

    Diak, George R.; Smith, William L.

    1992-01-01

    A flexible system for performing observing system simulation experiments which made contributions to meteorology across all elements of the observing system simulation experiment (OSSE) components was developed. Future work will seek better understanding of the links between satellite-measured radiation and radiative transfer in the clear, cloudy and precipitating atmosphere and investigate how that understanding might be applied to improve the depiction of the initial state and the treatment of physical processes in forecast models of the atmosphere.

  11. Ecological Forecasting in the Applied Sciences Program and Input to the Decadal Survey

    NASA Technical Reports Server (NTRS)

    Skiles, Joseph

    2015-01-01

    Ecological forecasting uses knowledge of physics, ecology and physiology to predict how ecosystems will change in the future in response to environmental factors. Further, Ecological Forecasting employs observations and models to predict the effects of environmental change on ecosystems. In doing so, it applies information from the physical, biological, and social sciences and promotes a scientific synthesis across the domains of physics, geology, chemistry, biology, and psychology. The goal is reliable forecasts that allow decision makers access to science-based tools in order to project changes in living systems. The next decadal survey will direct the development Earth Observation sensors and satellites for the next ten years. It is important that these new sensors and satellites address the requirements for ecosystem models, imagery, and other data for resource management. This presentation will give examples of these model inputs and some resources needed for NASA to continue effective Ecological Forecasting.

  12. Multiresolution forecasting for futures trading using wavelet decompositions.

    PubMed

    Zhang, B L; Coggins, R; Jabri, M A; Dersch, D; Flower, B

    2001-01-01

    We investigate the effectiveness of a financial time-series forecasting strategy which exploits the multiresolution property of the wavelet transform. A financial series is decomposed into an over complete, shift invariant scale-related representation. In transform space, each individual wavelet series is modeled by a separate multilayer perceptron (MLP). We apply the Bayesian method of automatic relevance determination to choose short past windows (short-term history) for the inputs to the MLPs at lower scales and long past windows (long-term history) at higher scales. To form the overall forecast, the individual forecasts are then recombined by the linear reconstruction property of the inverse transform with the chosen autocorrelation shell representation, or by another perceptron which learns the weight of each scale in the prediction of the original time series. The forecast results are then passed to a money management system to generate trades.

  13. Value of Seasonal Fuzzy-based Inflow Prediction in the Jucar River Basin

    NASA Astrophysics Data System (ADS)

    Pulido-Velazquez, M.; Macian-Sorribes, H.

    2016-12-01

    The development and application of climate services in Integrated Water Resources Management (IWRM) is said to add important benefits in terms of water use efficiency due to an increase ability to foresee future water availability. A method to evaluate the economic impact of these services is presented, based on the use of hydroeconomic modelling techniques (hydroeconomic simulation) to compare the net benefits from water use in the system with and without the inflow forecasting. The Jucar River Basin (Spain) has been used as case study. Operating rules currently applied in the basin were assessed using fuzzy rule-based (FRB) systems via a co-development process involving the system operators. These operating rules use as input variable the hydrological inflows in several sub-basins, which need to be foreseen by the system operators. The inflow forecasting mechanism to preview water availability in the irrigation season (May-September) relied on fuzzy regression in which future inflows were foreseen based on past inflows and rainfall in the basin. This approach was compared with the current use of the two past year inflows for projecting the future inflow. For each irrigation season, the previewed inflows were determined using both methods and their impact on the system operation assessed through a hydroeconomic DSS. Results show that the implementation of the fuzzy inflow forecasting system offers higher economic returns. Another advantage of the fuzzy approach regards to the uncertainty treatment using fuzzy numbers, which allow us to estimate the uncertainty range of the expected benefits. Consequently, we can use the fuzzy approach to estimate the uncertainty associated with both the prediction and the associated benefits.

  14. Assessing the Skill of Chlorophyll Forecasts: Latest Development and Challenges Ahead Using the Case of the Equatorial Pacific

    NASA Technical Reports Server (NTRS)

    Rousseaux, Cecile S.; Gregg, Watson W.

    2018-01-01

    Using a global ocean biogeochemical model combined with a forecast of physical oceanic and atmospheric variables from the NASA Global Modeling and Assimilation Office, we assess the skill of a chlorophyll concentrations forecast in the Equatorial Pacific for the period 2012-2015 with a focus on the forecast of the onset of the 2015 El Nino event. Using a series of retrospective 9-month hindcasts, we assess the uncertainties of the forecasted chlorophyll by comparing the monthly total chlorophyll concentration from the forecast with the corresponding monthly ocean chlorophyll data from the Suomi-National Polar-orbiting Partnership Visible Infrared Imaging Radiometer Suite (S-NPP VIIRS) satellite. The forecast was able to reproduce the phasing of the variability in chlorophyll concentration in the Equatorial Pacific, including the beginning of the 2015-2016 El Nino. The anomaly correlation coefficient (ACC) was significant (p less than 0.05) for forecast at 1-month (R=0.33), 8-month (R=0.42) and 9-month (R=0.41) lead times. The root mean square error (RMSE) increased from 0.0399 microgram chl L(exp -1) for the 1-month lead forecast to a maximum of 0.0472 microgram chl L(exp -1) for the 9-month lead forecast indicating that the forecast of the amplitude of chlorophyll concentration variability was getting worse. Forecasts with a 3-month lead time were on average the closest to the S-NPP VIIRS data (23% or 0.033 microgram chl L(exp -1)) while the forecast with a 9-month lead time were the furthest (31% or 0.042 microgram chl L(exp -1)). These results indicate the potential for forecasting chlorophyll concentration in this region but also highlights various deficiencies and suggestions for improvements to the current biogeochemical forecasting system. This system provides an initial basis for future applications including the effects of El Nino events on fisheries and other ocean resources given improvements identified in the analysis of these results.

  15. Forecasting Ocean Chlorophyll in the Equatorial Pacific.

    PubMed

    Rousseaux, Cecile S; Gregg, Watson W

    2017-01-01

    Using a global ocean biogeochemical model combined with a forecast of physical oceanic and atmospheric variables from the NASA Global Modeling and Assimilation Office, we assess the skill of a chlorophyll concentrations forecast in the Equatorial Pacific for the period 2012-2015 with a focus on the forecast of the onset of the 2015 El Niño event. Using a series of retrospective 9-month hindcasts, we assess the uncertainties of the forecasted chlorophyll by comparing the monthly total chlorophyll concentration from the forecast with the corresponding monthly ocean chlorophyll data from the Suomi-National Polar-orbiting Partnership Visible Infrared Imaging Radiometer Suite (S-NPP VIIRS) satellite. The forecast was able to reproduce the phasing of the variability in chlorophyll concentration in the Equatorial Pacific, including the beginning of the 2015-2016 El Niño. The anomaly correlation coefficient (ACC) was significant ( p < 0.05) for forecast at 1-month ( R = 0.33), 8-month ( R = 0.42) and 9-month ( R = 0.41) lead times. The root mean square error (RMSE) increased from 0.0399 μg chl L -1 for the 1-month lead forecast to a maximum of 0.0472 μg chl L -1 for the 9-month lead forecast indicating that the forecast of the amplitude of chlorophyll concentration variability was getting worse. Forecasts with a 3-month lead time were on average the closest to the S-NPP VIIRS data (23% or 0.033 μg chl L -1 ) while the forecast with a 9-month lead time were the furthest (31% or 0.042 μg chl L -1 ). These results indicate the potential for forecasting chlorophyll concentration in this region but also highlights various deficiencies and suggestions for improvements to the current biogeochemical forecasting system. This system provides an initial basis for future applications including the effects of El Niño events on fisheries and other ocean resources given improvements identified in the analysis of these results.

  16. Cloud Impacts on Pavement Temperature in Energy Balance Models

    NASA Astrophysics Data System (ADS)

    Walker, C. L.

    2013-12-01

    Forecast systems provide decision support for end-users ranging from the solar energy industry to municipalities concerned with road safety. Pavement temperature is an important variable when considering vehicle response to various weather conditions. A complex, yet direct relationship exists between tire and pavement temperatures. Literature has shown that as tire temperature increases, friction decreases which affects vehicle performance. Many forecast systems suffer from inaccurate radiation forecasts resulting in part from the inability to model different types of clouds and their influence on radiation. This research focused on forecast improvement by determining how cloud type impacts the amount of shortwave radiation reaching the surface and subsequent pavement temperatures. The study region was the Great Plains where surface solar radiation data were obtained from the High Plains Regional Climate Center's Automated Weather Data Network stations. Road pavement temperature data were obtained from the Meteorological Assimilation Data Ingest System. Cloud properties and radiative transfer quantities were obtained from the Clouds and Earth's Radiant Energy System mission via Aqua and Terra Moderate Resolution Imaging Spectroradiometer satellite products. An additional cloud data set was incorporated from the Naval Research Laboratory Cloud Classification algorithm. Statistical analyses using a modified nearest neighbor approach were first performed relating shortwave radiation variability with road pavement temperature fluctuations. Then statistical associations were determined between the shortwave radiation and cloud property data sets. Preliminary results suggest that substantial pavement forecasting improvement is possible with the inclusion of cloud-specific information. Future model sensitivity testing seeks to quantify the magnitude of forecast improvement.

  17. Past speculations of future health technologies: a description of technologies predicted in 15 forecasting studies published between 1986 and 2010

    PubMed Central

    Doos, Lucy; Packer, Claire; Ward, Derek; Simpson, Sue; Stevens, Andrew

    2017-01-01

    Objective To describe and classify health technologies predicted in forecasting studies. Design and methods A portrait describing health technologies predicted in 15 forecasting studies published between 1986 and 2010 that were identified in a previous systematic review. Health technologies are classified according to their type, purpose and clinical use; relating these to the original purpose and timing of the forecasting studies. Data sources All health-related technologies predicted in 15 forecasting studies identified in a previously published systematic review. Main outcome measure Outcomes related to (1) each forecasting study including country, year, intention and forecasting methods used and (2) the predicted technologies including technology type, purpose, targeted clinical area and forecast timeframe. Results Of the 896 identified health-related technologies, 685 (76.5%) were health technologies with an explicit or implied health application and included in our study. Of these, 19.1% were diagnostic or imaging tests, 14.3% devices or biomaterials, 12.6% information technology systems, eHealth or mHealth and 12% drugs. The majority of the technologies were intended to treat or manage disease (38.1%) or diagnose or monitor disease (26.1%). The most frequent targeted clinical areas were infectious diseases followed by cancer, circulatory and nervous system disorders. The most frequent technology types were for: infectious diseases—prophylactic vaccines (45.8%), cancer—drugs (40%), circulatory disease—devices and biomaterials (26.3%), and diseases of the nervous system—equally devices and biomaterials (25%) and regenerative medicine (25%). The mean timeframe for forecasting was 11.6 years (range 0–33 years, median=10, SD=6.6). The forecasting timeframe significantly differed by technology type (p=0.002), the intent of the forecasting group (p<0.001) and the methods used (p<001). Conclusion While description and classification of predicted health-related technologies is crucial in preparing healthcare systems for adopting new innovations, further work is needed to test the accuracy of predictions made. PMID:28760796

  18. Mesoscale data assimilation for a local severe rainfall event with the NHM-LETKF system

    NASA Astrophysics Data System (ADS)

    Kunii, M.

    2013-12-01

    This study aims to improve forecasts of local severe weather events through data assimilation and ensemble forecasting approaches. Here, the local ensemble transform Kalman filter (LETKF) is implemented with the Japan Meteorological Agency's nonhydrostatic model (NHM). The newly developed NHM-LETKF contains an adaptive inflation scheme and a spatial covariance localization scheme with physical distance. One-way nested analysis in which a finer-resolution LETKF is conducted by using the outputs of an outer model also becomes feasible. These new contents should enhance the potential of the LETKF for convective scale events. The NHM-LETKF is applied to a local severe rainfall event in Japan in 2012. Comparison of the root mean square errors between the model first guess and analysis reveals that the system assimilates observations appropriately. Analysis ensemble spreads indicate a significant increase around the time torrential rainfall occurred, which would imply an increase in the uncertainty of environmental fields. Forecasts initialized with LETKF analyses successfully capture intense rainfalls, suggesting that the system can work effectively for local severe weather. Investigation of probabilistic forecasts by ensemble forecasting indicates that this could become a reliable data source for decision making in the future. A one-way nested data assimilation scheme is also tested. The experiment results demonstrate that assimilation with a finer-resolution model provides an advantage in the quantitative precipitation forecasting of local severe weather conditions.

  19. Integrated urban systems model with multiple transportation supply agents.

    DOT National Transportation Integrated Search

    2012-10-01

    This project demonstrates the feasibility of developing quantitative models that can forecast future networks under : current and alternative transportation planning processes. The current transportation planning process is modeled : based on empiric...

  20. Analysis and Synthesis of Load Forecasting Data for Renewable Integration Studies: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steckler, N.; Florita, A.; Zhang, J.

    2013-11-01

    As renewable energy constitutes greater portions of the generation fleet, the importance of modeling uncertainty as part of integration studies also increases. In pursuit of optimal system operations, it is important to capture not only the definitive behavior of power plants, but also the risks associated with systemwide interactions. This research examines the dependence of load forecast errors on external predictor variables such as temperature, day type, and time of day. The analysis was utilized to create statistically relevant instances of sequential load forecasts with only a time series of historic, measured load available. The creation of such load forecastsmore » relies on Bayesian techniques for informing and updating the model, thus providing a basis for networked and adaptive load forecast models in future operational applications.« less

  1. Development of a severe local storm prediction system: A 60-day test of a mesoscale primitive equation model

    NASA Technical Reports Server (NTRS)

    Paine, D. A.; Zack, J. W.; Kaplan, M. L.

    1979-01-01

    The progress and problems associated with the dynamical forecast system which was developed to predict severe storms are examined. The meteorological problem of severe convective storm forecasting is reviewed. The cascade hypothesis which forms the theoretical core of the nested grid dynamical numerical modelling system is described. The dynamical and numerical structure of the model used during the 1978 test period is presented and a preliminary description of a proposed multigrid system for future experiments and tests is provided. Six cases from the spring of 1978 are discussed to illustrate the model's performance and its problems. Potential solutions to the problems are examined.

  2. Seasonal streamflow prediction using ensemble streamflow prediction technique for the Rangitata and Waitaki River basins on the South Island of New Zealand

    NASA Astrophysics Data System (ADS)

    Singh, Shailesh Kumar

    2014-05-01

    Streamflow forecasts are essential for making critical decision for optimal allocation of water supplies for various demands that include irrigation for agriculture, habitat for fisheries, hydropower production and flood warning. The major objective of this study is to explore the Ensemble Streamflow Prediction (ESP) based forecast in New Zealand catchments and to highlights the present capability of seasonal flow forecasting of National Institute of Water and Atmospheric Research (NIWA). In this study a probabilistic forecast framework for ESP is presented. The basic assumption in ESP is that future weather pattern were experienced historically. Hence, past forcing data can be used with current initial condition to generate an ensemble of prediction. Small differences in initial conditions can result in large difference in the forecast. The initial state of catchment can be obtained by continuously running the model till current time and use this initial state with past forcing data to generate ensemble of flow for future. The approach taken here is to run TopNet hydrological models with a range of past forcing data (precipitation, temperature etc.) with current initial conditions. The collection of runs is called the ensemble. ESP give probabilistic forecasts for flow. From ensemble members the probability distributions can be derived. The probability distributions capture part of the intrinsic uncertainty in weather or climate. An ensemble stream flow prediction which provide probabilistic hydrological forecast with lead time up to 3 months is presented for Rangitata, Ahuriri, and Hooker and Jollie rivers in South Island of New Zealand. ESP based seasonal forecast have better skill than climatology. This system can provide better over all information for holistic water resource management.

  3. Routine High-Resolution Forecasts/Analyses for the Pacific Disaster Center: User Manual

    NASA Technical Reports Server (NTRS)

    Roads, John; Han, J.; Chen, S.; Burgan, R.; Fujioka, F.; Stevens, D.; Funayama, D.; Chambers, C.; Bingaman, B.; McCord, C.; hide

    2001-01-01

    Enclosed herein is our HWCMO user manual. This manual constitutes the final report for our NASA/PDC grant, NASA NAG5-8730, "Routine High Resolution Forecasts/Analysis for the Pacific Disaster Center". Since the beginning of the grant, we have routinely provided experimental high resolution forecasts from the RSM/MSM for the Hawaii Islands, while working to upgrade the system to include: (1) a more robust input of NCEP analyses directly from NCEP; (2) higher vertical resolution, with increased forecast accuracy; (3) faster delivery of forecast products and extension of initial 1-day forecasts to 2 days; (4) augmentation of our basic meteorological and simplified fireweather forecasts to firedanger and drought forecasts; (5) additional meteorological forecasts with an alternate mesoscale model (MM5); and (6) the feasibility of using our modeling system to work in higher-resolution domains and other regions. In this user manual, we provide a general overview of the operational system and the mesoscale models as well as more detailed descriptions of the models. A detailed description of daily operations and a cost analysis is also provided. Evaluations of the models are included although it should be noted that model evaluation is a continuing process and as potential problems are identified, these can be used as the basis for making model improvements. Finally, we include our previously submitted answers to particular PDC questions (Appendix V). All of our initially proposed objectives have basically been met. In fact, a number of useful applications (VOG, air pollution transport) are already utilizing our experimental output and we believe there are a number of other applications that could make use of our routine forecast/analysis products. Still, work still remains to be done to further develop this experimental weather, climate, fire danger and drought prediction system. In short, we would like to be a part of a future PDC team, if at all possible, to further develop and apply the system for the Hawaiian and other Pacific Islands as well as the entire Pacific Basin.

  4. Does the OVX matter for volatility forecasting? Evidence from the crude oil market

    NASA Astrophysics Data System (ADS)

    Lv, Wendai

    2018-02-01

    In this paper, I investigate that whether the OVX and its truncated parts with a certain threshold can significantly help in forecasting the oil futures price volatility basing on the Heterogeneous Autoregressive model of Realized Volatility (HAR-RV). In-sample estimation results show that the OVX has a significantly positive impact on futures volatility. The impact of large OVX on future volatility has slightly powerful compared to the small ones. Moreover, the HARQ-RV model outperforms the HAR-RV in predicting the oil futures volatility. More importantly, the decomposed OVX have more powerful in forecasting the oil futures price volatility compared to the OVX itself.

  5. Algorithm aversion: people erroneously avoid algorithms after seeing them err.

    PubMed

    Dietvorst, Berkeley J; Simmons, Joseph P; Massey, Cade

    2015-02-01

    Research shows that evidence-based algorithms more accurately predict the future than do human forecasters. Yet when forecasters are deciding whether to use a human forecaster or a statistical algorithm, they often choose the human forecaster. This phenomenon, which we call algorithm aversion, is costly, and it is important to understand its causes. We show that people are especially averse to algorithmic forecasters after seeing them perform, even when they see them outperform a human forecaster. This is because people more quickly lose confidence in algorithmic than human forecasters after seeing them make the same mistake. In 5 studies, participants either saw an algorithm make forecasts, a human make forecasts, both, or neither. They then decided whether to tie their incentives to the future predictions of the algorithm or the human. Participants who saw the algorithm perform were less confident in it, and less likely to choose it over an inferior human forecaster. This was true even among those who saw the algorithm outperform the human.

  6. EVENT PREDICTION AND AFFECTIVE FORECASTING IN DEPRESSIVE COGNITION: USING EMOTION AS INFORMATION ABOUT THE FUTURE

    PubMed Central

    MARROQUÍN, BRETT; NOLEN-HOEKSEMA, SUSAN

    2015-01-01

    Depression is characterized by a bleak view of the future, but the mechanisms through which depressed mood is integrated into basic processes of future-oriented cognition are unclear. We hypothesized that dysphoric individuals’ predictions of what will happen in the future (likelihood estimation) and how the future will feel (affective forecasting) are attributable to individual differences in incorporating present emotion as judgment-relevant information. Dysphoric individuals (n = 77) made pessimistic likelihood estimates and blunted positive affective forecasts relative to controls (n = 84). These differences were mediated by dysphoric individuals’ tendencies to rely on negative emotion as information more than controls—and on positive emotion less—independent of anhedonia. These findings suggest that (1) blunted positive affective forecasting is a distinctive component of depressive future-oriented cognition, and (2) future-oriented cognitive processes are linked not just to current emotional state, but also to individual variation in using that emotion as information. This role of individual differences elucidates basic mechanisms in future-oriented cognition, and suggests routes for intervention on interrelated cognitive and affective processes in depression. PMID:26146452

  7. EVENT PREDICTION AND AFFECTIVE FORECASTING IN DEPRESSIVE COGNITION: USING EMOTION AS INFORMATION ABOUT THE FUTURE.

    PubMed

    Marroquín, Brett; Nolen-Hoeksema, Susan

    2015-02-01

    Depression is characterized by a bleak view of the future, but the mechanisms through which depressed mood is integrated into basic processes of future-oriented cognition are unclear. We hypothesized that dysphoric individuals' predictions of what will happen in the future ( likelihood estimation ) and how the future will feel ( affective forecasting ) are attributable to individual differences in incorporating present emotion as judgment-relevant information. Dysphoric individuals ( n = 77) made pessimistic likelihood estimates and blunted positive affective forecasts relative to controls ( n = 84). These differences were mediated by dysphoric individuals' tendencies to rely on negative emotion as information more than controls-and on positive emotion less-independent of anhedonia. These findings suggest that (1) blunted positive affective forecasting is a distinctive component of depressive future-oriented cognition, and (2) future-oriented cognitive processes are linked not just to current emotional state, but also to individual variation in using that emotion as information. This role of individual differences elucidates basic mechanisms in future-oriented cognition, and suggests routes for intervention on interrelated cognitive and affective processes in depression.

  8. Development of a satellite-based nowcasting system for surface solar radiation

    NASA Astrophysics Data System (ADS)

    Limbach, Sebastian; Hungershoefer, Katja; Müller, Richard; Trentmann, Jörg; Asmus, Jörg; Schömer, Elmar; Groß, André

    2014-05-01

    The goal of the RadNowCast project was the development of a tool-chain for a satellite-based nowcasting of the all sky global and direct surface solar radiation. One important application of such short-term forecasts is the computation of the expected energy yield of photovoltaic systems. This information is of great importance for an efficient balancing of power generation and consumption in large, decentralized power grids. Our nowcasting approach is based on an optical-flow analysis of a series of Meteosat SEVIRI satellite images. For this, we extended and combined several existing software tools and set up a series of benchmarks for determining the optimal forecasting parameters. The first step in our processing-chain is the determination of the cloud albedo from the HRV (High Resolution Visible)-satellite images using a Heliosat-type method. The actual nowcasting is then performed by a commercial software system in two steps: First, vector fields characterizing the movement of the clouds are derived from the cloud albedo data from the previous 15 min to 2 hours. Next, these vector fields are combined with the most recent cloud albedo data in order to extrapolate the cloud albedo in the near future. In the last step of the processing, the Gnu-Magic software is used to calculate the global and direct solar radiation based on the forecasted cloud albedo data. For an evaluation of the strengths and weaknesses of our nowcastig system, we analyzed four different benchmarks, each of which covered different weather conditions. We compared the forecasted data with radiation data derived from the real satellite images of the corresponding time steps. The impact of different parameters on the cloud albedo nowcasting and the surface radiation computation has been analysed. Additionally, we could show that our cloud-albedo-based forecasts outperform forecasts based on the original HRV images. Possible future extension are the incorporation of additional data sources, for example NWC-SAF high resolution wind fields, in order to improve the quality of the atmospheric motion fields, and experiments with custom, optimized software components for the optical-flow estimation and the nowcasting.

  9. A Real-time Irrigation Forecasting System in Jiefangzha Irrigation District, China

    NASA Astrophysics Data System (ADS)

    Cong, Z.

    2015-12-01

    In order to improve the irrigation efficiency, we need to know when and how much to irrigate in real time. If we know the soil moisture content at this time, we can forecast the soil moisture content in the next days based on the rainfall forecasting and the crop evapotranspiration forecasting. Then the irrigation should be considered when the forecasting soil moisture content reaches to a threshold. Jiefangzha Irrigation District, a part of Hetao Irrigation District, is located in Inner Mongolia, China. The irrigated area of this irrigation district is about 140,000 ha mainly planting wheat, maize and sunflower. The annual precipitation is below 200mm, so the irrigation is necessary and the irrigation water comes from the Yellow river. We set up 10 sites with 4 TDR sensors at each site (20cm, 40cm, 60cm and 80cm depth) to monitor the soil moisture content. The weather forecasting data are downloaded from the website of European Centre for Medium-Range Weather Forecasts (ECMWF). The reference evapotranspiration is estimated based on FAO-Blaney-Criddle equation with only the air temperature from ECMWF. Then the crop water requirement is forecasted by the crop coefficient multiplying the reference evapotranspiration. Finally, the soil moisture content is forecasted based on soil water balance with the initial condition is set as the monitoring soil moisture content. When the soil moisture content reaches to a threshold, the irrigation warning will be announced. The irrigation mount can be estimated through three ways: (1) making the soil moisture content be equal to the field capacity; (2) making the soil moisture saturated; or (3) according to the irrigation quota. The forecasting period is 10 days. The system is developed according to B2C model with Java language. All the databases and the data analysis are carried out in the server. The customers can log in the website with their own username and password then get the information about the irrigation forecasting and other information about the irrigation. This system can be expanded in other irrigation districts. In future, it is even possible to upgrade the system for the mobile user.

  10. Past speculations of future health technologies: a description of technologies predicted in 15 forecasting studies published between 1986 and 2010.

    PubMed

    Doos, Lucy; Packer, Claire; Ward, Derek; Simpson, Sue; Stevens, Andrew

    2017-07-31

    To describe and classify health technologies predicted in forecasting studies. A portrait describing health technologies predicted in 15 forecasting studies published between 1986 and 2010 that were identified in a previous systematic review. Health technologies are classified according to their type, purpose and clinical use; relating these to the original purpose and timing of the forecasting studies. All health-related technologies predicted in 15 forecasting studies identified in a previously published systematic review. Outcomes related to (1) each forecasting study including country, year, intention and forecasting methods used and (2) the predicted technologies including technology type, purpose, targeted clinical area and forecast timeframe. Of the 896 identified health-related technologies, 685 (76.5%) were health technologies with an explicit or implied health application and included in our study. Of these, 19.1% were diagnostic or imaging tests, 14.3% devices or biomaterials, 12.6% information technology systems, eHealth or mHealth and 12% drugs. The majority of the technologies were intended to treat or manage disease (38.1%) or diagnose or monitor disease (26.1%). The most frequent targeted clinical areas were infectious diseases followed by cancer, circulatory and nervous system disorders. The most frequent technology types were for: infectious diseases-prophylactic vaccines (45.8%), cancer-drugs (40%), circulatory disease-devices and biomaterials (26.3%), and diseases of the nervous system-equally devices and biomaterials (25%) and regenerative medicine (25%). The mean timeframe for forecasting was 11.6 years (range 0-33 years, median=10, SD=6.6). The forecasting timeframe significantly differed by technology type (p=0.002), the intent of the forecasting group (p<0.001) and the methods used (p<001). While description and classification of predicted health-related technologies is crucial in preparing healthcare systems for adopting new innovations, further work is needed to test the accuracy of predictions made. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  11. Assessing the Impact of Observations on Numerical Weather Forecasts Using the Adjoint Method

    NASA Technical Reports Server (NTRS)

    Gelaro, Ronald

    2012-01-01

    The adjoint of a data assimilation system provides a flexible and efficient tool for estimating observation impacts on short-range weather forecasts. The impacts of any or all observations can be estimated simultaneously based on a single execution of the adjoint system. The results can be easily aggregated according to data type, location, channel, etc., making this technique especially attractive for examining the impacts of new hyper-spectral satellite instruments and for conducting regular, even near-real time, monitoring of the entire observing system. This talk provides a general overview of the adjoint method, including the theoretical basis and practical implementation of the technique. Results are presented from the adjoint-based observation impact monitoring tool in NASA's GEOS-5 global atmospheric data assimilation and forecast system. When performed in conjunction with standard observing system experiments (OSEs), the adjoint results reveal both redundancies and dependencies between observing system impacts as observations are added or removed from the assimilation system. Understanding these dependencies may be important for optimizing the use of the current observational network and defining requirements for future observing systems

  12. PRESTIGRIS: an operational system for water resources and droughts management on Tuscany, Central Italy

    NASA Astrophysics Data System (ADS)

    Campo, Lorenzo; Caparrini, Francesca; Castelli, Fabio

    2013-04-01

    In the last years the problems of water management faced by local administration due to the growing demand of the territory and to the changes in terms of availability became more and more important. Also in view of problems issued by the Climate Change, it is necessary to have the availability of information about the present and the future state of the water resources on the territory, both in terms of stress of the water bodies and of trends in the near-future. In this respect, an adequate management and planning of the water resources can make use of meteorological seasonal forecasts (one-three month) for the assessment of the primary sources of fresh water in a given region. The PRESTIGRIS project (PREvisioni STagionali Idrologiche per la Gestione della Risorsa Idrica e della Siccità - hydrologic seasonal forecasts for water resources and droughts management), implemented at the University of Florence in collaboration with Eumechanos Environmental Engineering and LaMMa (Laboratorio di Monitoraggio e Modellistica ambientale, Laboratory for Environmental Monitoring and Modeling), is aimed to provide hydrological seasonal forecasts on the territory of the Tuscany Region, Central Italy, basing on the seasonal meteorological forecasts available at different Weather Services (NOAA, IRI, etc.). The PRESTIGRIS system is based on a stochastic disaggregation of the monthly seasonal forecasts of minimum and maximum air temperature at the ground and of the total rainfall height. Through an analysis based on Principal Component Analysis (PCA) techniques, the forecasts are disaggregated in daily maps at a spatial resolution (500 m) compatible with a complete hydrological balance simulation, performed on the entire Tuscany region (about 22000 km2) by the distributed hydrological model MOBIDIC (MOdello di BIlancio Distribuito e Continuo), developed at the Department of Civil and Environmental Engineering of the University of Florence. Given a single seasonal forecast, the system performs an ensemble of 50 hydrological simulations. Basing on the results of the simulations, significant quantiles of the main variables of interest (soil saturation, discharge flows in the stream network, evapotranspiration) are mapped on the territory. The results of the simulations for the year 2003, in particular during the severe drought occurred during the summer, are shown as an example of the capabilities of the system.

  13. An operational real-time flood forecasting system in Southern Italy

    NASA Astrophysics Data System (ADS)

    Ortiz, Enrique; Coccia, Gabriele; Todini, Ezio

    2015-04-01

    A real-time flood forecasting system has been operating since year 2012 as a non-structural measure for mitigating the flood risk in Campania Region (Southern Italy), within the Sele river basin (3.240 km2). The Sele Flood Forecasting System (SFFS) has been built within the FEWS (Flood Early Warning System) platform developed by Deltares and it assimilates the numerical weather predictions of the COSMO LAM family: the deterministic COSMO-LAMI I2, the deterministic COSMO-LAMI I7 and the ensemble numerical weather predictions COSMO-LEPS (16 members). Sele FFS is composed by a cascade of three main models. The first model is a fully continuous physically based distributed hydrological model, named TOPKAPI-eXtended (Idrologia&Ambiente s.r.l., Naples, Italy), simulating the dominant processes controlling the soil water dynamics, runoff generation and discharge with a spatial resolution of 250 m. The second module is a set of Neural-Networks (ANN) built for forecasting the river stages at a set of monitored cross-sections. The third component is a Model Conditional Processor (MCP), which provides the predictive uncertainty (i.e., the probability of occurrence of a future flood event) within the framework of a multi-temporal forecast, according to the most recent advancements on this topic (Coccia and Todini, HESS, 2011). The MCP provides information about the probability of exceedance of a maximum river stage within the forecast lead time, by means of a discrete time function representing the variation of cumulative probability of exceeding a river stage during the forecast lead time and the distribution of the time occurrence of the flood peak, starting from one or more model forecasts. This work shows the Sele FFS performance after two years of operation, evidencing the added-values that can provide to a flood early warning and emergency management system.

  14. Sea Ice Outlook for September 2015 June Report - NASA Global Modeling and Assimilation Office

    NASA Technical Reports Server (NTRS)

    Cullather, Richard I.; Keppenne, Christian L.; Marshak, Jelena; Pawson, Steven; Schubert, Siegfried D.; Suarez, Max J.; Vernieres, Guillaume; Zhao, Bin

    2015-01-01

    The recent decline in perennial sea ice cover in Arctic Ocean is a topic of enormous scientific interest and has relevance to a broad variety of scientific disciplines and human endeavors including biological and physical oceanography, atmospheric circulation, high latitude ecology, the sustainability of indigenous communities, commerce, and resource exploration. A credible seasonal prediction of sea ice extent would be of substantial use to many of the stakeholders in these fields and may also reveal details on the physical processes that result in the current trends in the ice cover. Forecasts are challenging due in part to limitations in the polar observing network, the large variability in the climate system, and an incomplete knowledge of the significant processes. Nevertheless it is a useful to understand the current capabilities of high latitude seasonal forecasting and identify areas where such forecasts may be improved. Since 2008 the Arctic Research Consortium of the United States (ARCUS) has conducted a seasonal forecasting contest in which the average Arctic sea ice extent for the month of September (the month of the annual extent minimum) is predicted from available forecasts in early June, July, and August. The competition is known as the Sea Ice Outlook (SIO) but recently came under the auspices of the Sea Ice Prediction Network (SIPN), and multi-agency funded project to evaluate the SIO. The forecasts are submitted based on modeling, statistical, and heuristic methods. Forecasts of Arctic sea ice extent from the GMAO are derived from seasonal prediction system of the NASA Goddard Earth Observing System model, version 5 (GEOS 5) coupled atmosphere and ocean general circulation model (AOGCM). The projections are made in order to understand the relative skill of the forecasting system and to determine the effects of future improvements to the system. This years prediction is for a September average Arctic ice extent of 5.030.41 million km2.

  15. The Simulations of Wildland Fire Smoke PM25 in the NWS Air Quality Forecasting Systems

    NASA Astrophysics Data System (ADS)

    Huang, H. C.; Pan, L.; McQueen, J.; Lee, P.; ONeill, S. M.; Ruminski, M.; Shafran, P.; Huang, J.; Stajner, I.; Upadhayay, S.; Larkin, N. K.

    2017-12-01

    The increase of wildland fire intensity and frequency in the United States (U.S.) has led to property loss, human fatality, and poor air quality due to elevated particulate matters and surface ozone concentrations. The NOAA/National Weather Service (NWS) built the National Air Quality Forecast Capability (NAQFC) based on the U.S. Environmental Protection Agency (EPA) Community Multi-scale Air Quality (CMAQ) Modeling System driven by the NCEP North American Mesoscale Forecast System meteorology to provide ozone and fine particulate matter (PM2.5) forecast guidance publicly. State and local forecasters use the NWS air quality forecast guidance to issue air quality alerts in their area. The NAQFC PM2.5 predictions include emissions from anthropogenic and biogenic sources, as well as natural sources such as dust storms and wildland fires. The wildland fire emission inputs to the NAQFC is derived from the NOAA National Environmental Satellite, Data, and Information Service Hazard Mapping System fire and smoke detection product and the emission module of the U.S. Forest Service (USFS) BlueSky Smoke Modeling Framework. Wildland fires are unpredictable and can be ignited by natural causes such as lightning or be human-caused. It is extremely difficult to predict future occurrences and behavior of wildland fires, as is the available bio-fuel to be burned for real-time air quality predictions. Assumptions of future day's wildland fire behavior often have to be made from older observed wildland fire information. The comparisons between the NAQFC modeled PM2.5 and the EPA AirNow surface observation show that large errors in PM2.5 prediction can occur if fire smoke emissions are sometimes placed at the wrong location and/or time. A configuration of NAQFC CMAQ-system to re-run previous 24 hours, during which wildland fires were observed from satellites has been included recently. This study focuses on the effort performed to minimize the error in NAQFC PM2.5 predictions resulting from incorporating fire smoke emissions into the NAQFC from a recently updated newer version of USFS BlueSky system. This study will show how new approaches has improved the PM2.5 predictions at both nearby and downstream areas from fire sources. Furthermore, Environment and Climate Change Canada (ECCC) fire emissions data are being tested.

  16. Towards a better knowledge of flash flood forecasting at the Three Gorges Region: Progress over the past decade and challenges ahead

    NASA Astrophysics Data System (ADS)

    Li, Zhe; Yang, Dawen; Yang, Hanbo; Wu, Tianjiao; Xu, Jijun; Gao, Bing; Xu, Tao

    2015-04-01

    The study area, the Three Gorges Region (TGR), plays a critical role in predicting the floods drained into the Three Gorges Reservoir, as reported local floods often exceed 10000m3/s during rainstorm events and trigger fast as well as significant impacts on the Three Gorges Reservoir's regulation. Meanwhile, it is one of typical mountainous areas in China, which is located in the transition zone between two monsoon systems: the East Asian monsoon and the South Asian (Indian) monsoon. This climatic feature, combined with local irregular terrains, has shaped complicated rainfall-runoff regimes in this focal region. However, due to the lack of high-resolution hydrometeorological data and physically-based hydrologic modeling framework, there was little knowledge about rainfall variability and flood pattern in this historically ungauged region, which posed great uncertainties to flash flood forecasting in the past. The present study summarize latest progresses of regional flash floods monitoring and prediction, including installation of a ground-based Hydrometeorological Observation Network (TGR-HMON), application of a regional geomorphology-based hydrological model (TGR-GBHM), development of an integrated forecasting and modeling system (TGR-INFORMS), and evaluation of quantitative precipitation estimations (QPE) and quantitative precipitation forecasting (QPF) products in TGR flash flood forecasting. With these continuing efforts to improve the forecasting performance of flash floods in TGR, we have addressed several critical issues: (1) Current observation network is still insufficient to capture localized rainstorms, and weather radar provides valuable information to forecast flash floods induced by localized rainstorms, although current radar QPE products can be improved substantially in future; (2) Long-term evaluation shows that the geomorphology-based distributed hydrologic model (GBHM) is able to simulate flash flooding processes reasonably, while model performance will decline at hourly scale with larger uncertainties. However, model comparison suggests that this physically-based distributed model (GBHM), compared with a traditional lumped model (Xin'anjiang model), shows more robust performance and larger transferability for prediction in those ungauged basins in TGR; (3) Operational test of our integrated forecasting system (TRG-INFORMS) shows that it works reasonably to simulate the flood routing in Three Gorges reservoir, indicating the accuracy of simulation of total floods generated at region scale; (4) Current operational QPF is too coarse to provide valuable information even for flood forecasting of whole TGR, thus, downscaling and high-resolution QPF are necessary to unravel the potentials of weather forecasting. Finally, according to these results, we also discuss about some possible solutions with high priority for future advanced forecasting scheme of local flash floods in TGR.

  17. Wind Energy Management System EMS Integration Project: Incorporating Wind Generation and Load Forecast Uncertainties into Power Grid Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makarov, Yuri V.; Huang, Zhenyu; Etingov, Pavel V.

    2010-01-01

    The power system balancing process, which includes the scheduling, real time dispatch (load following) and regulation processes, is traditionally based on deterministic models. Since the conventional generation needs time to be committed and dispatched to a desired megawatt level, the scheduling and load following processes use load and wind and solar power production forecasts to achieve future balance between the conventional generation and energy storage on the one side, and system load, intermittent resources (such as wind and solar generation), and scheduled interchange on the other side. Although in real life the forecasting procedures imply some uncertainty around the loadmore » and wind/solar forecasts (caused by forecast errors), only their mean values are actually used in the generation dispatch and commitment procedures. Since the actual load and intermittent generation can deviate from their forecasts, it becomes increasingly unclear (especially, with the increasing penetration of renewable resources) whether the system would be actually able to meet the conventional generation requirements within the look-ahead horizon, what the additional balancing efforts would be needed as we get closer to the real time, and what additional costs would be incurred by those needs. To improve the system control performance characteristics, maintain system reliability, and minimize expenses related to the system balancing functions, it becomes necessary to incorporate the predicted uncertainty ranges into the scheduling, load following, and, in some extent, into the regulation processes. It is also important to address the uncertainty problem comprehensively by including all sources of uncertainty (load, intermittent generation, generators’ forced outages, etc.) into consideration. All aspects of uncertainty such as the imbalance size (which is the same as capacity needed to mitigate the imbalance) and generation ramping requirement must be taken into account. The latter unique features make this work a significant step forward toward the objective of incorporating of wind, solar, load, and other uncertainties into power system operations. Currently, uncertainties associated with wind and load forecasts, as well as uncertainties associated with random generator outages and unexpected disconnection of supply lines, are not taken into account in power grid operation. Thus, operators have little means to weigh the likelihood and magnitude of upcoming events of power imbalance. In this project, funded by the U.S. Department of Energy (DOE), a framework has been developed for incorporating uncertainties associated with wind and load forecast errors, unpredicted ramps, and forced generation disconnections into the energy management system (EMS) as well as generation dispatch and commitment applications. A new approach to evaluate the uncertainty ranges for the required generation performance envelope including balancing capacity, ramping capability, and ramp duration has been proposed. The approach includes three stages: forecast and actual data acquisition, statistical analysis of retrospective information, and prediction of future grid balancing requirements for specified time horizons and confidence levels. Assessment of the capacity and ramping requirements is performed using a specially developed probabilistic algorithm based on a histogram analysis, incorporating all sources of uncertainties of both continuous (wind and load forecast errors) and discrete (forced generator outages and start-up failures) nature. A new method called the “flying brick” technique has been developed to evaluate the look-ahead required generation performance envelope for the worst case scenario within a user-specified confidence level. A self-validation algorithm has been developed to validate the accuracy of the confidence intervals.« less

  18. Air Traffic Demand Estimates for 1995

    DOT National Transportation Integrated Search

    1975-04-01

    The forecasts provide a range of reasonable 1995 activity levels for analyzing and comparing cost and performance characteristics of future air traffic management system concept alternatives. High and low estimates of the various demand measures are ...

  19. Obesity and severe obesity forecasts through 2030.

    PubMed

    Finkelstein, Eric A; Khavjou, Olga A; Thompson, Hope; Trogdon, Justin G; Pan, Liping; Sherry, Bettylou; Dietz, William

    2012-06-01

    Previous efforts to forecast future trends in obesity applied linear forecasts assuming that the rise in obesity would continue unabated. However, evidence suggests that obesity prevalence may be leveling off. This study presents estimates of adult obesity and severe obesity prevalence through 2030 based on nonlinear regression models. The forecasted results are then used to simulate the savings that could be achieved through modestly successful obesity prevention efforts. The study was conducted in 2009-2010 and used data from the 1990 through 2008 Behavioral Risk Factor Surveillance System (BRFSS). The analysis sample included nonpregnant adults aged ≥ 18 years. The individual-level BRFSS variables were supplemented with state-level variables from the U.S. Bureau of Labor Statistics, the American Chamber of Commerce Research Association, and the Census of Retail Trade. Future obesity and severe obesity prevalence were estimated through regression modeling by projecting trends in explanatory variables expected to influence obesity prevalence. Linear time trend forecasts suggest that by 2030, 51% of the population will be obese. The model estimates a much lower obesity prevalence of 42% and severe obesity prevalence of 11%. If obesity were to remain at 2010 levels, the combined savings in medical expenditures over the next 2 decades would be $549.5 billion. The study estimates a 33% increase in obesity prevalence and a 130% increase in severe obesity prevalence over the next 2 decades. If these forecasts prove accurate, this will further hinder efforts for healthcare cost containment. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Future Scenarios in Communications. [Student's Guide.] Preparing for Tomorrow's World.

    ERIC Educational Resources Information Center

    Iozzi, Louis A.; And Others

    The purpose of this module is to introduce students (grades 7-8) to the concept of change and factors influencing change. The module is composed of two major sections. Section 1 examines the development of the telephone system in the United States and introduces four futures forecasting techniques (Delphi probe, cross-impact matrix, trend…

  1. Canadian Operational Air Quality Forecasting Systems: Status, Recent Progress, and Challenges

    NASA Astrophysics Data System (ADS)

    Pavlovic, Radenko; Davignon, Didier; Ménard, Sylvain; Munoz-Alpizar, Rodrigo; Landry, Hugo; Beaulieu, Paul-André; Gilbert, Samuel; Moran, Michael; Chen, Jack

    2017-04-01

    ECCC's Canadian Meteorological Centre Operations (CMCO) division runs a number of operational air quality (AQ)-related systems that revolve around the Regional Air Quality Deterministic Prediction System (RAQDPS). The RAQDPS generates 48-hour AQ forecasts and outputs hourly concentration fields of O3, PM2.5, NO2, and other pollutants twice daily on a North-American domain with 10-km horizontal grid spacing and 80 vertical levels. A closely related AQ forecast system with near-real-time wildfire emissions, known as FireWork, has been run by CMCO during the Canadian wildfire season (April to October) since 2014. This system became operational in June 2016. The CMCO`s operational AQ forecast systems also benefit from several support systems, such as a statistical post-processing model called UMOS-AQ that is applied to enhance forecast reliability at point locations with AQ monitors. The Regional Deterministic Air Quality Analysis (RDAQA) system has also been connected to the RAQDPS since February 2013, and hourly surface objective analyses are now available for O3, PM2.5, NO2, PM10, SO2 and, indirectly, the Canadian Air Quality Health Index. As of June 2015, another version of the RDAQA has been connected to FireWork (RDAQA-FW). For verification purposes, CMCO developed a third support system called Verification for Air QUality Models (VAQUM), which has a geospatial relational database core and which enables continuous monitoring of the AQ forecast systems' performance. Urban environments are particularly subject to AQ pollution. In order to improve the services offered, ECCC has recently been investing efforts to develop a high resolution air quality prediction capability for urban areas in Canada. In this presentation, a comprehensive description of the ECCC AQ systems will be provided, along with a discussion on AQ systems performance. Recent improvements, current challenges, and future directions of the Canadian operational AQ program will also be discussed.

  2. Development and verification of a real-time stochastic precipitation nowcasting system for urban hydrology in Belgium

    NASA Astrophysics Data System (ADS)

    Foresti, L.; Reyniers, M.; Seed, A.; Delobbe, L.

    2016-01-01

    The Short-Term Ensemble Prediction System (STEPS) is implemented in real-time at the Royal Meteorological Institute (RMI) of Belgium. The main idea behind STEPS is to quantify the forecast uncertainty by adding stochastic perturbations to the deterministic Lagrangian extrapolation of radar images. The stochastic perturbations are designed to account for the unpredictable precipitation growth and decay processes and to reproduce the dynamic scaling of precipitation fields, i.e., the observation that large-scale rainfall structures are more persistent and predictable than small-scale convective cells. This paper presents the development, adaptation and verification of the STEPS system for Belgium (STEPS-BE). STEPS-BE provides in real-time 20-member ensemble precipitation nowcasts at 1 km and 5 min resolutions up to 2 h lead time using a 4 C-band radar composite as input. In the context of the PLURISK project, STEPS forecasts were generated to be used as input in sewer system hydraulic models for nowcasting urban inundations in the cities of Ghent and Leuven. Comprehensive forecast verification was performed in order to detect systematic biases over the given urban areas and to analyze the reliability of probabilistic forecasts for a set of case studies in 2013 and 2014. The forecast biases over the cities of Leuven and Ghent were found to be small, which is encouraging for future integration of STEPS nowcasts into the hydraulic models. Probabilistic forecasts of exceeding 0.5 mm h-1 are reliable up to 60-90 min lead time, while the ones of exceeding 5.0 mm h-1 are only reliable up to 30 min. The STEPS ensembles are slightly under-dispersive and represent only 75-90 % of the forecast errors.

  3. Development and verification of a real-time stochastic precipitation nowcasting system for urban hydrology in Belgium

    NASA Astrophysics Data System (ADS)

    Foresti, L.; Reyniers, M.; Seed, A.; Delobbe, L.

    2015-07-01

    The Short-Term Ensemble Prediction System (STEPS) is implemented in real-time at the Royal Meteorological Institute (RMI) of Belgium. The main idea behind STEPS is to quantify the forecast uncertainty by adding stochastic perturbations to the deterministic Lagrangian extrapolation of radar images. The stochastic perturbations are designed to account for the unpredictable precipitation growth and decay processes and to reproduce the dynamic scaling of precipitation fields, i.e. the observation that large scale rainfall structures are more persistent and predictable than small scale convective cells. This paper presents the development, adaptation and verification of the system STEPS for Belgium (STEPS-BE). STEPS-BE provides in real-time 20 member ensemble precipitation nowcasts at 1 km and 5 min resolution up to 2 h lead time using a 4 C-band radar composite as input. In the context of the PLURISK project, STEPS forecasts were generated to be used as input in sewer system hydraulic models for nowcasting urban inundations in the cities of Ghent and Leuven. Comprehensive forecast verification was performed in order to detect systematic biases over the given urban areas and to analyze the reliability of probabilistic forecasts for a set of case studies in 2013 and 2014. The forecast biases over the cities of Leuven and Ghent were found to be small, which is encouraging for future integration of STEPS nowcasts into the hydraulic models. Probabilistic forecasts of exceeding 0.5 mm h-1 are reliable up to 60-90 min lead time, while the ones of exceeding 5.0 mm h-1 are only reliable up to 30 min. The STEPS ensembles are slightly under-dispersive and represent only 80-90 % of the forecast errors.

  4. Moving beyond the cost-loss ratio: economic assessment of streamflow forecasts for a risk-averse decision maker

    NASA Astrophysics Data System (ADS)

    Matte, Simon; Boucher, Marie-Amélie; Boucher, Vincent; Fortier Filion, Thomas-Charles

    2017-06-01

    A large effort has been made over the past 10 years to promote the operational use of probabilistic or ensemble streamflow forecasts. Numerous studies have shown that ensemble forecasts are of higher quality than deterministic ones. Many studies also conclude that decisions based on ensemble rather than deterministic forecasts lead to better decisions in the context of flood mitigation. Hence, it is believed that ensemble forecasts possess a greater economic and social value for both decision makers and the general population. However, the vast majority of, if not all, existing hydro-economic studies rely on a cost-loss ratio framework that assumes a risk-neutral decision maker. To overcome this important flaw, this study borrows from economics and evaluates the economic value of early warning flood systems using the well-known Constant Absolute Risk Aversion (CARA) utility function, which explicitly accounts for the level of risk aversion of the decision maker. This new framework allows for the full exploitation of the information related to a forecasts' uncertainty, making it especially suited for the economic assessment of ensemble or probabilistic forecasts. Rather than comparing deterministic and ensemble forecasts, this study focuses on comparing different types of ensemble forecasts. There are multiple ways of assessing and representing forecast uncertainty. Consequently, there exist many different means of building an ensemble forecasting system for future streamflow. One such possibility is to dress deterministic forecasts using the statistics of past error forecasts. Such dressing methods are popular among operational agencies because of their simplicity and intuitiveness. Another approach is the use of ensemble meteorological forecasts for precipitation and temperature, which are then provided as inputs to one or many hydrological model(s). In this study, three concurrent ensemble streamflow forecasting systems are compared: simple statistically dressed deterministic forecasts, forecasts based on meteorological ensembles, and a variant of the latter that also includes an estimation of state variable uncertainty. This comparison takes place for the Montmorency River, a small flood-prone watershed in southern central Quebec, Canada. The assessment of forecasts is performed for lead times of 1 to 5 days, both in terms of forecasts' quality (relative to the corresponding record of observations) and in terms of economic value, using the new proposed framework based on the CARA utility function. It is found that the economic value of a forecast for a risk-averse decision maker is closely linked to the forecast reliability in predicting the upper tail of the streamflow distribution. Hence, post-processing forecasts to avoid over-forecasting could help improve both the quality and the value of forecasts.

  5. Developments of the European Flood Awareness System (EFAS)

    NASA Astrophysics Data System (ADS)

    Thiemig, Vera; Olav Skøien, Jon; Salamon, Peter; Pappenberger, Florian; Wetterhall, Fredrik; Holst, Bo; Asp, Sara-Sophia; Garcia Padilla, Mercedes; Garcia, Rafael J.; Schweim, Christoph; Ziese, Markus

    2017-04-01

    EFAS (http://www.efas.eu) is an operational system for flood forecasting and early warning for the entire Europe, which is fully operational as part of the Copernicus Emergency Management Service since 2012. The prime aim of EFAS is to gain time for preparedness measures before major flood events - particularly in trans-national river basins - strike. This is achieved by providing complementary, added value information to the national and regional services holding the mandate for flood warning as well as to the ERCC (European Response and Coordination Centre). Using a coherent model for all of Europe forced with a range of deterministic and ensemble weather forecasts, the system can give a probabilistic flood forecast for a medium range lead time (up to 10 days) independent of country borders. The system is under continuous development, and we will present the basic set up, some prominent examples of recent and ongoing developments (such as the rapid impact assessment, seasonal outlook and the extended domain) and the future challenges.

  6. Deciding the Future: A Forecast of Responsibilities of Secondary Teachers of English, 1970-2000 AD.

    ERIC Educational Resources Information Center

    Farrell, Edmund J.

    This document is a slightly revised version of author's Ph.D. Dissertation, "A Forecast of Responsibilities of Secondary Teachers of English 1970-2000 A.D., with Implications for Teacher Education" (ED 049 253). A study in two parts, Part I presents the need for future planning in education; discusses briefly methodologies for forecasting the…

  7. Error models for official mortality forecasts.

    PubMed

    Alho, J M; Spencer, B D

    1990-09-01

    "The Office of the Actuary, U.S. Social Security Administration, produces alternative forecasts of mortality to reflect uncertainty about the future.... In this article we identify the components and assumptions of the official forecasts and approximate them by stochastic parametric models. We estimate parameters of the models from past data, derive statistical intervals for the forecasts, and compare them with the official high-low intervals. We use the models to evaluate the forecasts rather than to develop different predictions of the future. Analysis of data from 1972 to 1985 shows that the official intervals for mortality forecasts for males or females aged 45-70 have approximately a 95% chance of including the true mortality rate in any year. For other ages the chances are much less than 95%." excerpt

  8. How will climate novelty influence ecological forecasts? Using the Quaternary to assess future reliability.

    PubMed

    Fitzpatrick, Matthew C; Blois, Jessica L; Williams, John W; Nieto-Lugilde, Diego; Maguire, Kaitlin C; Lorenz, David J

    2018-03-23

    Future climates are projected to be highly novel relative to recent climates. Climate novelty challenges models that correlate ecological patterns to climate variables and then use these relationships to forecast ecological responses to future climate change. Here, we quantify the magnitude and ecological significance of future climate novelty by comparing it to novel climates over the past 21,000 years in North America. We then use relationships between model performance and climate novelty derived from the fossil pollen record from eastern North America to estimate the expected decrease in predictive skill of ecological forecasting models as future climate novelty increases. We show that, in the high emissions scenario (RCP 8.5) and by late 21st century, future climate novelty is similar to or higher than peak levels of climate novelty over the last 21,000 years. The accuracy of ecological forecasting models is projected to decline steadily over the coming decades in response to increasing climate novelty, although models that incorporate co-occurrences among species may retain somewhat higher predictive skill. In addition to quantifying future climate novelty in the context of late Quaternary climate change, this work underscores the challenges of making reliable forecasts to an increasingly novel future, while highlighting the need to assess potential avenues for improvement, such as increased reliance on geological analogs for future novel climates and improving existing models by pooling data through time and incorporating assemblage-level information. © 2018 John Wiley & Sons Ltd.

  9. A Photo Storm Report Mobile Application, Processing/Distribution System, and AWIPS-II Display Concept

    NASA Astrophysics Data System (ADS)

    Longmore, S. P.; Bikos, D.; Szoke, E.; Miller, S. D.; Brummer, R.; Lindsey, D. T.; Hillger, D.

    2014-12-01

    The increasing use of mobile phones equipped with digital cameras and the ability to post images and information to the Internet in real-time has significantly improved the ability to report events almost instantaneously. In the context of severe weather reports, a representative digital image conveys significantly more information than a simple text or phone relayed report to a weather forecaster issuing severe weather warnings. It also allows the forecaster to reasonably discern the validity and quality of a storm report. Posting geo-located, time stamped storm report photographs utilizing a mobile phone application to NWS social media weather forecast office pages has generated recent positive feedback from forecasters. Building upon this feedback, this discussion advances the concept, development, and implementation of a formalized Photo Storm Report (PSR) mobile application, processing and distribution system and Advanced Weather Interactive Processing System II (AWIPS-II) plug-in display software.The PSR system would be composed of three core components: i) a mobile phone application, ii) a processing and distribution software and hardware system, and iii) AWIPS-II data, exchange and visualization plug-in software. i) The mobile phone application would allow web-registered users to send geo-location, view direction, and time stamped PSRs along with severe weather type and comments to the processing and distribution servers. ii) The servers would receive PSRs, convert images and information to NWS network bandwidth manageable sizes in an AWIPS-II data format, distribute them on the NWS data communications network, and archive the original PSRs for possible future research datasets. iii) The AWIPS-II data and exchange plug-ins would archive PSRs, and the visualization plug-in would display PSR locations, times and directions by hour, similar to surface observations. Hovering on individual PSRs would reveal photo thumbnails and clicking on them would display the full resolution photograph.Here, we present initial NWS forecaster feedback received from social media posted PSRs, motivating the possible advantages of PSRs within AWIPS-II, the details of developing and implementing a PSR system, and possible future applications beyond severe weather reports and AWIPS-II.

  10. A Preliminary Evaluation of the GFS Physics in the Navy Global Environmental Model

    NASA Astrophysics Data System (ADS)

    Liu, M.; Langland, R.; Martini, M.; Viner, K.

    2017-12-01

    Global extended long-range weather forecast is a goal in the near future at Navy's Fleet Numerical Meteorology and Oceanography Center (FNMOC). In an effort to improve the performance of the Navy Global Environmental Model (NAVGEM) operated at FNMOC, and to gain more understanding of the impact of atmospheric physics in the long-range forecast, the physics package of the Global Forecast System (GFS) of the National Centers for Environmental Prediction is being evaluated in the framework of NAVGEM. That is GFS physics being transported by NAVGEM Semi-Lagrangian Semi-Implicit advection, and update-cycled by the 4D-variational data assimilation along with the assimilated land surface data of NASA's Land Information System. The output of free long runs of 10-day GFS physics forecast in a summer and a winter season are evaluated through the comparisons with the output of NAVGEM physics long forecast, and through the validations with observations and with the European Center's analyses data. It is found that the GFS physics is able to effectively reduce some of the modeling biases of NAVGEM, especially wind speed of the troposphere and land surface temperature that is an important surface boundary condition. The bias corrections increase with forecast leads, reaching maximum at 240 hours. To further understand the relative roles of physics and dynamics in extended long-range forecast, the tendencies of physics components and advection are also calculated and analyzed to compare their forces of magnitudes in the integration of winds, temperature, and moisture. The comparisons reveal the strength and limitation of GFS physics in the overall improvement of NAVGEM prediction system.

  11. Extended-Range Forecasts at Climate Prediction Center: Current Status and Future Plans

    NASA Astrophysics Data System (ADS)

    Kumar, A.

    2016-12-01

    Motivated by a user need to provide forecast information on extended-range time-scales (i.e., weeks 2-4), in recent years Climate Prediction Center (CPC) has made considerable efforts towards developing and testing the feasibility for developing the required forecasts. The forecasts targeting this particular time-scale face a unique challenge in that while the forecast skill due to atmospheric initial conditions is small (because of rapid decay in the memory associated with the atmospheric initial conditions), short time averages for which forecasts are made do not benefit from skill associated with anomalous boundary conditions either. Despite these challenges, CPC has embarked on providing an experimental outlook for weeks 3-4 average. The talk will summarize the current status of CPC's current suite of extended-range forecast products, and further, will discuss some future plans.

  12. Nonlinear techniques for forecasting solar activity directly from its time series

    NASA Technical Reports Server (NTRS)

    Ashrafi, S.; Roszman, L.; Cooley, J.

    1992-01-01

    Numerical techniques for constructing nonlinear predictive models to forecast solar flux directly from its time series are presented. This approach makes it possible to extract dynamical invariants of our system without reference to any underlying solar physics. We consider the dynamical evolution of solar activity in a reconstructed phase space that captures the attractor (strange), given a procedure for constructing a predictor of future solar activity, and discuss extraction of dynamical invariants such as Lyapunov exponents and attractor dimension.

  13. Nonlinear techniques for forecasting solar activity directly from its time series

    NASA Technical Reports Server (NTRS)

    Ashrafi, S.; Roszman, L.; Cooley, J.

    1993-01-01

    This paper presents numerical techniques for constructing nonlinear predictive models to forecast solar flux directly from its time series. This approach makes it possible to extract dynamical in variants of our system without reference to any underlying solar physics. We consider the dynamical evolution of solar activity in a reconstructed phase space that captures the attractor (strange), give a procedure for constructing a predictor of future solar activity, and discuss extraction of dynamical invariants such as Lyapunov exponents and attractor dimension.

  14. Demographic Analysis and Planning for the Future. No. 13.

    ERIC Educational Resources Information Center

    Efird, Cathy M.

    The basic sources and types of demographic data available for future planning for the developmentally disabled are reviewed and a frame work for data organization is suggested. It is explained that future forecasts may be undertaken by the following principles: trend forecasting or extrapolation; scenario construction; models, games, and…

  15. Probabilistic eruption forecasting at short and long time scales

    NASA Astrophysics Data System (ADS)

    Marzocchi, Warner; Bebbington, Mark S.

    2012-10-01

    Any effective volcanic risk mitigation strategy requires a scientific assessment of the future evolution of a volcanic system and its eruptive behavior. Some consider the onus should be on volcanologists to provide simple but emphatic deterministic forecasts. This traditional way of thinking, however, does not deal with the implications of inherent uncertainties, both aleatoric and epistemic, that are inevitably present in observations, monitoring data, and interpretation of any natural system. In contrast to deterministic predictions, probabilistic eruption forecasting attempts to quantify these inherent uncertainties utilizing all available information to the extent that it can be relied upon and is informative. As with many other natural hazards, probabilistic eruption forecasting is becoming established as the primary scientific basis for planning rational risk mitigation actions: at short-term (hours to weeks or months), it allows decision-makers to prioritize actions in a crisis; and at long-term (years to decades), it is the basic component for land use and emergency planning. Probabilistic eruption forecasting consists of estimating the probability of an eruption event and where it sits in a complex multidimensional time-space-magnitude framework. In this review, we discuss the key developments and features of models that have been used to address the problem.

  16. Evaluation of a new microphysical aerosol module in the ECMWF Integrated Forecasting System

    NASA Astrophysics Data System (ADS)

    Woodhouse, Matthew; Mann, Graham; Carslaw, Ken; Morcrette, Jean-Jacques; Schulz, Michael; Kinne, Stefan; Boucher, Olivier

    2013-04-01

    The Monitoring Atmospheric Composition and Climate II (MACC-II) project will provide a system for monitoring and predicting atmospheric composition. As part of the first phase of MACC, the GLOMAP-mode microphysical aerosol scheme (Mann et al., 2010, GMD) was incorporated within the ECMWF Integrated Forecasting System (IFS). The two-moment modal GLOMAP-mode scheme includes new particle formation, condensation, coagulation, cloud-processing, and wet and dry deposition. GLOMAP-mode is already incorporated as a module within the TOMCAT chemistry transport model and within the UK Met Office HadGEM3 general circulation model. The microphysical, process-based GLOMAP-mode scheme allows an improved representation of aerosol size and composition and can simulate aerosol evolution in the troposphere and stratosphere. The new aerosol forecasting and re-analysis system (known as IFS-GLOMAP) will also provide improved boundary conditions for regional air quality forecasts, and will benefit from assimilation of observed aerosol optical depths in near real time. Presented here is an evaluation of the performance of the IFS-GLOMAP system in comparison to in situ aerosol mass and number measurements, and remotely-sensed aerosol optical depth measurements. Future development will provide a fully-coupled chemistry-aerosol scheme, and the capability to resolve nitrate aerosol.

  17. A Real-Time California Coastal Ocean Nowcast/Forecast System: Skill Assessment, User Products, and Transition from Research to Operations

    NASA Astrophysics Data System (ADS)

    Farrara, J. D.; Chao, Y.; Chai, F.; Zhang, H.

    2016-02-01

    The real-time California coastal ocean nowcast/forecast system is described. The model is based on the Regional Ocean Modeling System (ROMS) and covers the entire California coastal ocean with a horizontal resolution of 3 km and 40 vertical layers. The atmospheric forcing is derived from the operational regional atmospheric model forecasts. The lateral boundary conditions are provided by the operational ocean model forecasts. A multi-scale 3-dimensional variational (3DVAR) data assimilation scheme is used to assimilate both in situ (e.g., vertical profiles of temperature and salinity) and remotely sensed data from both satellite (e.g., sea surface temperature and sea surface height) and land-based platforms (e.g., surface current). The performance of our nowcast/forecast system is evaluated in real-time by a number of metrics that are published as soon as they become available. User tools and products have been developed for both general users and super-users (e.g., NOAA Office of Response and Restoration and USCG). Recent results comparing the 3DVAR with the ensemble Kalman Filter (EnKF) using Data Assimilation Research Testbed (DART) will be presented. Preliminary results coupling the ROMS circulation model with a biogeochemistry/ecosystem model (i.e., CoSiNE) will also discussed. Cloud computing services (e.g., Microsoft, Google) are now being tested to increase the reliability and timeliness in order to be accepted as a truly operational system in the near future.

  18. Seasonal scale water deficit forecasting in Africa and the Middle East using NASA's Land Information System (LIS)

    NASA Astrophysics Data System (ADS)

    Shukla, Shraddhanand; Arsenault, Kristi R.; Getirana, Augusto; Kumar, Sujay V.; Roningen, Jeanne; Zaitchik, Ben; McNally, Amy; Koster, Randal D.; Peters-Lidard, Christa

    2017-04-01

    Drought and water scarcity are among the important issues facing several regions within Africa and the Middle East. A seamless and effective monitoring and early warning system is needed by regional/national stakeholders. Such system should support a proactive drought management approach and mitigate the socio-economic losses up to the extent possible. In this presentation, we report on the ongoing development and validation of a seasonal scale water deficit forecasting system based on NASA's Land Information System (LIS) and seasonal climate forecasts. First, our presentation will focus on the implementation and validation of the LIS models used for drought and water availability monitoring in the region. The second part will focus on evaluating drought and water availability forecasts. Finally, details will be provided of our ongoing collaboration with end-user partners in the region (e.g., USAID's Famine Early Warning Systems Network, FEWS NET), on formulating meaningful early warning indicators, effective communication and seamless dissemination of the monitoring and forecasting products through NASA's web-services. The water deficit forecasting system thus far incorporates NOAA's Noah land surface model (LSM), version 3.3, the Variable Infiltration Capacity (VIC) model, version 4.12, NASA GMAO's Catchment LSM, and the Noah Multi-Physics (MP) LSM (the latter two incorporate prognostic water table schemes). In addition, the LSMs' surface and subsurface runoff are routed through the Hydrological Modeling and Analysis Platform (HyMAP) to simulate surface water dynamics. The LSMs are driven by NASA/GMAO's Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2), and the USGS and UCSB Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) daily rainfall dataset. The LIS software framework integrates these forcing datasets and drives the four LSMs and HyMAP. The Land Verification Toolkit (LVT) is used for the evaluation of the LSMs, as it provides model ensemble metrics and the ability to compare against a variety of remotely sensed measurements, like different evapotranspiration (ET) and soil moisture products, and other reanalysis datasets that are available for this region. Comparison of the models' energy and hydrological budgets will be shown for this region (and sub-basin level, e.g., Blue Nile River) and time period (1981-2015), along with evaluating ET, streamflow, groundwater storage and soil moisture, using evaluation metrics (e.g., anomaly correlation, RMSE, etc.). The system uses seasonal climate forecasts from NASA's GMAO (the Goddard Earth Observing System Model, version 5) and NCEP's Climate Forecast System, version 2, and it produces forecasts of soil moisture, ET and streamflow out to 6 months in the future. Forecasts of those variables are formulated in terms of indicators to provide forecasts of drought and water availability in the region.

  19. Research notes : best practices for traffic impact studies.

    DOT National Transportation Integrated Search

    2006-11-01

    Traffic Impact Studies (TISs) are used by the Oregon Department of Transportation (ODOT) and staff of other transportation agencies to forecast future system effects from proposed development projects and to predict the useful life of a transportatio...

  20. Set-up and validation of a Delft-FEWS based coastal hazard forecasting system

    NASA Astrophysics Data System (ADS)

    Valchev, Nikolay; Eftimova, Petya; Andreeva, Nataliya

    2017-04-01

    European coasts are increasingly threatened by hazards related to low-probability and high-impact hydro-meteorological events. Uncertainties in hazard prediction and capabilities to cope with their impact lie in both future storm pattern and increasing coastal development. Therefore, adaptation to future conditions requires a re-evaluation of coastal disaster risk reduction (DRR) strategies and introduction of a more efficient mix of prevention, mitigation and preparedness measures. The latter presumes that development of tools, which can manage the complex process of merging data and models and generate products on the current and expected hydro-and morpho-dynamic states of the coasts, such as forecasting system of flooding and erosion hazards at vulnerable coastal locations (hotspots), is of vital importance. Output of such system can be of an utmost value for coastal stakeholders and the entire coastal community. In response to these challenges, Delft-FEWS provides a state-of-the-art framework for implementation of such system with vast capabilities to trigger the early warning process. In addition, this framework is highly customizable to the specific requirements of any individual coastal hotspot. Since its release many Delft-FEWS based forecasting system related to inland flooding have been developed. However, limited number of coastal applications was implemented. In this paper, a set-up of Delft-FEWS based forecasting system for Varna Bay (Bulgaria) and a coastal hotspot, which includes a sandy beach and port infrastructure, is presented. It is implemented in the frame of RISC-KIT project (Resilience-Increasing Strategies for Coasts - toolKIT). The system output generated in hindcast mode is validated with available observations of surge levels, wave and morphodynamic parameters for a sequence of three short-duration and relatively weak storm events occurred during February 4-12, 2015. Generally, the models' performance is considered as very good and results obtained - quite promising for reliable prediction of both boundary conditions and coastal hazard and gives a good basis for estimation of onshore impact.

  1. A temporal-spatial postprocessing model for probabilistic run-off forecast. With a case study from Ulla-Førre with five catchments and ten lead times

    NASA Astrophysics Data System (ADS)

    Engeland, K.; Steinsland, I.

    2012-04-01

    This work is driven by the needs of next generation short term optimization methodology for hydro power production. Stochastic optimization are about to be introduced; i.e. optimizing when available resources (water) and utility (prices) are uncertain. In this paper we focus on the available resources, i.e. water, where uncertainty mainly comes from uncertainty in future runoff. When optimizing a water system all catchments and several lead times have to be considered simultaneously. Depending on the system of hydropower reservoirs, it might be a set of headwater catchments, a system of upstream /downstream reservoirs where water used from one catchment /dam arrives in a lower catchment maybe days later, or a combination of both. The aim of this paper is therefore to construct a simultaneous probabilistic forecast for several catchments and lead times, i.e. to provide a predictive distribution for the forecasts. Stochastic optimization methods need samples/ensembles of run-off forecasts as input. Hence, it should also be possible to sample from our probabilistic forecast. A post-processing approach is taken, and an error model based on Box- Cox transformation, power transform and a temporal-spatial copula model is used. It accounts for both between catchment and between lead time dependencies. In operational use it is strait forward to sample run-off ensembles from this models that inherits the catchment and lead time dependencies. The methodology is tested and demonstrated in the Ulla-Førre river system, and simultaneous probabilistic forecasts for five catchments and ten lead times are constructed. The methodology has enough flexibility to model operationally important features in this case study such as hetroscadasety, lead-time varying temporal dependency and lead-time varying inter-catchment dependency. Our model is evaluated using CRPS for marginal predictive distributions and energy score for joint predictive distribution. It is tested against deterministic run-off forecast, climatology forecast and a persistent forecast, and is found to be the better probabilistic forecast for lead time grater then two. From an operational point of view the results are interesting as the between catchment dependency gets stronger with longer lead-times.

  2. Natural Gas Prices Forecast Comparison--AEO vs. Natural Gas Markets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong-Parodi, Gabrielle; Lekov, Alex; Dale, Larry

    This paper evaluates the accuracy of two methods to forecast natural gas prices: using the Energy Information Administration's ''Annual Energy Outlook'' forecasted price (AEO) and the ''Henry Hub'' compared to U.S. Wellhead futures price. A statistical analysis is performed to determine the relative accuracy of the two measures in the recent past. A statistical analysis suggests that the Henry Hub futures price provides a more accurate average forecast of natural gas prices than the AEO. For example, the Henry Hub futures price underestimated the natural gas price by 35 cents per thousand cubic feet (11.5 percent) between 1996 and 2003more » and the AEO underestimated by 71 cents per thousand cubic feet (23.4 percent). Upon closer inspection, a liner regression analysis reveals that two distinct time periods exist, the period between 1996 to 1999 and the period between 2000 to 2003. For the time period between 1996 to 1999, AEO showed a weak negative correlation (R-square = 0.19) between forecast price by actual U.S. Wellhead natural gas price versus the Henry Hub with a weak positive correlation (R-square = 0.20) between forecasted price and U.S. Wellhead natural gas price. During the time period between 2000 to 2003, AEO shows a moderate positive correlation (R-square = 0.37) between forecasted natural gas price and U.S. Wellhead natural gas price versus the Henry Hub that show a moderate positive correlation (R-square = 0.36) between forecast price and U.S. Wellhead natural gas price. These results suggest that agencies forecasting natural gas prices should consider incorporating the Henry Hub natural gas futures price into their forecasting models along with the AEO forecast. Our analysis is very preliminary and is based on a very small data set. Naturally the results of the analysis may change, as more data is made available.« less

  3. A System Dynamics Modeling of Water Supply and Demand in Las Vegas Valley

    NASA Astrophysics Data System (ADS)

    Parajuli, R.; Kalra, A.; Mastino, L.; Velotta, M.; Ahmad, S.

    2017-12-01

    The rise in population and change in climate have posed the uncertainties in the balance between supply and demand of water. The current study deals with the water management issues in Las Vegas Valley (LVV) using Stella, a system dynamics modeling software, to model the feedback based relationship between supply and demand parameters. Population parameters were obtained from Center for Business and Economic Research while historical water demand and conservation practices were modeled as per the information provided by local authorities. The water surface elevation of Lake Mead, which is the prime source of water supply to the region, was modeled as the supply side whereas the water demand in LVV was modeled as the demand side. The study was done from the period of 1989 to 2049 with 1989 to 2012 as the historical one and the period from 2013 to 2049 as the future period. This study utilizes Coupled Model Intercomparison Project data sets (2013-2049) (CMIP3&5) to model different future climatic scenarios. The model simulates the past dynamics of supply and demand, and then forecasts the future water budget for the forecasted future population and future climatic conditions. The results can be utilized by the water authorities in understanding the future water status and hence plan suitable conservation policies to allocate future water budget and achieve sustainable water management.

  4. Challenges for future space power systems

    NASA Technical Reports Server (NTRS)

    Brandhorst, Henry W., Jr.

    1989-01-01

    Forecasts of space power needs are presented. The needs fall into three broad categories: survival, self-sufficiency, and industrialization. The cost of delivering payloads to orbital locations and from Low Earth Orbit (LEO) to Mars are determined. Future launch cost reductions are predicted. From these projections the performances necessary for future solar and nuclear space power options are identified. The availability of plentiful cost effective electric power and of low cost access to space are identified as crucial factors in the future extension of human presence in space.

  5. The Best of Both Worlds: Developing a Hybrid Data System for the ASF DAAC

    NASA Astrophysics Data System (ADS)

    Arko, S. A.; Buechler, B.; Wolf, V. G.

    2017-12-01

    The Alaska Satellite Facility (ASF) at the University of Alaska Fairbanks hosts the NASA Distributed Active Archive Center (DAAC) specializing in synthetic aperture radar (SAR). Historically, the ASF DAAC has hosted hardware on-premises and developed DAAC-specific software to operate, manage, and maintain the DAAC data system. In the past year, ASF DAAC has been moving many of the standard DAAC operations into the Amazon Web Services (AWS) cloud. This includes data ingest, basic pre-processing, archiving, and distribution within the AWS environment. While the cloud offers nearly unbounded capacity for expansion and a great host of services, there also can be unexpected and unplanned costs for such. Additionally, these costs can be difficult to forecast even with historic data usage patterns and models for future usage. In an effort to maximize the effectiveness of the DAAC data system, while still managing and accurately forecasting costs, ASF DAAC has developed a hybrid, cloud and on-premises, data system. The goal of this project is to make extensive use of the AWS cloud, and when appropriate, utilize on-premises resources to help constrain costs. This hybrid system attempts to mimic, on premises, a cloud environment using Kubernetes container orchestration in order that software can be run in either location with little change. Combined with hybrid data storage architecture, the new data system makes use of the great capacity of the cloud while maintaining an on-premises options. This presentation will describe the development of the hybrid data system, including the micro-services architecture and design, the container orchestration, and hybrid storage. Additional we will highlight the lessons learned through the development process, cost forecasting for current and future SAR-mission operations, and provide a discussion of the pros and cons of hybrid architectures versus all-cloud deployments. This development effort has led to a system that is capable and flexible for the future while allowing ASF DAAC to continue supporting the SAR community with the highest level of services.

  6. Climate Change and Sea Level Rise: A Challenge to Science and Society

    NASA Astrophysics Data System (ADS)

    Plag, H.

    2009-12-01

    Society is challenged by the risk of an anticipated rise of coastal Local Sea Level (LSL) as a consequence of future global warming. Many low-lying and often subsiding and densely populated coastal areas are under risk of increased inundation, with potentially devastating consequences for the global economy, society, and environment. Faced with a trade-off between imposing the very high costs of coastal protection and adaptation upon today's national economies and leaving the costs of potential major disasters to future generations, governments and decision makers are in need of scientific support for the development of mitigation and adaptation strategies for the coastal zone. Low-frequency to secular changes in LSL are the result of many interacting Earth system processes. The complexity of the Earth system makes it difficult to predict Global Sea Level (GSL) rise and, even more so, LSL changes over the next 100 to 200 years. Humans have re-engineered the planet and changed major features of the Earth surface and the atmosphere, thus ruling out extrapolation of past and current changes into the future as a reasonable approach. The risk of rapid changes in ocean circulation and ice sheet mass balance introduces the possibility of unexpected changes. Therefore, science is challenged with understanding and constraining the full range of plausible future LSL trajectories and with providing useful support for informed decisions. In the face of largely unpredictable future sea level changes, monitoring of the relevant processes and development of a forecasting service on realistic time scales is crucial as decision support. Forecasting and "early warning" for LSL rise would have to aim at decadal time scales, giving coastal managers sufficient time to react if the onset of rapid changes would require an immediate response. The social, environmental, and economic risks associated with potentially large and rapid LSL changes are enormous. Therefore, in the light of the current uncertainties and the unpredictable nature of some of the forcing processes for LSL changes, the focus of scientific decision support may have to shift from projections of LSL trajectories on century time scales to the development of models and monitoring systems for a forecasting service on decadal time scales. The requirements for such a LSL forecasting service and the current obstacles will be discussed.

  7. Use of wind data in global modelling

    NASA Technical Reports Server (NTRS)

    Pailleux, J.

    1985-01-01

    The European Centre for Medium Range Weather Forecasts (ECMWF) is producing operational global analyses every 6 hours and operational global forecasts every day from the 12Z analysis. How the wind data are used in the ECMWF golbal analysis is described. For each current wind observing system, its ability to provide initial conditions for the forecast model is discussed as well as its weaknesses. An assessment of the impact of each individual system on the quality of the analysis and the forecast is given each time it is possible. Sometimes the deficiencies which are pointed out are related not only to the observing system itself but also to the optimum interpolation (OI) analysis scheme; then some improvements are generally possible through ad hoc modifications of the analysis scheme and especially tunings of the structure functions. Examples are given. The future observing network over the North Atlantic is examined. Several countries, coordinated by WMO, are working to set up an 'Operational WWW System Evaluation' (OWSE), in order to evaluate the operational aspects of the deployment of new systems (ASDAR, ASAP). Most of the new systems are expected to be deployed before January 1987, and in order to make the best use of the available resources during the deployment phase, some network studies are carried out at the present time, by using simulated data for ASDAR and ASAP systems. They are summarized.

  8. Forecasting skills of the ensemble hydro-meteorological system for the Po river floods

    NASA Astrophysics Data System (ADS)

    Ricciardi, Giuseppe; Montani, Andrea; Paccagnella, Tiziana; Pecora, Silvano; Tonelli, Fabrizio

    2013-04-01

    The Po basin is the largest and most economically important river-basin in Italy. Extreme hydrological events, including floods, flash floods and droughts, are expected to become more severe in the next future due to climate change, and related ground effects are linked both with environmental and social resilience. A Warning Operational Center (WOC) for hydrological event management was created in Emilia Romagna region. In the last years, the WOC faced challenges in legislation, organization, technology and economics, achieving improvements in forecasting skill and information dissemination. Since 2005, an operational forecasting and modelling system for flood modelling and forecasting has been implemented, aimed at supporting and coordinating flood control and emergency management on the whole Po basin. This system, referred to as FEWSPo, has also taken care of environmental aspects of flood forecast. The FEWSPo system has reached a very high level of complexity, due to the combination of three different hydrological-hydraulic chains (HEC-HMS/RAS - MIKE11 NAM/HD, Topkapi/Sobek), with several meteorological inputs (forecasted - COSMOI2, COSMOI7, COSMO-LEPS among others - and observed). In this hydrological and meteorological ensemble the management of the relative predictive uncertainties, which have to be established and communicated to decision makers, is a debated scientific and social challenge. Real time activities face professional, modelling and technological aspects but are also strongly interrelated with organization and human aspects. The authors will report a case study using the operational flood forecast hydro-meteorological ensemble, provided by the MIKE11 chain fed by COSMO_LEPS EQPF. The basic aim of the proposed approach is to analyse limits and opportunities of the long term forecast (with a lead time ranging from 3 to 5 days), for the implementation of low cost actions, also looking for a well informed decision making and the improvement of flood preparedness and crisis management for basins greater than 1.000 km2.

  9. JPSS Products, Applications and Training

    NASA Astrophysics Data System (ADS)

    Torres, J. R.; Connell, B. H.; Miller, S. D.

    2017-12-01

    The Joint Polar Satellite System (JPSS) is a new generation polar-orbiting operational environmental satellite system that will monitor the weather and environment around the globe. JPSS will provide technological and scientific improvements in environmental monitoring via high resolution satellite imagery and derived products that stand to improve weather forecasting capabilities for National Weather Service (NWS) forecasters and complement operational Geostationary satellites. JPSS will consist of four satellites, JPSS-1 through JPSS-4, where JPSS-1 is due to launch in Fall 2017. A predecessor, prototype and operational risk-reduction for JPSS is the Suomi-National Polar-orbiting Partnership (S-NPP) satellite, launched on 28 October 2011. The following instruments on-board S-NPP will also be hosted on JPSS-1: Visible Infrared Imaging Radiometer Suite (VIIRS), Cross-track Infrared Sounder (CrIS), Advanced Technology Microwave Sounder (ATMS), Ozone Mapping and Profiler Suite (OMPS) and the Clouds and Earth's Radiant Energy System (CERES). JPSS-1 instruments will provide satellite imagery, products and applications to users. The applications include detecting water and ice clouds, snow, sea surface temperatures, fog, fire, severe weather, vegetation health, aerosols, and sensing reflected lunar and emitted visible-wavelength light during the nighttime via the Day/Night Band (DNB) sensor included on VIIRS. Currently, there are only a few polar products that are operational for forecasters, however, more products will become available in the near future via Advanced Weather Interactive Processing System-II (AWIPS-II)-a forecasting analysis software package that forecasters can use to analyze meteorological data. To complement the polar products an wealth of training materials are currently in development. Denoted as the Satellite Foundational Course for JPSS (SatFC-J), this training will benefit NWS forecasters to utilize satellite data in their forecasts and daily operations as they discover their operational value in the NWS forecast process. As JPSS-1 launch nears, training materials will be produced in the form of modules, videos, quick guides, fact sheets, and hands-on exercises.

  10. Crowd Sourcing Approach for UAS Communication Resource Demand Forecasting

    NASA Technical Reports Server (NTRS)

    Wargo, Chris A.; Difelici, John; Roy, Aloke; Glaneuski, Jason; Kerczewski, Robert J.

    2016-01-01

    Congressional attention to Unmanned Aircraft Systems (UAS) has caused the Federal Aviation Administration (FAA) to move the National Airspace System (NAS) Integration project forward, but using guidelines, practices and procedures that are yet to be fully integrated with the FAA Aviation Management System. The real drive for change in the NAS will to come from both UAS operators and the government jointly seeing an accurate forecast of UAS usage demand data. This solid forecast information would truly get the attention of planners. This requires not an aggregate demand, but rather a picture of how the demand is spread across small to large UAS, how it is spread across a wide range of missions, how it is expected over time and where, in terms of geospatial locations, will the demand appear. In 2012 the Volpe Center performed a study of the overall future demand for UAS. This was done by aggregate classes of aircraft types. However, the realistic expected demand will appear in clusters of aircraft activities grouped by similar missions on a smaller geographical footprint and then growing from those small cells. In general, there is not a demand forecast that is tightly coupled to the real purpose of the mission requirements (e.g. in terms of real locations and physical structures such as wind mills to inspect, farms to survey, pipelines to patrol, etc.). Being able to present a solid basis for the demand is crucial to getting the attention of investment, government and other fiscal planners. To this end, Mosaic ATM under NASA guidance is developing a crowd sourced, demand forecast engine that can draw forecast details from commercial and government users and vendors. These forecasts will be vetted by a governance panel and then provide for a sharable accurate set of projection data. Our paper describes the project and the technical approach we are using to design and create access for users to the forecast system.

  11. Monitoring and Modeling: The Future of Volcanic Eruption Forecasting

    NASA Astrophysics Data System (ADS)

    Poland, M. P.; Pritchard, M. E.; Anderson, K. R.; Furtney, M.; Carn, S. A.

    2016-12-01

    Eruption forecasting typically uses monitoring data from geology, gas geochemistry, geodesy, and seismology, to assess the likelihood of future eruptive activity. Occasionally, months to years of warning are possible from specific indicators (e.g., deep LP earthquakes, elevated CO2 emissions, and aseismic deformation) or a buildup in one or more monitoring parameters. More often, observable changes in unrest occur immediately before eruption, as magma is rising toward the surface. In some cases, little or no detectable unrest precedes eruptive activity. Eruption forecasts are usually based on the experience of volcanologists studying the activity, but two developing fields offer a potential leap beyond this practice. First, remote sensing data, which can track thermal, gas, and ash emissions, as well as surface deformation, are increasingly available, allowing statistically significant research into the characteristics of unrest. For example, analysis of hundreds of volcanoes indicates that deformation is a more common pre-eruptive phenomenon than thermal anomalies, and that most episodes of satellite-detected unrest are not immediately followed by eruption. Such robust datasets inform the second development—probabilistic models of eruption potential, especially those that are based on physical-chemical models of the dynamics of magma accumulation and ascent. Both developments are essential for refining forecasts and reducing false positives. For example, many caldera systems have not erupted but are characterized by unrest that, in another context, would elicit strong concern from volcanologists. More observations of this behavior and better understanding of the underlying physics of unrest will improve forecasts of such activity. While still many years from implementation as a forecasting tool, probabilistic physio-chemical models incorporating satellite data offer a complement to expert assessments that, together, can form a powerful forecasting approach.

  12. Bayesian quantitative precipitation forecasts in terms of quantiles

    NASA Astrophysics Data System (ADS)

    Bentzien, Sabrina; Friederichs, Petra

    2014-05-01

    Ensemble prediction systems (EPS) for numerical weather predictions on the mesoscale are particularly developed to obtain probabilistic guidance for high impact weather. An EPS not only issues a deterministic future state of the atmosphere but a sample of possible future states. Ensemble postprocessing then translates such a sample of forecasts into probabilistic measures. This study focus on probabilistic quantitative precipitation forecasts in terms of quantiles. Quantiles are particular suitable to describe precipitation at various locations, since no assumption is required on the distribution of precipitation. The focus is on the prediction during high-impact events and related to the Volkswagen Stiftung funded project WEX-MOP (Mesoscale Weather Extremes - Theory, Spatial Modeling and Prediction). Quantile forecasts are derived from the raw ensemble and via quantile regression. Neighborhood method and time-lagging are effective tools to inexpensively increase the ensemble spread, which results in more reliable forecasts especially for extreme precipitation events. Since an EPS provides a large amount of potentially informative predictors, a variable selection is required in order to obtain a stable statistical model. A Bayesian formulation of quantile regression allows for inference about the selection of predictive covariates by the use of appropriate prior distributions. Moreover, the implementation of an additional process layer for the regression parameters accounts for spatial variations of the parameters. Bayesian quantile regression and its spatially adaptive extension is illustrated for the German-focused mesoscale weather prediction ensemble COSMO-DE-EPS, which runs (pre)operationally since December 2010 at the German Meteorological Service (DWD). Objective out-of-sample verification uses the quantile score (QS), a weighted absolute error between quantile forecasts and observations. The QS is a proper scoring function and can be decomposed into reliability, resolutions and uncertainty parts. A quantile reliability plot gives detailed insights in the predictive performance of the quantile forecasts.

  13. Identification of Occupational Areas for Indiana's Future. Final Report of the Technology Forecasting Task Force.

    ERIC Educational Resources Information Center

    Indiana State Commission on Vocational and Technical Education, Indianapolis.

    A task force representing the Indiana private sector was convened for two purposes: to (1) identify the impact of technology on required worker skills, the labor market, and the vocational education, training, and employment system; and (2) identify occupational areas that should be future growth areas for the state. Task force members reviewed…

  14. Results of the Regional Earthquake Likelihood Models (RELM) test of earthquake forecasts in California.

    PubMed

    Lee, Ya-Ting; Turcotte, Donald L; Holliday, James R; Sachs, Michael K; Rundle, John B; Chen, Chien-Chih; Tiampo, Kristy F

    2011-10-04

    The Regional Earthquake Likelihood Models (RELM) test of earthquake forecasts in California was the first competitive evaluation of forecasts of future earthquake occurrence. Participants submitted expected probabilities of occurrence of M ≥ 4.95 earthquakes in 0.1° × 0.1° cells for the period 1 January 1, 2006, to December 31, 2010. Probabilities were submitted for 7,682 cells in California and adjacent regions. During this period, 31 M ≥ 4.95 earthquakes occurred in the test region. These earthquakes occurred in 22 test cells. This seismic activity was dominated by earthquakes associated with the M = 7.2, April 4, 2010, El Mayor-Cucapah earthquake in northern Mexico. This earthquake occurred in the test region, and 16 of the other 30 earthquakes in the test region could be associated with it. Nine complete forecasts were submitted by six participants. In this paper, we present the forecasts in a way that allows the reader to evaluate which forecast is the most "successful" in terms of the locations of future earthquakes. We conclude that the RELM test was a success and suggest ways in which the results can be used to improve future forecasts.

  15. Results of the Regional Earthquake Likelihood Models (RELM) test of earthquake forecasts in California

    PubMed Central

    Lee, Ya-Ting; Turcotte, Donald L.; Holliday, James R.; Sachs, Michael K.; Rundle, John B.; Chen, Chien-Chih; Tiampo, Kristy F.

    2011-01-01

    The Regional Earthquake Likelihood Models (RELM) test of earthquake forecasts in California was the first competitive evaluation of forecasts of future earthquake occurrence. Participants submitted expected probabilities of occurrence of M≥4.95 earthquakes in 0.1° × 0.1° cells for the period 1 January 1, 2006, to December 31, 2010. Probabilities were submitted for 7,682 cells in California and adjacent regions. During this period, 31 M≥4.95 earthquakes occurred in the test region. These earthquakes occurred in 22 test cells. This seismic activity was dominated by earthquakes associated with the M = 7.2, April 4, 2010, El Mayor–Cucapah earthquake in northern Mexico. This earthquake occurred in the test region, and 16 of the other 30 earthquakes in the test region could be associated with it. Nine complete forecasts were submitted by six participants. In this paper, we present the forecasts in a way that allows the reader to evaluate which forecast is the most “successful” in terms of the locations of future earthquakes. We conclude that the RELM test was a success and suggest ways in which the results can be used to improve future forecasts. PMID:21949355

  16. Forecasting Responses of a Northern Peatland Carbon Cycle to Elevated CO2 and a Gradient of Experimental Warming

    NASA Astrophysics Data System (ADS)

    Jiang, Jiang; Huang, Yuanyuan; Ma, Shuang; Stacy, Mark; Shi, Zheng; Ricciuto, Daniel M.; Hanson, Paul J.; Luo, Yiqi

    2018-03-01

    The ability to forecast ecological carbon cycling is imperative to land management in a world where past carbon fluxes are no longer a clear guide in the Anthropocene. However, carbon-flux forecasting has not been practiced routinely like numerical weather prediction. This study explored (1) the relative contributions of model forcing data and parameters to uncertainty in forecasting flux- versus pool-based carbon cycle variables and (2) the time points when temperature and CO2 treatments may cause statistically detectable differences in those variables. We developed an online forecasting workflow (Ecological Platform for Assimilation of Data (EcoPAD)), which facilitates iterative data-model integration. EcoPAD automates data transfer from sensor networks, data assimilation, and ecological forecasting. We used the Spruce and Peatland Responses Under Changing Experiments data collected from 2011 to 2014 to constrain the parameters in the Terrestrial Ecosystem Model, forecast carbon cycle responses to elevated CO2 and a gradient of warming from 2015 to 2024, and specify uncertainties in the model output. Our results showed that data assimilation substantially reduces forecasting uncertainties. Interestingly, we found that the stochasticity of future external forcing contributed more to the uncertainty of forecasting future dynamics of C flux-related variables than model parameters. However, the parameter uncertainty primarily contributes to the uncertainty in forecasting C pool-related response variables. Given the uncertainties in forecasting carbon fluxes and pools, our analysis showed that statistically different responses of fast-turnover pools to various CO2 and warming treatments were observed sooner than slow-turnover pools. Our study has identified the sources of uncertainties in model prediction and thus leads to improve ecological carbon cycling forecasts in the future.

  17. Modeling and forecasting rainfall patterns of southwest monsoons in North-East India as a SARIMA process

    NASA Astrophysics Data System (ADS)

    Narasimha Murthy, K. V.; Saravana, R.; Vijaya Kumar, K.

    2018-02-01

    Weather forecasting is an important issue in the field of meteorology all over the world. The pattern and amount of rainfall are the essential factors that affect agricultural systems. India experiences the precious Southwest monsoon season for four months from June to September. The present paper describes an empirical study for modeling and forecasting the time series of Southwest monsoon rainfall patterns in the North-East India. The Box-Jenkins Seasonal Autoregressive Integrated Moving Average (SARIMA) methodology has been adopted for model identification, diagnostic checking and forecasting for this region. The study has shown that the SARIMA (0, 1, 1) (1, 0, 1)4 model is appropriate for analyzing and forecasting the future rainfall patterns. The Analysis of Means (ANOM) is a useful alternative to the analysis of variance (ANOVA) for comparing the group of treatments to study the variations and critical comparisons of rainfall patterns in different months of the season.

  18. Assessing the Utility of Seasonal SST Forecasts to the Fisheries Management Process: a Pacific Sardine Case Study

    NASA Astrophysics Data System (ADS)

    Tommasi, D.; Stock, C. A.

    2016-02-01

    It is well established that environmental fluctuations affect the productivity of numerous fish stocks. Recent advances in prediction capability of dynamical global forecast systems, such as the state of the art NOAA Geophysical Fluid dynamics Laboratory (GFDL) 2.5-FLOR model, allow for climate predictions of fisheries-relevant variables at temporal scales relevant to the fishery management decision making process. We demonstrate that the GFDL FLOR model produces skillful seasonal SST anomaly predictions over the continental shelf , where most of the global fish yield is generated. The availability of skillful SST projections at this "fishery relevant" scale raises the potential for better constrained estimates of future fish biomass and improved harvest decisions. We assessed the utility of seasonal SST coastal shelf predictions for fisheries management using the case study of Pacific sardine. This fishery was selected because it is one of the few to already incorporate SST into its harvest guideline, and show a robust recruitment-SST relationship. We quantified the effectiveness of management under the status quo harvest guideline (HG) and under alternative HGs including future information at different levels of uncertainty. Usefulness of forecast SST to management was dependent on forecast uncertainty. If the standard deviation of the SST anomaly forecast residuals was less than 0.65, the alternative HG produced higher long-term yield and stock biomass, and reduced the probability of either catch or stock biomass falling below management-set threshold values as compared to the status quo. By contrast, probability of biomass falling to extremely low values increased as compared to the status quo for all alternative HGs except for a perfectly known future SST case. To safeguard against occurrence of such low probability but costly events, a harvest cutoff biomass also has to be implemented into the HG.

  19. Spatial nonlinearities: Cascading effects in the earth system

    USGS Publications Warehouse

    Peters, Debra P.C.; Pielke, R.A.; Bestelmeyer, B.T.; Allen, Craig D.; Munson-McGee, Stuart; Havstad, K. M.; Canadell, Josep G.; Pataki, Diane E.; Pitelka, Louis F.

    2006-01-01

    Nonlinear behavior is prevalent in all aspects of the Earth System, including ecological responses to global change (Gallagher and Appenzeller 1999; Steffen et al. 2004). Nonlinear behavior refers to a large, discontinuous change in response to a small change in a driving variable (Rial et al. 2004). In contrast to linear systems where responses are smooth, well-behaved, continuous functions, nonlinear systems often undergo sharp or discontinuous transitions resulting from the crossing of thresholds. These nonlinear responses can result in surprising behavior that makes forecasting difficult (Kaplan and Glass 1995). Given that many system dynamics are nonlinear, it is imperative that conceptual and quantitative tools be developed to increase our understanding of the processes leading to nonlinear behavior in order to determine if forecasting can be improved under future environmental changes (Clark et al. 2001).

  20. When idols look into the future: fair treatment modulates the affective forecasting error in talent show candidates.

    PubMed

    Feys, Marjolein; Anseel, Frederik

    2015-03-01

    People's affective forecasts are often inaccurate because they tend to overestimate how they will feel after an event. As life decisions are often based on affective forecasts, it is crucial to find ways to manage forecasting errors. We examined the impact of a fair treatment on forecasting errors in candidates in a Belgian reality TV talent show. We found that perceptions of fair treatment increased the forecasting error for losers (a negative audition decision) but decreased it for winners (a positive audition decision). For winners, this effect was even more pronounced when candidates were highly invested in their self-view as a future pop idol whereas for losers, the effect was more pronounced when importance was low. The results in this study point to a potential paradox between maximizing happiness and decreasing forecasting errors. A fair treatment increased the forecasting error for losers, but actually made them happier. © 2014 The British Psychological Society.

  1. Assessment of GNSS-based height data of multiple ships for measuring and forecasting great tsunamis

    NASA Astrophysics Data System (ADS)

    Inazu, Daisuke; Waseda, Takuji; Hibiya, Toshiyuki; Ohta, Yusaku

    2016-12-01

    Ship height positioning by the Global Navigation Satellite System (GNSS) was investigated for measuring and forecasting great tsunamis. We first examined GNSS height-positioning data of a navigating vessel. If we use the kinematic precise point positioning (PPP) method, tsunamis greater than 10-1 m will be detected by ship height positioning. Based on Automatic Identification System (AIS) data, we found that tens of cargo ships and tankers are usually identified to navigate over the Nankai Trough, southwest Japan. We assumed that a future Nankai Trough great earthquake tsunami will be observed by the kinematic PPP height positioning of an AIS-derived ship distribution, and examined the tsunami forecast capability of the offshore tsunami measurements based on the PPP-based ship height. A method to estimate the initial tsunami height distribution using offshore tsunami observations was used for forecasting. Tsunami forecast tests were carried out using simulated tsunami data by the PPP-based ship height of 92 cargo ships/tankers, and by currently operating deep-sea pressure and Global Positioning System (GPS) buoy observations at 71 stations over the Nankai Trough. The forecast capability using the PPP-based height of the 92 ships was shown to be comparable to or better than that using the operating offshore observatories at the 71 stations. We suppose that, immediately after the occurrence of a great earthquake, stations receiving successive ship information (AIS data) along certain areas of the coast would fail to acquire ship data due to strong ground shaking, especially near the epicenter. Such a situation would significantly deteriorate the tsunami-forecast capability using ship data. On the other hand, operational real-time analysis of seismic/geodetic data would be carried out for estimating a tsunamigenic fault model. Incorporating the seismic/geodetic fault model estimation into the tsunami forecast above possibly compensates for the deteriorated forecast capability.

  2. Promoting Interests in Atmospheric Science at a Liberal Arts Institution

    NASA Astrophysics Data System (ADS)

    Roussev, S.; Sherengos, P. M.; Limpasuvan, V.; Xue, M.

    2007-12-01

    Coastal Carolina University (CCU) students in Computer Science participated in a project to set up an operational weather forecast for the local community. The project involved the construction of two computing clusters and the automation of daily forecasting. Funded by NSF-MRI, two high-performance clusters were successfully established to run the University of Oklahoma's Advance Regional Prediction System (ARPS). Daily weather predictions are made over South Carolina and North Carolina at 3-km horizontal resolution (roughly 1.9 miles) using initial and boundary condition data provided by UNIDATA. At this high resolution, the model is cloud- resolving, thus providing detailed picture of heavy thunderstorms and precipitation. Forecast results are displayed on CCU's website (https://marc.coastal.edu/HPC) to complement observations at the National Weather Service in Wilmington N.C. Present efforts include providing forecasts at 1-km resolution (or finer), comparisons with other models like Weather Research and Forecasting (WRF) model, and the examination of local phenomena (like water spouts and tornadoes). Through these activities the students learn about shell scripting, cluster operating systems, and web design. More importantly, students are introduced to Atmospheric Science, the processes involved in making weather forecasts, and the interpretation of their forecasts. Simulations generated by the forecasts will be integrated into the contents of CCU's course like Fluid Dynamics, Atmospheric Sciences, Atmospheric Physics, and Remote Sensing. Operated jointly between the departments of Applied Physics and Computer Science, the clusters are expected to be used by CCU faculty and students for future research and inquiry-based projects in Computer Science, Applied Physics, and Marine Science.

  3. Forecasting biodiversity in breeding birds using best practices

    PubMed Central

    Taylor, Shawn D.; White, Ethan P.

    2018-01-01

    Biodiversity forecasts are important for conservation, management, and evaluating how well current models characterize natural systems. While the number of forecasts for biodiversity is increasing, there is little information available on how well these forecasts work. Most biodiversity forecasts are not evaluated to determine how well they predict future diversity, fail to account for uncertainty, and do not use time-series data that captures the actual dynamics being studied. We addressed these limitations by using best practices to explore our ability to forecast the species richness of breeding birds in North America. We used hindcasting to evaluate six different modeling approaches for predicting richness. Hindcasts for each method were evaluated annually for a decade at 1,237 sites distributed throughout the continental United States. All models explained more than 50% of the variance in richness, but none of them consistently outperformed a baseline model that predicted constant richness at each site. The best practices implemented in this study directly influenced the forecasts and evaluations. Stacked species distribution models and “naive” forecasts produced poor estimates of uncertainty and accounting for this resulted in these models dropping in the relative performance compared to other models. Accounting for observer effects improved model performance overall, but also changed the rank ordering of models because it did not improve the accuracy of the “naive” model. Considering the forecast horizon revealed that the prediction accuracy decreased across all models as the time horizon of the forecast increased. To facilitate the rapid improvement of biodiversity forecasts, we emphasize the value of specific best practices in making forecasts and evaluating forecasting methods. PMID:29441230

  4. The European Drought Observatory (EDO): Current State and Future Directions

    NASA Astrophysics Data System (ADS)

    Vogt, J.; Singleton, A.; Sepulcre, G.; Micale, F.; Barbosa, P.

    2012-12-01

    Europe has repeatedly been affected by droughts, resulting in considerable ecological and economic damage and climate change studies indicate a trend towards increasing climate variability most likely resulting in more frequent drought occurrences also in Europe. Against this background, the European Commission's Joint Research Centre (JRC) is developing methods and tools for assessing, monitoring and forecasting droughts in Europe and develops a European Drought Observatory (EDO) to complement and integrate national activities with a European view. At the core of the European Drought Observatory (EDO) is a portal, including a map server, a metadata catalogue, a media-monitor and analysis tools. The map server presents Europe-wide up-to-date information on the occurrence and severity of droughts, which is complemented by more detailed information provided by regional, national and local observatories through OGC compliant web mapping and web coverage services. In addition, time series of historical maps as well as graphs of the temporal evolution of drought indices for individual grid cells and administrative regions in Europe can be retrieved and analysed. Current work is focusing on validating the available products, improving the functionalities, extending the linkage to additional national and regional drought information systems and improving medium to long-range probabilistic drought forecasting products. Probabilistic forecasts are attractive in that they provide an estimate of the range of uncertainty in a particular forecast. Longer-term goals include the development of long-range drought forecasting products, the analysis of drought hazard and risk, the monitoring of drought impact and the integration of EDO in a global drought information system. The talk will provide an overview on the development and state of EDO, the different products, and the ways to include a wide range of stakeholders (i.e. European, national river basin, and local authorities) in the development of the system as well as an outlook on the future developments.

  5. Probabilistic rainfall warning system with an interactive user interface

    NASA Astrophysics Data System (ADS)

    Koistinen, Jarmo; Hohti, Harri; Kauhanen, Janne; Kilpinen, Juha; Kurki, Vesa; Lauri, Tuomo; Nurmi, Pertti; Rossi, Pekka; Jokelainen, Miikka; Heinonen, Mari; Fred, Tommi; Moisseev, Dmitri; Mäkelä, Antti

    2013-04-01

    A real time 24/7 automatic alert system is in operational use at the Finnish Meteorological Institute (FMI). It consists of gridded forecasts of the exceedance probabilities of rainfall class thresholds in the continuous lead time range of 1 hour to 5 days. Nowcasting up to six hours applies ensemble member extrapolations of weather radar measurements. With 2.8 GHz processors using 8 threads it takes about 20 seconds to generate 51 radar based ensemble members in a grid of 760 x 1226 points. Nowcasting exploits also lightning density and satellite based pseudo rainfall estimates. The latter ones utilize convective rain rate (CRR) estimate from Meteosat Second Generation. The extrapolation technique applies atmospheric motion vectors (AMV) originally developed for upper wind estimation with satellite images. Exceedance probabilities of four rainfall accumulation categories are computed for the future 1 h and 6 h periods and they are updated every 15 minutes. For longer forecasts exceedance probabilities are calculated for future 6 and 24 h periods during the next 4 days. From approximately 1 hour to 2 days Poor man's Ensemble Prediction System (PEPS) is used applying e.g. the high resolution short range Numerical Weather Prediction models HIRLAM and AROME. The longest forecasts apply EPS data from the European Centre for Medium Range Weather Forecasts (ECMWF). The blending of the ensemble sets from the various forecast sources is performed applying mixing of accumulations with equal exceedance probabilities. The blending system contains a real time adaptive estimator of the predictability of radar based extrapolations. The uncompressed output data are written to file for each member, having total size of 10 GB. Ensemble data from other sources (satellite, lightning, NWP) are converted to the same geometry as the radar data and blended as was explained above. A verification system utilizing telemetering rain gauges has been established. Alert dissemination e.g. for citizens and professional end users applies SMS messages and, in near future, smartphone maps. The present interactive user interface facilitates free selection of alert sites and two warning thresholds (any rain, heavy rain) at any location in Finland. The pilot service was tested by 1000-3000 users during summers 2010 and 2012. As an example of dedicated end-user services gridded exceedance scenarios (of probabilities 5 %, 50 % and 90 %) of hourly rainfall accumulations for the next 3 hours have been utilized as an online input data for the influent model at the Greater Helsinki Wastewater Treatment Plant.

  6. Evaluation of an operational water cycle prediction system for the Laurentian Great Lakes and St. Lawrence River

    NASA Astrophysics Data System (ADS)

    Fortin, Vincent; Durnford, Dorothy; Smith, Gregory; Dyck, Sarah; Martinez, Yosvany; Mackay, Murray; Winter, Barbara

    2017-04-01

    Environment and Climate Change Canada (ECCC) is implementing new numerical guidance products based on fully coupled numerical models to better inform the public as well as specialized users on the current and future state of various components of the water cycle, including stream flow and water levels. Outputs from this new system, named the Water Cycle Prediction System (WCPS), have been available for the Great Lakes and St. Lawrence River watershed since June 2016. WCPS links together ECCC's weather forecasting model, GEM, the 2-D ice model C-ICE, the 3-D lake and ocean model NEMO, and a 2-D hydrological model, WATROUTE. Information concerning the water cycle is passed between the models at intervals varying from a few minutes to one hour. It currently produces two forecasts per day for the next three days of the complete water cycle in the Great Lakes region, the largest freshwater lake system in the world. Products include spatially-varying precipitation, evaporation, river discharge, water level anomalies, surface water temperatures, ice coverage, and surface currents. These new products are of interest to water resources and management authority, flood forecasters, hydroelectricity producers, navigation, environmental disaster managers, search and rescue teams, agriculture, and the general public. This presentation focuses on the evaluation of various elements forecasted by the system, and weighs the advantages and disadvantages of running the system fully coupled.

  7. How can monthly to seasonal forecasts help to better manage power systems? (Invited)

    NASA Astrophysics Data System (ADS)

    Dubus, L.; Troccoli, A.

    2013-12-01

    The energy industry increasingly depends on weather and climate, at all space and time scales. This is especially true in countries with volunteer renewable energies development policies. There is no doubt that Energy and Meteorology is a burgeoning inter-sectoral discipline. It is also clear that the catalyst for the stronger interaction between these two sectors is the renewed and fervent interest in renewable energies, especially wind and solar power. Recent progress in meteorology has led to a marked increase in the knowledge of the climate system and in the ability to forecast climate on monthly to seasonal time scales. Several studies have already demonstrated the effectiveness of using these forecasts for energy operations, for instance for hydro-power applications. However, it is also obvious that scientific progress on its own is not sufficient to increase the value of weather forecasts. The process of integration of new meteorological products into operational tools and decision making processes is not straightforward but it is at least as important as the scientific discovery. In turn, such integration requires effective communication between users and providers of these products. We will present some important aspects of energy systems in which monthly to seasonal forecasts can bring useful, if not vital, information, and we will give some examples of encouraging energy/meteorology collaborations. We will also provide some suggestions for a strengthened collaboration into the future.

  8. Satellites, tweets, forecasts: the future of flood disaster management?

    NASA Astrophysics Data System (ADS)

    Dottori, Francesco; Kalas, Milan; Lorini, Valerio; Wania, Annett; Pappenberger, Florian; Salamon, Peter; Ramos, Maria Helena; Cloke, Hannah; Castillo, Carlos

    2017-04-01

    Floods have devastating effects on lives and livelihoods around the world. Structural flood defence measures such as dikes and dams can help protect people. However, it is the emerging science and technologies for flood disaster management and preparedness, such as increasingly accurate flood forecasting systems, high-resolution satellite monitoring, rapid risk mapping, and the unique strength of social media information and crowdsourcing, that are most promising for reducing the impacts of flooding. Here, we describe an innovative framework which integrates in real-time two components of the Copernicus Emergency mapping services, namely the European Flood Awareness System and the satellite-based Rapid Mapping, with new procedures for rapid risk assessment and social media and news monitoring. The integrated framework enables improved flood impact forecast, thanks to the real-time integration of forecasting and monitoring components, and increases the timeliness and efficiency of satellite mapping, with the aim of capturing flood peaks and following the evolution of flooding processes. Thanks to the proposed framework, emergency responders will have access to a broad range of timely and accurate information for more effective and robust planning, decision-making, and resource allocation.

  9. Interval forecasting of cyberattack intensity on informatization objects of industry using probability cluster model

    NASA Astrophysics Data System (ADS)

    Krakovsky, Y. M.; Luzgin, A. N.; Mikhailova, E. A.

    2018-05-01

    At present, cyber-security issues associated with the informatization objects of industry occupy one of the key niches in the state management system. As a result of functional disruption of these systems via cyberattacks, an emergency may arise related to loss of life, environmental disasters, major financial and economic damage, or disrupted activities of cities and settlements. When cyberattacks occur with high intensity, in these conditions there is the need to develop protection against them, based on machine learning methods. This paper examines interval forecasting and presents results with a pre-set intensity level. The interval forecasting is carried out based on a probabilistic cluster model. This method involves forecasting of one of the two predetermined intervals in which a future value of the indicator will be located; probability estimates are used for this purpose. A dividing bound of these intervals is determined by a calculation method based on statistical characteristics of the indicator. Source data are used that includes a number of hourly cyberattacks using a honeypot from March to September 2013.

  10. Modeling and forecasting the distribution of Vibrio vulnificus in Chesapeake Bay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobs, John M.; Rhodes, M.; Brown, C. W.

    The aim is to construct statistical models to predict the presence, abundance and potential virulence of Vibrio vulnificus in surface waters. A variety of statistical techniques were used in concert to identify water quality parameters associated with V. vulnificus presence, abundance and virulence markers in the interest of developing strong predictive models for use in regional oceanographic modeling systems. A suite of models are provided to represent the best model fit and alternatives using environmental variables that allow them to be put to immediate use in current ecological forecasting efforts. Conclusions: Environmental parameters such as temperature, salinity and turbidity aremore » capable of accurately predicting abundance and distribution of V. vulnificus in Chesapeake Bay. Forcing these empirical models with output from ocean modeling systems allows for spatially explicit forecasts for up to 48 h in the future. This study uses one of the largest data sets compiled to model Vibrio in an estuary, enhances our understanding of environmental correlates with abundance, distribution and presence of potentially virulent strains and offers a method to forecast these pathogens that may be replicated in other regions.« less

  11. An overview of the information management component of RICIS

    NASA Technical Reports Server (NTRS)

    Bishop, Peter C.

    1987-01-01

    Information management is the RICIS (Research Institute for Computing and Information Systems) research area which covers four types of tasks initiated during the first year of research: (1) surveys - a description of the existing state of some area in computing and information systems; (2) forecasts - a description of the alternative future states of some area; (3) plans - an approach to accomplishing some objective in the future; and (4) demonstrations - working prototypes and field trials to study the feasibility and the benefits of a particular information system. The activity in these research areas is described.

  12. Using DCOM to support interoperability in forest ecosystem management decision support systems

    Treesearch

    W.D. Potter; S. Liu; X. Deng; H.M. Rauscher

    2000-01-01

    Forest ecosystems exhibit complex dynamics over time and space. Management of forest ecosystems involves the need to forecast future states of complex systems that are often undergoing structural changes. This in turn requires integration of quantitative science and engineering components with sociopolitical, regulatory, and economic considerations. The amount of data...

  13. Evaluation of Multi-Model Ensemble System for Seasonal and Monthly Prediction

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Van den Dool, H. M.

    2013-12-01

    Since August 2011, the realtime seasonal forecasts of U.S. National Multi-Model Ensemble (NMME) have been made on 8th of each month by NCEP Climate Prediction Center (CPC). During the first year, the participating models were NCEP/CFSv1&2, GFDL/CM2.2, NCAR/U.Miami/COLA/CCSM3, NASA/GEOS5, IRI/ ECHAM-a & ECHAM-f for the realtime NMME forecast. The Canadian Meteorological Center CanCM3 and CM4 replaced the CFSv1 and IRI's models in the second year. The NMME team at CPC collects three variables, including precipitation, 2-meter temperature and sea surface temperature from each modeling center on a 1x1 global grid, removes systematic errors, makes the grand ensemble mean with equal weight for each model and constructs a probability forecast with equal weight for each member. The team then provides the NMME forecast to the operational CPC forecaster responsible for the seasonal and monthly outlook each month. Verification of the seasonal and monthly prediction from NMME is conducted by calculating the anomaly correlation (AC) from the 30-year hindcasts (1982-2011) of individual model and NMME ensemble. The motivation of this study is to provide skill benchmarks for future improvements of the NMME seasonal and monthly prediction system. The experimental (Phase I) stage of the project already supplies routine guidance to users of the NMME forecasts.

  14. Improving the Transition of Earth Satellite Observations from Research to Operations

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.; Lapenta, William M.; Jedlovec, Gary J.

    2004-01-01

    There are significant gaps between the observations, models, and decision support tools that make use of new data. These challenges include: 1) Decreasing the time to incorporate new satellite data into operational forecast assimilation systems, 2) Blending in-situ and satellite observing systems to produce the most accurate and comprehensive data products and assessments, 3) Accelerating the transition from research to applications through national test beds, field campaigns, and pilot demonstrations, and 4) Developing the partnerships and organizational structures to effectively transition new technology into operations. At the Short-term Prediction Research and Transition (SPORT) Center in Huntsville, Alabama, a NASA-NOAA-University collaboration has been developed to accelerate the infusion of NASA Earth science observations, data assimilation and modeling research into NWS forecast operations and decision-making. The SPoRT Center research focus is to improve forecasts through new observation capability and the regional prediction objectives of the US Weather Research Program dealing with 0-1 day forecast issues such as convective initiation and 24-hr quantitative precipitation forecasting. The near real-time availability of high-resolution experimental products of the atmosphere, land, and ocean from the Moderate Resolution Imaging Spectroradiometer (MODIS), the Advanced Infrared Spectroradiometer (AIRS), and lightning mapping systems provide an opportunity for science and algorithm risk reduction, and for application assessment prior to planned observations from the next generation of operational low Earth orbiting and geostationary Earth orbiting satellites. This paper describes the process for the transition of experimental products into forecast operations, current products undergoing assessment by forecasters, and plans for the future. The SPoRT Web page is at (http://www.ghcc.msfc.nasa.gov/sport).

  15. Peak load demand forecasting using two-level discrete wavelet decomposition and neural network algorithm

    NASA Astrophysics Data System (ADS)

    Bunnoon, Pituk; Chalermyanont, Kusumal; Limsakul, Chusak

    2010-02-01

    This paper proposed the discrete transform and neural network algorithms to obtain the monthly peak load demand in mid term load forecasting. The mother wavelet daubechies2 (db2) is employed to decomposed, high pass filter and low pass filter signals from the original signal before using feed forward back propagation neural network to determine the forecasting results. The historical data records in 1997-2007 of Electricity Generating Authority of Thailand (EGAT) is used as reference. In this study, historical information of peak load demand(MW), mean temperature(Tmean), consumer price index (CPI), and industrial index (economic:IDI) are used as feature inputs of the network. The experimental results show that the Mean Absolute Percentage Error (MAPE) is approximately 4.32%. This forecasting results can be used for fuel planning and unit commitment of the power system in the future.

  16. Operational Impact of Data Collected from the Global Hawk Unmanned Aircraft During SHOUT

    NASA Astrophysics Data System (ADS)

    Wick, G. A.; Dunion, J. P.; Sippel, J.; Cucurull, L.; Aksoy, A.; Kren, A.; Christophersen, H.; Black, P.

    2017-12-01

    The primary scientific goal of the Sensing Hazards with Operational Unmanned Technology (SHOUT) Project was to determine the potential utility of observations from high-altitude, long-endurance unmanned aircraft systems such as the Global Hawk (GH) aircraft to improve operational forecasts of high-impact weather events or mitigate potential degradation of forecasts in the event of a future gap in satellite coverage. Hurricanes and tropical cyclones are among the most potentially destructive high-impact weather events and pose a major forecasting challenge to NOAA. Major winter storms over the Pacific Ocean, including atmospheric river events, which make landfall and bring strong winds and extreme precipitation to the West Coast and Alaska are also important to forecast accurately because of their societal impact in those parts of the country. In response, the SHOUT project supported three field campaigns with the GH aircraft and dedicated data impact studies exploring the potential for the real-time data from the aircraft to improve the forecasting of both tropical cyclones and landfalling Pacific storms. Dropsonde observations from the GH aircraft were assimilated into the operational Hurricane Weather Research and Forecasting (HWRF) and Global Forecast System (GFS) models. The results from several diverse but complementary studies consistently demonstrated significant positive forecast benefits spanning the regional and global models. Forecast skill improvements within HWRF reached up to about 9% for track and 14% for intensity. Within GFS, track skill improvements for multi-storm averages exceeded 10% and improvements for individual storms reached over 20% depending on forecast lead time. Forecasted precipitation was also improved. Impacts for Pacific winter storms were smaller but still positive. The results are highly encouraging and support the potential for operational utilization of data from a platform like the GH. This presentation summarizes the observations collected and highlights the multiple impact studies completed.

  17. Educational Organization for the Future

    ERIC Educational Resources Information Center

    Cote, Ron Roy

    1977-01-01

    Five basic components of the emerging educational system--forecasts and assessment, program planning, alternative environments, electronics and socialization, and differentiated faculty--summarize both current trends in educational practice and the implications for schools provided by analysts of the radically different society America is…

  18. Extravehicular Activity Technology Development Status and Forecast

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda; Westheimer, David T.

    2011-01-01

    The goal of NASA s current EVA technology effort is to further develop technologies that will be used to demonstrate a robust EVA system that has application for a variety of future missions including microgravity and surface EVA. Overall the objectives will be to reduce system mass, reduce consumables and maintenance, increase EVA hardware robustness and life, increase crew member efficiency and autonomy, and enable rapid vehicle egress and ingress. Over the past several years, NASA realized a tremendous increase in EVA system development as part of the Exploration Technology Development Program and the Constellation Program. The evident demand for efficient and reliable EVA technologies, particularly regenerable technologies was apparent under these former programs and will continue to be needed as future mission opportunities arise. The technological need for EVA in space has been realized over the last several decades by the Gemini, Apollo, Skylab, Space Shuttle, and the International Space Station (ISS) programs. EVAs were critical to the success of these programs. Now with the ISS extension to 2028 in conjunction with a current forecasted need of at least eight EVAs per year, the EVA hardware life and limited availability of the Extravehicular Mobility Units (EMUs) will eventually become a critical issue. The current EMU has successfully served EVA demands by performing critical operations to assemble the ISS and provide repairs of satellites such as the Hubble Space Telescope. However, as the life of ISS and the vision for future mission opportunities are realized, a new EVA systems capability will be needed and the current architectures and technologies under development offer significant improvements over the current flight systems. In addition to ISS, potential mission applications include EVAs for missions to Near Earth Objects (NEO), Phobos, or future surface missions. Surface missions could include either exploration of the Moon or Mars. Providing an EVA capability for these types of missions enables in-space construction of complex vehicles or satellites, hands on exploration of new parts of our solar system, and engages the public through the inspiration of knowing that humans are exploring places that they have never been before. This paper offers insight into what is currently being developed and what the potential opportunities are in the forecast.

  19. Future mission studies: Forecasting solar flux directly from its chaotic time series

    NASA Technical Reports Server (NTRS)

    Ashrafi, S.

    1991-01-01

    The mathematical structure of the programs written to construct a nonlinear predictive model to forecast solar flux directly from its time series without reference to any underlying solar physics is presented. This method and the programs are written so that one could apply the same technique to forecast other chaotic time series, such as geomagnetic data, attitude and orbit data, and even financial indexes and stock market data. Perhaps the most important application of this technique to flight dynamics is to model Goddard Trajectory Determination System (GTDS) output of residues between observed position of spacecraft and calculated position with no drag (drag flag = off). This would result in a new model of drag working directly from observed data.

  20. Operational Monitoring and Forecasting in Regional Seas: the Aegean Sea example

    NASA Astrophysics Data System (ADS)

    Nittis, K.; Perivoliotis, L.; Zervakis, V.; Papadopoulos, A.; Tziavos, C.

    2003-04-01

    The increasing economic activities in the coastal zone and the associated pressure on the marine environment have raised the interest on monitoring systems able to provide supporting information for its effective management and protection. Such an integrated monitoring, forecasting and information system is being developed during the past years in the Aegean Sea. Its main component is the POSEIDON network that provides real-time data for meteorological and surface oceanographic parameters (waves, currents, hydrological and biochemical data) from 11 fixed oceanographic buoys. The numerical forecasting system is composed by an ETA atmospheric model, a WAM wave model and a POM hydrodynamic model that provide every day 72 hours forecasts. The system is operational since May 2000 and its products are published through Internet while a sub-set is also available through cellular telephony. New type of observing platforms will be available in the near future through a number of EU funded research projects. The Mediterranean Moored Multi-sensor Array (M3A) that was developed for the needs of the Mediterranean Forecasting System and was tested during 2000-2001 will be operational in 2004 during the MFSTEP project. The M3A system incorporates sensors for optical and chemical measurements (Oxygen, Turbidity, Chlorophyll-a, Nutrients and PAR) in the euphotic zone (0-100m) together with sensors for physical parameters (Temperature, Salinity, Current speed and direction) at the 0-500m layer. A Ferry-Box system will also operate during 2004 in the southern Aegean Sea, providing surface data for physical and bio-chemical properties. The ongoing modeling efforts include coupling with larger scale circulation models of the Mediterranean, high-resolution downscaling to coastal areas of the Aegean Sea and development of multi-variate data assimilation methods.

  1. Using ensembles in water management: forecasting dry and wet episodes

    NASA Astrophysics Data System (ADS)

    van het Schip-Haverkamp, Tessa; van den Berg, Wim; van de Beek, Remco

    2015-04-01

    Extreme weather situations as droughts and extensive precipitation are becoming more frequent, which makes it more important to obtain accurate weather forecasts for the short and long term. Ensembles can provide a solution in terms of scenario forecasts. MeteoGroup uses ensembles in a new forecasting technique which presents a number of weather scenarios for a dynamical water management project, called Water-Rijk, in which water storage and water retention plays a large role. The Water-Rijk is part of Park Lingezegen, which is located between Arnhem and Nijmegen in the Netherlands. In collaboration with the University of Wageningen, Alterra and Eijkelkamp a forecasting system is developed for this area which can provide water boards with a number of weather and hydrology scenarios in order to assist in the decision whether or not water retention or water storage is necessary in the near future. In order to make a forecast for drought and extensive precipitation, the difference 'precipitation- evaporation' is used as a measurement of drought in the weather forecasts. In case of an upcoming drought this difference will take larger negative values. In case of a wet episode, this difference will be positive. The Makkink potential evaporation is used which gives the most accurate potential evaporation values during the summer, when evaporation plays an important role in the availability of surface water. Scenarios are determined by reducing the large number of forecasts in the ensemble to a number of averaged members with each its own likelihood of occurrence. For the Water-Rijk project 5 scenario forecasts are calculated: extreme dry, dry, normal, wet and extreme wet. These scenarios are constructed for two forecasting periods, each using its own ensemble technique: up to 48 hours ahead and up to 15 days ahead. The 48-hour forecast uses an ensemble constructed from forecasts of multiple high-resolution regional models: UKMO's Euro4 model,the ECMWF model, WRF and Hirlam. Using multiple model runs and additional post processing, an ensemble can be created from non-ensemble models. The 15-day forecast uses the ECMWF Ensemble Prediction System forecast from which scenarios can be deduced directly. A combination of the ensembles from the two forecasting periods is used in order to have the highest possible resolution of the forecast for the first 48 hours followed by the lower resolution long term forecast.

  2. Net-zero Building Cluster Simulations and On-line Energy Forecasting for Adaptive and Real-Time Control and Decisions

    NASA Astrophysics Data System (ADS)

    Li, Xiwang

    Buildings consume about 41.1% of primary energy and 74% of the electricity in the U.S. Moreover, it is estimated by the National Energy Technology Laboratory that more than 1/4 of the 713 GW of U.S. electricity demand in 2010 could be dispatchable if only buildings could respond to that dispatch through advanced building energy control and operation strategies and smart grid infrastructure. In this study, it is envisioned that neighboring buildings will have the tendency to form a cluster, an open cyber-physical system to exploit the economic opportunities provided by a smart grid, distributed power generation, and storage devices. Through optimized demand management, these building clusters will then reduce overall primary energy consumption and peak time electricity consumption, and be more resilient to power disruptions. Therefore, this project seeks to develop a Net-zero building cluster simulation testbed and high fidelity energy forecasting models for adaptive and real-time control and decision making strategy development that can be used in a Net-zero building cluster. The following research activities are summarized in this thesis: 1) Development of a building cluster emulator for building cluster control and operation strategy assessment. 2) Development of a novel building energy forecasting methodology using active system identification and data fusion techniques. In this methodology, a systematic approach for building energy system characteristic evaluation, system excitation and model adaptation is included. The developed methodology is compared with other literature-reported building energy forecasting methods; 3) Development of the high fidelity on-line building cluster energy forecasting models, which includes energy forecasting models for buildings, PV panels, batteries and ice tank thermal storage systems 4) Small scale real building validation study to verify the performance of the developed building energy forecasting methodology. The outcomes of this thesis can be used for building cluster energy forecasting model development and model based control and operation optimization. The thesis concludes with a summary of the key outcomes of this research, as well as a list of recommendations for future work.

  3. 2015 Marine Corps Security Environment Forecast: Futures 2030-2045

    DTIC Science & Technology

    2015-01-01

    The technologies that make the iPhone “smart” were publically funded—the Internet, wireless networks, the global positioning system, microelectronics...Energy Revolution (63 percent);  Internet of Things (ubiquitous sensors embedded in interconnected computing devices) (50 percent);  “Sci-Fi...Neuroscience & artificial intelligence - Sensors /control systems -Power & energy -Human-robot interaction Robots/autonomous systems will become part of the

  4. The promise of air cargo: System aspects and vehicle design

    NASA Technical Reports Server (NTRS)

    Whitehead, A. H., Jr.

    1976-01-01

    The current operation of the air cargo system is reviewed. An assessment of the future of air cargo is provided by: (1) analyzing statistics and trends, (2) by noting system problems and inefficiencies, (3) by analyzing characteristics of 'air eligible' commodities, and (4) by showing the promise of new technology for future cargo aircraft with significant improvements in costs and efficiency. The following topics are discussed: (1) air cargo demand forecasts; (2) economics of air cargo transport; (3) the integrated air cargo system; (4) evolution of airfreighter design; and (5) the span distributed load concept.

  5. A prospective approach to coastal geography from satellite. [technological forecasting

    NASA Technical Reports Server (NTRS)

    Munday, J. C., Jr.

    1981-01-01

    A forecasting protocol termed the "prospective approach' was used to examine probable futures relative to coastal applications of satellite data. Significant variables include the energy situation, the national economy, national Earth satellite programs, and coastal zone research, commercial activity, and regulatory activity. Alternative scenarios for the period until 1986 are presented. Possible response by state/local remote sensing centers include operational applications for users, input to geo-base information systems (GIS), development of decision-making algorithms using GIS data, and long term research programs for coastal management using merged satellite and traditional data.

  6. The MSFC Solar Activity Future Estimation (MSAFE) Model

    NASA Technical Reports Server (NTRS)

    Suggs, Ron

    2017-01-01

    The Natural Environments Branch of the Engineering Directorate at Marshall Space Flight Center (MSFC) provides solar cycle forecasts for NASA space flight programs and the aerospace community. These forecasts provide future statistical estimates of sunspot number, solar radio 10.7 cm flux (F10.7), and the geomagnetic planetary index, Ap, for input to various space environment models. For example, many thermosphere density computer models used in spacecraft operations, orbital lifetime analysis, and the planning of future spacecraft missions require as inputs the F10.7 and Ap. The solar forecast is updated each month by executing MSAFE using historical and the latest month's observed solar indices to provide estimates for the balance of the current solar cycle. The forecasted solar indices represent the 13-month smoothed values consisting of a best estimate value stated as a 50 percentile value along with approximate +/- 2 sigma values stated as 95 and 5 percentile statistical values. This presentation will give an overview of the MSAFE model and the forecast for the current solar cycle.

  7. Forecasting in Complex Systems

    NASA Astrophysics Data System (ADS)

    Rundle, J. B.; Holliday, J. R.; Graves, W. R.; Turcotte, D. L.; Donnellan, A.

    2014-12-01

    Complex nonlinear systems are typically characterized by many degrees of freedom, as well as interactions between the elements. Interesting examples can be found in the areas of earthquakes and finance. In these two systems, fat tails play an important role in the statistical dynamics. For earthquake systems, the Gutenberg-Richter magnitude-frequency is applicable, whereas for daily returns for the securities in the financial markets are known to be characterized by leptokurtotic statistics in which the tails are power law. Very large fluctuations are present in both systems. In earthquake systems, one has the example of great earthquakes such as the M9.1, March 11, 2011 Tohoku event. In financial systems, one has the example of the market crash of October 19, 1987. Both were largely unexpected events that severely impacted the earth and financial systems systemically. Other examples include the M9.3 Andaman earthquake of December 26, 2004, and the Great Recession which began with the fall of Lehman Brothers investment bank on September 12, 2013. Forecasting the occurrence of these damaging events has great societal importance. In recent years, national funding agencies in a variety of countries have emphasized the importance of societal relevance in research, and in particular, the goal of improved forecasting technology. Previous work has shown that both earthquakes and financial crashes can be described by a common Landau-Ginzburg-type free energy model. These metastable systems are characterized by fat tail statistics near the classical spinodal. Correlations in these systems can grow and recede, but do not imply causation, a common source of misunderstanding. In both systems, a common set of techniques can be used to compute the probabilities of future earthquakes or crashes. In this talk, we describe the basic phenomenology of these systems and emphasize their similarities and differences. We also consider the problem of forecast validation and verification. In both of these systems, we show that small event counts (the natural time domain) is an important component of a forecast system.

  8. A simple approach to measure transmissibility and forecast incidence.

    PubMed

    Nouvellet, Pierre; Cori, Anne; Garske, Tini; Blake, Isobel M; Dorigatti, Ilaria; Hinsley, Wes; Jombart, Thibaut; Mills, Harriet L; Nedjati-Gilani, Gemma; Van Kerkhove, Maria D; Fraser, Christophe; Donnelly, Christl A; Ferguson, Neil M; Riley, Steven

    2018-03-01

    Outbreaks of novel pathogens such as SARS, pandemic influenza and Ebola require substantial investments in reactive interventions, with consequent implementation plans sometimes revised on a weekly basis. Therefore, short-term forecasts of incidence are often of high priority. In light of the recent Ebola epidemic in West Africa, a forecasting exercise was convened by a network of infectious disease modellers. The challenge was to forecast unseen "future" simulated data for four different scenarios at five different time points. In a similar method to that used during the recent Ebola epidemic, we estimated current levels of transmissibility, over variable time-windows chosen in an ad hoc way. Current estimated transmissibility was then used to forecast near-future incidence. We performed well within the challenge and often produced accurate forecasts. A retrospective analysis showed that our subjective method for deciding on the window of time with which to estimate transmissibility often resulted in the optimal choice. However, when near-future trends deviated substantially from exponential patterns, the accuracy of our forecasts was reduced. This exercise highlights the urgent need for infectious disease modellers to develop more robust descriptions of processes - other than the widespread depletion of susceptible individuals - that produce non-exponential patterns of incidence. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Development of a mobile app for flash flood alerting and data cataloging

    NASA Astrophysics Data System (ADS)

    Gourley, J. J.; Flamig, Z.; Nguyen, M.

    2016-12-01

    No matter how accurate and specific a forecast of flash flooding is made, there are local nuances with the communities related to the built environment that often dictate the locations and magnitudes of impacts. These are difficult, if not impossible, to identify, classify, and measure using remote sensing methods. This presentation presents a Thriving Earth Exchange project that is developing a mobile app that serves two purposes. First, it will provide detailed forecasts of flash flooding down to the 1-km pixel scale with 10-min updates using the state-of-the-science hydrologic forecasting system called FLASH. The display of model outputs on an app will greatly facilitate their use and can potentially increase first responders' reactions to the specific locations of impending disasters. Then, the first responders will have the capability of reporting the geotagged impacts they are witnessing, including those local "trouble spots". Over time, we will catalog the trouble spots for the community so that they can be flagged in future events. If proven effective, the app will then be advertised in other flood-prone communities and the database will be expanded accordingly. In summary, we are engaging local communities to provide information that can inform and improve future forecasts of flash flood, ultimately reducing their impacts and saving lives.

  10. Simultaneous calibration of ensemble river flow predictions over an entire range of lead times

    NASA Astrophysics Data System (ADS)

    Hemri, S.; Fundel, F.; Zappa, M.

    2013-10-01

    Probabilistic estimates of future water levels and river discharge are usually simulated with hydrologic models using ensemble weather forecasts as main inputs. As hydrologic models are imperfect and the meteorological ensembles tend to be biased and underdispersed, the ensemble forecasts for river runoff typically are biased and underdispersed, too. Thus, in order to achieve both reliable and sharp predictions statistical postprocessing is required. In this work Bayesian model averaging (BMA) is applied to statistically postprocess ensemble runoff raw forecasts for a catchment in Switzerland, at lead times ranging from 1 to 240 h. The raw forecasts have been obtained using deterministic and ensemble forcing meteorological models with different forecast lead time ranges. First, BMA is applied based on mixtures of univariate normal distributions, subject to the assumption of independence between distinct lead times. Then, the independence assumption is relaxed in order to estimate multivariate runoff forecasts over the entire range of lead times simultaneously, based on a BMA version that uses multivariate normal distributions. Since river runoff is a highly skewed variable, Box-Cox transformations are applied in order to achieve approximate normality. Both univariate and multivariate BMA approaches are able to generate well calibrated probabilistic forecasts that are considerably sharper than climatological forecasts. Additionally, multivariate BMA provides a promising approach for incorporating temporal dependencies into the postprocessed forecasts. Its major advantage against univariate BMA is an increase in reliability when the forecast system is changing due to model availability.

  11. Forecasting municipal solid waste generation using artificial intelligence modelling approaches.

    PubMed

    Abbasi, Maryam; El Hanandeh, Ali

    2016-10-01

    Municipal solid waste (MSW) management is a major concern to local governments to protect human health, the environment and to preserve natural resources. The design and operation of an effective MSW management system requires accurate estimation of future waste generation quantities. The main objective of this study was to develop a model for accurate forecasting of MSW generation that helps waste related organizations to better design and operate effective MSW management systems. Four intelligent system algorithms including support vector machine (SVM), adaptive neuro-fuzzy inference system (ANFIS), artificial neural network (ANN) and k-nearest neighbours (kNN) were tested for their ability to predict monthly waste generation in the Logan City Council region in Queensland, Australia. Results showed artificial intelligence models have good prediction performance and could be successfully applied to establish municipal solid waste forecasting models. Using machine learning algorithms can reliably predict monthly MSW generation by training with waste generation time series. In addition, results suggest that ANFIS system produced the most accurate forecasts of the peaks while kNN was successful in predicting the monthly averages of waste quantities. Based on the results, the total annual MSW generated in Logan City will reach 9.4×10(7)kg by 2020 while the peak monthly waste will reach 9.37×10(6)kg. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. The Art and Science of Long-Range Space Weather Forecasting

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.; Wilson, Robert M.

    2006-01-01

    Long-range space weather forecasts are akin to seasonal forecasts of terrestrial weather. We don t expect to forecast individual events but we do hope to forecast the underlying level of activity important for satellite operations and mission pl&g. Forecasting space weather conditions years or decades into the future has traditionally been based on empirical models of the solar cycle. Models for the shape of the cycle as a function of its amplitude become reliable once the amplitude is well determined - usually two to three years after minimum. Forecasting the amplitude of a cycle well before that time has been more of an art than a science - usually based on cycle statistics and trends. Recent developments in dynamo theory -the theory explaining the generation of the Sun s magnetic field and the solar activity cycle - have now produced models with predictive capabilities. Testing these models with historical sunspot cycle data indicates that these predictions may be highly reliable one, or even two, cycles into the future.

  13. Trends in the predictive performance of raw ensemble weather forecasts

    NASA Astrophysics Data System (ADS)

    Hemri, Stephan; Scheuerer, Michael; Pappenberger, Florian; Bogner, Konrad; Haiden, Thomas

    2015-04-01

    Over the last two decades the paradigm in weather forecasting has shifted from being deterministic to probabilistic. Accordingly, numerical weather prediction (NWP) models have been run increasingly as ensemble forecasting systems. The goal of such ensemble forecasts is to approximate the forecast probability distribution by a finite sample of scenarios. Global ensemble forecast systems, like the European Centre for Medium-Range Weather Forecasts (ECMWF) ensemble, are prone to probabilistic biases, and are therefore not reliable. They particularly tend to be underdispersive for surface weather parameters. Hence, statistical post-processing is required in order to obtain reliable and sharp forecasts. In this study we apply statistical post-processing to ensemble forecasts of near-surface temperature, 24-hour precipitation totals, and near-surface wind speed from the global ECMWF model. Our main objective is to evaluate the evolution of the difference in skill between the raw ensemble and the post-processed forecasts. The ECMWF ensemble is under continuous development, and hence its forecast skill improves over time. Parts of these improvements may be due to a reduction of probabilistic bias. Thus, we first hypothesize that the gain by post-processing decreases over time. Based on ECMWF forecasts from January 2002 to March 2014 and corresponding observations from globally distributed stations we generate post-processed forecasts by ensemble model output statistics (EMOS) for each station and variable. Parameter estimates are obtained by minimizing the Continuous Ranked Probability Score (CRPS) over rolling training periods that consist of the n days preceding the initialization dates. Given the higher average skill in terms of CRPS of the post-processed forecasts for all three variables, we analyze the evolution of the difference in skill between raw ensemble and EMOS forecasts. The fact that the gap in skill remains almost constant over time, especially for near-surface wind speed, suggests that improvements to the atmospheric model have an effect quite different from what calibration by statistical post-processing is doing. That is, they are increasing potential skill. Thus this study indicates that (a) further model development is important even if one is just interested in point forecasts, and (b) statistical post-processing is important because it will keep adding skill in the foreseeable future.

  14. Needed Actions within Defense Acquisitions Based on a Forecast of Future Mobile Information and Communications Technologies Deployed in Austere Environments

    DTIC Science & Technology

    2013-03-01

    Deshmukh , and Vrat (2002) 30 performed an analysis to match forecasting techniques with specific technologies. In this study, the authors found...Technological Forecasting and Social Change, 79, 744-765. Mishra, S., Deshmukh , S., & Vrat, P. (2002). Matching of Technological Forecasting Technique to

  15. Selection and Classification Using a Forecast Applicant Pool.

    ERIC Educational Resources Information Center

    Hendrix, William H.

    The document presents a forecast model of the future Air Force applicant pool. By forecasting applicants' quality (means and standard deviations of aptitude scores) and quantity (total number of applicants), a potential enlistee could be compared to the forecasted pool. The data used to develop the model consisted of means, standard deviation, and…

  16. Statistical Forecasting of Current and Future Circum-Arctic Ground Temperatures and Active Layer Thickness

    NASA Astrophysics Data System (ADS)

    Aalto, J.; Karjalainen, O.; Hjort, J.; Luoto, M.

    2018-05-01

    Mean annual ground temperature (MAGT) and active layer thickness (ALT) are key to understanding the evolution of the ground thermal state across the Arctic under climate change. Here a statistical modeling approach is presented to forecast current and future circum-Arctic MAGT and ALT in relation to climatic and local environmental factors, at spatial scales unreachable with contemporary transient modeling. After deploying an ensemble of multiple statistical techniques, distance-blocked cross validation between observations and predictions suggested excellent and reasonable transferability of the MAGT and ALT models, respectively. The MAGT forecasts indicated currently suitable conditions for permafrost to prevail over an area of 15.1 ± 2.8 × 106 km2. This extent is likely to dramatically contract in the future, as the results showed consistent, but region-specific, changes in ground thermal regime due to climate change. The forecasts provide new opportunities to assess future Arctic changes in ground thermal state and biogeochemical feedback.

  17. Diagnosis of North American Multi-Model Ensemble (NMME) skill for predicting floods and droughts over the continental USA

    NASA Astrophysics Data System (ADS)

    Slater, L. J.; Villarini, G.; Bradley, A.

    2015-12-01

    Model predictions of precipitation and temperature are crucial to mitigate the impacts of major flood and drought events through informed planning and response. However, the potential value and applicability of these predictions is inescapably linked to their forecast quality. The North-American Multi-Model Ensemble (NMME) is a multi-agency supported forecasting system for intraseasonal to interannual (ISI) climate predictions. Retrospective forecasts and real-time information are provided by each agency free of charge to facilitate collaborative research efforts for predicting future climate conditions as well as extreme weather events such as floods and droughts. Using the PRISM climate mapping system as the reference data, we examine the skill of five General Circulation Models (GCMs) from the NMME project to forecast monthly and seasonal precipitation and temperature over seven sub-regions of the continental United States. For each model, we quantify the seasonal accuracy of the forecast relative to observed precipitation using the mean square error skill score. This score is decomposed to assess the accuracy of the forecast in the absence of biases (potential skill), and in the presence of conditional (slope reliability) and unconditional (standardized mean error) biases. The quantification of these biases allows us to diagnose each model's skill over a full range temporal and spatial scales. Finally, we test each model's forecasting skill by evaluating its ability to predict extended periods of extreme temperature and precipitation that were conducive to 'billion-dollar' historical flood and drought events in different regions of the continental USA. The forecasting skill of the individual climate models is summarized and presented along with a discussion of different multi-model averaging techniques for predicting such events.

  18. Diversity modelling for electrical power system simulation

    NASA Astrophysics Data System (ADS)

    Sharip, R. M.; Abu Zarim, M. A. U. A.

    2013-12-01

    This paper considers diversity of generation and demand profiles against the different future energy scenarios and evaluates these on a technical basis. Compared to previous studies, this research applied a forecasting concept based on possible growth rates from publically electrical distribution scenarios concerning the UK. These scenarios were created by different bodies considering aspects such as environment, policy, regulation, economic and technical. In line with these scenarios, forecasting is on a long term timescale (up to every ten years from 2020 until 2050) in order to create a possible output of generation mix and demand profiles to be used as an appropriate boundary condition for the network simulation. The network considered is a segment of rural LV populated with a mixture of different housing types. The profiles for the 'future' energy and demand have been successfully modelled by applying a forecasting method. The network results under these profiles shows for the cases studied that even though the value of the power produced from each Micro-generation is often in line with the demand requirements of an individual dwelling there will be no problems arising from high penetration of Micro-generation and demand side management for each dwellings considered. The results obtained highlight the technical issues/changes for energy delivery and management to rural customers under the future energy scenarios.

  19. Open-source Software for Demand Forecasting of Clinical Laboratory Test Volumes Using Time-series Analysis.

    PubMed

    Mohammed, Emad A; Naugler, Christopher

    2017-01-01

    Demand forecasting is the area of predictive analytics devoted to predicting future volumes of services or consumables. Fair understanding and estimation of how demand will vary facilitates the optimal utilization of resources. In a medical laboratory, accurate forecasting of future demand, that is, test volumes, can increase efficiency and facilitate long-term laboratory planning. Importantly, in an era of utilization management initiatives, accurately predicted volumes compared to the realized test volumes can form a precise way to evaluate utilization management initiatives. Laboratory test volumes are often highly amenable to forecasting by time-series models; however, the statistical software needed to do this is generally either expensive or highly technical. In this paper, we describe an open-source web-based software tool for time-series forecasting and explain how to use it as a demand forecasting tool in clinical laboratories to estimate test volumes. This tool has three different models, that is, Holt-Winters multiplicative, Holt-Winters additive, and simple linear regression. Moreover, these models are ranked and the best one is highlighted. This tool will allow anyone with historic test volume data to model future demand.

  20. Open-source Software for Demand Forecasting of Clinical Laboratory Test Volumes Using Time-series Analysis

    PubMed Central

    Mohammed, Emad A.; Naugler, Christopher

    2017-01-01

    Background: Demand forecasting is the area of predictive analytics devoted to predicting future volumes of services or consumables. Fair understanding and estimation of how demand will vary facilitates the optimal utilization of resources. In a medical laboratory, accurate forecasting of future demand, that is, test volumes, can increase efficiency and facilitate long-term laboratory planning. Importantly, in an era of utilization management initiatives, accurately predicted volumes compared to the realized test volumes can form a precise way to evaluate utilization management initiatives. Laboratory test volumes are often highly amenable to forecasting by time-series models; however, the statistical software needed to do this is generally either expensive or highly technical. Method: In this paper, we describe an open-source web-based software tool for time-series forecasting and explain how to use it as a demand forecasting tool in clinical laboratories to estimate test volumes. Results: This tool has three different models, that is, Holt-Winters multiplicative, Holt-Winters additive, and simple linear regression. Moreover, these models are ranked and the best one is highlighted. Conclusion: This tool will allow anyone with historic test volume data to model future demand. PMID:28400996

  1. A stochastic post-processing method for solar irradiance forecasts derived from NWPs models

    NASA Astrophysics Data System (ADS)

    Lara-Fanego, V.; Pozo-Vazquez, D.; Ruiz-Arias, J. A.; Santos-Alamillos, F. J.; Tovar-Pescador, J.

    2010-09-01

    Solar irradiance forecast is an important area of research for the future of the solar-based renewable energy systems. Numerical Weather Prediction models (NWPs) have proved to be a valuable tool for solar irradiance forecasting with lead time up to a few days. Nevertheless, these models show low skill in forecasting the solar irradiance under cloudy conditions. Additionally, climatic (averaged over seasons) aerosol loading are usually considered in these models, leading to considerable errors for the Direct Normal Irradiance (DNI) forecasts during high aerosols load conditions. In this work we propose a post-processing method for the Global Irradiance (GHI) and DNI forecasts derived from NWPs. Particularly, the methods is based on the use of Autoregressive Moving Average with External Explanatory Variables (ARMAX) stochastic models. These models are applied to the residuals of the NWPs forecasts and uses as external variables the measured cloud fraction and aerosol loading of the day previous to the forecast. The method is evaluated for a set one-moth length three-days-ahead forecast of the GHI and DNI, obtained based on the WRF mesoscale atmospheric model, for several locations in Andalusia (Southern Spain). The Cloud fraction is derived from MSG satellite estimates and the aerosol loading from the MODIS platform estimates. Both sources of information are readily available at the time of the forecast. Results showed a considerable improvement of the forecasting skill of the WRF model using the proposed post-processing method. Particularly, relative improvement (in terms of the RMSE) for the DNI during summer is about 20%. A similar value is obtained for the GHI during the winter.

  2. Affective Forecasting and Self-Rated Symptoms of Depression, Anxiety, and Hypomania: Evidence for a Dysphoric Forecasting Bias

    PubMed Central

    Hoerger, Michael; Quirk, Stuart W.; Chapman, Benjamin P.; Duberstein, Paul R.

    2011-01-01

    Emerging research has examined individual differences in affective forecasting; however, we are aware of no published study to date linking psychopathology symptoms to affective forecasting problems. Pitting cognitive theory against depressive realism theory, we examined whether dysphoria was associated with negatively biased affective forecasts or greater accuracy. Participants (n = 325) supplied predicted and actual emotional reactions for three days surrounding an emotionally-evocative relational event, Valentine’s Day. Predictions were made a month prior to the holiday. Consistent with cognitive theory, we found evidence for a dysphoric forecasting bias – the tendency of individuals in dysphoric states to overpredict negative emotional reactions to future events. The dysphoric forecasting bias was robust across ratings of positive and negative affect, forecasts for pleasant and unpleasant scenarios, continuous and categorical operationalizations of dysphoria, and three time points of observation. Similar biases were not observed in analyses examining the independent effects of anxiety and hypomania. Findings provide empirical evidence for the long assumed influence of depressive symptoms on future expectations. The present investigation has implications for affective forecasting studies examining information processing constructs, decision making, and broader domains of psychopathology. PMID:22397734

  3. Affective forecasting and self-rated symptoms of depression, anxiety, and hypomania: evidence for a dysphoric forecasting bias.

    PubMed

    Hoerger, Michael; Quirk, Stuart W; Chapman, Benjamin P; Duberstein, Paul R

    2012-01-01

    Emerging research has examined individual differences in affective forecasting; however, we are aware of no published study to date linking psychopathology symptoms to affective forecasting problems. Pitting cognitive theory against depressive realism theory, we examined whether dysphoria was associated with negatively biased affective forecasts or greater accuracy. Participants (n=325) supplied predicted and actual emotional reactions for three days surrounding an emotionally evocative relational event, Valentine's Day. Predictions were made a month prior to the holiday. Consistent with cognitive theory, we found evidence for a dysphoric forecasting bias-the tendency of individuals in dysphoric states to overpredict negative emotional reactions to future events. The dysphoric forecasting bias was robust across ratings of positive and negative affect, forecasts for pleasant and unpleasant scenarios, continuous and categorical operationalisations of dysphoria, and three time points of observation. Similar biases were not observed in analyses examining the independent effects of anxiety and hypomania. Findings provide empirical evidence for the long-assumed influence of depressive symptoms on future expectations. The present investigation has implications for affective forecasting studies examining information-processing constructs, decision making, and broader domains of psychopathology.

  4. Draft Forecasts from Real-Time Runs of Physics-Based Models - A Road to the Future

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Rastatter, Lutz; MacNeice, Peter; Kuznetsova, Masha

    2008-01-01

    The Community Coordinated Modeling Center (CCMC) is a US inter-agency activity aiming at research in support of the generation of advanced space weather models. As one of its main functions, the CCMC provides to researchers the use of space science models, even if they are not model owners themselves. The second focus of CCMC activities is on validation and verification of space weather models, and on the transition of appropriate models to space weather forecast centers. As part of the latter activity, the CCMC develops real-time simulation systems that stress models through routine execution. A by-product of these real-time calculations is the ability to derive model products, which may be useful for space weather operators. After consultations with NOAA/SEC and with AFWA, CCMC has developed a set of tools as a first step to make real-time model output useful to forecast centers. In this presentation, we will discuss the motivation for this activity, the actions taken so far, and options for future tools from model output.

  5. Earthquake forecasts for the CSEP Japan experiment based on the RI algorithm

    NASA Astrophysics Data System (ADS)

    Nanjo, K. Z.

    2011-03-01

    An earthquake forecast testing experiment for Japan, the first of its kind, is underway within the framework of the Collaboratory for the Study of Earthquake Predictability (CSEP) under a controlled environment. Here we give an overview of the earthquake forecast models, based on the RI algorithm, which we have submitted to the CSEP Japan experiment. Models have been submitted to a total of 9 categories, corresponding to 3 testing classes (3 years, 1 year, and 3 months) and 3 testing regions. The RI algorithm is originally a binary forecast system based on the working assumption that large earthquakes are more likely to occur in the future at locations of higher seismicity in the past. It is based on simple counts of the number of past earthquakes, which is called the Relative Intensity (RI) of seismicity. To improve its forecast performance, we first expand the RI algorithm by introducing spatial smoothing. We then convert the RI representation from a binary system to a CSEP-testable model that produces forecasts for the number of earthquakes of predefined magnitudes. We use information on past seismicity to tune the parameters. The final submittal consists of 36 executable computer codes: 4 variants corresponding to different smoothing parameters for each of the 9 categories. They will help to elucidate which categories and which smoothing parameters are the most meaningful for the RI hypothesis. The main purpose of our participation in the experiment is to better understand the significance of the relative intensity of seismicity for earthquake forecastability in Japan.

  6. Development and Application of Advanced Weather Prediction Technologies for the Wind Energy Industry (Invited)

    NASA Astrophysics Data System (ADS)

    Mahoney, W. P.; Wiener, G.; Liu, Y.; Myers, W.; Johnson, D.

    2010-12-01

    Wind energy decision makers are required to make critical judgments on a daily basis with regard to energy generation, distribution, demand, storage, and integration. Accurate knowledge of the present and future state of the atmosphere is vital in making these decisions. As wind energy portfolios expand, this forecast problem is taking on new urgency because wind forecast inaccuracies frequently lead to substantial economic losses and constrain the national expansion of renewable energy. Improved weather prediction and precise spatial analysis of small-scale weather events are crucial for renewable energy management. In early 2009, the National Center for Atmospheric Research (NCAR) began a collaborative project with Xcel Energy Services, Inc. to perform research and develop technologies to improve Xcel Energy's ability to increase the amount of wind energy in their generation portfolio. The agreement and scope of work was designed to provide highly detailed, localized wind energy forecasts to enable Xcel Energy to more efficiently integrate electricity generated from wind into the power grid. The wind prediction technologies are designed to help Xcel Energy operators make critical decisions about powering down traditional coal and natural gas-powered plants when sufficient wind energy is predicted. The wind prediction technologies have been designed to cover Xcel Energy wind resources spanning a region from Wisconsin to New Mexico. The goal of the project is not only to improve Xcel Energy’s wind energy prediction capabilities, but also to make technological advancements in wind and wind energy prediction, expand our knowledge of boundary layer meteorology, and share the results across the renewable energy industry. To generate wind energy forecasts, NCAR is incorporating observations of current atmospheric conditions from a variety of sources including satellites, aircraft, weather radars, ground-based weather stations, wind profilers, and even wind sensors on individual wind turbines. The information is utilized by several technologies including: a) the Weather Research and Forecasting (WRF) model, which generates finely detailed simulations of future atmospheric conditions, b) the Real-Time Four-Dimensional Data Assimilation System (RTFDDA), which performs continuous data assimilation providing the WRF model with continuous updates of the initial atmospheric state, 3) the Dynamic Integrated Forecast System (DICast®), which statistically optimizes the forecasts using all predictors, and 4) a suite of wind-to-power algorithms that convert wind speed to power for a wide range of wind farms with varying real-time data availability capabilities. In addition to these core wind energy prediction capabilities, NCAR implemented a high-resolution (10 km grid increment) 30-member ensemble RTFDDA prediction system that provides information on the expected range of wind power over a 72-hour forecast period covering Xcel Energy’s service areas. This talk will include descriptions of these capabilities and report on several topics including initial results of next-day forecasts and nowcasts of wind energy ramp events, influence of local observations on forecast skill, and overall lessons learned to date.

  7. Benchmarking Ensemble Streamflow Prediction Skill in the UK

    NASA Astrophysics Data System (ADS)

    Harrigan, Shaun; Smith, Katie; Parry, Simon; Tanguy, Maliko; Prudhomme, Christel

    2017-04-01

    Skilful hydrological forecasts at weekly to seasonal lead times would be extremely beneficial for decision-making in operational water management, especially during drought conditions. Hydro-meteorological ensemble forecasting systems are an attractive approach as they use two sources of streamflow predictability: (i) initial hydrologic conditions (IHCs), where soil moisture, groundwater and snow storage states can provide an estimate of future streamflow situations, and (ii) atmospheric predictability, where skilful forecasts of weather and climate variables can be used to force hydrological models. In the UK, prediction of rainfall at long lead times and for summer months in particular is notoriously difficult given the large degree of natural climate variability in ocean influenced mid-latitude regions, but recent research has uncovered exciting prospects for improved rainfall skill at seasonal lead times due to improved prediction of the North Atlantic Oscillation. However, before we fully understand what this improved atmospheric predictability might mean in terms of improved hydrological forecasts, we must first evaluate how much skill can be gained from IHCs alone. Ensemble Streamflow Prediction (ESP) is a well-established method for generating an ensemble of streamflow forecasts in the absence of skilful future meteorological predictions. The aim of this study is therefore to benchmark when (lead time/forecast initialisation month) and where (spatial pattern/catchment characteristics) ESP is skilful across a diverse set of catchments in the UK. Forecast skill was evaluated seamlessly from lead times of 1-day to 12-months and forecasts were initialised at the first of each month over the 1965-2015 hindcast period. This ESP output also provides a robust benchmark against which to assess how much improvement in skill can be achieved when meteorological forecasts are incorporated (next steps). To provide a 'tough to beat' benchmark, several variants of ESP with increasing complexity were produced, including better model representation of hydrological processes and sub-sampling of historic climate sequences (e.g. NAO+/NAO- years). This work is part of the Improving Predictions of Drought for User Decision Making (IMPETUS) project and provides insight to where advancements in atmospheric predictability is most needed in the UK in the context of water management.

  8. Assessing the Impact of Advanced Satellite Observations in the NASA GEOS-5 Forecast System Using the Adjoint Method

    NASA Technical Reports Server (NTRS)

    Gelaro, Ron; Liu, Emily; Sienkiewicz, Meta

    2011-01-01

    The adjoint of a data assimilation system provides a flexible and efficient tool for estimating observation impacts on short-range weather forecasts. The impacts of any or all observations can be estimated simultaneously based on a single execution of the adjoint system. The results can be easily aggregated according to data type, location, channel, etc., making this technique especially attractive for examining the impacts of new hyper-spectral satellite instruments and for conducting regular, even near-real time, monitoring of the entire observing system. In this talk, we present results from the adjoint-based observation impact monitoring tool in NASA's GEOS-5 global atmospheric data assimilation and forecast system. The tool has been running in various off-line configurations for some time, and is scheduled to run as a regular part of the real-time forecast suite beginning in autumn 20 I O. We focus on the impacts of the newest components of the satellite observing system, including AIRS, IASI and GPS. For AIRS and IASI, it is shown that the vast majority of the channels assimilated have systematic positive impacts (of varying magnitudes), although some channels degrade the forecast. Of the latter, most are moisture-sensitive or near-surface channels. The impact of GPS observations in the southern hemisphere is found to be a considerable overall benefit to the system. In addition, the spatial variability of observation impacts reveals coherent patterns of positive and negative impacts that may point to deficiencies in the use of certain observations over, for example, specific surface types. When performed in conjunction with selected observing system experiments (OSEs), the adjoint results reveal both redundancies and dependencies between observing system impacts as observations are added or removed from the assimilation system. Understanding these dependencies appears to pose a major challenge for optimizing the use of the current observational network and defining requirements for future observing systems.

  9. Highly accurate prediction of emotions surrounding the attacks of September 11, 2001 over 1-, 2-, and 7-year prediction intervals.

    PubMed

    Doré, Bruce P; Meksin, Robert; Mather, Mara; Hirst, William; Ochsner, Kevin N

    2016-06-01

    In the aftermath of a national tragedy, important decisions are predicated on judgments of the emotional significance of the tragedy in the present and future. Research in affective forecasting has largely focused on ways in which people fail to make accurate predictions about the nature and duration of feelings experienced in the aftermath of an event. Here we ask a related but understudied question: can people forecast how they will feel in the future about a tragic event that has already occurred? We found that people were strikingly accurate when predicting how they would feel about the September 11 attacks over 1-, 2-, and 7-year prediction intervals. Although people slightly under- or overestimated their future feelings at times, they nonetheless showed high accuracy in forecasting (a) the overall intensity of their future negative emotion, and (b) the relative degree of different types of negative emotion (i.e., sadness, fear, or anger). Using a path model, we found that the relationship between forecasted and actual future emotion was partially mediated by current emotion and remembered emotion. These results extend theories of affective forecasting by showing that emotional responses to an event of ongoing national significance can be predicted with high accuracy, and by identifying current and remembered feelings as independent sources of this accuracy. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  10. Highly accurate prediction of emotions surrounding the attacks of September 11, 2001 over 1-, 2-, and 7-year prediction intervals

    PubMed Central

    Doré, B.P.; Meksin, R.; Mather, M.; Hirst, W.; Ochsner, K.N

    2016-01-01

    In the aftermath of a national tragedy, important decisions are predicated on judgments of the emotional significance of the tragedy in the present and future. Research in affective forecasting has largely focused on ways in which people fail to make accurate predictions about the nature and duration of feelings experienced in the aftermath of an event. Here we ask a related but understudied question: can people forecast how they will feel in the future about a tragic event that has already occurred? We found that people were strikingly accurate when predicting how they would feel about the September 11 attacks over 1-, 2-, and 7-year prediction intervals. Although people slightly under- or overestimated their future feelings at times, they nonetheless showed high accuracy in forecasting 1) the overall intensity of their future negative emotion, and 2) the relative degree of different types of negative emotion (i.e., sadness, fear, or anger). Using a path model, we found that the relationship between forecasted and actual future emotion was partially mediated by current emotion and remembered emotion. These results extend theories of affective forecasting by showing that emotional responses to an event of ongoing national significance can be predicted with high accuracy, and by identifying current and remembered feelings as independent sources of this accuracy. PMID:27100309

  11. Modeling of the nearshore marine ecosystem with the AQUATOX model

    EPA Science Inventory

    Process-based models can be used to forecast the responses of coastal ecosystems to changes under future scenarios. However, most models applied to coastal systems do not include higher trophic levels, which are important providers of ecosystem services. AQUATOX is a mechanistic...

  12. The Brazilian Air Force Health System: Workforce-Needs Estimation Using System Dynamics

    DTIC Science & Technology

    2009-03-01

    workforce in the system. 3. Non- intervention This forecast provides a potential scenario of workforce numbers, based solely on actual numbers derived from...present knowledge and actions taken under the assumption that no unexpected interventions will occur. It is a red flag that guides future decisions...represented as a distribution. Bartholomew (1974) establishes a stochastic model of manpower systems as a probabilistic description of the

  13. Survey of air cargo forecasting techniques

    NASA Technical Reports Server (NTRS)

    Kuhlthan, A. R.; Vermuri, R. S.

    1978-01-01

    Forecasting techniques currently in use in estimating or predicting the demand for air cargo in various markets are discussed with emphasis on the fundamentals of the different forecasting approaches. References to specific studies are cited when appropriate. The effectiveness of current methods is evaluated and several prospects for future activities or approaches are suggested. Appendices contain summary type analyses of about 50 specific publications on forecasting, and selected bibliographies on air cargo forecasting, air passenger demand forecasting, and general demand and modalsplit modeling.

  14. Stochastic demographic forecasting.

    PubMed

    Lee, R D

    1992-11-01

    "This paper describes a particular approach to stochastic population forecasting, which is implemented for the U.S.A. through 2065. Statistical time series methods are combined with demographic models to produce plausible long run forecasts of vital rates, with probability distributions. The resulting mortality forecasts imply gains in future life expectancy that are roughly twice as large as those forecast by the Office of the Social Security Actuary.... Resulting stochastic forecasts of the elderly population, elderly dependency ratios, and payroll tax rates for health, education and pensions are presented." excerpt

  15. An investigation of the role of current and future remote sensing data systems in numerical meteorology

    NASA Technical Reports Server (NTRS)

    Diak, George R.; Smith, William L.

    1993-01-01

    The goals of this research endeavor have been to develop a flexible and relatively complete framework for the investigation of current and future satellite data sources in numerical meteorology. In order to realistically model how satellite information might be used for these purposes, it is necessary that Observing System Simulation Experiments (OSSEs) be as complete as possible. It is therefore desirable that these experiments simulate in entirety the sequence of steps involved in bringing satellite information from the radiance level through product retrieval to a realistic analysis and forecast sequence. In this project we have worked to make this sequence realistic by synthesizing raw satellite data from surrogate atmospheres, deriving satellite products from these data and subsequently producing analyses and forecasts using the retrieved products. The accomplishments made in 1991 are presented. The emphasis was on examining atmospheric soundings and microphysical products which we expect to produce with the launch of the Advanced Microwave Sounding Unit (AMSU), slated for flight in mid 1994.

  16. Applications and Comparisons of Four Time Series Models in Epidemiological Surveillance Data

    PubMed Central

    Young, Alistair A.; Li, Xiaosong

    2014-01-01

    Public health surveillance systems provide valuable data for reliable predication of future epidemic events. This paper describes a study that used nine types of infectious disease data collected through a national public health surveillance system in mainland China to evaluate and compare the performances of four time series methods, namely, two decomposition methods (regression and exponential smoothing), autoregressive integrated moving average (ARIMA) and support vector machine (SVM). The data obtained from 2005 to 2011 and in 2012 were used as modeling and forecasting samples, respectively. The performances were evaluated based on three metrics: mean absolute error (MAE), mean absolute percentage error (MAPE), and mean square error (MSE). The accuracy of the statistical models in forecasting future epidemic disease proved their effectiveness in epidemiological surveillance. Although the comparisons found that no single method is completely superior to the others, the present study indeed highlighted that the SVMs outperforms the ARIMA model and decomposition methods in most cases. PMID:24505382

  17. Simulating the Interactions Among Land Use, Transportation ...

    EPA Pesticide Factsheets

    In most transportation studies, computer models that forecast travel behavior statistics for a future year use static projections of the spatial distribution of future population and employment growth as inputs. As a result, they are unable to account for the temporally dynamic and non-linear interactions among transportation, land use, and socioeconomic systems. System dynamics (SD) provides a common framework for modeling the complex interactions among transportation and other related systems. This study uses a SD model to simulate the cascading impacts of a proposed light rail transit (LRT) system in central North Carolina, USA. The Durham-Orange Light Rail Project (D-O LRP) SD model incorporates relationships among the land use, transportation, and economy sectors to simulate the complex feedbacks that give rise to the travel behavior changes forecasted by the region’s transportation model. This paper demonstrates the sensitivity of changes in travel behavior to the proposed LRT system and the assumptions that went into the transportation modeling, and compares those results to the impacts of an alternative fare-free transit system. SD models such as the D-O LRP SD model can complement transportation studies by providing valuable insight into the interdependent community systems that collectively contribute to travel behavior changes. Presented at the 35th International Conference of the System Dynamics Society in Cambridge, MA, July 18th, 2017

  18. Using Air Temperature to Quantitatively Predict the MODIS Fractional Snow Cover Retrieval Errors over the Continental US (CONUS)

    NASA Technical Reports Server (NTRS)

    Dong, Jiarui; Ek, Mike; Hall, Dorothy K.; Peters-Lidard, Christa; Cosgrove, Brian; Miller, Jeff; Riggs, George A.; Xia, Youlong

    2013-01-01

    In the middle to high latitude and alpine regions, the seasonal snow pack can dominate the surface energy and water budgets due to its high albedo, low thermal conductivity, high emissivity, considerable spatial and temporal variability, and ability to store and then later release a winters cumulative snowfall (Cohen, 1994; Hall, 1998). With this in mind, the snow drought across the U.S. has raised questions about impacts on water supply, ski resorts and agriculture. Knowledge of various snow pack properties is crucial for short-term weather forecasts, climate change prediction, and hydrologic forecasting for producing reliable daily to seasonal forecasts. One potential source of this information is the multi-institution North American Land Data Assimilation System (NLDAS) project (Mitchell et al., 2004). Real-time NLDAS products are used for drought monitoring to support the National Integrated Drought Information System (NIDIS) and as initial conditions for a future NCEP drought forecast system. Additionally, efforts are currently underway to assimilate remotely-sensed estimates of land-surface states such as snowpack information into NLDAS. It is believed that this assimilation will not only produce improved snowpack states that better represent snow evolving conditions, but will directly improve the monitoring of drought.

  19. High-Resolution Hydrological Sub-Seasonal Forecasting for Water Resources Management Over Europe

    NASA Astrophysics Data System (ADS)

    Wood, E. F.; Wanders, N.; Pan, M.; Sheffield, J.; Samaniego, L. E.; Thober, S.; Kumar, R.; Prudhomme, C.; Houghton-Carr, H.

    2017-12-01

    For decision-making at the sub-seasonal and seasonal time scale, hydrological forecasts with a high temporal and spatial resolution are required by water managers. So far such forecasts have been unavailable due to 1) lack of availability of meteorological seasonal forecasts, 2) coarse temporal resolution of meteorological seasonal forecasts, requiring temporal downscaling, 3) lack of consistency between observations and seasonal forecasts, requiring bias-correction. The EDgE (End-to-end Demonstrator for improved decision making in the water sector in Europe) project commissioned by the ECMWF (C3S) created a unique dataset of hydrological seasonal forecasts derived from four global climate models (CanCM4, FLOR-B01, ECMF, LFPW) in combination with four global hydrological models (PCR-GLOBWB, VIC, mHM, Noah-MP), resulting in 208 forecasts for any given day. The forecasts provide a daily temporal and 5-km spatial resolution, and are bias corrected against E-OBS meteorological observations. The forecasts are communicated to stakeholders via Sectoral Climate Impact Indicators (SCIIs), created in collaboration with the end-user community of the EDgE project (e.g. the percentage of ensemble realizations above the 10th percentile of monthly river flow, or below the 90th). Results show skillful forecasts for discharge from 3 months to 6 months (latter for N Europe due to snow); for soil moisture up to three months due precipitation forecast skill and short initial condition memory; and for groundwater greater than 6 months (lowest skill in western Europe.) The SCIIs are effective in communicating both forecast skill and uncertainty. Overall the new system provides an unprecedented ensemble for seasonal forecasts with significant skill over Europe to support water management. The consistency in both the GCM forecasts and the LSM parameterization ensures a stable and reliable forecast framework and methodology, even if additional GCMs or LSMs are added in the future.

  20. Short-term ensemble streamflow forecasting using operationally-produced single-valued streamflow forecasts - A Hydrologic Model Output Statistics (HMOS) approach

    NASA Astrophysics Data System (ADS)

    Regonda, Satish Kumar; Seo, Dong-Jun; Lawrence, Bill; Brown, James D.; Demargne, Julie

    2013-08-01

    We present a statistical procedure for generating short-term ensemble streamflow forecasts from single-valued, or deterministic, streamflow forecasts produced operationally by the U.S. National Weather Service (NWS) River Forecast Centers (RFCs). The resulting ensemble streamflow forecast provides an estimate of the predictive uncertainty associated with the single-valued forecast to support risk-based decision making by the forecasters and by the users of the forecast products, such as emergency managers. Forced by single-valued quantitative precipitation and temperature forecasts (QPF, QTF), the single-valued streamflow forecasts are produced at a 6-h time step nominally out to 5 days into the future. The single-valued streamflow forecasts reflect various run-time modifications, or "manual data assimilation", applied by the human forecasters in an attempt to reduce error from various sources in the end-to-end forecast process. The proposed procedure generates ensemble traces of streamflow from a parsimonious approximation of the conditional multivariate probability distribution of future streamflow given the single-valued streamflow forecast, QPF, and the most recent streamflow observation. For parameter estimation and evaluation, we used a multiyear archive of the single-valued river stage forecast produced operationally by the NWS Arkansas-Red River Basin River Forecast Center (ABRFC) in Tulsa, Oklahoma. As a by-product of parameter estimation, the procedure provides a categorical assessment of the effective lead time of the operational hydrologic forecasts for different QPF and forecast flow conditions. To evaluate the procedure, we carried out hindcasting experiments in dependent and cross-validation modes. The results indicate that the short-term streamflow ensemble hindcasts generated from the procedure are generally reliable within the effective lead time of the single-valued forecasts and well capture the skill of the single-valued forecasts. For smaller basins, however, the effective lead time is significantly reduced by short basin memory and reduced skill in the single-valued QPF.

  1. Modeling and forecasting the distribution of Vibrio vulnificus in Chesapeake Bay.

    PubMed

    Jacobs, J M; Rhodes, M; Brown, C W; Hood, R R; Leight, A; Long, W; Wood, R

    2014-11-01

    To construct statistical models to predict the presence, abundance and potential virulence of Vibrio vulnificus in surface waters of Chesapeake Bay for implementation in ecological forecasting systems. We evaluated and applied previously published qPCR assays to water samples (n = 1636) collected from Chesapeake Bay from 2007-2010 in conjunction with State water quality monitoring programmes. A variety of statistical techniques were used in concert to identify water quality parameters associated with V. vulnificus presence, abundance and virulence markers in the interest of developing strong predictive models for use in regional oceanographic modeling systems. A suite of models are provided to represent the best model fit and alternatives using environmental variables that allow them to be put to immediate use in current ecological forecasting efforts. Environmental parameters such as temperature, salinity and turbidity are capable of accurately predicting abundance and distribution of V. vulnificus in Chesapeake Bay. Forcing these empirical models with output from ocean modeling systems allows for spatially explicit forecasts for up to 48 h in the future. This study uses one of the largest data sets compiled to model Vibrio in an estuary, enhances our understanding of environmental correlates with abundance, distribution and presence of potentially virulent strains and offers a method to forecast these pathogens that may be replicated in other regions. This article has been contributed to by US Government employees and their work is in the public domain in the USA.

  2. Extravehicular Activity (EVA) Technology Development Status and Forecast

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda; Westheimer, David T.

    2010-01-01

    Beginning in Fiscal Year (FY) 2011, Extravehicular activity (EVA) technology development became a technology foundational domain under a new program Enabling Technology Development and Demonstration. The goal of the EVA technology effort is to further develop technologies that will be used to demonstrate a robust EVA system that has application for a variety of future missions including microgravity and surface EVA. Overall the objectives will be reduce system mass, reduce consumables and maintenance, increase EVA hardware robustness and life, increase crew member efficiency and autonomy, and enable rapid vehicle egress and ingress. Over the past several years, NASA realized a tremendous increase in EVA system development as part of the Exploration Technology Development Program and the Constellation Program. The evident demand for efficient and reliable EVA technologies, particularly regenerable technologies was apparent under these former programs and will continue to be needed as future mission opportunities arise. The technological need for EVA in space has been realized over the last several decades by the Gemini, Apollo, Skylab, Space Shuttle, and the International Space Station (ISS) programs. EVAs were critical to the success of these programs. Now with the ISS extension to 2028 in conjunction with a current forecasted need of at least eight EVAs per year, the EVA technology life and limited availability of the EMUs will become a critical issue eventually. The current Extravehicular Mobility Unit (EMU) has vastly served EVA demands by performing critical operations to assemble the ISS and provide repairs of satellites such as the Hubble Space Telescope. However, as the life of ISS and the vision for future mission opportunities are realized, a new EVA systems capability could be an option for the future mission applications building off of the technology development over the last several years. Besides ISS, potential mission applications include EVAs for missions to Near Earth Objects (NEO), Phobos, or future surface missions. Surface missions could include either exploration of the Moon or Mars. Providing an EVA capability for these types of missions enables in-space construction of complex vehicles or satellites, hands on exploration of new parts of our solar system, and engages the public through the inspiration of knowing that humans are exploring places that they have never been before. This paper offers insight into what is currently being developed and what the potential opportunities are in the forecast

  3. The Evolvement of Automobile Steering System Based on TRIZ

    NASA Astrophysics Data System (ADS)

    Zhao, Xinjun; Zhang, Shuang

    Products and techniques pass through a process of birth, growth, maturity, death and quit the stage like biological evolution process. The developments of products and techniques conform to some evolvement rules. If people know and hold these rules, they can design new kind of products and forecast the develop trends of the products. Thereby, enterprises can grasp the future technique directions of products, and make product and technique innovation. Below, based on TRIZ theory, the mechanism evolvement, the function evolvement and the appearance evolvement of automobile steering system had been analyzed and put forward some new ideas about future automobile steering system.

  4. Rebuttal of "Polar bear population forecasts: a public-policy forecasting audit"

    USGS Publications Warehouse

    Amstrup, Steven C.; Caswell, Hal; DeWeaver, Eric; Stirling, Ian; Douglas, David C.; Marcot, Bruce G.; Hunter, Christine M.

    2009-01-01

    Observed declines in the Arctic sea ice have resulted in a variety of negative effects on polar bears (Ursus maritimus). Projections for additional future declines in sea ice resulted in a proposal to list polar bears as a threatened species under the United States Endangered Species Act. To provide information for the Department of the Interior's listing-decision process, the US Geological Survey (USGS) produced a series of nine research reports evaluating the present and future status of polar bears throughout their range. In response, Armstrong et al. [Armstrong, J. S., K. C. Green, W. Soon. 2008. Polar bear population forecasts: A public-policy forecasting audit. Interfaces 38(5) 382–405], which we will refer to as AGS, performed an audit of two of these nine reports. AGS claimed that the general circulation models upon which the USGS reports relied were not valid forecasting tools, that USGS researchers were not objective or lacked independence from policy decisions, that they did not utilize all available information in constructing their forecasts, and that they violated numerous principles of forecasting espoused by AGS. AGS (p. 382) concluded that the two USGS reports were "unscientific and inconsequential to decision makers." We evaluate the AGS audit and show how AGS are mistaken or misleading on every claim. We provide evidence that general circulation models are useful in forecasting future climate conditions and that corporate and government leaders are relying on these models to do so. We clarify the strict independence of the USGS from the listing decision. We show that the allegations of failure to follow the principles of forecasting espoused by AGS are either incorrect or are based on misconceptions about the Arctic environment, polar bear biology, or statistical and mathematical methods. We conclude by showing that the AGS principles of forecasting are too ambiguous and subjective to be used as a reliable basis for auditing scientific investigations. In summary, we show that the AGS audit offers no valid criticism of the USGS conclusion that global warming poses a serious threat to the future welfare of polar bears and that it only serves to distract from reasoned public-policy debate.

  5. Predicting spatio-temporal failure in large scale observational and micro scale experimental systems

    NASA Astrophysics Data System (ADS)

    de las Heras, Alejandro; Hu, Yong

    2006-10-01

    Forecasting has become an essential part of modern thought, but the practical limitations still are manifold. We addressed future rates of change by comparing models that take into account time, and models that focus more on space. Cox regression confirmed that linear change can be safely assumed in the short-term. Spatially explicit Poisson regression, provided a ceiling value for the number of deforestation spots. With several observed and estimated rates, it was decided to forecast using the more robust assumptions. A Markov-chain cellular automaton thus projected 5-year deforestation in the Amazonian Arc of Deforestation, showing that even a stable rate of change would largely deplete the forest area. More generally, resolution and implementation of the existing models could explain many of the modelling difficulties still affecting forecasting.

  6. 7 CFR 1710.206 - Approval requirements for load forecasts prepared pursuant to approved load forecast work plans.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... effects on electric revenues caused by competition from alternative energy sources or other electric... uncertainty or alternative futures that may determine the borrower's actual loads. Examples of economic... basis. Include alternative futures, as applicable. This summary shall be designed to accommodate the...

  7. 7 CFR 1710.206 - Approval requirements for load forecasts prepared pursuant to approved load forecast work plans.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... effects on electric revenues caused by competition from alternative energy sources or other electric... uncertainty or alternative futures that may determine the borrower's actual loads. Examples of economic... basis. Include alternative futures, as applicable. This summary shall be designed to accommodate the...

  8. 7 CFR 1710.206 - Approval requirements for load forecasts prepared pursuant to approved load forecast work plans.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... effects on electric revenues caused by competition from alternative energy sources or other electric... uncertainty or alternative futures that may determine the borrower's actual loads. Examples of economic... basis. Include alternative futures, as applicable. This summary shall be designed to accommodate the...

  9. 7 CFR 1710.206 - Approval requirements for load forecasts prepared pursuant to approved load forecast work plans.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... effects on electric revenues caused by competition from alternative energy sources or other electric... uncertainty or alternative futures that may determine the borrower's actual loads. Examples of economic... basis. Include alternative futures, as applicable. This summary shall be designed to accommodate the...

  10. The Impacts of Climate Variations on Military Operations in the Horn of Africa

    DTIC Science & Technology

    2006-03-01

    variability in a region. Climate forecasts are predictions of the future state of the climate , much as we think of weather forecasts but at longer...arrive at accurate characterizations of the future state of the climate . Many of the civilian organizations that generate reanalysis data also

  11. Forecasts of 21st Century Snowpack and Implications for Snowmobile and Snowcoach Use in Yellowstone National Park

    PubMed Central

    Tercek, Michael; Rodman, Ann

    2016-01-01

    Climate models project a general decline in western US snowpack throughout the 21st century, but long-term, spatially fine-grained, management-relevant projections of snowpack are not available for Yellowstone National Park. We focus on the implications that future snow declines may have for oversnow vehicle (snowmobile and snowcoach) use because oversnow tourism is critical to the local economy and has been a contentious issue in the park for more than 30 years. Using temperature-indexed snow melt and accumulation equations with temperature and precipitation data from downscaled global climate models, we forecast the number of days that will be suitable for oversnow travel on each Yellowstone road segment during the mid- and late-21st century. The west entrance road was forecast to be the least suitable for oversnow use in the future while the south entrance road was forecast to remain at near historical levels of driveability. The greatest snow losses were forecast for the west entrance road where as little as 29% of the December–March oversnow season was forecast to be driveable by late century. The climatic conditions that allow oversnow vehicle use in Yellowstone are forecast by our methods to deteriorate significantly in the future. At some point it may be prudent to consider plowing the roads that experience the greatest snow losses. PMID:27467778

  12. Adapting NEMO for use as the UK operational storm surge forecasting model

    NASA Astrophysics Data System (ADS)

    Furner, Rachel; Williams, Jane; Horsburgh, Kevin; Saulter, Andrew

    2016-04-01

    The United Kingdom is an area vulnerable to damage due to storm surges, particularly the East Coast which suffered losses estimated at over £1 billion during the North Sea surge event of the 5th and 6th December 2013. Accurate forecasting of storm surge events for this region is crucial to enable government agencies to assess the risk of overtopping of coastal defences so they can respond appropriately, minimising risk to life and infrastructure. There has been an operational storm surge forecast service for this region since 1978, using a numerical model developed by the National Oceanography Centre (NOC) and run at the UK Met Office. This is also implemented as part of an ensemble prediction system, using perturbed atmospheric forcing to produce an ensemble surge forecast. In order to ensure efficient use of future supercomputer developments and to create synergy with existing operational coastal ocean models the Met Office and NOC have begun a joint project transitioning the storm surge forecast system from the current CS3X code base to a configuration based on the Nucleus for European Modelling of the Ocean (NEMO). This work involves both adapting NEMO to add functionality, such as allowing the drying out of ocean cells and changes allowing NEMO to run efficiently as a two-dimensional, barotropic model. As the ensemble surge forecast system is run with 12 members 4 times a day computational efficiency is of high importance. Upon completion this project will enable interesting scientific comparisons to be made between a NEMO based surge model and the full three-dimensional baroclinic NEMO based models currently run within the Met Office, facilitating assessment of the impact of baroclinic processes, and vertical resolution on sea surface height forecasts. Moving to a NEMO code base will also allow many future developments to be more easily used within the storm surge model due to the wide range of options which currently exist within NEMO or are planned for future NEMO releases, such as data assimilation, and surge-wave coupling. Assessment of tidal performance of the NEMO-surge configuration and comparison to the existing operational CS3X model has been carried out. Evaluation of the models focus on performance relative to the UK Class A tide gauge network, a dataset which was established following the devastating flood of 1953 and which is managed by the British Oceanographic Data Service (BODC) based at NOC. Trials of the NEMO model in tide-only mode have illustrated the importance of having a well specified bathymetry and, for the 7km scaled model, a secondary sensitivity to bed friction coefficient and the specification of the coastline. Preliminary results will also be presented from model runs with atmospheric (wind stress and pressure at mean sea-level) forcing.

  13. Research on strategy and optimization method of PRT empty vehicles resource allocation based on traffic demand forecast

    NASA Astrophysics Data System (ADS)

    Xiang, Yu; Tao, Cheng

    2018-05-01

    During the operation of the personal rapid transit system(PRT), the empty vehicle resources is distributed unevenly because of different passenger demand. In order to maintain the balance between supply and demand, and to meet the passenger needs of the ride, PRT empty vehicle resource allocation model is constructed based on the future demand forecasted by historical demand in this paper. The improved genetic algorithm is implied in distribution of the empty vehicle which can reduce the customers waiting time and improve the operation efficiency of the PRT system so that all passengers can take the PRT vehicles in the shortest time. The experimental result shows that the improved genetic algorithm can allocate the empty vehicle from the system level optimally, and realize the distribution of the empty vehicle resources reasonably in the system.

  14. Forecast Verification: Identification of small changes in weather forecasting skill

    NASA Astrophysics Data System (ADS)

    Weatherhead, E. C.; Jensen, T. L.

    2017-12-01

    Global and regonal weather forecasts have improved over the past seven decades most often because of small, incrmental improvements. The identificaiton and verification of forecast improvement due to proposed small changes in forecasting can be expensive and, if not carried out efficiently, can slow progress in forecasting development. This presentation will look at the skill of commonly used verification techniques and show how the ability to detect improvements can depend on the magnitude of the improvement, the number of runs used to test the improvement, the location on the Earth and the statistical techniques used. For continuous variables, such as temperture, wind and humidity, the skill of a forecast can be directly compared using a pair-wise statistical test that accommodates the natural autocorrelation and magnitude of variability. For discrete variables, such as tornado outbreaks, or icing events, the challenges is to reduce the false alarm rate while improving the rate of correctly identifying th discrete event. For both continuus and discrete verification results, proper statistical approaches can reduce the number of runs needed to identify a small improvement in forecasting skill. Verification within the Next Generation Global Prediction System is an important component to the many small decisions needed to make stat-of-the-art improvements to weather forecasting capabilities. The comparison of multiple skill scores with often conflicting results requires not only appropriate testing, but also scientific judgment to assure that the choices are appropriate not only for improvements in today's forecasting capabilities, but allow improvements that will come in the future.

  15. Improvements and Lingering Challenges with Modeling Low-Level Winds Over Complex Terrain during the Wind Forecast Improvement Project 2

    NASA Astrophysics Data System (ADS)

    Olson, J.; Kenyon, J.; Brown, J. M.; Angevine, W. M.; Marquis, M.; Pichugina, Y. L.; Choukulkar, A.; Bonin, T.; Banta, R. M.; Bianco, L.; Djalalova, I.; McCaffrey, K.; Wilczak, J. M.; Lantz, K. O.; Long, C. N.; Redfern, S.; McCaa, J. R.; Stoelinga, M.; Grimit, E.; Cline, J.; Shaw, W. J.; Lundquist, J. K.; Lundquist, K. A.; Kosovic, B.; Berg, L. K.; Kotamarthi, V. R.; Sharp, J.; Jiménez, P.

    2017-12-01

    The Rapid Refresh (RAP) and High-Resolution Rapid Refresh (HRRR) are NOAA real-time operational hourly updating forecast systems run at 13- and 3-km grid spacing, respectively. Both systems use the Advanced Research version of the Weather Research and Forecasting (WRF-ARW) as the model component of the forecast system. During the second installment of the Wind Forecast Improvement Project (WFIP 2), the RAP/HRRR have been targeted for the improvement of low-level wind forecasts in the complex terrain within the Columbia River Basin (CRB), which requires much finer grid spacing to resolve important terrain peaks in the Cascade Mountains as well as the Columbia River Gorge. Therefore, this project provides a unique opportunity to test and develop the RAP/HRRR physics suite within a very high-resolution nest (Δx = 750 m) over the northwestern US. Special effort is made to incorporate scale-aware aspects into the model physical parameterizations to improve RAP/HRRR wind forecasts for any application at any grid spacing. Many wind profiling and scanning instruments have been deployed in the CRB in support the WFIP 2 field project, which spanned 01 October 2015 to 31 March 2017. During the project, several forecast error modes were identified, such as: (1) too-shallow cold pools during the cool season, which can mix-out more frequently than observed and (2) the low wind speed bias in thermal trough-induced gap flows during the warm season. Development has been focused on the column-based turbulent mixing scheme to improve upon these biases, but investigating the effects of horizontal (and 3D) mixing has also helped improve some of the common forecast failure modes. This presentation will highlight the testing and development of various model components, showing the improvements over original versions for temperature and wind profiles. Examples of case studies and retrospective periods will be presented to illustrate the improvements. We will demonstrate that the improvements made in WFIP 2 will be extendable to other regions, complex or flat terrain. Ongoing and future challenges in RAP/HRRR physics development will be touched upon.

  16. Enhancing Nursing Staffing Forecasting With Safety Stock Over Lead Time Modeling.

    PubMed

    McNair, Douglas S

    2015-01-01

    In balancing competing priorities, it is essential that nursing staffing provide enough nurses to safely and effectively care for the patients. Mathematical models to predict optimal "safety stocks" have been routine in supply chain management for many years but have up to now not been applied in nursing workforce management. There are various aspects that exhibit similarities between the 2 disciplines, such as an evolving demand forecast according to acuity and the fact that provisioning "stock" to meet demand in a future period has nonzero variable lead time. Under assumptions about the forecasts (eg, the demand process is well fit as an autoregressive process) and about the labor supply process (≥1 shifts' lead time), we show that safety stock over lead time for such systems is effectively equivalent to the corresponding well-studied problem for systems with stationary demand bounds and base stock policies. Hence, we can apply existing models from supply chain analytics to find the optimal safety levels of nurse staffing. We use a case study with real data to demonstrate that there are significant benefits from the inclusion of the forecast process when determining the optimal safety stocks.

  17. New forecasting methodology indicates more disease and earlier mortality ahead for today's younger Americans.

    PubMed

    Reither, Eric N; Olshansky, S Jay; Yang, Yang

    2011-08-01

    Traditional methods of projecting population health statistics, such as estimating future death rates, can give inaccurate results and lead to inferior or even poor policy decisions. A new "three-dimensional" method of forecasting vital health statistics is more accurate because it takes into account the delayed effects of the health risks being accumulated by today's younger generations. Applying this forecasting technique to the US obesity epidemic suggests that future death rates and health care expenditures could be far worse than currently anticipated. We suggest that public policy makers adopt this more robust forecasting tool and redouble efforts to develop and implement effective obesity-related prevention programs and interventions.

  18. Early Transition and Use of VIIRS and GOES-R Products by NWS Forecast Offices

    NASA Technical Reports Server (NTRS)

    Fuell, Kevin K.; Smith, Mathew; Jedlovec, Gary

    2012-01-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) on the NPOESS Preparatory Project (NPP) satellite, part of the Joint Polar Satellite System (JPSS), and the ABI and GLM sensors scheduled for the GOES-R geostationary satellite will bring advanced observing capabilities to the operational weather community. The NASA Short-term Prediction Research and Transition (SPoRT) project at Marshall Space Flight Center has been facilitating the use of real-time experimental and research satellite data by NWS Weather Forecast Offices (WFOs) for a number of years to demonstrate the planned capabilities of future sensors to address particular forecast challenges through improve situational awareness and short-term weather forecasts. For the NOAA GOES-R Proving Ground (PG) activity, SPoRT is developing and disseminating selected GOES-R proxy products to collaborating WFOs and National Centers. SPoRT developed the a pseudo-Geostationary Lightning Mapper product and helped in the transition of the Algorithm Working Group (AWG) Convective Initiation (CI) proxy product for the Hazardous Weather Testbed (HWT) Spring Experiment,. Along with its partner WFOs, SPoRT is evaluating MODIS/GOES Hybrid products, which brings ABI-like data sets from existing NASA instrumentation in front of the forecaster for everyday use. The Hybrid uses near real-time MODIS imagery to demonstrate future ABI capabilities, while utilizing standard GOES imagery to provide the temporal frequency of geostationary imagery expected by operational forecasters. In addition, SPoRT is collaborating with the GOES-R hydrology AWG to transition a baseline proxy product for rainfall rate / quantitative precipitation estimate (QPE) to the OCONUS regions. For VIIRS, SPoRT is demonstrating multispectral observing capabilities and the utility of low-light channels not previously available on operational weather satellites to address a variety of weather forecast challenges. This presentation will discuss the results of transitioning these products to collaborating WFOs throughout the country.

  19. Perspective On Income Security and Social Services and An Agenda for Analysis.

    DTIC Science & Technology

    1981-08-13

    economic stability of America and the continued viability of the U.S. social system. This report provides a prespective on many of the major issues, identifies present concerns, forecasts future developments, and briefly discusses GAO’s approach to addressing these issues.

  20. Use of Remote Sensing and Dust Modelling to Evaluate Ecosystem Phenology and Pollen Dispersal

    NASA Technical Reports Server (NTRS)

    Luvall, Jeffrey C.; Sprigg, William A.; Watts, Carol; Shaw, Patrick

    2007-01-01

    The impact of pollen release and downwind concentrations can be evaluated utilizing remote sensing. Previous NASA studies have addressed airborne dust prediction systems PHAiRS (Public Health Applications in Remote Sensing) which have determined that pollen forecasts and simulations are possible. By adapting the deterministic dust model (as an in-line system with the National Weather Service operational forecast model) used in PHAiRS to simulate downwind dispersal of pollen, initializing the model with pollen source regions from MODIS, assessing the results a rapid prototype concept can be produced. We will present the results of our effort to develop a deterministic model for predicting and simulating pollen emission and downwind concentration to study details or phenology and meteorology and their dependencies, and the promise of a credible real time forecast system to support public health and agricultural science and service. Previous studies have been done with PHAiRS research, the use of NASA data, the dust model and the PHAiRS potential to improve public health and environmental services long into the future.

  1. Anvil Forecast Tool in the Advanced Weather Interactive Processing System (AWIPS)

    NASA Technical Reports Server (NTRS)

    Barrett, Joe H., III; Hood, Doris

    2009-01-01

    Launch Weather Officers (LWOs) from the 45th Weather Squadron (45 WS) and forecasters from the National Weather Service (NWS) Spaceflight Meteorology Group (SMG) have identified anvil forecasting as one of their most challenging tasks when predicting the probability of violating the Lightning Launch Commit Criteria (LLCC) (Krider et al. 2006; Space Shuttle Flight Rules (FR), NASA/JSC 2004)). As a result, the Applied Meteorology Unit (AMU) developed a tool that creates an anvil threat corridor graphic that can be overlaid on satellite imagery using the Meteorological Interactive Data Display System (MIDDS, Short and Wheeler, 2002). The tool helps forecasters estimate the locations of thunderstorm anvils at one, two, and three hours into the future. It has been used extensively in launch and landing operations by both the 45 WS and SMG. The Advanced Weather Interactive Processing System (AWIPS) is now used along with MIDDS for weather analysis and display at SMG. In Phase I of this task, SMG tasked the AMU to transition the tool from MIDDS to AWIPS (Barrett et aI., 2007). For Phase II, SMG requested the AMU make the Anvil Forecast Tool in AWIPS more configurable by creating the capability to read model gridded data from user-defined model files instead of hard-coded files. An NWS local AWIPS application called AGRID was used to accomplish this. In addition, SMG needed to be able to define the pressure levels for the model data, instead of hard-coding the bottom level as 300 mb and the top level as 150 mb. This paper describes the initial development of the Anvil Forecast Tool for MIDDS, followed by the migration of the tool to AWIPS in Phase I. It then gives a detailed presentation of the Phase II improvements to the AWIPS tool.

  2. Studies in short haul air transportation in the California corridor: Effects of design runway length; community acceptance; impact of return on investment and fuel cost increases. Volume 2: Appendices

    NASA Technical Reports Server (NTRS)

    Shevell, R. S.; Jones, D. W., Jr.

    1973-01-01

    The development of a forecast model for short haul air transportation systems in the California Corridor is discussed. The factors which determine the level of air traffic demand are identified. A forecast equation for use in airport utilization analysis is developed. A mathematical model is submitted to show the relationship between population, employment, and income for indicating future air transportation utilization. Diagrams and tables of data are included to support the conclusions reached regarding air transportation economic factors.

  3. Remote-sensing based approach to forecast habitat quality under climate change scenarios.

    PubMed

    Requena-Mullor, Juan M; López, Enrique; Castro, Antonio J; Alcaraz-Segura, Domingo; Castro, Hermelindo; Reyes, Andrés; Cabello, Javier

    2017-01-01

    As climate change is expected to have a significant impact on species distributions, there is an urgent challenge to provide reliable information to guide conservation biodiversity policies. In addressing this challenge, we propose a remote sensing-based approach to forecast the future habitat quality for European badger, a species not abundant and at risk of local extinction in the arid environments of southeastern Spain, by incorporating environmental variables related with the ecosystem functioning and correlated with climate and land use. Using ensemble prediction methods, we designed global spatial distribution models for the distribution range of badger using presence-only data and climate variables. Then, we constructed regional models for an arid region in the southeast Spain using EVI (Enhanced Vegetation Index) derived variables and weighting the pseudo-absences with the global model projections applied to this region. Finally, we forecast the badger potential spatial distribution in the time period 2071-2099 based on IPCC scenarios incorporating the uncertainty derived from the predicted values of EVI-derived variables. By including remotely sensed descriptors of the temporal dynamics and spatial patterns of ecosystem functioning into spatial distribution models, results suggest that future forecast is less favorable for European badgers than not including them. In addition, change in spatial pattern of habitat suitability may become higher than when forecasts are based just on climate variables. Since the validity of future forecast only based on climate variables is currently questioned, conservation policies supported by such information could have a biased vision and overestimate or underestimate the potential changes in species distribution derived from climate change. The incorporation of ecosystem functional attributes derived from remote sensing in the modeling of future forecast may contribute to the improvement of the detection of ecological responses under climate change scenarios.

  4. Remote-sensing based approach to forecast habitat quality under climate change scenarios

    PubMed Central

    Requena-Mullor, Juan M.; López, Enrique; Castro, Antonio J.; Alcaraz-Segura, Domingo; Castro, Hermelindo; Reyes, Andrés; Cabello, Javier

    2017-01-01

    As climate change is expected to have a significant impact on species distributions, there is an urgent challenge to provide reliable information to guide conservation biodiversity policies. In addressing this challenge, we propose a remote sensing-based approach to forecast the future habitat quality for European badger, a species not abundant and at risk of local extinction in the arid environments of southeastern Spain, by incorporating environmental variables related with the ecosystem functioning and correlated with climate and land use. Using ensemble prediction methods, we designed global spatial distribution models for the distribution range of badger using presence-only data and climate variables. Then, we constructed regional models for an arid region in the southeast Spain using EVI (Enhanced Vegetation Index) derived variables and weighting the pseudo-absences with the global model projections applied to this region. Finally, we forecast the badger potential spatial distribution in the time period 2071–2099 based on IPCC scenarios incorporating the uncertainty derived from the predicted values of EVI-derived variables. By including remotely sensed descriptors of the temporal dynamics and spatial patterns of ecosystem functioning into spatial distribution models, results suggest that future forecast is less favorable for European badgers than not including them. In addition, change in spatial pattern of habitat suitability may become higher than when forecasts are based just on climate variables. Since the validity of future forecast only based on climate variables is currently questioned, conservation policies supported by such information could have a biased vision and overestimate or underestimate the potential changes in species distribution derived from climate change. The incorporation of ecosystem functional attributes derived from remote sensing in the modeling of future forecast may contribute to the improvement of the detection of ecological responses under climate change scenarios. PMID:28257501

  5. Forecasting Hospitalization and Emergency Department Visit Rates for Chronic Obstructive Pulmonary Disease. A Time-Series Analysis.

    PubMed

    Gershon, Andrea; Thiruchelvam, Deva; Moineddin, Rahim; Zhao, Xiu Yan; Hwee, Jeremiah; To, Teresa

    2017-06-01

    Knowing trends in and forecasting hospitalization and emergency department visit rates for chronic obstructive pulmonary disease (COPD) can enable health care providers, hospitals, and health care decision makers to plan for the future. We conducted a time-series analysis using health care administrative data from the Province of Ontario, Canada, to determine previous trends in acute care hospitalization and emergency department visit rates for COPD and then to forecast future rates. Individuals aged 35 years and older with physician-diagnosed COPD were identified using four universal government health administrative databases and a validated case definition. Monthly COPD hospitalization and emergency department visit rates per 1,000 people with COPD were determined from 2003 to 2014 and then forecasted to 2024 using autoregressive integrated moving average models. Between 2003 and 2014, COPD prevalence increased from 8.9 to 11.1%. During that time, there were 274,951 hospitalizations and 290,482 emergency department visits for COPD. After accounting for seasonality, we found that monthly COPD hospitalization and emergency department visit rates per 1,000 individuals with COPD remained stable. COPD prevalence was forecasted to increase to 12.7% (95% confidence interval [CI], 11.4-14.1) by 2024, whereas monthly COPD hospitalization and emergency department visit rates per 1,000 people with COPD were forecasted to remain stable at 2.7 (95% CI, 1.6-4.4) and 3.7 (95% CI, 2.3-5.6), respectively. Forecasted age- and sex-stratified rates were also stable. COPD hospital and emergency department visit rates per 1,000 people with COPD have been stable for more than a decade and are projected to remain stable in the near future. Given increasing COPD prevalence, this means notably more COPD health service use in the future.

  6. Corps Water Management System (CWMS) Decision Support Modeling and Integration Use in the June 2007 Texas Floods

    NASA Astrophysics Data System (ADS)

    Charley, W. J.; Luna, M.

    2007-12-01

    The U.S. Army Corps of Engineers Corps Water Management System (CWMS) is a comprehensive data acquisition and hydrologic modeling system for short-term decision support of water control operations in real time. It encompasses data collection, validation and transformation, data storage, visualization, real time model simulation for decision-making support, and data dissemination. CWMS uses an Oracle database and Sun Solaris workstations for data processes, storage and the execution of models, with a client application (the Control and Visualization Interface, or CAVI) that can run on a Windows PC. CWMS was used by the Lower Colorado River Authority (LCRA) to make hydrologic forecasts of flows on the Lower Colorado River and operate reservoirs during the June 2007 event in Texas. The LCRA receives real-time observed gridded spatial rainfall data from OneRain, Inc. that which is a result of adjusting NexRad rainfall data with precipitation gages. This data is used, along with future precipitation estimates, for hydrologic forecasting by the rainfall-runoff modeling program HEC-HMS. Forecasted flows from HEC-HMS and combined with observed flows and reservoir information to simulate LCRA's reservoir operations and help engineers make release decisions based on the results. The river hydraulics program, HEC-RAS, computes river stages and water surface profiles for the computed flow. An inundation boundary and depth map of water in the flood plain can be calculated from the HEC-RAS results using ArcInfo. By varying future precipitation and releases, engineers can evaluate different "What if?" scenarios. What was described as an "extraordinary cluster of thunderstorms" that stalled over Burnet and Llano counties in Texas on June 27, 2007, dropped 17 to 19 inches of rainfall over a 6-hour period. The storm was classified over a 500-year event and the resulting flow over some of the smaller tributaries as a 100-year or better. CWMS was used by LCRA for flood forecasting and reservoir operations. The models accurately forecasting the flows and allowed engineers to determine that only four floodgates needed to be opened for Mansfield dam, in the Chain of Highland lakes. CWMS also forecasted the peak of the flood well before it happened. Smaller rain storms continued for a period of weeks and CWMS was used throughout the event calculating lake levels, closing of gates along with a hydro-generation schedule.

  7. Spatiotemporal drought forecasting using nonlinear models

    NASA Astrophysics Data System (ADS)

    Vasiliades, Lampros; Loukas, Athanasios

    2010-05-01

    Spatiotemporal data mining is the extraction of unknown and implicit knowledge, structures, spatiotemporal relationships, or patterns not explicitly stored in spatiotemporal databases. As one of data mining techniques, forecasting is widely used to predict the unknown future based upon the patterns hidden in the current and past data. In order to achieve spatiotemporal forecasting, some mature analysis tools, e.g., time series and spatial statistics are extended to the spatial dimension and the temporal dimension, respectively. Drought forecasting plays an important role in the planning and management of natural resources and water resource systems in a river basin. Early and timelines forecasting of a drought event can help to take proactive measures and set out drought mitigation strategies to alleviate the impacts of drought. Despite the widespread application of nonlinear mathematical models, comparative studies on spatiotemporal drought forecasting using different models are still a huge task for modellers. This study uses a promising approach, the Gamma Test (GT), to select the input variables and the training data length, so that the trial and error workload could be greatly reduced. The GT enables to quickly evaluate and estimate the best mean squared error that can be achieved by a smooth model on any unseen data for a given selection of inputs, prior to model construction. The GT is applied to forecast droughts using monthly Standardized Precipitation Index (SPI) timeseries at multiple timescales in several precipitation stations at Pinios river basin in Thessaly region, Greece. Several nonlinear models have been developed efficiently, with the aid of the GT, for 1-month up to 12-month ahead forecasting. Several temporal and spatial statistical indices were considered for the performance evaluation of the models. The predicted results show reasonably good agreement with the actual data for short lead times, whereas the forecasting accuracy decreases with increase in lead time. Finally, the developed nonlinear models could be used in an early warning system for risk and decision analyses at the study area.

  8. A hybrid spatiotemporal drought forecasting model for operational use

    NASA Astrophysics Data System (ADS)

    Vasiliades, L.; Loukas, A.

    2010-09-01

    Drought forecasting plays an important role in the planning and management of natural resources and water resource systems in a river basin. Early and timelines forecasting of a drought event can help to take proactive measures and set out drought mitigation strategies to alleviate the impacts of drought. Spatiotemporal data mining is the extraction of unknown and implicit knowledge, structures, spatiotemporal relationships, or patterns not explicitly stored in spatiotemporal databases. As one of data mining techniques, forecasting is widely used to predict the unknown future based upon the patterns hidden in the current and past data. This study develops a hybrid spatiotemporal scheme for integrated spatial and temporal forecasting. Temporal forecasting is achieved using feed-forward neural networks and the temporal forecasts are extended to the spatial dimension using a spatial recurrent neural network model. The methodology is demonstrated for an operational meteorological drought index the Standardized Precipitation Index (SPI) calculated at multiple timescales. 48 precipitation stations and 18 independent precipitation stations, located at Pinios river basin in Thessaly region, Greece, were used for the development and spatiotemporal validation of the hybrid spatiotemporal scheme. Several quantitative temporal and spatial statistical indices were considered for the performance evaluation of the models. Furthermore, qualitative statistical criteria based on contingency tables between observed and forecasted drought episodes were calculated. The results show that the lead time of forecasting for operational use depends on the SPI timescale. The hybrid spatiotemporal drought forecasting model could be operationally used for forecasting up to three months ahead for SPI short timescales (e.g. 3-6 months) up to six months ahead for large SPI timescales (e.g. 24 months). The above findings could be useful in developing a drought preparedness plan in the region.

  9. Time series analysis of reference crop evapotranspiration using soft computing techniques for Ganjam District, Odisha, India

    NASA Astrophysics Data System (ADS)

    Patra, S. R.

    2017-12-01

    Evapotranspiration (ET0) influences water resources and it is considered as a vital process in aridic hydrologic frameworks. It is one of the most important measure in finding the drought condition. Therefore, time series forecasting of evapotranspiration is very important in order to help the decision makers and water system mangers build up proper systems to sustain and manage water resources. Time series considers that -history repeats itself, hence by analysing the past values, better choices, or forecasts, can be carried out for the future. Ten years of ET0 data was used as a part of this study to make sure a satisfactory forecast of monthly values. In this study, three models: (ARIMA) mathematical model, artificial neural network model, support vector machine model are presented. These three models are used for forecasting monthly reference crop evapotranspiration based on ten years of past historical records (1991-2001) of measured evaporation at Ganjam region, Odisha, India without considering the climate data. The developed models will allow water resource managers to predict up to 12 months, making these predictions very useful to optimize the resources needed for effective water resources management. In this study multistep-ahead prediction is performed which is more complex and troublesome than onestep ahead. Our investigation proposed that nonlinear relationships may exist among the monthly indices, so that the ARIMA model might not be able to effectively extract the full relationship hidden in the historical data. Support vector machines are potentially helpful time series forecasting strategies on account of their strong nonlinear mapping capability and resistance to complexity in forecasting data. SVMs have great learning capability in time series modelling compared to ANN. For instance, the SVMs execute the structural risk minimization principle, which allows in better generalization as compared to neural networks that use the empirical risk minimization principle. The reliability of these computational models was analysed in light of simulation results and it was found out that SVM model produces better results among the three. The future research should be routed to extend the validation data set and to check the validity of our results on different areas with hybrid intelligence techniques.

  10. UV Remote Sensing Data Products - Turning Data Into Knowledge

    NASA Astrophysics Data System (ADS)

    Weiss, M.; Paxton, L.; Schaefer, R. K.; Comberiate, J.; Hsieh, S. W.; Romeo, G.; Wolven, B. C.; Zhang, Y.

    2013-12-01

    The DMSP/SSUSI instruments have been taking UV images of the upper atmosphere for more than a decade. Each of the SSUSI instruments takes complete global UV images on a daily basis. Although this scientific data is very valuable, it is not actionable information. Perhaps the simplest use of SSUSI data is the assimilation of radiances into the GAIM ionospheric forecast model; even then, the data must be massaged to get it into a GAIM-ingestable form. We describe a development effort funded by the DMSP program and the Air Force Weather Agency to turn the raw data into actionable information in the form of SSUSI environmental data parameters and other derived information. We will describe current nowcasts, forecasts, and other related actionable information (e.g. auroral oval forecasts) that is currently generated by the SSUSI ground processing system for AFWA, and also concepts we have for future tools (e.g., geomagnetic storm alerts, scintillation forecasts, HF radio propagation information, auroral radar clutter) to turn more of the SSUSI dataset into actionable knowledge.

  11. Forecasting the stochastic demand for inpatient care: the case of the Greek national health system.

    PubMed

    Boutsioli, Zoe

    2010-08-01

    The aim of this study is to estimate the unexpected demand of Greek public hospitals. A multivariate model with four explanatory variables is used. These are as follows: the weekend effect, the duty effect, the summer holiday and the official holiday. The method of the ordinary least squares is used to estimate the impact of these variables on the daily hospital emergency admissions series. The forecasted residuals of hospital regressions for each year give the estimated stochastic demand. Daily emergency admissions decline during weekends, summer months and official holidays, and increase on duty hospital days. Stochastic hospital demand varies both among hospitals and over the five-year time period under investigation. Variations among hospitals are larger than time variations. Hospital managers and health policy-makers can be availed by forecasting the future flows of emergent patients. The benefit can be both at managerial and economical level. More advanced models including additional daily variables such as the weather forecasts could provide more accurate estimations.

  12. Forecasting Austrian national elections: The Grand Coalition model

    PubMed Central

    Aichholzer, Julian; Willmann, Johanna

    2014-01-01

    Forecasting the outcomes of national elections has become established practice in several democracies. In the present paper, we develop an economic voting model for forecasting the future success of the Austrian ‘grand coalition’, i.e., the joint electoral success of the two mainstream parties SPOE and OEVP, at the 2013 Austrian Parliamentary Elections. Our main argument is that the success of both parties is strongly tied to the accomplishments of the Austrian system of corporatism, that is, the Social Partnership (Sozialpartnerschaft), in providing economic prosperity. Using data from Austrian national elections between 1953 and 2008 (n=18), we rely on the following predictors in our forecasting model: (1) unemployment rates, (2) previous incumbency of the two parties, and (3) dealignment over time. We conclude that, in general, the two mainstream parties benefit considerably from low unemployment rates, and are weakened whenever they have previously formed a coalition government. Further, we show that they have gradually been losing a good share of their voter basis over recent decades. PMID:26339109

  13. Load forecasting via suboptimal seasonal autoregressive models and iteratively reweighted least squares estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mbamalu, G.A.N.; El-Hawary, M.E.

    The authors propose suboptimal least squares or IRWLS procedures for estimating the parameters of a seasonal multiplicative AR model encountered during power system load forecasting. The proposed method involves using an interactive computer environment to estimate the parameters of a seasonal multiplicative AR process. The method comprises five major computational steps. The first determines the order of the seasonal multiplicative AR process, and the second uses the least squares or the IRWLS to estimate the optimal nonseasonal AR model parameters. In the third step one obtains the intermediate series by back forecast, which is followed by using the least squaresmore » or the IRWLS to estimate the optimal season AR parameters. The final step uses the estimated parameters to forecast future load. The method is applied to predict the Nova Scotia Power Corporation's 168 lead time hourly load. The results obtained are documented and compared with results based on the Box and Jenkins method.« less

  14. Physician supply forecast: better than peering in a crystal ball?

    PubMed Central

    Roberfroid, Dominique; Leonard, Christian; Stordeur, Sabine

    2009-01-01

    Background Anticipating physician supply to tackle future health challenges is a crucial but complex task for policy planners. A number of forecasting tools are available, but the methods, advantages and shortcomings of such tools are not straightforward and not always well appraised. Therefore this paper had two objectives: to present a typology of existing forecasting approaches and to analyse the methodology-related issues. Methods A literature review was carried out in electronic databases Medline-Ovid, Embase and ERIC. Concrete examples of planning experiences in various countries were analysed. Results Four main forecasting approaches were identified. The supply projection approach defines the necessary inflow to maintain or to reach in the future an arbitrary predefined level of service offer. The demand-based approach estimates the quantity of health care services used by the population in the future to project physician requirements. The needs-based approach involves defining and predicting health care deficits so that they can be addressed by an adequate workforce. Benchmarking health systems with similar populations and health profiles is the last approach. These different methods can be combined to perform a gap analysis. The methodological challenges of such projections are numerous: most often static models are used and their uncertainty is not assessed; valid and comprehensive data to feed into the models are often lacking; and a rapidly evolving environment affects the likelihood of projection scenarios. As a result, the internal and external validity of the projections included in our review appeared limited. Conclusion There is no single accepted approach to forecasting physician requirements. The value of projections lies in their utility in identifying the current and emerging trends to which policy-makers need to respond. A genuine gap analysis, an effective monitoring of key parameters and comprehensive workforce planning are key elements to improving the usefulness of physician supply projections. PMID:19216772

  15. The role of futures forecasts in recreation: some applications in the third nationwide outdoor recreation plan

    Treesearch

    Meg Maguire; Dana R. Younger

    1980-01-01

    This paper provides a quick glimpse into the theoretical applicability and importance of futures forecasting techniques in recreation policy planning. The paper also details contemporary socioeconomic trends affecting recreation, current recreation participation patterns and anticipated social changes which will alter public recreation experiences as developed in the...

  16. A study comparison of two system model performance in estimated lifted index over Indonesia.

    NASA Astrophysics Data System (ADS)

    lestari, Juliana tri; Wandala, Agie

    2018-05-01

    Lifted index (LI) is one of atmospheric stability indices that used for thunderstorm forecasting. Numerical weather Prediction Models are essential for accurate weather forecast these day. This study has completed the attempt to compare the two NWP models these are Weather Research Forecasting (WRF) model and Global Forecasting System (GFS) model in estimates LI at 20 locations over Indonesia and verified the result with observation. Taylor diagram was used to comparing the models skill with shown the value of standard deviation, coefficient correlation and Root mean square error (RMSE). This study using the dataset on 00.00 UTC and 12.00 UTC during mid-March to Mid-April 2017. From the sample of LI distributions, both models have a tendency to overestimated LI value in almost all region in Indonesia while the WRF models has the better ability to catch the LI pattern distribution with observation than GFS model has. The verification result shows how both WRF and GFS model have such a weak relationship with observation except Eltari meteorologi station that its coefficient correlation reach almost 0.6 with the low RMSE value. Mean while WRF model have a better performance than GFS model. This study suggest that estimated LI of WRF model can provide the good performance for Thunderstorm forecasting over Indonesia in the future. However unsufficient relation between output models and observation in the certain location need a further investigation.

  17. The promise of air cargo-system aspects and vehicle design

    NASA Technical Reports Server (NTRS)

    Whitehead, A. H., Jr.

    1977-01-01

    A review of the current operation of the air cargo system is presented and the prospects for the future are discussed. Attention is given to air cargo demand forecasts, the economics of air cargo transport, the development of an integrated air cargo system, and the evolution of airfreighter design. Particular emphasis is placed on the span-distributed load concept, examining the Boeing, Douglas, and Lockheed spanloaders.

  18. Assessing the impact of a future volcanic eruption on decadal predictions

    NASA Astrophysics Data System (ADS)

    Illing, Sebastian; Kadow, Christopher; Pohlmann, Holger; Timmreck, Claudia

    2018-06-01

    The likelihood of a large volcanic eruption in the future provides the largest uncertainty concerning the evolution of the climate system on the timescale of a few years, but also an excellent opportunity to learn about the behavior of the climate system, and our models thereof. So the following question emerges: how predictable is the response of the climate system to future eruptions? By this we mean to what extent will the volcanic perturbation affect decadal climate predictions and how does the pre-eruption climate state influence the impact of the volcanic signal on the predictions? To address these questions, we performed decadal forecasts with the MiKlip prediction system, which is based on the MPI-ESM, in the low-resolution configuration for the initialization years 2012 and 2014, which differ in the Pacific Decadal Oscillation (PDO) and North Atlantic Oscillation (NAO) phase. Each forecast contains an artificial Pinatubo-like eruption starting in June of the first prediction year and consists of 10 ensemble members. For the construction of the aerosol radiative forcing, we used the global aerosol model ECHAM5-HAM in a version adapted for volcanic eruptions. We investigate the response of different climate variables, including near-surface air temperature, precipitation, frost days, and sea ice area fraction. Our results show that the average global cooling response over 4 years of about 0.2 K and the precipitation decrease of about 0.025 mm day-1 is relatively robust throughout the different experiments and seemingly independent of the initialization state. However, on a regional scale, we find substantial differences between the initializations. The cooling effect in the North Atlantic and Europe lasts longer and the Arctic sea ice increase is stronger in the simulations initialized in 2014. In contrast, the forecast initialized in 2012 with a negative PDO shows a prolonged cooling in the North Pacific basin.

  19. A near real time regional JPSS and GOES-R data assimilation system for high impact weather research and applications

    NASA Astrophysics Data System (ADS)

    Li, J.; Wang, P.; Han, H.; Schmit, T. J.

    2014-12-01

    JPSS and GOES-R observations play important role in numerical weather prediction (NWP). However, how to best represent the information from satellite observations and how to get value added information from these satellite data into regional NWP models, including both radiance and derived products, still need investigations. In order to enhance the applications of JPSS and GOES-R data in regional NWP for high impact weather forecasts, scientists from Cooperative Institute of Meteorological Satellite Studies (CIMSS) at University of Wisconsin-Madison have recently developed a near realtime regional Satellite Data Assimilation system for Tropical storm forecasts (SDAT) (http://cimss.ssec.wisc.edu/sdat). The system consists of the community Gridpoint Statistical Interpolation (GSI) assimilation system and the advanced Weather Research Forecast (WRF) model. In addition to assimilate GOES, AMSUA/AMSUB, HIRS, MHS, ATMS (Suomi-NPP), AIRS and IASI radiances, the SDAT is also able to assimilate satellite-derived products such as hyperspectral IR retrieved temperature and moisture profiles, total precipitable water (TPW), GOES Sounder (and future GOES-R) layer precipitable water (LPW) and GOES Imager atmospheric motion vector (AMV) products into the system. Real time forecasted GOES infrared (IR) images simulated from SDAT output have also been part of the SDAT system for applications and forecast evaluations. To set up the system parameters, a series of experiments have been carried out to test the impacts of different initialization schemes, including different background error matrix, different NCEP global model date sets, and different WRF model horizontal resolutions. Using SDAT as a research testbed, researches have been conducted for different satellite data impacts study, as well as different techniques for handling clouds in radiance assimilation. Since the fall of 2013, the SDAT system has been running in near real time. The results from historical cases and 2014 hurricane season cases will be compared with the operational GFS and HWRF, and presented at the meeting.

  20. Evaluation of the North American Multi-Model Ensemble System for Monthly and Seasonal Prediction

    NASA Astrophysics Data System (ADS)

    Zhang, Q.

    2014-12-01

    Since August 2011, the real time seasonal forecasts of the U.S. National Multi-Model Ensemble (NMME) have been made on 8th of each month by NCEP Climate Prediction Center (CPC). The participating models were NCEP/CFSv1&2, GFDL/CM2.2, NCAR/U.Miami/COLA/CCSM3, NASA/GEOS5, IRI/ ECHAM-a & ECHAM-f in the first year of the real time NMME forecast. Two Canadian coupled models CMC/CanCM3 and CM4 joined in and CFSv1 and IRI's models dropped out in the second year. The NMME team at CPC collects monthly means of three variables, precipitation, temperature at 2m and sea surface temperature from each modeling center on a 1x1 global grid, removes systematic errors, makes the grand ensemble mean in equal weight for each model mean and probability forecast with equal weight for each member of each model. This provides the NMME forecast locked in schedule for the CPC operational seasonal and monthly outlook. The basic verification metrics of seasonal and monthly prediction of NMME are calculated as an evaluation of skill, including both deterministic and probabilistic forecasts for the 3-year real time (August, 2011- July 2014) period and the 30-year retrospective forecast (1982-2011) of the individual models as well as the NMME ensemble. The motivation of this study is to provide skill benchmarks for future improvements of the NMME seasonal and monthly prediction system. We also want to establish whether the real time and hindcast periods (used for bias correction in real time) are consistent. The experimental phase I of the project already supplies routine guidance to users of the NMME forecasts.

  1. Ocean Model Impact Study for Coupled Hurricane Forecasting: An HFIP Initiative

    NASA Astrophysics Data System (ADS)

    Kim, H. S. S.; Halliwell, G. R., Jr.; Tallapragada, V.; Black, P. G.; Bond, N.; Chen, S.; Cione, J.; Cronin, M. F.; Ginis, I.; Liu, B.; Miller, L.; Jayne, S. R.; Sanabia, E.; Shay, L. K.; Uhlhorn, E.; Zhu, L.

    2016-02-01

    Established in 2009, the NOAA Hurricane Forecast Improvement Project (HFIP) is a ten-year project to promote accelerated improvements hurricane track and intensity forecasts (Gall et al. 2013). The Ocean Model Impact Tiger Team (OMITT) consisting of model developers and research scientists was formed as one of HFIP working groups in December 2014, to evaluate the impact of ocean coupling in tropical cyclone (TC) forecasts. The team investigated the ocean model impact in real cases for Category 3 Hurricane Edouard in 2014, using simulations and observations that were collected for different stages of the hurricane. Two Eastern North Pacific Hurricanes in 2015, Blanca and Dolores, are also of special interest. These two powerful Category 4 storms followed a similar track, however, they produced dramatically different ocean cooling, about 7.2oC for Hurricane Blanca but only about 2.7oC for Hurricane Dolores, and the corresponding intensity changes were negative 40 ms-1 and 20 ms-1, respectively. Two versions of operational HWRF and COAMPS-TC coupled prediction systems are employed in the study. These systems are configured to have 1D and 3D ocean dynamics coupled to the atmosphere. The ocean components are initialized separately with climatology, analysis and nowcast products to evaluate the impact of ocean initialization on hurricane forecasts. Real storm forecast experiments are being designed and performed with different levels of the ocean model complexity and various model configurations to study model sensitivity. In this talk, we report the OMITT activities conducted during the past year, present preliminary results of on-going investigation of air-sea interactions in the simulations, and discuss future plans toward improving coupled TC predictions. Gall, R., J. Franklin, F. Marks, E.N. Rappaport, and F. Toepfer, 2013: THE HURRICANE FORECAST IMPROVEMENT PROJECT. Bull. Amer. Meteor. Soc., 329-343.

  2. Foreword to the Special Issue on Remote Sensing and Modeling of Surface Properties

    USDA-ARS?s Scientific Manuscript database

    CURRENTLY, the Numerical Weather Prediction (NWP) community is striving for better ways to extract information on the lower layer using current and future satellite systems to improve short-term to medium-range forecasts. The surface emissivity is highly variable and may cause biases in the forward ...

  3. Comparison of Spatial and Temporal Rainfall Characteristics in WRF-Simulated Precipitation to Gauge and Radar Observations

    EPA Science Inventory

    Weather Research and Forecasting (WRF) meteorological data are used for USEPA multimedia air and water quality modeling applications, within the CMAQ modeling system to estimate wet deposition and to evaluate future climate and land-use scenarios. While it is not expected that hi...

  4. The Building of a New Academic Field: The Case of French Didactiques

    ERIC Educational Resources Information Center

    Caillot, Michel

    2007-01-01

    In this article, the author attempts to show how French disciplinary "didactiques" were created and have developed. At the beginning, nobody could forecast the future and whether the "didactiques" would one day be recognised by the academic and instructional systems. The French "didactiques" are strongly based on…

  5. Model-free aftershock forecasts constructed from similar sequences in the past

    NASA Astrophysics Data System (ADS)

    van der Elst, N.; Page, M. T.

    2017-12-01

    The basic premise behind aftershock forecasting is that sequences in the future will be similar to those in the past. Forecast models typically use empirically tuned parametric distributions to approximate past sequences, and project those distributions into the future to make a forecast. While parametric models do a good job of describing average outcomes, they are not explicitly designed to capture the full range of variability between sequences, and can suffer from over-tuning of the parameters. In particular, parametric forecasts may produce a high rate of "surprises" - sequences that land outside the forecast range. Here we present a non-parametric forecast method that cuts out the parametric "middleman" between training data and forecast. The method is based on finding past sequences that are similar to the target sequence, and evaluating their outcomes. We quantify similarity as the Poisson probability that the observed event count in a past sequence reflects the same underlying intensity as the observed event count in the target sequence. Event counts are defined in terms of differential magnitude relative to the mainshock. The forecast is then constructed from the distribution of past sequences outcomes, weighted by their similarity. We compare the similarity forecast with the Reasenberg and Jones (RJ95) method, for a set of 2807 global aftershock sequences of M≥6 mainshocks. We implement a sequence-specific RJ95 forecast using a global average prior and Bayesian updating, but do not propagate epistemic uncertainty. The RJ95 forecast is somewhat more precise than the similarity forecast: 90% of observed sequences fall within a factor of two of the median RJ95 forecast value, whereas the fraction is 85% for the similarity forecast. However, the surprise rate is much higher for the RJ95 forecast; 10% of observed sequences fall in the upper 2.5% of the (Poissonian) forecast range. The surprise rate is less than 3% for the similarity forecast. The similarity forecast may be useful to emergency managers and non-specialists when confidence or expertise in parametric forecasting may be lacking. The method makes over-tuning impossible, and minimizes the rate of surprises. At the least, this forecast constitutes a useful benchmark for more precisely tuned parametric forecasts.

  6. Ability of matrix models to explain the past and predict the future of plant populations.

    USGS Publications Warehouse

    McEachern, Kathryn; Crone, Elizabeth E.; Ellis, Martha M.; Morris, William F.; Stanley, Amanda; Bell, Timothy; Bierzychudek, Paulette; Ehrlen, Johan; Kaye, Thomas N.; Knight, Tiffany M.; Lesica, Peter; Oostermeijer, Gerard; Quintana-Ascencio, Pedro F.; Ticktin, Tamara; Valverde, Teresa; Williams, Jennifer I.; Doak, Daniel F.; Ganesan, Rengaian; Thorpe, Andrea S.; Menges, Eric S.

    2013-01-01

    Uncertainty associated with ecological forecasts has long been recognized, but forecast accuracy is rarely quantified. We evaluated how well data on 82 populations of 20 species of plants spanning 3 continents explained and predicted plant population dynamics. We parameterized stage-based matrix models with demographic data from individually marked plants and determined how well these models forecast population sizes observed at least 5 years into the future. Simple demographic models forecasted population dynamics poorly; only 40% of observed population sizes fell within our forecasts' 95% confidence limits. However, these models explained population dynamics during the years in which data were collected; observed changes in population size during the data-collection period were strongly positively correlated with population growth rate. Thus, these models are at least a sound way to quantify population status. Poor forecasts were not associated with the number of individual plants or years of data. We tested whether vital rates were density dependent and found both positive and negative density dependence. However, density dependence was not associated with forecast error. Forecast error was significantly associated with environmental differences between the data collection and forecast periods. To forecast population fates, more detailed models, such as those that project how environments are likely to change and how these changes will affect population dynamics, may be needed. Such detailed models are not always feasible. Thus, it may be wiser to make risk-averse decisions than to expect precise forecasts from models.

  7. Ability of matrix models to explain the past and predict the future of plant populations.

    PubMed

    Crone, Elizabeth E; Ellis, Martha M; Morris, William F; Stanley, Amanda; Bell, Timothy; Bierzychudek, Paulette; Ehrlén, Johan; Kaye, Thomas N; Knight, Tiffany M; Lesica, Peter; Oostermeijer, Gerard; Quintana-Ascencio, Pedro F; Ticktin, Tamara; Valverde, Teresa; Williams, Jennifer L; Doak, Daniel F; Ganesan, Rengaian; McEachern, Kathyrn; Thorpe, Andrea S; Menges, Eric S

    2013-10-01

    Uncertainty associated with ecological forecasts has long been recognized, but forecast accuracy is rarely quantified. We evaluated how well data on 82 populations of 20 species of plants spanning 3 continents explained and predicted plant population dynamics. We parameterized stage-based matrix models with demographic data from individually marked plants and determined how well these models forecast population sizes observed at least 5 years into the future. Simple demographic models forecasted population dynamics poorly; only 40% of observed population sizes fell within our forecasts' 95% confidence limits. However, these models explained population dynamics during the years in which data were collected; observed changes in population size during the data-collection period were strongly positively correlated with population growth rate. Thus, these models are at least a sound way to quantify population status. Poor forecasts were not associated with the number of individual plants or years of data. We tested whether vital rates were density dependent and found both positive and negative density dependence. However, density dependence was not associated with forecast error. Forecast error was significantly associated with environmental differences between the data collection and forecast periods. To forecast population fates, more detailed models, such as those that project how environments are likely to change and how these changes will affect population dynamics, may be needed. Such detailed models are not always feasible. Thus, it may be wiser to make risk-averse decisions than to expect precise forecasts from models. © 2013 Society for Conservation Biology.

  8. The North Alabama Lightning Mapping Array: Recent Results and Future Prospects

    NASA Technical Reports Server (NTRS)

    Goodman, S. J.; Blakeslee, R.; Christian, H.; Boccippio, D.; Koshak, W.; Bailey, J.; Hall, J.; Bateman, M.; McCaul, E.; Buechler, D.

    2002-01-01

    The North Alabama Lightning Mapping Array became operational in November 2001 as a principal component of a severe weather test bed to infuse new science and technologies into the short-term forecasting of severe and hazardous weather and the warning decision-making process. The LMA project is a collaboration among NASA scientists, National Weather Service (NWS) weather forecast offices (WFOs), emergency managers, and other partners. The time rate-of-change of storm characteristics and life-cycle trending are accomplished in real-time through the second generation Lightning Imaging Sensor Data Applications Display (LISDAD II) system, initially developed in T997 through a collaboration among NASA/MSFC, MIT/Lincoln Lab and the Melbourne, FL WFO. LISDAD II is now a distributed decision support system with a JAVA-based display application that allows anyone, anywhere to track individual storm histories within the Tennessee Valley region of the southeastern U.S. Since the inauguration of the LMA there has been an abundance of severe weather. During 23-24 November 2001, a major tornado outbreak was monitored by LMA in its first data acquisition effort (36 tornadoes in Alabama). Since that time the LMA has collected a vast amount of data on hailstorms and damaging wind events, non-tornadic supercells, and ordinary non-severe thunderstorms. In this paper we provide an overview of LMA observations and discuss future prospects for improving the short-term forecasting of convective weather.

  9. A multiscale forecasting method for power plant fleet management

    NASA Astrophysics Data System (ADS)

    Chen, Hongmei

    In recent years the electric power industry has been challenged by a high level of uncertainty and volatility brought on by deregulation and globalization. A power producer must minimize the life cycle cost while meeting stringent safety and regulatory requirements and fulfilling customer demand for high reliability. Therefore, to achieve true system excellence, a more sophisticated system-level decision-making process with a more accurate forecasting support system to manage diverse and often widely dispersed generation units as a single, easily scaled and deployed fleet system in order to fully utilize the critical assets of a power producer has been created as a response. The process takes into account the time horizon for each of the major decision actions taken in a power plant and develops methods for information sharing between them. These decisions are highly interrelated and no optimal operation can be achieved without sharing information in the overall process. The process includes a forecasting system to provide information for planning for uncertainty. A new forecasting method is proposed, which utilizes a synergy of several modeling techniques properly combined at different time-scales of the forecasting objects. It can not only take advantages of the abundant historical data but also take into account the impact of pertinent driving forces from the external business environment to achieve more accurate forecasting results. Then block bootstrap is utilized to measure the bias in the estimate of the expected life cycle cost which will actually be needed to drive the business for a power plant in the long run. Finally, scenario analysis is used to provide a composite picture of future developments for decision making or strategic planning. The decision-making process is applied to a typical power producer chosen to represent challenging customer demand during high-demand periods. The process enhances system excellence by providing more accurate market information, evaluating the impact of external business environment, and considering cross-scale interactions between decision actions. Along with this process, system operation strategies, maintenance schedules, and capacity expansion plans that guide the operation of the power plant are optimally identified, and the total life cycle costs are estimated.

  10. Application and verification of ECMWF seasonal forecast for wind energy

    NASA Astrophysics Data System (ADS)

    Žagar, Mark; Marić, Tomislav; Qvist, Martin; Gulstad, Line

    2015-04-01

    A good understanding of long-term annual energy production (AEP) is crucial when assessing the business case of investing in green energy like wind power. The art of wind-resource assessment has emerged into a scientific discipline on its own, which has advanced at high pace over the last decade. This has resulted in continuous improvement of the AEP accuracy and, therefore, increase in business case certainty. Harvesting the full potential output of a wind farm or a portfolio of wind farms depends heavily on optimizing operation and management strategy. The necessary information for short-term planning (up to 14 days) is provided by standard weather and power forecasting services, and the long-term plans are based on climatology. However, the wind-power industry is lacking quality information on intermediate scales of the expected variability in seasonal and intra-annual variations and their geographical distribution. The seasonal power forecast presented here is designed to bridge this gap. The seasonal power production forecast is based on the ECMWF seasonal weather forecast and the Vestas' high-resolution, mesoscale weather library. The seasonal weather forecast is enriched through a layer of statistical post-processing added to relate large-scale wind speed anomalies to mesoscale climatology. The resulting predicted energy production anomalies, thus, include mesoscale effects not captured by the global forecasting systems. The turbine power output is non-linearly related to the wind speed, which has important implications for the wind power forecast. In theory, the wind power is proportional to the cube of wind speed. However, due to the nature of turbine design, this exponent is close to 3 only at low wind speeds, becomes smaller as the wind speed increases, and above 11-13 m/s the power output remains constant, called the rated power. The non-linear relationship between wind speed and the power output generally increases sensitivity of the forecasted power to the wind speed anomalies. On the other hand, in some cases and areas where turbines operate close to, or above the rated power, the sensitivity of power forecast is reduced. Thus, the seasonal power forecasting system requires good knowledge of the changes in frequency of events with sufficient wind speeds to have acceptable skill. The scientific background for the Vestas seasonal power forecasting system is described and the relationship between predicted monthly wind speed anomalies and observed wind energy production are investigated for a number of operating wind farms in different climate zones. Current challenges will be discussed and some future research and development areas identified.

  11. Impact of GFZ's Effective Angular Momentum Forecasts on Polar Motion Prediction

    NASA Astrophysics Data System (ADS)

    Dill, Robert; Dobslaw, Henryk

    2017-04-01

    The Earth System Modelling group at GeoForschungsZentrum (GFZ) Potsdam offers now 6-day forecasts of Earth rotation excitation due to atmospheric, oceanic, and hydrologic angular momentum changes that are consistent with its 40 years-long EAM series. Those EAM forecasts are characterized by an improved long-term consistency due to the introduction of a time-invariant high-resolution reference topography into the AAM processing that accounts for occasional NWP model changes. In addition, all tidal signals from both atmosphere and ocean have been separated, and the temporal resolution of both AAM and OAM has been increased to 3 hours. Analysis of an extended set of EAM short-term hindcasts revealed positive prediction skills for up to 6 days into the future when compared to a persistent forecast. Whereas UT1 predictions in particular rely on an accurate AAM forecast, skillfull polar motion prediction requires high-quality OAM forecasts as well. We will present in this contribution the results from a multi-year hindcast experiment, demonstrating that the polar motion prediction as currently available from Bulletin A can be improved in particular for lead-times between 2 and 5 days by incorporating OAM forecasts. We will also report about early results obtained at Observatoire de Paris to predict polar motion from the integration of GFZ's 6-day EAM forecasts into the Liouville equation in a routine setting, that fully takes into account the operational latencies of all required input products.

  12. Sea Ice in the NCEP Seasonal Forecast System

    NASA Astrophysics Data System (ADS)

    Wu, X.; Saha, S.; Grumbine, R. W.; Bailey, D. A.; Carton, J.; Penny, S. G.

    2017-12-01

    Sea ice is known to play a significant role in the global climate system. For a weather or climate forecast system (CFS), it is important that the realistic distribution of sea ice is represented. Sea ice prediction is challenging; sea ice can form or melt, it can move with wind and/or ocean current; sea ice interacts with both the air above and ocean underneath, it influences by, and has impact on the air and ocean conditions. NCEP has developed coupled CFS (version 2, CFSv2) and also carried out CFS reanalysis (CFSR), which includes a coupled model with the NCEP global forecast system, a land model, an ocean model (GFDL MOM4), and a sea ice model. In this work, we present the NCEP coupled model, the CFSv2 sea ice component that includes a dynamic thermodynamic sea ice model and a simple "assimilation" scheme, how sea ice has been assimilated in CFSR, the characteristics of the sea ice from CFSR and CFSv2, and the improvements of sea ice needed for future seasonal prediction system, part of the Unified Global Coupled System (UGCS), which is being developed and under testing, including sea ice data assimilation with the Local Ensemble Transform Kalman Filter (LETKF). Preliminary results from the UGCS testing will also be presented.

  13. Forecasting urban water demand: A meta-regression analysis.

    PubMed

    Sebri, Maamar

    2016-12-01

    Water managers and planners require accurate water demand forecasts over the short-, medium- and long-term for many purposes. These range from assessing water supply needs over spatial and temporal patterns to optimizing future investments and planning future allocations across competing sectors. This study surveys the empirical literature on the urban water demand forecasting using the meta-analytical approach. Specifically, using more than 600 estimates, a meta-regression analysis is conducted to identify explanations of cross-studies variation in accuracy of urban water demand forecasting. Our study finds that accuracy depends significantly on study characteristics, including demand periodicity, modeling method, forecasting horizon, model specification and sample size. The meta-regression results remain robust to different estimators employed as well as to a series of sensitivity checks performed. The importance of these findings lies in the conclusions and implications drawn out for regulators and policymakers and for academics alike. Copyright © 2016. Published by Elsevier Ltd.

  14. Establishing a method of short-term rainfall forecasting based on GNSS-derived PWV and its application.

    PubMed

    Yao, Yibin; Shan, Lulu; Zhao, Qingzhi

    2017-09-29

    Global Navigation Satellite System (GNSS) can effectively retrieve precipitable water vapor (PWV) with high precision and high-temporal resolution. GNSS-derived PWV can be used to reflect water vapor variation in the process of strong convection weather. By studying the relationship between time-varying PWV and rainfall, it can be found that PWV contents increase sharply before raining. Therefore, a short-term rainfall forecasting method is proposed based on GNSS-derived PWV. Then the method is validated using hourly GNSS-PWV data from Zhejiang Continuously Operating Reference Station (CORS) network of the period 1 September 2014 to 31 August 2015 and its corresponding hourly rainfall information. The results show that the forecasted correct rate can reach about 80%, while the false alarm rate is about 66%. Compared with results of the previous studies, the correct rate is improved by about 7%, and the false alarm rate is comparable. The method is also applied to other three actual rainfall events of different regions, different durations, and different types. The results show that the method has good applicability and high accuracy, which can be used for rainfall forecasting, and in the future study, it can be assimilated with traditional weather forecasting techniques to improve the forecasted accuracy.

  15. Forecast Method of Solar Irradiance with Just-In-Time Modeling

    NASA Astrophysics Data System (ADS)

    Suzuki, Takanobu; Goto, Yusuke; Terazono, Takahiro; Wakao, Shinji; Oozeki, Takashi

    PV power output mainly depends on the solar irradiance which is affected by various meteorological factors. So, it is required to predict solar irradiance in the future for the efficient operation of PV systems. In this paper, we develop a novel approach for solar irradiance forecast, in which we introduce to combine the black-box model (JIT Modeling) with the physical model (GPV data). We investigate the predictive accuracy of solar irradiance over wide controlled-area of each electric power company by utilizing the measured data on the 44 observation points throughout Japan offered by JMA and the 64 points around Kanto by NEDO. Finally, we propose the application forecast method of solar irradiance to the point which is difficulty in compiling the database. And we consider the influence of different GPV default time on solar irradiance prediction.

  16. Air quality early-warning system for cities in China

    NASA Astrophysics Data System (ADS)

    Xu, Yunzhen; Yang, Wendong; Wang, Jianzhou

    2017-01-01

    Air pollution has become a serious issue in many developing countries, especially in China, and could generate adverse effects on human beings. Air quality early-warning systems play an increasingly significant role in regulatory plans that reduce and control emissions of air pollutants and inform the public in advance when harmful air pollution is foreseen. However, building a robust early-warning system that will improve the ability of early-warning is not only a challenge but also a critical issue for the entire society. Relevant research is still poor in China and cannot always satisfy the growing requirements of regulatory planning, despite the issue's significance. Therefore, in this paper, a hybrid air quality early-warning system was successfully developed, composed of forecasting and evaluation. First, a hybrid forecasting model was proposed as an important part of this system based on the theory of "decomposition and ensemble" and combined with the advanced data processing technique, support vector machine, the latest bio-inspired optimization algorithm and the leave-one-out strategy for deciding weights. Afterwards, to intensify the research, fuzzy evaluation was performed, which also plays an indispensable role in the early-warning system. The forecasting model and fuzzy evaluation approaches are complementary. Case studies using daily air pollution concentrations of six air pollutants from three cities in China (i.e., Taiyuan, Harbin and Chongqing) are used as examples to evaluate the efficiency and effectiveness of the developed air quality early-warning system. Experimental results demonstrate that both the accuracy and the effectiveness of the developed system are greatly superior for air quality early warning. Furthermore, the application of forecasting and evaluation enables the informative and effective quantification of future air quality, offering a significant advantage, and can be employed to develop rapid air quality early-warning systems.

  17. Development of a multi-sensor based urban discharge forecasting system using remotely sensed data: A case study of extreme rainfall in South Korea

    NASA Astrophysics Data System (ADS)

    Yoon, Sunkwon; Jang, Sangmin; Park, Kyungwon

    2017-04-01

    Extreme weather due to changing climate is a main source of water-related disasters such as flooding and inundation and its damage will be accelerated somewhere in world wide. To prevent the water-related disasters and mitigate their damage in urban areas in future, we developed a multi-sensor based real-time discharge forecasting system using remotely sensed data such as radar and satellite. We used Communication, Ocean and Meteorological Satellite (COMS) and Korea Meteorological Agency (KMA) weather radar for quantitative precipitation estimation. The Automatic Weather System (AWS) and McGill Algorithm for Precipitation Nowcasting by Lagrangian Extrapolation (MAPLE) were used for verification of rainfall accuracy. The optimal Z-R relation was applied the Tropical Z-R relationship (Z=32R1.65), it has been confirmed that the accuracy is improved in the extreme rainfall events. In addition, the performance of blended multi-sensor combining rainfall was improved in 60mm/h rainfall and more strong heavy rainfall events. Moreover, we adjusted to forecast the urban discharge using Storm Water Management Model (SWMM). Several statistical methods have been used for assessment of model simulation between observed and simulated discharge. In terms of the correlation coefficient and r-squared discharge between observed and forecasted were highly correlated. Based on this study, we captured a possibility of real-time urban discharge forecasting system using remotely sensed data and its utilization for real-time flood warning. Acknowledgement This research was supported by a grant (13AWMP-B066744-01) from Advanced Water Management Research Program (AWMP) funded by Ministry of Land, Infrastructure and Transport (MOLIT) of Korean government.

  18. Causes and implications of the unforeseen 2016 extreme yield loss in the breadbasket of France.

    PubMed

    Ben-Ari, Tamara; Boé, Julien; Ciais, Philippe; Lecerf, Remi; Van der Velde, Marijn; Makowski, David

    2018-04-24

    In 2016, France, one of the leading wheat-producing and wheat-exporting regions in the world suffered its most extreme yield loss in over half a century. Yet, yield forecasting systems failed to anticipate this event. We show that this unprecedented event is a new type of compound extreme with a conjunction of abnormally warm temperatures in late autumn and abnormally wet conditions in the following spring. A binomial logistic regression accounting for fall and spring conditions is able to capture key yield loss events since 1959. Based on climate projections, we show that the conditions that led to the 2016 wheat yield loss are projected to become more frequent in the future. The increased likelihood of such compound extreme events poses a challenge: farming systems and yield forecasting systems, which often support them, must adapt.

  19. Putting Educational Forecasts into Perspective: A Guide for Decisionmakers.

    ERIC Educational Resources Information Center

    Dede, Christopher; Kierstead, Fred

    This paper focuses on how educational decision-makers can make use of futures research through a better understanding of forecasters' perspectives. Eight problems in communicating that are significant in contributing to poor usage of forecasts by educational decision-makers are: (1) overuse of jargon, (2) preoccupation with technological…

  20. Fast, Flexible, and Digital: Forecasts for Occupational and Workplace Education.

    ERIC Educational Resources Information Center

    Ausburn, Lynna J.

    2002-01-01

    Three Delphi panels of occupational educators (n=16, 9, 12) forecast scenarios for the future of workplace education, which were compared with results of a literature review. Results indicated increasing alignment of practitioners' forecasts for dramatically transformed workplace education with major trends identified in the literature. (Contains…

  1. Forecasting--A Systematic Modeling Methodology. Paper No. 489.

    ERIC Educational Resources Information Center

    Mabert, Vincent A.; Radcliffe, Robert C.

    In an attempt to bridge the gap between academic understanding and practical business use, the Box-Jenkins technique of time series analysis for forecasting future events is presented with a minimum of mathematical notation. The method is presented in three stages: a discussion of traditional forecasting techniques, focusing on traditional…

  2. Multivariate time series modeling of short-term system scale irrigation demand

    NASA Astrophysics Data System (ADS)

    Perera, Kushan C.; Western, Andrew W.; George, Biju; Nawarathna, Bandara

    2015-12-01

    Travel time limits the ability of irrigation system operators to react to short-term irrigation demand fluctuations that result from variations in weather, including very hot periods and rainfall events, as well as the various other pressures and opportunities that farmers face. Short-term system-wide irrigation demand forecasts can assist in system operation. Here we developed a multivariate time series (ARMAX) model to forecast irrigation demands with respect to aggregated service points flows (IDCGi, ASP) and off take regulator flows (IDCGi, OTR) based across 5 command areas, which included area covered under four irrigation channels and the study area. These command area specific ARMAX models forecast 1-5 days ahead daily IDCGi, ASP and IDCGi, OTR using the real time flow data recorded at the service points and the uppermost regulators and observed meteorological data collected from automatic weather stations. The model efficiency and the predictive performance were quantified using the root mean squared error (RMSE), Nash-Sutcliffe model efficiency coefficient (NSE), anomaly correlation coefficient (ACC) and mean square skill score (MSSS). During the evaluation period, NSE for IDCGi, ASP and IDCGi, OTR across 5 command areas were ranged 0.98-0.78. These models were capable of generating skillful forecasts (MSSS ⩾ 0.5 and ACC ⩾ 0.6) of IDCGi, ASP and IDCGi, OTR for all 5 lead days and IDCGi, ASP and IDCGi, OTR forecasts were better than using the long term monthly mean irrigation demand. Overall these predictive performance from the ARMAX time series models were higher than almost all the previous studies we are aware. Further, IDCGi, ASP and IDCGi, OTR forecasts have improved the operators' ability to react for near future irrigation demand fluctuations as the developed ARMAX time series models were self-adaptive to reflect the short-term changes in the irrigation demand with respect to various pressures and opportunities that farmers' face, such as changing water policy, continued development of water markets, drought and changing technology.

  3. Sub-Seasonal Climate Forecast Rodeo

    NASA Astrophysics Data System (ADS)

    Webb, R. S.; Nowak, K.; Cifelli, R.; Brekke, L. D.

    2017-12-01

    The Bureau of Reclamation, as the largest water wholesaler and the second largest producer of hydropower in the United States, benefits from skillful forecasts of future water availability. Researchers, water managers from local, regional, and federal agencies, and groups such as the Western States Water Council agree that improved precipitation and temperature forecast information at the sub-seasonal to seasonal (S2S) timescale is an area with significant potential benefit to water management. In response, and recognizing NOAA's leadership in forecasting, Reclamation has partnered with NOAA to develop and implement a real-time S2S forecasting competition. For a year, solvers are submitting forecasts of temperature and precipitation for weeks 3&4 and 5&6 every two weeks on a 1x1 degree grid for the 17 western state domain where Reclamation operates. The competition began on April 18, 2017 and the final real-time forecast is due April 3, 2018. Forecasts are evaluated once observational data become available using spatial anomaly correlation. Scores are posted on a competition leaderboard hosted by the National Integrated Drought Information System (NIDIS). The leaderboard can be accessed at: https://www.drought.gov/drought/sub-seasonal-climate-forecast-rodeo. To be eligible for cash prizes - which total $800,000 - solvers must outperform two benchmark forecasts during the real-time competition as well as in a required 11-year hind-cast. To receive a prize, competitors must grant a non-exclusive license to practice their forecast technique and make it available as open source software. At approximately one quarter complete, there are teams outperforming the benchmarks in three of the four competition categories. With prestige and monetary incentives on the line, it is hoped that the competition will spur innovation of improved S2S forecasts through novel approaches, enhancements to established models, or otherwise. Additionally, the competition aims to raise awareness on the S2S forecast need and the potential benefits- which extend beyond water management - to drought preparedness, public health, and other sectors.

  4. Faces of the Future: School Counselors as Cultural Mediators

    ERIC Educational Resources Information Center

    Portman, Tarrell Awe Agahe

    2009-01-01

    Twenty years ago, futurists examined the changing role of the school counselor and forecasted what the 21st-century school counselor would need to know. This article forecasts the future of school counseling in the next 20 years by focusing on expected diversity of K-12 students. Speculation on student enrollment based on projected trends and…

  5. Futures Research and the Strategic Planning Process: Implications for Higher Education. ASHE-ERIC Higher Education Research Report No. 9, 1984.

    ERIC Educational Resources Information Center

    Morrison, James L.; And Others

    The use of futures research to improve a college's ability to deal with changes brought about by social, economic, political, and technological developments is discussed, with attention to new planning strategies and forecasting methods. While traditional long-range planning tracks and forecasts the institution's internal development, strategic…

  6. Technology Forecasting for the Purpose of Predicting Employment Growth

    ERIC Educational Resources Information Center

    Smith, Cormac

    2016-01-01

    Throughout history, there has been a great emphasis placed on the ability to predict future events. The value of such prognostication varies between situations and domains, but the objective remains the same. Is it possible to use current or past observations to forecast future events? One specific area in which such insight is sought after is the…

  7. A seamless global hydrological monitoring and forecasting system for water resources assessment and hydrological hazard early warning

    NASA Astrophysics Data System (ADS)

    Sheffield, Justin; He, Xiaogang; Wood, Eric; Pan, Ming; Wanders, Niko; Zhan, Wang; Peng, Liqing

    2017-04-01

    Sustainable management of water resources and mitigation of the impacts of hydrological hazards are becoming ever more important at large scales because of inter-basin, inter-country and inter-continental connections in water dependent sectors. These include water resources management, food production, and energy production, whose needs must be weighed against the water needs of ecosystems and preservation of water resources for future generations. The strains on these connections are likely to increase with climate change and increasing demand from burgeoning populations and rapid development, with potential for conflict over water. At the same time, network connections may provide opportunities to alleviate pressures on water availability through more efficient use of resources such as trade in water dependent goods. A key constraint on understanding, monitoring and identifying solutions to increasing competition for water resources and hazard risk is the availability of hydrological data for monitoring and forecasting water resources and hazards. We present a global online system that provides continuous and consistent water products across time scales, from the historic instrumental period, to real-time monitoring, short-term and seasonal forecasts, and climate change projections. The system is intended to provide data and tools for analysis of historic hydrological variability and trends, water resources assessment, monitoring of evolving hazards and forecasts for early warning, and climate change scale projections of changes in water availability and extreme events. The system is particular useful for scientists and stakeholders interested in regions with less available in-situ data, and where forecasts have the potential to help decision making. The system is built on a database of high-resolution climate data from 1950 to present that merges available observational records with bias-corrected reanalysis and satellite data, which then drives a coupled land surface model-flood inundation model to produce hydrological variables and indices at daily, 0.25-degree resolution, globally. The system is updated in near real-time (< 2 days) using satellite precipitation and weather model data, and produces forecasts at short-term (out to 7 days) based on the Global Forecast System (GFS) and seasonal (up to 6 months) based on U.S. National Multi-Model Ensemble (NMME) seasonal forecasts. Climate change projections are based on bias-corrected and downscaled CMIP5 climate data that is used to force the hydrological model. Example products from the system include real-time and forecast drought indices for precipitation, soil moisture, and streamflow, and flood magnitude and extent indices. The model outputs are complemented by satellite based products and indices based on satellite data for vegetation health (MODIS NDVI) and soil moisture (SMAP). We show examples of the validation of the system at regional scales, including how local information can significantly improve predictions, and examples of how the system can be used to understand large-scale water resource issues, and in real-world contexts for early warning, decision making and planning.

  8. Assimilating InSAR Maps of Water Vapor to Improve Heavy Rainfall Forecasts: A Case Study With Two Successive Storms

    NASA Astrophysics Data System (ADS)

    Mateus, Pedro; Miranda, Pedro M. A.; Nico, Giovanni; Catalão, João.; Pinto, Paulo; Tomé, Ricardo

    2018-04-01

    Very high resolution precipitable water vapor maps obtained by the Sentinel-1 A synthetic aperture radar (SAR), using the SAR interferometry (InSAR) technique, are here shown to have a positive impact on the performance of severe weather forecasts. A case study of deep convection which affected the city of Adra, Spain, on 6-7 September 2015, is successfully forecasted by the Weather Research and Forecasting model initialized with InSAR data assimilated by the three-dimensional variational technique, with improved space and time distributions of precipitation, as observed by the local weather radar and rain gauge. This case study is exceptional because it consisted of two severe events 12 hr apart, with a timing that allows for the assimilation of both the ascending and descending satellite images, each for the initialization of each event. The same methodology applied to the network of Global Navigation Satellite System observations in Iberia, at the same times, failed to reproduce observed precipitation, although it also improved, in a more modest way, the forecast skill. The impact of precipitable water vapor data is shown to result from a direct increment of convective available potential energy, associated with important adjustments in the low-level wind field, favoring its release in deep convection. It is suggested that InSAR images, complemented by dense Global Navigation Satellite System data, may provide a new source of water vapor data for weather forecasting, since their sampling frequency could reach the subdaily scale by merging different SAR platforms, or when future geosynchronous radar missions become operational.

  9. Univariate time series modeling and an application to future claims amount in SOCSO's invalidity pension scheme

    NASA Astrophysics Data System (ADS)

    Chek, Mohd Zaki Awang; Ahmad, Abu Bakar; Ridzwan, Ahmad Nur Azam Ahmad; Jelas, Imran Md.; Jamal, Nur Faezah; Ismail, Isma Liana; Zulkifli, Faiz; Noor, Syamsul Ikram Mohd

    2012-09-01

    The main objective of this study is to forecast the future claims amount of Invalidity Pension Scheme (IPS). All data were derived from SOCSO annual reports from year 1972 - 2010. These claims consist of all claims amount from 7 benefits offered by SOCSO such as Invalidity Pension, Invalidity Grant, Survivors Pension, Constant Attendance Allowance, Rehabilitation, Funeral and Education. Prediction of future claims of Invalidity Pension Scheme will be made using Univariate Forecasting Models to predict the future claims among workforce in Malaysia.

  10. Operational Applications of Satellite Snowcover Observations

    NASA Technical Reports Server (NTRS)

    Rango, A. (Editor); Peterson, R. (Editor)

    1980-01-01

    The history of remote sensing of snow cover is reviewed and the following topics are covered: various techniques for interpreting LANDSAT and NOAA satellite data; the status of future systems for continuing snow hydrology applications; the use of snow cover observations in streamflow forecasts by Applications Systems Verification and Transfer participants and selected foreign investigators; and the benefits of using satellite snow cover data in runoff prediction.

  11. Probabilistic Solar Wind and Geomagnetic Forecasting Using an Analogue Ensemble or "Similar Day" Approach

    NASA Astrophysics Data System (ADS)

    Owens, M. J.; Riley, P.; Horbury, T. S.

    2017-05-01

    Effective space-weather prediction and mitigation requires accurate forecasting of near-Earth solar-wind conditions. Numerical magnetohydrodynamic models of the solar wind, driven by remote solar observations, are gaining skill at forecasting the large-scale solar-wind features that give rise to near-Earth variations over days and weeks. There remains a need for accurate short-term (hours to days) solar-wind forecasts, however. In this study we investigate the analogue ensemble (AnEn), or "similar day", approach that was developed for atmospheric weather forecasting. The central premise of the AnEn is that past variations that are analogous or similar to current conditions can be used to provide a good estimate of future variations. By considering an ensemble of past analogues, the AnEn forecast is inherently probabilistic and provides a measure of the forecast uncertainty. We show that forecasts of solar-wind speed can be improved by considering both speed and density when determining past analogues, whereas forecasts of the out-of-ecliptic magnetic field [BN] are improved by also considering the in-ecliptic magnetic-field components. In general, the best forecasts are found by considering only the previous 6 - 12 hours of observations. Using these parameters, the AnEn provides a valuable probabilistic forecast for solar-wind speed, density, and in-ecliptic magnetic field over lead times from a few hours to around four days. For BN, which is central to space-weather disturbance, the AnEn only provides a valuable forecast out to around six to seven hours. As the inherent predictability of this parameter is low, this is still likely a marked improvement over other forecast methods. We also investigate the use of the AnEn in forecasting geomagnetic indices Dst and Kp. The AnEn provides a valuable probabilistic forecast of both indices out to around four days. We outline a number of future improvements to AnEn forecasts of near-Earth solar-wind and geomagnetic conditions.

  12. Academic food-supply veterinarians: future demand and likely shortages.

    PubMed

    Bruce Prince, J; Andrus, David M; Gwinner, Kevin

    2006-01-01

    The future demand for and potential shortages of food-supply veterinarians have been the subject of much concern. Using the Delphi forecasting method in a three-phase Web-based survey process, a panel of experts identified the trends and issues shaping the demand for and supply of academic food-animal veterinarians, then forecasted the likely future demand and shortages of food-supply veterinarians employed in academic institutions in the United States and Canada through 2016. The results indicate that there will be increasing future demand and persistent shortages of academic food-supply veterinarians unless current trends are countered with targeted, strategic action. The Delphi panel also evaluated the effectiveness of several strategies for reversing current trends and increasing the number of food-supply veterinarians entering into academic careers. Academic food-supply veterinarians are a key link in the system that produces food-supply veterinarians for all sectors (private practice, government service, etc.); shortages in the academic sector will amplify shortages wherever food-supply veterinarians are needed. Even fairly small shortages have significant public-health, food-safety, animal-welfare, and bio-security implications. Recent events demonstrate that in an increasingly interconnected global economic food supply system, national economies and public health are at risk unless an adequate supply of appropriately trained food-supply veterinarians is available to counter a wide variety of threats ranging from animal and zoonotic diseases to bioterrorism.

  13. Utilizing Climate Forecasts for Improving Water and Power Systems Coordination

    NASA Astrophysics Data System (ADS)

    Arumugam, S.; Queiroz, A.; Patskoski, J.; Mahinthakumar, K.; DeCarolis, J.

    2016-12-01

    Climate forecasts, typically monthly-to-seasonal precipitation forecasts, are commonly used to develop streamflow forecasts for improving reservoir management. Irrespective of their high skill in forecasting, temperature forecasts in developing power demand forecasts are not often considered along with streamflow forecasts for improving water and power systems coordination. In this study, we consider a prototype system to analyze the utility of climate forecasts, both precipitation and temperature, for improving water and power systems coordination. The prototype system, a unit-commitment model that schedules power generation from various sources, is considered and its performance is compared with an energy system model having an equivalent reservoir representation. Different skill sets of streamflow forecasts and power demand forecasts are forced on both water and power systems representations for understanding the level of model complexity required for utilizing monthly-to-seasonal climate forecasts to improve coordination between these two systems. The analyses also identify various decision-making strategies - forward purchasing of fuel stocks, scheduled maintenance of various power systems and tradeoff on water appropriation between hydropower and other uses - in the context of various water and power systems configurations. Potential application of such analyses for integrating large power systems with multiple river basins is also discussed.

  14. Aviation Turbulence: Dynamics, Forecasting, and Response to Climate Change

    NASA Astrophysics Data System (ADS)

    Storer, Luke N.; Williams, Paul D.; Gill, Philip G.

    2018-03-01

    Atmospheric turbulence is a major hazard in the aviation industry and can cause injuries to passengers and crew. Understanding the physical and dynamical generation mechanisms of turbulence aids with the development of new forecasting algorithms and, therefore, reduces the impact that it has on the aviation industry. The scope of this paper is to review the dynamics of aviation turbulence, its response to climate change, and current forecasting methods at the cruising altitude of aircraft. Aviation-affecting turbulence comes from three main sources: vertical wind shear instabilities, convection, and mountain waves. Understanding these features helps researchers to develop better turbulence diagnostics. Recent research suggests that turbulence will increase in frequency and strength with climate change, and therefore, turbulence forecasting may become more important in the future. The current methods of forecasting are unable to predict every turbulence event, and research is ongoing to find the best solution to this problem by combining turbulence predictors and using ensemble forecasts to increase skill. The skill of operational turbulence forecasts has increased steadily over recent decades, mirroring improvements in our understanding. However, more work is needed—ideally in collaboration with the aviation industry—to improve observations and increase forecast skill, to help maintain and enhance aviation safety standards in the future.

  15. A scoping review of nursing workforce planning and forecasting research.

    PubMed

    Squires, Allison; Jylhä, Virpi; Jun, Jin; Ensio, Anneli; Kinnunen, Juha

    2017-11-01

    This study will critically evaluate forecasting models and their content in workforce planning policies for nursing professionals and to highlight the strengths and the weaknesses of existing approaches. Although macro-level nursing workforce issues may not be the first thing that many nurse managers consider in daily operations, the current and impending nursing shortage in many countries makes nursing specific models for workforce forecasting important. A scoping review was conducted using a directed and summative content analysis approach to capture supply and demand analytic methods of nurse workforce planning and forecasting. The literature on nurse workforce forecasting studies published in peer-reviewed journals as well as in grey literature was included in the scoping review. Thirty six studies met the inclusion criteria, with the majority coming from the USA. Forecasting methods were biased towards service utilization analyses and were not consistent across studies. Current methods for nurse workforce forecasting are inconsistent and have not accounted sufficiently for socioeconomic and political factors that can influence workforce projections. Additional studies examining past trends are needed to improve future modelling. Accurate nursing workforce forecasting can help nurse managers, administrators and policy makers to understand the supply and demand of the workforce to prepare and maintain an adequate and competent current and future workforce. © 2017 John Wiley & Sons Ltd.

  16. Ups and downs of economics and econophysics — Facebook forecast

    NASA Astrophysics Data System (ADS)

    Gajic, Nenad; Budinski-Petkovic, Ljuba

    2013-01-01

    What is econophysics and its relationship with economics? What is the state of economics after the global economic crisis, and is there a future for the paradigm of market equilibrium, with imaginary perfect competition and rational agents? Can the next paradigm of economics adopt important assumptions derived from econophysics models: that markets are chaotic systems, striving to extremes as bubbles and crashes show, with psychologically motivated, statistically predictable individual behaviors? Is the future of econophysics, as predicted here, to disappear and become a part of economics? A good test of the current state of econophysics and its methods is the valuation of Facebook immediately after the initial public offering - this forecast indicates that Facebook is highly overvalued, and its IPO valuation of 104 billion dollars is mostly the new financial bubble based on the expectations of unlimited growth, although it’s easy to prove that Facebook is close to the upper limit of its users.

  17. Waste Information Management System-2012 - 12114

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Upadhyay, H.; Quintero, W.; Shoffner, P.

    2012-07-01

    The Waste Information Management System (WIMS) -2012 was updated to support the Department of Energy (DOE) accelerated cleanup program. The schedule compression required close coordination and a comprehensive review and prioritization of the barriers that impeded treatment and disposition of the waste streams at each site. Many issues related to waste treatment and disposal were potential critical path issues under the accelerated schedule. In order to facilitate accelerated cleanup initiatives, waste managers at DOE field sites and at DOE Headquarters in Washington, D.C., needed timely waste forecast and transportation information regarding the volumes and types of radioactive waste that wouldmore » be generated by DOE sites over the next 40 years. Each local DOE site historically collected, organized, and displayed waste forecast information in separate and unique systems. In order for interested parties to understand and view the complete DOE complex-wide picture, the radioactive waste and shipment information of each DOE site needed to be entered into a common application. The WIMS application was therefore created to serve as a common application to improve stakeholder comprehension and improve DOE radioactive waste treatment and disposal planning and scheduling. WIMS allows identification of total forecasted waste volumes, material classes, disposition sites, choke points, technological or regulatory barriers to treatment and disposal, along with forecasted waste transportation information by rail, truck and inter-modal shipments. The Applied Research Center (ARC) at Florida International University (FIU) in Miami, Florida, developed and deployed the web-based forecast and transportation system and is responsible for updating the radioactive waste forecast and transportation data on a regular basis to ensure the long-term viability and value of this system. WIMS continues to successfully accomplish the goals and objectives set forth by DOE for this project. It has replaced the historic process of each DOE site gathering, organizing, and reporting their waste forecast information utilizing different databases and display technologies. In addition, WIMS meets DOE's objective to have the complex-wide waste forecast and transportation information available to all stakeholders and the public in one easy-to-navigate system. The enhancements to WIMS made since its initial deployment include the addition of new DOE sites and facilities, an updated waste and transportation information, and the ability to easily display and print customized waste forecast, the disposition maps, GIS maps and transportation information. The system also allows users to customize and generate reports over the web. These reports can be exported to various formats, such as Adobe{sup R} PDF, Microsoft Excel{sup R}, and Microsoft Word{sup R} and downloaded to the user's computer. Future enhancements will include database/application migration to the next level. A new data import interface will be developed to integrate 2012-13 forecast waste streams. In addition, the application is updated on a continuous basis based on DOE feedback. (authors)« less

  18. Seasonal forecasting of dolphinfish distribution in eastern Australia to aid recreational fishers and managers

    NASA Astrophysics Data System (ADS)

    Brodie, Stephanie; Hobday, Alistair J.; Smith, James A.; Spillman, Claire M.; Hartog, Jason R.; Everett, Jason D.; Taylor, Matthew D.; Gray, Charles A.; Suthers, Iain M.

    2017-06-01

    Seasonal forecasting of environmental conditions and marine species distribution has been used as a decision support tool in commercial and aquaculture fisheries. These tools may also be applicable to species targeted by the recreational fisheries sector, a sector that is increasing its use of marine resources, and making important economic and social contributions to coastal communities around the world. Here, a seasonal forecast of the habitat and density of dolphinfish (Coryphaena hippurus), based on sea surface temperatures, was developed for the east coast of New South Wales (NSW), Australia. Two prototype forecast products were created; geographic spatial forecasts of dolphinfish habitat and a latitudinal summary identifying the location of fish density peaks. The less detailed latitudinal summary was created to limit the resolution of habitat information to prevent potential resource over-exploitation by fishers in the absence of total catch controls. The forecast dolphinfish habitat model was accurate at the start of the annual dolphinfish migration in NSW (December) but other months (January - May) showed poor performance due to spatial and temporal variability in the catch data used in model validation. Habitat forecasts for December were useful up to five months ahead, with performance decreasing as forecast were made further into the future. The continued development and sound application of seasonal forecasts will help fishery industries cope with future uncertainty and promote dynamic and sustainable marine resource management.

  19. Ocean modelling aspects for drift applications

    NASA Astrophysics Data System (ADS)

    Stephane, L.; Pierre, D.

    2010-12-01

    Nowadays, many authorities in charge of rescue-at-sea operations lean on operational oceanography products to outline research perimeters. Moreover, current fields estimated with sophisticated ocean forecasting systems can be used as input data for oil spill/ adrift object fate models. This emphasises the necessity of an accurate sea state forecast, with a mastered level of reliability. This work focuses on several problems inherent to drift modeling, dealing in the first place with the efficiency of the oceanic current field representation. As we want to discriminate the relevance of a particular physical process or modeling option, the idea is to generate series of current fields of different characteristics and then qualify them in term of drift prediction efficiency. Benchmarked drift scenarios were set up from real surface drifters data, collected in the Mediterranean sea and off the coasts of Angola. The time and space scales that we are interested in are about 72 hr forecasts (typical timescale communicated in case of crisis), for distance errors that we hope about a few dozen of km around the forecast (acceptable for reconnaissance by aircrafts) For the ocean prediction, we used some regional oceanic configurations based on the NEMO 2.3 code, nested into Mercator 1/12° operational system. Drift forecasts were computed offline with Mothy (Météo France oil spill modeling system) and Ariane (B. Blanke, 1997), a Lagrangian diagnostic tool. We were particularly interested in the importance of the horizontal resolution, vertical mixing schemes, and any processes that may impact the surface layer. The aim of the study is to ultimately point at the most suitable set of parameters for drift forecast use inside operational oceanic systems. We are also motivated in assessing the relevancy of ensemble forecasts regarding determinist predictions. Several tests showed that mis-described observed trajectories can finally be modelled statistically by using uncertainties over the initial position of the drifting material. Works in the near future will explore that concept with ensemble of currents obtained with different initial conditions, phase shifted boundary forcings or perturbed atmospheric surface forcings.

  20. Improved Modeling Tools Development for High Penetration Solar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washom, Byron; Meagher, Kevin

    2014-12-11

    One of the significant objectives of the High Penetration solar research is to help the DOE understand, anticipate, and minimize grid operation impacts as more solar resources are added to the electric power system. For Task 2.2, an effective, reliable approach to predicting solar energy availability for energy generation forecasts using the University of California, San Diego (UCSD) Sky Imager technology has been demonstrated. Granular cloud and ramp forecasts for the next 5 to 20 minutes over an area of 10 square miles were developed. Sky images taken every 30 seconds are processed to determine cloud locations and cloud motionmore » vectors yielding future cloud shadow locations respective to distributed generation or utility solar power plants in the area. The performance of the method depends on cloud characteristics. On days with more advective cloud conditions, the developed method outperforms persistence forecasts by up to 30% (based on mean absolute error). On days with dynamic conditions, the method performs worse than persistence. Sky Imagers hold promise for ramp forecasting and ramp mitigation in conjunction with inverter controls and energy storage. The pre-commercial Sky Imager solar forecasting algorithm was documented with licensing information and was a Sunshot website highlight.« less

  1. Flexible reserve markets for wind integration

    NASA Astrophysics Data System (ADS)

    Fernandez, Alisha R.

    The increased interconnection of variable generation has motivated the use of improved forecasting to more accurately predict future production with the purpose to lower total system costs for balancing when the expected output exceeds or falls short of the actual output. Forecasts are imperfect, and the forecast errors associated with utility-scale generation from variable generators need new balancing capabilities that cannot be handled by existing ancillary services. Our work focuses on strategies for integrating large amounts of wind generation under the flex reserve market, a market that would called upon for short-term energy services during an under or oversupply of wind generation to maintain electric grid reliability. The flex reserve market would be utilized for time intervals that fall in-between the current ancillary services markets that would be longer than second-to-second energy services for maintaining system frequency and shorter than reserve capacity services that are called upon for several minutes up to an hour during an unexpected contingency on the grid. In our work, the wind operator would access the flex reserve market as an energy service to correct for unanticipated forecast errors, akin to paying the generators participating in the market to increase generation during a shortfall or paying the other generators to decrease generation during an excess of wind generation. Such a market does not currently exist in the Mid-Atlantic United States. The Pennsylvania-New Jersey-Maryland Interconnection (PJM) is the Mid-Atlantic electric grid case study that was used to examine if a flex reserve market can be utilized for integrating large capacities of wind generation in a lowcost manner for those providing, purchasing and dispatching these short-term balancing services. The following work consists of three studies. The first examines the ability of a hydroelectric facility to provide short-term forecast error balancing services via a flex reserve market, identifying the operational constraints that inhibit a multi-purpose dam facility to meet the desired flexible energy demand. The second study transitions from the hydroelectric facility as the decision maker providing flex reserve services to the wind plant as the decision maker purchasing these services. In this second study, methods for allocating the costs of flex reserve services under different wind policy scenarios are explored that aggregate farms into different groupings to identify the least-cost strategy for balancing the costs of hourly day-ahead forecast errors. The least-cost strategy may be different for an individual wind plant and for the system operator, noting that the least-cost strategy is highly sensitive to cost allocation and aggregation schemes. The latter may also cause cross-subsidies in the cost for balancing wind forecast errors among the different wind farms. The third study builds from the second, with the objective to quantify the amount of flex reserves needed for balancing future forecast errors using a probabilistic approach (quantile regression) to estimating future forecast errors. The results further examine the usefulness of separate flexible markets PJM could use for balancing oversupply and undersupply events, similar to the regulation up and down markets used in Europe. These three studies provide the following results and insights to large-scale wind integration using actual PJM wind farm data that describe the markets and generators within PJM. • Chapter 2 provides an in-depth analysis of the valuable, yet highly-constrained, energy services multi-purpose hydroelectric facilities can provide, though the opportunity cost for providing these services can result in large deviations from the reservoir policies with minimal revenue gain in comparison to dedicating the whole of dam capacity to providing day-ahead, baseload generation. • Chapter 3 quantifies the system-wide efficiency gains and the distributive effects of PJM's decision to act as a single balancing authority, which means that it procures ancillary services across its entire footprint simultaneously. This can be contrasted to Midwest Independent System Operator (MISO), which has several balancing authorities operating under its footprint. • Chapter 4 uses probabilistic methods to estimate the uncertainty in the forecast errors and the quantity of energy needed to balance these forecast errors at a certain percentile. Current practice is to use a point forecast that describes the conditional expectation of the dependent variable at each time step. The approach here uses quantile regression to describe the relationship between independent variable and the conditional quantiles (equivalently the percentiles) of the dependent variable. An estimate of the conditional density is performed, which contains information about the covariate relationship of the sign of the forecast errors (negative for too much wind generation and positive for too little wind generation) and the wind power forecast. This additional knowledge may be implemented in the decision process to more accurately schedule day-ahead wind generation bids and provide an example for using separate markets for balancing an oversupply and undersupply of generation. Such methods are currently used for coordinating large footprints of wind generation in Europe.

  2. Design and Implementation of Integrated Surveillance and Modeling Systems for Climate-Sensitive Diseases

    NASA Astrophysics Data System (ADS)

    Wimberly, M. C.; Merkord, C. L.; Davis, J. K.; Liu, Y.; Henebry, G. M.; Hildreth, M. B.

    2016-12-01

    Climatic variations have a multitude of effects on human health, ranging from the direct impacts of extreme heat events to indirect effects on the vectors and hosts that transmit infectious diseases. Disease surveillance has traditionally focused on monitoring human cases, and in some instances tracking populations sizes and infection rates of arthropod vectors and zoonotic hosts. For climate-sensitive diseases, there is a potential to strengthen surveillance and obtain early indicators of future outbreaks by monitoring environmental risk factors using broad-scale sensor networks that include earth-observing satellites as well as ground stations. We highlight the opportunities and challenges of this integration by presenting modeling results and discussing lessons learned from two projects focused on surveillance and forecasting of mosquito-borne diseases. The Epidemic Prognosis Incorporating Disease and Environmental Monitoring for Integrated Assessement (EPIDEMIA) project integrates malaria case surveillance with remotely-sensed environmental data for early detection of malaria epidemics in the Amhara region of Ethiopia and has been producing weekly forecast reports since 2015. The South Dakota Mosquito Information System (SDMIS) project similarly combines entomological surveillance with environmental monitoring to generate weekly maps for West Nile virus (WNV) in the north-central United States. We are currently implementing a new disease forecasting and risk reporting framework for the state of South Dakota during the 2016 WNV transmission season. Despite important differences in disease ecology and geographic setting, our experiences with these projects highlight several important lessons learned that can inform future efforts at disease early warning based on climatic predictors. These include the need to engage end users in system design from the outset, the critical role of automated workflows to facilitate the timely integration of multiple data streams, the importance of focused visualizations that synthesize modeling results, and the challenge of linking risk indicators and forecasts to specific public health responses.

  3. From Tornadoes to Earthquakes: Forecast Verification for Binary Events Applied to the 1999 Chi-Chi, Taiwan, Earthquake

    NASA Astrophysics Data System (ADS)

    Chen, C.; Rundle, J. B.; Holliday, J. R.; Nanjo, K.; Turcotte, D. L.; Li, S.; Tiampo, K. F.

    2005-12-01

    Forecast verification procedures for statistical events with binary outcomes typically rely on the use of contingency tables and Relative Operating Characteristic (ROC) diagrams. Originally developed for the statistical evaluation of tornado forecasts on a county-by-county basis, these methods can be adapted to the evaluation of competing earthquake forecasts. Here we apply these methods retrospectively to two forecasts for the m = 7.3 1999 Chi-Chi, Taiwan, earthquake. These forecasts are based on a method, Pattern Informatics (PI), that locates likely sites for future large earthquakes based on large change in activity of the smallest earthquakes. A competing null hypothesis, Relative Intensity (RI), is based on the idea that future large earthquake locations are correlated with sites having the greatest frequency of small earthquakes. We show that for Taiwan, the PI forecast method is superior to the RI forecast null hypothesis. Inspection of the two maps indicates that their forecast locations are indeed quite different. Our results confirm an earlier result suggesting that the earthquake preparation process for events such as the Chi-Chi earthquake involves anomalous changes in activation or quiescence, and that signatures of these processes can be detected in precursory seismicity data. Furthermore, we find that our methods can accurately forecast the locations of aftershocks from precursory seismicity changes alone, implying that the main shock together with its aftershocks represent a single manifestation of the formation of a high-stress region nucleating prior to the main shock.

  4. Waste Information Management System: One Year After Web Deployment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shoffner, P.A.; Geisler, T.J.; Upadhyay, H.

    2008-07-01

    The implementation of the Department of Energy (DOE) mandated accelerated cleanup program created significant potential technical impediments. The schedule compression required close coordination and a comprehensive review and prioritization of the barriers that impeded treatment and disposition of the waste streams at each site. Many issues related to site waste treatment and disposal were potential critical path issues under the accelerated schedules. In order to facilitate accelerated cleanup initiatives, waste managers at DOE field sites and at DOE Headquarters in Washington, D.C., needed timely waste forecast information regarding the volumes and types of waste that would be generated by DOEmore » sites over the next 30 years. Each local DOE site has historically collected, organized, and displayed site waste forecast information in separate and unique systems. However, waste information from all sites needed a common application to allow interested parties to understand and view the complete complex-wide picture. A common application allows identification of total waste volumes, material classes, disposition sites, choke points, and technological or regulatory barriers to treatment and disposal. The Applied Research Center (ARC) at Florida International University (FIU) in Miami, Florida, has completed the deployment of this fully operational, web-based forecast system. New functional modules and annual waste forecast data updates have been added to ensure the long-term viability and value of this system. In conclusion: WIMS continues to successfully accomplish the goals and objectives set forth by DOE for this project. WIMS has replaced the historic process of each DOE site gathering, organizing, and reporting their waste forecast information utilizing different database and display technologies. In addition, WIMS meets DOE's objective to have the complex-wide waste forecast information available to all stakeholders and the public in one easy-to-navigate system. The enhancements to WIMS made over the year since its web deployment include the addition of new DOE sites, an updated data set, and the ability to easily print the forecast data tables, the disposition maps, and the GIS maps. Future enhancements will include a high-level waste summary, a display of waste forecast by mode of transportation, and a user help module. The waste summary display module will provide a high-level summary view of the waste forecast data based on the selection of sites, facilities, material types, and forecast years. The waste summary report module will allow users to build custom filtered reports in a variety of formats, such as MS Excel, MS Word, and PDF. The user help module will provide a step-by-step explanation of various modules, using screen shots and general tutorials. The help module will also provide instructions for printing and margin/layout settings to assist users in using their local printers to print maps and reports. (authors)« less

  5. Verification of temperature, precipitation, and streamflow forecasts from the NOAA/NWS Hydrologic Ensemble Forecast Service (HEFS): 1. Experimental design and forcing verification

    NASA Astrophysics Data System (ADS)

    Brown, James D.; Wu, Limin; He, Minxue; Regonda, Satish; Lee, Haksu; Seo, Dong-Jun

    2014-11-01

    Retrospective forecasts of precipitation, temperature, and streamflow were generated with the Hydrologic Ensemble Forecast Service (HEFS) of the U.S. National Weather Service (NWS) for a 20-year period between 1979 and 1999. The hindcasts were produced for two basins in each of four River Forecast Centers (RFCs), namely the Arkansas-Red Basin RFC, the Colorado Basin RFC, the California-Nevada RFC, and the Middle Atlantic RFC. Precipitation and temperature forecasts were produced with the HEFS Meteorological Ensemble Forecast Processor (MEFP). Inputs to the MEFP comprised ;raw; precipitation and temperature forecasts from the frozen (circa 1997) version of the NWS Global Forecast System (GFS) and a climatological ensemble, which involved resampling historical observations in a moving window around the forecast valid date (;resampled climatology;). In both cases, the forecast horizon was 1-14 days. This paper outlines the hindcasting and verification strategy, and then focuses on the quality of the temperature and precipitation forecasts from the MEFP. A companion paper focuses on the quality of the streamflow forecasts from the HEFS. In general, the precipitation forecasts are more skillful than resampled climatology during the first week, but comprise little or no skill during the second week. In contrast, the temperature forecasts improve upon resampled climatology at all forecast lead times. However, there are notable differences among RFCs and for different seasons, aggregation periods and magnitudes of the observed and forecast variables, both for precipitation and temperature. For example, the MEFP-GFS precipitation forecasts show the highest correlations and greatest skill in the California Nevada RFC, particularly during the wet season (November-April). While generally reliable, the MEFP forecasts typically underestimate the largest observed precipitation amounts (a Type-II conditional bias). As a statistical technique, the MEFP cannot detect, and thus appropriately correct for, conditions that are undetected by the GFS. The calibration of the MEFP to provide reliable and skillful forecasts of a range of precipitation amounts (not only large amounts) is a secondary factor responsible for these Type-II conditional biases. Interpretation of the verification results leads to guidance on the expected performance and limitations of the MEFP, together with recommendations on future enhancements.

  6. Optimizing Tsunami Forecast Model Accuracy

    NASA Astrophysics Data System (ADS)

    Whitmore, P.; Nyland, D. L.; Huang, P. Y.

    2015-12-01

    Recent tsunamis provide a means to determine the accuracy that can be expected of real-time tsunami forecast models. Forecast accuracy using two different tsunami forecast models are compared for seven events since 2006 based on both real-time application and optimized, after-the-fact "forecasts". Lessons learned by comparing the forecast accuracy determined during an event to modified applications of the models after-the-fact provide improved methods for real-time forecasting for future events. Variables such as source definition, data assimilation, and model scaling factors are examined to optimize forecast accuracy. Forecast accuracy is also compared for direct forward modeling based on earthquake source parameters versus accuracy obtained by assimilating sea level data into the forecast model. Results show that including assimilated sea level data into the models increases accuracy by approximately 15% for the events examined.

  7. National Weather Service

    Science.gov Websites

    Forecast and Warning Services of the National Weather Service Introduction Quantitative precipitation future which is an active area of research currently. 2) Evaluate HPN performance for forecast periods

  8. Gloom and doom? The future of marine capture fisheries

    PubMed Central

    Garcia, Serge M.; Grainger, Richard J. R.

    2005-01-01

    Predicting global fisheries is a high-order challenge but predictions have been made and updates are needed. Past forecasts, present trends and perspectives of key parameters of the fisheries—including potential harvest, state of stocks, supply and demand, trade, fishing technology and governance—are reviewed in detail, as the basis for new forecasts and forecasting performance assessment. The future of marine capture fisheries will be conditioned by the political, social and economic evolution of the world within which they operate. Consequently, recent global scenarios for the future world are reviewed, with the emphasis on fisheries. The main driving forces (e.g. global economic development, demography, environment, public awareness, information technology, energy, ethics) including aquaculture are described. Outlooks are provided for each aspect of the fishery sector. The conclusion puts these elements in perspective and offers the authors’ personal interpretation of the possible future pathway of fisheries, the uncertainty about it and the still unanswered questions of direct relevance in shaping that future. PMID:15713587

  9. Dissemination and Use of NPOESS Data in AWIPS II

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary; Burks, Jason

    2008-01-01

    Real-time satellite information provides one of many data sources used by NWS forecast offices to diagnose current weather conditions and to assist in short-term forecast preparation. While GOES satellite data provides relatively coarse spatial resolution coverage of the continental U.S. on a 10-15 minute repeat cycle, polar orbiting data has the potential to provide snapshots of weather conditions at high-resolution in many spectral channels. The multispectral polar orbiting satellite capabilities allow for the derivation of image and sounding products not available from geostationary orbit. The utility of these polar orbiting measurements to forecasters has been demonstrated with NASA EOS observations as part of the Short-term Prediction and Research Transition (SPORT) program at Marshall Space Flight Center. SPORT scientists have been providing real-time MODIS data to NWS forecasters on an experimental basis to address a variety of short-term weather forecasting problems since 2003. The launch of the NPOESS Preparatory Project (NPP) satellite in 2009 will extend the continuity of high-resolution data provided by the NASA EOS satellites into future operational weather systems. The NPP data will be available in a timeframe consistent with the early installation of the next generation Advanced Weather Information Processing System (AWIPS) under development by Raytheon for the NWS. The AWIPS II system will be a JAVA-based decision support system which preserves the functionality of the existing systems and offers unique development opportunities for new data sources and applications in the Service Orientated Architecture (SOA) environment. The poster will highlight some of the advanced observing and display- capabilities of these new systems such as plug-ins for NASA and NPP datasets, and the development of local applications which are not well handled in the current AWIPS (e.g., 3D displays of LMA data, generation and display of 3-channel color composites, etc.).

  10. A PILOT CENTER FOR EDUCATIONAL POLICY RESEARCH. FINAL REPORT--PART I.

    ERIC Educational Resources Information Center

    ADELSON, MARVIN; AND OTHERS

    THE PILOT CENTER FOR EDUCATIONAL POLICY RESEARCH, OPERATED BY THE SYSTEM DEVELOPMENT CORPORATION FROM JUNE 1, 1967, THROUGH FEBRUARY 29, 1968, HAD THREE OBJECTIVES--(1) TO INVESTIGATE, ANALYZE, AND EXPERIMENT WITH METHODS, PROCEDURES, AND TOOLS FOR STUDYING THE FUTURE AS IT COULD AFFECT EDUCATION IN THE UNITED STATES, (2) TO FORECAST POSSIBLE…

  11. Key issues in space nuclear power challenges for the future

    NASA Technical Reports Server (NTRS)

    Brandhorst, Henry W., Jr.

    1991-01-01

    The future appears rich in missions that will extend the frontiers of knowledge, human presence in space, and opportunities for profitable commerce. Key to the success of these ventures is the availability of plentiful, cost effective electric power and assured, low cost access to space. While forecasts of space power needs are problematic, an assessment of future needs based on terrestrial experience has been made. These needs fall into three broad categories: survival, self sufficiency, and industrialization. The cost of delivering payloads to orbital locations from LEO to Mars has been determined and future launch cost reductions projected. From these factors, then, projections of the performance necessary for future solar and nuclear space power options has been made. These goals are largely dependent upon orbital location and energy storage needs. Finally the cost of present space power systems has been determined and projections made for future systems.

  12. Wildfire suppression cost forecasts from the US Forest Service

    Treesearch

    Karen L. Abt; Jeffrey P. Prestemon; Krista M. Gebert

    2009-01-01

    The US Forest Service and other land-management agencies seek better tools for nticipating future expenditures for wildfire suppression. We developed regression models for forecasting US Forest Service suppression spending at 1-, 2-, and 3-year lead times. We compared these models to another readily available forecast model, the 10-year moving average model,...

  13. Forecasting Future Sea Ice Conditions: A Lagrangian Approach

    DTIC Science & Technology

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Forecasting Future Sea Ice Conditions: A Lagrangian ...GCMs participating in IPCC AR5 agree with observed source region patterns from the satellite- derived dataset. 4- Compare Lagrangian ice... Lagrangian sea-ice back trajectories to estimate thermodynamic and dynamic (advection) ice loss. APPROACH We use a Lagrangian trajectory model to

  14. AROME-Arctic: New operational NWP model for the Arctic region

    NASA Astrophysics Data System (ADS)

    Süld, Jakob; Dale, Knut S.; Myrland, Espen; Batrak, Yurii; Homleid, Mariken; Valkonen, Teresa; Seierstad, Ivar A.; Randriamampianina, Roger

    2016-04-01

    In the frame of the EU-funded project ACCESS (Arctic Climate Change, Economy and Society), MET Norway aimed 1) to describe the present monitoring and forecasting capabilities in the Arctic; and 2) to identify the key factors limiting the forecasting capabilities and to give recommendations on key areas to improve the forecasting capabilities in the Arctic. We have observed that the NWP forecast quality is lower in the Arctic than in the regions further south. Earlier research indicated that one of the factors behind this is the composition of the observing system in the Arctic, in particular the scarceness of conventional observations. To further assess possible strategies for alleviating the situation and propose scenarios for a future Arctic observing system, we have performed a set of experiments to gain a more detailed insight in the contribution of the components of the present observing system in a regional state-of-the-art non-hydrostatic NWP model using the AROME physics (Seity et al, 2011) at 2.5 km horizontal resolution - AROME-Arctic. Our observing system experiment studies showed that conventional observations (Synop, Buoys) can play an important role in correcting the surface state of the model, but prove that the present upper-air conventional (Radiosondes, Aircraft) observations in the area are too scarce to have a significant effect on forecasts. We demonstrate that satellite sounding data play an important role in improving forecast quality. This is the case with satellite temperature sounding data (AMSU-A, IASI), as well as with the satellite moisture sounding data (AMSU-B/MHS, IASI). With these sets of observations, the AROME-Arctic clearly performs better in forecasting extreme events, like for example polar lows. For more details see presentation by Randriamampianina et al. in this session. The encouraging performance of AROME-Arctic lead us to implement it with more observations and improved settings into daily runs with the objective to substitute our actual operational Arctic mesoscale HIRLAM (High Resolution Limited Area Model) NWP model. This presentation will discuss in detail the operational implementation of the AROME-Arctic model together with post-processing methods. Aimed services in the Arctic region covered by the model, such as online weather forecasting (yr.no) and tracking of polar lows (barentswatch.no), is also included.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Max; Smith, Sarah J.; Sohn, Michael D.

    Fuel cells are both a longstanding and emerging technology for stationary and transportation applications, and their future use will likely be critical for the deep decarbonization of global energy systems. As we look into future applications, a key challenge for policy-makers and technology market forecasters who seek to track and/or accelerate their market adoption is the ability to forecast market costs of the fuel cells as technology innovations are incorporated into market products. Specifically, there is a need to estimate technology learning rates, which are rates of cost reduction versus production volume. Unfortunately, no literature exists for forecasting future learningmore » rates for fuel cells. In this paper, we look retrospectively to estimate learning rates for two fuel cell deployment programs: (1) the micro-combined heat and power (CHP) program in Japan, and (2) the Self-Generation Incentive Program (SGIP) in California. These two examples have a relatively broad set of historical market data and thus provide an informative and international comparison of distinct fuel cell technologies and government deployment programs. We develop a generalized procedure for disaggregating experience-curve cost-reductions in order to disaggregate the Japanese fuel cell micro-CHP market into its constituent components, and we derive and present a range of learning rates that may explain observed market trends. Finally, we explore the differences in the technology development ecosystem and market conditions that may have contributed to the observed differences in cost reduction and draw policy observations for the market adoption of future fuel cell technologies. The scientific and policy contributions of this paper are the first comparative experience curve analysis of past fuel cell technologies in two distinct markets, and the first quantitative comparison of a detailed cost model of fuel cell systems with actual market data. The resulting approach is applicable to analyzing other fuel cell markets and other energy-related technologies, and highlights the data needed for cost modeling and quantitative assessment of key cost reduction components.« less

  16. Cable Overheating Risk Warning Method Based on Impedance Parameter Estimation in Distribution Network

    NASA Astrophysics Data System (ADS)

    Yu, Zhang; Xiaohui, Song; Jianfang, Li; Fei, Gao

    2017-05-01

    Cable overheating will lead to the cable insulation level reducing, speed up the cable insulation aging, even easy to cause short circuit faults. Cable overheating risk identification and warning is nessesary for distribution network operators. Cable overheating risk warning method based on impedance parameter estimation is proposed in the paper to improve the safty and reliability operation of distribution network. Firstly, cable impedance estimation model is established by using least square method based on the data from distribiton SCADA system to improve the impedance parameter estimation accuracy. Secondly, calculate the threshold value of cable impedance based on the historical data and the forecast value of cable impedance based on the forecasting data in future from distribiton SCADA system. Thirdly, establish risks warning rules library of cable overheating, calculate the cable impedance forecast value and analysis the change rate of impedance, and then warn the overheating risk of cable line based on the overheating risk warning rules library according to the variation relationship between impedance and line temperature rise. Overheating risk warning method is simulated in the paper. The simulation results shows that the method can identify the imedance and forecast the temperature rise of cable line in distribution network accurately. The result of overheating risk warning can provide decision basis for operation maintenance and repair.

  17. Forecasting the Human Pathogen Vibrio Parahaemolyticus in Shellfish Tissue within Long Island Sound

    NASA Astrophysics Data System (ADS)

    Whitney, M. M.; DeRosia-Banick, K.

    2016-02-01

    Vibrio parahaemolyticus (Vp) is a marine bacterium that occurs naturally in brackish and saltwater environments and may be found in higher concentrations in the warmest months. Vp is a growing threat to producing safe seafood. Consumption of shellfish with high Vp levels can result in gastrointestinal human illnesses. Management response to Vp-related illness outbreaks includes closure of shellfish growing areas. Water quality observations, Vp measurements, and model forecasts are key components to effective management of shellfish growing areas. There is a clear need for observations within the growing area themselves. These areas are offshore of coastal stations and typically inshore of the observing system moorings. New field observations in Long Island Sound (LIS) shellfish growing areas are described and their agreement with high-resolution satellite sea surface temperature data is discussed. A new dataset of Vp concentrations in shellfish tissue is used to determine the LIS-specific Vp vs. temperature relationship following methods in the FDA pre-harvest Vp risk model. This information is combined with output from a high-resolution hydrodynamic model of LIS to make daily forecasts of Vp levels. The influence of river inflows, the role of heat waves, and predictions for future warmer climates are discussed. The key elements of this observational-modeling approach to pathogen forecasting are extendable to other coastal systems.

  18. Forecasting approaches to the Mekong River

    NASA Astrophysics Data System (ADS)

    Plate, E. J.

    2009-04-01

    Hydrologists distinguish between flood forecasts, which are concerned with events of the immediate future, and flood predictions, which are concerned with events that are possible, but whose date of occurrence is not determined. Although in principle both involve the determination of runoff from rainfall, the analytical approaches differ because of different objectives. The differences between the two approaches will be discussed, starting with an analysis of the forecasting process. The Mekong River in south-east Asia is used as an example. Prediction is defined as forecast for a hypothetical event, such as the 100-year flood, which is usually sufficiently specified by its magnitude and its probability of occurrence. It forms the basis for designing flood protection structures and risk management activities. The method for determining these quantities is hydrological modeling combined with extreme value statistics, today usually applied both to rainfall events and to observed river discharges. A rainfall-runoff model converts extreme rainfall events into extreme discharges, which at certain gage points along a river are calibrated against observed discharges. The quality of the model output is assessed against the mean value by means of the Nash-Sutcliffe quality criterion. The result of this procedure is a design hydrograph (or a family of design hydrographs) which are used as inputs into a hydraulic model, which converts the hydrograph into design water levels according to the hydraulic situation of the location. The accuracy of making a prediction in this sense is not particularly high: hydrologists know that the 100-year flood is a statistical quantity which can be estimated only within comparatively wide error bounds, and the hydraulics of a river site, in particular under conditions of heavy sediment loads has many uncertainties. Safety margins, such as additional freeboards are arranged to compensate for the uncertainty of the prediction. Forecasts, on the other hand, have as objective to obtain an accurate hydrograph of the near future. The method by means of which this is done is not as important as the accuracy of the forecast. A mathematical rainfall-runoff model is not necessarily a good forecast model. It has to be very carefully designed, and in many cases statistical models are found to give better results than mathematical models. Forecasters have the advantage of knowing the course of the hydrographs up to the point in time where forecasts have to be made. Therefore, models can be calibrated on line against the hydrograph of the immediate past. To assess the quality of a forecast, the quality criterion should not be based on the mean value, as does the Nash-Sutcliffe criterion, but should be based on the best forecast given the information up to the forecast time. Without any additional information, the best forecast when only the present day value is known is to assume a no-change scenario, i.e. to assume that the present value does not change in the immediate future. For the Mekong there exists a forecasting system which is based on a rainfall-runoff model operated by the Mekong River Commission. This model is found not to be adequate for forecasting for periods longer than one or two days ahead. Improvements are sought through two approaches: a strictly deterministic rainfall-runoff model, and a strictly statistical model based on regression with upstream stations. The two approaches are com-pared, and suggestions are made how to best combine the advantages of both approaches. This requires that due consideration is given to critical hydraulic conditions of the river at and in between the gauging stations. Critical situations occur in two ways: when the river overtops, in which case the rainfall-runoff model is incomplete unless overflow losses are considered, and at the confluence with tributaries. Of particular importance is the role of the large Tonle Sap Lake, which dampens the hydrograph downstream of Phnom Penh. The effect of these components of river hydraulics on forecasting accuracy will be assessed.

  19. Detection and forecasting of oyster norovirus outbreaks: recent advances and future perspectives.

    PubMed

    Wang, Jiao; Deng, Zhiqiang

    2012-09-01

    Norovirus is a highly infectious pathogen that is commonly found in oysters growing in fecally contaminated waters. Norovirus outbreaks can cause the closure of oyster harvesting waters and acute gastroenteritis in humans associated with consumption of contaminated raw oysters. Extensive efforts and progresses have been made in detection and forecasting of oyster norovirus outbreaks over the past decades. The main objective of this paper is to provide a literature review of methods and techniques for detecting and forecasting oyster norovirus outbreaks and thereby to identify the future directions for improving the detection and forecasting of norovirus outbreaks. It is found that (1) norovirus outbreaks display strong seasonality with the outbreak peak occurring commonly in December-March in the U.S. and April-May in the Europe; (2) norovirus outbreaks are affected by multiple environmental factors, including but not limited to precipitation, temperature, solar radiation, wind, and salinity; (3) various modeling approaches may be employed to forecast norovirus outbreaks, including Bayesian models, regression models, Artificial Neural Networks, and process-based models; and (4) diverse techniques are available for near real-time detection of norovirus outbreaks, including multiplex PCR, seminested PCR, real-time PCR, quantitative PCR, and satellite remote sensing. The findings are important to the management of oyster growing waters and to future investigations into norovirus outbreaks. It is recommended that a combined approach of sensor-assisted real time monitoring and modeling-based forecasting should be utilized for an efficient and effective detection and forecasting of norovirus outbreaks caused by consumption of contaminated oysters. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Projecting crop yield in northern high latitude area.

    PubMed

    Matsumura, Kanichiro

    2014-01-01

    Changing climatic conditions on seasonal and longer time scales influence agricultural production. Improvement of soil and fertilizer is a strong factor in agricultural production, but agricultural production is influenced by climate conditions even in highly developed countries. It is valuable if fewer predictors make it possible to conduct future projections. Monthly temperature and precipitation, wintertime 500hPa geopotential height, and the previous year's yield are used as predictors to forecast spring wheat yield in advance. Canadian small agricultural divisions (SAD) are used for analysis. Each SAD is composed of a collection of Canadian Agricultural Regions (CAR) of similar weather and growing conditions. Spring wheat yields in each CAR are forecast from the following variables: (a) the previous year's yield, (b) earlier stages of the growing season's climate conditions and, (c) the previous year's wintertime northern hemisphere 500hPa geopotential height field. Arctic outflow events in the Okanagan Valley in Canada are associated with episodes of extremely low temperatures during wintertime. Principal component analysis (PCA) is applied for wintertime northern hemisphere 500hPa geopotential height anomalies. The spatial PCA mode1 is defined as Arctic Oscillation and it influences prevailing westerlies. The prevailing westerlies meanders and influences climatic conditions. The spatial similarity between wintertime top 5 Arctic outflow event year's composites of 500hPa geopotential height anomalies and mode 3's spatial pattern is found. Mode 3's spatial pattern looks like the Pacific/North American (PNA) pattern which describes the variation of atmospheric circulation pattern over the Pacific Ocean and North America. Climate conditions from April to June, May to July, mode 3's time coefficients, and previous year's yield are used for forecasting spring wheat yield in each SAD. Cross-validation procedure which generates eight sets of models for the eight validation periods is used. To show the reproducing projection between observed and calculated values, the root mean squared error for skill score (RMSE SS) with the persistence model serving as the reference model is used. The persistence model is used as a benchmark. The results show that SADs near USA border show better RMSE SS values and mode 3's time coefficients can be a useful predictor especially for inland province such as Manitoba. Among 27 Canadian Prairie's SADs with perfect yield data, 67% of Alberta's SADs, 86% of Manitoba's SADs, and 77% of Saskatchewan's SADs can get positive skill scores. In each SAD, future yield projection is calculated applying predictors in 2013 for the obtained eight sets of models and eight sets of forecasted values in 2013 are averaged and a near future projection result is obtained. Series of outputs including calculated forecasted yield value in each SAD is provided by smart phone application. A system for providing climatic condition for a point with a permission of Climatic Research Unit - University of East Anglia and for obtaining patent is proposed. There are several patented systems similar to the system proposed in this paper. However, these patents are different in essence. The system proposed in this paper consists of two parts. First part is to estimate equations using time series data. The second part is to acquire and apply latest climatic conditions for obtained equations and calculate future projection. If the procedure is refined and devices are originally developed, series of idea can be patented. For future work, crop index, Hokkaido is also introduced.

  1. Forecasting sex differences in mortality in high income nations: The contribution of smoking

    PubMed Central

    Pampel, Fred

    2011-01-01

    To address the question of whether sex differences in mortality will in the future rise, fall, or stay the same, this study uses relative smoking prevalence among males and females to forecast future changes in relative smoking-attributed mortality. Data on 21 high income nations from 1975 to 2000 and a lag between smoking prevalence and mortality allow forecasts up to 2020. Averaged across nations, the results for logged male/female ratios in smoking mortality reveal equalization of the sex differential. However, continued divergence in non-smoking mortality rates would counter convergence in smoking mortality rates and lead to future increases in the female advantage overall, particularly in nations at late stages of the cigarette epidemic (such as the United States and the United Kingdom). PMID:21874120

  2. A pan-African medium-range ensemble flood forecast system

    NASA Astrophysics Data System (ADS)

    Thiemig, Vera; Bisselink, Bernard; Pappenberger, Florian; Thielen, Jutta

    2015-04-01

    The African Flood Forecasting System (AFFS) is a probabilistic flood forecast system for medium- to large-scale African river basins, with lead times of up to 15 days. The key components are the hydrological model LISFLOOD, the African GIS database, the meteorological ensemble predictions of the ECMWF and critical hydrological thresholds. In this study the predictive capability is investigated, to estimate AFFS' potential as an operational flood forecasting system for the whole of Africa. This is done in a hindcast mode, by reproducing pan-African hydrological predictions for the whole year of 2003 where important flood events were observed. Results were analysed in two ways, each with its individual objective. The first part of the analysis is of paramount importance for the assessment of AFFS as a flood forecasting system, as it focuses on the detection and prediction of flood events. Here, results were verified with reports of various flood archives such as Dartmouth Flood Observatory, the Emergency Event Database, the NASA Earth Observatory and Reliefweb. The number of hits, false alerts and missed alerts as well as the Probability of Detection, False Alarm Rate and Critical Success Index were determined for various conditions (different regions, flood durations, average amount of annual precipitations, size of affected areas and mean annual discharge). The second part of the analysis complements the first by giving a basic insight into the prediction skill of the general streamflow. For this, hydrological predictions were compared against observations at 36 key locations across Africa and the Continuous Rank Probability Skill Score (CRPSS), the limit of predictability and reliability were calculated. Results showed that AFFS detected around 70 % of the reported flood events correctly. In particular, the system showed good performance in predicting riverine flood events of long duration (> 1 week) and large affected areas (> 10 000 km2) well in advance, whereas AFFS showed limitations for small-scale and short duration flood events. Also the forecasts showed on average a good reliability, and the CRPSS helped identifying regions to focus on for future improvements. The case study for the flood event in March 2003 in the Sabi Basin (Zimbabwe and Mozambique) illustrated the good performance of AFFS in forecasting timing and severity of the floods, gave an example of the clear and concise output products, and showed that the system is capable of producing flood warnings even in ungauged river basins. Hence, from a technical perspective, AFFS shows a good prospective as an operational system, as it has demonstrated its significant potential to contribute to the reduction of flood-related losses in Africa by providing national and international aid organizations timely with medium-range flood forecast information. However, issues related to the practical implication will still need to be investigated.

  3. Estimating the budget impact of orphan drugs in Sweden and France 2013–2020

    PubMed Central

    2014-01-01

    Background The growth in expenditure on orphan medicinal products (OMP) across Europe has been identified as a concern. Estimates of future expenditure in Europe have suggested that OMPs could account for a significant proportion of total pharmaceutical expenditure in some countries, but few of these forecasts have been well validated. This analysis aims to establish a robust forecast of the future budget impact of OMPs on the healthcare systems in Sweden and France. Methods A dynamic forecasting model was created to estimate the budget impact of OMPs in Sweden and France between 2013 and 2020. The model used historical data on OMP designation and approval rates to predict the number of new OMPs coming to the market. Average OMP sales were estimated for each year post-launch by regression analysis of historical sales data. Total forecast sales were compared with expected sales of all pharmaceuticals in each country to quantify the relative budget impact. Results The model predicts that by 2020, 152 OMPs will have marketing authorization in Europe. The base case OMP budget impacts are forecast to grow from 2.7% in Sweden and 3.2% in France of total drug expenditure in 2013 to 4.1% in Sweden and 4.9% in France by 2020. The principal driver of expenditure growth is the number of new OMPs obtaining OMP designation. This is tempered by the slowing success rate for new approvals and the loss of intellectual property protection on existing orphan medicines. Given the forward-looking nature of the analysis, uncertainty exists around model parameters and sensitivity analysis found peak year budget impact varying between 2% and 11%. Conclusion The budget impact of OMPs in Sweden and France is likely to remain sustainable over time and a relatively small proportion of total pharmaceutical expenditure. This forecast could be affected by changes in the success rate for OMP approvals, average cost of OMPs, and the type of companies developing OMPs. PMID:24524281

  4. Estimating the budget impact of orphan drugs in Sweden and France 2013-2020.

    PubMed

    Hutchings, Adam; Schey, Carina; Dutton, Richard; Achana, Felix; Antonov, Karolina

    2014-02-13

    The growth in expenditure on orphan medicinal products (OMP) across Europe has been identified as a concern. Estimates of future expenditure in Europe have suggested that OMPs could account for a significant proportion of total pharmaceutical expenditure in some countries, but few of these forecasts have been well validated. This analysis aims to establish a robust forecast of the future budget impact of OMPs on the healthcare systems in Sweden and France. A dynamic forecasting model was created to estimate the budget impact of OMPs in Sweden and France between 2013 and 2020. The model used historical data on OMP designation and approval rates to predict the number of new OMPs coming to the market. Average OMP sales were estimated for each year post-launch by regression analysis of historical sales data. Total forecast sales were compared with expected sales of all pharmaceuticals in each country to quantify the relative budget impact. The model predicts that by 2020, 152 OMPs will have marketing authorization in Europe. The base case OMP budget impacts are forecast to grow from 2.7% in Sweden and 3.2% in France of total drug expenditure in 2013 to 4.1% in Sweden and 4.9% in France by 2020. The principal driver of expenditure growth is the number of new OMPs obtaining OMP designation. This is tempered by the slowing success rate for new approvals and the loss of intellectual property protection on existing orphan medicines. Given the forward-looking nature of the analysis, uncertainty exists around model parameters and sensitivity analysis found peak year budget impact varying between 2% and 11%. The budget impact of OMPs in Sweden and France is likely to remain sustainable over time and a relatively small proportion of total pharmaceutical expenditure. This forecast could be affected by changes in the success rate for OMP approvals, average cost of OMPs, and the type of companies developing OMPs.

  5. Real-Time Analysis of a Sensor's Data for Automated Decision Making in an IoT-Based Smart Home.

    PubMed

    Khan, Nida Saddaf; Ghani, Sayeed; Haider, Sajjad

    2018-05-25

    IoT devices frequently generate large volumes of streaming data and in order to take advantage of this data, their temporal patterns must be learned and identified. Streaming data analysis has become popular after being successfully used in many applications including forecasting electricity load, stock market prices, weather conditions, etc. Artificial Neural Networks (ANNs) have been successfully utilized in understanding the embedded interesting patterns/behaviors in the data and forecasting the future values based on it. One such pattern is modelled and learned in the present study to identify the occurrence of a specific pattern in a Water Management System (WMS). This prediction aids in making an automatic decision support system, to switch OFF a hydraulic suction pump at the appropriate time. Three types of ANN, namely Multi-Input Multi-Output (MIMO), Multi-Input Single-Output (MISO), and Recurrent Neural Network (RNN) have been compared, for multi-step-ahead forecasting, on a sensor's streaming data. Experiments have shown that RNN has the best performance among three models and based on its prediction, a system can be implemented to make the best decision with 86% accuracy.

  6. Bridging groundwater models and decision support with a Bayesian network

    USGS Publications Warehouse

    Fienen, Michael N.; Masterson, John P.; Plant, Nathaniel G.; Gutierrez, Benjamin T.; Thieler, E. Robert

    2013-01-01

    Resource managers need to make decisions to plan for future environmental conditions, particularly sea level rise, in the face of substantial uncertainty. Many interacting processes factor in to the decisions they face. Advances in process models and the quantification of uncertainty have made models a valuable tool for this purpose. Long-simulation runtimes and, often, numerical instability make linking process models impractical in many cases. A method for emulating the important connections between model input and forecasts, while propagating uncertainty, has the potential to provide a bridge between complicated numerical process models and the efficiency and stability needed for decision making. We explore this using a Bayesian network (BN) to emulate a groundwater flow model. We expand on previous approaches to validating a BN by calculating forecasting skill using cross validation of a groundwater model of Assateague Island in Virginia and Maryland, USA. This BN emulation was shown to capture the important groundwater-flow characteristics and uncertainty of the groundwater system because of its connection to island morphology and sea level. Forecast power metrics associated with the validation of multiple alternative BN designs guided the selection of an optimal level of BN complexity. Assateague island is an ideal test case for exploring a forecasting tool based on current conditions because the unique hydrogeomorphological variability of the island includes a range of settings indicative of past, current, and future conditions. The resulting BN is a valuable tool for exploring the response of groundwater conditions to sea level rise in decision support.

  7. Forecasting relative impacts of land use on anadromous fish habitat to guide conservation planning.

    PubMed

    Lohse, Kathleen A; Newburn, David A; Opperman, Jeff J; Merenlender, Adina M

    2008-03-01

    Land use change can adversely affect water quality and freshwater ecosystems, yet our ability to predict how systems will respond to different land uses, particularly rural-residential development, is limited by data availability and our understanding of biophysical thresholds. In this study, we use spatially explicit parcel-level data to examine the influence of land use (including urban, rural-residential, and vineyard) on salmon spawning substrate quality in tributaries of the Russian River in California. We develop a land use change model to forecast the probability of losses in high-quality spawning habitat and recommend priority areas for incentive-based land conservation efforts. Ordinal logistic regression results indicate that all three land use types were negatively associated with spawning substrate quality, with urban development having the largest marginal impact. For two reasons, however, forecasted rural-residential and vineyard development have much larger influences on decreasing spawning substrate quality relative to urban development. First, the land use change model estimates 10 times greater land use conversion to both rural-residential and vineyard compared to urban. Second, forecasted urban development is concentrated in the most developed watersheds, which already have poor spawning substrate quality, such that the marginal response to future urban development is less significant. To meet the goals of protecting salmonid spawning habitat and optimizing investments in salmon recovery, we suggest investing in watersheds where future rural-residential development and vineyards threaten high-quality fish habitat, rather than the most developed watersheds, where land values are higher.

  8. EpiCaster: An Integrated Web Application For Situation Assessment and Forecasting of Global Epidemics

    PubMed Central

    Deodhar, Suruchi; Bisset, Keith; Chen, Jiangzhuo; Barrett, Chris; Wilson, Mandy; Marathe, Madhav

    2016-01-01

    Public health decision makers need access to high resolution situation assessment tools for understanding the extent of various epidemics in different regions of the world. In addition, they need insights into the future course of epidemics by way of forecasts. Such forecasts are essential for planning the allocation of limited resources and for implementing several policy-level and behavioral intervention strategies. The need for such forecasting systems became evident in the wake of the recent Ebola outbreak in West Africa. We have developed EpiCaster, an integrated Web application for situation assessment and forecasting of various epidemics, such as Flu and Ebola, that are prevalent in different regions of the world. Using EpiCaster, users can assess the magnitude and severity of different epidemics at highly resolved spatio-temporal levels. EpiCaster provides time-varying heat maps and graphical plots to view trends in the disease dynamics. EpiCaster also allows users to visualize data gathered through surveillance mechanisms, such as Google Flu Trends (GFT) and the World Health Organization (WHO). The forecasts provided by EpiCaster are generated using different epidemiological models, and the users can select the models through the interface to filter the corresponding forecasts. EpiCaster also allows the users to study epidemic propagation in the presence of a number of intervention strategies specific to certain diseases. Here we describe the modeling techniques, methodologies and computational infrastructure that EpiCaster relies on to support large-scale predictive analytics for situation assessment and forecasting of global epidemics. PMID:27796009

  9. [Medical human resources planning in Europe: A literature review of the forecasting models].

    PubMed

    Benahmed, N; Deliège, D; De Wever, A; Pirson, M

    2018-02-01

    Healthcare is a labor-intensive sector in which half of the expenses are dedicated to human resources. Therefore, policy makers, at national and internal levels, attend to the number of practicing professionals and the skill mix. This paper aims to analyze the European forecasting model for supply and demand of physicians. To describe the forecasting tools used for physician planning in Europe, a grey literature search was done in the OECD, WHO, and European Union libraries. Electronic databases such as Pubmed, Medine, Embase and Econlit were also searched. Quantitative methods for forecasting medical supply rely mainly on stock-and-flow simulations and less often on systemic dynamics. Parameters included in forecasting models exhibit wide variability for data availability and quality. The forecasting of physician needs is limited to healthcare consumption and rarely considers overall needs and service targets. Besides quantitative methods, horizon scanning enables an evaluation of the changes in supply and demand in an uncertain future based on qualitative techniques such as semi-structured interviews, Delphi Panels, or focus groups. Finally, supply and demand forecasting models should be regularly updated. Moreover, post-hoc analyze is also needed but too rarely implemented. Medical human resource planning in Europe is inconsistent. Political implementation of the results of forecasting projections is essential to insure efficient planning. However, crucial elements such as mobility data between Member States are poorly understood, impairing medical supply regulation policies. These policies are commonly limited to training regulations, while horizontal and vertical substitution is less frequently taken into consideration. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. Influenza forecasting with Google Flu Trends.

    PubMed

    Dugas, Andrea Freyer; Jalalpour, Mehdi; Gel, Yulia; Levin, Scott; Torcaso, Fred; Igusa, Takeru; Rothman, Richard E

    2013-01-01

    We developed a practical influenza forecast model based on real-time, geographically focused, and easy to access data, designed to provide individual medical centers with advanced warning of the expected number of influenza cases, thus allowing for sufficient time to implement interventions. Secondly, we evaluated the effects of incorporating a real-time influenza surveillance system, Google Flu Trends, and meteorological and temporal information on forecast accuracy. Forecast models designed to predict one week in advance were developed from weekly counts of confirmed influenza cases over seven seasons (2004-2011) divided into seven training and out-of-sample verification sets. Forecasting procedures using classical Box-Jenkins, generalized linear models (GLM), and generalized linear autoregressive moving average (GARMA) methods were employed to develop the final model and assess the relative contribution of external variables such as, Google Flu Trends, meteorological data, and temporal information. A GARMA(3,0) forecast model with Negative Binomial distribution integrating Google Flu Trends information provided the most accurate influenza case predictions. The model, on the average, predicts weekly influenza cases during 7 out-of-sample outbreaks within 7 cases for 83% of estimates. Google Flu Trend data was the only source of external information to provide statistically significant forecast improvements over the base model in four of the seven out-of-sample verification sets. Overall, the p-value of adding this external information to the model is 0.0005. The other exogenous variables did not yield a statistically significant improvement in any of the verification sets. Integer-valued autoregression of influenza cases provides a strong base forecast model, which is enhanced by the addition of Google Flu Trends confirming the predictive capabilities of search query based syndromic surveillance. This accessible and flexible forecast model can be used by individual medical centers to provide advanced warning of future influenza cases.

  11. Forecasting the mortality rates using Lee-Carter model and Heligman-Pollard model

    NASA Astrophysics Data System (ADS)

    Ibrahim, R. I.; Ngataman, N.; Abrisam, W. N. A. Wan Mohd

    2017-09-01

    Improvement in life expectancies has driven further declines in mortality. The sustained reduction in mortality rates and its systematic underestimation has been attracting the significant interest of researchers in recent years because of its potential impact on population size and structure, social security systems, and (from an actuarial perspective) the life insurance and pensions industry worldwide. Among all forecasting methods, the Lee-Carter model has been widely accepted by the actuarial community and Heligman-Pollard model has been widely used by researchers in modelling and forecasting future mortality. Therefore, this paper only focuses on Lee-Carter model and Heligman-Pollard model. The main objective of this paper is to investigate how accurately these two models will perform using Malaysian data. Since these models involves nonlinear equations that are explicitly difficult to solve, the Matrix Laboratory Version 8.0 (MATLAB 8.0) software will be used to estimate the parameters of the models. Autoregressive Integrated Moving Average (ARIMA) procedure is applied to acquire the forecasted parameters for both models as the forecasted mortality rates are obtained by using all the values of forecasted parameters. To investigate the accuracy of the estimation, the forecasted results will be compared against actual data of mortality rates. The results indicate that both models provide better results for male population. However, for the elderly female population, Heligman-Pollard model seems to underestimate to the mortality rates while Lee-Carter model seems to overestimate to the mortality rates.

  12. Simulating seasonal tropical cyclone intensities at landfall along the South China coast

    NASA Astrophysics Data System (ADS)

    Lok, Charlie C. F.; Chan, Johnny C. L.

    2018-04-01

    A numerical method is developed using a regional climate model (RegCM3) and the Weather Forecast and Research (WRF) model to predict seasonal tropical cyclone (TC) intensities at landfall for the South China region. In designing the model system, three sensitivity tests have been performed to identify the optimal choice of the RegCM3 model domain, WRF horizontal resolution and WRF physics packages. Driven from the National Centers for Environmental Prediction Climate Forecast System Reanalysis dataset, the model system can produce a reasonable distribution of TC intensities at landfall on a seasonal scale. Analyses of the model output suggest that the strength and extent of the subtropical ridge in the East China Sea are crucial to simulating TC landfalls in the Guangdong and Hainan provinces. This study demonstrates the potential for predicting TC intensities at landfall on a seasonal basis as well as projecting future climate changes using numerical models.

  13. Forecasting conditional climate-change using a hybrid approach

    USGS Publications Warehouse

    Esfahani, Akbar Akbari; Friedel, Michael J.

    2014-01-01

    A novel approach is proposed to forecast the likelihood of climate-change across spatial landscape gradients. This hybrid approach involves reconstructing past precipitation and temperature using the self-organizing map technique; determining quantile trends in the climate-change variables by quantile regression modeling; and computing conditional forecasts of climate-change variables based on self-similarity in quantile trends using the fractionally differenced auto-regressive integrated moving average technique. The proposed modeling approach is applied to states (Arizona, California, Colorado, Nevada, New Mexico, and Utah) in the southwestern U.S., where conditional forecasts of climate-change variables are evaluated against recent (2012) observations, evaluated at a future time period (2030), and evaluated as future trends (2009–2059). These results have broad economic, political, and social implications because they quantify uncertainty in climate-change forecasts affecting various sectors of society. Another benefit of the proposed hybrid approach is that it can be extended to any spatiotemporal scale providing self-similarity exists.

  14. Cognitive determinants of affective forecasting errors

    PubMed Central

    Hoerger, Michael; Quirk, Stuart W.; Lucas, Richard E.; Carr, Thomas H.

    2011-01-01

    Often to the detriment of human decision making, people are prone to an impact bias when making affective forecasts, overestimating the emotional consequences of future events. The cognitive processes underlying the impact bias, and methods for correcting it, have been debated and warrant further exploration. In the present investigation, we examined both individual differences and contextual variables associated with cognitive processing in affective forecasting for an election. Results showed that the perceived importance of the event and working memory capacity were both associated with an increased impact bias for some participants, whereas retrieval interference had no relationship with bias. Additionally, an experimental manipulation effectively reduced biased forecasts, particularly among participants who were most distracted thinking about peripheral life events. These findings have direct theoretical implications for understanding the impact bias, highlight the importance of individual differences in affective forecasting, and have ramifications for future decision making research. The possible functional role of the impact bias is discussed within the context of evolutionary psychology. PMID:21912580

  15. Looking into the crystal ball of our emotional lives: emotion regulation and the overestimation of future guilt and shame.

    PubMed

    van Dijk, Wilco W; van Dillen, Lotte F; Rotteveel, Mark; Seip, Elise C

    2017-04-01

    In the present study, we examined the impact of emotion regulation on the intensity bias in guilt and shame. Fifty-two undergraduates either forecasted their emotions and emotion regulation following a guilt- and shame-eliciting situation or reported their actual experienced emotions and employed emotion regulation. Results showed a clear intensity bias, that is, forecasters predicted to experience more guilt and shame than experiencers actually experienced. Furthermore, results showed that forecasters predicted to employ less down-regulating emotion regulation (i.e. less acceptance) and more up-regulating emotion regulation (i.e. more rumination) than experiencers actually employed. Moreover, results showed that the intensity differences between forecasted and experienced guilt and shame could be explained (i.e. were mediated) by the differences between forecasted and actually employed emotion regulation (i.e. acceptance and rumination). These findings provide support for the hypothesis that the intensity bias can-at least in part-be explained by the misprediction of future emotion regulation.

  16. Results on SSH neural network forecasting in the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Rixen, Michel; Beckers, Jean-Marie; Alvarez, Alberto; Tintore, Joaquim

    2002-01-01

    Nowadays, satellites are the only monitoring systems that cover almost continuously all possible ocean areas and are now an essential part of operational oceanography. A novel approach based on artificial intelligence (AI) concepts, exploits pasts time series of satellite images to infer near future ocean conditions at the surface by neural networks and genetic algorithms. The size of the AI problem is drastically reduced by splitting the spatio-temporal variability contained in the remote sensing data by using empirical orthogonal function (EOF) decomposition. The problem of forecasting the dynamics of a 2D surface field can thus be reduced by selecting the most relevant empirical modes, and non-linear time series predictors are then applied on the amplitudes only. In the present case study, we use altimetric maps of the Mediterranean Sea, combining TOPEX-POSEIDON and ERS-1/2 data for the period 1992 to 1997. The learning procedure is applied to each mode individually. The final forecast is then reconstructed form the EOFs and the forecasted amplitudes and compared to the real observed field for validation of the method.

  17. A probabilistic approach to the drag-based model

    NASA Astrophysics Data System (ADS)

    Napoletano, Gianluca; Forte, Roberta; Moro, Dario Del; Pietropaolo, Ermanno; Giovannelli, Luca; Berrilli, Francesco

    2018-02-01

    The forecast of the time of arrival (ToA) of a coronal mass ejection (CME) to Earth is of critical importance for our high-technology society and for any future manned exploration of the Solar System. As critical as the forecast accuracy is the knowledge of its precision, i.e. the error associated to the estimate. We propose a statistical approach for the computation of the ToA using the drag-based model by introducing the probability distributions, rather than exact values, as input parameters, thus allowing the evaluation of the uncertainty on the forecast. We test this approach using a set of CMEs whose transit times are known, and obtain extremely promising results: the average value of the absolute differences between measure and forecast is 9.1h, and half of these residuals are within the estimated errors. These results suggest that this approach deserves further investigation. We are working to realize a real-time implementation which ingests the outputs of automated CME tracking algorithms as inputs to create a database of events useful for a further validation of the approach.

  18. Accuracy analysis of TDRSS demand forecasts

    NASA Technical Reports Server (NTRS)

    Stern, Daniel C.; Levine, Allen J.; Pitt, Karl J.

    1994-01-01

    This paper reviews Space Network (SN) demand forecasting experience over the past 16 years and describes methods used in the forecasts. The paper focuses on the Single Access (SA) service, the most sought-after resource in the Space Network. Of the ten years of actual demand data available, only the last five years (1989 to 1993) were considered predictive due to the extensive impact of the Challenger accident of 1986. NASA's Space Network provides tracking and communications services to user spacecraft such as the Shuttle and the Hubble Space Telescope. Forecasting the customer requirements is essential to planning network resources and to establishing service commitments to future customers. The lead time to procure Tracking and Data Relay Satellites (TDRS's) requires demand forecasts ten years in the future a planning horizon beyond the funding commitments for missions to be supported. The long range forecasts are shown to have had a bias toward underestimation in the 1991 -1992 period. The trend of underestimation can be expected to be replaced by overestimation for a number of years starting with 1998. At that time demand from new missions slated for launch will be larger than the demand from ongoing missions, making the potential for delay the dominant factor. If the new missions appear as scheduled, the forecasts are likely to be moderately underestimated. The SN commitment to meet the negotiated customer's requirements calls for conservatism in the forecasting. Modification of the forecasting procedure to account for a delay bias is, therefore, not advised. Fine tuning the mission model to more accurately reflect the current actual demand is recommended as it may marginally improve the first year forecasting.

  19. Beyond Climate and Weather Science: Expanding the Forecasting Family to Serve Societal Needs

    NASA Astrophysics Data System (ADS)

    Barron, E. J.

    2009-05-01

    The ability to "anticipate" the future is what makes information from the Earth sciences valuable to society - whether it is the prediction of severe weather or the future availability of water resources in response to climate change. An improved ability to anticipate or forecast has the potential to serve society by simultaneously improving our ability to (1) promote economic vitality, (2) enable environmental stewardship, (3) protect life and property, as well as (4) improve our fundamental knowledge of the earth system. The potential is enormous, yet many appear ready to move quickly toward specific mitigation and adaptation strategies assuming that the science is settled. Five important weakness must be addressed first: (1) the formation of a true "climate services" function and capability, (2) the deliberate investment in expanding the family of forecasting elements to incorporate a broader array of environmental factors and impacts, (3) the investment in the sciences that connect climate to society, (4) a deliberate focus on the problems associated with scale, in particular the difference between the scale of predictive models and the scale associated with societal decisions, and (5) the evolution from climate services and model predictions to the equivalent of "environmental intelligence centers." The objective is to bring the discipline of forecasting to a broader array of environmental challenges. Assessments of the potential impacts of global climate change on societal sectors such as water, human health, and agriculture provide good examples of this challenge. We have the potential to move from a largely reactive mode in addressing adverse health outcomes, for example, to one in which the ties between climate, land cover, infectious disease vectors, and human health are used to forecast and predict adverse human health conditions. The potential exists for a revolution in forecasting, that entrains a much broader set of societal needs and solutions. The argument is made that (for example) the current capabilities in the prediction of environmental health is similar to the capabilities (and potential) of weather forecasting in the 1960's.

  20. Chesapeake Inundation Prediction System (CIPS): A regional prototype for a national problem

    USGS Publications Warehouse

    Stamey, B.; Smith, W.; Carey, K.; Garbin, D.; Klein, F.; Wang, Hongfang; Shen, J.; Gong, W.; Cho, J.; Forrest, D.; Friedrichs, C.; Boicourt, W.; Li, M.; Koterba, M.; King, D.; Titlow, J.; Smith, E.; Siebers, A.; Billet, J.; Lee, J.; Manning, Douglas R.; Szatkowski, G.; Wilson, D.; Ahnert, P.; Ostrowski, J.

    2007-01-01

    Recent Hurricanes Katrina and Isabel, among others, not only demonstrated their immense destructive power, but also revealed the obvious, crucial need for improved storm surge forecasting and information delivery to save lives and property in future storms. Current operational methods and the storm surge and inundation products do not adequately meet requirements needed by Emergency Managers (EMs) at local, state, and federal levels to protect and inform our citizens. The Chesapeake Bay Inundation Prediction System (CIPS) is being developed to improve the accuracy, reliability, and capability of flooding forecasts for tropical cyclones and non-tropical wind systems such as nor'easters by modeling and visualizing expected on-land storm-surge inundation along the Chesapeake Bay and its tributaries. An initial prototype has been developed by a team of government, academic and industry partners through the Chesapeake Bay Observing System (CBOS) of the Mid-Atlantic Coastal Ocean Observing Regional Association (MACOORA) within the Integrated Ocean Observing System (IOOS). For demonstration purposes, this initial prototype was developed for the tidal Potomac River in the Washington, DC metropolitan area. The preliminary information from this prototype shows great potential as a mechanism by which NOAA National Weather Service (NWS) Forecast Offices (WFOs) can provide more specific and timely forecasts of likely inundation in individual localities from significant storm surge events. This prototype system has shown the potential to indicate flooding at the street level, at time intervals of an hour or less, and with vertical resolution of one foot or less. This information will significantly improve the ability of EMs and first responders to mitigate life and property loss and improve evacuation capabilities in individual communities. This paper provides an update and expansion of the initial prototype that was presented at the Oceans 2006 MTS/IEEE Conference in Boston, MA. ??2007 MTS.

  1. Earth Observations and the Role of UAVs: A Capabilities Assessment. Version 1.1

    NASA Technical Reports Server (NTRS)

    Cox, Timothy H.; Somers, Ivan; Fratello, David J.

    2006-01-01

    This document provides an assessment of the civil UAV missions and technologies and is intended to parallel the Office of the Secretary of Defense UAV Roadmap. The intent of this document is four-fold: 1. Determine and document desired future missions of Earth observation UAVs based on user-defined needs 2. Determine and document the technologies necessary to support those missions 3. Discuss the present state of the platform capabilities and required technologies, identifying those in progress, those planned, and those for which no current plans exist 4. Provide the foundations for development of a comprehensive civil UAV roadmap to complement the Department of Defense (DoD) effort (http://www.acq.osd.mil/uas/). Two aspects of the President's Management Agenda (refer to the document located at: www.whitehouse.gov/omb/budget/fy2002/mgmt.pdf ) are supported by this undertaking. First, it is one that will engage multiple Agencies in the effort as stakeholders and benefactors of the systems. In that sense, the market will be driven by the user requirements and applications. The second aspect is one of supporting economic development in the commercial sector. Market forecasts for the civil use of UAVs have indicated an infant market stage at present with a sustained forecasted growth. There is some difficulty in quantifying the value of the market since the typical estimate excludes system components other than the aerial platforms. Section 2.4 addresses the civil UAV market forecast and lists several independent forecasts. One conclusion that can be drawn from these forecasts is that all show a sustained growth for the duration of each long-term forecast.

  2. Time Relevance of Convective Weather Forecast for Air Traffic Automation

    NASA Technical Reports Server (NTRS)

    Chan, William N.

    2006-01-01

    The Federal Aviation Administration (FAA) is handling nearly 120,000 flights a day through its Air Traffic Management (ATM) system and air traffic congestion is expected to increse substantially over the next 20 years. Weather-induced impacts to throughput and efficiency are the leading cause of flight delays accounting for 70% of all delays with convective weather accounting for 60% of all weather related delays. To support the Next Generation Air Traffic System goal of operating at 3X current capacity in the NAS, ATC decision support tools are being developed to create advisories to assist controllers in all weather constraints. Initial development of these decision support tools did not integrate information regarding weather constraints such as thunderstorms and relied on an additional system to provide that information. Future Decision Support Tools should move towards an integrated system where weather constraints are factored into the advisory of a Decision Support Tool (DST). Several groups such at NASA-Ames, Lincoln Laboratories, and MITRE are integrating convective weather data with DSTs. A survey of current convective weather forecast and observation data show they span a wide range of temporal and spatial resolutions. Short range convective observations can be obtained every 5 mins with longer range forecasts out to several days updated every 6 hrs. Today, the short range forecasts of less than 2 hours have a temporal resolution of 5 mins. Beyond 2 hours, forecasts have much lower temporal. resolution of typically 1 hour. Spatial resolutions vary from 1km for short range to 40km for longer range forecasts. Improving the accuracy of long range convective forecasts is a major challenge. A report published by the National Research Council states improvements for convective forecasts for the 2 to 6 hour time frame will only be achieved for a limited set of convective phenomena in the next 5 to 10 years. Improved longer range forecasts will be probabilistic as opposed to the deterministic shorter range forecasts. Despite the known low level of confidence with respect to long range convective forecasts, these data are still useful to a DST routing algorithm. It is better to develop an aircraft route using the best information available than no information. The temporally coarse long range forecast data needs to be interpolated to be useful to a DST. A DST uses aircraft trajectory predictions that need to be evaluated for impacts by convective storms. Each time-step of a trajectory prediction n&s to be checked against weather data. For the case of coarse temporal data, there needs to be a method fill in weather data where there is none. Simply using the coarse weather data without any interpolation can result in DST routes that are impacted by regions of strong convection. Increasing the temporal resolution of these data can be achieved but result in a large dataset that may prove to be an operational challenge in transmission and loading by a DST. Currently, it takes about 7mins retrieve a 7mb RUC2 forecast file from NOAA at NASA-Ames Research Center. A prototype NCWF6 1 hour forecast is about 3mb in size. A Six hour NCWFG forecast with a 1hr forecast time-step will be about l8mb (6 x 3mb). A 6 hour NCWF6 forecast with a l5min forecast time-step will be about 7mb (24 x 3mb). Based on the time it takes to retrieve a 7mb RUC2 forecast, it will take approximately 70mins to retrieve a 6 hour NCWF forecast with 15min time steps. Until those issues are addressed, there is a need to develop an algorithm that interpolates between these temporally coarse long range forecasts. This paper describes a method of how to use low temporal resolution probabilistic weather forecasts in a DST. The beginning of this paper is a description of some convective weather forecast and observation products followed by an example of how weather data are used by a DST. The subsequent sections will describe probabilistic forecasts followed by a descrtion of a method to use low temporal resolution probabilistic weather forecasts by providing a relevance value to these data outside of their valid times.

  3. Real-Time CME Forecasting Using HMI Active-Region Magnetograms and Flare History

    NASA Technical Reports Server (NTRS)

    Falconer, David; Moore, Ron; Barghouty, Abdulnasser F.; Khazanov, Igor

    2011-01-01

    We have recently developed a method of predicting an active region s probability of producing a CME, an X-class Flare, an M-class Flare, or a Solar Energetic Particle Event from a free-energy proxy measured from SOHO/MDI line-of-sight magnetograms. This year we have added three major improvements to our forecast tool: 1) Transition from MDI magnetogram to SDO/HMI magnetogram allowing us near-real-time forecasts, 2) Automation of acquisition and measurement of HMI magnetograms giving us near-real-time forecasts (no older than 2 hours), and 3) Determination of how to improve forecast by using the active region s previous flare history in combination with its free-energy proxy. HMI was turned on in May 2010 and MDI was turned off in April 2011. Using the overlap period, we have calibrated HMI to yield what MDI would measure. This is important since the value of the free-energy proxy used for our forecast is resolution dependent, and the forecasts are made from results of a 1996-2004 database of MDI observations. With near-real-time magnetograms from HMI, near-real-time forecasts are now possible. We have augmented the code so that it continually acquires and measures new magnetograms as they become available online, and updates the whole-sun forecast from the coming day. The next planned improvement is to use an active region s previous flare history, in conjunction with its free-energy proxy, to forecast the active region s event rate. It has long been known that active regions that have produced flares in the past are likely to produce flares in the future, and that active regions that are nonpotential (have large free-energy) are more likely to produce flares in the future. This year we have determined that persistence of flaring is not just a reflection of an active region s free energy. In other words, after controlling for free energy, we have found that active regions that have flared recently are more likely to flare in the future.

  4. Real time soil moisture forecasts for irrigation management: the Pre.G.I. project

    NASA Astrophysics Data System (ADS)

    Ceppi, A.; Ravazzani, G.; Mancini, M.; Salerno, R.

    2012-04-01

    In recent years frequent periods of water scarcity have enhanced the need to use water more carefully. Future climate change scenarios, combined with limited water resources require better irrigation management and planning for farmers' water cooperatives. This has occurred also in areas traditionally rich of water as Lombardy Region, in the North of Italy. In this study we show the development and implementation of a real-time drought forecasting system with a soil moisture hydrological alert, in particular we describe preliminary results of the Pre.G.I. Project, an Italian acronym that stands for "Hydro-Meteorological forecast for irrigation management", funded by Lombardy Region. The project develops a support decision system based on an ensemble weather prediction in the medium-long range (up to 30 days) with hydrological simulation of water balance to forecast the soil water content in every parcel over the Consorzio Muzza basin, in order to use the irrigation water in a wiser and thriftier way. The studied area covers 74,000 ha in the middle of the Po Valley, near Lodi city. The hydrological ensemble forecasts are based on 20 meteorological members of a modified version of the non-hydrostatic WRF model, with multiple nesting to scale to the region of interest. Different physical schemes are also used to take into account a larger variability; these data are provided by Epson Meteo Centre. The hydrological model used to generate the soil moisture and water table simulations is the rainfall-runoff distributed FEST-WB model, developed at Politecnico di Milano. The analysis shows the system reliability based on most significant case-studies occurred in the recent years.

  5. The System of Inventory Forecasting in PT. XYZ by using the Method of Holt Winter Multiplicative

    NASA Astrophysics Data System (ADS)

    Shaleh, W.; Rasim; Wahyudin

    2018-01-01

    Problems at PT. XYZ currently only rely on manual bookkeeping, then the cost of production will swell and all investments invested to be less to predict sales and inventory of goods. If the inventory prediction of goods is to large, then the cost of production will swell and all investments invested to be less efficient. Vice versa, if the inventory prediction is too small it will impact on consumers, so that consumers are forced to wait for the desired product. Therefore, in this era of globalization, the development of computer technology has become a very important part in every business plan. Almost of all companies, both large and small, use computer technology. By utilizing computer technology, people can make time in solving complex business problems. Computer technology for companies has become an indispensable activity to provide enhancements to the business services they manage but systems and technologies are not limited to the distribution model and data processing but the existing system must be able to analyze the possibilities of future company capabilities. Therefore, the company must be able to forecast conditions and circumstances, either from inventory of goods, force, or profits to be obtained. To forecast it, the data of total sales from December 2014 to December 2016 will be calculated by using the method of Holt Winters, which is the method of time series prediction (Multiplicative Seasonal Method) it is seasonal data that has increased and decreased, also has 4 equations i.e. Single Smoothing, Trending Smoothing, Seasonal Smoothing and Forecasting. From the results of research conducted, error value in the form of MAPE is below 1%, so it can be concluded that forecasting with the method of Holt Winter Multiplicative.

  6. Assimilating the Future for Better Forecasts and Earlier Warnings

    NASA Astrophysics Data System (ADS)

    Du, H.; Wheatcroft, E.; Smith, L. A.

    2016-12-01

    Multi-model ensembles have become popular tools to account for some of the uncertainty due to model inadequacy in weather and climate simulation-based predictions. The current multi-model forecasts focus on combining single model ensemble forecasts by means of statistical post-processing. Assuming each model is developed independently or with different primary target variables, each is likely to contain different dynamical strengths and weaknesses. Using statistical post-processing, such information is only carried by the simulations under a single model ensemble: no advantage is taken to influence simulations under the other models. A novel methodology, named Multi-model Cross Pollination in Time, is proposed for multi-model ensemble scheme with the aim of integrating the dynamical information regarding the future from each individual model operationally. The proposed approach generates model states in time via applying data assimilation scheme(s) to yield truly "multi-model trajectories". It is demonstrated to outperform traditional statistical post-processing in the 40-dimensional Lorenz96 flow. Data assimilation approaches are originally designed to improve state estimation from the past to the current time. The aim of this talk is to introduce a framework that uses data assimilation to improve model forecasts at future time (not to argue for any one particular data assimilation scheme). Illustration of applying data assimilation "in the future" to provide early warning of future high-impact events is also presented.

  7. Sensitivity of monthly streamflow forecasts to the quality of rainfall forcing: When do dynamical climate forecasts outperform the Ensemble Streamflow Prediction (ESP) method?

    NASA Astrophysics Data System (ADS)

    Tanguy, M.; Prudhomme, C.; Harrigan, S.; Smith, K. A.; Parry, S.

    2017-12-01

    Forecasting hydrological extremes is challenging, especially at lead times over 1 month for catchments with limited hydrological memory and variable climates. One simple way to derive monthly or seasonal hydrological forecasts is to use historical climate data to drive hydrological models using the Ensemble Streamflow Prediction (ESP) method. This gives a range of possible future streamflow given known initial hydrologic conditions alone. The degree of skill of ESP depends highly on the forecast initialisation month and catchment type. Using dynamic rainfall forecasts as driving data instead of historical data could potentially improve streamflow predictions. A lot of effort is being invested within the meteorological community to improve these forecasts. However, while recent progress shows promise (e.g. NAO in winter), the skill of these forecasts at monthly to seasonal timescales is generally still limited, and the extent to which they might lead to improved hydrological forecasts is an area of active research. Additionally, these meteorological forecasts are currently being produced at 1 month or seasonal time-steps in the UK, whereas hydrological models require forcings at daily or sub-daily time-steps. Keeping in mind these limitations of available rainfall forecasts, the objectives of this study are to find out (i) how accurate monthly dynamical rainfall forecasts need to be to outperform ESP, and (ii) how the method used to disaggregate monthly rainfall forecasts into daily rainfall time series affects results. For the first objective, synthetic rainfall time series were created by increasingly degrading observed data (proxy for a `perfect forecast') from 0 % to +/-50 % error. For the second objective, three different methods were used to disaggregate monthly rainfall data into daily time series. These were used to force a simple lumped hydrological model (GR4J) to generate streamflow predictions at a one-month lead time for over 300 catchments representative of the range of UK's hydro-climatic conditions. These forecasts were then benchmarked against the traditional ESP method. It is hoped that the results of this work will help the meteorological community to identify where to focus their efforts in order to increase the usefulness of their forecasts within hydrological forecasting systems.

  8. The Space Shuttle - A future space transportation system

    NASA Technical Reports Server (NTRS)

    Thompson, R. F.

    1974-01-01

    The objective of the Space Shuttle Program is to achieve an economical space transportation system. This paper provides an introductory review of the considerations which led to the Government decisions to develop the Space Shuttle. The role of a space transportation system is then considered within the context of historical developments in the general field of transportation, followed by a review of the Shuttle system, mission profile, payload categories, and payload accommodations which the Shuttle system will provide, and concludes with a forecast of the systems utilization for space science research and payload planning activity.

  9. IEEE 1982. Proceedings of the international conference on cybernetics and society

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1982-01-01

    The following topics were dealt with: knowledge-based systems; risk analysis; man-machine interactions; human information processing; metaphor, analogy and problem-solving; manual control modelling; transportation systems; simulation; adaptive and learning systems; biocybernetics; cybernetics; mathematical programming; robotics; decision support systems; analysis, design and validation of models; computer vision; systems science; energy systems; environmental modelling and policy; pattern recognition; nuclear warfare; technological forecasting; artificial intelligence; the Turin shroud; optimisation; workloads. Abstracts of individual papers can be found under the relevant classification codes in this or future issues.

  10. 4-D Cloud Water Content Fields Derived from Operational Satellite Data

    NASA Technical Reports Server (NTRS)

    Smith, William L., Jr.; Minnis, Patrick

    2010-01-01

    In order to improve operational safety and efficiency, the transportation industry, including aviation, has an urgent need for accurate diagnoses and predictions of clouds and associated weather conditions. Adverse weather accounts for 70% of all air traffic delays within the U.S. National Airspace System. The Federal Aviation Administration has determined that as much as two thirds of weather-related delays are potentially avoidable with better weather information and roughly 20% of all aviation accidents are weather related. Thus, it is recognized that an important factor in meeting the goals of the Next Generation Transportation System (NexGen) vision is the improved integration of weather information. The concept of a 4-D weather cube is being developed to address that need by integrating observed and forecasted weather information into a shared 4-D database, providing an integrated and nationally consistent weather picture for a variety of users and to support operational decision support systems. Weather analyses and forecasts derived using Numerical Weather Prediction (NWP) models are a critical tool that forecasters rely on for guidance and also an important element in current and future decision support systems. For example, the Rapid Update Cycle (RUC) and the recently implemented Rapid Refresh (RR) Weather Research and Forecast (WRF) models provide high frequency forecasts and are key elements of the FAA Aviation Weather Research Program. Because clouds play a crucial role in the dynamics and thermodynamics of the atmosphere, they must be adequately accounted for in NWP models. The RUC, for example, cycles at full resolution five cloud microphysical species (cloud water, cloud ice, rain, snow, and graupel) and has the capability of updating these fields from observations. In order to improve the models initial state and subsequent forecasts, cloud top altitude (or temperature, T(sub c)) derived from operational satellite data, surface observations of cloud base altitude, radar reflectivity, and lightning data are used to help build and remove clouds in the models assimilation system. Despite this advance and the many recent advances made in our understanding of cloud physical processes and radiative effects, many problems remain in adequately representing clouds in models. While the assimilation of cloud top information derived from operational satellite data has merit, other information is available that has not yet been exploited. For example, the vertically integrated cloud water content (CWC) or cloud water path (CWP) and cloud geometric thickness (delta Z) are standard products being derived routinely from operational satellite data. These and other cloud products have been validated under a variety of conditions. Since the uncertainties have generally been found to be less than those found in model analyses and forecasts, the satellite products should be suitable for data assimilation, provided an appropriate strategy can be developed that links the satellite-derived cloud parameters with cloud parameters specified in the model. In this paper, we briefly outline such a strategy and describe a methodology to retrieve cloud water content profiles from operational satellite data. Initial results and future plans are presented. It is expected that the direct assimilation of this new product will provide the most accurate depiction of the vertical distribution of cloud water ever produced at the high spatial and temporal resolution needed for short term weather analyses and forecasts.

  11. Assessment of reservoir system variable forecasts

    NASA Astrophysics Data System (ADS)

    Kistenmacher, Martin; Georgakakos, Aris P.

    2015-05-01

    Forecast ensembles are a convenient means to model water resources uncertainties and to inform planning and management processes. For multipurpose reservoir systems, forecast types include (i) forecasts of upcoming inflows and (ii) forecasts of system variables and outputs such as reservoir levels, releases, flood damage risks, hydropower production, water supply withdrawals, water quality conditions, navigation opportunities, and environmental flows, among others. Forecasts of system variables and outputs are conditional on forecasted inflows as well as on specific management policies and can provide useful information for decision-making processes. Unlike inflow forecasts (in ensemble or other forms), which have been the subject of many previous studies, reservoir system variable and output forecasts are not formally assessed in water resources management theory or practice. This article addresses this gap and develops methods to rectify potential reservoir system forecast inconsistencies and improve the quality of management-relevant information provided to stakeholders and managers. The overarching conclusion is that system variable and output forecast consistency is critical for robust reservoir management and needs to be routinely assessed for any management model used to inform planning and management processes. The above are demonstrated through an application from the Sacramento-American-San Joaquin reservoir system in northern California.

  12. Present and future hydropower scheduling in Statkraft

    NASA Astrophysics Data System (ADS)

    Bruland, O.

    2012-12-01

    Statkraft produces close to 40 TWH in an average year and is one of the largest hydropower producers in Europe. For hydropower producers the scheduling of electricity generation is the key to success and this depend on optimal use of the water resources. The hydrologist and his forecasts both on short and on long terms are crucial to this success. The hydrological forecasts in Statkraft and most hydropower companies in Scandinavia are based on lumped models and the HBV concept. But before the hydrological model there is a complex system for collecting, controlling and correcting data applied in the models and the production scheduling and, equally important, routines for surveillance of the processes and manual intervention. Prior to the forecasting the states in the hydrological models are updated based on observations. When snow is present in the catchments snow surveys are an important source for model updating. The meteorological forecast is another premise provider to the hydrological forecast and to get as precise meteorological forecast as possible Statkraft hires resources from the governmental forecasting center. Their task is to interpret the meteorological situation, describe the uncertainties and if necessary use their knowledge and experience to manually correct the forecast in the hydropower production regions. This is one of several forecast applied further in the scheduling process. Both to be able to compare and evaluate different forecast providers and to ensure that we get the best available forecast, forecasts from different sources are applied. Some of these forecasts have undergone statistical corrections to reduce biases. The uncertainties related to the meteorological forecast have for a long time been approached and described by ensemble forecasts. But also the observations used for updating the model have a related uncertainty. Both to the observations itself and to how well they represent the catchment. Though well known, these uncertainties have thus far been handled superficially. Statkraft has initiated a program called ENKI to approach these issues. A part of this program is to apply distributed models for hydrological forecasting. Developing methodologies to handle uncertainties in the observations, the meteorological forecasts, the model itself and how to update the model with this information are other parts of the program. Together with energy price expectations and information about the state of the energy production system the hydrological forecast is input to the next step in the production scheduling both on short and long term. The long term schedule for reservoir filling is premise provider to the short term optimizing of water. The long term schedule is based on the actual reservoir levels, snow storages and a long history of meteorological observations and gives an overall schedule at a regional level. Within the regions a more detailed tool is used for short term optimizing of the hydropower production Each reservoir is scheduled taking into account restrictions in the water courses and cost of start and stop of aggregates. The value of the water is calculated for each reservoir and reflects the risk of water spillage. This compared to the energy price determines whether an aggregate will run or not. In a gradually more complex energy system with relatively lower regulated capacity this is an increasingly more challenging task.

  13. Key issues in space nuclear power

    NASA Technical Reports Server (NTRS)

    Brandhorst, Henry W.

    1991-01-01

    The future appears rich in missions that will extend the frontiers of knowledge, human presence in space, and opportunities for profitable commerce. Key to the success of these ventures is the availability of plentiful, cost effective electric power and assured, low cost access to space. While forecasts of space power needs are problematic, an assessment of future needs based on terrestrial experience has been made. These needs fall into three broad categories: survival, self sufficiency, and industrialization. The cost of delivering payloads to orbital locations from LEO to Mars has been determined and future launch cost reductions projected. From these factors, then, projections of the performance necessary for future solar and nuclear space power options has been made. These goals are largely dependent upon orbital location and energy storage needs. Finally the cost of present space power systems has been determined and projections made for future systems.

  14. Long-Range Educational Policy Planning and the Demand for Educated Manpower in Times of Uncertainty.

    ERIC Educational Resources Information Center

    Bakke, E. K.

    1984-01-01

    There is no good method of regulating the educational system based on specific, numerical measurements of labor requirements, and it will be important to integrate uncertainty into future forecasts. Adjustments in demand and supply of educated labor in Norway require a decentralized authority structure providing incentives for institutions and the…

  15. Facing tomorrow's challenges: U.S. Geological Survey science in the decade 2007-2017

    USGS Publications Warehouse

    ,

    2007-01-01

    - A National Hazards, Risk, and Resilience Assessment Program: Ensuring the Long-Term Health and Wealth of the Nation - The Role of Environment and Wildlife in Human Health: A System that Identifies Environmental Risk to Public Health in America - A Water Census of the United States: Quantifying, Forecasting, and Securing Freshwater for America's Future

  16. Anvil Forecast Tool in the Advanced Weather Interactive Processing System

    NASA Technical Reports Server (NTRS)

    Barrett, Joe H., III; Hood, Doris

    2009-01-01

    Meteorologists from the 45th Weather Squadron (45 WS) and National Weather Service Spaceflight Meteorology Group (SMG) have identified anvil forecasting as one of their most challenging tasks when predicting the probability of violations of the Lightning Launch Commit Criteria and Space Shuttle Flight Rules. As a result, the Applied Meteorology Unit (AMU) was tasked to create a graphical overlay tool for the Meteorological Interactive Data Display System (MIDDS) that indicates the threat of thunderstorm anvil clouds, using either observed or model forecast winds as input. The tool creates a graphic depicting the potential location of thunderstorm anvils one, two, and three hours into the future. The locations are based on the average of the upper level observed or forecasted winds. The graphic includes 10 and 20 n mi standoff circles centered at the location of interest, as well as one-, two-, and three-hour arcs in the upwind direction. The arcs extend outward across a 30 sector width based on a previous AMU study that determined thunderstorm anvils move in a direction plus or minus 15 of the upper-level wind direction. The AMU was then tasked to transition the tool to the Advanced Weather Interactive Processing System (AWIPS). SMG later requested the tool be updated to provide more flexibility and quicker access to model data. This presentation describes the work performed by the AMU to transition the tool into AWIPS, as well as the subsequent improvements made to the tool.

  17. An econometric simulation model of income and electricity demand in Alaska's Railbelt, 1982-2022

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maddigan, R.J.; Hill, L.J.; Hamblin, D.M.

    1987-01-01

    This report describes the specification of-and forecasts derived from-the Alaska Railbelt Electricity Load, Macroeconomic (ARELM) model. ARELM was developed as an independent, modeling tool for the evaluation of the need for power from the Susitna Hydroelectric Project which has been proposed by the Alaska Power Authority. ARELM is an econometric simulation model consisting of 61 equations - 46 behavioral equations and 15 identities. The system includes two components: (1) ARELM-MACRO which is a system of equations that simulates the performance of both the total Alaskan and Railbelt macroeconomies and (2) ARELM-LOAD which projects electricity-related activity in the Alaskan Railbelt region.more » The modeling system is block recursive in the sense that forecasts of population, personal income, and employment in the Railbelt derived from ARELM-MACRO are used as explanatory variables in ARELM-LOAD to simulate electricity demand, the real average price of electricity, and the number of customers in the Railbelt. Three scenarios based on assumptions about the future price of crude oil are simulated and documented in the report. The simulations, which do not include the cost-of-power impacts of Susitna-based generation, show that the growth rate in Railbelt electricity load is between 2.5 and 2.7% over the 1982 to 2022 forecast period. The forecasting results are consistent with other projections of load growth in the region using different modeling approaches.« less

  18. AWIPS II Application Development, a SPoRT Perspective

    NASA Technical Reports Server (NTRS)

    Burks, Jason E.; Smith, Matthew; McGrath, Kevin M.

    2014-01-01

    The National Weather Service (NWS) is deploying its next-generation decision support system, called AWIPS II (Advanced Weather Interactive Processing System II). NASA's Short-term Prediction Research and Transition (SPoRT) Center has developed several software 'plug-ins' to extend the capabilities of AWIPS II. SPoRT aims to continue its mission of improving short-term forecasts by providing NASA and NOAA products on the decision support system used at NWS weather forecast offices (WFOs). These products are not included in the standard Satellite Broadcast Network feed provided to WFOs. SPoRT has had success in providing support to WFOs as they have transitioned to AWIPS II. Specific examples of transitioning SPoRT plug-ins to WFOs with newly deployed AWIPS II systems will be presented. Proving Ground activities (GOES-R and JPSS) will dominate SPoRT's future AWIPS II activities, including tool development as well as enhancements to existing products. In early 2012 SPoRT initiated the Experimental Product Development Team, a group of AWIPS II developers from several institutions supporting NWS forecasters with innovative products. The results of the team's spring and fall 2013 meeting will be presented. Since AWIPS II developers now include employees at WFOs, as well as many other institutions related to weather forecasting, the NWS has dealt with a multitude of software governance issues related to the difficulties of multiple remotely collaborating software developers. This presentation will provide additional examples of Research-to-Operations plugins, as well as an update on how governance issues are being handled in the AWIPS II developer community.

  19. A short-term ensemble wind speed forecasting system for wind power applications

    NASA Astrophysics Data System (ADS)

    Baidya Roy, S.; Traiteur, J. J.; Callicutt, D.; Smith, M.

    2011-12-01

    This study develops an adaptive, blended forecasting system to provide accurate wind speed forecasts 1 hour ahead of time for wind power applications. The system consists of an ensemble of 21 forecasts with different configurations of the Weather Research and Forecasting Single Column Model (WRFSCM) and a persistence model. The ensemble is calibrated against observations for a 2 month period (June-July, 2008) at a potential wind farm site in Illinois using the Bayesian Model Averaging (BMA) technique. The forecasting system is evaluated against observations for August 2008 at the same site. The calibrated ensemble forecasts significantly outperform the forecasts from the uncalibrated ensemble while significantly reducing forecast uncertainty under all environmental stability conditions. The system also generates significantly better forecasts than persistence, autoregressive (AR) and autoregressive moving average (ARMA) models during the morning transition and the diurnal convective regimes. This forecasting system is computationally more efficient than traditional numerical weather prediction models and can generate a calibrated forecast, including model runs and calibration, in approximately 1 minute. Currently, hour-ahead wind speed forecasts are almost exclusively produced using statistical models. However, numerical models have several distinct advantages over statistical models including the potential to provide turbulence forecasts. Hence, there is an urgent need to explore the role of numerical models in short-term wind speed forecasting. This work is a step in that direction and is likely to trigger a debate within the wind speed forecasting community.

  20. On The Usage Of Fire Smoke Emissions In An Air Quality Forecasting System To Reduce Particular Matter Forecasting Error

    NASA Astrophysics Data System (ADS)

    Huang, H. C.; Pan, L.; McQueen, J.; Lee, P.; ONeill, S. M.; Ruminski, M.; Shafran, P.; DiMego, G.; Huang, J.; Stajner, I.; Upadhayay, S.; Larkin, N. K.

    2016-12-01

    Wildfires contribute to air quality problems not only towards primary emissions of particular matters (PM) but also emitted ozone precursor gases that can lead to elevated ozone concentration. Wildfires are unpredictable and can be ignited by natural causes such as lightning or accidently by human negligent behavior such as live cigarette. Although wildfire impacts on the air quality can be studied by collecting fire information after events, it is extremely difficult to predict future occurrence and behavior of wildfires for real-time air quality forecasts. Because of the time constraints of operational air quality forecasting, assumption of future day's fire behavior often have to be made based on observed fire information in the past. The United States (U.S.) NOAA/NWS built the National Air Quality Forecast Capability (NAQFC) based on the U.S. EPA CMAQ to provide air quality forecast guidance (prediction) publicly. State and local forecasters use the forecast guidance to issue air quality alerts in their area. The NAQFC fine particulates (PM2.5) prediction includes emissions from anthropogenic and biogenic sources, as well as natural sources such as dust storms and fires. The fire emission input to the NAQFC is derived from the NOAA NESDIS HMS fire and smoke detection product and the emission module of the US Forest Service BlueSky Smoke Modeling Framework. This study focuses on the error estimation of NAQFC PM2.5 predictions resulting from fire emissions. The comparisons between the NAQFC modeled PM2.5 and the EPA AirNow surface observation show that present operational NAQFC fire emissions assumption can lead to a huge error in PM2.5 prediction as fire emissions are sometimes placed at wrong location and time. This PM2.5 prediction error can be propagated from the fire source in the Northwest U.S. to downstream areas as far as the Southeast U.S. From this study, a new procedure has been identified to minimize the aforementioned error. An additional 24 hours reanalysis-run of NAQFC using same-day observed fire emission are being tested. Preliminary results have shown that this procedure greatly improves the PM2.5 predictions at both nearby and downstream areas from fire sources. The 24 hours reanalysis-run is critical and necessary especially during extreme fire events to provide better PM2.5 predictions.

  1. A study for systematic errors of the GLA forecast model in tropical regions

    NASA Technical Reports Server (NTRS)

    Chen, Tsing-Chang; Baker, Wayman E.; Pfaendtner, James; Corrigan, Martin

    1988-01-01

    From the sensitivity studies performed with the Goddard Laboratory for Atmospheres (GLA) analysis/forecast system, it was revealed that the forecast errors in the tropics affect the ability to forecast midlatitude weather in some cases. Apparently, the forecast errors occurring in the tropics can propagate to midlatitudes. Therefore, the systematic error analysis of the GLA forecast system becomes a necessary step in improving the model's forecast performance. The major effort of this study is to examine the possible impact of the hydrological-cycle forecast error on dynamical fields in the GLA forecast system.

  2. GloFAS-Seasonal: Operational Seasonal Ensemble River Flow Forecasts at the Global Scale

    NASA Astrophysics Data System (ADS)

    Emerton, Rebecca; Zsoter, Ervin; Smith, Paul; Salamon, Peter

    2017-04-01

    Seasonal hydrological forecasting has potential benefits for many sectors, including agriculture, water resources management and humanitarian aid. At present, no global scale seasonal hydrological forecasting system exists operationally; although smaller scale systems have begun to emerge around the globe over the past decade, a system providing consistent global scale seasonal forecasts would be of great benefit in regions where no other forecasting system exists, and to organisations operating at the global scale, such as disaster relief. We present here a new operational global ensemble seasonal hydrological forecast, currently under development at ECMWF as part of the Global Flood Awareness System (GloFAS). The proposed system, which builds upon the current version of GloFAS, takes the long-range forecasts from the ECMWF System4 ensemble seasonal forecast system (which incorporates the HTESSEL land surface scheme) and uses this runoff as input to the Lisflood routing model, producing a seasonal river flow forecast out to 4 months lead time, for the global river network. The seasonal forecasts will be evaluated using the global river discharge reanalysis, and observations where available, to determine the potential value of the forecasts across the globe. The seasonal forecasts will be presented as a new layer in the GloFAS interface, which will provide a global map of river catchments, indicating whether the catchment-averaged discharge forecast is showing abnormally high or low flows during the 4-month lead time. Each catchment will display the corresponding forecast as an ensemble hydrograph of the weekly-averaged discharge forecast out to 4 months, with percentile thresholds shown for comparison with the discharge climatology. The forecast visualisation is based on a combination of the current medium-range GloFAS forecasts and the operational EFAS (European Flood Awareness System) seasonal outlook, and aims to effectively communicate the nature of a seasonal outlook while providing useful information to users and partners. We demonstrate the first version of an operational GloFAS seasonal outlook, outlining the model set-up and presenting a first look at the seasonal forecasts that will be displayed in the GloFAS interface, and discuss the initial results of the forecast evaluation.

  3. Integrated Wind Power Planning Tool

    NASA Astrophysics Data System (ADS)

    Rosgaard, Martin; Giebel, Gregor; Skov Nielsen, Torben; Hahmann, Andrea; Sørensen, Poul; Madsen, Henrik

    2013-04-01

    This poster presents the current state of the public service obligation (PSO) funded project PSO 10464, with the title "Integrated Wind Power Planning Tool". The goal is to integrate a mesoscale numerical weather prediction (NWP) model with purely statistical tools in order to assess wind power fluctuations, with focus on long term power system planning for future wind farms as well as short term forecasting for existing wind farms. Currently, wind power fluctuation models are either purely statistical or integrated with NWP models of limited resolution. Using the state-of-the-art mesoscale NWP model Weather Research & Forecasting model (WRF) the forecast error is sought quantified in dependence of the time scale involved. This task constitutes a preparative study for later implementation of features accounting for NWP forecast errors in the DTU Wind Energy maintained Corwind code - a long term wind power planning tool. Within the framework of PSO 10464 research related to operational short term wind power prediction will be carried out, including a comparison of forecast quality at different mesoscale NWP model resolutions and development of a statistical wind power prediction tool taking input from WRF. The short term prediction part of the project is carried out in collaboration with ENFOR A/S; a Danish company that specialises in forecasting and optimisation for the energy sector. The integrated prediction model will allow for the description of the expected variability in wind power production in the coming hours to days, accounting for its spatio-temporal dependencies, and depending on the prevailing weather conditions defined by the WRF output. The output from the integrated short term prediction tool constitutes scenario forecasts for the coming period, which can then be fed into any type of system model or decision making problem to be solved. The high resolution of the WRF results loaded into the integrated prediction model will ensure a high accuracy data basis is available for use in the decision making process of the Danish transmission system operator. The need for high accuracy predictions will only increase over the next decade as Denmark approaches the goal of 50% wind power based electricity in 2025 from the current 20%.

  4. Implementing drought early warning systems: policy lessons and future needs

    NASA Astrophysics Data System (ADS)

    Iglesias, Ana; Werner, Micha; Maia, Rodrigo; Garrote, Luis; Nyabeze, Washington

    2014-05-01

    Drought forecasting and Warning provides the potential of reducing impacts to society due to drought events. The implementation of effective drought forecasting and warning, however, requires not only science to support reliable forecasting, but also adequate policy and societal response. Here we propose a protocol to develop drought forecasting and early warning based in the international cooperation of African and European institutions in the DEWFORA project (EC, 7th Framework Programme). The protocol includes four major phases that address the scientific knowledge and the social capacity to use the knowledge: (a) What is the science available? Evaluating how signs of impending drought can be detected and predicted, defining risk levels, and analysing of the signs of drought in an integrated vulnerability approach. (b) What are the societal capacities? In this the institutional framework that enables policy development is evaluated. The protocol gathers information on vulnerability and pending hazard in advance so that early warnings can be declared at sufficient lead time and drought mitigation planning can be implemented at an early stage. (c) How can science be translated into policy? Linking science indicators into the actions/interventions that society needs to implement, and evaluating how policy is implemented. Key limitations to planning for drought are the social capacities to implement early warning systems. Vulnerability assessment contributes to identify these limitations and therefore provides crucial information to policy development. Based on the assessment of vulnerability we suggest thresholds for management actions to respond to drought forecasts and link predictive indicators to relevant potential mitigation strategies. Vulnerability assessment is crucial to identify relief, coping and management responses that contribute to a more resilient society. (d) How can society benefit from the forecast? Evaluating how information is provided to potentially affected groups, and how mitigation strategies can be taken in response. This paper presents an outline of the protocol that was developed in the DEWFORA project, outlining the complementary roles of science, policy and societal uptake in effective drought forecasting and warning. A consensus on the need to emphasise the social component of early warning was reached when testing the DEWFORA early warning system protocol among experts from 18 countries.

  5. Easy to retrieve but hard to believe: metacognitive discounting of the unpleasantly possible.

    PubMed

    O'Brien, Ed

    2013-06-01

    People who recall or forecast many pleasant moments should perceive themselves as happier in the past or future than people who generate few such moments; the same principle should apply to generating unpleasant moments and perceiving unhappiness. Five studies suggest that this is not always true. Rather, people's metacognitive experience of ease of thought retrieval ("fluency") can affect perceived well-being over time beyond actual thought content. The easier it is to recall positive past experiences, the happier people think they were at the time; likewise, the easier it is to recall negative past experiences, the unhappier people think they were. But this is not the case for predicting the future. Although people who easily generate positive forecasts predict more future happiness, people who easily generate negative forecasts do not infer future unhappiness. Given pervasive tendencies to underestimate the likelihood of experiencing negative events, people apparently discount hard-to-believe metacognitive feelings (e.g., easily imagined unpleasant futures). Paradoxically, people's well-being may be maximized when they contemplate some bad moments or just a few good moments.

  6. The Latest Forecast.

    ERIC Educational Resources Information Center

    Laurence, David

    2002-01-01

    Discusses the "latest forecast" for the future of English departments. Addresses departmental and institutional staffing practices, employment opportunities for PhDs, the acceleration of change in the institution, and the general state of the study and teaching of English. (RS)

  7. Forecasting the VCR: A Retrospective Assessment of Media Trade Press and Academic Forecasts of Its Impact on Broadcasting.

    ERIC Educational Resources Information Center

    Napoli, Philip M.

    Retrospective technology assessment (RTA) is the use of historical research to assess current and future technology issues. This paper uses the introduction of the videocassette recorder (VCR) as an RTA case study, focusing on the broadcasting and advertising trade presses and their forecasts of the VCR's potential impact on broadcasting. Trade…

  8. Estimating the cost of compensating victims of medical negligence.

    PubMed Central

    Fenn, P.; Hermans, D.; Dingwall, R.

    1994-01-01

    The current system in Britain for compensating victims of medical injury depends on an assessment of negligence. Despite the sporadic pressure on the government to adopt a "no fault" approach, such as exists in Sweden, the negligence system will probably remain for the immediate future. The cost of this system was estimated to be 52.3m pounds for England 1990-1. The problem for the future, however, is one of forecasting accuracy at provider level: too high a guess and current patient care will suffer; too low a guess and future patient care will suffer. The introduction of a mutual insurance scheme may not resolve these difficulties, as someone will have to set the rates. Moreover, the figures indicate that if a no fault scheme was introduced the cost might be four times that of the current system, depending on the type of scheme adopted. PMID:8081145

  9. Predictability of Bristol Bay, Alaska, sockeye salmon returns one to four years in the future

    USGS Publications Warehouse

    Adkison, Milo D.; Peterson, R.M.

    2000-01-01

    Historically, forecast error for returns of sockeye salmon Oncorhynchus nerka to Bristol Bay, Alaska, has been large. Using cross-validation forecast error as our criterion, we selected forecast models for each of the nine principal Bristol Bay drainages. Competing forecast models included stock-recruitment relationships, environmental variables, prior returns of siblings, or combinations of these predictors. For most stocks, we found prior returns of siblings to be the best single predictor of returns; however, forecast accuracy was low even when multiple predictors were considered. For a typical drainage, an 80% confidence interval ranged from one half to double the point forecast. These confidence intervals appeared to be appropriately wide.

  10. Weather forecasting expert system study

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Weather forecasting is critical to both the Space Transportation System (STS) ground operations and the launch/landing activities at NASA Kennedy Space Center (KSC). The current launch frequency places significant demands on the USAF weather forecasters at the Cape Canaveral Forecasting Facility (CCFF), who currently provide the weather forecasting for all STS operations. As launch frequency increases, KSC's weather forecasting problems will be great magnified. The single most important problem is the shortage of highly skilled forecasting personnel. The development of forecasting expertise is difficult and requires several years of experience. Frequent personnel changes within the forecasting staff jeopardize the accumulation and retention of experience-based weather forecasting expertise. The primary purpose of this project was to assess the feasibility of using Artificial Intelligence (AI) techniques to ameliorate this shortage of experts by capturing aria incorporating the forecasting knowledge of current expert forecasters into a Weather Forecasting Expert System (WFES) which would then be made available to less experienced duty forecasters.

  11. Effective Capital Provision Within Government. Methodologies for Right-Sizing Base Infrastructure

    DTIC Science & Technology

    2005-01-01

    unknown distributions, since they more accurately represent the complexity of real -world problems. Forecasting uncertain future demand flows is critical to...ordering system with no time lags and no additional costs for instantaneous delivery, shortage and holding costs would be eliminated, because the...order a fixed quantity, Q. 4.1.4 Analyzed Time Step Time is an important dimension in inventory models, since the way the system changes over time affects

  12. National Centers for Environmental Prediction

    Science.gov Websites

    SYSTEM CFS CLIMATE FORECAST SYSTEM NAQFC NAQFC MODEL GEFS GLOBAL ENSEMBLE FORECAST SYSTEM HWRF HURRICANE WEATHER RESEARCH and FORECASTING HMON HMON - OPERATIONAL HURRICANE FORECASTING WAVEWATCH III WAVEWATCH III

  13. Economic assessment of flood forecasts for a risk-averse decision-maker

    NASA Astrophysics Data System (ADS)

    Matte, Simon; Boucher, Marie-Amélie; Boucher, Vincent; Fortier-Filion, Thomas-Charles

    2017-04-01

    A large effort has been made over the past 10 years to promote the operational use of probabilistic or ensemble streamflow forecasts. It has also been suggested in past studies that ensemble forecasts might possess a greater economic value than deterministic forecasts. However, the vast majority of recent hydro-economic literature is based on the cost-loss ratio framework, which might be appealing for its simplicity and intuitiveness. One important drawback of the cost-loss ratio is that it implicitly assumes a risk-neutral decision maker. By definition, a risk-neutral individual is indifferent to forecasts' sharpness: as long as forecasts agree with observations on average, the risk-neutral individual is satisfied. A risk-averse individual, however, is sensitive to the level of precision (sharpness) of forecasts. This person is willing to pay to increase his or her certainty about future events. In fact, this is how insurance companies operate: the probability of seeing one's house burn down is relatively low, so the expected cost related to such event is also low. However, people are willing to buy insurance to avoid the risk, however small, of loosing everything. Similarly, in a context where people's safety and property is at stake, the typical decision maker is more risk-averse than risk-neutral. Consequently, the cost-loss ratio is not the most appropriate tool to assess the economic value of flood forecasts. This presentation describes a more realistic framework for assessing the economic value of such forecasts for flood mitigation purposes. Borrowing from economics, the Constant Absolute Risk Aversion utility function (CARA) is the central tool of this new framework. Utility functions allow explicitly accounting for the level of risk aversion of the decision maker and fully exploiting the information related to ensemble forecasts' uncertainty. Three concurrent ensemble streamflow forecasting systems are compared in terms of quality (comparison with observed values) and in terms of their economic value. This assessment is performed for lead times of one to five days. The three systems are: (1) simple statistically dressed deterministic forecasts, (2) forecasts based on meteorological ensembles and (3) a variant of the latter that also includes an estimation of state variables uncertainty. The comparison takes place on the Montmorency River, a small flood-prone watershed in south central Quebec, Canada. The results show that forecasts quality as assessed by well-known tools such as the Continuous Ranked Probability Score or the reliability diagram do not necessarily translate directly into economic value, especially if the decision maker is not risk-neutral. In addition, results show that the economic value of forecasts for a risk-averse decision maker is very much influenced by the most extreme members of ensemble forecasts (upper tail of the predictive distributions). This study provides a new basis for further improvement of our comprehension of the complex interactions between forecasts uncertainty, risk-aversion and decision-making.

  14. A Pilot Tsunami Inundation Forecast System for Australia

    NASA Astrophysics Data System (ADS)

    Allen, Stewart C. R.; Greenslade, Diana J. M.

    2016-12-01

    The Joint Australian Tsunami Warning Centre (JATWC) provides a tsunami warning service for Australia. Warnings are currently issued according to a technique that does not include explicit modelling at the coastline, including any potential coastal inundation. This paper investigates the feasibility of developing and implementing tsunami inundation modelling as part of the JATWC warning system. An inundation model was developed for a site in Southeast Australia, on the basis of the availability of bathymetric and topographic data and observations of past tsunamis. The model was forced using data from T2, the operational deep-water tsunami scenario database currently used for generating warnings. The model was evaluated not only for its accuracy but also for its computational speed, particularly with respect to operational applications. Limitations of the proposed forecast processes in the Australian context and areas requiring future improvement are discussed.

  15. Technology requirements for communication satellites in the 1980's

    NASA Technical Reports Server (NTRS)

    Burtt, J. E.; Moe, C. R.; Elms, R. V.; Delateur, L. A.; Sedlacek, W. C.; Younger, G. G.

    1973-01-01

    The key technology requirements are defined for meeting the forecasted demands for communication satellite services in the 1985 to 1995 time frame. Evaluation is made of needs for services and technical and functional requirements for providing services. The future growth capabilities of the terrestrial telephone network, cable television, and satellite networks are forecasted. The impact of spacecraft technology and booster performance and costs upon communication satellite costs are analyzed. Systems analysis techniques are used to determine functional requirements and the sensitivities of technology improvements for reducing the costs of meeting requirements. Recommended development plans and funding levels are presented, as well as the possible cost saving for communications satellites in the post 1985 era.

  16. Global Positioning System (GPS) Precipitable Water in Forecasting Lightning at Spaceport Canaveral

    NASA Technical Reports Server (NTRS)

    Kehrer, Kristen C.; Graf, Brian; Roeder, William

    2006-01-01

    This paper evaluates the use of precipitable water (PW) from Global Positioning System (GPS) in lightning prediction. Additional independent verification of an earlier model is performed. This earlier model used binary logistic regression with the following four predictor variables optimally selected from a candidate list of 23 candidate predictors: the current precipitable water value for a given time of the day, the change in GPS-PW over the past 9 hours, the KIndex, and the electric field mill value. This earlier model was not optimized for any specific forecast interval, but showed promise for 6 hour and 1.5 hour forecasts. Two new models were developed and verified. These new models were optimized for two operationally significant forecast intervals. The first model was optimized for the 0.5 hour lightning advisories issued by the 45th Weather Squadron. An additional 1.5 hours was allowed for sensor dwell, communication, calculation, analysis, and advisory decision by the forecaster. Therefore the 0.5 hour advisory model became a 2 hour forecast model for lightning within the 45th Weather Squadron advisory areas. The second model was optimized for major ground processing operations supported by the 45th Weather Squadron, which can require lightning forecasts with a lead-time of up to 7.5 hours. Using the same 1.5 lag as in the other new model, this became a 9 hour forecast model for lightning within 37 km (20 NM)) of the 45th Weather Squadron advisory areas. The two new models were built using binary logistic regression from a list of 26 candidate predictor variables: the current GPS-PW value, the change of GPS-PW over 0.5 hour increments from 0.5 to 12 hours, and the K-index. The new 2 hour model found the following for predictors to be statistically significant, listed in decreasing order of contribution to the forecast: the 0.5 hour change in GPS-PW, the 7.5 hour change in GPS-PW, the current GPS-PW value, and the KIndex. The new 9 hour forecast model found the following five independent variables to be statistically significant, listed in decreasing order of contribution to the forecast: the current GPSPW value, the 8.5 hour change in GPS-PW, the 3.5 hour change in GPS-PW, the 12 hour change in GPS-PW, and the K-Index. In both models, the GPS-PW parameters had better correlation to the lightning forecast than the K-Index, a widely used thunderstorm index. Possible future improvements to this study are discussed.

  17. Past, Current, and Future Incidence Rates and Burden of Metastatic Prostate Cancer in the United States.

    PubMed

    Kelly, Scott P; Anderson, William F; Rosenberg, Philip S; Cook, Michael B

    2017-11-18

    Metastatic prostate cancer (PCA) remains a highly lethal malignancy in the USA. As prostate-specific antigen testing declines nationally, detailed assessment of current age- and race-specific incidence trends and quantitative forecasts are needed. To evaluate the current trends of metastatic PCA by age and race, and forecast the number of new cases (annual burden) and future trends. We derived incidence data for men aged ≥45 yr who were diagnosed with metastatic PCA from the population-based Surveillance, Epidemiology, and End Results registries. We examined the current trends of metastatic PCA from 2004 to 2014, and forecast the annual burden and incidence rates by age and race for 2015-2025, using age-period-cohort models and population projections. We also examined alternative forecasts (2012-2025) using trends prior to the revised screening guidelines issued in 2012. Metastatic PCA, steadily declining from 2004 to 2007 by 1.45%/yr, began to increase by 0.58%/yr after 2008, which accelerated to 2.74%/yr following the 2012 United States Preventive Services Task Force recommendations-a pattern that was magnified among men aged ≤69 yr and white men. Forecasts project the incidence to increase by 1.03%/yr through 2025, with men aged 45-54 yr (2.29%/yr) and 55-69 yr (1.53%/yr) increasing more rapidly. Meanwhile, the annual burden is expected to increase 42% by 2025. Our forecasts estimated an additional 15 891 metastatic cases from 2015 to 2025 compared with alternative forecasts using trends prior to 2012. The recent uptick in metastatic PCA rates has resulted in forecasts that project increasing rates through 2025, particularly among men aged ≤69 yr. Moreover, racial disparities are expected to persist and the annual burden will increase considerably. The impact of the prior and current PCA screening recommendations on metastatic PCA rates requires continued examination. In this report, we assessed how the incidence of metastatic prostate cancer has changed over recent years, and forecast future incidence trends and the number of new cases expected each year. We found that the incidence of metastatic prostate cancer has been increasing more rapidly since 2012, resulting in a rise in both future incidence and the number of new cases by 2025. Future incidence rates and the number of new cases were reduced in alternative forecasts using data prior to the 2012 United States Preventive Services Task Force (USPSTF) recommendations against prostate-specific antigen (PSA) testing for prostate cancer. There is a need for additional research that examines whether national declines in PSA testing contributed to increases in rates of metastatic disease. The incidence of metastatic disease in black men is still expected to occur at considerably higher rates compared with that in white men. Published by Elsevier B.V.

  18. Life cycle assessment of forecasting scenarios for urban water management: A first implementation of the WaLA model on Paris suburban area.

    PubMed

    Loubet, Philippe; Roux, Philippe; Guérin-Schneider, Laetitia; Bellon-Maurel, Véronique

    2016-03-01

    A framework and an associated modeling tool to perform life cycle assessment (LCA) of urban water system, namely the WaLA model, has been recently developed. In this paper, the WaLA model is applied to a real case study: the urban water system of the Paris suburban area, in France. It aims to verify the capacity of the model to provide environmental insights to stakeholder's issues related to future trends influencing the system (e.g., evolution of water demand, increasing water scarcity) or policy responses (e.g., choices of water resources and technologies). This is achieved by evaluating a baseline scenario for 2012 and several forecasting scenarios for 2022 and 2050. The scenarios are designed through the modeling tool WaLA, which is implemented in Simulink/Matlab: it combines components representing the different technologies, users and resources of the UWS. The life cycle inventories of the technologies and users components include water quantity and quality changes, specific operation (electricity, chemicals) and infrastructures data (construction materials). The methods selected for the LCIA are midpoint ILCD, midpoint water deprivation impacts at the sub-river basin scale, and endpoint Impact 2002+. The results of the baseline scenario show that wastewater treatment plants have the highest impacts compared to drinking water production and distribution, as traditionally encountered in LCA of UWS. The results of the forecasting scenarios show important changes in water deprivation impacts due to water management choices or effects of climate change. They also enable to identify tradeoffs with other impact categories and to compare several scenarios. It suggests the capacity of the model to deliver information for decision making about future policies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. The European Drought Observatory (EDO): Current State and Future Directions

    NASA Astrophysics Data System (ADS)

    Vogt, Jürgen; Sepulcre, Guadalupe; Magni, Diego; Valentini, Luana; Singleton, Andrew; Micale, Fabio; Barbosa, Paulo

    2013-04-01

    Europe has repeatedly been affected by droughts, resulting in considerable ecological and economic damage and climate change studies indicate a trend towards increasing climate variability most likely resulting in more frequent drought occurrences also in Europe. Against this background, the European Commission's Joint Research Centre (JRC) is developing methods and tools for assessing, monitoring and forecasting droughts in Europe and develops a European Drought Observatory (EDO) to complement and integrate national activities with a European view. At the core of the European Drought Observatory (EDO) is a portal, including a map server, a metadata catalogue, a media-monitor and analysis tools. The map server presents Europe-wide up-to-date information on the occurrence and severity of droughts, which is complemented by more detailed information provided by regional, national and local observatories through OGC compliant web mapping and web coverage services. In addition, time series of historical maps as well as graphs of the temporal evolution of drought indices for individual grid cells and administrative regions in Europe can be retrieved and analysed. Current work is focusing on validating the available products, developing combined indicators, improving the functionalities, extending the linkage to additional national and regional drought information systems and testing options for medium-range probabilistic drought forecasting across Europe. Longer-term goals include the development of long-range drought forecasting products, the analysis of drought hazard and risk, the monitoring of drought impact and the integration of EDO in a global drought information system. The talk will provide an overview on the development and state of EDO, the different products, and the ways to include a wide range of stakeholders (i.e. European, national river basin, and local authorities) in the development of the system as well as an outlook on the future developments.

  20. Forecasting distributions of an aquatic invasive species (Nitellopsis obtusa) under future climate scenarios

    PubMed Central

    Varela, Sara; Larkin, Daniel J.; Phelps, Nicholas B. D.

    2017-01-01

    Starry stonewort (Nitellopsis obtusa) is an alga that has emerged as an aquatic invasive species of concern in the United States. Where established, starry stonewort can interfere with recreational uses of water bodies and potentially have ecological impacts. Incipient invasion of starry stonewort in Minnesota provides an opportunity to predict future expansion in order to target early detection and strategic management. We used ecological niche models to identify suitable areas for starry stonewort in Minnesota based on global occurrence records and present-day and future climate conditions. We assessed sensitivity of forecasts to different parameters, using four emission scenarios (i.e., RCP 2.6, RCP 4.5, RCP 6, and RCP 8.5) from five future climate models (i.e., CCSM, GISS, IPSL, MIROC, and MRI). From our niche model analyses, we found that (i) occurrences from the entire range, instead of occurrences restricted to the invaded range, provide more informed models; (ii) default settings in Maxent did not provide the best model; (iii) the model calibration area and its background samples impact model performance; (iv) model projections to future climate conditions should be restricted to analogous environments; and (v) forecasts in future climate conditions should include different future climate models and model calibration areas to better capture uncertainty in forecasts. Under present climate, the most suitable areas for starry stonewort are predicted to be found in central and southeastern Minnesota. In the future, suitable areas for starry stonewort are predicted to shift in geographic range under some future climate models and to shrink under others, with most permutations indicating a net decrease of the species’ suitable range. Our suitability maps can serve to design short-term plans for surveillance and education, while future climate models suggest a plausible reduction of starry stonewort spread in the long-term if the trends in climate warming remain. PMID:28704433

  1. Forecasting distributions of an aquatic invasive species (Nitellopsis obtusa) under future climate scenarios.

    PubMed

    Romero-Alvarez, Daniel; Escobar, Luis E; Varela, Sara; Larkin, Daniel J; Phelps, Nicholas B D

    2017-01-01

    Starry stonewort (Nitellopsis obtusa) is an alga that has emerged as an aquatic invasive species of concern in the United States. Where established, starry stonewort can interfere with recreational uses of water bodies and potentially have ecological impacts. Incipient invasion of starry stonewort in Minnesota provides an opportunity to predict future expansion in order to target early detection and strategic management. We used ecological niche models to identify suitable areas for starry stonewort in Minnesota based on global occurrence records and present-day and future climate conditions. We assessed sensitivity of forecasts to different parameters, using four emission scenarios (i.e., RCP 2.6, RCP 4.5, RCP 6, and RCP 8.5) from five future climate models (i.e., CCSM, GISS, IPSL, MIROC, and MRI). From our niche model analyses, we found that (i) occurrences from the entire range, instead of occurrences restricted to the invaded range, provide more informed models; (ii) default settings in Maxent did not provide the best model; (iii) the model calibration area and its background samples impact model performance; (iv) model projections to future climate conditions should be restricted to analogous environments; and (v) forecasts in future climate conditions should include different future climate models and model calibration areas to better capture uncertainty in forecasts. Under present climate, the most suitable areas for starry stonewort are predicted to be found in central and southeastern Minnesota. In the future, suitable areas for starry stonewort are predicted to shift in geographic range under some future climate models and to shrink under others, with most permutations indicating a net decrease of the species' suitable range. Our suitability maps can serve to design short-term plans for surveillance and education, while future climate models suggest a plausible reduction of starry stonewort spread in the long-term if the trends in climate warming remain.

  2. A forecast of bridge engineering, 1980-2000.

    DOT National Transportation Integrated Search

    1979-01-01

    A three-pronged study was undertaken to forecast the nature of bridge engineering and construction for the years 1980 to 2000. First, the history of bridge engineering was explored to extrapolate likely future developments. Second, a detailed questio...

  3. Fishing for Novel Approaches to Ecosystem Service Forecasts

    EPA Science Inventory

    The ecosystem service concept provides a powerful framework for conserving species and the environments they depend upon. Describing current distributions of ecosystem services and forecasting their future distributions have therefore become central objectives in many conservati...

  4. A simulation model for forecasting downhill ski participation

    Treesearch

    Daniel J. Stynes; Daniel M. Spotts

    1980-01-01

    The purpose of this paper is to describe progress in the development of a general computer simulation model to forecast future levels of outdoor recreation participation. The model is applied and tested for downhill skiing in Michigan.

  5. The MSFC Solar Activity Future Estimation (MSAFE) Model

    NASA Technical Reports Server (NTRS)

    Suggs, Ron

    2017-01-01

    The MSAFE model provides forecasts for the solar indices SSN, F10.7, and Ap. These solar indices are used as inputs to space environment models used in orbital spacecraft operations and space mission analysis. Forecasts from the MSAFE model are provided on the MSFC Natural Environments Branch's solar web page and are updated as new monthly observations become available. The MSAFE prediction routine employs a statistical technique that calculates deviations of past solar cycles from the mean cycle and performs a regression analysis to calculate the deviation from the mean cycle of the solar index at the next future time interval. The forecasts are initiated for a given cycle after about 8 to 9 monthly observations from the start of the cycle are collected. A forecast made at the beginning of cycle 24 using the MSAFE program captured the cycle fairly well with some difficulty in discerning the double peak that occurred at solar cycle maximum.

  6. Assessing and forecasting population health: integrating knowledge and beliefs in a comprehensive framework.

    PubMed

    Van Meijgaard, Jeroen; Fielding, Jonathan E; Kominski, Gerald F

    2009-01-01

    A comprehensive population health-forecasting model has the potential to interject new and valuable information about the future health status of the population based on current conditions, socioeconomic and demographic trends, and potential changes in policies and programs. Our Health Forecasting Model uses a continuous-time microsimulation framework to simulate individuals' lifetime histories by using birth, risk exposures, disease incidence, and death rates to mark changes in the state of the individual. The model generates a reference forecast of future health in California, including details on physical activity, obesity, coronary heart disease, all-cause mortality, and medical expenditures. We use the model to answer specific research questions, inform debate on important policy issues in public health, support community advocacy, and provide analysis on the long-term impact of proposed changes in policies and programs, thus informing stakeholders at all levels and supporting decisions that can improve the health of populations.

  7. Improved Rainfall Estimates and Predictions for 21st Century Drought Early Warning

    NASA Technical Reports Server (NTRS)

    Funk, Chris; Peterson, Pete; Shukla, Shraddhanand; Husak, Gregory; Landsfeld, Marty; Hoell, Andrew; Pedreros, Diego; Roberts, J. B.; Robertson, F. R.; Tadesse, Tsegae; hide

    2015-01-01

    As temperatures increase, the onset and severity of droughts is likely to become more intense. Improved tools for understanding, monitoring and predicting droughts will be a key component of 21st century climate adaption. The best drought monitoring systems will bring together accurate precipitation estimates with skillful climate and weather forecasts. Such systems combine the predictive power inherent in the current land surface state with the predictive power inherent in low frequency ocean-atmosphere dynamics. To this end, researchers at the Climate Hazards Group (CHG), in collaboration with partners at the USGS and NASA, have developed i) a long (1981-present) quasi-global (50degS-50degN, 180degW-180degE) high resolution (0.05deg) homogenous precipitation data set designed specifically for drought monitoring, ii) tools for understanding and predicting East African boreal spring droughts, and iii) an integrated land surface modeling (LSM) system that combines rainfall observations and predictions to provide effective drought early warning. This talk briefly describes these three components. Component 1: CHIRPS The Climate Hazards group InfraRed Precipitation with Stations (CHIRPS), blends station data with geostationary satellite observations to provide global near real time daily, pentadal and monthly precipitation estimates. We describe the CHIRPS algorithm and compare CHIRPS and other estimates to validation data. The CHIRPS is shown to have high correlation, low systematic errors (bias) and low mean absolute errors. Component 2: Hybrid statistical-dynamic forecast strategies East African droughts have increased in frequency, but become more predictable as Indo- Pacific SST gradients and Walker circulation disruptions intensify. We describe hybrid statistical-dynamic forecast strategies that are far superior to the raw output of coupled forecast models. These forecasts can be translated into probabilities that can be used to generate bootstrapped ensembles describing future climate conditions. Component 3: Assimilation using LSMs CHIRPS rainfall observations (component 1) and bootstrapped forecast ensembles (component 2) can be combined using LSMs to predict soil moisture deficits. We evaluate the skill such a system in East Africa, and demonstrate results for 2013.

  8. Using Analog Ensemble to generate spatially downscaled probabilistic wind power forecasts

    NASA Astrophysics Data System (ADS)

    Delle Monache, L.; Shahriari, M.; Cervone, G.

    2017-12-01

    We use the Analog Ensemble (AnEn) method to generate probabilistic 80-m wind power forecasts. We use data from the NCEP GFS ( 28 km resolution) and NCEP NAM (12 km resolution). We use forecasts data from NAM and GFS, and analysis data from NAM which enables us to: 1) use a lower-resolution model to create higher-resolution forecasts, and 2) use a higher-resolution model to create higher-resolution forecasts. The former essentially increases computing speed and the latter increases forecast accuracy. An aggregated model of the former can be compared against the latter to measure the accuracy of the AnEn spatial downscaling. The AnEn works by taking a deterministic future forecast and comparing it with past forecasts. The model searches for the best matching estimates within the past forecasts and selects the predictand value corresponding to these past forecasts as the ensemble prediction for the future forecast. Our study is based on predicting wind speed and air density at more than 13,000 grid points in the continental US. We run the AnEn model twice: 1) estimating 80-m wind speed by using predictor variables such as temperature, pressure, geopotential height, U-component and V-component of wind, 2) estimating air density by using predictors such as temperature, pressure, and relative humidity. We use the air density values to correct the standard wind power curves for different values of air density. The standard deviation of the ensemble members (i.e. ensemble spread) will be used as the degree of difficulty to predict wind power at different locations. The value of the correlation coefficient between the ensemble spread and the forecast error determines the appropriateness of this measure. This measure is prominent for wind farm developers as building wind farms in regions with higher predictability will reduce the real-time risks of operating in the electricity markets.

  9. The Tracking Meteogram, an AWIPS II Tool for Time-Series Analysis

    NASA Technical Reports Server (NTRS)

    Burks, Jason Eric; Sperow, Ken

    2015-01-01

    A new tool has been developed for the National Weather Service (NWS) Advanced Weather Interactive Processing System (AWIPS) II through collaboration between NASA's Short-term Prediction Research and Transition (SPoRT) and the NWS Meteorological Development Laboratory (MDL). Referred to as the "Tracking Meteogram", the tool aids NWS forecasters in assessing meteorological parameters associated with moving phenomena. The tool aids forecasters in severe weather situations by providing valuable satellite and radar derived trends such as cloud top cooling rates, radial velocity couplets, reflectivity, and information from ground-based lightning networks. The Tracking Meteogram tool also aids in synoptic and mesoscale analysis by tracking parameters such as the deepening of surface low pressure systems, changes in surface or upper air temperature, and other properties. The tool provides a valuable new functionality and demonstrates the flexibility and extensibility of the NWS AWIPS II architecture. In 2014, the operational impact of the tool was formally evaluated through participation in the NOAA/NWS Operations Proving Ground (OPG), a risk reduction activity to assess performance and operational impact of new forecasting concepts, tools, and applications. Performance of the Tracking Meteogram Tool during the OPG assessment confirmed that it will be a valuable asset to the operational forecasters. This presentation reviews development of the Tracking Meteogram tool, performance and feedback acquired during the OPG activity, and future goals for continued support and extension to other application areas.

  10. Innovative Tools for Water Quality/Quantity Management: New York City's Operations Support Tool

    NASA Astrophysics Data System (ADS)

    Wang, L.; Schaake, J. C.; Day, G. N.; Porter, J.; Sheer, D. P.; Pyke, G.

    2011-12-01

    The New York City Department of Environmental Protection (DEP) manages New York City's water supply, which is comprised of over 20 reservoirs and supplies more than 1 billion gallons of water per day to over 9 million customers. Recently, DEP has initiated design of an Operations Support Tool (OST), a state-of-the-art decision support system to provide computational and predictive support for water supply operations and planning. This presentation describes the technical structure of OST, including the underlying water supply and water quality models, data sources and database management, reservoir inflow forecasts, and the functionalities required to meet the needs of a diverse group of end users. OST is a major upgrade of DEP's current water supply - water quality model, developed to evaluate alternatives for controlling turbidity in NYC's Catskill reservoirs. While the current model relies on historical hydrologic and meteorological data, OST can be driven by forecasted future conditions. It will receive a variety of near-real-time data from a number of sources. OST will support two major types of simulations: long-term, for evaluating policy or infrastructure changes over an extended period of time; and short-term "position analysis" (PA) simulations, consisting of multiple short simulations, all starting from the same initial conditions. Typically, the starting conditions for a PA run will represent those for the current day and traces of forecasted hydrology will drive the model for the duration of the simulation period. The result of these simulations will be a distribution of future system states based on system operating rules and the range of input ensemble streamflow predictions. DEP managers will analyze the output distributions and make operation decisions using risk-based metrics such as probability of refill. Currently, in the developmental stages of OST, forecasts are based on antecedent hydrologic conditions and are statistical in nature. The statistical algorithm is a relatively simple and versatile, but lacks short-term skill critical for water quality and spill management. To improve short-term skill, OST will ultimately operate with meteorologically driven hydrologic forecasts provided by the National Weather Service (NWS). OST functionalities will support a wide range of DEP uses, including short term operational projections, outage planning and emergency management, operating rule development, and water supply planning. A core use of OST will be to inform reservoir management strategies to control and mitigate turbidity events while ensuring water supply reliability. OST will also allow DEP to manage its complex reservoir system to meet multiple objectives, including ecological flows, tailwater fisheries and recreational releases, and peak flow mitigation for downstream communities.

  11. Implementation of the Short-Term Ensemble Prediction System (STEPS) in Belgium and verification of case studies

    NASA Astrophysics Data System (ADS)

    Foresti, Loris; Reyniers, Maarten; Delobbe, Laurent

    2014-05-01

    The Short-Term Ensemble Prediction System (STEPS) is a probabilistic precipitation nowcasting scheme developed at the Australian Bureau of Meteorology in collaboration with the UK Met Office. In order to account for the multiscaling nature of rainfall structures, the radar field is decomposed into an 8 levels multiplicative cascade using a Fast Fourier Transform. The cascade is advected using the velocity field estimated with optical flow and evolves stochastically according to a hierarchy of auto-regressive processes. This allows reproducing the empirical observation that the rate of temporal evolution of the small scales is faster than the large scales. The uncertainty in radar rainfall measurement and the unknown future development of the velocity field are also considered by stochastic modelling in order to reflect their typical spatial and temporal variability. Recently, a 4 years national research program has been initiated by the University of Leuven, the Royal Meteorological Institute (RMI) of Belgium and 3 other partners: PLURISK ("forecasting and management of extreme rainfall induced risks in the urban environment"). The project deals with the nowcasting of rainfall and subsequent urban inundations, as well as socio-economic risk quantification, communication, warning and prevention. At the urban scale it is widely recognized that the uncertainty of hydrological and hydraulic models is largely driven by the input rainfall estimation and forecast uncertainty. In support to the PLURISK project the RMI aims at integrating STEPS in the current operational deterministic precipitation nowcasting system INCA-BE (Integrated Nowcasting through Comprehensive Analysis). This contribution will illustrate examples of STEPS ensemble and probabilistic nowcasts for a few selected case studies of stratiform and convective rain in Belgium. The paper focuses on the development of STEPS products for potential hydrological users and a preliminary verification of the nowcasts, especially to analyze the spatial distribution of forecast errors. The analysis of nowcast biases reveals the locations where the convective initiation, rainfall growth and decay processes significantly reduce the forecast accuracy, but also points out the need for improving the radar-based quantitative precipitation estimation product that is used both to generate and verify the nowcasts. The collection of fields of verification statistics is implemented using an online update strategy, which potentially enables the system to learn from forecast errors as the archive of nowcasts grows. The study of the spatial or temporal distribution of nowcast errors is a key step to convey to the users an overall estimation of the nowcast accuracy and to drive future model developments.

  12. Forecasting Trends in Disability in a Super-Aging Society: Adapting the Future Elderly Model to Japan.

    PubMed

    Chen, Brian K; Jalal, Hawre; Hashimoto, Hideki; Suen, Sze-Chuan; Eggleston, Karen; Hurley, Michael; Schoemaker, Lena; Bhattacharya, Jay

    2016-12-01

    Japan has experienced pronounced population aging, and now has the highest proportion of elderly adults in the world. Yet few projections of Japan's future demography go beyond estimating population by age and sex to forecast the complex evolution of the health and functioning of the future elderly. This study estimates a new state-transition microsimulation model - the Japanese Future Elderly Model (FEM) - for Japan. We use the model to forecast disability and health for Japan's future elderly. Our simulation suggests that by 2040, over 27 percent of Japan's elderly will exhibit 3 or more limitations in IADLs and social functioning; almost one in 4 will experience difficulties with 3 or more ADLs; and approximately one in 5 will suffer limitations in cognitive or intellectual functioning. Since the majority of the increase in disability arises from the aging of the Japanese population, prevention efforts that reduce age-specific morbidity can help reduce the burden of disability but may have only a limited impact on reducing the overall prevalence of disability among Japanese elderly. While both age and morbidity contribute to a predicted increase in disability burden among elderly Japanese in the future, our simulation results suggest that the impact of population aging exceeds the effect of age-specific morbidity on increasing disability in Japan's future.

  13. Dengue prediction by the web: Tweets are a useful tool for estimating and forecasting Dengue at country and city level.

    PubMed

    Marques-Toledo, Cecilia de Almeida; Degener, Carolin Marlen; Vinhal, Livia; Coelho, Giovanini; Meira, Wagner; Codeço, Claudia Torres; Teixeira, Mauro Martins

    2017-07-01

    Infectious diseases are a leading threat to public health. Accurate and timely monitoring of disease risk and progress can reduce their impact. Mentioning a disease in social networks is correlated with physician visits by patients, and can be used to estimate disease activity. Dengue is the fastest growing mosquito-borne viral disease, with an estimated annual incidence of 390 million infections, of which 96 million manifest clinically. Dengue burden is likely to increase in the future owing to trends toward increased urbanization, scarce water supplies and, possibly, environmental change. The epidemiological dynamic of Dengue is complex and difficult to predict, partly due to costly and slow surveillance systems. In this study, we aimed to quantitatively assess the usefulness of data acquired by Twitter for the early detection and monitoring of Dengue epidemics, both at country and city level at a weekly basis. Here, we evaluated and demonstrated the potential of tweets modeling for Dengue estimation and forecast, in comparison with other available web-based data, Google Trends and Wikipedia access logs. Also, we studied the factors that might influence the goodness-of-fit of the model. We built a simple model based on tweets that was able to 'nowcast', i.e. estimate disease numbers in the same week, but also 'forecast' disease in future weeks. At the country level, tweets are strongly associated with Dengue cases, and can estimate present and future Dengue cases until 8 weeks in advance. At city level, tweets are also useful for estimating Dengue activity. Our model can be applied successfully to small and less developed cities, suggesting a robust construction, even though it may be influenced by the incidence of the disease, the activity of Twitter locally, and social factors, including human development index and internet access. Tweets association with Dengue cases is valuable to assist traditional Dengue surveillance at real-time and low-cost. Tweets are able to successfully nowcast, i.e. estimate Dengue in the present week, but also forecast, i.e. predict Dengue at until 8 weeks in the future, both at country and city level with high estimation capacity.

  14. Decision Theory: Individual Biases and Their Effect on Forecasting in an Organization.

    DTIC Science & Technology

    1983-12-01

    has not bien a great deal written about how these biases effact decisicns in an organizational environment . The purpcse of -:his thesis is tc examine...and prospers while using fallible information to infer the stateb of his uncer- tain environment and to pr.dict future events. Experiments that have...chapters deal with data from two separate crganizati-ons in two different environments . The Judgmental processes of forecasTing future organizational

  15. The Creation and Application of Two Innovative Real-Time Delphi and Cross-Impact Simulation Approaches to Forecast the Future: Forecasting High-Speed Broadband Developments for the State of Hawai`i

    ERIC Educational Resources Information Center

    Bergo, Rolv Alexander

    2013-01-01

    Technology development is moving rapidly and our dependence on information services is growing. Building a broadband infrastructure that can support future demand and change is therefore critical to social, political, economic and technological developments. It is often up to local policy makers to find the best solutions to support this demand…

  16. Motivated prediction of future feelings: effects of negative mood and mood orientation on affective forecasts.

    PubMed

    Buehler, Roger; McFarland, Cathy; Spyropoulos, Vassili; Lam, Kent C H

    2007-09-01

    This article examines the role of motivational factors in affective forecasting. The primary hypothesis was that people predict positive emotional reactions to future events when they are motivated to enhance their current feelings. Three experiments manipulated participants' moods (negative vs. neutral) and orientation toward their moods (reflective vs. ruminative) and then assessed the positivity of their affective predictions for future events. As hypothesized, when participants adopted a reflective orientation, and thus should have been motivated to engage in mood-regulation processes, they predicted more positive feelings in the negative than in the neutral mood condition. This pattern of mood-incongruent affective prediction was not exhibited when participants adopted a ruminative orientation. Additionally, within the negative mood condition, generating affective forecasts had a more positive emotional impact on reflectors than on ruminators. The findings suggest that affective predictions are sometimes driven by mood-regulatory motives.

  17. Past speculations of the future: a review of the methods used for forecasting emerging health technologies

    PubMed Central

    Doos, Lucy; Packer, Claire; Ward, Derek; Simpson, Sue; Stevens, Andrew

    2016-01-01

    Objectives Forecasting can support rational decision-making around the introduction and use of emerging health technologies and prevent investment in technologies that have limited long-term potential. However, forecasting methods need to be credible. We performed a systematic search to identify the methods used in forecasting studies to predict future health technologies within a 3–20-year timeframe. Identification and retrospective assessment of such methods potentially offer a route to more reliable prediction. Design Systematic search of the literature to identify studies reported on methods of forecasting in healthcare. Participants People are not needed in this study. Data sources The authors searched MEDLINE, EMBASE, PsychINFO and grey literature sources, and included articles published in English that reported their methods and a list of identified technologies. Main outcome measure Studies reporting methods used to predict future health technologies within a 3–20-year timeframe with an identified list of individual healthcare technologies. Commercially sponsored reviews, long-term futurology studies (with over 20-year timeframes) and speculative editorials were excluded. Results 15 studies met our inclusion criteria. Our results showed that the majority of studies (13/15) consulted experts either alone or in combination with other methods such as literature searching. Only 2 studies used more complex forecasting tools such as scenario building. Conclusions The methodological fundamentals of formal 3–20-year prediction are consistent but vary in details. Further research needs to be conducted to ascertain if the predictions made were accurate and whether accuracy varies by the methods used or by the types of technologies identified. PMID:26966060

  18. An overview of health forecasting.

    PubMed

    Soyiri, Ireneous N; Reidpath, Daniel D

    2013-01-01

    Health forecasting is a novel area of forecasting, and a valuable tool for predicting future health events or situations such as demands for health services and healthcare needs. It facilitates preventive medicine and health care intervention strategies, by pre-informing health service providers to take appropriate mitigating actions to minimize risks and manage demand. Health forecasting requires reliable data, information and appropriate analytical tools for the prediction of specific health conditions or situations. There is no single approach to health forecasting, and so various methods have often been adopted to forecast aggregate or specific health conditions. Meanwhile, there are no defined health forecasting horizons (time frames) to match the choices of health forecasting methods/approaches that are often applied. The key principles of health forecasting have not also been adequately described to guide the process. This paper provides a brief introduction and theoretical analysis of health forecasting. It describes the key issues that are important for health forecasting, including: definitions, principles of health forecasting, and the properties of health data, which influence the choices of health forecasting methods. Other matters related to the value of health forecasting, and the general challenges associated with developing and using health forecasting services are discussed. This overview is a stimulus for further discussions on standardizing health forecasting approaches and methods that will facilitate health care and health services delivery.

  19. Forecasting Western U.S. Snowpack

    NASA Astrophysics Data System (ADS)

    Kapnick, S. B.; Yang, X.; Vecchi, G. A.; Delworth, T. L.; Gudgel, R.; Malyshev, S.; Milly, C.; Shevliakova, E.; Underwood, S.; Margulis, S. A.

    2017-12-01

    Cold season mountain snow accumulation in the western United States plays a critical role in regional hydroclimate and water supply. While climate projections provide estimates of future snowpack loss by the end of the century and weather forecasts provide predictions of weather conditions and hazards out to two weeks, less progress has been made for snow predictions at seasonal timescales (months to 2 years), particularly beyond 6 months. Utilizing observations, climate indices, and a suite of global climate models, we demonstrate our dynamical system's feasibility of seasonal snowpack predictions and quantify the limits of predictive skill more than 2 seasons in advance for snowpack—snow that accumulates on the ground in the mountains. Our ability to predict snowpack is reliant on both temperature and precipitation prediction skill modulating both the amount of frozen precipitation that falls and how much snow accumulates and stays on the ground throughout the season. We will quantify prediction skill and outline areas necessary for the future advancement of seasonal hydroclimate prediction.

  20. US computer research networks: Current and future

    NASA Technical Reports Server (NTRS)

    Kratochvil, D.; Sood, D.; Verostko, A.

    1989-01-01

    During the last decade, NASA LeRC's Communication Program has conducted a series of telecommunications forecasting studies to project trends and requirements and to identify critical telecommunications technologies that must be developed to meet future requirements. The Government Networks Division of Contel Federal Systems has assisted NASA in these studies, and the current study builds upon these earlier efforts. The current major thrust of the NASA Communications Program is aimed at developing the high risk, advanced, communications satellite and terminal technologies required to significantly increase the capacity of future communications systems. Also, major new technological, economic, and social-political events and trends are now shaping the communications industry of the future. Therefore, a re-examination of future telecommunications needs and requirements is necessary to enable NASA to make management decisions in its Communications Program and to ensure the proper technologies and systems are addressed. This study, through a series of Task Orders, is helping NASA define the likely communication service needs and requirements of the future and thereby ensuring that the most appropriate technology developments are pursued.

  1. Flash flood forecasting using simplified hydrological models, radar rainfall forecasts and data assimilation

    NASA Astrophysics Data System (ADS)

    Smith, P. J.; Beven, K.; Panziera, L.

    2012-04-01

    The issuing of timely flood alerts may be dependant upon the ability to predict future values of water level or discharge at locations where observations are available. Catchments at risk of flash flooding often have a rapid natural response time, typically less then the forecast lead time desired for issuing alerts. This work focuses on the provision of short-range (up to 6 hours lead time) predictions of discharge in small catchments based on utilising radar forecasts to drive a hydrological model. An example analysis based upon the Verzasca catchment (Ticino, Switzerland) is presented. Parsimonious time series models with a mechanistic interpretation (so called Data-Based Mechanistic model) have been shown to provide reliable accurate forecasts in many hydrological situations. In this study such a model is developed to predict the discharge at an observed location from observed precipitation data. The model is shown to capture the snow melt response at this site. Observed discharge data is assimilated to improve the forecasts, of up to two hours lead time, that can be generated from observed precipitation. To generate forecasts with greater lead time ensemble precipitation forecasts are utilised. In this study the Nowcasting ORographic precipitation in the Alps (NORA) product outlined in more detail elsewhere (Panziera et al. Q. J. R. Meteorol. Soc. 2011; DOI:10.1002/qj.878) is utilised. NORA precipitation forecasts are derived from historical analogues based on the radar field and upper atmospheric conditions. As such, they avoid the need to explicitly model the evolution of the rainfall field through for example Lagrangian diffusion. The uncertainty in the forecasts is represented by characterisation of the joint distribution of the observed discharge, the discharge forecast using the (in operational conditions unknown) future observed precipitation and that forecast utilising the NORA ensembles. Constructing the joint distribution in this way allows the full historic record of data at the site to inform the predictive distribution. It is shown that, in part due to the limited availability of forecasts, the uncertainty in the relationship between the NORA based forecasts and other variates dominated the resulting predictive uncertainty.

  2. How is the weather? Forecasting inpatient glycemic control

    PubMed Central

    Saulnier, George E; Castro, Janna C; Cook, Curtiss B; Thompson, Bithika M

    2017-01-01

    Aim: Apply methods of damped trend analysis to forecast inpatient glycemic control. Method: Observed and calculated point-of-care blood glucose data trends were determined over 62 weeks. Mean absolute percent error was used to calculate differences between observed and forecasted values. Comparisons were drawn between model results and linear regression forecasting. Results: The forecasted mean glucose trends observed during the first 24 and 48 weeks of projections compared favorably to the results provided by linear regression forecasting. However, in some scenarios, the damped trend method changed inferences compared with linear regression. In all scenarios, mean absolute percent error values remained below the 10% accepted by demand industries. Conclusion: Results indicate that forecasting methods historically applied within demand industries can project future inpatient glycemic control. Additional study is needed to determine if forecasting is useful in the analyses of other glucometric parameters and, if so, how to apply the techniques to quality improvement. PMID:29134125

  3. Long-term flow forecasts based on climate and hydrologic modeling: Uruguay River basin

    NASA Astrophysics Data System (ADS)

    Tucci, Carlos Eduardo Morelli; Clarke, Robin Thomas; Collischonn, Walter; da Silva Dias, Pedro Leite; de Oliveira, Gilvan Sampaio

    2003-07-01

    This paper describes a procedure for predicting seasonal flow in the Rio Uruguay drainage basin (area 75,000 km2, lying in Brazilian territory), using sequences of future daily rainfall given by the global climate model (GCM) of the Brazilian agency for climate prediction (Centro de Previsão de Tempo e Clima, or CPTEC). Sequences of future daily rainfall given by this model were used as input to a rainfall-runoff model appropriate for large drainage basins. Forecasts of flow in the Rio Uruguay were made for the period 1995-2001 of the full record, which began in 1940. Analysis showed that GCM forecasts underestimated rainfall over almost all the basin, particularly in winter, although interannual variability in regional rainfall was reproduced relatively well. A statistical procedure was used to correct for the underestimation of rainfall. When the corrected rainfall sequences were transformed to flow by the hydrologic model, forecasts of flow in the Rio Uruguay basin were better than forecasts based on historic mean or median flows by 37% for monthly flows and by 54% for 3-monthly flows.

  4. A framework for improving a seasonal hydrological forecasting system using sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Arnal, Louise; Pappenberger, Florian; Smith, Paul; Cloke, Hannah

    2017-04-01

    Seasonal streamflow forecasts are of great value for the socio-economic sector, for applications such as navigation, flood and drought mitigation and reservoir management for hydropower generation and water allocation to agriculture and drinking water. However, as we speak, the performance of dynamical seasonal hydrological forecasting systems (systems based on running seasonal meteorological forecasts through a hydrological model to produce seasonal hydrological forecasts) is still limited in space and time. In this context, the ESP (Ensemble Streamflow Prediction) remains an attractive forecasting method for seasonal streamflow forecasting as it relies on forcing a hydrological model (starting from the latest observed or simulated initial hydrological conditions) with historical meteorological observations. This makes it cheaper to run than a standard dynamical seasonal hydrological forecasting system, for which the seasonal meteorological forecasts will first have to be produced, while still producing skilful forecasts. There is thus the need to focus resources and time towards improvements in dynamical seasonal hydrological forecasting systems which will eventually lead to significant improvements in the skill of the streamflow forecasts generated. Sensitivity analyses are a powerful tool that can be used to disentangle the relative contributions of the two main sources of errors in seasonal streamflow forecasts, namely the initial hydrological conditions (IHC; e.g., soil moisture, snow cover, initial streamflow, among others) and the meteorological forcing (MF; i.e., seasonal meteorological forecasts of precipitation and temperature, input to the hydrological model). Sensitivity analyses are however most useful if they inform and change current operational practices. To this end, we propose a method to improve the design of a seasonal hydrological forecasting system. This method is based on sensitivity analyses, informing the forecasters as to which element of the forecasting chain (i.e., IHC or MF) could potentially lead to the highest increase in seasonal hydrological forecasting performance, after each forecast update.

  5. A Prototype Regional GSI-based EnKF-Variational Hybrid Data Assimilation System for the Rapid Refresh Forecasting System: Dual-Resolution Implementation and Testing Results

    NASA Astrophysics Data System (ADS)

    Pan, Yujie; Xue, Ming; Zhu, Kefeng; Wang, Mingjun

    2018-05-01

    A dual-resolution (DR) version of a regional ensemble Kalman filter (EnKF)-3D ensemble variational (3DEnVar) coupled hybrid data assimilation system is implemented as a prototype for the operational Rapid Refresh forecasting system. The DR 3DEnVar system combines a high-resolution (HR) deterministic background forecast with lower-resolution (LR) EnKF ensemble perturbations used for flow-dependent background error covariance to produce a HR analysis. The computational cost is substantially reduced by running the ensemble forecasts and EnKF analyses at LR. The DR 3DEnVar system is tested with 3-h cycles over a 9-day period using a 40/˜13-km grid spacing combination. The HR forecasts from the DR hybrid analyses are compared with forecasts launched from HR Gridpoint Statistical Interpolation (GSI) 3D variational (3DVar) analyses, and single LR hybrid analyses interpolated to the HR grid. With the DR 3DEnVar system, a 90% weight for the ensemble covariance yields the lowest forecast errors and the DR hybrid system clearly outperforms the HR GSI 3DVar. Humidity and wind forecasts are also better than those launched from interpolated LR hybrid analyses, but the temperature forecasts are slightly worse. The humidity forecasts are improved most. For precipitation forecasts, the DR 3DEnVar always outperforms HR GSI 3DVar. It also outperforms the LR 3DEnVar, except for the initial forecast period and lower thresholds.

  6. Evaluation of Probable Maximum Precipitation and Flood under Climate Change in the 21st Century

    NASA Astrophysics Data System (ADS)

    Gangrade, S.; Kao, S. C.; Rastogi, D.; Ashfaq, M.; Naz, B. S.; Kabela, E.; Anantharaj, V. G.; Singh, N.; Preston, B. L.; Mei, R.

    2016-12-01

    Critical infrastructures are potentially vulnerable to extreme hydro-climatic events. Under a warming environment, the magnitude and frequency of extreme precipitation and flood are likely to increase enhancing the needs to more accurately quantify the risks due to climate change. In this study, we utilized an integrated modeling framework that includes the Weather Research Forecasting (WRF) model and a high resolution distributed hydrology soil vegetation model (DHSVM) to simulate probable maximum precipitation (PMP) and flood (PMF) events over Alabama-Coosa-Tallapoosa River Basin. A total of 120 storms were selected to simulate moisture maximized PMP under different meteorological forcings, including historical storms driven by Climate Forecast System Reanalysis (CFSR) and baseline (1981-2010), near term future (2021-2050) and long term future (2071-2100) storms driven by Community Climate System Model version 4 (CCSM4) under Representative Concentrations Pathway 8.5 emission scenario. We also analyzed the sensitivity of PMF to various antecedent hydrologic conditions such as initial soil moisture conditions and tested different compulsive approaches. Overall, a statistical significant increase is projected for future PMP and PMF, mainly attributed to the increase of background air temperature. The ensemble of simulated PMP and PMF along with their sensitivity allows us to better quantify the potential risks associated with hydro-climatic extreme events on critical energy-water infrastructures such as major hydropower dams and nuclear power plants.

  7. Using a safety forecast model to calculate future safety metrics.

    DOT National Transportation Integrated Search

    2017-05-01

    This research sought to identify a process to improve long-range planning prioritization by using forecasted : safety metrics in place of the existing Utah Department of Transportation Safety Indexa metric based on historical : crash data. The res...

  8. Doctoral Social Work Education: Responding to Trends in Society and the Academy

    ERIC Educational Resources Information Center

    Cnaan, Ram A.; Ghose, Toorjo

    2018-01-01

    This article is intended to forecast major environmental changes that may impact social work doctoral education and assess what should be done in anticipation of these changes. We apply an open system and future studies perspective to guide our work. We present a set of predicted societal changes that will impact social work as a profession and…

  9. Ecosystem Model Skill Assessment. Yes We Can!

    PubMed

    Olsen, Erik; Fay, Gavin; Gaichas, Sarah; Gamble, Robert; Lucey, Sean; Link, Jason S

    2016-01-01

    Accelerated changes to global ecosystems call for holistic and integrated analyses of past, present and future states under various pressures to adequately understand current and projected future system states. Ecosystem models can inform management of human activities in a complex and changing environment, but are these models reliable? Ensuring that models are reliable for addressing management questions requires evaluating their skill in representing real-world processes and dynamics. Skill has been evaluated for just a limited set of some biophysical models. A range of skill assessment methods have been reviewed but skill assessment of full marine ecosystem models has not yet been attempted. We assessed the skill of the Northeast U.S. (NEUS) Atlantis marine ecosystem model by comparing 10-year model forecasts with observed data. Model forecast performance was compared to that obtained from a 40-year hindcast. Multiple metrics (average absolute error, root mean squared error, modeling efficiency, and Spearman rank correlation), and a suite of time-series (species biomass, fisheries landings, and ecosystem indicators) were used to adequately measure model skill. Overall, the NEUS model performed above average and thus better than expected for the key species that had been the focus of the model tuning. Model forecast skill was comparable to the hindcast skill, showing that model performance does not degenerate in a 10-year forecast mode, an important characteristic for an end-to-end ecosystem model to be useful for strategic management purposes. We identify best-practice approaches for end-to-end ecosystem model skill assessment that would improve both operational use of other ecosystem models and future model development. We show that it is possible to not only assess the skill of a complicated marine ecosystem model, but that it is necessary do so to instill confidence in model results and encourage their use for strategic management. Our methods are applicable to any type of predictive model, and should be considered for use in fields outside ecology (e.g. economics, climate change, and risk assessment).

  10. Forecasting the duration of volcanic eruptions: an empirical probabilistic model

    NASA Astrophysics Data System (ADS)

    Gunn, L. S.; Blake, S.; Jones, M. C.; Rymer, H.

    2014-01-01

    The ability to forecast future volcanic eruption durations would greatly benefit emergency response planning prior to and during a volcanic crises. This paper introduces a probabilistic model to forecast the duration of future and on-going eruptions. The model fits theoretical distributions to observed duration data and relies on past eruptions being a good indicator of future activity. A dataset of historical Mt. Etna flank eruptions is presented and used to demonstrate the model. The data have been compiled through critical examination of existing literature along with careful consideration of uncertainties on reported eruption start and end dates between the years 1300 AD and 2010. Data following 1600 is considered to be reliable and free of reporting biases. The distribution of eruption duration between the years 1600 and 1669 is found to be statistically different from that following it and the forecasting model is run on two datasets of Mt. Etna flank eruption durations: 1600-2010 and 1670-2010. Each dataset is modelled using a log-logistic distribution with parameter values found by maximum likelihood estimation. Survivor function statistics are applied to the model distributions to forecast (a) the probability of an eruption exceeding a given duration, (b) the probability of an eruption that has already lasted a particular number of days exceeding a given total duration and (c) the duration with a given probability of being exceeded. Results show that excluding the 1600-1670 data has little effect on the forecasting model result, especially where short durations are involved. By assigning the terms `likely' and `unlikely' to probabilities of 66 % or more and 33 % or less, respectively, the forecasting model based on the 1600-2010 dataset indicates that a future flank eruption on Mt. Etna would be likely to exceed 20 days (± 7 days) but unlikely to exceed 86 days (± 29 days). This approach can easily be adapted for use on other highly active, well-documented volcanoes or for different duration data such as the duration of explosive episodes or the duration of repose periods between eruptions.

  11. An innovative forecasting and dashboard system for Malaysian dengue trends

    NASA Astrophysics Data System (ADS)

    Jamil, Jastini Mohd; Shaharanee, Izwan Nizal Mohd

    2016-08-01

    Dengue fever has been recognized in over 100 countries and 2.5 billion people live in areas where dengue is endemic. It is currently a serious arthropod-borne disease, affecting around 50-100 million people worldwide every year. Dengue fever is also prevalent in Malaysia with numerous cases including mortality recorded over the past year. In 2012, a total of 21,900 cases of dengue fever were reported with 35 deaths. Dengue, a mosquito-transmitted virus, causes a high fever accompanied by significant pain in afflicted patient and the Aedes Aegypti mosquito is the primary disease carrier. Knowing the dangerous effect of dengue fever, thus one of the solutions is to implement an innovative forecasting and dashboard system of dengue spread in Malaysia, with emphasize on an early prediction of dengue outbreak. Specifically, the model developed will provide with a valuable insight into strategically managing and controlling the future dengue epidemic. Importantly, this research will deliver the message to health policy makers such as The Ministry of Health Malaysia (MOH), practitioners, and researchers of the importance to integrate their collaboration in exploring the potential strategies in order to reduce the future burden of the increase in dengue transmission cases in Malaysia.

  12. Emotional Intelligence: A Theoretical Framework for Individual Differences in Affective Forecasting

    PubMed Central

    Hoerger, Michael; Chapman, Benjamin P.; Epstein, Ronald M.; Duberstein, Paul R.

    2011-01-01

    Only recently have researchers begun to examine individual differences in affective forecasting. The present investigation was designed to make a theoretical contribution to this emerging literature by examining the role of emotional intelligence in affective forecasting. Emotional intelligence was hypothesized to be associated with affective forecasting accuracy, memory for emotional reactions, and subsequent improvement on an affective forecasting task involving emotionally-evocative pictures. Results from two studies (N = 511) supported our hypotheses. Emotional intelligence was associated with accuracy in predicting, encoding, and consolidating emotional reactions. Furthermore, emotional intelligence was associated with greater improvement on a second affective forecasting task, with the relationship explained by basic memory processes. Implications for future research on basic and applied decision making are discussed. PMID:22251053

  13. Performance of univariate forecasting on seasonal diseases: the case of tuberculosis.

    PubMed

    Permanasari, Adhistya Erna; Rambli, Dayang Rohaya Awang; Dominic, P Dhanapal Durai

    2011-01-01

    The annual disease incident worldwide is desirable to be predicted for taking appropriate policy to prevent disease outbreak. This chapter considers the performance of different forecasting method to predict the future number of disease incidence, especially for seasonal disease. Six forecasting methods, namely linear regression, moving average, decomposition, Holt-Winter's, ARIMA, and artificial neural network (ANN), were used for disease forecasting on tuberculosis monthly data. The model derived met the requirement of time series with seasonality pattern and downward trend. The forecasting performance was compared using similar error measure in the base of the last 5 years forecast result. The findings indicate that ARIMA model was the most appropriate model since it obtained the less relatively error than the other model.

  14. Emotional intelligence: a theoretical framework for individual differences in affective forecasting.

    PubMed

    Hoerger, Michael; Chapman, Benjamin P; Epstein, Ronald M; Duberstein, Paul R

    2012-08-01

    Only recently have researchers begun to examine individual differences in affective forecasting. The present investigation was designed to make a theoretical contribution to this emerging literature by examining the role of emotional intelligence in affective forecasting. Emotional intelligence was hypothesized to be associated with affective forecasting accuracy, memory for emotional reactions, and subsequent improvement on an affective forecasting task involving emotionally evocative pictures. Results from two studies (N = 511) supported our hypotheses. Emotional intelligence was associated with accuracy in predicting, encoding, and consolidating emotional reactions. Furthermore, emotional intelligence was associated with greater improvement on a second affective forecasting task, with the relationship explained by basic memory processes. Implications for future research on basic and applied decision making are discussed.

  15. Real-Time Kennedy Space Center and Cape Canaveral Air Force Station High-Resolution Model Implementation and Verification

    NASA Technical Reports Server (NTRS)

    Shafer, Jaclyn A.; Watson, Leela R.

    2015-01-01

    Customer: NASA's Launch Services Program (LSP), Ground Systems Development and Operations (GSDO), and Space Launch System (SLS) programs. NASA's LSP, GSDO, SLS and other programs at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) use the daily and weekly weather forecasts issued by the 45th Weather Squadron (45 WS) as decision tools for their day-to-day and launch operations on the Eastern Range (ER). For example, to determine if they need to limit activities such as vehicle transport to the launch pad, protect people, structures or exposed launch vehicles given a threat of severe weather, or reschedule other critical operations. The 45 WS uses numerical weather prediction models as a guide for these weather forecasts, particularly the Air Force Weather Agency (AFWA) 1.67 kilometer Weather Research and Forecasting (WRF) model. Considering the 45 WS forecasters' and Launch Weather Officers' (LWO) extensive use of the AFWA model, the 45 WS proposed a task at the September 2013 Applied Meteorology Unit (AMU) Tasking Meeting requesting the AMU verify this model. Due to the lack of archived model data available from AFWA, verification is not yet possible. Instead, the AMU proposed to implement and verify the performance of an ER version of the AMU high-resolution WRF Environmental Modeling System (EMS) model (Watson 2013) in real-time. The tasking group agreed to this proposal; therefore the AMU implemented the WRF-EMS model on the second of two NASA AMU modeling clusters. The model was set up with a triple-nested grid configuration over KSC/CCAFS based on previous AMU work (Watson 2013). The outer domain (D01) has 12-kilometer grid spacing, the middle domain (D02) has 4-kilometer grid spacing, and the inner domain (D03) has 1.33-kilometer grid spacing. The model runs a 12-hour forecast every hour, D01 and D02 domain outputs are available once an hour and D03 is every 15 minutes during the forecast period. The AMU assessed the WRF-EMS 1.33-kilometer domain model performance for the 2014 warm season (May-September). Verification statistics were computed using the Model Evaluation Tools, which compared the model forecasts to observations. The mean error values were close to 0 and the root mean square error values were less than 1.8 for mean sea-level pressure (millibars), temperature (degrees Kelvin), dewpoint temperature (degrees Kelvin), and wind speed (per millisecond), all very small differences between the forecast and observations considering the normal magnitudes of the parameters. The precipitation forecast verification results showed consistent under-forecasting of the precipitation object size. This could be an artifact of calculating the statistics for each hour rather than for the entire 12-hour period. The AMU will continue to generate verification statistics for the 1.33-kilometer WRF-EMS domain as data become available in future cool and warm seasons. More data will produce more robust statistics and reveal a more accurate assessment of model performance. Once the formal task was complete, the AMU conducted additional work to better understand the wind direction results. The results were stratified diurnally and by wind speed to determine what effects the stratifications would have on the model wind direction verification statistics. The results are summarized in the addendum at the end of this report. In addition to verifying the model's performance, the AMU also made the output available in the Advanced Weather Interactive Processing System II (AWIPS II). This allows the 45 WS and AMU staff to customize the model output display on the AMU and Range Weather Operations AWIPS II client computers and conduct real-time subjective analyses. In the future, the AMU will implement an updated version of the WRF-EMS model that incorporates local data assimilation. This model will also run in real-time and be made available in AWIPS II.

  16. Analyzing Effect of System Inertia on Grid Frequency Forecasting Usnig Two Stage Neuro-Fuzzy System

    NASA Astrophysics Data System (ADS)

    Chourey, Divyansh R.; Gupta, Himanshu; Kumar, Amit; Kumar, Jitesh; Kumar, Anand; Mishra, Anup

    2018-04-01

    Frequency forecasting is an important aspect of power system operation. The system frequency varies with load-generation imbalance. Frequency variation depends upon various parameters including system inertia. System inertia determines the rate of fall of frequency after the disturbance in the grid. Though, inertia of the system is not considered while forecasting the frequency of power system during planning and operation. This leads to significant errors in forecasting. In this paper, the effect of inertia on frequency forecasting is analysed for a particular grid system. In this paper, a parameter equivalent to system inertia is introduced. This parameter is used to forecast the frequency of a typical power grid for any instant of time. The system gives appreciable result with reduced error.

  17. Sparse Bayesian learning machine for real-time management of reservoir releases

    NASA Astrophysics Data System (ADS)

    Khalil, Abedalrazq; McKee, Mac; Kemblowski, Mariush; Asefa, Tirusew

    2005-11-01

    Water scarcity and uncertainties in forecasting future water availabilities present serious problems for basin-scale water management. These problems create a need for intelligent prediction models that learn and adapt to their environment in order to provide water managers with decision-relevant information related to the operation of river systems. This manuscript presents examples of state-of-the-art techniques for forecasting that combine excellent generalization properties and sparse representation within a Bayesian paradigm. The techniques are demonstrated as decision tools to enhance real-time water management. A relevance vector machine, which is a probabilistic model, has been used in an online fashion to provide confident forecasts given knowledge of some state and exogenous conditions. In practical applications, online algorithms should recognize changes in the input space and account for drift in system behavior. Support vectors machines lend themselves particularly well to the detection of drift and hence to the initiation of adaptation in response to a recognized shift in system structure. The resulting model will normally have a structure and parameterization that suits the information content of the available data. The utility and practicality of this proposed approach have been demonstrated with an application in a real case study involving real-time operation of a reservoir in a river basin in southern Utah.

  18. On the use of Bayesian decision theory for issuing natural hazard warnings

    NASA Astrophysics Data System (ADS)

    Economou, T.; Stephenson, D. B.; Rougier, J. C.; Neal, R. A.; Mylne, K. R.

    2016-10-01

    Warnings for natural hazards improve societal resilience and are a good example of decision-making under uncertainty. A warning system is only useful if well defined and thus understood by stakeholders. However, most operational warning systems are heuristic: not formally or transparently defined. Bayesian decision theory provides a framework for issuing warnings under uncertainty but has not been fully exploited. Here, a decision theoretic framework is proposed for hazard warnings. The framework allows any number of warning levels and future states of nature, and a mathematical model for constructing the necessary loss functions for both generic and specific end-users is described. The approach is illustrated using one-day ahead warnings of daily severe precipitation over the UK, and compared to the current decision tool used by the UK Met Office. A probability model is proposed to predict precipitation, given ensemble forecast information, and loss functions are constructed for two generic stakeholders: an end-user and a forecaster. Results show that the Met Office tool issues fewer high-level warnings compared with our system for the generic end-user, suggesting the former may not be suitable for risk averse end-users. In addition, raw ensemble forecasts are shown to be unreliable and result in higher losses from warnings.

  19. On the use of Bayesian decision theory for issuing natural hazard warnings.

    PubMed

    Economou, T; Stephenson, D B; Rougier, J C; Neal, R A; Mylne, K R

    2016-10-01

    Warnings for natural hazards improve societal resilience and are a good example of decision-making under uncertainty. A warning system is only useful if well defined and thus understood by stakeholders. However, most operational warning systems are heuristic: not formally or transparently defined. Bayesian decision theory provides a framework for issuing warnings under uncertainty but has not been fully exploited. Here, a decision theoretic framework is proposed for hazard warnings. The framework allows any number of warning levels and future states of nature, and a mathematical model for constructing the necessary loss functions for both generic and specific end-users is described. The approach is illustrated using one-day ahead warnings of daily severe precipitation over the UK, and compared to the current decision tool used by the UK Met Office. A probability model is proposed to predict precipitation, given ensemble forecast information, and loss functions are constructed for two generic stakeholders: an end-user and a forecaster. Results show that the Met Office tool issues fewer high-level warnings compared with our system for the generic end-user, suggesting the former may not be suitable for risk averse end-users. In addition, raw ensemble forecasts are shown to be unreliable and result in higher losses from warnings.

  20. On the use of Bayesian decision theory for issuing natural hazard warnings

    PubMed Central

    Stephenson, D. B.; Rougier, J. C.; Neal, R. A.; Mylne, K. R.

    2016-01-01

    Warnings for natural hazards improve societal resilience and are a good example of decision-making under uncertainty. A warning system is only useful if well defined and thus understood by stakeholders. However, most operational warning systems are heuristic: not formally or transparently defined. Bayesian decision theory provides a framework for issuing warnings under uncertainty but has not been fully exploited. Here, a decision theoretic framework is proposed for hazard warnings. The framework allows any number of warning levels and future states of nature, and a mathematical model for constructing the necessary loss functions for both generic and specific end-users is described. The approach is illustrated using one-day ahead warnings of daily severe precipitation over the UK, and compared to the current decision tool used by the UK Met Office. A probability model is proposed to predict precipitation, given ensemble forecast information, and loss functions are constructed for two generic stakeholders: an end-user and a forecaster. Results show that the Met Office tool issues fewer high-level warnings compared with our system for the generic end-user, suggesting the former may not be suitable for risk averse end-users. In addition, raw ensemble forecasts are shown to be unreliable and result in higher losses from warnings. PMID:27843399

  1. Improving regional climate and hydrological forecasting following the record setting flooding across the Lake Ontario - St. Lawrence River system

    NASA Astrophysics Data System (ADS)

    Gronewold, A.; Seglenieks, F.; Bruxer, J.; Fortin, V.; Noel, J.

    2017-12-01

    In the spring of 2017, water levels across Lake Ontario and the upper St. Lawrence River exceeded record high levels, leading to widespread flooding, damage to property, and controversy over regional dam operating protocols. Only a few years earlier, water levels on Lakes Superior, Michigan, and Huron (upstream of Lake Ontario) had dropped to record low levels leading to speculation that either anthropogenic controls or climate change were leading to chronic water loss from the Great Lakes. The contrast between low water level conditions across Earth's largest lake system from the late 1990s through 2013, and the rapid rise prior to the flooding in early 2017, underscores the challenges of quantifying and forecasting hydrologic impacts of rising regional air and water temperatures (and associated changes in lake evaporation) and persistent increases in long-term precipitation. Here, we assess the hydrologic conditions leading to the recent record flooding across the Lake Ontario - St. Lawrence River system, with a particular emphasis on understanding the extent to which those conditions were consistent with observed and anticipated changes in historical and future climate, and the extent to which those conditions could have been anticipated through improvements in seasonal climate outlooks and hydrological forecasts.

  2. An Optimization of Inventory Demand Forecasting in University Healthcare Centre

    NASA Astrophysics Data System (ADS)

    Bon, A. T.; Ng, T. K.

    2017-01-01

    Healthcare industry becomes an important field for human beings nowadays as it concerns about one’s health. With that, forecasting demand for health services is an important step in managerial decision making for all healthcare organizations. Hence, a case study was conducted in University Health Centre to collect historical demand data of Panadol 650mg for 68 months from January 2009 until August 2014. The aim of the research is to optimize the overall inventory demand through forecasting techniques. Quantitative forecasting or time series forecasting model was used in the case study to forecast future data as a function of past data. Furthermore, the data pattern needs to be identified first before applying the forecasting techniques. Trend is the data pattern and then ten forecasting techniques are applied using Risk Simulator Software. Lastly, the best forecasting techniques will be find out with the least forecasting error. Among the ten forecasting techniques include single moving average, single exponential smoothing, double moving average, double exponential smoothing, regression, Holt-Winter’s additive, Seasonal additive, Holt-Winter’s multiplicative, seasonal multiplicative and Autoregressive Integrated Moving Average (ARIMA). According to the forecasting accuracy measurement, the best forecasting technique is regression analysis.

  3. Do quantitative decadal forecasts from GCMs provide decision relevant skill?

    NASA Astrophysics Data System (ADS)

    Suckling, E. B.; Smith, L. A.

    2012-04-01

    It is widely held that only physics-based simulation models can capture the dynamics required to provide decision-relevant probabilistic climate predictions. This fact in itself provides no evidence that predictions from today's GCMs are fit for purpose. Empirical (data-based) models are employed to make probability forecasts on decadal timescales, where it is argued that these 'physics free' forecasts provide a quantitative 'zero skill' target for the evaluation of forecasts based on more complicated models. It is demonstrated that these zero skill models are competitive with GCMs on decadal scales for probability forecasts evaluated over the last 50 years. Complications of statistical interpretation due to the 'hindcast' nature of this experiment, and the likely relevance of arguments that the lack of hindcast skill is irrelevant as the signal will soon 'come out of the noise' are discussed. A lack of decision relevant quantiative skill does not bring the science-based insights of anthropogenic warming into doubt, but it does call for a clear quantification of limits, as a function of lead time, for spatial and temporal scales on which decisions based on such model output are expected to prove maladaptive. Failing to do so may risk the credibility of science in support of policy in the long term. The performance amongst a collection of simulation models is evaluated, having transformed ensembles of point forecasts into probability distributions through the kernel dressing procedure [1], according to a selection of proper skill scores [2] and contrasted with purely data-based empirical models. Data-based models are unlikely to yield realistic forecasts for future climate change if the Earth system moves away from the conditions observed in the past, upon which the models are constructed; in this sense the empirical model defines zero skill. When should a decision relevant simulation model be expected to significantly outperform such empirical models? Probability forecasts up to ten years ahead (decadal forecasts) are considered, both on global and regional spatial scales for surface air temperature. Such decadal forecasts are not only important in terms of providing information on the impacts of near-term climate change, but also from the perspective of climate model validation, as hindcast experiments and a sufficient database of historical observations allow standard forecast verification methods to be used. Simulation models from the ENSEMBLES hindcast experiment [3] are evaluated and contrasted with static forecasts of the observed climatology, persistence forecasts and against simple statistical models, called dynamic climatology (DC). It is argued that DC is a more apropriate benchmark in the case of a non-stationary climate. It is found that the ENSEMBLES models do not demonstrate a significant increase in skill relative to the empirical models even at global scales over any lead time up to a decade ahead. It is suggested that the contsruction and co-evaluation with the data-based models become a regular component of the reporting of large simulation model forecasts. The methodology presented may easily be adapted to other forecasting experiments and is expected to influence the design of future experiments. The inclusion of comparisons with dynamic climatology and other data-based approaches provide important information to both scientists and decision makers on which aspects of state-of-the-art simulation forecasts are likely to be fit for purpose. [1] J. Bröcker and L. A. Smith. From ensemble forecasts to predictive distributions, Tellus A, 60(4), 663-678 (2007). [2] J. Bröcker and L. A. Smith. Scoring probabilistic forecasts: The importance of being proper, Weather and Forecasting, 22, 382-388 (2006). [3] F. J. Doblas-Reyes, A. Weisheimer, T. N. Palmer, J. M. Murphy and D. Smith. Forecast quality asessment of the ENSEMBLES seasonal-to-decadal stream 2 hindcasts, ECMWF Technical Memorandum, 621 (2010).

  4. Recent Progress of Solar Weather Forecasting at Naoc

    NASA Astrophysics Data System (ADS)

    He, Han; Wang, Huaning; Du, Zhanle; Zhang, Liyun; Huang, Xin; Yan, Yan; Fan, Yuliang; Zhu, Xiaoshuai; Guo, Xiaobo; Dai, Xinghua

    The history of solar weather forecasting services at National Astronomical Observatories, Chinese Academy of Sciences (NAOC) can be traced back to 1960s. Nowadays, NAOC is the headquarters of the Regional Warning Center of China (RWC-China), which is one of the members of the International Space Environment Service (ISES). NAOC is responsible for exchanging data, information and space weather forecasts of RWC-China with other RWCs. The solar weather forecasting services at NAOC cover short-term prediction (within two or three days), medium-term prediction (within several weeks), and long-term prediction (in time scale of solar cycle) of solar activities. Most efforts of the short-term prediction research are concentrated on the solar eruptive phenomena, such as flares, coronal mass ejections (CMEs) and solar proton events, which are the key driving sources of strong space weather disturbances. Based on the high quality observation data of the latest space-based and ground-based solar telescopes and with the help of artificial intelligence techniques, new numerical models with quantitative analyses and physical consideration are being developed for the predictions of solar eruptive events. The 3-D computer simulation technology is being introduced for the operational solar weather service platform to visualize the monitoring of solar activities, the running of the prediction models, as well as the presenting of the forecasting results. A new generation operational solar weather monitoring and forecasting system is expected to be constructed in the near future at NAOC.

  5. Survey of Long-Term Technology Forecasting Methodologies

    DTIC Science & Technology

    2002-11-01

    called for include an integrated demand information architecture, a TransAtmospheric Vehicle (TAV), and development of a space-based laser ( SBL ) system...Program,” NASA TM-1998-208400, 1998 (see http://www.grc.nasa.gov/WWW/ bpp /TM-1998-208400.htm ). Also available in Missions to the Outer Solar System and...November 1997, Presented at Plenary Session III Views of Future STAIF, Jan. 27, 1998, Albuquerque, NM (see http://www.lerc.nasa.gov/ WWW/ bpp /TM-97-206241

  6. The Impacts of Global Scale Climate Variations on Southwest Asia

    DTIC Science & Technology

    2006-03-01

    accurately assess the current state of the climate and attempt to project into the future, we must have a thorough understanding of the long-term...mean (LTM) conditions in the region of interest. Once we understand the LTM, we can compare the current state of the climate system to the LTM, as...climate analysis and forecasting. 3 Climate analysis, in broad terms, is diagnosing the current state of the climate system and noting departures from

  7. Forecasting Occurrences of Activities.

    PubMed

    Minor, Bryan; Cook, Diane J

    2017-07-01

    While activity recognition has been shown to be valuable for pervasive computing applications, less work has focused on techniques for forecasting the future occurrence of activities. We present an activity forecasting method to predict the time that will elapse until a target activity occurs. This method generates an activity forecast using a regression tree classifier and offers an advantage over sequence prediction methods in that it can predict expected time until an activity occurs. We evaluate this algorithm on real-world smart home datasets and provide evidence that our proposed approach is most effective at predicting activity timings.

  8. Forecasting East Asian Indices Futures via a Novel Hybrid of Wavelet-PCA Denoising and Artificial Neural Network Models

    PubMed Central

    2016-01-01

    The motivation behind this research is to innovatively combine new methods like wavelet, principal component analysis (PCA), and artificial neural network (ANN) approaches to analyze trade in today’s increasingly difficult and volatile financial futures markets. The main focus of this study is to facilitate forecasting by using an enhanced denoising process on market data, taken as a multivariate signal, in order to deduct the same noise from the open-high-low-close signal of a market. This research offers evidence on the predictive ability and the profitability of abnormal returns of a new hybrid forecasting model using Wavelet-PCA denoising and ANN (named WPCA-NN) on futures contracts of Hong Kong’s Hang Seng futures, Japan’s NIKKEI 225 futures, Singapore’s MSCI futures, South Korea’s KOSPI 200 futures, and Taiwan’s TAIEX futures from 2005 to 2014. Using a host of technical analysis indicators consisting of RSI, MACD, MACD Signal, Stochastic Fast %K, Stochastic Slow %K, Stochastic %D, and Ultimate Oscillator, empirical results show that the annual mean returns of WPCA-NN are more than the threshold buy-and-hold for the validation, test, and evaluation periods; this is inconsistent with the traditional random walk hypothesis, which insists that mechanical rules cannot outperform the threshold buy-and-hold. The findings, however, are consistent with literature that advocates technical analysis. PMID:27248692

  9. Forecasting East Asian Indices Futures via a Novel Hybrid of Wavelet-PCA Denoising and Artificial Neural Network Models.

    PubMed

    Chan Phooi M'ng, Jacinta; Mehralizadeh, Mohammadali

    2016-01-01

    The motivation behind this research is to innovatively combine new methods like wavelet, principal component analysis (PCA), and artificial neural network (ANN) approaches to analyze trade in today's increasingly difficult and volatile financial futures markets. The main focus of this study is to facilitate forecasting by using an enhanced denoising process on market data, taken as a multivariate signal, in order to deduct the same noise from the open-high-low-close signal of a market. This research offers evidence on the predictive ability and the profitability of abnormal returns of a new hybrid forecasting model using Wavelet-PCA denoising and ANN (named WPCA-NN) on futures contracts of Hong Kong's Hang Seng futures, Japan's NIKKEI 225 futures, Singapore's MSCI futures, South Korea's KOSPI 200 futures, and Taiwan's TAIEX futures from 2005 to 2014. Using a host of technical analysis indicators consisting of RSI, MACD, MACD Signal, Stochastic Fast %K, Stochastic Slow %K, Stochastic %D, and Ultimate Oscillator, empirical results show that the annual mean returns of WPCA-NN are more than the threshold buy-and-hold for the validation, test, and evaluation periods; this is inconsistent with the traditional random walk hypothesis, which insists that mechanical rules cannot outperform the threshold buy-and-hold. The findings, however, are consistent with literature that advocates technical analysis.

  10. Analysis and Forecasting of Shoreline Position

    NASA Astrophysics Data System (ADS)

    Barton, C. C.; Tebbens, S. F.

    2007-12-01

    Analysis of historical shoreline positions on sandy coasts, in the geologic record, and study of sea-level rise curves reveals that the dynamics of the underlying processes produce temporal/spatial signals that exhibit power scaling and are therefore self-affine fractals. Self-affine time series signals can be quantified over many orders of magnitude in time and space in terms of persistence, a measure of the degree of correlation between adjacent values in the stochastic portion of a time series. Fractal statistics developed for self-affine time series are used to forecast a probability envelope bounding future shoreline positions. The envelope provides the standard deviation as a function of three variables: persistence, a constant equal to the value of the power spectral density when 1/period equals 1, and the number of time increments. The persistence of a twenty-year time series of the mean-high-water (MHW) shoreline positions was measured for four profiles surveyed at Duck, NC at the Field Research Facility (FRF) by the U.S. Army Corps of Engineers. The four MHW shoreline time series signals are self-affine with persistence ranging between 0.8 and 0.9, which indicates that the shoreline position time series is weakly persistent (where zero is uncorrelated), and has highly varying trends for all time intervals sampled. Forecasts of a probability envelope for future MHW positions are made for the 20 years of record and beyond to 50 years from the start of the data records. The forecasts describe the twenty-year data sets well and indicate that within a 96% confidence envelope, future decadal MHW shoreline excursions should be within 14.6 m of the position at the start of data collection. This is a stable-oscillatory shoreline. The forecasting method introduced here includes the stochastic portion of the time series while the traditional method of predicting shoreline change reduces the time series to a linear trend line fit to historic shoreline positions and extrapolated linearly to forecast future positions with a linearly increasing mean that breaks the confidence envelope eight years into the future and continues to increase. The traditional method is a poor representation of the observed shoreline position time series and is a poor basis for extrapolating future shoreline positions.

  11. ESA SSA Programme in support of Space Weather forecasting

    NASA Astrophysics Data System (ADS)

    Luntama, J.; Glover, A.; Hilgers, A. M.

    2010-12-01

    In 2009 European Space Agency (ESA) started a new programme called Space Situational Awareness (SSA) Preparatory Programme. The objective of the programme is to support the European independent utilisation of and access to space research or services. This will be performed through providing timely and quality data, information, services and knowledge regarding the environment, the threats and the sustainable exploitation of the outer space surrounding the planet Earth. SSA serves the implementation of the strategic missions of the European Space Policy based on the peaceful uses of the outer space by all states, by supporting the autonomous capacity to securely and safely operate the critical European space infrastructures. The SSA Preparatory Program will establish the initial elements that will eventually lead into the full deployment of the European SSA services. The SWE Segment of the SSA will provide user services related to the monitoring of the Sun, the solar wind, the radiation belts, the magnetosphere and the ionosphere. These services will include near real time information and forecasts about the characteristics of the space environment and predictions of space weather impacts on sensitive spaceborne and ground based infrastructure. The SSA SWE system will also include establishment of a permanent database for analysis, model development and scientific research. These services are will support a wide variety of user domains including spacecraft designers, spacecraft operators, human space flights, users and operators of transionospheric radio links, and space weather research community. The precursor SWE services to be established starting in 2010 will include a selected subset of these services based on pre-existing space weather applications and services in Europe. This paper will present the key characteristics of the SSA SWE system that is currently being designed. The presentation will focus on the system characteristics that support space weather forecasting and the related services. The presentation will show results from the analysis of the existing European assets and the identified development needs in the mid and long term future to ensure forecasting capability for the services requested the by SSA SWE users. The analysis covers the future SSA SWE space segment and the service development needs for the ground segment.

  12. Forecasting Individual Headache Attacks Using Perceived Stress: Development of a Multivariable Prediction Model for Persons With Episodic Migraine.

    PubMed

    Houle, Timothy T; Turner, Dana P; Golding, Adrienne N; Porter, John A H; Martin, Vincent T; Penzien, Donald B; Tegeler, Charles H

    2017-07-01

    To develop and validate a prediction model that forecasts future migraine attacks for an individual headache sufferer. Many headache patients and physicians believe that precipitants of headache can be identified and avoided or managed to reduce the frequency of headache attacks. Of the numerous candidate triggers, perceived stress has received considerable attention for its association with the onset of headache in episodic and chronic headache sufferers. However, no evidence is available to support forecasting headache attacks within individuals using any of the candidate headache triggers. This longitudinal cohort with forecasting model development study enrolled 100 participants with episodic migraine with or without aura, and N = 95 contributed 4626 days of electronic diary data and were included in the analysis. Individual headache forecasts were derived from current headache state and current levels of stress using several aspects of the Daily Stress Inventory, a measure of daily hassles that is completed at the end of each day. The primary outcome measure was the presence/absence of any headache attack (head pain > 0 on a numerical rating scale of 0-10) over the next 24 h period. After removing missing data (n = 431 days), participants in the study experienced a headache attack on 1613/4195 (38.5%) days. A generalized linear mixed-effects forecast model using either the frequency of stressful events or the perceived intensity of these events fit the data well. This simple forecasting model possessed promising predictive utility with an AUC of 0.73 (95% CI 0.71-0.75) in the training sample and an AUC of 0.65 (95% CI 0.6-0.67) in a leave-one-out validation sample. This forecasting model had a Brier score of 0.202 and possessed good calibration between forecasted probabilities and observed frequencies but had only low levels of resolution (ie, sharpness). This study demonstrates that future headache attacks can be forecasted for a diverse group of individuals over time. Future work will enhance prediction through improvements in the assessment of stress as well as the development of other candidate domains to use in the models. © 2017 American Headache Society.

  13. A Method for Forecasting the Commercial Air Traffic Schedule in the Future

    NASA Technical Reports Server (NTRS)

    Long, Dou; Lee, David; Gaier, Eric; Johnson, Jesse; Kostiuk, Peter

    1999-01-01

    This report presents an integrated set of models that forecasts air carriers' future operations when delays due to limited terminal-area capacity are considered. This report models the industry as a whole, avoiding unnecessary details of competition among the carriers. To develop the schedule outputs, we first present a model to forecast the unconstrained flight schedules in the future, based on the assumption of rational behavior of the carriers. Then we develop a method to modify the unconstrained schedules, accounting for effects of congestion due to limited NAS capacities. Our underlying assumption is that carriers will modify their operations to keep mean delays within certain limits. We estimate values for those limits from changes in planned block times reflected in the OAG. Our method for modifying schedules takes many means of reducing the delays into considerations, albeit some of them indirectly. The direct actions include depeaking, operating in off-hours, and reducing hub airports'operations. Indirect actions include using secondary airports, using larger aircraft, and selecting new hub airports, which, we assume, have already been modeled in the FAA's TAF. Users of our suite of models can substitute an alternative forecast for the TAF.

  14. The Future of Low-Carbon Electricity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenblatt, Jeffery B.; Brown, Nicholas R.; Slaybaugh, Rachel

    Here, we review future global demand for electricity and major technologies positioned to supply itwith minimal greenhouse gas (GHG) emissions: renewables (wind, solar, water, geothermal and biomass), nuclear fission, and fossil power with CO 2 capture and sequestration. Two breakthrough technologies (space solar power and nuclear fusion) are discussed as exciting but uncertain additional options for low net GHG emissions (“low-carbon”) electricity generation. Grid integration technologies (monitoring and forecasting of transmission and distribution systems, demand-side load management, energy storage, and load balancing with low-carbon fuel substitutes) are also discussed. For each topic, recent historical trends and future prospects are reviewed,more » along with technical challenges, costs and other issues as appropriate. While no technology represents an ideal solution, their strengths can be enhanced by deployment in combination, along with grid integration that forms a critical set of enabling technologies to assure a reliable and robust future low-carbon electricity system.« less

  15. The Future of Low-Carbon Electricity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenblatt, Jeffery B.; Brown, Nicholas R.; Slaybaugh, Rachel

    We review future global demand for electricity and major technologies positioned to supply it with minimal greenhouse gas (GHG) emissions: renewables (wind, solar, water, geothermal, and biomass), nuclear fission, and fossil power with CO2 capture and sequestration. We discuss two breakthrough technologies (space solar power and nuclear fusion) as exciting but uncertain additional options for low-net GHG emissions (i.e., low-carbon) electricity generation. In addition, we discuss grid integration technologies (monitoring and forecasting of transmission and distribution systems, demand-side load management, energy storage, and load balancing with low-carbon fuel substitutes). For each topic, recent historical trends and future prospects are reviewed,more » along with technical challenges, costs, and other issues as appropriate. Although no technology represents an ideal solution, their strengths can be enhanced by deployment in combination, along with grid integration that forms a critical set of enabling technologies to assure a reliable and robust future low-carbon electricity system.« less

  16. The Future of Low-Carbon Electricity

    DOE PAGES

    Greenblatt, Jeffery B.; Brown, Nicholas R.; Slaybaugh, Rachel; ...

    2017-07-10

    Here, we review future global demand for electricity and major technologies positioned to supply itwith minimal greenhouse gas (GHG) emissions: renewables (wind, solar, water, geothermal and biomass), nuclear fission, and fossil power with CO 2 capture and sequestration. Two breakthrough technologies (space solar power and nuclear fusion) are discussed as exciting but uncertain additional options for low net GHG emissions (“low-carbon”) electricity generation. Grid integration technologies (monitoring and forecasting of transmission and distribution systems, demand-side load management, energy storage, and load balancing with low-carbon fuel substitutes) are also discussed. For each topic, recent historical trends and future prospects are reviewed,more » along with technical challenges, costs and other issues as appropriate. While no technology represents an ideal solution, their strengths can be enhanced by deployment in combination, along with grid integration that forms a critical set of enabling technologies to assure a reliable and robust future low-carbon electricity system.« less

  17. Forecasting future needs and optimal allocation of medical residency positions: the Emilia-Romagna Region case study.

    PubMed

    Senese, Francesca; Tubertini, Paolo; Mazzocchetti, Angelina; Lodi, Andrea; Ruozi, Corrado; Grilli, Roberto

    2015-01-30

    Italian regional health authorities annually negotiate the number of residency grants to be financed by the National government and the number and mix of supplementary grants to be funded by the regional budget. This study provides regional decision-makers with a requirement model to forecast the future demand of specialists at the regional level. We have developed a system dynamics (SD) model that projects the evolution of the supply of medical specialists and three demand scenarios across the planning horizon (2030). Demand scenarios account for different drivers: demography, service utilization rates (ambulatory care and hospital discharges) and hospital beds. Based on the SD outputs (occupational and training gaps), a mixed integer programming (MIP) model computes potentially effective assignments of medical specialization grants for each year of the projection. To simulate the allocation of grants, we have compared how regional and national grants can be managed in order to reduce future gaps with respect to current training patterns. The allocation of 25 supplementary grants per year does not appear as effective in reducing expected occupational gaps as the re-modulation of all regional training vacancies.

  18. Evaluation of ensemble forecast uncertainty using a new proper score: application to medium-range and seasonal forecasts

    NASA Astrophysics Data System (ADS)

    Christensen, Hannah; Moroz, Irene; Palmer, Tim

    2015-04-01

    Forecast verification is important across scientific disciplines as it provides a framework for evaluating the performance of a forecasting system. In the atmospheric sciences, probabilistic skill scores are often used for verification as they provide a way of unambiguously ranking the performance of different probabilistic forecasts. In order to be useful, a skill score must be proper -- it must encourage honesty in the forecaster, and reward forecasts which are reliable and which have good resolution. A new score, the Error-spread Score (ES), is proposed which is particularly suitable for evaluation of ensemble forecasts. It is formulated with respect to the moments of the forecast. The ES is confirmed to be a proper score, and is therefore sensitive to both resolution and reliability. The ES is tested on forecasts made using the Lorenz '96 system, and found to be useful for summarising the skill of the forecasts. The European Centre for Medium-Range Weather Forecasts (ECMWF) ensemble prediction system (EPS) is evaluated using the ES. Its performance is compared to a perfect statistical probabilistic forecast -- the ECMWF high resolution deterministic forecast dressed with the observed error distribution. This generates a forecast that is perfectly reliable if considered over all time, but which does not vary from day to day with the predictability of the atmospheric flow. The ES distinguishes between the dynamically reliable EPS forecasts and the statically reliable dressed deterministic forecasts. Other skill scores are tested and found to be comparatively insensitive to this desirable forecast quality. The ES is used to evaluate seasonal range ensemble forecasts made with the ECMWF System 4. The ensemble forecasts are found to be skilful when compared with climatological or persistence forecasts, though this skill is dependent on region and time of year.

  19. The origins of computer weather prediction and climate modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lynch, Peter

    2008-03-20

    Numerical simulation of an ever-increasing range of geophysical phenomena is adding enormously to our understanding of complex processes in the Earth system. The consequences for mankind of ongoing climate change will be far-reaching. Earth System Models are capable of replicating climate regimes of past millennia and are the best means we have of predicting the future of our climate. The basic ideas of numerical forecasting and climate modeling were developed about a century ago, long before the first electronic computer was constructed. There were several major practical obstacles to be overcome before numerical prediction could be put into practice. Amore » fuller understanding of atmospheric dynamics allowed the development of simplified systems of equations; regular radiosonde observations of the free atmosphere and, later, satellite data, provided the initial conditions; stable finite difference schemes were developed; and powerful electronic computers provided a practical means of carrying out the prodigious calculations required to predict the changes in the weather. Progress in weather forecasting and in climate modeling over the past 50 years has been dramatic. In this presentation, we will trace the history of computer forecasting through the ENIAC integrations to the present day. The useful range of deterministic prediction is increasing by about one day each decade, and our understanding of climate change is growing rapidly as Earth System Models of ever-increasing sophistication are developed.« less

  20. The origins of computer weather prediction and climate modeling

    NASA Astrophysics Data System (ADS)

    Lynch, Peter

    2008-03-01

    Numerical simulation of an ever-increasing range of geophysical phenomena is adding enormously to our understanding of complex processes in the Earth system. The consequences for mankind of ongoing climate change will be far-reaching. Earth System Models are capable of replicating climate regimes of past millennia and are the best means we have of predicting the future of our climate. The basic ideas of numerical forecasting and climate modeling were developed about a century ago, long before the first electronic computer was constructed. There were several major practical obstacles to be overcome before numerical prediction could be put into practice. A fuller understanding of atmospheric dynamics allowed the development of simplified systems of equations; regular radiosonde observations of the free atmosphere and, later, satellite data, provided the initial conditions; stable finite difference schemes were developed; and powerful electronic computers provided a practical means of carrying out the prodigious calculations required to predict the changes in the weather. Progress in weather forecasting and in climate modeling over the past 50 years has been dramatic. In this presentation, we will trace the history of computer forecasting through the ENIAC integrations to the present day. The useful range of deterministic prediction is increasing by about one day each decade, and our understanding of climate change is growing rapidly as Earth System Models of ever-increasing sophistication are developed.

Top