The shaping of genetic variation in edge-of-range populations under past and future climate change
Razgour, Orly; Juste, Javier; Ibáñez, Carlos; Kiefer, Andreas; Rebelo, Hugo; Puechmaille, Sébastien J; Arlettaz, Raphael; Burke, Terry; Dawson, Deborah A; Beaumont, Mark; Jones, Gareth; Wiens, John
2013-01-01
With rates of climate change exceeding the rate at which many species are able to shift their range or adapt, it is important to understand how future changes are likely to affect biodiversity at all levels of organisation. Understanding past responses and extent of niche conservatism in climatic tolerance can help predict future consequences. We use an integrated approach to determine the genetic consequences of past and future climate changes on a bat species, Plecotus austriacus. Glacial refugia predicted by palaeo-modelling match those identified from analyses of extant genetic diversity and model-based inference of demographic history. Former refugial populations currently contain disproportionately high genetic diversity, but niche conservatism, shifts in suitable areas and barriers to migration mean that these hotspots of genetic diversity are under threat from future climate change. Evidence of population decline despite recent northward migration highlights the need to conserve leading-edge populations for spearheading future range shifts. PMID:23890483
Laufer, Vincent A; Chen, Jake Y; Langefeld, Carl D; Bridges, S Louis
2017-08-01
The use of high-throughput omics may help to understand the contribution of genetic variants to the pathogenesis of rheumatic diseases. We discuss the concept of missing heritability: that genetic variants do not explain the heritability of rheumatoid arthritis and related rheumatologic conditions. In addition to an overview of how integrative data analysis can lead to novel insights into mechanisms of rheumatic diseases, we describe statistical approaches to prioritizing genetic variants for future functional analyses. We illustrate how analyses of large datasets provide hope for improved approaches to the diagnosis, treatment, and prevention of rheumatic diseases. Copyright © 2017 Elsevier Inc. All rights reserved.
Foust, C M; Preite, V; Schrey, A W; Alvarez, M; Robertson, M H; Verhoeven, K J F; Richards, C L
2016-04-01
While traits and trait plasticity are partly genetically based, investigating epigenetic mechanisms may provide more nuanced understanding of the mechanisms underlying response to environment. Using AFLP and methylation-sensitive AFLP, we tested the hypothesis that differentiation to habitats along natural salt marsh environmental gradients occurs at epigenetic, but not genetic loci in two salt marsh perennials. We detected significant genetic and epigenetic structure among populations and among subpopulations, but we found multilocus patterns of differentiation to habitat type only in epigenetic variation for both species. In addition, more epigenetic than genetic loci were correlated with habitat in both species. When we analysed genetic and epigenetic variation simultaneously with partial Mantel, we found no correlation between genetic variation and habitat and a significant correlation between epigenetic variation and habitat in Spartina alterniflora. In Borrichia frutescens, we found significant correlations between epigenetic and/or genetic variation and habitat in four of five populations when populations were analysed individually, but there was no significant correlation between genetic or epigenetic variation and habitat when analysed jointly across the five populations. These analyses suggest that epigenetic mechanisms are involved in the response to salt marsh habitats, but also that the relationships among genetic and epigenetic variation and habitat vary by species. Site-specific conditions may also cloud our ability to detect response in replicate populations with similar environmental gradients. Future studies analysing sequence data and the correlation between genetic variation and DNA methylation will be powerful to identify the contributions of genetic and epigenetic response to environmental gradients. © 2016 John Wiley & Sons Ltd.
Russell, Joanne; van Zonneveld, Maarten; Dawson, Ian K.; Booth, Allan; Waugh, Robbie; Steffenson, Brian
2014-01-01
Describing genetic diversity in wild barley (Hordeum vulgare ssp. spontaneum) in geographic and environmental space in the context of current, past and potential future climates is important for conservation and for breeding the domesticated crop (Hordeum vulgare ssp. vulgare). Spatial genetic diversity in wild barley was revealed by both nuclear- (2,505 SNP, 24 nSSR) and chloroplast-derived (5 cpSSR) markers in 256 widely-sampled geo-referenced accessions. Results were compared with MaxEnt-modelled geographic distributions under current, past (Last Glacial Maximum, LGM) and mid-term future (anthropogenic scenario A2, the 2080s) climates. Comparisons suggest large-scale post-LGM range expansion in Central Asia and relatively small, but statistically significant, reductions in range-wide genetic diversity under future climate. Our analyses support the utility of ecological niche modelling for locating genetic diversity hotspots and determine priority geographic areas for wild barley conservation under anthropogenic climate change. Similar research on other cereal crop progenitors could play an important role in tailoring conservation and crop improvement strategies to support future human food security. PMID:24505252
Schnitzler, Annik; Arnold, Claire; Cornille, Amandine; Bachmann, Olivier; Schnitzler, Christophe
2014-01-01
The increasing fragmentation of forest habitats and the omnipresence of cultivars potentially threaten the genetic integrity of the European wild apple (Malus sylvestris (L.) Mill). However, the conservation status of this species remains unclear in Europe, other than in Belgium and the Czech Republic, where it has been declared an endangered species. The population density of M. sylvestris is higher in the forests of the upper Rhine Valley (France) than in most European forests, with an unbalanced age-structure, an overrepresentation of adults and a tendency to clump. We characterize here the ecology, age-structure and genetic diversity of wild apple populations in the Rhine Valley. We use these data to highlight links to the history of this species and to propose guidelines for future conservation strategies. In total, 255 individual wild apple trees from six forest stands (five floodplain forests and one forest growing in drier conditions) were analysed in the field, collected and genotyped on the basis of data for 15 microsatellite markers. Genetic analyses showed no escaped cultivars and few hybrids with the cultivated apple. Excluding the hybrids, the genetically "pure" populations displayed high levels of genetic diversity and a weak population structure. Age-structure and ecology studies of wild apple populations identified four categories that were not randomly distributed across the forests, reflecting the history of the Rhine forest over the last century. The Rhine wild apple populations, with their ecological strategies, high genetic diversity, and weak traces of crop-to-wild gene flow associated with the history of these floodplain forests, constitute candidate populations for inclusion in future conservation programmes for European wild apple.
Schnitzler, Annik; Arnold, Claire; Cornille, Amandine; Bachmann, Olivier; Schnitzler, Christophe
2014-01-01
The increasing fragmentation of forest habitats and the omnipresence of cultivars potentially threaten the genetic integrity of the European wild apple (Malus sylvestris (L.) Mill). However, the conservation status of this species remains unclear in Europe, other than in Belgium and the Czech Republic, where it has been declared an endangered species. The population density of M. sylvestris is higher in the forests of the upper Rhine Valley (France) than in most European forests, with an unbalanced age-structure, an overrepresentation of adults and a tendency to clump. We characterize here the ecology, age-structure and genetic diversity of wild apple populations in the Rhine Valley. We use these data to highlight links to the history of this species and to propose guidelines for future conservation strategies. In total, 255 individual wild apple trees from six forest stands (five floodplain forests and one forest growing in drier conditions) were analysed in the field, collected and genotyped on the basis of data for 15 microsatellite markers. Genetic analyses showed no escaped cultivars and few hybrids with the cultivated apple. Excluding the hybrids, the genetically “pure” populations displayed high levels of genetic diversity and a weak population structure. Age-structure and ecology studies of wild apple populations identified four categories that were not randomly distributed across the forests, reflecting the history of the Rhine forest over the last century. The Rhine wild apple populations, with their ecological strategies, high genetic diversity, and weak traces of crop-to-wild gene flow associated with the history of these floodplain forests, constitute candidate populations for inclusion in future conservation programmes for European wild apple. PMID:24827575
Buseh, A; Kelber, S; Millon-Underwood, S; Stevens, P; Townsend, L
2014-01-01
Reasons for low participation of ethnic minorities in genetic studies are multifactorial and often poorly understood. Based on published literature, participation in genetic testing is low among Black African immigrants/refugees although they are purported to bear disproportionate disease burden. Thus, research involving Black African immigrant/refugee populations that examine their perspectives on participating in genetic studies is needed. This report examines and describes the knowledge of medical genetics, group-based medical mistrust, and future expectations of genetic research and the influence of these measures on the perceived disadvantages of genetic testing among Black African immigrants/refugees. Using a cross-sectional survey design, a nonprobability sample (n = 212) of Black African immigrants/refugees was administered a questionnaire. Participants ranged in age from 18 to 61 years (mean = 38.91, SD = 9.78). The questionnaire consisted of 5 instruments: (a) sociodemographic characteristics, (b) Knowledge of Medical Genetics scale, (c) Group-Based Medical Mistrust Scale, (d) Future Expectations/Anticipated Consequences of Genetics Research scale, and (e) Perceived Disadvantages of Genetic Testing scale. Participants were concerned that genetic research may result in scientists 'playing God,' interfering with the natural order of life. In multivariate analyses, the perceived disadvantages of genetic testing increased as medical mistrust and anticipated negative impacts of genetic testing increased. Increase in genetic knowledge contributed to a decrease in perceived disadvantages. Our findings suggest that recruitment of Black African immigrants/refugees in genetic studies should address potential low knowledge of genetics, concerns about medical mistrust, the expectations/anticipated consequences of genetic research, and the perceived disadvantages of genetic testing.
[Molecular and immunohistochemical diagnostics in melanoma].
Schilling, B; Griewank, K G
2016-07-01
To provide appropriate therapy and follow-up to patients with malignant melanoma, proper diagnostics are of critical importance. Targeted therapy of advanced melanoma is based on the molecular genetic analyses of tumor tissue. In addition, sequencing of genes and other genetic approaches can provide insight into the origin of melanocytic tumors and can aid in distinguishing benign from malignant lesions. In this regard, spizoid neoplasms remain a challenging entity. Aside from genetic analyses of tumor tissue, immunohistochemistry remains an essential tool in melanoma diagnostics and TNM classification. With new immunotherapies being approved for advanced melanoma, immunohistochemistry to determine PD-L1 expression has gained clinical interest. While PD-L1 expression is associated with response to PD-1 blockade, a substantial number of patients without PD-L1 expression can still experience tumor remission upon treatment. In this review, current and future developments in melanoma diagnostics with regard to molecular genetics and immunohistochemistry are summarized. The utilization of such analyses in clinical decision making is also discussed.
Vangestel, C; Mergeay, J; Dawson, D A; Callens, T; Vandomme, V; Lens, L
2012-01-01
House sparrow (Passer domesticus) populations have suffered major declines in urban as well as rural areas, while remaining relatively stable in suburban ones. Yet, to date no exhaustive attempt has been made to examine how, and to what extent, spatial variation in population demography is reflected in genetic population structuring along contemporary urbanization gradients. Here we use putatively neutral microsatellite loci to study if and how genetic variation can be partitioned in a hierarchical way among different urbanization classes. Principal coordinate analyses did not support the hypothesis that urban/suburban and rural populations comprise two distinct genetic clusters. Comparison of FST values at different hierarchical scales revealed drift as an important force of population differentiation. Redundancy analyses revealed that genetic structure was strongly affected by both spatial variation and level of urbanization. The results shown here can be used as baseline information for future genetic monitoring programmes and provide additional insights into contemporary house sparrow dynamics along urbanization gradients. PMID:22588131
Vangestel, C; Mergeay, J; Dawson, D A; Callens, T; Vandomme, V; Lens, L
2012-09-01
House sparrow (Passer domesticus) populations have suffered major declines in urban as well as rural areas, while remaining relatively stable in suburban ones. Yet, to date no exhaustive attempt has been made to examine how, and to what extent, spatial variation in population demography is reflected in genetic population structuring along contemporary urbanization gradients. Here we use putatively neutral microsatellite loci to study if and how genetic variation can be partitioned in a hierarchical way among different urbanization classes. Principal coordinate analyses did not support the hypothesis that urban/suburban and rural populations comprise two distinct genetic clusters. Comparison of FST values at different hierarchical scales revealed drift as an important force of population differentiation. Redundancy analyses revealed that genetic structure was strongly affected by both spatial variation and level of urbanization. The results shown here can be used as baseline information for future genetic monitoring programmes and provide additional insights into contemporary house sparrow dynamics along urbanization gradients.
Gugger, Paul F; Liang, Christina T; Sork, Victoria L; Hodgskiss, Paul; Wright, Jessica W
2018-02-01
Identifying and quantifying the importance of environmental variables in structuring population genetic variation can help inform management decisions for conservation, restoration, or reforestation purposes, in both current and future environmental conditions. Landscape genomics offers a powerful approach for understanding the environmental factors that currently associate with genetic variation, and given those associations, where populations may be most vulnerable under future environmental change. Here, we applied genotyping by sequencing to generate over 11,000 single nucleotide polymorphisms from 311 trees and then used nonlinear, multivariate environmental association methods to examine spatial genetic structure and its association with environmental variation in an ecologically and economically important tree species endemic to Hawaii, Acacia koa . Admixture and principal components analyses showed that trees from different islands are genetically distinct in general, with the exception of some genotypes that match other islands, likely as the result of recent translocations. Gradient forest and generalized dissimilarity models both revealed a strong association between genetic structure and mean annual rainfall. Utilizing a model for projected future climate on the island of Hawaii, we show that predicted changes in rainfall patterns may result in genetic offset, such that trees no longer may be genetically matched to their environment. These findings indicate that knowledge of current and future rainfall gradients can provide valuable information for the conservation of existing populations and also help refine seed transfer guidelines for reforestation or replanting of koa throughout the state.
The behavioral genetics of nonhuman primates: Status and prospects.
Rogers, Jeffrey
2018-01-01
The complexity and diversity of primate behavior have long attracted the attention of ethologists, psychologists, behavioral ecologists, and neuroscientists. Recent studies have advanced our understanding of the nature of genetic influences on differences in behavior among individuals within species. A number of analyses have focused on the genetic analysis of behavioral reactions to specific experimental tests, providing estimates of the degree of genetic control over reactivity, and beginning to identify the genes involved. Substantial progress is also being made in identifying genetic factors that influence the structure and function of the primate brain. Most of the published studies on these topics have examined either cercopithecines or chimpanzees, though a few studies have addressed these questions in other primate species. One potentially important line of research is beginning to identify the epigenetic processes that influence primate behavior, thus revealing specific cellular and molecular mechanisms by which environmental experiences can influence gene expression or gene function relevant to behavior. This review summarizes many of these studies of non-human primate behavioral genetics. The primary focus is on analyses that address the nature of the genes and genetic processes that affect differences in behavior among individuals within non-human primate species. Analyses of between species differences and potential avenues for future research are also discussed. © 2018 American Association of Physical Anthropologists.
Grant, J D; Lynskey, M T; Madden, P A F; Nelson, E C; Few, L R; Bucholz, K K; Statham, D J; Martin, N G; Heath, A C; Agrawal, A
2015-12-01
Genetic influences contribute significantly to co-morbidity between conduct disorder and substance use disorders. Estimating the extent of overlap can assist in the development of phenotypes for genomic analyses. Multivariate quantitative genetic analyses were conducted using data from 9577 individuals, including 3982 complete twin pairs and 1613 individuals whose co-twin was not interviewed (aged 24-37 years) from two Australian twin samples. Analyses examined the genetic correlation between alcohol dependence, nicotine dependence and cannabis abuse/dependence and the extent to which the correlations were attributable to genetic influences shared with conduct disorder. Additive genetic (a(2) = 0.48-0.65) and non-shared environmental factors explained variance in substance use disorders. Familial effects on conduct disorder were due to additive genetic (a(2) = 0.39) and shared environmental (c(2) = 0.15) factors. All substance use disorders were influenced by shared genetic factors (rg = 0.38-0.56), with all genetic overlap between substances attributable to genetic influences shared with conduct disorder. Genes influencing individual substance use disorders were also significant, explaining 40-73% of the genetic variance per substance. Among substance users in this sample, the well-documented clinical co-morbidity between conduct disorder and substance use disorders is primarily attributable to shared genetic liability. Interventions targeted at generally reducing deviant behaviors may address the risk posed by this shared genetic liability. However, there is also evidence for genetic and environmental influences specific to each substance. The identification of these substance-specific risk factors (as well as potential protective factors) is critical to the future development of targeted treatment protocols.
Prunier, J G; Colyn, M; Legendre, X; Nimon, K F; Flamand, M C
2015-01-01
Direct gradient analyses in spatial genetics provide unique opportunities to describe the inherent complexity of genetic variation in wildlife species and are the object of many methodological developments. However, multicollinearity among explanatory variables is a systemic issue in multivariate regression analyses and is likely to cause serious difficulties in properly interpreting results of direct gradient analyses, with the risk of erroneous conclusions, misdirected research and inefficient or counterproductive conservation measures. Using simulated data sets along with linear and logistic regressions on distance matrices, we illustrate how commonality analysis (CA), a detailed variance-partitioning procedure that was recently introduced in the field of ecology, can be used to deal with nonindependence among spatial predictors. By decomposing model fit indices into unique and common (or shared) variance components, CA allows identifying the location and magnitude of multicollinearity, revealing spurious correlations and thus thoroughly improving the interpretation of multivariate regressions. Despite a few inherent limitations, especially in the case of resistance model optimization, this review highlights the great potential of CA to account for complex multicollinearity patterns in spatial genetics and identifies future applications and lines of research. We strongly urge spatial geneticists to systematically investigate commonalities when performing direct gradient analyses. © 2014 John Wiley & Sons Ltd.
Delmore, Kira E; Liedvogel, Miriam
2016-01-01
The amazing accuracy of migratory orientation performance across the animal kingdom is facilitated by the use of magnetic and celestial compass systems that provide individuals with both directional and positional information. Quantitative genetics analyses in several animal systems suggests that migratory orientation has a strong genetic component. Nevertheless, the exact identity of genes controlling orientation remains largely unknown, making it difficult to obtain an accurate understanding of this fascinating behavior on the molecular level. Here, we provide an overview of molecular genetic techniques employed thus far, highlight the pros and cons of various approaches, generalize results from species-specific studies whenever possible, and evaluate how far the field has come since early quantitative genetics studies. We emphasize the importance of examining different levels of molecular control, and outline how future studies can take advantage of high-resolution tracking and sequencing techniques to characterize the genomic architecture of migratory orientation.
Cellular Level Brain Imaging in Behaving Mammals: An Engineering Approach
Hamel, Elizabeth J.O.; Grewe, Benjamin F.; Parker, Jones G.; Schnitzer, Mark J.
2017-01-01
Fluorescence imaging offers expanding capabilities for recording neural dynamics in behaving mammals, including the means to monitor hundreds of cells targeted by genetic type or connectivity, track cells over weeks, densely sample neurons within local microcircuits, study cells too inactive to isolate in extracellular electrical recordings, and visualize activity in dendrites, axons, or dendritic spines. We discuss recent progress and future directions for imaging in behaving mammals from a systems engineering perspective, which seeks holistic consideration of fluorescent indicators, optical instrumentation, and computational analyses. Today, genetically encoded indicators of neural Ca2+ dynamics are widely used, and those of trans-membrane voltage are rapidly improving. Two complementary imaging paradigms involve conventional microscopes for studying head-restrained animals and head-mounted miniature microscopes for imaging in freely behaving animals. Overall, the field has attained sufficient sophistication that increased cooperation between those designing new indicators, light sources, microscopes, and computational analyses would greatly benefit future progress. PMID:25856491
Microfluidics for Single-Cell Genetic Analysis
Thompson, A. M.; Paguirigan, A. L.; Kreutz, J. E.; Radich, J. P.; Chiu, D. T.
2014-01-01
The ability to correlate single-cell genetic information to cellular phenotypes will provide the kind of detailed insight into human physiology and disease pathways that is not possible to infer from bulk cell analysis. Microfluidic technologies are attractive for single-cell manipulation due to precise handling and low risk of contamination. Additionally, microfluidic single-cell techniques can allow for high-throughput and detailed genetic analyses that increase accuracy and decreases reagent cost compared to bulk techniques. Incorporating these microfluidic platforms into research and clinical laboratory workflows can fill an unmet need in biology, delivering the highly accurate, highly informative data necessary to develop new therapies and monitor patient outcomes. In this perspective, we describe the current and potential future uses of microfluidics at all stages of single-cell genetic analysis, including cell enrichment and capture, single-cell compartmentalization and manipulation, and detection and analyses. PMID:24789374
Review and meta-analysis of genetic polymorphisms associated with exceptional human longevity.
Revelas, Mary; Thalamuthu, Anbupalam; Oldmeadow, Christopher; Evans, Tiffany-Jane; Armstrong, Nicola J; Kwok, John B; Brodaty, Henry; Schofield, Peter R; Scott, Rodney J; Sachdev, Perminder S; Attia, John R; Mather, Karen A
2018-06-08
Many factors contribute to exceptional longevity, with genetics playing a significant role. However, to date, genetic studies examining exceptional longevity have been inconclusive. This comprehensive review seeks to determine the genetic variants associated with exceptional longevity by undertaking meta-analyses. Meta-analyses of genetic polymorphisms previously associated with exceptional longevity (85+) were undertaken. For each variant, meta-analyses were performed if there were data from at least three independent studies available, including two unpublished additional cohorts. Five polymorphisms, ACE rs4340, APOE ε2/3/4, FOXO3A rs2802292, KLOTHO KL-VS and IL6 rs1800795 were significantly associated with exceptional longevity, with the pooled effect sizes (odds ratios) ranging from 0.42 (APOE ε4) to 1.45 (FOXO3A males). In general, the observed modest effect sizes of the significant variants suggest many genes of small influence play a role in exceptional longevity, which is consistent with results for other polygenic traits. Our results also suggest that genes related to cardiovascular health may be implicated in exceptional longevity. Future studies should examine the roles of gender and ethnicity and carefully consider study design, including the selection of appropriate controls. Copyright © 2018. Published by Elsevier B.V.
Li, Ming-Rui; Shi, Feng-Xue; Zhou, Yu-Xin; Li, Ya-Ling; Wang, Xin-Feng; Zhang, Cui; Wang, Xu-Tong; Liu, Bao; Xiao, Hong-Xing; Li, Lin-Feng
2015-11-02
Chinese ginseng (Panax ginseng) is a medically important herb within Panax and has crucial cultural values in East Asia. As the symbol of traditional Chinese medicine, Chinese ginseng has been used as a herbal remedy to restore stamina and capacity in East Asia for thousands of years. To address the evolutionary origin and domestication history of cultivated ginseng, we employed multiple molecular approaches to investigate the genetic structures of cultivated and wild ginseng across their distribution ranges in northeastern Asia. Phylogenetic and population genetic analyses revealed that the four cultivated ginseng landraces, COMMON, BIANTIAO, SHIZHU, and GAOLI (also known as Korean ginseng), were not domesticated independently and Fusong Town is likely one of the primary domestication centers. In addition, our results from population genetic and epigenetic analyses demonstrated that cultivated ginseng maintained high levels of genetic and epigenetic diversity, but showed distinct cytosine methylation patterns compared with wild ginseng. The patterns of genetic and epigenetic variation revealed by this study have shed light on the domestication history of cultivated ginseng, which may serve as a framework for future genetic improvements. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.
Fisher, Abigail; Smith, Lee; van Jaarsveld, Cornelia H M; Sawyer, Alexia; Wardle, Jane
2015-01-01
The importance of physical activity to paediatric health warrants investigation into its determinants. Objective measurement allows a robust examination of genetic and environmental influences on physical activity. To systematically review the evidence on the extent of genetic and environmental influence on children's objectively-measured activity levels from twin studies. Medline, EMBASE, PsycINFO, Health and Psychosocial Instruments and all Ovid Databases. Search terms: "accelerometer" OR "actometer" OR "motion sensor" OR "heart rate monitor" OR "physical activity energy expenditure" AND "twin". Limited to Human, English language and children (0-18 years). Seven sets of analyses were included in the review. Six analyses examined children's daily-life activity and found that the shared environment had a strong influence on activity levels (weighted mean 60%), with a smaller contribution from genetic factors (weighted mean 21%). Two analyses examined short-term, self-directed activity in a standard environment and found a smaller shared environment effect (weighted mean 25%) and a larger genetic estimate (weighted mean 45%). Although genetic influences may be expressed when children have brief opportunities for autonomous activity, activity levels in daily-life are predominantly explained by environmental factors. Future research should aim to identify key environmental drivers of childhood activity.
The Three Domains of Conservation Genetics: Case Histories from Hawaiian Waters.
Bowen, Brian W
2016-07-01
The scientific field of conservation biology is dominated by 3 specialties: phylogenetics, ecology, and evolution. Under this triad, phylogenetics is oriented towards the past history of biodiversity, conserving the divergent branches in the tree of life. The ecological component is rooted in the present, maintaining the contemporary life support systems for biodiversity. Evolutionary conservation (as defined here) is concerned with preserving the raw materials for generating future biodiversity. All 3 domains can be documented with genetic case histories in the waters of the Hawaiian Archipelago, an isolated chain of volcanic islands with 2 types of biodiversity: colonists, and new species that arose from colonists. This review demonstrates that 1) phylogenetic studies have identified previously unknown branches in the tree of life that are endemic to Hawaiian waters; 2) population genetic surveys define isolated marine ecosystems as management units, and 3) phylogeographic analyses illustrate the pathways of colonization that can enhance future biodiversity. Conventional molecular markers have advanced all 3 domains in conservation biology over the last 3 decades, and recent advances in genomics are especially valuable for understanding the foundations of future evolutionary diversity. © The American Genetic Association. 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Hannigan, L J; Walaker, N; Waszczuk, M A; McAdams, T A; Eley, T C
2017-01-01
Emotional and behavioural problems in childhood and adolescence can be chronic and are predictive of future psychiatric problems. Understanding what factors drive the development and maintenance of these problems is therefore crucial. Longitudinal behavioural genetic studies using twin, sibling or adoption data can be used to explore the developmental aetiology of stability and change in childhood and adolescent psychopathology. We present a systematic review of longitudinal, behavioural genetic analyses of emotional and behavioural problems between ages 0 to 18 years. We identified 58 studies, of which 19 examined emotional problems, 30 examined behavioural problems, and 9 examined both. In the majority of studies, stability in emotional and behavioural problems was primarily genetically influenced. Stable environmental factors were also widely found, although these typically played a smaller role. Both genetic and environmental factors were involved in change across development. We discuss the findings in the context of the wider developmental literature and make recommendations for future research.
Hannigan, L.J.; Walaker, N.; Waszczuk, M.A.; McAdams, T.A.; Eley, T.C.
2016-01-01
Emotional and behavioural problems in childhood and adolescence can be chronic and are predictive of future psychiatric problems. Understanding what factors drive the development and maintenance of these problems is therefore crucial. Longitudinal behavioural genetic studies using twin, sibling or adoption data can be used to explore the developmental aetiology of stability and change in childhood and adolescent psychopathology. We present a systematic review of longitudinal, behavioural genetic analyses of emotional and behavioural problems between ages 0 to 18 years. We identified 58 studies, of which 19 examined emotional problems, 30 examined behavioural problems, and 9 examined both. In the majority of studies, stability in emotional and behavioural problems was primarily genetically influenced. Stable environmental factors were also widely found, although these typically played a smaller role. Both genetic and environmental factors were involved in change across development. We discuss the findings in the context of the wider developmental literature and make recommendations for future research. PMID:28337341
The origins and impact of primate segmental duplications.
Marques-Bonet, Tomas; Girirajan, Santhosh; Eichler, Evan E
2009-10-01
Duplicated sequences are substrates for the emergence of new genes and are an important source of genetic instability associated with rare and common diseases. Analyses of primate genomes have shown an increase in the proportion of interspersed segmental duplications (SDs) within the genomes of humans and great apes. This contrasts with other mammalian genomes that seem to have their recently duplicated sequences organized in a tandem configuration. In this review, we focus on the mechanistic origin and impact of this difference with respect to evolution, genetic diversity and primate phenotype. Although many genomes will be sequenced in the future, resolution of this aspect of genomic architecture still requires high quality sequences and detailed analyses.
Virus evolution and transmission in an ever more connected world
Pybus, Oliver G.; Tatem, Andrew J.; Lemey, Philippe
2015-01-01
The frequency and global impact of infectious disease outbreaks, particularly those caused by emerging viruses, demonstrate the need for a better understanding of how spatial ecology and pathogen evolution jointly shape epidemic dynamics. Advances in computational techniques and the increasing availability of genetic and geospatial data are helping to address this problem, particularly when both information sources are combined. Here, we review research at the intersection of evolutionary biology, human geography and epidemiology that is working towards an integrated view of spatial incidence, host mobility and viral genetic diversity. We first discuss how empirical studies have combined viral spatial and genetic data, focusing particularly on the contribution of evolutionary analyses to epidemiology and disease control. Second, we explore the interplay between virus evolution and global dispersal in more depth for two pathogens: human influenza A virus and chikungunya virus. We discuss the opportunities for future research arising from new analyses of human transportation and trade networks, as well as the associated challenges in accessing and sharing relevant spatial and genetic data. PMID:26702033
Twins and virtual twins: Do genetic (as well as experiential) factors affect developmental risks?
Segal, Nancy L; Tan, Tony Xing; Graham, Jamie L
2015-08-01
Factors underlying developmental delays and psychosocial risks are of interest to international adoption communities. The current study administered a Pre-Adoption Adversity (PAA) Questionnaire to mostly American parents raising (a) adopted Chinese twins or (b) same-age unrelated adopted siblings. A goal was to replicate earlier analyses of pre-adoption adversity/adjustment among adopted preschool-age Chinese girls. A second goal was to conduct genetic analyses of four content areas (Developmental Delays at Adoption, Initial Adaptation to Adoption, Crying/Clinging, and Refusal/Avoidance) derived from the PAA Questionnaire. A key finding was that age at adoption added less than other predictors to adoptees' externalizing and internalizing behaviors. Family factors (e.g., parental education) contributed significantly to behavioral outcomes among the adopted Chinese twins. Genetic effects were indicated for all four content areas, with shared environmental effects evident for Developmental Delays at Adoption and Crying/Clinging. Future investigators should consider incorporating genetically sensitive designs into developmental research programs. Copyright © 2015 Elsevier Inc. All rights reserved.
Clarke, Toni-Kim; Obsteter, Jana; Hall, Lynsey S; Hayward, Caroline; Thomson, Pippa A; Smith, Blair H; Padmanabhan, Sandosh; Hocking, Lynne J; Deary, Ian J; Porteous, David J; McIntosh, Andrew M
2017-04-01
Type II diabetes (T2D) and major depressive disorder (MDD) are often co-morbid. The reasons for this co-morbidity are unclear. Some studies have highlighted the importance of environmental factors and a causal relationship between T2D and MDD has also been postulated. In the present study we set out to investigate the shared aetiology between T2D and MDD using Mendelian randomization in a population based sample, Generation Scotland: the Scottish Family Health Study (N = 21,516). Eleven SNPs found to be associated with T2D were tested for association with MDD and psychological distress (General Health Questionnaire scores). We also assessed causality and genetic overlap between T2D and MDD using polygenic risk scores (PRS) assembled from the largest available GWAS summary statistics to date. No single T2D risk SNP was associated with MDD in the MR analyses and we did not find consistent evidence of genetic overlap between MDD and T2D in the PRS analyses. Linkage disequilibrium score regression analyses supported these findings as no genetic correlation was observed between T2D and MDD (rG = 0.0278 (S.E. 0.11), P-value = 0.79). As suggested by previous studies, T2D and MDD covariance may be better explained by environmental factors. Future studies would benefit from analyses in larger cohorts where stratifying by sex and looking more closely at MDD cases demonstrating metabolic dysregulation is possible. © 2016 The Authors. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics Published by Wiley Periodicals, Inc. © 2016 The Authors. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics Published by Wiley Periodicals, Inc.
Is urbanisation scrambling the genetic structure of human populations? A case study
Ashrafian-Bonab, Maziar; Handley, Lori Lawson; Balloux, François
2007-01-01
Recent population expansion and increased migration linked to urbanisation are assumed to be eroding the genetic structure of human populations. We investigated change in population structure over three generations by analysing both demographic and mitochondrial DNA (mtDNA) data from a random sample of 2351 men from twenty-two Iranian populations. Potential changes in genetic diversity (θ) and genetic distance (FST) over the last three generations were analysed by assigning mtDNA sequences to populations based on the individual's place of birth or that of their mother or grandmother. Despite the fact that several areas included cities of over one million inhabitants, we detected no change in genetic diversity, and only a small decrease in population structure, except in the capital city (Tehran), which was characterised by massive immigration, increased θ and a large decrease in FST over time. Our results suggest that recent erosion of human population structure might not be as important as previously thought, except in some large conurbations, and this clearly has important implications for future sampling strategies. PMID:17106453
Understanding the impact of genetic testing for inherited retinal dystrophy
Combs, Ryan; McAllister, Marion; Payne, Katherine; Lowndes, Jo; Devery, Sophie; Webster, Andrew R; Downes, Susan M; Moore, Anthony T; Ramsden, Simon; Black, Graeme; Hall, Georgina
2013-01-01
The capability of genetic technologies is expanding rapidly in the field of inherited eye disease. New genetic testing approaches will deliver a step change in the ability to diagnose and extend the possibility of targeted treatments. However, evidence is lacking about the benefits of genetic testing to support service planning. Here, we report qualitative data about retinal dystrophy families' experiences of genetic testing in United Kingdom. The data were part of a wider study examining genetic eye service provision. Twenty interviewees from families in which a causative mutation had been identified by a genetic eye clinic were recruited to the study. Fourteen interviewees had chosen to have a genetic test and five had not; one was uncertain. In-depth telephone interviews were conducted allowing a thorough exploration of interviewees' views and experiences of the benefits of genetic counselling and testing. Transcripts were analysed using thematic analysis. Both affected and unaffected interviewees expressed mainly positive views about genetic testing, highlighting benefits such as diagnostic confirmation, risk information, and better preparation for the future. Negative consequences included the burden of knowledge, moral dilemmas around reproduction, and potential impact on insurance. The offer of genetic testing was often taken up, but was felt unnecessary in some cases. Interviewees in the study reported many benefits, suggesting genetic testing should be available to this patient group. The benefits and risks identified will inform future evaluation of models of service delivery. This research was part of a wider study exploring experiences of families with retinal dystrophy. PMID:23403902
Understanding the impact of genetic testing for inherited retinal dystrophy.
Combs, Ryan; McAllister, Marion; Payne, Katherine; Lowndes, Jo; Devery, Sophie; Webster, Andrew R; Downes, Susan M; Moore, Anthony T; Ramsden, Simon; Black, Graeme; Hall, Georgina
2013-11-01
The capability of genetic technologies is expanding rapidly in the field of inherited eye disease. New genetic testing approaches will deliver a step change in the ability to diagnose and extend the possibility of targeted treatments. However, evidence is lacking about the benefits of genetic testing to support service planning. Here, we report qualitative data about retinal dystrophy families' experiences of genetic testing in United Kingdom. The data were part of a wider study examining genetic eye service provision. Twenty interviewees from families in which a causative mutation had been identified by a genetic eye clinic were recruited to the study. Fourteen interviewees had chosen to have a genetic test and five had not; one was uncertain. In-depth telephone interviews were conducted allowing a thorough exploration of interviewees' views and experiences of the benefits of genetic counselling and testing. Transcripts were analysed using thematic analysis. Both affected and unaffected interviewees expressed mainly positive views about genetic testing, highlighting benefits such as diagnostic confirmation, risk information, and better preparation for the future. Negative consequences included the burden of knowledge, moral dilemmas around reproduction, and potential impact on insurance. The offer of genetic testing was often taken up, but was felt unnecessary in some cases. Interviewees in the study reported many benefits, suggesting genetic testing should be available to this patient group. The benefits and risks identified will inform future evaluation of models of service delivery. This research was part of a wider study exploring experiences of families with retinal dystrophy.
Ancient DNA reveals Holocene loss of genetic diversity in a South American rodent
Chan, Yvonne L; Lacey, Eileen A; Pearson, Oliver P; Hadly, Elizabeth A
2005-01-01
Understanding how animal populations have evolved in response to palaeoenvironmental conditions is essential for predicting the impact of future environmental change on current biodiversity. Analyses of ancient DNA provide a unique opportunity to track population responses to prehistoric environments. We explored the effects of palaeoenvironmental change on the colonial tuco-tuco (Ctenomys sociabilis), a highly endemic species of Patagonian rodent that is currently listed as threatened by the IUCN. By combining surveys of modern genetic variation from throughout this species' current geographic range with analyses of DNA samples from fossil material dating back to 10 000 ybp, we demonstrate a striking decline in genetic diversity that is concordant with environmental events in the study region. Our results highlight the importance of non-anthropogenic factors in loss of diversity, including reductions in smaller mammals such as rodents. PMID:17148223
Tong, JinGou; Sun, XiaoWen
2015-02-01
The traits of cultured fish must continually be genetically improved to supply high-quality animal protein for human consumption. Economically important fish traits are controlled by multiple gene quantitative trait loci (QTL), most of which have minor effects, but a few genes may have major effects useful for molecular breeding. In this review, we chose relevant studies on some of the most intensively cultured fish and concisely summarize progress on identifying and verifying QTLs for such traits as growth, disease and stress resistance and sex in recent decades. The potential applications of these major-effect genes and their associated markers in marker-assisted selection and molecular breeding, as well as future research directions are also discussed. These genetic and genomic analyses will be valuable for elucidating the mechanisms modulating economically important traits and to establish more effective molecular breeding techniques in fish.
The Three Domains of Conservation Genetics: Case Histories from Hawaiian Waters
2016-01-01
The scientific field of conservation biology is dominated by 3 specialties: phylogenetics, ecology, and evolution. Under this triad, phylogenetics is oriented towards the past history of biodiversity, conserving the divergent branches in the tree of life. The ecological component is rooted in the present, maintaining the contemporary life support systems for biodiversity. Evolutionary conservation (as defined here) is concerned with preserving the raw materials for generating future biodiversity. All 3 domains can be documented with genetic case histories in the waters of the Hawaiian Archipelago, an isolated chain of volcanic islands with 2 types of biodiversity: colonists, and new species that arose from colonists. This review demonstrates that 1) phylogenetic studies have identified previously unknown branches in the tree of life that are endemic to Hawaiian waters; 2) population genetic surveys define isolated marine ecosystems as management units, and 3) phylogeographic analyses illustrate the pathways of colonization that can enhance future biodiversity. Conventional molecular markers have advanced all 3 domains in conservation biology over the last 3 decades, and recent advances in genomics are especially valuable for understanding the foundations of future evolutionary diversity. PMID:27001936
Riordan, Erin C; Gugger, Paul F; Ortego, Joaquín; Smith, Carrie; Gaddis, Keith; Thompson, Pam; Sork, Victoria L
2016-01-01
Geography and climate shape the distribution of organisms, their genotypes, and their phenotypes. To understand historical and future evolutionary and ecological responses to climate, we compared the association of geography and climate of three oak species (Quercus engelmannii, Quercus berberidifolia, and Quercus cornelius-mulleri) in an environmentally heterogeneous region of southern California at three organizational levels: regional species distributions, genetic variation, and phenotypic variation. We identified climatic variables influencing regional distribution patterns using species distribution models (SDMs), and then tested whether those individual variables are important in shaping genetic (microsatellite) and phenotypic (leaf morphology) variation. We estimated the relative contributions of geography and climate using multivariate redundancy analyses (RDA) with variance partitioning. The modeled distribution of each species was influenced by climate differently. Our analysis of genetic variation using RDA identified small but significant associations between genetic variation with climate and geography in Q. engelmannii and Q. cornelius-mulleri, but not in Q. berberidifolia, and climate explained more of the variation. Our analysis of phenotypic variation in Q. engelmannii indicated that climate had more impact than geography, but not in Q. berberidifolia. Throughout our analyses, we did not find a consistent pattern in effects of individual climatic variables. Our comparative analysis illustrates that climate influences tree response at all organizational levels, but the important climate factors vary depending on the level and on the species. Because of these species-specific and level-specific responses, today's sympatric species are unlikely to have similar distributions in the future. © 2016 Botanical Society of America.
Evidence of a genetic link between endometriosis and ovarian cancer.
Lee, Alice W; Templeman, Claire; Stram, Douglas A; Beesley, Jonathan; Tyrer, Jonathan; Berchuck, Andrew; Pharoah, Paul P; Chenevix-Trench, Georgia; Pearce, Celeste Leigh
2016-01-01
To evaluate whether endometriosis-associated genetic variation affects risk of ovarian cancer. Pooled genetic analysis. University hospital. Genetic data from 46,176 participants (15,361 ovarian cancer cases and 30,815 controls) from 41 ovarian cancer studies. None. Endometriosis-associated genetic variation and ovarian cancer. There was significant evidence of an association between endometriosis-related genetic variation and ovarian cancer risk, especially for the high-grade serous and clear cell histotypes. Overall we observed 15 significant burden statistics, which was three times more than expected. By focusing on candidate regions from a phenotype associated with ovarian cancer, we have shown a clear genetic link between endometriosis and ovarian cancer that warrants further follow-up. The functional significance of the identified regions and SNPs is presently uncertain, though future fine mapping and histotype-specific functional analyses may shed light on the etiologies of both gynecologic conditions. Copyright © 2016. Published by Elsevier Inc.
Molecular genetics of childhood, adolescent and young adult non-Hodgkin lymphoma.
Miles, Rodney R; Shah, Rikin K; Frazer, J Kimble
2016-05-01
Molecular genetic abnormalities are ubiquitous in non-Hodgkin lymphoma (NHL), but genetic changes are not yet used to define specific lymphoma subtypes. Certain recurrent molecular genetic abnormalities in NHL underlie molecular pathogenesis and/or are associated with prognosis or represent potential therapeutic targets. Most molecular genetic studies of B- and T-NHL have been performed on adult patient samples, and the relevance of many of these findings for childhood, adolescent and young adult NHL remains to be demonstrated. In this review, we focus on NHL subtypes that are most common in young patients and emphasize features actually studied in younger NHL patients. This approach highlights what is known about NHL genetics in young patients but also points to gaps that remain, which will require cooperative efforts to collect and share biological specimens for genomic and genetic analyses in order to help predict outcomes and guide therapy in the future. © 2016 John Wiley & Sons Ltd.
Aebi, Marcel; van Donkelaar, Marjolein M J; Poelmans, Geert; Buitelaar, Jan K; Sonuga-Barke, Edmund J S; Stringaris, Argyris; Consortium, Image; Faraone, Stephen V; Franke, Barbara; Steinhausen, Hans-Christoph; van Hulzen, Kimm J E
2016-07-01
Oppositional defiant disorder (ODD) is a frequent psychiatric disorder seen in children and adolescents with attention-deficit-hyperactivity disorder (ADHD). ODD is also a common antecedent to both affective disorders and aggressive behaviors. Although the heritability of ODD has been estimated to be around 0.60, there has been little research into the molecular genetics of ODD. The present study examined the association of irritable and defiant/vindictive dimensions and categorical subtypes of ODD (based on latent class analyses) with previously described specific polymorphisms (DRD4 exon3 VNTR, 5-HTTLPR, and seven OXTR SNPs) as well as with dopamine, serotonin, and oxytocin genes and pathways in a clinical sample of children and adolescents with ADHD. In addition, we performed a multivariate genome-wide association study (GWAS) of the aforementioned ODD dimensions and subtypes. Apart from adjusting the analyses for age and sex, we controlled for "parental ability to cope with disruptive behavior." None of the hypothesis-driven analyses revealed a significant association with ODD dimensions and subtypes. Inadequate parenting behavior was significantly associated with all ODD dimensions and subtypes, most strongly with defiant/vindictive behaviors. In addition, the GWAS did not result in genome-wide significant findings but bioinformatics and literature analyses revealed that the proteins encoded by 28 of the 53 top-ranked genes functionally interact in a molecular landscape centered around Beta-catenin signaling and involved in the regulation of neurite outgrowth. Our findings provide new insights into the molecular basis of ODD and inform future genetic studies of oppositional behavior. © 2015 The Authors. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics Published by Wiley Periodicals, Inc. © 2015 The Authors. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics Published by Wiley Periodicals, Inc.
Polygenic risk predicts obesity in both white and black young adults.
Domingue, Benjamin W; Belsky, Daniel W; Harris, Kathleen Mullan; Smolen, Andrew; McQueen, Matthew B; Boardman, Jason D
2014-01-01
To test transethnic replication of a genetic risk score for obesity in white and black young adults using a national sample with longitudinal data. A prospective longitudinal study using the National Longitudinal Study of Adolescent Health Sibling Pairs (n = 1,303). Obesity phenotypes were measured from anthropometric assessments when study members were aged 18-26 and again when they were 24-32. Genetic risk scores were computed based on published genome-wide association study discoveries for obesity. Analyses tested genetic associations with body-mass index (BMI), waist-height ratio, obesity, and change in BMI over time. White and black young adults with higher genetic risk scores had higher BMI and waist-height ratio and were more likely to be obese compared to lower genetic risk age-peers. Sibling analyses revealed that the genetic risk score was predictive of BMI net of risk factors shared by siblings. In white young adults only, higher genetic risk predicted increased risk of becoming obese during the study period. In black young adults, genetic risk scores constructed using loci identified in European and African American samples had similar predictive power. Cumulative information across the human genome can be used to characterize individual level risk for obesity. Measured genetic risk accounts for only a small amount of total variation in BMI among white and black young adults. Future research is needed to identify modifiable environmental exposures that amplify or mitigate genetic risk for elevated BMI.
Bend it like Beckham! The Ethics of Genetically Testing Children for Athletic Potential
Camporesi, Silvia
2016-01-01
The recent boom of direct-to-consumer (DTC) genetic tests, aimed at measuring children’s athletic potential, is the latest wave in the ‘pre-professionalization’ of children that has characterized, especially but not exclusively, the USA in the last 15 years or so. In this paper, I analyse the use of DTC genetic tests, sometimes coupled with more traditional methods of ‘talent scouting’, to assess a child’s predisposition to athletic performance. I first discuss the scientific evidence at the basis of these tests, and the parental decision in terms of education, and of investing in the children’s future, taken on the basis of the results of the tests. I then discuss how these parental practices impact on the children’s right to an open future, and on their developing sense of autonomy. I also consider the meaning and role of sports in childhood, and conclude that the use of DTC genetic tests to measure children’s athletic potential should be seen as a ‘wake up’ call for other problematic parental attitudes aimed at scouting and developing children’s talent. PMID:27996058
Whole-Genome Sequencing Reveals Genetic Variation in the Asian House Rat.
Teng, Huajing; Zhang, Yaohua; Shi, Chengmin; Mao, Fengbiao; Hou, Lingling; Guo, Hongling; Sun, Zhongsheng; Zhang, Jianxu
2016-07-07
Whole-genome sequencing of wild-derived rat species can provide novel genomic resources, which may help decipher the genetics underlying complex phenotypes. As a notorious pest, reservoir of human pathogens, and colonizer, the Asian house rat, Rattus tanezumi, is successfully adapted to its habitat. However, little is known regarding genetic variation in this species. In this study, we identified over 41,000,000 single-nucleotide polymorphisms, plus insertions and deletions, through whole-genome sequencing and bioinformatics analyses. Moreover, we identified over 12,000 structural variants, including 143 chromosomal inversions. Further functional analyses revealed several fixed nonsense mutations associated with infection and immunity-related adaptations, and a number of fixed missense mutations that may be related to anticoagulant resistance. A genome-wide scan for loci under selection identified various genes related to neural activity. Our whole-genome sequencing data provide a genomic resource for future genetic studies of the Asian house rat species and have the potential to facilitate understanding of the molecular adaptations of rats to their ecological niches. Copyright © 2016 Teng et al.
Horne, Justine; Madill, Janet; O'Connor, Colleen; Shelley, Jacob; Gilliland, Jason
2018-04-10
Studying the impact of genetic testing interventions on lifestyle behaviour change has been a priority area of research in recent years. Substantial heterogeneity exists in the results and conclusions of this literature, which has yet to be explained using validated behaviour change theory and an assessment of the quality of genetic interventions. The theory of planned behaviour (TPB) helps to explain key contributors to behaviour change. It has been hypothesized that personalization could be added to this theory to help predict changes in health behaviours. This systematic review provides a detailed, comprehensive identification, assessment, and summary of primary research articles pertaining to lifestyle behaviour change (nutrition, physical activity, sleep, and smoking) resulting from genetic testing interventions. The present review further aims to provide in-depth analyses of studies conducted to date within the context of the TPB and the quality of genetic interventions provided to participants while aiming to determine whether or not genetic testing facilitates changes in lifestyle habits. This review is timely in light of a recently published "call-to-action" paper, highlighting the need to incorporate the TPB into personalized healthcare behaviour change research. Three bibliographic databases, one key website, and article reference lists were searched for relevant primary research articles. The PRISMA Flow Diagram and PRISMA Checklist were used to guide the search strategy and manuscript preparation. Out of 32,783 titles retrieved, 26 studies met the inclusion criteria. Three quality assessments were conducted and included: (1) risk of bias, (2) quality of genetic interventions, and (3) consideration of theoretical underpinnings - primarily the TPB. Risk of bias in studies was overall rated to be "fair." Consideration of the TPB was "poor," with no study making reference to this validated theory. While some studies (n = 11; 42%) made reference to other behaviour change theories, these theories were generally mentioned briefly, and were not thoroughly incorporated into the study design or analyses. The genetic interventions provided to participants were overall of "poor" quality. However, a separate analysis of studies using controlled intervention research methods demonstrated the use of higher-quality genetic interventions (overall rated to be "fair"). The provision of actionable recommendations informed by genetic testing was more likely to facilitate behaviour change than the provision of genetic information without actionable lifestyle recommendations. Several studies of good quality demonstrated changes in lifestyle habits arising from the provision of genetic interventions. The most promising lifestyle changes were changes in nutrition. It is possible to facilitate behaviour change using genetic testing as the catalyst. Future research should ensure that high-quality genetic interventions are provided to participants, and should consider validated theories such as the TPB in their study design and analyses. Further recommendations for future research are provided. © 2018 S. Karger AG, Basel.
Di Febbraro, Mirko; Imparato, Gennaro; Innangi, Michele; Véla, Errol; Menale, Bruno
2016-01-01
The Mediterranean coastline is a dynamic and complex system which owes its complexity to its past and present vicissitudes, e.g. complex tectonic history, climatic fluctuations, and prolonged coexistence with human activities. A plant species that is widespread in this habitat is the sea daffodil, Pancratium maritimum (Amaryllidaceae), which is a perennial clonal geophyte of the coastal sands of the Mediterranean and neighbouring areas, well adapted to the stressful conditions of sand dune environments. In this study, an integrated approach was used, combining genetic and environmental data with a niche modelling approach, aimed to investigate: (1) the effect of climate change on the geographic range of this species at different times {past (last inter-glacial, LIG; and last glacial maximum, LGM), present (CURR), near-future (FUT)} and (2) the possible influence of environmental variables on the genetic structure of this species in the current period. The genetic results show that 48 sea daffodil populations (867 specimens) display a good genetic diversity in which the marginal populations (i.e. Atlantic Sea populations) present lower values. Recent genetic signature of bottleneck was detected in few populations (8%). The molecular variation was higher within the populations (77%) and two genetic pools were well represented. Comparing the different climatic simulations in time, the global range of this plant increased, and a further extension is foreseen in the near future thanks to projections on the climate of areas currently—more temperate, where our model suggested a forecast for a climate more similar to the Mediterranean coast. A significant positive correlation was observed between the genetic distance and Precipitation of Coldest Quarter variable in current periods. Our analyses support the hypothesis that geomorphology of the Mediterranean coasts, sea currents, and climate have played significant roles in shaping the current genetic structure of the sea daffodil especially during LGM because of strong variation in coastline caused by glaciations. PMID:27749920
Taylor, Steve M.; Antonia, Alejandro L.; Parobek, Christian M.; Juliano, Jonathan J.; Janko, Mark; Emch, Michael; Alam, Md Tauqeer; Udhayakumar, Venkatachalam; Tshefu, Antoinette K.; Meshnick, Steven R.
2013-01-01
Understanding the spatial clustering of Plasmodium falciparum populations can assist efforts to contain drug-resistant parasites and maintain the efficacy of future drugs. We sequenced single nucleotide polymorphisms (SNPs) in the dihydropteroate synthase gene (dhps) associated with sulfadoxine resistance and 5 microsatellite loci flanking dhps in order to investigate the genetic backgrounds, genetic relatedness, and geographic clustering of falciparum parasites in the Democratic Republic of the Congo (DRC). Resistant haplotypes were clustered into subpopulations: one in the northeast DRC, and the other in the balance of the DRC. Network and clonal lineage analyses of the flanking microsatellites indicate that geographically-distinct mutant dhps haplotypes derive from separate lineages. The DRC is therefore a watershed for haplotypes associated with sulfadoxine resistance. Given the importance of central Africa as a corridor for the spread of antimalarial resistance, the identification of the mechanisms of this transit can inform future policies to contain drug-resistant parasite strains. PMID:23372922
Xia, Charley; Amador, Carmen; Huffman, Jennifer; Trochet, Holly; Campbell, Archie; Porteous, David; Hastie, Nicholas D; Hayward, Caroline; Vitart, Veronique; Navarro, Pau; Haley, Chris S
2016-02-01
Genome-wide association studies have successfully identified thousands of loci for a range of human complex traits and diseases. The proportion of phenotypic variance explained by significant associations is, however, limited. Given the same dense SNP panels, mixed model analyses capture a greater proportion of phenotypic variance than single SNP analyses but the total is generally still less than the genetic variance estimated from pedigree studies. Combining information from pedigree relationships and SNPs, we examined 16 complex anthropometric and cardiometabolic traits in a Scottish family-based cohort comprising up to 20,000 individuals genotyped for ~520,000 common autosomal SNPs. The inclusion of related individuals provides the opportunity to also estimate the genetic variance associated with pedigree as well as the effects of common family environment. Trait variation was partitioned into SNP-associated and pedigree-associated genetic variation, shared nuclear family environment, shared couple (partner) environment and shared full-sibling environment. Results demonstrate that trait heritabilities vary widely but, on average across traits, SNP-associated and pedigree-associated genetic effects each explain around half the genetic variance. For most traits the recently-shared environment of couples is also significant, accounting for ~11% of the phenotypic variance on average. On the other hand, the environment shared largely in the past by members of a nuclear family or by full-siblings, has a more limited impact. Our findings point to appropriate models to use in future studies as pedigree-associated genetic effects and couple environmental effects have seldom been taken into account in genotype-based analyses. Appropriate description of the trait variation could help understand causes of intra-individual variation and in the detection of contributing loci and environmental factors.
Genetic diversity among Angus, American Brahman, Senepol and Romosinuano cattle breeds.
Brenneman, R A; Chase, C C; Olson, T A; Riley, D G; Coleman, S W
2007-02-01
The objective of this study was to quantify the genetic diversity among breeds under evaluation for tropical adaptability traits that affect the performance of beef cattle at the USDA/ARS SubTropical Agricultural Research Station (STARS) near Brooksville, FL, USA. Twenty-six microsatellite loci were used to estimate parameters of genetic diversity among the breeds American Brahman, Angus, Senepol and Romosinuano; the latter was comprised of two distinct bloodlines (Costa Rican and Venezuelan). Genotypes of 47 animals from each of these STARS herds were analysed for genetic diversity and genetic distance. Using two methods, the greatest genetic distance was detected between the Costa Rican line of Romosinuano and the Senepol. Gene diversity ranged between 0.64 (Costa Rican line of Romosinuano) and 0.75 (American Brahman). The breed relationship inferences, which are based on genetic distance, provide additional tools for consideration in future crossbreeding studies and for testing the relationship between quantified breed diversity and observed heterosis.
NASA Astrophysics Data System (ADS)
Mihai, Georgeta; Birsan, Marius-Victor; Teodosiu, Maria; Dumitrescu, Alexandru; Daia, Mihai; Mirancea, Ionel; Ivanov, Paula; Alin, Alexandru
2017-04-01
Mountain ecosystems are extremely vulnerable to climate change. The real potential for adaptation depends upon the existence of a wide genetic diversity in trees populations, upon the adaptive genetic variation, respectively. Genetic diversity offers the guarantee that forest species can survive, adapt and evolve under the influence of changing environmental conditions. The aim of this study is to evaluate the genetic diversity and adaptive genetic potential of two local species - Norway spruce and European silver fir - in the context of regional climate change. Based on data from a long-term provenance experiments network and climate variables spanning over more than 50 years, we have investigated the impact of climatic factors on growth performance and adaptation of tree species. Our results indicate that climatic and geographic factors significantly affect forest site productivity. Mean annual temperature and annual precipitation amount were found to be statistically significant explanatory variables. Combining the additive genetic model with the analysis of nuclear markers we obtained different images of the genetic structure of tree populations. As genetic indicators we used: gene frequencies, genetic diversity, genetic differentiation, genetic variance, plasticity. Spatial genetic analyses have allowed identifying the genetic centers holding high genetic diversity which will be valuable sources of gene able to buffer the negative effects of future climate change. Correlations between the marginal populations and in the optimal vegetation, between the level of genetic diversity and ecosystem stability, will allow the assessment of future risks arising from current genetic structure. Therefore, the strategies for sustainable forest management have to rely on the adaptive genetic variation and local adaptation of the valuable genetic resources. This work was realized within the framework of the project GENCLIM (Evaluating the adaptive potential of the main coniferous species for a sustainable forest management in the context of climate change), financed by the Executive Agency for Higher Education, Research, Development and Innovation Funding, grant number PN-II-PC-PCCA-2013-4-0695.
Simpson, Lalita; Clements, Mark A; Crayn, Darren M; Nargar, Katharina
2018-01-01
The Australian mesic biome spans c. 33° of latitude along Australia's east coast and ranges and is dissected by historical and contemporary biogeographical barriers. To investigate the impact of these barriers on evolutionary diversification and to predict the impact of future climate change on the distribution of species and genetic diversity within this biome, we inferred phylogenetic relationships within the Dendrobium speciosum complex (Orchidaceae) across its distribution and undertook environmental niche modelling (ENM) under past, contemporary and projected future climates. Neighbor Joining tree inference, NeighborNet and Structure analyses of Amplified Fragment Length Polymorphism (AFLP) profiles for D. speciosum sampled from across its distribution showed that the complex consists of two highly supported main groups that are geographically separated by the St. Lawrence gap, an area of dry sclerophyll forest and woodland. The presence of several highly admixed individuals identified by the Structure analysis provided evidence of genetic exchange between the two groups across this gap. Whereas previous treatments have recognised between one to eleven species, the molecular results support the taxonomic treatment of the complex as a single species with two subspecies. The ENM analysis supported the hypothesis that lineage divergence within the complex was driven by past climatic changes. The St. Lawrence gap represented a stronger biogeographic barrier for the D. speciosum complex during the cool and dry glacial climatic conditions of the Pleistocene than under today's interglacial conditions. Shallow genetic divergence was found within the two lineages, which mainly corresponded to three other biogeographic barriers: the Black Mountain Corridor, Glass House Mountains and the Hunter Valley. Our ENM analyses provide further support for the hypothesis that biogeographic barriers along Australia's east coast were somewhat permeable to genetic exchange due to past episodic range expansions and contractions caused by climatic change resulting in recurrent contact between previously isolated populations. An overall southward shift in the distribution of the complex under future climate scenarios was predicted, with the strongest effects on the northern lineage. This study contributes to our understanding of the factors shaping biodiversity patterns in Australia's mesic biome. Copyright © 2017 Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Linkage disequilibrium (LD) is the nonrandom association of alleles and loci within sets of genetic data and when measured over the genomes of a species can provide important indications for how future association analyses should proceed. This information can be advantageous especially for slow-gro...
Matthew Parks; Aaron Liston; Rich Cronn
2011-01-01
Primers were designed to amplify the highly variable locus ycf1 from all 11 subsections of Pinus to facilitate plastome assemblies based on short sequence reads as well as future phylogenetic and population genetic analyses. Primer design was based on alignment of 33 Pinus and four Pinaceae plastomes with...
Miller, Craig R; Waits, Lisette P
2003-04-01
Protein, mtDNA, and nuclear microsatellite DNA analyses have demonstrated that the Yellowstone grizzly bear has low levels of genetic variability compared with other Ursus arctos populations. Researchers have attributed this difference to inbreeding during a century of anthropogenic isolation and population size reduction. We test this hypothesis and assess the seriousness of genetic threats by generating microsatellite data for 110 museum specimens collected between 1912 and 1981. A loss of variability is detected, but it is much less severe than hypothesized. Variance in allele frequencies over time is used to estimate an effective population size of approximately 80 across the 20th century and >100 currently. The viability of the population is unlikely to be substantially reduced by genetic factors in the next several generations. However, gene flow from outside populations will be beneficial in avoiding inbreeding and the erosion of genetic diversity in the future.
The genetics of human obesity.
Xia, Qianghua; Grant, Struan F A
2013-04-01
It has long been known that there is a genetic component to obesity, and that characterizing this underlying factor would likely offer the possibility of better intervention in the future. Monogenic obesity has proved to be relatively straightforward, with a combination of linkage analysis and mouse models facilitating the identification of multiple genes. In contrast, genome-wide association studies have successfully revealed a variety of genetic loci associated with the more common form of obesity, allowing for very strong consensus on the underlying genetic architecture of the phenotype for the first time. Although a number of significant findings have been made, it appears that very little of the apparent heritability of body mass index has actually been explained to date. New approaches for data analyses and advances in technology will be required to uncover the elusive missing heritability, and to aid in the identification of the key causative genetic underpinnings of obesity. © 2013 New York Academy of Sciences.
Clarke, Sally-Ann; Sheppard, Linda; Eiser, Christine
2008-01-01
Mothers of survivors of Retinoblastoma (Rb) experience unique challenges communicating with their child about the condition. Children are mostly diagnosed within their first year but the consequences continue into young adult life. Here 39 mothers of Rb survivors (23 males, mean age = 10.26 years) were interviewed about their experiences. Mothers were asked about communication with their children about Rb, and future health risks. Interviews were analysed using thematic analysis. Mothers reported that they had informed children about past diagnosis and treatment but had spoken less about genetic risk or risk of secondary cancer. The child's age and information-seeking behaviour were associated with mothers' disclosure, along with mothers' perceptions that information would facilitate child coping. Findings suggest that mothers may need more guidance during follow-up care in communicating about the disease and its consequences for future health. Medical staff should also take extra care to ensure that mothers are aware of genetic counselling services and how to access them before the child is discharged from specialist care.
Lacourse, E; Boivin, M; Brendgen, M; Petitclerc, A; Girard, A; Vitaro, F; Paquin, S; Ouellet-Morin, I; Dionne, G; Tremblay, R E
2014-09-01
Physical aggression (PA) tends to have its onset in infancy and to increase rapidly in frequency. Very little is known about the genetic and environmental etiology of PA development during early childhood. We investigated the temporal pattern of genetic and environmental etiology of PA during this crucial developmental period. Participants were 667 twin pairs, including 254 monozygotic and 413 dizygotic pairs, from the ongoing longitudinal Quebec Newborn Twin Study. Maternal reports of PA were obtained from three waves of data at 20, 32 and 50 months. These reports were analysed using a biometric Cholesky decomposition and linear latent growth curve model. The best-fitting Cholesky model revealed developmentally dynamic effects, mostly genetic attenuation and innovation. The contribution of genetic factors at 20 months substantially decreased over time, while new genetic effects appeared later on. The linear latent growth curve model revealed a significant moderate increase in PA from 20 to 50 months. Two separate sets of uncorrelated genetic factors accounted for the variation in initial level and growth rate. Non-shared and shared environments had no effect on the stability, initial status and growth rate in PA. Genetic factors underlie PA frequency and stability during early childhood; they are also responsible for initial status and growth rate in PA. The contribution of shared environment is modest, and perhaps limited, as it appears only at 50 months. Future research should investigate the complex nature of these dynamic genetic factors through genetic-environment correlation (r GE) and interaction (G×E) analyses.
Haig, Susan M.; Miller, Leonard F.; Bianchi, Carlos; Mullins, Thomas D.
2012-01-01
When habitat becomes fragmented, populations of species may become increasingly isolated. In the absence of habitat corridors, genetic structure may develop and populations risk reductions in genetic diversity from increased genetic drift and inbreeding. Deforestation of the Cerrado biome of Brazil, particularly of the dry forests within the Parana˜ River Basin, has incrementally occurred since the 1970s and increased forest fragmentation within the region. We performed landscape genetic analyses of Pfrimer’s parakeet (Pyrrhura pfrimeri), a globally endangered endemic to the region, to determine if forest fragmentation patterns were associated with genetic structuring in this species. We used previously generated satellite imagery that identified the locations of Parana˜ River Basin forest fragments in 1977, 1993/94, and 2008. Behavioral data quantifying the affinity of Pfrimer’s parakeet for forest habitat was used to parameterize empirically derived landscape conductance surfaces. Though genetic structure was observed among Pfrimer’s parakeet populations, no association between genetic and geographic distance was detected. Likewise, least cost path lengths, circuit theorybased resistance distances, and a new measure of least cost path length complexity could not be conclusively associated with genetic structure patterns. Instead, a new quantity that encapsulated connection redundancy from the 1977 forest fragmentation data provided the clearest associations with pairwise genetic differentiation patterns (Jost’s D: r = 0.72, P = 0.006; FST: r = 0.741, P = 0.001). Our analyses suggest a 35-year or more lag between deforestation and its effect on genetic structure. Because 66 % of the Parana˜ River Basin has been deforested since 1977, we expect that genetic structure will increase substantially among Pfrimer’s Parakeet populations in the future, especially if fragmentation continues at its current pace.
Comparative Genomics of Erwinia amylovora and Related Erwinia Species—What do We Learn?
Zhao, Youfu; Qi, Mingsheng
2011-01-01
Erwinia amylovora, the causal agent of fire blight disease of apples and pears, is one of the most important plant bacterial pathogens with worldwide economic significance. Recent reports on the complete or draft genome sequences of four species in the genus Erwinia, including E. amylovora, E. pyrifoliae, E. tasmaniensis, and E. billingiae, have provided us near complete genetic information about this pathogen and its closely-related species. This review describes in silico subtractive hybridization-based comparative genomic analyses of eight genomes currently available, and highlights what we have learned from these comparative analyses, as well as genetic and functional genomic studies. Sequence analyses reinforce the assumption that E. amylovora is a relatively homogeneous species and support the current classification scheme of E. amylovora and its related species. The potential evolutionary origin of these Erwinia species is also proposed. The current understanding of the pathogen, its virulence mechanism and host specificity from genome sequencing data is summarized. Future research directions are also suggested. PMID:24710213
Past, present, and future of a freshwater fish metapopulation in a threatened landscape.
Vera-Escalona, Iván; Senthivasan, Shreeram; Habit, Evelyn; Ruzzante, Daniel E
2018-02-12
It is well documented that hydropower plants can affect the dynamics of fish populations through landscape alterations and the creation of new barriers. Less emphasis has been placed on the examination of the genetic consequences for fish populations of the construction of dams. The relatively few studies that focus on genetics often do not consider colonization history and even fewer tend to use this information for conservation purposes. As a case study, we used a 3-pronged approach to study the influence of historical processes, contemporary landscape features, and potential future anthropogenic changes in landscape on the genetic diversity of a fish metapopulation. Our goal was to identify the metapopulation's main attributes, detect priority areas for conservation, and assess the consequences of the construction of hydropower plants for the persistence of the metapopulation. We used microsatellite markers and coalescent approaches to examine historical colonization processes, traditional population genetics, and simulations of future populations under alternate scenarios of population size reduction and gene flow. Historical gene flow appeared to have declined relatively recently and contemporary populations appeared highly susceptible to changes in landscape. Gene flow is critical for population persistence. We found that hydropower plants could lead to a rapid reduction in number of alleles and to population extirpation 50-80 years after their construction. More generally, our 3-pronged approach for the analyses of empirical genetic data can provide policy makers with information on the potential impacts of landscape changes and thus lead to more robust conservation efforts. © 2018 Society for Conservation Biology.
Ter Harmsel, J F; Molendijk, T; van El, C G; M'charek, A; Kempes, M; Rinne, T; Pieters, T
2016-01-01
Developments in neurosciences and genetics are relevant for forensic psychiatry. To find out whether and how genetic and neuroscientific applications are being used in forensic psychiatric assessments, and, if they are, to estimate to what extent new applications will fit in with these uses. We analysed 60 forensic psychiatric assessments from the Netherlands Institute of Forensic Psychiatry and Psychology, Pieter Baan Center, and 30 non-clinical assessments from 2000 and 2009. We found that (behavioral) genetic, neurological and neuropsychological applications played only a modest role in forensic psychiatric assessment and they represent different phases of the implementation process. Neuropsychological assessment already occupied a position of some importance, but needed to be better integrated. Applications from neurology were still being developed. Clinical genetic assessment was being used occasionally in order to diagnose a genetic syndrome with behavioral consequences. If further validated information becomes available in the future, it should be possible to integrate new research methods more fully into current clinical practice.
Coleman, Jonathan R I; Lester, Kathryn J; Roberts, Susanna; Keers, Robert; Lee, Sang Hyuck; De Jong, Simone; Gaspar, Héléna; Teismann, Tobias; Wannemüller, André; Schneider, Silvia; Jöhren, Peter; Margraf, Jürgen; Breen, Gerome; Eley, Thalia C
2017-04-01
Exposure-based cognitive behavioural therapy (eCBT) is an effective treatment for anxiety disorders. Response varies between individuals. Gene expression integrates genetic and environmental influences. We analysed the effect of gene expression and genetic markers separately and together on treatment response. Adult participants (n ≤ 181) diagnosed with panic disorder or a specific phobia underwent eCBT as part of standard care. Percentage decrease in the Clinical Global Impression severity rating was assessed across treatment, and between baseline and a 6-month follow-up. Associations with treatment response were assessed using expression data from 3,233 probes, and expression profiles clustered in a data- and literature-driven manner. A total of 3,343,497 genetic variants were used to predict treatment response alone and combined in polygenic risk scores. Genotype and expression data were combined in expression quantitative trait loci (eQTL) analyses. Expression levels were not associated with either treatment phenotype in any analysis. A total of 1,492 eQTLs were identified with q < 0.05, but interactions between genetic variants and treatment response did not affect expression levels significantly. Genetic variants did not significantly predict treatment response alone or in polygenic risk scores. We assessed gene expression alone and alongside genetic variants. No associations with treatment outcome were identified. Future studies require larger sample sizes to discover associations.
Exploring and Harnessing Haplotype Diversity to Improve Yield Stability in Crops.
Qian, Lunwen; Hickey, Lee T; Stahl, Andreas; Werner, Christian R; Hayes, Ben; Snowdon, Rod J; Voss-Fels, Kai P
2017-01-01
In order to meet future food, feed, fiber, and bioenergy demands, global yields of all major crops need to be increased significantly. At the same time, the increasing frequency of extreme weather events such as heat and drought necessitates improvements in the environmental resilience of modern crop cultivars. Achieving sustainably increase yields implies rapid improvement of quantitative traits with a very complex genetic architecture and strong environmental interaction. Latest advances in genome analysis technologies today provide molecular information at an ultrahigh resolution, revolutionizing crop genomic research, and paving the way for advanced quantitative genetic approaches. These include highly detailed assessment of population structure and genotypic diversity, facilitating the identification of selective sweeps and signatures of directional selection, dissection of genetic variants that underlie important agronomic traits, and genomic selection (GS) strategies that not only consider major-effect genes. Single-nucleotide polymorphism (SNP) markers today represent the genotyping system of choice for crop genetic studies because they occur abundantly in plant genomes and are easy to detect. SNPs are typically biallelic, however, hence their information content compared to multiallelic markers is low, limiting the resolution at which SNP-trait relationships can be delineated. An efficient way to overcome this limitation is to construct haplotypes based on linkage disequilibrium, one of the most important features influencing genetic analyses of crop genomes. Here, we give an overview of the latest advances in genomics-based haplotype analyses in crops, highlighting their importance in the context of polyploidy and genome evolution, linkage drag, and co-selection. We provide examples of how haplotype analyses can complement well-established quantitative genetics frameworks, such as quantitative trait analysis and GS, ultimately providing an effective tool to equip modern crops with environment-tailored characteristics.
Identifying traits for genotypic adaptation using crop models.
Ramirez-Villegas, Julian; Watson, James; Challinor, Andrew J
2015-06-01
Genotypic adaptation involves the incorporation of novel traits in crop varieties so as to enhance food productivity and stability and is expected to be one of the most important adaptation strategies to future climate change. Simulation modelling can provide the basis for evaluating the biophysical potential of crop traits for genotypic adaptation. This review focuses on the use of models for assessing the potential benefits of genotypic adaptation as a response strategy to projected climate change impacts. Some key crop responses to the environment, as well as the role of models and model ensembles for assessing impacts and adaptation, are first reviewed. Next, the review describes crop-climate models can help focus the development of future-adapted crop germplasm in breeding programmes. While recently published modelling studies have demonstrated the potential of genotypic adaptation strategies and ideotype design, it is argued that, for model-based studies of genotypic adaptation to be used in crop breeding, it is critical that modelled traits are better grounded in genetic and physiological knowledge. To this aim, two main goals need to be pursued in future studies: (i) a better understanding of plant processes that limit productivity under future climate change; and (ii) a coupling between genetic and crop growth models-perhaps at the expense of the number of traits analysed. Importantly, the latter may imply additional complexity (and likely uncertainty) in crop modelling studies. Hence, appropriately constraining processes and parameters in models and a shift from simply quantifying uncertainty to actually quantifying robustness towards modelling choices are two key aspects that need to be included into future crop model-based analyses of genotypic adaptation. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
De Vita, A; Bernardo, L; Gargano, D; Palermo, A M; Peruzzi, L; Musacchio, A
2009-11-01
Many factors have contributed to the richness of narrow endemics in the Mediterranean, including long-lasting human impact on pristine landscapes. The abandonment of traditional land-use practices is causing forest recovery throughout the Mediterranean mountains, by increasing reduction and fragmentation of open habitats. We investigated the population genetic structure and habitat dynamics of Plantago brutia Ten., a narrow endemic in mountain pastures of S Italy. Some plants were cultivated in the botanical garden to explore the species' breeding system. Genetic diversity was evaluated based on inter-simple sequence repeat (ISSR) polymorphisms in 150 individuals from most of known stands. Recent dynamics in the species habitat were checked over a 14-year period. Flower phenology, stigma receptivity and experimental pollinations revealed protogyny and self-incompatibility. With the exception of very small and isolated populations, high genetic diversity was found at the species and population level. amova revealed weak differentiation among populations, and the Mantel test suggested absence of isolation-by-distance. Multivariate analysis of population and genetic data distinguished the populations based on genetic richness, size and isolation. Landscape analyses confirmed recent reduction and isolation of potentially suitable habitats. Low selfing, recent isolation and probable seed exchange may have preserved P. brutia populations from higher loss of genetic diversity. Nonetheless, data related to very small populations suggest that this species may suffer further fragmentation and isolation. To preserve most of the species' genetic richness, future management efforts should consider the large and isolated populations recognised in our analyses.
Otto, Lars-Gernot; Mondal, Prodyut; Brassac, Jonathan; Preiss, Susanne; Degenhardt, Jörg; He, Sang; Reif, Jochen Christoph; Sharbel, Timothy Francis
2017-08-10
Chamomile (Matricaria recutita L.) has a long history of use in herbal medicine with various applications, and the flower heads contain numerous secondary metabolites which are medicinally active. In the major crop plants, next generation sequencing (NGS) approaches are intensely applied to exploit genetic resources, to develop genomic resources and to enhance breeding. Here, genotyping-by-sequencing (GBS) has been used in the non-model medicinal plant chamomile to evaluate the genetic structure of the cultivated varieties/populations, and to perform genome wide association study (GWAS) focusing on genes with large effect on flowering time and the medicinally important alpha-bisabolol content. GBS analysis allowed the identification of 6495 high-quality SNP-markers in our panel of 91 M. recutita plants from 33 origins (2-4 genotypes each) and 4 M. discoidea plants as outgroup, grown in the greenhouse in Gatersleben, Germany. M. recutita proved to be clearly distinct from the outgroup, as was demonstrated by different cluster and principal coordinate analyses using the SNP-markers. Chamomile genotypes from the same origin were mostly genetically similar. Model-based cluster analysis revealed one large group of tetraploid genotypes with low genetic differentiation including 39 plants from 14 origins. Tetraploids tended to display lower genetic diversity than diploids, probably reflecting their origin by artificial polyploidisation from only a limited set of genetic backgrounds. Analyses of flowering time demonstrated that diploids generally flowered earlier than tetraploids, and the analysis of alpha-bisabolol identified several tetraploid genotypes with a high content. GWAS identified highly significant (P < 0.01) SNPs for flowering time (9) and alpha-bisabolol (71). One sequence harbouring SNPs associated with flowering time was described to play a role in self-pollination in Arabidopsis thaliana, whereas four sequences harbouring SNPs associated with alpha-bisabolol were identified to be involved in plant biotic and abiotic stress response in various plants species. The first genomic resource for future applications to enhance breeding in chamomile was created, andanalyses of diversity will facilitate the exploitation of these genetic resources. The GWAS data pave the way for future research towards the genetics underlying important traits in chamomile, the identification of marker-trait associations, and development of reliable markers for practical breeding.
The genetic basis of new treatment modalities in melanoma.
Kunz, Manfred
2015-01-01
In recent years, intracellular signal transduction via RAS-RAF-MEK-ERK has been successfully targeted in new treatment approaches for melanoma using small molecule inhibitors against activated BRAF (V600E mutation) and activated MEK1/2. Also mutated c-KIT has been identified as a promising target. Meanwhile, evidence has been provided that combinations between BRAF inhibitors and MEK1/2 inhibitors are more promising than single-agent treatments. Moreover, new treatment algorithms favor sequential treatment using BRAF inhibitors and newly developed immunotherapies targeting common T lymphocyte antigen 4 (CTLA-4) or programmed cell death 1 (PD-1). In depth molecular analyses have uncovered new mechanisms of treatment resistance and recurrence, which may impact on future treatment decisions. Moreover, next-generation sequencing data have shown that recurrent lesions harbor specific genetic aberrations. At the same time, high throughput sequencing studies of melanoma unraveled a series of new treatment candidates for future treatment approaches such as ERBB4, GRIN2A, GRM3, and RAC1. More recent bioinformatic technologies provided genetic evidence for extensive tumor heterogeneity and tumor clonality of solid tumors, which might also be of relevance for melanoma. However, these technologies have not yet been applied to this tumor. In this review, an overview on the genetic basis of current treatment of melanoma, treatment resistance and recurrences including new treatment perspectives based on recent high-throughput sequencing data is provided. Moreover, future aspects of individualized treatment based on each patient's individual mutational landscape are discussed.
Diabetic macular oedema: under-represented in the genetic analysis of diabetic retinopathy.
Broadgate, Suzanne; Kiire, Christine; Halford, Stephanie; Chong, Victor
2018-04-01
Diabetic retinopathy, a complication of both type 1 and type 2 diabetes, is a complex disease and is one of the leading causes of blindness in adults worldwide. It can be divided into distinct subclasses, one of which is diabetic macular oedema. Diabetic macular oedema can occur at any time in diabetic retinopathy and is the most common cause of vision loss in patients with type 2 diabetes. The purpose of this review is to summarize the large number of genetic association studies that have been performed in cohorts of patients with type 2 diabetes and published in English-language journals up to February 2017. Many of these studies have produced positive associations with gene polymorphisms and diabetic retinopathy. However, this review highlights that within this large body of work, studies specifically addressing a genetic association with diabetic macular oedema, although present, are vastly under-represented. We also highlight that many of the studies have small patient numbers and that meta-analyses often inappropriately combine patient data sets. We conclude that there will continue to be conflicting results and no meaningful findings will be achieved if the historical approach of combining all diabetic retinopathy disease states within patient cohorts continues in future studies. This review also identifies several genes that would be interesting to analyse in large, well-defined cohorts of patients with diabetic macular oedema in future candidate gene association studies. © 2018 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
The morality of socioscientific issues: Construal and resolution of genetic engineering dilemmas
NASA Astrophysics Data System (ADS)
Sadler, Troy D.; Zeidler, Dana L.
2004-01-01
The ability to negotiate and resolve socioscientific issues has been posited as integral components of scientific literacy. Although philosophers and science educators have argued that socioscientific issues inherently involve moral and ethical considerations, the ultimate arbiters of morality are individual decision-makers. This study explored the extent to which college students construe genetic engineering issues as moral problems. Twenty college students participated in interviews designed to elicit their ideas, reactions, and feelings regarding a series of gene therapy and cloning scenarios. Qualitative analyses revealed that moral considerations were significant influences on decision-making, indicating a tendency for students to construe genetic engineering issues as moral problems. Students engaged in moral reasoning based on utilitarian analyses of consequences as well as the application of principles. Issue construal was also influenced by affective features such as emotion and intuition. In addition to moral considerations, a series of other factors emerged as important dimensions of socioscientific decision-making. These factors included personal experiences, family biases, background knowledge, and the impact of popular culture. The implications for classroom science instruction and future research are discussed.
Hu, Boran; Yue, Yaqing; Zhu, Yong; Wen, Wen; Zhang, Fengmin; Hardie, Jim W
2015-01-01
Proton nuclear magnetic resonance spectroscopy coupled multivariate analysis (1H NMR-PCA/PLS-DA) is an important tool for the discrimination of wine products. Although 1H NMR has been shown to discriminate wines of different cultivars, a grape genetic component of the discrimination has been inferred only from discrimination of cultivars of undefined genetic homology and in the presence of many confounding environmental factors. We aimed to confirm the influence of grape genotypes in the absence of those factors. We applied 1H NMR-PCA/PLS-DA and hierarchical cluster analysis (HCA) to wines from five, variously genetically-related grapevine (V. vinifera) cultivars; all grown similarly on the same site and vinified similarly. We also compared the semi-quantitative profiles of the discriminant metabolites of each cultivar with previously reported chemical analyses. The cultivars were clearly distinguishable and there was a general correlation between their grouping and their genetic homology as revealed by recent genomic studies. Between cultivars, the relative amounts of several of the cultivar-related discriminant metabolites conformed closely with reported chemical analyses. Differences in grape-derived metabolites associated with genetic differences alone are a major source of 1H NMR-based discrimination of wines and 1H NMR has the capacity to discriminate between very closely related cultivars. The study confirms that genetic variation among grape cultivars alone can account for the discrimination of wine by 1H NMR-PCA/PLS and indicates that 1H NMR spectra of wine of single grape cultivars may in future be used in tandem with hierarchical cluster analysis to elucidate genetic lineages and metabolomic relations of grapevine cultivars. In the absence of genetic information, for example, where predecessor varieties are no longer extant, this may be a particularly useful approach.
Williams, Bronwyn W; Scribner, Kim T
2010-01-01
Reintroductions and translocations are increasingly used to repatriate or increase probabilities of persistence for animal and plant species. Genetic and demographic characteristics of founding individuals and suitability of habitat at release sites are commonly believed to affect the success of these conservation programs. Genetic divergence among multiple source populations of American martens (Martes americana) and well documented introduction histories permitted analyses of post-introduction dispersion from release sites and development of genetic clusters in the Upper Peninsula (UP) of Michigan <50 years following release. Location and size of spatial genetic clusters and measures of individual-based autocorrelation were inferred using 11 microsatellite loci. We identified three genetic clusters in geographic proximity to original release locations. Estimated distances of effective gene flow based on spatial autocorrelation varied greatly among genetic clusters (30-90 km). Spatial contiguity of genetic clusters has been largely maintained with evidence for admixture primarily in localized regions, suggesting recent contact or locally retarded rates of gene flow. Data provide guidance for future studies of the effects of permeabilities of different land-cover and land-use features to dispersal and of other biotic and environmental factors that may contribute to the colonization process and development of spatial genetic associations.
Review of Current Conservation Genetic Analyses of Northeast Pacific Sharks.
Larson, Shawn E; Daly-Engel, Toby S; Phillips, Nicole M
Conservation genetics is an applied science that utilizes molecular tools to help solve problems in species conservation and management. It is an interdisciplinary specialty in which scientists apply the study of genetics in conjunction with traditional ecological fieldwork and other techniques to explore molecular variation, population boundaries, and evolutionary relationships with the goal of enabling resource managers to better protect biodiversity and identify unique populations. Several shark species in the northeast Pacific (NEP) have been studied using conservation genetics techniques, which are discussed here. The primary methods employed to study population genetics of sharks have historically been nuclear microsatellites and mitochondrial (mt) DNA. These markers have been used to assess genetic diversity, mating systems, parentage, relatedness, and genetically distinct populations to inform management decisions. Novel approaches in conservation genetics, including next-generation DNA and RNA sequencing, environmental DNA (eDNA), and epigenetics are just beginning to be applied to elasmobranch evolution, physiology, and ecology. Here, we review the methods and results of past studies, explore future directions for shark conservation genetics, and discuss the implications of molecular research and techniques for the long-term management of shark populations in the NEP. © 2017 Elsevier Ltd. All rights reserved.
Holst-Jensen, Arne; Spilsberg, Bjørn; Arulandhu, Alfred J; Kok, Esther; Shi, Jianxin; Zel, Jana
2016-07-01
The emergence of high-throughput, massive or next-generation sequencing technologies has created a completely new foundation for molecular analyses. Various selective enrichment processes are commonly applied to facilitate detection of predefined (known) targets. Such approaches, however, inevitably introduce a bias and are prone to miss unknown targets. Here we review the application of high-throughput sequencing technologies and the preparation of fit-for-purpose whole genome shotgun sequencing libraries for the detection and characterization of genetically modified and derived products. The potential impact of these new sequencing technologies for the characterization, breeding selection, risk assessment, and traceability of genetically modified organisms and genetically modified products is yet to be fully acknowledged. The published literature is reviewed, and the prospects for future developments and use of the new sequencing technologies for these purposes are discussed.
Genomics in rugby union: A review and future prospects.
Heffernan, Shane M; Kilduff, Liam P; Day, Stephen H; Pitsiladis, Yannis P; Williams, Alun G
2015-01-01
This article introduces some aspects of sports genomics in a rugby union context, considers the rugby-specific genetic data in the published literature and outlines the next research steps required if the potential applications of genetic technology in rugby union, also identified here, are to become possible. A substantial proportion of the inter-individual variation for many traits related to rugby performance, including strength, short-term muscle power, VO2 max, injury susceptibility and the likelihood of being an elite athlete is inherited and can be investigated using molecular genetic techniques. In sports genomics, significant efforts have been made in recent years to develop large DNA biobanks of elite athletes for detailed exploration of the heritable bases of those traits. However, little effort has been devoted to the study of rugby athletes, and most of the little research that has focused on rugby was conducted with small cohorts of non-elite players. With steadily growing knowledge of the molecular mechanisms underpinning complex performance traits and the aetiology of injury, investigating sports genomics in the context of rugby is now a viable proposition and a worthwhile endeavour. The RugbyGene project we describe briefly in this article is a multi-institutional research collaboration in rugby union that will perform molecular genetic analyses of varying complexity. Genetic tests could become useful tools for rugby practitioners in the future and provide complementary and additional information to that provided by the non-genetic tests currently used.
Maternal substance use during pregnancy and offspring conduct problems: A meta-analysis.
Ruisch, I Hyun; Dietrich, Andrea; Glennon, Jeffrey C; Buitelaar, Jan K; Hoekstra, Pieter J
2018-01-01
We conducted meta-analyses of relationships between highly prevalent substance use during pregnancy and offspring conduct disorder problems. In total 36 studies were included. Odds ratios (ORs) were 2.06 (1.67-2.54, 25 studies) for maternal smoking, 2.11 (1.42-3.15, 9 studies) for alcohol use, and 1.29 (0.93-1.81, 3 studies) for cannabis use, while a single study of caffeine use reported no effects. Our meta-analyses support an association between smoking and alcohol use during pregnancy, and offspring conduct problems, yet do not resolve causality issues given potential confounding by genetic factors, gene-environment interactions, and comorbidity such as with attention deficit hyperactivity disorders. Future studies should use genetically sensitive designs to investigate the role of pregnancy substance use in offspring conduct problems and may consider more broadly defined behavioral problems. Copyright © 2017 Elsevier Ltd. All rights reserved.
Laurier, D; Grosche, B; Auvinen, A; Clavel, J; Cobaleda, C; Dehos, A; Hornhardt, S; Jacob, S; Kaatsch, P; Kosti, O; Kuehni, C; Lightfoot, T; Spycher, B; Van Nieuwenhuyse, A; Wakeford, R; Ziegelberger, G
2014-09-01
Recent findings related to childhood leukaemia incidence near nuclear installations have raised questions which can be answered neither by current knowledge on radiation risk nor by other established risk factors. In 2012, a workshop was organised on this topic with two objectives: (a) review of results and discussion of methodological limitations of studies near nuclear installations; (b) identification of directions for future research into the causes and pathogenesis of childhood leukaemia. The workshop gathered 42 participants from different disciplines, extending widely outside of the radiation protection field. Regarding the proximity of nuclear installations, the need for continuous surveillance of childhood leukaemia incidence was highlighted, including a better characterisation of the local population. The creation of collaborative working groups was recommended for consistency in methodologies and the possibility of combining data for future analyses. Regarding the causes of childhood leukaemia, major fields of research were discussed (environmental risk factors, genetics, infections, immunity, stem cells, experimental research). The need for multidisciplinary collaboration in developing research activities was underlined, including the prevalence of potential predisposition markers and investigating further the infectious aetiology hypothesis. Animal studies and genetic/epigenetic approaches appear of great interest. Routes for future research were pointed out.
Vrshek-Schallhorn, Suzanne; Stroud, Catherine B.; Mineka, Susan; Zinbarg, Richard E.; Adam, Emma K.; Redei, Eva E.; Hammen, Constance; Craske, Michelle G.
2016-01-01
Behavioral genetic research supports polygenic models of depression in which many genetic variations each contribute a small amount of risk, and prevailing diathesis-stress models suggest gene-environment interactions (GxE). Multilocus profile scores of additive risk offer an approach that is consistent with polygenic models of depression risk. In a first demonstration of this approach in a GxE predicting depression, we created an additive multilocus profile score from five serotonin system polymorphisms (one each in the genes HTR1A, HTR2A, HTR2C, and two in TPH2). Analyses focused on two forms of interpersonal stress as environmental risk factors. Using five years of longitudinal diagnostic and life stress interviews from 387 emerging young adults in the Youth Emotion Project, survival analyses show that this multilocus profile score interacts with major interpersonal stressful life events to predict major depressive episode onsets (HR = 1.815, p = .007). Simultaneously, there was a significant protective effect of the profile score without a recent event (HR = 0.83, p = .030). The GxE effect with interpersonal chronic stress was not significant (HR = 1.15, p = .165). Finally, effect sizes for genetic factors examined ignoring stress suggested such an approach could lead to overlooking or misinterpreting genetic effects. Both the GxE effect and the protective simple main effect were replicated in a sample of early adolescent girls (N = 105). We discuss potential benefits of the multilocus genetic profile score approach and caveats for future research. PMID:26595467
Lee, T; Thalamuthu, A; Henry, J D; Trollor, J N; Ames, D; Wright, M J; Sachdev, P S
2018-05-01
We used a sub-sample from the Older Australian Twins Study to estimate the heritability of performance on three tests of language ability: Boston Naming Test (BNT), Letter/Phonemic Fluency (FAS) and Category/Semantic Fluency (CFT) Tests. After adjusting for age, sex, education, mood, and global cognition (GC), heritability estimates obtained for the three tests were 0.35, 0.59, and 0.20, respectively. Multivariate analyses showed that the genetic correlation were high for BNT and CFT (0.61), but low for BNT and FAS (0.17), and for FAS and CFT (0.28). Genetic modelling with Cholesky decomposition indicated that the covariation between the three measures could be explained by a common genetic factor. Environmental correlations between the language ability measures were low, and there were considerable specific environmental influences for each measure. Future longitudinal studies with language performance and neuroimaging data can further our understanding of genetic and environmental factors involved in the process of cognitive aging.
van Donkelaar, Marjolein M. J.; Poelmans, Geert; Buitelaar, Jan K.; Sonuga‐Barke, Edmund J. S.; Stringaris, Argyris; consortium, IMAGE; Faraone, Stephen V.; Franke, Barbara; Steinhausen, Hans‐Christoph; van Hulzen, Kimm J. E.
2015-01-01
Oppositional defiant disorder (ODD) is a frequent psychiatric disorder seen in children and adolescents with attention‐deficit‐hyperactivity disorder (ADHD). ODD is also a common antecedent to both affective disorders and aggressive behaviors. Although the heritability of ODD has been estimated to be around 0.60, there has been little research into the molecular genetics of ODD. The present study examined the association of irritable and defiant/vindictive dimensions and categorical subtypes of ODD (based on latent class analyses) with previously described specific polymorphisms (DRD4 exon3 VNTR, 5‐HTTLPR, and seven OXTR SNPs) as well as with dopamine, serotonin, and oxytocin genes and pathways in a clinical sample of children and adolescents with ADHD. In addition, we performed a multivariate genome‐wide association study (GWAS) of the aforementioned ODD dimensions and subtypes. Apart from adjusting the analyses for age and sex, we controlled for “parental ability to cope with disruptive behavior.” None of the hypothesis‐driven analyses revealed a significant association with ODD dimensions and subtypes. Inadequate parenting behavior was significantly associated with all ODD dimensions and subtypes, most strongly with defiant/vindictive behaviors. In addition, the GWAS did not result in genome‐wide significant findings but bioinformatics and literature analyses revealed that the proteins encoded by 28 of the 53 top‐ranked genes functionally interact in a molecular landscape centered around Beta‐catenin signaling and involved in the regulation of neurite outgrowth. Our findings provide new insights into the molecular basis of ODD and inform future genetic studies of oppositional behavior. © 2015 The Authors. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics Published by Wiley Periodicals, Inc. PMID:26184070
Calafell, Francesc; Larmuseau, Maarten H D
2017-05-01
The Y chromosome is currently by far the most popular marker in genetic genealogy that combines genetic data and family history. This popularity is based on its haploid character and its close association with the patrilineage and paternal inherited surname. Other markers have not been found (yet) to overrule this status due to the low sensitivity and precision of autosomal DNA for genetic genealogical applications, given the vagaries of recombination, and the lower capacities of mitochondrial DNA combined with an in general much lower interest in maternal lineages. The current knowledge about the Y chromosome and the availability of markers with divergent mutation rates make it possible to answer questions on relatedness levels which differ in time depth; from the individual and familial level to the surnames, clan and population level. The use of the Y chromosome in genetic genealogy has led to applications in several well-established research disciplines; namely in, e.g., family history, demography, anthropology, forensic sciences, population genetics and sex chromosome evolution. The information obtained from analysing this chromosome is not only interesting for academic scientists but also for the huge and lively community of amateur genealogists and citizen-scientists, fascinated in analysing their own genealogy or surname. This popularity, however, has also some drawbacks, mainly for privacy reasons related to the DNA donor, his close family and far-related namesakes. In this review paper we argue why Y-chromosomal analysis and its genetic genealogical applications will still perform an important role in future interdisciplinary research.
Genetic effects influencing risk for major depressive disorder in China and Europe.
Bigdeli, T B; Ripke, S; Peterson, R E; Trzaskowski, M; Bacanu, S-A; Abdellaoui, A; Andlauer, T F M; Beekman, A T F; Berger, K; Blackwood, D H R; Boomsma, D I; Breen, G; Buttenschøn, H N; Byrne, E M; Cichon, S; Clarke, T-K; Couvy-Duchesne, B; Craddock, N; de Geus, E J C; Degenhardt, F; Dunn, E C; Edwards, A C; Fanous, A H; Forstner, A J; Frank, J; Gill, M; Gordon, S D; Grabe, H J; Hamilton, S P; Hardiman, O; Hayward, C; Heath, A C; Henders, A K; Herms, S; Hickie, I B; Hoffmann, P; Homuth, G; Hottenga, J-J; Ising, M; Jansen, R; Kloiber, S; Knowles, J A; Lang, M; Li, Q S; Lucae, S; MacIntyre, D J; Madden, P A F; Martin, N G; McGrath, P J; McGuffin, P; McIntosh, A M; Medland, S E; Mehta, D; Middeldorp, C M; Milaneschi, Y; Montgomery, G W; Mors, O; Müller-Myhsok, B; Nauck, M; Nyholt, D R; Nöthen, M M; Owen, M J; Penninx, B W J H; Pergadia, M L; Perlis, R H; Peyrot, W J; Porteous, D J; Potash, J B; Rice, J P; Rietschel, M; Riley, B P; Rivera, M; Schoevers, R; Schulze, T G; Shi, J; Shyn, S I; Smit, J H; Smoller, J W; Streit, F; Strohmaier, J; Teumer, A; Treutlein, J; Van der Auwera, S; van Grootheest, G; van Hemert, A M; Völzke, H; Webb, B T; Weissman, M M; Wellmann, J; Willemsen, G; Witt, S H; Levinson, D F; Lewis, C M; Wray, N R; Flint, J; Sullivan, P F; Kendler, K S
2017-03-28
Major depressive disorder (MDD) is a common, complex psychiatric disorder and a leading cause of disability worldwide. Despite twin studies indicating its modest heritability (~30-40%), extensive heterogeneity and a complex genetic architecture have complicated efforts to detect associated genetic risk variants. We combined single-nucleotide polymorphism (SNP) summary statistics from the CONVERGE and PGC studies of MDD, representing 10 502 Chinese (5282 cases and 5220 controls) and 18 663 European (9447 cases and 9215 controls) subjects. We determined the fraction of SNPs displaying consistent directions of effect, assessed the significance of polygenic risk scores and estimated the genetic correlation of MDD across ancestries. Subsequent trans-ancestry meta-analyses combined SNP-level evidence of association. Sign tests and polygenic score profiling weakly support an overlap of SNP effects between East Asian and European populations. We estimated the trans-ancestry genetic correlation of lifetime MDD as 0.33; female-only and recurrent MDD yielded estimates of 0.40 and 0.41, respectively. Common variants downstream of GPHN achieved genome-wide significance by Bayesian trans-ancestry meta-analysis (rs9323497; log 10 Bayes Factor=8.08) but failed to replicate in an independent European sample (P=0.911). Gene-set enrichment analyses indicate enrichment of genes involved in neuronal development and axonal trafficking. We successfully demonstrate a partially shared polygenic basis of MDD in East Asian and European populations. Taken together, these findings support a complex etiology for MDD and possible population differences in predisposing genetic factors, with important implications for future genetic studies.
Genetic effects influencing risk for major depressive disorder in China and Europe
Bigdeli, T B; Ripke, S; Peterson, R E; Trzaskowski, M; Bacanu, S-A; Abdellaoui, A; Andlauer, T F M; Beekman, A T F; Berger, K; Blackwood, D H R; Boomsma, D I; Breen, G; Buttenschøn, H N; Byrne, E M; Cichon, S; Clarke, T-K; Couvy-Duchesne, B; Craddock, N; de Geus, E J C; Degenhardt, F; Dunn, E C; Edwards, A C; Fanous, A H; Forstner, A J; Frank, J; Gill, M; Gordon, S D; Grabe, H J; Hamilton, S P; Hardiman, O; Hayward, C; Heath, A C; Henders, A K; Herms, S; Hickie, I B; Hoffmann, P; Homuth, G; Hottenga, J-J; Ising, M; Jansen, R; Kloiber, S; Knowles, J A; Lang, M; Li, Q S; Lucae, S; MacIntyre, D J; Madden, P A F; Martin, N G; McGrath, P J; McGuffin, P; McIntosh, A M; Medland, S E; Mehta, D; Middeldorp, C M; Milaneschi, Y; Montgomery, G W; Mors, O; Müller-Myhsok, B; Nauck, M; Nyholt, D R; Nöthen, M M; Owen, M J; Penninx, B W J H; Pergadia, M L; Perlis, R H; Peyrot, W J; Porteous, D J; Potash, J B; Rice, J P; Rietschel, M; Riley, B P; Rivera, M; Schoevers, R; Schulze, T G; Shi, J; Shyn, S I; Smit, J H; Smoller, J W; Streit, F; Strohmaier, J; Teumer, A; Treutlein, J; Van der Auwera, S; van Grootheest, G; van Hemert, A M; Völzke, H; Webb, B T; Weissman, M M; Wellmann, J; Willemsen, G; Witt, S H; Levinson, D F; Lewis, C M; Wray, N R; Flint, J; Sullivan, P F; Kendler, K S
2017-01-01
Major depressive disorder (MDD) is a common, complex psychiatric disorder and a leading cause of disability worldwide. Despite twin studies indicating its modest heritability (~30–40%), extensive heterogeneity and a complex genetic architecture have complicated efforts to detect associated genetic risk variants. We combined single-nucleotide polymorphism (SNP) summary statistics from the CONVERGE and PGC studies of MDD, representing 10 502 Chinese (5282 cases and 5220 controls) and 18 663 European (9447 cases and 9215 controls) subjects. We determined the fraction of SNPs displaying consistent directions of effect, assessed the significance of polygenic risk scores and estimated the genetic correlation of MDD across ancestries. Subsequent trans-ancestry meta-analyses combined SNP-level evidence of association. Sign tests and polygenic score profiling weakly support an overlap of SNP effects between East Asian and European populations. We estimated the trans-ancestry genetic correlation of lifetime MDD as 0.33; female-only and recurrent MDD yielded estimates of 0.40 and 0.41, respectively. Common variants downstream of GPHN achieved genome-wide significance by Bayesian trans-ancestry meta-analysis (rs9323497; log10 Bayes Factor=8.08) but failed to replicate in an independent European sample (P=0.911). Gene-set enrichment analyses indicate enrichment of genes involved in neuronal development and axonal trafficking. We successfully demonstrate a partially shared polygenic basis of MDD in East Asian and European populations. Taken together, these findings support a complex etiology for MDD and possible population differences in predisposing genetic factors, with important implications for future genetic studies. PMID:28350396
Assessing the evidence for shared genetic risks across psychiatric disorders and traits.
Martin, Joanna; Taylor, Mark J; Lichtenstein, Paul
2017-12-04
Genetic influences play a significant role in risk for psychiatric disorders, prompting numerous endeavors to further understand their underlying genetic architecture. In this paper, we summarize and review evidence from traditional twin studies and more recent genome-wide molecular genetic analyses regarding two important issues that have proven particularly informative for psychiatric genetic research. First, emerging results are beginning to suggest that genetic risk factors for some (but not all) clinically diagnosed psychiatric disorders or extreme manifestations of psychiatric traits in the population share genetic risks with quantitative variation in milder traits of the same disorder throughout the general population. Second, there is now evidence for substantial sharing of genetic risks across different psychiatric disorders. This extends to the level of characteristic traits throughout the population, with which some clinical disorders also share genetic risks. In this review, we summarize and evaluate the evidence for these two issues, for a range of psychiatric disorders. We then critically appraise putative interpretations regarding the potential meaning of genetic correlation across psychiatric phenotypes. We highlight several new methods and studies which are already using these insights into the genetic architecture of psychiatric disorders to gain additional understanding regarding the underlying biology of these disorders. We conclude by outlining opportunities for future research in this area.
AFLP analysis of genetic diversity and phylogenetic relationships of Brassica oleracea in Ireland.
El-Esawi, Mohamed A; Germaine, Kieran; Bourke, Paula; Malone, Renee
2016-01-01
Brassica oleracea L. is one of the most economically important vegetable crop species of the genus Brassica L. This species is threatened in Ireland, without any prior reported genetic studies. The use of this species is being very limited due to its imprecise phylogeny and uncompleted genetic characterisation. The main objective of this study was to assess the genetic diversity and phylogenetic relationships of a set of 25 Irish B. oleracea accessions using the powerful amplified fragment length polymorphism (AFLP) technique. A total of 471 fragments were scored across all the 11 AFLP primer sets used, out of which 423 (89.8%) were polymorphic and could differentiate the accessions analysed. The dendrogram showed that cauliflowers were more closely related to cabbages than kales were, and accessions of some cabbage types were distributed among different clusters within cabbage subgroups. Approximately 33.7% of the total genetic variation was found among accessions, and 66.3% of the variation resided within accessions. The total genetic diversity (HT) and the intra-accessional genetic diversity (HS) were 0.251 and 0.156, respectively. This high level of variation demonstrates that the Irish B. oleracea accessions studied should be managed and conserved for future utilisation and exploitation in food and agriculture. In conclusion, this study addressed important phylogenetic questions within this species, and provided a new insight into the inclusion of four accessions of cabbages and kales in future breeding programs for improving varieties. AFLP markers were efficient for assessing genetic diversity and phylogenetic relationships in Irish B. oleracea species. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Liu, Xiao Bin; Li, Jing; Yang, Zhu L
2018-01-01
A core collection is a subset of an entire collection that represents as much of the genetic diversity of the entire collection as possible. The establishment of a core collection for crops is practical for efficient management and use of germplasm. However, the establishment of a core collection of mushrooms is still in its infancy, and no established core collection of the economically important species Flammulina velutipes has been reported. We established the first core collection of F. velutipes , containing 32 strains based on 81 genetically different F. veltuipes strains. The allele retention proportion of the core collection for the entire collection was 100%. Moreover, the genetic diversity parameters (the effective number of alleles, Nei's expected heterozygosity, the number of observed heterozygosity, and Shannon's information index) of the core collection showed no significant differences from the entire collection ( p > 0.01). Thus, the core collection is representative of the genetic diversity of the entire collection. Genetic structure analyses of the core collection revealed that the 32 strains could be clustered into 6 groups, among which groups 1 to 3 were cultivars and groups 4 to 6 were wild strains. The wild strains from different locations harbor their own specific alleles, and were clustered stringently in accordance with their geographic origins. Genetic diversity analyses of the core collection revealed that the wild strains possessed greater genetic diversity than the cultivars. We established the first core collection of F. velutipes in China, which is an important platform for efficient breeding of this mushroom in the future. In addition, the wild strains in the core collection possess favorable agronomic characters and produce unique bioactive compounds, adding value to the platform. More attention should be paid to wild strains in further strain breeding.
Genetic management of endangered species at the Patuxent Wildlife Research Center
Gabel, R.R.; Gee, G.F.
1987-01-01
Summary: The Patuxent Wildlife Research Center conducts one of the world's largest and best-known research programs for captive propagation of endangered wildlife. In order to be effective and to ensure the long-term survival of species, researchers at Patuxent attempt to manage captive populations according to the principles of population genetics. This includes the use of estimated inbreeding levels for mate selections in Masked Bobwhites and biochemical analyses to measure extant genetic material and determine relationships among Whooping Cranes. As added insurance against catastrophic losses, or even random losses of key individuals representing unique lineages, cryopreservation of semen has been studied and used for some species. Artificial insemination, using either stored or fresh semen, is used to improve fertility rates, thereby increasing the chances for survival of unique genetic lines. Finally, a periodic influx of unrelated stock occurs, when feasible, in order to enhance the genetic base of captive populations. The application of these techniques will ensure that future releases utilize genetically viable animals, thereby improving the potential for successful reintroductions into the wild.
Parental narratives about genetic testing for hearing loss: a one year follow up study.
Kaimal, Girija; Steinberg, Annie G; Ennis, Sara; Harasink, Sue Moyer; Ewing, Rachel; Li, Yuelin
2007-12-01
Few studies examine whether and how parental attitudes towards genetic testing change over time. In this study we interviewed parents of 14 children with newly identified hearing loss at two time points: after referral to genetics and 1 year later. Qualitative analyses of parental narratives indicate that parental attitudes did not change significantly over this time. Parents who perceived genetic testing to be useful continued to value it after testing, while parents who did not perceive it as being useful for their child's future held the same view a year later. The only parents who changed their views regarding the usefulness of genetic testing for hearing loss were those who reported that their children underwent significant changes in their hearing loss or were faced with other life threatening conditions. Parents were also often unaware of the role of the genetic counselor and how genetic counseling could help address many of their lingering questions and concerns. These emergent themes indicate the need for geneticists and genetic counselors to be aware of and sensitized to the questions and attitudes that bring parents to a genetic evaluation, as well as the reasons why parents may not follow up with genetic testing for hearing loss when recommended.
Phil Cannon; Ned B. Klopfenstein; Mee-Sook Kim; John W. Hanna; Dionicio Alvarado Rosales
2008-01-01
In September 2007, a collaborative effort was made to survey Armillaria species in three general areas of south-central Mexico. Collected Armillaria isolates will be subjected to DNA analyses to examine genetic relationships with other Armillaria species. These studies will provide baseline information for examining evolution of Armillaria...
Blanco-Pastor, J L; Fernández-Mazuecos, M; Vargas, P
2013-08-01
Anthropogenic global climate change is expected to cause severe range contractions among alpine plants. Alpine areas in the Mediterranean region are of special concern because of the high abundance of endemic species with narrow ranges. This study combined species distribution models, population structure analyses and Bayesian skyline plots to trace the past and future distribution and diversity of Linaria glacialis, an endangered narrow endemic species that inhabits summits of Sierra Nevada (Spain). The results showed that: (i) the habitat of this alpine-Mediterranean species in Sierra Nevada suffered little changes during glacial and interglacial stages of late Quaternary; (ii) climatic oscillations in the last millennium (Medieval Warm Period and Little Ice Age) moderately affected the demographic trends of L. glacialis; (iii) future warming conditions will cause severe range contractions; and (iv) genetic diversity will not diminish at the same pace as the distribution range. As a consequence of the low population structure of this species, genetic impoverishment in the alpine zones of Sierra Nevada should be limited during range contraction. We conclude that maintenance of large effective population sizes via high mutation rates and high levels of gene flow may promote the resilience of alpine plant species when confronted with global warming. © 2013 John Wiley & Sons Ltd.
The search for loci under selection: trends, biases and progress.
Ahrens, Collin W; Rymer, Paul D; Stow, Adam; Bragg, Jason; Dillon, Shannon; Umbers, Kate D L; Dudaniec, Rachael Y
2018-03-01
Detecting genetic variants under selection using F ST outlier analysis (OA) and environmental association analyses (EAAs) are popular approaches that provide insight into the genetic basis of local adaptation. Despite the frequent use of OA and EAA approaches and their increasing attractiveness for detecting signatures of selection, their application to field-based empirical data have not been synthesized. Here, we review 66 empirical studies that use Single Nucleotide Polymorphisms (SNPs) in OA and EAA. We report trends and biases across biological systems, sequencing methods, approaches, parameters, environmental variables and their influence on detecting signatures of selection. We found striking variability in both the use and reporting of environmental data and statistical parameters. For example, linkage disequilibrium among SNPs and numbers of unique SNP associations identified with EAA were rarely reported. The proportion of putatively adaptive SNPs detected varied widely among studies, and decreased with the number of SNPs analysed. We found that genomic sampling effort had a greater impact than biological sampling effort on the proportion of identified SNPs under selection. OA identified a higher proportion of outliers when more individuals were sampled, but this was not the case for EAA. To facilitate repeatability, interpretation and synthesis of studies detecting selection, we recommend that future studies consistently report geographical coordinates, environmental data, model parameters, linkage disequilibrium, and measures of genetic structure. Identifying standards for how OA and EAA studies are designed and reported will aid future transparency and comparability of SNP-based selection studies and help to progress landscape and evolutionary genomics. © 2018 John Wiley & Sons Ltd.
Application of molecular biology of differentiated thyroid cancer for clinical prognostication.
Marotta, Vincenzo; Sciammarella, Concetta; Colao, Annamaria; Faggiano, Antongiulio
2016-11-01
Although cancer outcome results from the interplay between genetics and environment, researchers are making a great effort for applying molecular biology in the prognostication of differentiated thyroid cancer (DTC). Nevertheless, role of molecular characterisation in the prognostic setting of DTC is still nebulous. Among the most common and well-characterised genetic alterations related to DTC, including mutations of BRAF and RAS and RET rearrangements, BRAF V600E is the only mutation showing unequivocal association with clinical outcome. Unfortunately, its accuracy is strongly limited by low specificity. Recently, the introduction of next-generation sequencing techniques led to the identification of TERT promoter and TP53 mutations in DTC. These genetic abnormalities may identify a small subgroup of tumours with highly aggressive behaviour, thus improving specificity of molecular prognostication. Although knowledge of prognostic significance of TP53 mutations is still anecdotal, mutations of the TERT promoter have showed clear association with clinical outcome. Nevertheless, this genetic marker needs to be analysed according to a multigenetic model, as its prognostic effect becomes negligible when present in isolation. Given that any genetic alteration has demonstrated, taken alone, enough specificity, the co-occurrence of driving mutations is emerging as an independent genetic signature of aggressiveness, with possible future application in clinical practice. DTC prognostication may be empowered in the near future by non-tissue molecular prognosticators, including circulating BRAF V600E and miRNAs. Although promising, use of these markers needs to be refined by the technical sight, and the actual prognostic value is still yet to be validated. © 2016 Society for Endocrinology.
Genome-wide associations for birth weight and correlations with adult disease
Feenstra, Bjarke; van Zuydam, Natalie R; Gaulton, Kyle J; Grarup, Niels; Bradfield, Jonathan P; Strachan, David P; Li-Gao, Ruifang; Ahluwalia, Tarunveer S; Kreiner, Eskil; Rueedi, Rico; Lyytikäinen, Leo-Pekka; Cousminer, Diana L; Wu, Ying; Thiering, Elisabeth; Wang, Carol A; Have, Christian T; Hottenga, Jouke-Jan; Vilor-Tejedor, Natalia; Joshi, Peter K; Boh, Eileen Tai Hui; Ntalla, Ioanna; Pitkänen, Niina; Mahajan, Anubha; van Leeuwen, Elisabeth M; Joro, Raimo; Lagou, Vasiliki; Nodzenski, Michael; Diver, Louise A; Zondervan, Krina T; Bustamante, Mariona; Marques-Vidal, Pedro; Mercader, Josep M; Bennett, Amanda J; Rahmioglu, Nilufer; Nyholt, Dale R; Ma, Ronald Ching Wan; Tam, Claudia Ha Ting; Tam, Wing Hung; Ganesh, Santhi K; van Rooij, Frank JA; Jones, Samuel E; Loh, Po-Ru; Ruth, Katherine S; Tuke, Marcus A; Tyrrell, Jessica; Wood, Andrew R; Yaghootkar, Hanieh; Scholtens, Denise M; Paternoster, Lavinia; Prokopenko, Inga; Kovacs, Peter; Atalay, Mustafa; Willems, Sara M; Panoutsopoulou, Kalliope; Wang, Xu; Carstensen, Lisbeth; Geller, Frank; Schraut, Katharina E; Murcia, Mario; van Beijsterveldt, Catharina EM; Willemsen, Gonneke; Appel, Emil V R; Fonvig, Cilius E; Trier, Caecilie; Tiesler, Carla MT; Standl, Marie; Kutalik, Zoltán; Bonas-Guarch, Sílvia; Hougaard, David M; Sánchez, Friman; Torrents, David; Waage, Johannes; Hollegaard, Mads V; de Haan, Hugoline G; Rosendaal, Frits R; Medina-Gomez, Carolina; Ring, Susan M; Hemani, Gibran; McMahon, George; Robertson, Neil R; Groves, Christopher J; Langenberg, Claudia; Luan, Jian'an; Scott, Robert A; Zhao, Jing Hua; Mentch, Frank D; MacKenzie, Scott M; Reynolds, Rebecca M; Lowe, William L; Tönjes, Anke; Stumvoll, Michael; Lindi, Virpi; Lakka, Timo A; van Duijn, Cornelia M; Kiess, Wieland; Körner, Antje; Sørensen, Thorkild IA; Niinikoski, Harri; Pahkala, Katja; Raitakari, Olli T; Zeggini, Eleftheria; Dedoussis, George V; Teo, Yik-Ying; Saw, Seang-Mei; Melbye, Mads; Campbell, Harry; Wilson, James F; Vrijheid, Martine; de Geus, Eco JCN; Boomsma, Dorret I; Kadarmideen, Haja N; Holm, Jens-Christian; Hansen, Torben; Sebert, Sylvain; Hattersley, Andrew T; Beilin, Lawrence J; Newnham, John P; Pennell, Craig E; Heinrich, Joachim; Adair, Linda S; Borja, Judith B; Mohlke, Karen L; Eriksson, Johan G; Widén, Elisabeth E; Kähönen, Mika; Viikari, Jorma S; Lehtimäki, Terho; Vollenweider, Peter; Bønnelykke, Klaus; Bisgaard, Hans; Mook-Kanamori, Dennis O; Hofman, Albert; Rivadeneira, Fernando; Uitterlinden, André G; Pisinger, Charlotta; Pedersen, Oluf; Power, Christine; Hyppönen, Elina; Wareham, Nicholas J; Hakonarson, Hakon; Davies, Eleanor; Walker, Brian R; Jaddoe, Vincent WV; Jarvelin, Marjo-Riitta; Grant, Struan FA; Vaag, Allan A; Lawlor, Debbie A; Frayling, Timothy M; Davey Smith, George; Morris, Andrew P; Ong, Ken K; Felix, Janine F; Timpson, Nicholas J; Perry, John RB; Evans, David M; McCarthy, Mark I; Freathy, Rachel M
2016-01-01
Birth weight (BW) is influenced by both foetal and maternal factors and in observational studies is reproducibly associated with future risk of adult metabolic diseases including type 2 diabetes (T2D) and cardiovascular disease1. These lifecourse associations have often been attributed to the impact of an adverse early life environment. We performed a multi-ancestry genome-wide association study (GWAS) meta-analysis of BW in 153,781 individuals, identifying 60 loci where foetal genotype was associated with BW (P <5x10-8). Overall, ˜15% of variance in BW could be captured by assays of foetal genetic variation. Using genetic association alone, we found strong inverse genetic correlations between BW and systolic blood pressure (rg=-0.22, P =5.5x10-13), T2D (rg=-0.27, P =1.1x10-6) and coronary artery disease (rg=-0.30, P =6.5x10-9) and, in large cohort data sets, demonstrated that genetic factors were the major contributor to the negative covariance between BW and future cardiometabolic risk. Pathway analyses indicated that the protein products of genes within BW-associated regions were enriched for diverse processes including insulin signalling, glucose homeostasis, glycogen biosynthesis and chromatin remodelling. There was also enrichment of associations with BW in known imprinted regions (P =1.9x10-4). We have demonstrated that lifecourse associations between early growth phenotypes and adult cardiometabolic disease are in part the result of shared genetic effects and have highlighted some of the pathways through which these causal genetic effects are mediated. PMID:27680694
Warren, Helen R; Evangelou, Evangelos; Cabrera, Claudia P; Gao, He; Ren, Meixia; Mifsud, Borbala; Ntalla, Ioanna; Surendran, Praveen; Liu, Chunyu; Cook, James P; Kraja, Aldi T; Drenos, Fotios; Loh, Marie; Verweij, Niek; Marten, Jonathan; Karaman, Ibrahim; Lepe, Marcelo P Segura; O'Reilly, Paul F; Knight, Joanne; Snieder, Harold; Kato, Norihiro; He, Jiang; Tai, E Shyong; Said, M Abdullah; Porteous, David; Alver, Maris; Poulter, Neil; Farrall, Martin; Gansevoort, Ron T; Padmanabhan, Sandosh; Mägi, Reedik; Stanton, Alice; Connell, John; Bakker, Stephan J L; Metspalu, Andres; Shields, Denis C; Thom, Simon; Brown, Morris; Sever, Peter; Esko, Tõnu; Hayward, Caroline; van der Harst, Pim; Saleheen, Danish; Chowdhury, Rajiv; Chambers, John C; Chasman, Daniel I; Chakravarti, Aravinda; Newton-Cheh, Christopher; Lindgren, Cecilia M; Levy, Daniel; Kooner, Jaspal S; Keavney, Bernard; Tomaszewski, Maciej; Samani, Nilesh J; Howson, Joanna M M; Tobin, Martin D; Munroe, Patricia B; Ehret, Georg B; Wain, Louise V
2017-03-01
Elevated blood pressure is the leading heritable risk factor for cardiovascular disease worldwide. We report genetic association of blood pressure (systolic, diastolic, pulse pressure) among UK Biobank participants of European ancestry with independent replication in other cohorts, and robust validation of 107 independent loci. We also identify new independent variants at 11 previously reported blood pressure loci. In combination with results from a range of in silico functional analyses and wet bench experiments, our findings highlight new biological pathways for blood pressure regulation enriched for genes expressed in vascular tissues and identify potential therapeutic targets for hypertension. Results from genetic risk score models raise the possibility of a precision medicine approach through early lifestyle intervention to offset the impact of blood pressure-raising genetic variants on future cardiovascular disease risk.
Ntalla, Ioanna; Surendran, Praveen; Liu, Chunyu; Cook, James P; Kraja, Aldi T; Drenos, Fotios; Loh, Marie; Verweij, Niek; Marten, Jonathan; Karaman, Ibrahim; Segura Lepe, Marcelo P; O’Reilly, Paul F; Knight, Joanne; Snieder, Harold; Kato, Norihiro; He, Jiang; Tai, E Shyong; Said, M Abdullah; Porteous, David; Alver, Maris; Poulter, Neil; Farrall, Martin; Gansevoort, Ron T; Padmanabhan, Sandosh; Mägi, Reedik; Stanton, Alice; Connell, John; Bakker, Stephan J L; Metspalu, Andres; Shields, Denis C; Thom, Simon; Brown, Morris; Sever, Peter; Esko, Tõnu; Hayward, Caroline; van der Harst, Pim; Saleheen, Danish; Chowdhury, Rajiv; Chambers, John C; Chasman, Daniel I; Chakravarti, Aravinda; Newton-Cheh, Christopher; Lindgren, Cecilia M; Levy, Daniel; Kooner, Jaspal S; Keavney, Bernard; Tomaszewski, Maciej; Samani, Nilesh J; Howson, Joanna M M; Tobin, Martin D; Munroe, Patricia B; Ehret, Georg B; Wain, Louise V
2017-01-01
Elevated blood pressure is the leading heritable risk factor for cardiovascular disease worldwide. We report genetic association of blood pressure (systolic, diastolic, pulse pressure) among UK Biobank participants of European ancestry with independent replication in other cohorts, and robust validation of 107 independent loci. We also identify new independent variants at 11 previously reported blood pressure loci. Combined with results from a range of in silico functional analyses and wet bench experiments, our findings highlight new biological pathways for blood pressure regulation enriched for genes expressed in vascular tissues and identify potential therapeutic targets for hypertension. Results from genetic risk score models raise the possibility of a precision medicine approach through early lifestyle intervention to offset the impact of blood pressure raising genetic variants on future cardiovascular disease risk. PMID:28135244
Young, Emma F; Belchier, Mark; Hauser, Lorenz; Horsburgh, Gavin J; Meredith, Michael P; Murphy, Eugene J; Pascoal, Sonia; Rock, Jennifer; Tysklind, Niklas; Carvalho, Gary R
2015-06-01
Understanding the key drivers of population connectivity in the marine environment is essential for the effective management of natural resources. Although several different approaches to evaluating connectivity have been used, they are rarely integrated quantitatively. Here, we use a 'seascape genetics' approach, by combining oceanographic modelling and microsatellite analyses, to understand the dominant influences on the population genetic structure of two Antarctic fishes with contrasting life histories, Champsocephalus gunnari and Notothenia rossii. The close accord between the model projections and empirical genetic structure demonstrated that passive dispersal during the planktonic early life stages is the dominant influence on patterns and extent of genetic structuring in both species. The shorter planktonic phase of C. gunnari restricts direct transport of larvae between distant populations, leading to stronger regional differentiation. By contrast, geographic distance did not affect differentiation in N. rossii, whose longer larval period promotes long-distance dispersal. Interannual variability in oceanographic flows strongly influenced the projected genetic structure, suggesting that shifts in circulation patterns due to climate change are likely to impact future genetic connectivity and opportunities for local adaptation, resilience and recovery from perturbations. Further development of realistic climate models is required to fully assess such potential impacts.
New developments in genetics of myositis.
Rothwell, Simon; Lamb, Janine A; Chinoy, Hector
2016-11-01
This article reviews the advances that have been made in our understanding of the genetics of the idiopathic inflammatory myopathies (IIM) in the past 2 years, with a particular focus on polymyositis, dermatomyositis and inclusion body myositis. Two large human leukocyte antigen (HLA) imputation studies have confirmed a strong association with the 8.1 ancestral haplotype in clinical subgroups of myositis and suggest multiple independent associations on this haplotype. Risk in these genes may be due to specific amino acid positions within the peptide-binding grooves of HLA molecules. A large genetic study in 2566 IIM patients revealed associations such as PTPN22, STAT4, UBE2L3 and BLK, which overlap with risk variants reported in other seropositive autoimmune diseases. There is also evidence of different genetic architectures in clinical subgroups of IIM. Candidate gene studies in the Japanese and Chinese populations have replicated previous IIM associations which suggest common aetiology between ethnicities. International collaborations have facilitated large genetic studies in IIM that have revealed much about the genetics of this rare complex disease both within the HLA region and genome-wide. Future approaches, such as sequencing and trans-ethnic meta-analyses, will advance our knowledge of IIM genetics.
Ramljak, J; Ivanković, A; Veit-Kensch, C E; Förster, M; Medugorac, I
2011-02-01
It is widely accepted that autochthonous cattle breeds can be important genetic resources for unforeseeable environmental conditions in the future. Apart from that, they often represent local culture and tradition and thus assist in the awareness of ethnic identity of a country. In Croatia, there are only three indigenous cattle breeds, Croatian Buša, Slavonian Syrmian Podolian and Istrian Cattle. All of them are threatened but specialized in a particular habitat and production system. We analysed 93 microsatellites in 51 animals of each breed to get thorough information about genetic diversity and population structure. We further set them within an existing frame of additional 16 breeds that have been genotyped for the same marker set and cover a geographical area from the domestication centre near Anatolia, through the Balkan and alpine regions, to the north-west of Europe. The cultural value was evaluated regarding the role in landscape, gastronomy, folklore and handicraft. The overall results recognize Croatian Buša being partly admixed but harbouring an enormous genetic diversity comparable with other traditional unselected Buša breeds in the Anatolian and Balkan areas. The Podolian cattle showed the lowest genetic diversity at the highest genetic distance to all remaining breeds but are playing an important role as part of the cultural landscape and thus contribute to the tourist industry. The genetic diversity of the Istrian cattle was found in the middle range of this study. It is already included in the tourist industry as a local food speciality. Current and future conservation strategies are discussed. © 2010 Blackwell Verlag GmbH.
Systematic meta-analyses and field synopsis of genetic association studies in colorectal adenomas
Montazeri, Zahra; Theodoratou, Evropi; Nyiraneza, Christine; Timofeeva, Maria; Chen, Wanjing; Svinti, Victoria; Sivakumaran, Shanya; Gresham, Gillian; Cubitt, Laura; Carvajal-Carmona, Luis; Bertagnolli, Monica M; Zauber, Ann G; Tomlinson, Ian; Farrington, Susan M; Dunlop, Malcolm G; Campbell, Harry; Little, Julian
2018-01-01
Background Low penetrance genetic variants, primarily single nucleotide polymorphisms, have substantial influence on colorectal cancer (CRC) susceptibility. Most CRCs develop from colorectal adenomas (CRA). Here, we report the first comprehensive field synopsis that catalogues all genetic association studies on CRA, with a parallel online database (http://www.chs.med.ed.ac.uk/CRAgene/). Methods We performed a systematic review, reviewing 9750 titles and then extracted data from 130 publications reporting on 181 polymorphisms in 74 genes. We conducted meta-analyses to derive summary effect estimates for 37 polymorphisms in 26 genes. We applied the Venice criteria and Bayesian False Discovery Probability (BFDP) to assess the levels of the credibility of associations. Results We considered the association with the rs6983267 variant at 8q24 as “highly credible”, reaching genome wide statistical significance in at least one meta-analysis model. We identified “less credible” associations (higher heterogeneity, lower statistical power, BFDP>0.02) with a further four variants of four independent genes: MTHFR c.677C>T p.A222V (rs1801133), TP53 c.215C>G p.R72P (rs1042522), NQO1 c.559C>T p.P187S (rs1800566), and NAT1 alleles imputed as fast acetylator genotypes. For the remaining 32 variants of 22 genes for which positive associations with CRA risk have been previously reported, the meta-analyses revealed no credible evidence to support these as true associations. Conclusions The limited number of credible associations between low penetrance genetic variants and CRA reflects the lower volume of evidence and associated lack of statistical power to detect associations of the magnitude typically observed for genetic variants and chronic diseases. The CRAgene database provides context for CRA genetic association data and will help inform future research directions. PMID:26451011
Vrshek-Schallhorn, Suzanne; Stroud, Catherine B; Mineka, Susan; Zinbarg, Richard E; Adam, Emma K; Redei, Eva E; Hammen, Constance; Craske, Michelle G
2015-11-01
Behavioral genetic research supports polygenic models of depression in which many genetic variations each contribute a small amount of risk, and prevailing diathesis-stress models suggest gene-environment interactions (G×E). Multilocus profile scores of additive risk offer an approach that is consistent with polygenic models of depression risk. In a first demonstration of this approach in a G×E predicting depression, we created an additive multilocus profile score from 5 serotonin system polymorphisms (1 each in the genes HTR1A, HTR2A, HTR2C, and 2 in TPH2). Analyses focused on 2 forms of interpersonal stress as environmental risk factors. Using 5 years of longitudinal diagnostic and life stress interviews from 387 emerging young adults in the Youth Emotion Project, survival analyses show that this multilocus profile score interacts with major interpersonal stressful life events to predict major depressive episode onsets (hazard ratio [HR] = 1.815, p = .007). Simultaneously, there was a significant protective effect of the profile score without a recent event (HR = 0.83, p = .030). The G×E effect with interpersonal chronic stress was not significant (HR = 1.15, p = .165). Finally, effect sizes for genetic factors examined ignoring stress suggested such an approach could lead to overlooking or misinterpreting genetic effects. Both the G×E effect and the protective simple main effect were replicated in a sample of early adolescent girls (N = 105). We discuss potential benefits of the multilocus genetic profile score approach and caveats for future research. (c) 2015 APA, all rights reserved).
Vegter, Stefan; Boersma, Cornelis; Rozenbaum, Mark; Wilffert, Bob; Navis, Gerjan; Postma, Maarten J
2008-01-01
The fields of pharmacogenetics and pharmacogenomics have become important practical tools to progress goals in medical and pharmaceutical research and development. As more screening tests are being developed, with some already used in clinical practice, consideration of cost-effectiveness implications is important. A systematic review was performed on the content of and adherence to pharmacoeconomic guidelines of recent pharmacoeconomic analyses performed in the field of pharmacogenetics and pharmacogenomics. Economic analyses of screening strategies for genetic variations, which were evidence-based and assumed to be associated with drug efficacy or safety, were included in the review. The 20 papers included cover a variety of healthcare issues, including screening tests on several cytochrome P450 (CYP) enzyme genes, thiopurine S-methyltransferase (TMPT) and angiotensin-converting enzyme (ACE) insertion deletion (ACE I/D) polymorphisms. Most economic analyses reported that genetic screening was cost effective and often even clearly dominated existing non-screening strategies. However, we found a lack of standardization regarding aspects such as the perspective of the analysis, factors included in the sensitivity analysis and the applied discount rates. In particular, an important limitation of several studies related to the failure to provide a sufficient evidence-based rationale for an association between genotype and phenotype. Future economic analyses should be conducted utilizing correct methods, with adherence to guidelines and including extensive sensitivity analyses. Most importantly, genetic screening strategies should be based on good evidence-based rationales. For these goals, we provide a list of recommendations for good pharmacoeconomic practice deemed useful in the fields of pharmacogenetics and pharmacogenomics, regardless of country and origin of the economic analysis.
Bailey-Wilson, Joan E; Childs, Erica J; Cropp, Cheryl D; Schaid, Daniel J; Xu, Jianfeng; Camp, Nicola J; Cannon-Albright, Lisa A; Farnham, James M; George, Asha; Powell, Isaac; Carpten, John D; Giles, Graham G; Hopper, John L; Severi, Gianluca; English, Dallas R; Foulkes, William D; Mæhle, Lovise; Møller, Pål; Eeles, Rosalind; Easton, Douglas; Guy, Michelle; Edwards, Steve; Badzioch, Michael D; Whittemore, Alice S; Oakley-Girvan, Ingrid; Hsieh, Chih-Lin; Dimitrov, Latchezar; Stanford, Janet L; Karyadi, Danielle M; Deutsch, Kerry; McIntosh, Laura; Ostrander, Elaine A; Wiley, Kathleen E; Isaacs, Sarah D; Walsh, Patrick C; Thibodeau, Stephen N; McDonnell, Shannon K; Hebbring, Scott; Lange, Ethan M; Cooney, Kathleen A; Tammela, Teuvo L J; Schleutker, Johanna; Maier, Christiane; Bochum, Sylvia; Hoegel, Josef; Grönberg, Henrik; Wiklund, Fredrik; Emanuelsson, Monica; Cancel-Tassin, Geraldine; Valeri, Antoine; Cussenot, Olivier; Isaacs, William B
2012-06-19
Genetic variants are likely to contribute to a portion of prostate cancer risk. Full elucidation of the genetic etiology of prostate cancer is difficult because of incomplete penetrance and genetic and phenotypic heterogeneity. Current evidence suggests that genetic linkage to prostate cancer has been found on several chromosomes including the X; however, identification of causative genes has been elusive. Parametric and non-parametric linkage analyses were performed using 26 microsatellite markers in each of 11 groups of multiple-case prostate cancer families from the International Consortium for Prostate Cancer Genetics (ICPCG). Meta-analyses of the resultant family-specific linkage statistics across the entire 1,323 families and in several predefined subsets were then performed. Meta-analyses of linkage statistics resulted in a maximum parametric heterogeneity lod score (HLOD) of 1.28, and an allele-sharing lod score (LOD) of 2.0 in favor of linkage to Xq27-q28 at 138 cM. In subset analyses, families with average age at onset less than 65 years exhibited a maximum HLOD of 1.8 (at 138 cM) versus a maximum regional HLOD of only 0.32 in families with average age at onset of 65 years or older. Surprisingly, the subset of families with only 2-3 affected men and some evidence of male-to-male transmission of prostate cancer gave the strongest evidence of linkage to the region (HLOD = 3.24, 134 cM). For this subset, the HLOD was slightly increased (HLOD = 3.47 at 134 cM) when families used in the original published report of linkage to Xq27-28 were excluded. Although there was not strong support for linkage to the Xq27-28 region in the complete set of families, the subset of families with earlier age at onset exhibited more evidence of linkage than families with later onset of disease. A subset of families with 2-3 affected individuals and with some evidence of male to male disease transmission showed stronger linkage signals. Our results suggest that the genetic basis for prostate cancer in our families is much more complex than a single susceptibility locus on the X chromosome, and that future explorations of the Xq27-28 region should focus on the subset of families identified here with the strongest evidence of linkage to this region.
Mildew-Omics: How Global Analyses Aid the Understanding of Life and Evolution of Powdery Mildews.
Bindschedler, Laurence V; Panstruga, Ralph; Spanu, Pietro D
2016-01-01
The common powdery mildew plant diseases are caused by ascomycete fungi of the order Erysiphales. Their characteristic life style as obligate biotrophs renders functional analyses in these species challenging, mainly because of experimental constraints to genetic manipulation. Global large-scale ("-omics") approaches are thus particularly valuable and insightful for the characterisation of the life and evolution of powdery mildews. Here we review the knowledge obtained so far from genomic, transcriptomic and proteomic studies in these fungi. We consider current limitations and challenges regarding these surveys and provide an outlook on desired future investigations on the basis of the various -omics technologies.
Neuroimaging in psychiatric pharmacogenetics research: the promise and pitfalls.
Falcone, Mary; Smith, Ryan M; Chenoweth, Meghan J; Bhattacharjee, Abesh Kumar; Kelsoe, John R; Tyndale, Rachel F; Lerman, Caryn
2013-11-01
The integration of research on neuroimaging and pharmacogenetics holds promise for improving treatment for neuropsychiatric conditions. Neuroimaging may provide a more sensitive early measure of treatment response in genetically defined patient groups, and could facilitate development of novel therapies based on an improved understanding of pathogenic mechanisms underlying pharmacogenetic associations. This review summarizes progress in efforts to incorporate neuroimaging into genetics and treatment research on major psychiatric disorders, such as schizophrenia, major depressive disorder, bipolar disorder, attention-deficit/hyperactivity disorder, and addiction. Methodological challenges include: performing genetic analyses in small study populations used in imaging studies; inclusion of patients with psychiatric comorbidities; and the extensive variability across studies in neuroimaging protocols, neurobehavioral task probes, and analytic strategies. Moreover, few studies use pharmacogenetic designs that permit testing of genotype × drug effects. As a result of these limitations, few findings have been fully replicated. Future studies that pre-screen participants for genetic variants selected a priori based on drug metabolism and targets have the greatest potential to advance the science and practice of psychiatric treatment.
[The genetics of depressive disorders].
Schulte-Körne, Gerd; Allgaier, Antje-Kathrin
2008-01-01
Among the most common severe psychiatric disorders worldwide, depressive disorders are a leading cause of morbidity, the onset usually occurring during childhood or adolescence. Symptomatology, prevalence, outcome and treatment differentiate depressive disorder nosologically as being either unipolar depression or bipolar disorder, which is characterized by one or more episodes of mania with or without episodes of depression. Genetic factors decisively influence the susceptibility to depressive disorders. Family studies and twin studies have been essential in defining the magnitude of familial risk and liability to heritability, particularly in the case of bipolar disorder. In recent years, linkage and association studies have made great strides towards identifying candidate genes. Particularly the s-allele of the serotonin transporter has been repeatedly confirmed to be a risk factor. Meta-analyses suggest, however, that the genetic contributions of the ascertained loci are relatively small. Along with genetic factors, environmental factors are heavily involved. Gene-environment action plays a pivotal role, particularly in unipolar depression. The genetic disposition seems to be modulated by a protective or pathogenic environment. Early-onset disorders must be further investigated in future as studies to date are somewhat limited.
Jing, S; Liu, B; Peng, L; Peng, X; Zhu, L; Fu, Q; He, G
2012-02-01
To assess genetic diversity in populations of the brown planthopper (Nilaparvata lugens Stål) (Homoptera: Delphacidae), we have developed and applied microsatellite, or simple sequence repeat (SSR), markers from expressed sequence tags (ESTs). We found that the brown planthopper clusters of ESTs were rich in SSRs with unique frequencies and distributions of SSR motifs. Three hundred and fifty-one EST-SSR markers were developed and yielded clear bands from samples of four brown planthopper populations. High cross-species transferability of these markers was detected in the closely related planthopper N. muiri. The newly developed EST-SSR markers provided sufficient resolution to distinguish within and among biotypes. Analyses based on SSR data revealed host resistance-based genetic differentiation among different brown planthopper populations; the genetic diversity of populations feeding on susceptible rice varieties was lower than that of populations feeding on resistant rice varieties. This is the first large-scale development of brown planthopper SSR markers, which will be useful for future molecular genetics and genomics studies of this serious agricultural pest.
Berdugo-Cely, Jhon; Valbuena, Raúl Iván; Sánchez-Betancourt, Erika; Barrero, Luz Stella; Yockteng, Roxana
2017-01-01
The potato (Solanum tuberosum L.) is the fourth most important crop food in the world and Colombia has one of the most important collections of potato germplasm in the world (the Colombian Central Collection-CCC). Little is known about its potential as a source of genetic diversity for molecular breeding programs. In this study, we analyzed 809 Andigenum group accessions from the CCC using 5968 SNPs to determine: 1) the genetic diversity and population structure of the Andigenum germplasm and 2) the usefulness of this collection to map qualitative traits across the potato genome. The genetic structure analysis based on principal components, cluster analyses, and Bayesian inference revealed that the CCC can be subdivided into two main groups associated with their ploidy level: Phureja (diploid) and Andigena (tetraploid). The Andigena population was more genetically diverse but less genetically substructured than the Phureja population (three vs. five subpopulations, respectively). The association mapping analysis of qualitative morphological data using 4666 SNPs showed 23 markers significantly associated with nine morphological traits. The present study showed that the CCC is a highly diverse germplasm collection genetically and phenotypically, useful to implement association mapping in order to identify genes related to traits of interest and to assist future potato genetic breeding programs.
He, Shui-Lian; Wang, Yun-Sheng; Li, De-Zhu; Yi, Ting-Shuang
2016-01-01
Wild soybean, the direct progenitor of cultivated soybean, inhabits a wide distribution range across the mainland of East Asia and the Japanese archipelago. A multidisciplinary approach combining analyses of population genetics based on 20 nuclear microsatellites and one plastid locus were applied to reveal the genetic variation of wild soybean, and the contributions of geographical, environmental factors and historic climatic change on its patterns of genetic differentiation. High genetic diversity and significant genetic differentiation were revealed in wild soybean. Wild soybean was inferred to be limited to southern and central China during the Last Glacial Maximum (LGM) and experienced large-scale post-LGM range expansion into northern East Asia. A substantial northward range shift has been predicted to occur by the 2080s. A stronger effect of isolation by environment (IBE) versus isolation by geographical distance (IBD) was found for genetic differentiation in wild soybean, which suggested that environmental factors were responsible for the adaptive eco-geographical differentiation. This study indicated that IBE and historical climatic change together shaped patterns of genetic variation and differentiation of wild soybean. Different conservation measures should be implemented on different populations according to their adaptive potential to future changes in climate and human-induced environmental changes. PMID:26952904
Berdugo-Cely, Jhon; Valbuena, Raúl Iván; Sánchez-Betancourt, Erika; Barrero, Luz Stella
2017-01-01
The potato (Solanum tuberosum L.) is the fourth most important crop food in the world and Colombia has one of the most important collections of potato germplasm in the world (the Colombian Central Collection-CCC). Little is known about its potential as a source of genetic diversity for molecular breeding programs. In this study, we analyzed 809 Andigenum group accessions from the CCC using 5968 SNPs to determine: 1) the genetic diversity and population structure of the Andigenum germplasm and 2) the usefulness of this collection to map qualitative traits across the potato genome. The genetic structure analysis based on principal components, cluster analyses, and Bayesian inference revealed that the CCC can be subdivided into two main groups associated with their ploidy level: Phureja (diploid) and Andigena (tetraploid). The Andigena population was more genetically diverse but less genetically substructured than the Phureja population (three vs. five subpopulations, respectively). The association mapping analysis of qualitative morphological data using 4666 SNPs showed 23 markers significantly associated with nine morphological traits. The present study showed that the CCC is a highly diverse germplasm collection genetically and phenotypically, useful to implement association mapping in order to identify genes related to traits of interest and to assist future potato genetic breeding programs. PMID:28257509
Molecular genetic analyses of microsporogenesis and microgametogenesis in flowering plants.
Ma, Hong
2005-01-01
In flowering plants, male reproductive development requires the formation of the stamen, including the differentiation of anther tissues. Within the anther, male meiosis produces microspores, which further develop into pollen grains, relying on both sporophytic and gametophytic gene functions. The mature pollen is released when the anther dehisces, allowing pollination to occur. Molecular studies have identified a large number of genes that are expressed during stamen and pollen development. Genetic analyses have demonstrated the function of some of these genes in specifying stamen identity, regulating anther cell division and differentiation, controlling male meiosis, supporting pollen development, and promoting anther dehiscence. These genes encode a variety of proteins, including transcriptional regulators, signal transduction proteins, regulators of protein degradation, and enzymes for the biosynthesis of hormones. Although much has been learned in recent decades, much more awaits to be discovered and understood; the future of the study of plant male reproduction remains bright and exciting with the ever-growing tool kits and rapidly expanding information and resources for gene function studies.
Miller, Adam D; Van Rooyen, Anthony; Sweeney, Oisín F; Whiterod, Nick S; Weeks, Andrew R
2013-07-01
The Glenelg spiny crayfish, Euastacus bispinosus, is an iconic freshwater invertebrate of south eastern Australia and listed as 'endangered' under the Environment Protection and Biodiversity Conservation Act 1999, and 'vulnerable' under the International Union for Conservation of Nature's Red List. The species has suffered major population declines as a result of over-fishing, low environmental flows, the introduction of invasive fish species and habitat degradation. In order to develop an effective conservation strategy, patterns of gene flow, genetic structure and genetic diversity across the species distribution need to be clearly understood. In this study we develop a suite of polymorphic microsatellite markers by next generation sequencing. A total of 15 polymorphic loci were identified and 10 characterized using 22 individuals from the lower Glenelg River. We observed low to moderate genetic variation across most loci (mean number of alleles per locus = 2.80; mean expected heterozygosity = 0.36) with no evidence of individual loci deviating significantly from Hardy-Weinberg equilibrium. Marker independence was confirmed with tests for linkage disequilibrium, and analyses indicated no evidence of null alleles across loci. Individuals from two additional sites (Crawford River, Victoria; Ewens Ponds Conservation Park, South Australia) were genotyped at all 10 loci and a preliminary investigation of genetic diversity and population structure was undertaken. Analyses indicate high levels of genetic differentiation among sample locations (F ST = 0.49), while the Ewens Ponds population is genetically homogeneous, indicating a likely small founder group and ongoing inbreeding. Management actions will be needed to restore genetic diversity in this and possibly other at risk populations. These markers will provide a valuable resource for future population genetic assessments so that an effective framework can be developed for implementing conservation strategies for E. bispinosus.
Der Sarkissian, Clio; Balanovsky, Oleg; Brandt, Guido; Khartanovich, Valery; Buzhilova, Alexandra; Koshel, Sergey; Zaporozhchenko, Valery; Gronenborn, Detlef; Moiseyev, Vyacheslav; Kolpakov, Eugen; Shumkin, Vladimir; Alt, Kurt W.; Balanovska, Elena; Cooper, Alan; Haak, Wolfgang
2013-01-01
North East Europe harbors a high diversity of cultures and languages, suggesting a complex genetic history. Archaeological, anthropological, and genetic research has revealed a series of influences from Western and Eastern Eurasia in the past. While genetic data from modern-day populations is commonly used to make inferences about their origins and past migrations, ancient DNA provides a powerful test of such hypotheses by giving a snapshot of the past genetic diversity. In order to better understand the dynamics that have shaped the gene pool of North East Europeans, we generated and analyzed 34 mitochondrial genotypes from the skeletal remains of three archaeological sites in northwest Russia. These sites were dated to the Mesolithic and the Early Metal Age (7,500 and 3,500 uncalibrated years Before Present). We applied a suite of population genetic analyses (principal component analysis, genetic distance mapping, haplotype sharing analyses) and compared past demographic models through coalescent simulations using Bayesian Serial SimCoal and Approximate Bayesian Computation. Comparisons of genetic data from ancient and modern-day populations revealed significant changes in the mitochondrial makeup of North East Europeans through time. Mesolithic foragers showed high frequencies and diversity of haplogroups U (U2e, U4, U5a), a pattern observed previously in European hunter-gatherers from Iberia to Scandinavia. In contrast, the presence of mitochondrial DNA haplogroups C, D, and Z in Early Metal Age individuals suggested discontinuity with Mesolithic hunter-gatherers and genetic influx from central/eastern Siberia. We identified remarkable genetic dissimilarities between prehistoric and modern-day North East Europeans/Saami, which suggests an important role of post-Mesolithic migrations from Western Europe and subsequent population replacement/extinctions. This work demonstrates how ancient DNA can improve our understanding of human population movements across Eurasia. It contributes to the description of the spatio-temporal distribution of mitochondrial diversity and will be of significance for future reconstructions of the history of Europeans. PMID:23459685
Zhu, Yong; Wen, Wen; Zhang, Fengmin; Hardie, Jim W.
2015-01-01
Background and Aims Proton nuclear magnetic resonance spectroscopy coupled multivariate analysis (1H NMR-PCA/PLS-DA) is an important tool for the discrimination of wine products. Although 1H NMR has been shown to discriminate wines of different cultivars, a grape genetic component of the discrimination has been inferred only from discrimination of cultivars of undefined genetic homology and in the presence of many confounding environmental factors. We aimed to confirm the influence of grape genotypes in the absence of those factors. Methods and Results We applied 1H NMR-PCA/PLS-DA and hierarchical cluster analysis (HCA) to wines from five, variously genetically-related grapevine (V. vinifera) cultivars; all grown similarly on the same site and vinified similarly. We also compared the semi-quantitative profiles of the discriminant metabolites of each cultivar with previously reported chemical analyses. The cultivars were clearly distinguishable and there was a general correlation between their grouping and their genetic homology as revealed by recent genomic studies. Between cultivars, the relative amounts of several of the cultivar-related discriminant metabolites conformed closely with reported chemical analyses. Conclusions Differences in grape-derived metabolites associated with genetic differences alone are a major source of 1H NMR-based discrimination of wines and 1H NMR has the capacity to discriminate between very closely related cultivars. Significance of the Study The study confirms that genetic variation among grape cultivars alone can account for the discrimination of wine by 1H NMR-PCA/PLS and indicates that 1H NMR spectra of wine of single grape cultivars may in future be used in tandem with hierarchical cluster analysis to elucidate genetic lineages and metabolomic relations of grapevine cultivars. In the absence of genetic information, for example, where predecessor varieties are no longer extant, this may be a particularly useful approach. PMID:26658757
Velo-Antón, G; Parra, J L; Parra-Olea, G; Zamudio, K R
2013-06-01
Tropical montane taxa are often locally adapted to very specific climatic conditions, contributing to their lower dispersal potential across complex landscapes. Climate and landscape features in montane regions affect population genetic structure in predictable ways, yet few empirical studies quantify the effects of both factors in shaping genetic structure of montane-adapted taxa. Here, we considered temporal and spatial variability in climate to explain contemporary genetic differentiation between populations of the montane salamander, Pseudoeurycea leprosa. Specifically, we used ecological niche modelling (ENM) and measured spatial connectivity and gene flow (using both mtDNA and microsatellite markers) across extant populations of P. leprosa in the Trans-Mexican Volcanic Belt (TVB). Our results indicate significant spatial and genetic isolation among populations, but we cannot distinguish between isolation by distance over time or current landscape barriers as mechanisms shaping population genetic divergences. Combining ecological niche modelling, spatial connectivity analyses, and historical and contemporary genetic signatures from different classes of genetic markers allows for inference of historical evolutionary processes and predictions of the impacts future climate change will have on the genetic diversity of montane taxa with low dispersal rates. Pseudoeurycea leprosa is one montane species among many endemic to this region and thus is a case study for the continued persistence of spatially and genetically isolated populations in the highly biodiverse TVB of central Mexico. © 2013 John Wiley & Sons Ltd.
Education and myopia: assessing the direction of causality by mendelian randomisation.
Mountjoy, Edward; Davies, Neil M; Plotnikov, Denis; Smith, George Davey; Rodriguez, Santiago; Williams, Cathy E; Guggenheim, Jeremy A; Atan, Denize
2018-06-06
To determine whether more years spent in education is a causal risk factor for myopia, or whether myopia is a causal risk factor for more years in education. Bidirectional, two sample mendelian randomisation study. Publically available genetic data from two consortiums applied to a large, independent population cohort. Genetic variants used as proxies for myopia and years of education were derived from two large genome wide association studies: 23andMe and Social Science Genetic Association Consortium (SSGAC), respectively. 67 798 men and women from England, Scotland, and Wales in the UK Biobank cohort with available information for years of completed education and refractive error. Mendelian randomisation analyses were performed in two directions: the first exposure was the genetic predisposition to myopia, measured with 44 genetic variants strongly associated with myopia in 23andMe, and the outcome was years in education; and the second exposure was the genetic predisposition to higher levels of education, measured with 69 genetic variants from SSGAC, and the outcome was refractive error. Conventional regression analyses of the observational data suggested that every additional year of education was associated with a more myopic refractive error of -0.18 dioptres/y (95% confidence interval -0.19 to -0.17; P<2e-16). Mendelian randomisation analyses suggested the true causal effect was even stronger: -0.27 dioptres/y (-0.37 to -0.17; P=4e-8). By contrast, there was little evidence to suggest myopia affected education (years in education per dioptre of refractive error -0.008 y/dioptre, 95% confidence interval -0.041 to 0.025, P=0.6). Thus, the cumulative effect of more years in education on refractive error means that a university graduate from the United Kingdom with 17 years of education would, on average, be at least -1 dioptre more myopic than someone who left school at age 16 (with 12 years of education). Myopia of this magnitude would be sufficient to necessitate the use of glasses for driving. Sensitivity analyses showed minimal evidence for genetic confounding that could have biased the causal effect estimates. This study shows that exposure to more years in education contributes to the rising prevalence of myopia. Increasing the length of time spent in education may inadvertently increase the prevalence of myopia and potential future visual disability. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Education and myopia: assessing the direction of causality by mendelian randomisation
Mountjoy, Edward; Davies, Neil M; Plotnikov, Denis; Smith, George Davey; Rodriguez, Santiago; Williams, Cathy E; Guggenheim, Jeremy A
2018-01-01
Abstract Objectives To determine whether more years spent in education is a causal risk factor for myopia, or whether myopia is a causal risk factor for more years in education. Design Bidirectional, two sample mendelian randomisation study. Setting Publically available genetic data from two consortiums applied to a large, independent population cohort. Genetic variants used as proxies for myopia and years of education were derived from two large genome wide association studies: 23andMe and Social Science Genetic Association Consortium (SSGAC), respectively. Participants 67 798 men and women from England, Scotland, and Wales in the UK Biobank cohort with available information for years of completed education and refractive error. Main outcome measures Mendelian randomisation analyses were performed in two directions: the first exposure was the genetic predisposition to myopia, measured with 44 genetic variants strongly associated with myopia in 23andMe, and the outcome was years in education; and the second exposure was the genetic predisposition to higher levels of education, measured with 69 genetic variants from SSGAC, and the outcome was refractive error. Results Conventional regression analyses of the observational data suggested that every additional year of education was associated with a more myopic refractive error of −0.18 dioptres/y (95% confidence interval −0.19 to −0.17; P<2e-16). Mendelian randomisation analyses suggested the true causal effect was even stronger: −0.27 dioptres/y (−0.37 to −0.17; P=4e-8). By contrast, there was little evidence to suggest myopia affected education (years in education per dioptre of refractive error −0.008 y/dioptre, 95% confidence interval −0.041 to 0.025, P=0.6). Thus, the cumulative effect of more years in education on refractive error means that a university graduate from the United Kingdom with 17 years of education would, on average, be at least −1 dioptre more myopic than someone who left school at age 16 (with 12 years of education). Myopia of this magnitude would be sufficient to necessitate the use of glasses for driving. Sensitivity analyses showed minimal evidence for genetic confounding that could have biased the causal effect estimates. Conclusions This study shows that exposure to more years in education contributes to the rising prevalence of myopia. Increasing the length of time spent in education may inadvertently increase the prevalence of myopia and potential future visual disability. PMID:29875094
Genetic Bases of Stuttering: The State of the Art, 2011
Kraft, Shelly Jo; Yairi, Ehud
2011-01-01
Objective The literature on the genetics of stuttering is reviewed with special reference to the historical development from psychosocial explanations leading up to current biological research of gene identification. Summary A gradual progression has been made from the early crude methods of counting percentages of stuttering probands who have relatives who stutter to recent studies using entire genomes of DNA collected from each participant. Despite the shortcomings of some early studies, investigators have accumulated a substantial body of data showing a large presence of familial stuttering. This encouraged more refined research in the form of twin studies. Concordance rates among twins were sufficiently high to lend additional support to the genetic perspective of stuttering. More sophisticated aggregation studies and segregation analyses followed, producing data that matched recognized genetic models, providing the final ‘go ahead’ to proceed from the behavior/statistical genetics into the sphere of biological genetics. Recent linkage and association studies have begun to reveal contributing genes to the disorder. Conclusion No definitive findings have been made regarding which transmission model, chromosomes, genes, or sex factors are involved in the expression of stuttering in the population at large. Future research and clinical implications are discussed. PMID:22067705
Fuller, Trevon L.; Thomassen, Henri A.; Peralvo, Manuel; Buermann, Wolfgang; Milá, Borja; Kieswetter, Charles M.; Jarrín-V, Pablo; Devitt, Susan E. Cameron; Mason, Eliza; Schweizer, Rena M.; Schlunegger, Jasmin; Chan, Janice; Wang, Ophelia; Schneider, Christopher J.; Pollinger, John P.; Saatchi, Sassan; Graham, Catherine H.; Wayne, Robert K.; Smith, Thomas B.
2013-01-01
Predicting where threatened species occur is useful for making informed conservation decisions. However, because they are usually rare, surveying threatened species is often expensive and time intensive. Here, we show how regions where common species exhibit high genetic and morphological divergence among populations can be used to predict the occurrence of species of conservation concern. Intraspecific variation of common species of birds, bats and frogs from Ecuador were found to be a significantly better predictor for the occurrence of threatened species than suites of environmental variables or the occurrence of amphibians and birds. Fully 93 per cent of the threatened species analysed had their range adequately represented by the geographical distribution of the morphological and genetic variation found in seven common species. Both higher numbers of threatened species and greater genetic and morphological variation of common species occurred along elevation gradients. Higher levels of intraspecific divergence may be the result of disruptive selection and/or introgression along gradients. We suggest that collecting data on genetic and morphological variation in common species can be a cost effective tool for conservation planning, and that future biodiversity inventories include surveying genetic and morphological data of common species whenever feasible. PMID:23595273
Fang, Chao; Ma, Yanming; Wu, Shiwen; Liu, Zhi; Wang, Zheng; Yang, Rui; Hu, Guanghui; Zhou, Zhengkui; Yu, Hong; Zhang, Min; Pan, Yi; Zhou, Guoan; Ren, Haixiang; Du, Weiguang; Yan, Hongrui; Wang, Yanping; Han, Dezhi; Shen, Yanting; Liu, Shulin; Liu, Tengfei; Zhang, Jixiang; Qin, Hao; Yuan, Jia; Yuan, Xiaohui; Kong, Fanjiang; Liu, Baohui; Li, Jiayang; Zhang, Zhiwu; Wang, Guodong; Zhu, Baoge; Tian, Zhixi
2017-08-24
Soybean (Glycine max [L.] Merr.) is one of the most important oil and protein crops. Ever-increasing soybean consumption necessitates the improvement of varieties for more efficient production. However, both correlations among different traits and genetic interactions among genes that affect a single trait pose a challenge to soybean breeding. To understand the genetic networks underlying phenotypic correlations, we collected 809 soybean accessions worldwide and phenotyped them for two years at three locations for 84 agronomic traits. Genome-wide association studies identified 245 significant genetic loci, among which 95 genetically interacted with other loci. We determined that 14 oil synthesis-related genes are responsible for fatty acid accumulation in soybean and function in line with an additive model. Network analyses demonstrated that 51 traits could be linked through the linkage disequilibrium of 115 associated loci and these links reflect phenotypic correlations. We revealed that 23 loci, including the known Dt1, E2, E1, Ln, Dt2, Fan, and Fap loci, as well as 16 undefined associated loci, have pleiotropic effects on different traits. This study provides insights into the genetic correlation among complex traits and will facilitate future soybean functional studies and breeding through molecular design.
Signatures of adaptation in the weedy rice genome.
Li, Lin-Feng; Li, Ya-Ling; Jia, Yulin; Caicedo, Ana L; Olsen, Kenneth M
2017-05-01
Crop domestication provided the calories that fueled the rise of civilization. For many crop species, domestication was accompanied by the evolution of weedy crop relatives, which aggressively outcompete crops and reduce harvests. Understanding the genetic mechanisms that underlie the evolution of weedy crop relatives is critical for agricultural weed management and food security. Here we use whole-genome sequences to examine the origin and adaptation of the two major strains of weedy rice found in the United States. We find that de-domestication from cultivated ancestors has had a major role in their evolution, with relatively few genetic changes required for the emergence of weediness traits. Weed strains likely evolved both early and late in the history of rice cultivation and represent an under-recognized component of the domestication process. Genomic regions identified here that show evidence of selection can be considered candidates for future genetic and functional analyses for rice improvement.
Jairin, Jirapong; Kobayashi, Tetsuya; Yamagata, Yoshiyuki; Sanada-Morimura, Sachiyo; Mori, Kazuki; Tashiro, Kosuke; Kuhara, Satoru; Kuwazaki, Seigo; Urio, Masahiro; Suetsugu, Yoshitaka; Yamamoto, Kimiko; Matsumura, Masaya; Yasui, Hideshi
2013-01-01
In this study, we developed the first genetic linkage map for the major rice insect pest, the brown planthopper (BPH, Nilaparvata lugens). The linkage map was constructed by integrating linkage data from two backcross populations derived from three inbred BPH strains. The consensus map consists of 474 simple sequence repeats, 43 single-nucleotide polymorphisms, and 1 sequence-tagged site, for a total of 518 markers at 472 unique positions in 17 linkage groups. The linkage groups cover 1093.9 cM, with an average distance of 2.3 cM between loci. The average number of marker loci per linkage group was 27.8. The sex-linkage group was identified by exploiting X-linked and Y-specific markers. Our linkage map and the newly developed markers used to create it constitute an essential resource and a useful framework for future genetic analyses in BPH. PMID:23204257
Gene–environment interaction in tobacco-related cancers
Taioli, Emanuela
2008-01-01
This review summarizes the carcinogenic effects of tobacco smoke and the basis for interaction between tobacco smoke and genetic factors. Examples of published papers on gene–tobacco interaction and cancer risk are presented. The assessment of gene–environment interaction in tobacco-related cancers has been more complex than originally expected for several reasons, including the multiplicity of genes involved in tobacco metabolism, the numerous substrates metabolized by the relevant genes and the interaction of smoking with other metabolic pathways. Future studies on gene–environment interaction and cancer risk should include biomarkers of smoking dose, along with markers of quantitative historical exposure to tobacco. Epigenetic studies should be added to classic genetic analyses, in order to better understand gene–environmental interaction and individual susceptibility. Other metabolic pathways in competition with tobacco genetic metabolism/repair should be incorporated in epidemiological studies to generate a more complete picture of individual cancer risk associated with environmental exposure to carcinogens. PMID:18550573
Miller, Mark P.; Mullins, Thomas D.; Haig, Susan M.
2016-09-20
Executive SummaryWe present results of population genetic analyses performed on Oregon silverspot butterflies (OSB; Speyeria zerene hippolyta) in western Oregon and northwestern California. We used DNA sequences from a 561-base pair region of the mitochondrial cytochrome oxidase subunit I (COI) gene for a dataset comprised of 112 S. z. hippolyta and 32 S. z. gloriosa individuals collected at 9 locations in western Oregon and northwestern California. The most pertinent findings thus far are summarized as follows:Among OSB populations, genetic diversity is lowest at Mount Hebo and highest at Rock Creek and Bray Point. Of the 32 haplotypes detected in OSB, only 2 were shared among populations (1 shared by Mount Hebo, Cascade Head, Bray Point, and Rock Creek, and 1 shared by Rock Creek and Lake Earl). The remaining 30 haplotypes were identified in individual populations, highlighting the strong differentiation among sites. It is unclear if the shared haplotypes represent widespread, naturally occurring genetic variation or if allele sharing among populations is due to translocation history.Using full siblings of individuals that were released at Rock Creek and Bray Point in 2012 as comparison standards, the analyses suggest that 54 percent of the sampled individuals from Bray Point were naturally recruited into the population and were not originating from the 2012 release of captive reared individuals. Likewise, 33 percent of the analyzed individuals from Rock Creek were naturally recruited. Both of these estimates may be underestimates if the shared alleles that we identified among populations are naturally occurring and not a product of the 2012 translocations.The results suggest that there are about 12–13 COI haplotypes in the Mount Hebo population. The U.S. Fish and Wildlife Service anticipates using Mount Hebo as the source of individuals when establishing new populations in the future. Nonlinear regression models based on a series of rarefaction analyses suggest that progeny from 12, 37, 109, and 326 female individuals would be required to respectively capture 25, 50, 75, and 90 percent of the allelic diversity from Mount Hebo.Phylogenetic analyses identified two different haplotype groups, but the two groups did not correspond to the different subspecies used in the analysis. One group included 22 S. z. hippolyta haplotypes and 7 haplotypes identified in S. z. gloriosa. The second group included eight haplotypes from S. z. hippolyta, three haplotypes from S. z. gloriosa, and one haplotype that was detected in both subspecies.
Trehearne, Andrew
2016-03-01
UK Biobank is a long-term prospective epidemiology study having recruited and now following the lives of 500,000 people in England, Scotland and Wales, aged 40-69 years when they joined the study (Sudlow et al., PLoS Med 12(3):e1001779, 2015). Participants were recruited by letter and asked to attend one of 22 assessment centres in towns and cities across Britain, where they provided consent, answered detailed questions about their health and lifestyle, had body measures taken and donated blood, urine and saliva. Participants provided consent for the long-term follow-up of their health via medical records, such as general practice and hospital records, cancer and death records. Samples are being stored long term for a wide range of analyses, including genetic. The resource is open to all bona fide scientists from the UK and overseas, academic and industry who register via its access management system. Summary of UK Biobank data can be viewed via its Data Showcase and the resource will be strengthened over time as the results of new analyses and studies are returned, health links and participants provide additional information about themselves. Some will attend full repeat assessment visits. UK Biobank is open for business, and it hopes researchers will find it a valuable tool to improve the health of future generations.
Haig, Susan M.; Wennerberg, Liv; Mullins, Thomas D.; Forsman, E.D.; Trail, P.
2004-01-01
Recent population expansion of Barred Owls ( Strix varia) into western North America has led to concern that they may compete with and further harm the Northern Spotted Owl ( S. occidentalis caurina), which is already listed as threatened under the U.S. Endangered Species Act (ESA). Because they hybridize, there is a legal need under the ESA for forensic identification of both species and their hybrids. We used mitochondrial control-region DNA and amplified fragment-length polymorphism (AFLP) analyses to assess maternal and biparental gene flow in this hybridization process. Mitochondrial DNA sequences (524 base pairs) indicated large divergence between Barred and Spotted Owls (13.9%). Further, the species formed two distinct clades with no signs of previous introgression. Fourteen diagnostic AFLP bands also indicated extensive divergence between the species, including markers differentiating them. Principal coordinate analyses and assignment tests clearly supported this differentiation. We found that hybrids had unique genetic combinations, including AFLP markers from both parental species, and identified known hybrids as well as potential hybrids with unclear taxonomic status. Our analyses corroborated the findings of extensive field studies that most hybrids genetically sampled resulted from crosses between female Barred Owls and male Spotted Owls. These genetic markers make it possible to clearly identify these species as well as hybrids and can now be used for research, conservation, and law enforcement. Several legal avenues may facilitate future conservation of Spotted Owls and other ESA-listed species that hybridize, including the ESA similarity-of-appearance clause (section 4[e]) and the Migratory Bird Treaty Act. The Migratory Bird Treaty Act appears to be the most useful route at this time.
Brunkwall, Louise; Orho-Melander, Marju
2017-06-01
The totality of microbial genomes in the gut exceeds the size of the human genome, having around 500-fold more genes that importantly complement our coding potential. Microbial genes are essential for key metabolic processes, such as the breakdown of indigestible dietary fibres to short-chain fatty acids, biosynthesis of amino acids and vitamins, and production of neurotransmitters and hormones. During the last decade, evidence has accumulated to support a role for gut microbiota (analysed from faecal samples) in glycaemic control and type 2 diabetes. Mechanistic studies in mice support a causal role for gut microbiota in metabolic diseases, although human data favouring causality is insufficient. As it may be challenging to sort the human evidence from the large number of animal studies in the field, there is a need to provide a review of human studies. Thus, the aim of this review is to cover the current and future possibilities and challenges of using the gut microbiota, with its capacity to be modified, in the development of preventive and treatment strategies for hyperglycaemia and type 2 diabetes in humans. We discuss what is known about the composition and functionality of human gut microbiota in type 2 diabetes and summarise recent evidence of current treatment strategies that involve, or are based on, modification of gut microbiota (diet, probiotics, metformin and bariatric surgery). We go on to review some potential future gut-based glucose-lowering approaches involving microbiota, including the development of personalised nutrition and probiotic approaches, identification of therapeutic components of probiotics, targeted delivery of propionate in the proximal colon, targeted delivery of metformin in the lower gut, faecal microbiota transplantation, and the incorporation of genetically modified bacteria that express therapeutic factors into microbiota. Finally, future avenues and challenges for understanding the interplay between human nutrition, genetics and microbial genetics, and the need for integration of human multi-omic data (such as genetics, transcriptomics, epigenetics, proteomics and metabolomics) with microbiome data (such as strain-level variation, transcriptomics, proteomics and metabolomics) to make personalised treatments a successful future reality are discussed.
Etiology in psychiatry: embracing the reality of poly‐gene‐environmental causation of mental illness
Uher, Rudolf; Zwicker, Alyson
2017-01-01
Intriguing findings on genetic and environmental causation suggest a need to reframe the etiology of mental disorders. Molecular genetics shows that thousands of common and rare genetic variants contribute to mental illness. Epidemiological studies have identified dozens of environmental exposures that are associated with psychopathology. The effect of environment is likely conditional on genetic factors, resulting in gene‐environment interactions. The impact of environmental factors also depends on previous exposures, resulting in environment‐environment interactions. Most known genetic and environmental factors are shared across multiple mental disorders. Schizophrenia, bipolar disorder and major depressive disorder, in particular, are closely causally linked. Synthesis of findings from twin studies, molecular genetics and epidemiological research suggests that joint consideration of multiple genetic and environmental factors has much greater explanatory power than separate studies of genetic or environmental causation. Multi‐factorial gene‐environment interactions are likely to be a generic mechanism involved in the majority of cases of mental illness, which is only partially tapped by existing gene‐environment studies. Future research may cut across psychiatric disorders and address poly‐causation by considering multiple genetic and environmental measures across the life course with a specific focus on the first two decades of life. Integrative analyses of poly‐causation including gene‐environment and environment‐environment interactions can realize the potential for discovering causal types and mechanisms that are likely to generate new preventive and therapeutic tools. PMID:28498595
Krehbiel, B.; Ericsson, S. A.; Wilson, C.; Caetano, A. R.; Paiva, S. R.
2017-01-01
Ecoregional differences contribute to genetic environmental interactions and impact animal performance. These differences may become more important under climate change scenarios. Utilizing genetic diversity within a species to address such problems has not been fully explored. In this study Hereford cattle were genotyped with 50K Bead Chip or 770K Bovine Bead Chip to test the existence of genetic structure in five U.S. ecoregions characterized by precipitation, temperature and humidity and designated: cool arid (CA), cool humid (CH), transition zone (TZ), warm arid (WA), and warm humid (WH). SNP data were analyzed in three sequential analyses. Broad genetic structure was evaluated with STRUCTURE, and ADMIXTURE software using 14,312 SNPs after passing quality control variables. The second analysis was performed using principal coordinate analysis with 66 Tag SNPs associated in the literature with various aspects of environmental stressors (e.g., heat tolerance) or production (e.g., milk production). In the third analysis TreeSelect was used with the 66 SNPs to evaluate if ecoregional allelic frequencies deviated from a central frequency and by so doing are indicative of directional selection. The three analyses suggested subpopulation structures associated with ecoregions from where animals were derived. ADMIXTURE and PCA results illustrated the importance of temperature and humidity and confirm subpopulation assignments. Comparisons of allele frequencies with TreeSelect showed ecoregion differences, in particular the divergence between arid and humid regions. Patterns of genetic variability obtained by medium and high density SNP chips can be used to acclimatize a temperately derived breed to various ecoregions. As climate change becomes an important factor in cattle production, this study should be used as a proof of concept to review future breeding and conservation schemes aimed at adaptation to climatic events. PMID:28459870
Romero-Martínez, Ángel; Moya-Albiol, Luís; Vinkhuyzen, Anna A E; Polderman, Tinca J C
2016-12-01
Autistic traits are characterized by social and communication problems, restricted, repetitive and stereotyped patterns of behavior, interests and activities. The relation between autistic traits and personality characteristics is largely unknown. This study focused on the relation between five specific autistic traits measured with the abridged version of the Autism Spectrum Quotient ("social problems," "preference for routine," "attentional switching difficulties," "imagination impairments," "fascination for numbers and patterns") and Experience Seeking (ES) in a general population sample of adults, and subsequently investigated the genetic and environmental etiology between these traits. Self-reported data on autistic traits and ES were collected in a population sample (n = 559) of unrelated individuals, and in a population based family sample of twins and siblings (n = 560). Phenotypic, genetic and environmental associations between traits were examined in a bivariate model, accounting for sex and age differences. Phenotypically, ES correlated significantly with "preference for routine" and "imagination impairments" in both samples but was unrelated to the other autistic traits. Genetic analyses in the family sample revealed that the association between ES and "preference for routine" and "imagination impairments" could largely be explained by a shared genetic factor (89% and 70%, respectively). Our analyses demonstrated at a phenotypic and genetic level an inverse relationship between ES and specific autistic traits in adults. ES is associated with risk taking behavior such as substance abuse, antisocial behavior and financial problems. Future research could investigate whether autistic traits, in particular strong routine preference and impaired imagination skills, serve as protective factors for such risky behaviors. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Moving Speciation Genetics Forward: Modern Techniques Build on Foundational Studies in Drosophila.
Castillo, Dean M; Barbash, Daniel A
2017-11-01
The question of how new species evolve has been examined at every level, from macroevolutionary patterns of diversification to molecular population genetic analyses of specific genomic regions between species pairs. Drosophila has been at the center of many of these research efforts. Though our understanding of the speciation process has grown considerably over the past few decades, very few genes have been identified that contribute to barriers to reproduction. The development of advanced molecular genetic and genomic methods provides promising avenues for the rapid discovery of more genes that contribute to speciation, particularly those involving prezygotic isolation. The continued expansion of tools and resources, especially for species other than Drosophila melanogaster , will be most effective when coupled with comparative approaches that reveal the genetic basis of reproductive isolation across a range of divergence times. Future research programs in Drosophila have high potential to answer long-standing questions in speciation. These include identifying the selective forces that contribute to divergence between populations and the genetic basis of traits that cause reproductive isolation. The latter can be expanded upon to understand how the genetic basis of reproductive isolation changes over time and whether certain pathways and genes are more commonly involved. Copyright © 2017 by the Genetics Society of America.
Aslan, Mikail; Davis, Jack B A; Johnston, Roy L
2016-03-07
The global optimisation of small bimetallic PdCo binary nanoalloys are systematically investigated using the Birmingham Cluster Genetic Algorithm (BCGA). The effect of size and composition on the structures, stability, magnetic and electronic properties including the binding energies, second finite difference energies and mixing energies of Pd-Co binary nanoalloys are discussed. A detailed analysis of Pd-Co structural motifs and segregation effects is also presented. The maximal mixing energy corresponds to Pd atom compositions for which the number of mixed Pd-Co bonds is maximised. Global minimum clusters are distinguished from transition states by vibrational frequency analysis. HOMO-LUMO gap, electric dipole moment and vibrational frequency analyses are made to enable correlation with future experiments.
Roche, Benjamin; Drake, John M.; Brown, Justin; Stallknecht, David E.; Bedford, Trevor; Rohani, Pejman
2014-01-01
Avian influenza viruses (AIVs) have been pivotal to the origination of human pandemic strains. Despite their scientific and public health significance, however, there remains much to be understood about the ecology and evolution of AIVs in wild birds, where major pools of genetic diversity are generated and maintained. Here, we present comparative phylodynamic analyses of human and AIVs in North America, demonstrating (i) significantly higher standing genetic diversity and (ii) phylogenetic trees with a weaker signature of immune escape in AIVs than in human viruses. To explain these differences, we performed statistical analyses to quantify the relative contribution of several potential explanations. We found that HA genetic diversity in avian viruses is determined by a combination of factors, predominantly subtype-specific differences in host immune selective pressure and the ecology of transmission (in particular, the durability of subtypes in aquatic environments). Extending this analysis using a computational model demonstrated that virus durability may lead to long-term, indirect chains of transmission that, when coupled with a short host lifespan, can generate and maintain the observed high levels of genetic diversity. Further evidence in support of this novel finding was found by demonstrating an association between subtype-specific environmental durability and predicted phylogenetic signatures: genetic diversity, variation in phylogenetic tree branch lengths, and tree height. The conclusion that environmental transmission plays an important role in the evolutionary biology of avian influenza viruses—a manifestation of the “storage effect”—highlights the potentially unpredictable impact of wildlife reservoirs for future human pandemics and the need for improved understanding of the natural ecology of these viruses. PMID:25116957
Seeker, Luise A; Ilska, Joanna J; Psifidi, Androniki; Wilbourn, Rachael V; Underwood, Sarah L; Fairlie, Jennifer; Holland, Rebecca; Froy, Hannah; Bagnall, Ainsley; Whitelaw, Bruce; Coffey, Mike; Nussey, Daniel H; Banos, Georgios
2018-01-01
Telomeres cap the ends of linear chromosomes and shorten with age in many organisms. In humans short telomeres have been linked to morbidity and mortality. With the accumulation of longitudinal datasets the focus shifts from investigating telomere length (TL) to exploring TL change within individuals over time. Some studies indicate that the speed of telomere attrition is predictive of future disease. The objectives of the present study were to 1) characterize the change in bovine relative leukocyte TL (RLTL) across the lifetime in Holstein Friesian dairy cattle, 2) estimate genetic parameters of RLTL over time and 3) investigate the association of differences in individual RLTL profiles with productive lifespan. RLTL measurements were analysed using Legendre polynomials in a random regression model to describe TL profiles and genetic variance over age. The analyses were based on 1,328 repeated RLTL measurements of 308 female Holstein Friesian dairy cattle. A quadratic Legendre polynomial was fitted to the fixed effect of age in months and to the random effect of the animal identity. Changes in RLTL, heritability and within-trait genetic correlation along the age trajectory were calculated and illustrated. At a population level, the relationship between RLTL and age was described by a positive quadratic function. Individuals varied significantly regarding the direction and amount of RLTL change over life. The heritability of RLTL ranged from 0.36 to 0.47 (SE = 0.05-0.08) and remained statistically unchanged over time. The genetic correlation of RLTL at birth with measurements later in life decreased with the time interval between samplings from near unity to 0.69, indicating that TL later in life might be regulated by different genes than TL early in life. Even though animals differed in their RLTL profiles significantly, those differences were not correlated with productive lifespan (p = 0.954).
Ilska, Joanna J.; Psifidi, Androniki; Wilbourn, Rachael V.; Underwood, Sarah L.; Fairlie, Jennifer; Holland, Rebecca; Froy, Hannah; Bagnall, Ainsley; Whitelaw, Bruce; Coffey, Mike; Nussey, Daniel H.; Banos, Georgios
2018-01-01
Telomeres cap the ends of linear chromosomes and shorten with age in many organisms. In humans short telomeres have been linked to morbidity and mortality. With the accumulation of longitudinal datasets the focus shifts from investigating telomere length (TL) to exploring TL change within individuals over time. Some studies indicate that the speed of telomere attrition is predictive of future disease. The objectives of the present study were to 1) characterize the change in bovine relative leukocyte TL (RLTL) across the lifetime in Holstein Friesian dairy cattle, 2) estimate genetic parameters of RLTL over time and 3) investigate the association of differences in individual RLTL profiles with productive lifespan. RLTL measurements were analysed using Legendre polynomials in a random regression model to describe TL profiles and genetic variance over age. The analyses were based on 1,328 repeated RLTL measurements of 308 female Holstein Friesian dairy cattle. A quadratic Legendre polynomial was fitted to the fixed effect of age in months and to the random effect of the animal identity. Changes in RLTL, heritability and within-trait genetic correlation along the age trajectory were calculated and illustrated. At a population level, the relationship between RLTL and age was described by a positive quadratic function. Individuals varied significantly regarding the direction and amount of RLTL change over life. The heritability of RLTL ranged from 0.36 to 0.47 (SE = 0.05–0.08) and remained statistically unchanged over time. The genetic correlation of RLTL at birth with measurements later in life decreased with the time interval between samplings from near unity to 0.69, indicating that TL later in life might be regulated by different genes than TL early in life. Even though animals differed in their RLTL profiles significantly, those differences were not correlated with productive lifespan (p = 0.954). PMID:29438415
Experience with environmental issues in GM crop production and the likely future scenarios.
Gaugitsch, Helmut
2002-02-28
In the Cartagena Protocol on Biosafety, standards for risk assessment of genetically modified organisms (GMOs) have been set. The criteria and information basis for the risk assessment of GMOs have been modified by the EU Directive 2001/18/EC. Various approaches to further improve the criteria for environmental risk assessment of GMOs are described in this study. Reports on the ecological impacts of the cultivation of certain non-transgenic crop plants with novel or improved traits as analogy models to transgenic plants showed that the effects of agricultural practice can be at least equally important as the effects of gene transfer and invasiveness, although the latter currently play a major role in risk assessment of transgenic crops. Based on these results the applicability of the methodology of 'Life Cycle Analysis (LCA)' for genetically modified plants in comparison with conventionally bred and organically grown crop plants was evaluated. The methodology was regarded as applicable with some necessary future improvements. In current projects, the assessment of toxicology and allergenicity of GM crops are analysed, and suggestions for standardization are developed. Based on results and recommendations from these efforts there are still the challenges of how to operationalize the precautionary principle and how to take into account ecologically sensitive ecosystems, including centres of origin and centres of genetic diversity.
Mildew-Omics: How Global Analyses Aid the Understanding of Life and Evolution of Powdery Mildews
Bindschedler, Laurence V.; Panstruga, Ralph; Spanu, Pietro D.
2016-01-01
The common powdery mildew plant diseases are caused by ascomycete fungi of the order Erysiphales. Their characteristic life style as obligate biotrophs renders functional analyses in these species challenging, mainly because of experimental constraints to genetic manipulation. Global large-scale (“-omics”) approaches are thus particularly valuable and insightful for the characterisation of the life and evolution of powdery mildews. Here we review the knowledge obtained so far from genomic, transcriptomic and proteomic studies in these fungi. We consider current limitations and challenges regarding these surveys and provide an outlook on desired future investigations on the basis of the various –omics technologies. PMID:26913042
Deficient prepulse inhibition in schizophrenia detected by the multi-site COGS.
Swerdlow, Neal R; Light, Gregory A; Sprock, Joyce; Calkins, Monica E; Green, Michael F; Greenwood, Tiffany A; Gur, Raquel E; Gur, Ruben C; Lazzeroni, Laura C; Nuechterlein, Keith H; Radant, Allen D; Ray, Amrita; Seidman, Larry J; Siever, Larry J; Silverman, Jeremy M; Stone, William S; Sugar, Catherine A; Tsuang, Debby W; Tsuang, Ming T; Turetsky, Bruce I; Braff, David L
2014-02-01
Startle inhibition by weak prepulses (PPI) is studied to understand the biology of information processing in schizophrenia patients and healthy comparison subjects (HCS). The Consortium on the Genetics of Schizophrenia (COGS) identified associations between PPI and single nucleotide polymorphisms in schizophrenia probands and unaffected relatives, and linkage analyses extended evidence for the genetics of PPI deficits in schizophrenia in the COGS-1 family study. These findings are being extended in a 5-site "COGS-2" study of 1800 patients and 1200 unrelated HCS to facilitate genetic analyses. We describe a planned interim analysis of COGS-2 PPI data. Eyeblink startle was measured in carefully screened HCS and schizophrenia patients (n=1402). Planned analyses of PPI (60 ms intervals) assessed effects of diagnosis, sex and test site, PPI-modifying effects of medications and smoking, and relationships between PPI and neurocognitive measures. 884 subjects met strict inclusion criteria. ANOVA of PPI revealed significant effects of diagnosis (p=0.0005) and sex (p<0.002), and a significant diagnosis×test site interaction. HCS>schizophrenia PPI differences were greatest among patients not taking 2nd generation antipsychotics, and were independent of smoking status. Modest but significant relationships were detected between PPI and performance in specific neurocognitive measures. The COGS-2 multi-site study detects schizophrenia-related PPI deficits reported in single-site studies, including patterns related to diagnosis, prepulse interval, sex, medication and other neurocognitive measures. Site differences were detected and explored. The target COGS-2 schizophrenia "endophenotype" of reduced PPI should prove valuable for identifying and confirming schizophrenia risk genes in future analyses. Copyright © 2013 Elsevier B.V. All rights reserved.
Deficient prepulse inhibition in schizophrenia detected by the multi-site COGS
Swerdlow, Neal R.; Light, Gregory A.; Sprock, Joyce; Calkins, Monica E.; Green, Michael F.; Greenwood, Tiffany A.; Gur, Raquel E.; Gur, Ruben C.; Lazzeroni, Laura C.; Nuechterlein, Keith H.; Radant, Allen D.; Ray, Amrita; Seidman, Larry J.; Siever, Larry J.; Silverman, Jeremy M.; Stone, William S.; Sugar, Catherine A.; Tsuang, Debby W.; Tsuang, Ming T.; Turetsky, Bruce I.; Braff, David L.
2014-01-01
Background Startle inhibition by weak prepulses (PPI) is studied to understand the biology of information processing in schizophrenia patients and healthy comparison subjects (HCS). The Consortium on the Genetics of Schizophrenia (COGS) identified associations between PPI and single nucleotide polymorphisms in schizophrenia probands and unaffected relatives, and linkage analyses extended evidence for the genetics of PPI deficits in schizophrenia in the COGS-1 family study. These findings are being extended in a 5-site “COGS-2” study of 1800 patients and 1200 unrelated HCS to facilitate genetic analyses. We describe a planned interim analysis of COGS-2 PPI data. Methods Eyeblink startle was measured in carefully screened HCS and schizophrenia patients (n=1402). Planned analyses of PPI (60 ms intervals) assessed effects of diagnosis, sex and test site, PPI-modifying effects of medications and smoking, and relationships between PPI and neurocognitive measures. Results 884 subjects met strict inclusion criteria. ANOVA of PPI revealed significant effects of diagnosis (p=0.0005) and sex (p<0.002), and a significant diagnosis × test site interaction. HCS > schizophrenia PPI differences were greatest among patients not taking 2nd generation antipsychotics, and were independent of smoking status. Modest but significant relationships were detected between PPI and performance in specific neurocognitive measures. Discussion The COGS-2 multi-site study detects schizophrenia-related PPI deficits reported in single-site studies, including patterns related to diagnosis, prepulse interval, sex, medication and other neurocognitive measures. Site differences were detected and explored. The target COGS-2 schizophrenia “endophenotype” of reduced PPI should prove valuable for identifying and confirming schizophrenia risk genes in future analyses. PMID:24405980
Identifying future research needs in landscape genetics: Where to from here?
Niko Balkenhol; Felix Gugerli; Sam A. Cushman; Lisette P. Waits; Aurelie Coulon; J. W. Arntzen; Rolf Holderegger; Helene H. Wagner
2009-01-01
Landscape genetics is an emerging interdisciplinary field that combines methods and concepts from population genetics, landscape ecology, and spatial statistics. The interest in landscape genetics is steadily increasing, and the field is evolving rapidly. We here outline four major challenges for future landscape genetic research that were identified during an...
Zhang, Yu; Yan, Haidong; Jiang, Xiaomei; Wang, Xiaoli; Huang, Linkai; Xu, Bin; Zhang, Xinquan; Zhang, Lexin
2016-01-01
To evaluate genetic variation, population structure, and the extent of linkage disequilibrium (LD), 134 switchgrass ( Panicum virgatum L.) samples were analyzed with 51 markers, including 16 ISSRs, 20 SCoTs, and 15 EST-SSRs. In this study, a high level of genetic variation was observed in the switchgrass samples and they had an average Nei's gene diversity index (H) of 0.311. A total of 793 bands were obtained, of which 708 (89.28 %) were polymorphic. Using a parameter marker index (MI), the efficiency of the three types of markers (ISSR, SCoT, and EST-SSR) in the study were compared and we found that SCoT had a higher marker efficiency than the other two markers. The 134 switchgrass samples could be divided into two sub-populations based on STRUCTURE, UPGMA clustering, and principal coordinate analyses (PCA), and upland and lowland ecotypes could be separated by UPGMA clustering and PCA analyses. Linkage disequilibrium analysis revealed an average r 2 of 0.035 across all 51 markers, indicating a trend of higher LD in sub-population 2 than that in sub-population 1 ( P < 0.01). The population structure revealed in this study will guide the design of future association studies using these switchgrass samples.
The genetic consequences of selection in natural populations.
Thurman, Timothy J; Barrett, Rowan D H
2016-04-01
The selection coefficient, s, quantifies the strength of selection acting on a genetic variant. Despite this parameter's central importance to population genetic models, until recently we have known relatively little about the value of s in natural populations. With the development of molecular genetic techniques in the late 20th century and the sequencing technologies that followed, biologists are now able to identify genetic variants and directly relate them to organismal fitness. We reviewed the literature for published estimates of natural selection acting at the genetic level and found over 3000 estimates of selection coefficients from 79 studies. Selection coefficients were roughly exponentially distributed, suggesting that the impact of selection at the genetic level is generally weak but can occasionally be quite strong. We used both nonparametric statistics and formal random-effects meta-analysis to determine how selection varies across biological and methodological categories. Selection was stronger when measured over shorter timescales, with the mean magnitude of s greatest for studies that measured selection within a single generation. Our analyses found conflicting trends when considering how selection varies with the genetic scale (e.g., SNPs or haplotypes) at which it is measured, suggesting a need for further research. Besides these quantitative conclusions, we highlight key issues in the calculation, interpretation, and reporting of selection coefficients and provide recommendations for future research. © 2016 John Wiley & Sons Ltd.
He, J; Gao, H; Xu, P; Yang, R
2015-12-01
Body weight, length, width and depth at two growth stages were observed for a total of 5015 individuals of GIFT strain, along with a pedigree including 5588 individuals from 104 sires and 162 dams was collected. Multivariate animal models and a random regression model were used to genetically analyse absolute and relative growth scales of these growth traits. In absolute growth scale, the observed growth traits had moderate heritabilities ranging from 0.321 to 0.576, while pairwise ratios between body length, width and depth were lowly inherited and maximum heritability was only 0.146 for length/depth. All genetic correlations were above 0.5 between pairwise growth traits and genetic correlation between length/width and length/depth varied between both growth stages. Based on those estimates, selection index of multiple traits of interest can be formulated in future breeding program to improve genetically body weight and morphology of the GIFT strain. In relative growth scale, heritabilities in relative growths of body length, width and depth to body weight were 0.257, 0.412 and 0.066, respectively, while genetic correlations among these allometry scalings were above 0.8. Genetic analysis for joint allometries of body weight to body length, width and depth will contribute to genetically regulate the growth rate between body shape and body weight. © 2015 Blackwell Verlag GmbH.
Briley, Daniel A.; Tucker-Drob, Elliot M.
2017-01-01
The Five Factor Model (FFM) of personality is well-established at the phenotypic level, but much less is known about the coherence of the genetic and environmental influences within each personality domain. Univariate behavioral genetic analyses have consistently found the influence of additive genes and nonshared environment on multiple personality facets, but the extent to which genetic and environmental influences on specific facets reflect more general influences on higher order factors is less clear. We applied a multivariate quantitative-genetic approach to scores on the CPI-Big Five facets for 490 monozygotic and 317 dizygotic twins who took part in the National Merit Twin Study. Our results revealed a complex genetic structure for facets composing all five factors, with both domain-general and facet-specific genetic and environmental influences. Models that required common genetic and environmental influences on each facet to occur by way of effects on a higher order trait did not fit as well as models allowing for common genetic and environmental effects to act directly on the facets for three of the Big Five domains. These results add to the growing body of literature indicating that important variation in personality occurs at the facet level which may be overshadowed by aggregating to the trait level. Research at the facet level, rather than the factor level, is likely to have pragmatic advantages in future research on the genetics of personality. PMID:22695681
Otero-Ferrer, F; Herrera, R; López, A; Socorro, J; Molina, L; Bouza, C
2015-10-01
Morphometric and genetic analyses confirmed the first records of the West African seahorse Hippocampus algiricus at Gran Canaria Island (north-east Atlantic Ocean), and also the first evidence of interspecific hybridization in seahorses. These results provide additional data on the distribution of H. algiricus that may help to establish future conservation strategies, and uncover a new potential sympatric scenario between H. algiricus and Hippocampus hippocampus. © 2015 The Fisheries Society of the British Isles.
2012-01-01
Background Genetic variants are likely to contribute to a portion of prostate cancer risk. Full elucidation of the genetic etiology of prostate cancer is difficult because of incomplete penetrance and genetic and phenotypic heterogeneity. Current evidence suggests that genetic linkage to prostate cancer has been found on several chromosomes including the X; however, identification of causative genes has been elusive. Methods Parametric and non-parametric linkage analyses were performed using 26 microsatellite markers in each of 11 groups of multiple-case prostate cancer families from the International Consortium for Prostate Cancer Genetics (ICPCG). Meta-analyses of the resultant family-specific linkage statistics across the entire 1,323 families and in several predefined subsets were then performed. Results Meta-analyses of linkage statistics resulted in a maximum parametric heterogeneity lod score (HLOD) of 1.28, and an allele-sharing lod score (LOD) of 2.0 in favor of linkage to Xq27-q28 at 138 cM. In subset analyses, families with average age at onset less than 65 years exhibited a maximum HLOD of 1.8 (at 138 cM) versus a maximum regional HLOD of only 0.32 in families with average age at onset of 65 years or older. Surprisingly, the subset of families with only 2–3 affected men and some evidence of male-to-male transmission of prostate cancer gave the strongest evidence of linkage to the region (HLOD = 3.24, 134 cM). For this subset, the HLOD was slightly increased (HLOD = 3.47 at 134 cM) when families used in the original published report of linkage to Xq27-28 were excluded. Conclusions Although there was not strong support for linkage to the Xq27-28 region in the complete set of families, the subset of families with earlier age at onset exhibited more evidence of linkage than families with later onset of disease. A subset of families with 2–3 affected individuals and with some evidence of male to male disease transmission showed stronger linkage signals. Our results suggest that the genetic basis for prostate cancer in our families is much more complex than a single susceptibility locus on the X chromosome, and that future explorations of the Xq27-28 region should focus on the subset of families identified here with the strongest evidence of linkage to this region. PMID:22712434
Through a glass darkly: economics and personalised medicine.
Haycox, Alan; Pirmohamed, Munir; McLeod, Claire; Houten, Rachel; Richards, Sarah
2014-11-01
Personalised medicine and pharmacogenetic-test-guided treatment strategies will be of increasing importance in the future, both in terms of healthcare provision and evaluation. It is well recognised that significant variability exists in the response of patients to drugs resulting from genetic or biological variations; however, we are only now gradually becoming aware of the complexities involved. Enormous variability occurs in the risk-benefit ratio that will be experienced by each individual patient as a consequence of their overall genetic make-up. Although not a panacea, enhanced scientific knowledge of the genetic basis for such variability offers the potential for a more 'tailored' approach to prescribing in the future, making it more closely attuned to the needs of the individual patient. Such 'personalised' medicine has the potential to revolutionise care provision in a manner that provides a range of challenges to current structures and processes of 'conventional' healthcare delivery. The aim of this paper is to outline such challenges and analyse potential ways in which they may be addressed in the future. It provides non-expert readers with a non-technical case study of the complexities inherent in the evaluation of a pharmacogenetic-test-guided treatment strategy from a health economic perspective. Wherever possible, technical issues have been minimised; however, references are provided for readers who wish to enhance their knowledge of the pharmacological basis of the case study of cytochrome P450 test-guided treatment. The case study aims simply to illustrate the approach and difficulties encountered in the health economic evaluation of complex pharmacogenetic technologies. Such technologies present a range of new and complex issues which have crucial implications for health economists attempting to obtain an accurate assessment of the 'value' of the technology in clinical practice in an array of patient subgroups. Personalised medicine is the future and this paper highlights how pharmaceutical manufacturers, clinicians, regulators and other stakeholders must all play their part in the inevitable and accelerating move into this complex and uncertain future.
Phenome-Wide Association Studies as a Tool to Advance Precision Medicine
Denny, Joshua C.; Bastarache, Lisa; Roden, Dan M.
2017-01-01
Beginning in the early 2000s, the accumulation of biospecimens linked to electronic health records (EHRs) made possible genome-phenome studies (i.e., comparative analyses of genetic variants and phenotypes) using only data collected as a by-product of typical health care. In addition to disease and trait genetics, EHRs proved a valuable resource for analyzing pharmacogenetic traits and developing reverse genetics approaches such as phenome-wide association studies (PheWASs). PheWASs are designed to survey which of many phenotypes may be associated with a given genetic variant. PheWAS methods have been validated through replication of hundreds of known genotype-phenotype associations, and their use has differentiated between true pleiotropy and clinical comorbidity, added context to genetic discoveries, and helped define disease subtypes, and may also help repurpose medications. PheWAS methods have also proven to be useful with research-collected data. Future efforts that integrate broad, robust collection of phenotype data (e.g., EHR data) with purpose-collected research data in combination with a greater understanding of EHR data will create a rich resource for increasingly more efficient and detailed genome-phenome analysis to usher in new discoveries in precision medicine. PMID:27147087
Education, Genetic Ancestry, and Blood Pressure in African Americans and Whites
Gravlee, Clarence C.; Mulligan, Connie J.
2012-01-01
Objectives. We assessed the relative roles of education and genetic ancestry in predicting blood pressure (BP) within African Americans and explored the association between education and BP across racial groups. Methods. We used t tests and linear regressions to examine the associations of genetic ancestry, estimated from a genomewide set of autosomal markers, and education with BP variation among African Americans in the Family Blood Pressure Program. We also performed linear regressions in self-identified African Americans and Whites to explore the association of education with BP across racial groups. Results. Education, but not genetic ancestry, significantly predicted BP variation in the African American subsample (b = −0.51 mm Hg per year additional education; P = .001). Although education was inversely associated with BP in the total population, within-group analyses showed that education remained a significant predictor of BP only among the African Americans. We found a significant interaction (b = 3.20; P = .006) between education and self-identified race in predicting BP. Conclusions. Racial disparities in BP may be better explained by differences in education than by genetic ancestry. Future studies of ancestry and disease should include measures of the social environment. PMID:22698014
Clinical and genetic analyses reveal novel pathogenic ABCA4 mutations in Stargardt disease families
Lin, Bing; Cai, Xue-Bi; Zheng, Zhi-Li; Huang, Xiu-Feng; Liu, Xiao-Ling; Qu, Jia; Jin, Zi-Bing
2016-01-01
Stargardt disease (STGD1) is a juvenile macular degeneration predominantly inherited in an autosomal recessive pattern, characterized by decreased central vision in the first 2 decades of life. The condition has a genetic basis due to mutation in the ABCA4 gene, and arises from the deposition of lipofuscin-like substance in the retinal pigmented epithelium (RPE) with secondary photoreceptor cell death. In this study, we describe the clinical and genetic features of Stargardt patients from four unrelated Chinese cohorts. The targeted exome sequencing (TES) was carried out in four clinically confirmed patients and their family members using a gene panel comprising 164 known causative inherited retinal dystrophy (IRD) genes. Genetic analysis revealed eight ABCA4 mutations in all of the four pedigrees, including six mutations in coding exons and two mutations in adjacent intronic areas. All the affected individuals showed typical manifestations consistent with the disease phenotype. We disclose two novel ABCA4 mutations in Chinese patients with STGD disease, which will expand the existing spectrum of disease-causing variants and will further aid in the future mutation screening and genetic counseling, as well as in the understanding of phenotypic and genotypic correlations. PMID:27739528
Education, genetic ancestry, and blood pressure in African Americans and Whites.
Non, Amy L; Gravlee, Clarence C; Mulligan, Connie J
2012-08-01
We assessed the relative roles of education and genetic ancestry in predicting blood pressure (BP) within African Americans and explored the association between education and BP across racial groups. We used t tests and linear regressions to examine the associations of genetic ancestry, estimated from a genomewide set of autosomal markers, and education with BP variation among African Americans in the Family Blood Pressure Program. We also performed linear regressions in self-identified African Americans and Whites to explore the association of education with BP across racial groups. Education, but not genetic ancestry, significantly predicted BP variation in the African American subsample (b=-0.51 mm Hg per year additional education; P=.001). Although education was inversely associated with BP in the total population, within-group analyses showed that education remained a significant predictor of BP only among the African Americans. We found a significant interaction (b=3.20; P=.006) between education and self-identified race in predicting BP. Racial disparities in BP may be better explained by differences in education than by genetic ancestry. Future studies of ancestry and disease should include measures of the social environment.
Pearls and pitfalls in genetic studies of migraine.
Eising, Else; de Vries, Boukje; Ferrari, Michel D; Terwindt, Gisela M; van den Maagdenberg, Arn M J M
2013-06-01
Migraine is a prevalent neurovascular brain disorder with a strong genetic component, and different methodological approaches have been implemented to identify the genes involved. This review focuses on pearls and pitfalls of these approaches and genetic findings in migraine. Common forms of migraine (i.e. migraine with and without aura) are thought to have a polygenic make-up, whereas rare familial hemiplegic migraine (FHM) presents with a monogenic pattern of inheritance. Until a few years ago only studies in FHM yielded causal genes, which were identified by a classical linkage analysis approach. Functional analyses of FHM gene mutations in cellular and transgenic animal models suggest abnormal glutamatergic neurotransmission as a possible key disease mechanism. Recently, a number of genes were discovered for the common forms of migraine using a genome-wide association (GWA) approach, which sheds first light on the pathophysiological mechanisms involved. Novel technological strategies such as next-generation sequencing, which can be implemented in future genetic migraine research, may aid the identification of novel FHM genes and promote the search for the missing heritability of common migraine.
Bossé, Yohan
2012-01-01
A genetic contribution to develop chronic obstructive pulmonary disease (COPD) is well established. However, the specific genes responsible for enhanced risk or host differences in susceptibility to smoke exposure remain poorly understood. The goal of this review is to provide a comprehensive literature overview on the genetics of COPD, highlight the most promising findings during the last few years, and ultimately provide an updated COPD gene list. Candidate gene studies on COPD and related phenotypes indexed in PubMed before January 5, 2012 are tabulated. An exhaustive list of publications for any given gene was looked for. This well-documented COPD candidate-gene list is expected to serve many purposes for future replication studies and meta-analyses as well as for reanalyzing collected genomic data in the field. In addition, this review summarizes recent genetic loci identified by genome-wide association studies on COPD, lung function, and related complications. Assembling resources, integrative genomic approaches, and large sample sizes of well-phenotyped subjects is part of the path forward to elucidate the genetic basis of this debilitating disease. PMID:23055711
Banda, Yambazi; Kvale, Mark N; Hoffmann, Thomas J; Hesselson, Stephanie E; Ranatunga, Dilrini; Tang, Hua; Sabatti, Chiara; Croen, Lisa A; Dispensa, Brad P; Henderson, Mary; Iribarren, Carlos; Jorgenson, Eric; Kushi, Lawrence H; Ludwig, Dana; Olberg, Diane; Quesenberry, Charles P; Rowell, Sarah; Sadler, Marianne; Sakoda, Lori C; Sciortino, Stanley; Shen, Ling; Smethurst, David; Somkin, Carol P; Van Den Eeden, Stephen K; Walter, Lawrence; Whitmer, Rachel A; Kwok, Pui-Yan; Schaefer, Catherine; Risch, Neil
2015-08-01
Using genome-wide genotypes, we characterized the genetic structure of 103,006 participants in the Kaiser Permanente Northern California multi-ethnic Genetic Epidemiology Research on Adult Health and Aging Cohort and analyzed the relationship to self-reported race/ethnicity. Participants endorsed any of 23 race/ethnicity/nationality categories, which were collapsed into seven major race/ethnicity groups. By self-report the cohort is 80.8% white and 19.2% minority; 93.8% endorsed a single race/ethnicity group, while 6.2% endorsed two or more. Principal component (PC) and admixture analyses were generally consistent with prior studies. Approximately 17% of subjects had genetic ancestry from more than one continent, and 12% were genetically admixed, considering only nonadjacent geographical origins. Self-reported whites were spread on a continuum along the first two PCs, indicating extensive mixing among European nationalities. Self-identified East Asian nationalities correlated with genetic clustering, consistent with extensive endogamy. Individuals of mixed East Asian-European genetic ancestry were easily identified; we also observed a modest amount of European genetic ancestry in individuals self-identified as Filipinos. Self-reported African Americans and Latinos showed extensive European and African genetic ancestry, and Native American genetic ancestry for the latter. Among 3741 genetically identified parent-child pairs, 93% were concordant for self-reported race/ethnicity; among 2018 genetically identified full-sib pairs, 96% were concordant; the lower rate for parent-child pairs was largely due to intermarriage. The parent-child pairs revealed a trend toward increasing exogamy over time; the presence in the cohort of individuals endorsing multiple race/ethnicity categories creates interesting challenges and future opportunities for genetic epidemiologic studies. Copyright © 2015 by the Genetics Society of America.
Young, Emma F; Belchier, Mark; Hauser, Lorenz; Horsburgh, Gavin J; Meredith, Michael P; Murphy, Eugene J; Pascoal, Sonia; Rock, Jennifer; Tysklind, Niklas; Carvalho, Gary R
2015-01-01
Understanding the key drivers of population connectivity in the marine environment is essential for the effective management of natural resources. Although several different approaches to evaluating connectivity have been used, they are rarely integrated quantitatively. Here, we use a ‘seascape genetics’ approach, by combining oceanographic modelling and microsatellite analyses, to understand the dominant influences on the population genetic structure of two Antarctic fishes with contrasting life histories, Champsocephalus gunnari and Notothenia rossii. The close accord between the model projections and empirical genetic structure demonstrated that passive dispersal during the planktonic early life stages is the dominant influence on patterns and extent of genetic structuring in both species. The shorter planktonic phase of C. gunnari restricts direct transport of larvae between distant populations, leading to stronger regional differentiation. By contrast, geographic distance did not affect differentiation in N. rossii, whose longer larval period promotes long-distance dispersal. Interannual variability in oceanographic flows strongly influenced the projected genetic structure, suggesting that shifts in circulation patterns due to climate change are likely to impact future genetic connectivity and opportunities for local adaptation, resilience and recovery from perturbations. Further development of realistic climate models is required to fully assess such potential impacts. PMID:26029262
Peacock, Elizabeth; Sonsthagen, Sarah A; Obbard, Martyn E; Boltunov, Andrei; Regehr, Eric V; Ovsyanikov, Nikita; Aars, Jon; Atkinson, Stephen N; Sage, George K; Hope, Andrew G; Zeyl, Eve; Bachmann, Lutz; Ehrich, Dorothee; Scribner, Kim T; Amstrup, Steven C; Belikov, Stanislav; Born, Erik W; Derocher, Andrew E; Stirling, Ian; Taylor, Mitchell K; Wiig, Øystein; Paetkau, David; Talbot, Sandra L
2015-01-01
We provide an expansive analysis of polar bear (Ursus maritimus) circumpolar genetic variation during the last two decades of decline in their sea-ice habitat. We sought to evaluate whether their genetic diversity and structure have changed over this period of habitat decline, how their current genetic patterns compare with past patterns, and how genetic demography changed with ancient fluctuations in climate. Characterizing their circumpolar genetic structure using microsatellite data, we defined four clusters that largely correspond to current ecological and oceanographic factors: Eastern Polar Basin, Western Polar Basin, Canadian Archipelago and Southern Canada. We document evidence for recent (ca. last 1-3 generations) directional gene flow from Southern Canada and the Eastern Polar Basin towards the Canadian Archipelago, an area hypothesized to be a future refugium for polar bears as climate-induced habitat decline continues. Our data provide empirical evidence in support of this hypothesis. The direction of current gene flow differs from earlier patterns of gene flow in the Holocene. From analyses of mitochondrial DNA, the Canadian Archipelago cluster and the Barents Sea subpopulation within the Eastern Polar Basin cluster did not show signals of population expansion, suggesting these areas may have served also as past interglacial refugia. Mismatch analyses of mitochondrial DNA data from polar and the paraphyletic brown bear (U. arctos) uncovered offset signals in timing of population expansion between the two species, that are attributed to differential demographic responses to past climate cycling. Mitogenomic structure of polar bears was shallow and developed recently, in contrast to the multiple clades of brown bears. We found no genetic signatures of recent hybridization between the species in our large, circumpolar sample, suggesting that recently observed hybrids represent localized events. Documenting changes in subpopulation connectivity will allow polar nations to proactively adjust conservation actions to continuing decline in sea-ice habitat.
Peacock, Elizabeth; Sonsthagen, Sarah A.; Obbard, Martyn E.; Boltunov, Andrei; Regehr, Eric V.; Ovsyanikov, Nikita; Aars, Jon; Atkinson, Stephen N.; Sage, George K.; Hope, Andrew G.; Zeyl, Eve; Bachmann, Lutz; Ehrich, Dorothee; Scribner, Kim T.; Amstrup, Steven C.; Belikov, Stanislav; Born, Erik W.; Derocher, Andrew E.; Stirling, Ian; Taylor, Mitchell K.; Wiig, Øystein; Paetkau, David; Talbot, Sandra L.
2015-01-01
We provide an expansive analysis of polar bear (Ursus maritimus) circumpolar genetic variation during the last two decades of decline in their sea-ice habitat. We sought to evaluate whether their genetic diversity and structure have changed over this period of habitat decline, how their current genetic patterns compare with past patterns, and how genetic demography changed with ancient fluctuations in climate. Characterizing their circumpolar genetic structure using microsatellite data, we defined four clusters that largely correspond to current ecological and oceanographic factors: Eastern Polar Basin, Western Polar Basin, Canadian Archipelago and Southern Canada. We document evidence for recent (ca. last 1–3 generations) directional gene flow from Southern Canada and the Eastern Polar Basin towards the Canadian Archipelago, an area hypothesized to be a future refugium for polar bears as climate-induced habitat decline continues. Our data provide empirical evidence in support of this hypothesis. The direction of current gene flow differs from earlier patterns of gene flow in the Holocene. From analyses of mitochondrial DNA, the Canadian Archipelago cluster and the Barents Sea subpopulation within the Eastern Polar Basin cluster did not show signals of population expansion, suggesting these areas may have served also as past interglacial refugia. Mismatch analyses of mitochondrial DNA data from polar and the paraphyletic brown bear (U. arctos) uncovered offset signals in timing of population expansion between the two species, that are attributed to differential demographic responses to past climate cycling. Mitogenomic structure of polar bears was shallow and developed recently, in contrast to the multiple clades of brown bears. We found no genetic signatures of recent hybridization between the species in our large, circumpolar sample, suggesting that recently observed hybrids represent localized events. Documenting changes in subpopulation connectivity will allow polar nations to proactively adjust conservation actions to continuing decline in sea-ice habitat. PMID:25562525
Dukić, Marinela; Berner, Daniel; Roesti, Marius; Haag, Christoph R; Ebert, Dieter
2016-10-13
Recombination rate is an essential parameter for many genetic analyses. Recombination rates are highly variable across species, populations, individuals and different genomic regions. Due to the profound influence that recombination can have on intraspecific diversity and interspecific divergence, characterization of recombination rate variation emerges as a key resource for population genomic studies and emphasises the importance of high-density genetic maps as tools for studying genome biology. Here we present such a high-density genetic map for Daphnia magna, and analyse patterns of recombination rate across the genome. A F2 intercross panel was genotyped by Restriction-site Associated DNA sequencing to construct the third-generation linkage map of D. magna. The resulting high-density map included 4037 markers covering 813 scaffolds and contigs that sum up to 77 % of the currently available genome draft sequence (v2.4) and 55 % of the estimated genome size (238 Mb). Total genetic length of the map presented here is 1614.5 cM and the genome-wide recombination rate is estimated to 6.78 cM/Mb. Merging genetic and physical information we consistently found that recombination rate estimates are high towards the peripheral parts of the chromosomes, while chromosome centres, harbouring centromeres in D. magna, show very low recombination rate estimates. Due to its high-density, the third-generation linkage map for D. magna can be coupled with the draft genome assembly, providing an essential tool for genome investigation in this model organism. Thus, our linkage map can be used for the on-going improvements of the genome assembly, but more importantly, it has enabled us to characterize variation in recombination rate across the genome of D. magna for the first time. These new insights can provide a valuable assistance in future studies of the genome evolution, mapping of quantitative traits and population genetic studies.
Peacock, Elizabeth; Sonsthagen, Sarah A.; Obbard, Martyn E.; Boltunov, Andrei N.; Regehr, Eric V.; Ovsyanikov, Nikita; Aars, Jon; Atkinson, Stephen N.; Sage, George K.; Hope, Andrew G.; Zeyl, Eve; Bachmann, Lutz; Ehrich, Dorothee; Scribner, Kim T.; Amstrup, Steven C.; Belikov, Stanislav; Born, Erik W.; Derocher, Andrew E.; Stirling, Ian; Taylor, Mitchell K.; Wiig, Øystein; Paetkau, David; Talbot, Sandra L.
2015-01-01
We provide an expansive analysis of polar bear (Ursus maritimus) circumpolar genetic variation during the last two decades of decline in their sea-ice habitat. We sought to evaluate whether their genetic diversity and structure have changed over this period of habitat decline, how their current genetic patterns compare with past patterns, and how genetic demography changed with ancient fluctuations in climate. Characterizing their circumpolar genetic structure using microsatellite data, we defined four clusters that largely correspond to current ecological and oceanographic factors: Eastern Polar Basin, Western Polar Basin, Canadian Archipelago and Southern Canada. We document evidence for recent (ca. last 1–3 generations) directional gene flow from Southern Canada and the Eastern Polar Basin towards the Canadian Archipelago, an area hypothesized to be a future refugium for polar bears as climate-induced habitat decline continues. Our data provide empirical evidence in support of this hypothesis. The direction of current gene flow differs from earlier patterns of gene flow in the Holocene. From analyses of mitochondrial DNA, the Canadian Archipelago cluster and the Barents Sea subpopulation within the Eastern Polar Basin cluster did not show signals of population expansion, suggesting these areas may have served also as past interglacial refugia. Mismatch analyses of mitochondrial DNA data from polar and the paraphyletic brown bear (U. arctos) uncovered offset signals in timing of population expansion between the two species, that are attributed to differential demographic responses to past climate cycling. Mitogenomic structure of polar bears was shallow and developed recently, in contrast to the multiple clades of brown bears. We found no genetic signatures of recent hybridization between the species in our large, circumpolar sample, suggesting that recently observed hybrids represent localized events. Documenting changes in subpopulation connectivity will allow polar nations to proactively adjust conservation actions to continuing decline in sea-ice habitat.
50 CFR 224.101 - Enumeration of endangered marine and anadromous species.
Code of Federal Regulations, 2012 CFR
2012-10-01
... institutions) and which are identified as fish belonging to the NYB DPS based on genetics analyses, previously... genetics analyses, previously applied tags, previously applied marks, or documentation to verify that the... Carolina DPS based on genetics analyses, previously applied tags, previously applied marks, or...
50 CFR 224.101 - Enumeration of endangered marine and anadromous species.
Code of Federal Regulations, 2013 CFR
2013-10-01
... institutions) and which are identified as fish belonging to the NYB DPS based on genetics analyses, previously... genetics analyses, previously applied tags, previously applied marks, or documentation to verify that the... Carolina DPS based on genetics analyses, previously applied tags, previously applied marks, or...
Bioinformatic perspectives on NRPS/PKS megasynthases: advances and challenges.
Jenke-Kodama, Holger; Dittmann, Elke
2009-07-01
The increased understanding of both fundamental principles and mechanistic variations of NRPS/PKS megasynthases along with the unprecedented availability of microbial sequences has inspired a number of in silico studies of both enzyme families. The insights that can be extracted from these analyses go far beyond a rough classification of data and have turned bioinformatics into a frontier field of natural products research. As databases are flooded with NRPS/PKS gene sequence of microbial genomes and metagenomes, increasingly reliable structural prediction methods can help to uncover hidden treasures. Already, phylogenetic analyses have revealed that NRPS/PKS pathways should not simply be regarded as enzyme complexes, specifically evolved to product a selected natural product. Rather, they represent a collection of genetic opinions, allowing biosynthetic pathways to be shuffled in a process of perpetual chemical innovations and pathways diversification in nature can give impulses for specificities, protein interactions and genetic engineering of libraries of novel peptides and polyketides. The successful translation of the knowledge obtained from bioinformatic dissection of NRPS/PKS megasynthases into new techniques for drug discovery and design remain challenges for the future.
Banda, Yambazi; Kvale, Mark N.; Hoffmann, Thomas J.; Hesselson, Stephanie E.; Ranatunga, Dilrini; Tang, Hua; Sabatti, Chiara; Croen, Lisa A.; Dispensa, Brad P.; Henderson, Mary; Iribarren, Carlos; Jorgenson, Eric; Kushi, Lawrence H.; Ludwig, Dana; Olberg, Diane; Quesenberry, Charles P.; Rowell, Sarah; Sadler, Marianne; Sakoda, Lori C.; Sciortino, Stanley; Shen, Ling; Smethurst, David; Somkin, Carol P.; Van Den Eeden, Stephen K.; Walter, Lawrence; Whitmer, Rachel A.; Kwok, Pui-Yan; Schaefer, Catherine; Risch, Neil
2015-01-01
Using genome-wide genotypes, we characterized the genetic structure of 103,006 participants in the Kaiser Permanente Northern California multi-ethnic Genetic Epidemiology Research on Adult Health and Aging Cohort and analyzed the relationship to self-reported race/ethnicity. Participants endorsed any of 23 race/ethnicity/nationality categories, which were collapsed into seven major race/ethnicity groups. By self-report the cohort is 80.8% white and 19.2% minority; 93.8% endorsed a single race/ethnicity group, while 6.2% endorsed two or more. Principal component (PC) and admixture analyses were generally consistent with prior studies. Approximately 17% of subjects had genetic ancestry from more than one continent, and 12% were genetically admixed, considering only nonadjacent geographical origins. Self-reported whites were spread on a continuum along the first two PCs, indicating extensive mixing among European nationalities. Self-identified East Asian nationalities correlated with genetic clustering, consistent with extensive endogamy. Individuals of mixed East Asian–European genetic ancestry were easily identified; we also observed a modest amount of European genetic ancestry in individuals self-identified as Filipinos. Self-reported African Americans and Latinos showed extensive European and African genetic ancestry, and Native American genetic ancestry for the latter. Among 3741 genetically identified parent–child pairs, 93% were concordant for self-reported race/ethnicity; among 2018 genetically identified full-sib pairs, 96% were concordant; the lower rate for parent–child pairs was largely due to intermarriage. The parent–child pairs revealed a trend toward increasing exogamy over time; the presence in the cohort of individuals endorsing multiple race/ethnicity categories creates interesting challenges and future opportunities for genetic epidemiologic studies. PMID:26092716
Genetic polymorphisms of pharmacogenomic VIP variants in the Yi population from China.
Yan, Mengdan; Li, Dianzhen; Zhao, Guige; Li, Jing; Niu, Fanglin; Li, Bin; Chen, Peng; Jin, Tianbo
2018-03-30
Drug response and target therapeutic dosage are different among individuals. The variability is largely genetically determined. With the development of pharmacogenetics and pharmacogenomics, widespread research have provided us a wealth of information on drug-related genetic polymorphisms, and the very important pharmacogenetic (VIP) variants have been identified for the major populations around the world whereas less is known regarding minorities in China, including the Yi ethnic group. Our research aims to screen the potential genetic variants in Yi population on pharmacogenomics and provide a theoretical basis for future medication guidance. In the present study, 80 VIP variants (selected from the PharmGKB database) were genotyped in 100 unrelated and healthy Yi adults recruited for our research. Through statistical analysis, we made a comparison between the Yi and other 11 populations listed in the HapMap database for significant SNPs detection. Two specific SNPs were subsequently enrolled in an observation on global allele distribution with the frequencies downloaded from ALlele FREquency Database. Moreover, F-statistics (Fst), genetic structure and phylogenetic tree analyses were conducted for determination of genetic similarity between the 12 ethnic groups. Using the χ2 tests, rs1128503 (ABCB1), rs7294 (VKORC1), rs9934438 (VKORC1), rs1540339 (VDR) and rs689466 (PTGS2) were identified as the significantly different loci for further analysis. The global allele distribution revealed that the allele "A" of rs1540339 and rs9934438 were more frequent in Yi people, which was consistent with the most populations in East Asia. F-statistics (Fst), genetic structure and phylogenetic tree analyses demonstrated that the Yi and CHD shared a closest relationship on their genetic backgrounds. Additionally, Yi was considered similar to the Han people from Shaanxi province among the domestic ethnic populations in China. Our results demonstrated significant differences on several polymorphic SNPs and supplement the pharmacogenomic information for the Yi population, which could provide new strategies for optimizing clinical medication in accordance with the genetic determinants of drug toxicity and efficacy. Copyright © 2018 Elsevier B.V. All rights reserved.
Genetic signals of past demographic changes and the history of oak populations in California
NASA Astrophysics Data System (ADS)
Dodd, R. S.
2009-04-01
A retrospective view of species' demographic changes can inform on population stability through times of climatic change and the origins and spatial structure of genetic diversity in contemporary populations. The former provides the means to predict responses to future climatic change, while the latter allows us to infer the ability of populations to buffer the effects of reductions in population size and fragmentation. The approximately 1.8 my of the Pleistocene is believed to have had a significant impact on diversity through high rates of extinction during early glacial cycles and population expansions and contractions during the later cycles. In the Mediterranean basin, early emphasis on taxa with wide latitudinal ranges led to models of refugial sites and subsequent recolonization routes that could explain geographic patterns in genetic diversity, with a trend towards reduced genetic diversity in the north. More recently, the study of strictly Mediterranean taxa has revealed relictual sites that have persisted over very long periods of time, commonly relatively poor in diversity, but populations well differentiated from one site to another. In California, relatively little is known of the population dynamics of plant taxa during the Pleistocene glacial cycles, or to what extent differentiation today is a result of pre-Pleistocene events. For several animal taxa, differentiation between Coastal and Sierran taxa are believed to date to the Pliocene. Major demographic changes resulting in population isolation, bottlenecks, founder events and population expansions leave a genetic signal that can be detected through appropriate genetic markers and analyses. Such signals help to infer whether past climate fluctuations have had important effects on population demographics. Here, I will focus on key oak species of the California mediterranean climate zone. I will explore the likely effects of the last glacial maximum on oak populations using palaeoclimate and niche modeling together with analyses of population genetic structure. One of the major questions that will be addressed is whether populations have persisted over long periods of time and if the contemporary population structure has derived from events earlier than the Pleistocene. Population genetic structure will then be used to propose strategies that will optimize conservation of genetic resources.
Li, Ming-Rui; Shi, Feng-Xue; Li, Ya-Ling; Jiang, Peng; Jiao, Lili
2017-01-01
Abstract Chinese ginseng (Panax ginseng Meyer) is a medicinally important herb and plays crucial roles in traditional Chinese medicine. Pharmacological analyses identified diverse bioactive components from Chinese ginseng. However, basic biological attributes including domestication and selection of the ginseng plant remain under-investigated. Here, we presented a genome-wide view of the domestication and selection of cultivated ginseng based on the whole genome data. A total of 8,660 protein-coding genes were selected for genome-wide scanning of the 30 wild and cultivated ginseng accessions. In complement, the 45s rDNA, chloroplast and mitochondrial genomes were included to perform phylogenetic and population genetic analyses. The observed spatial genetic structure between northern cultivated ginseng (NCG) and southern cultivated ginseng (SCG) accessions suggested multiple independent origins of cultivated ginseng. Genome-wide scanning further demonstrated that NCG and SCG have undergone distinct selection pressures during the domestication process, with more genes identified in the NCG (97 genes) than in the SCG group (5 genes). Functional analyses revealed that these genes are involved in diverse pathways, including DNA methylation, lignin biosynthesis, and cell differentiation. These findings suggested that the SCG and NCG groups have distinct demographic histories. Candidate genes identified are useful for future molecular breeding of cultivated ginseng. PMID:28922794
Genetic determinants of common epilepsies: a meta-analysis of genome-wide association studies
2014-01-01
Summary Background The epilepsies are a clinically heterogeneous group of neurological disorders. Despite strong evidence for heritability, genome-wide association studies have had little success in identification of risk loci associated with epilepsy, probably because of relatively small sample sizes and insufficient power. We aimed to identify risk loci through meta-analyses of genome-wide association studies for all epilepsy and the two largest clinical subtypes (genetic generalised epilepsy and focal epilepsy). Methods We combined genome-wide association data from 12 cohorts of individuals with epilepsy and controls from population-based datasets. Controls were ethnically matched with cases. We phenotyped individuals with epilepsy into categories of genetic generalised epilepsy, focal epilepsy, or unclassified epilepsy. After standardised filtering for quality control and imputation to account for different genotyping platforms across sites, investigators at each site conducted a linear mixed-model association analysis for each dataset. Combining summary statistics, we conducted fixed-effects meta-analyses of all epilepsy, focal epilepsy, and genetic generalised epilepsy. We set the genome-wide significance threshold at p<1·66 × 10−8. Findings We included 8696 cases and 26 157 controls in our analysis. Meta-analysis of the all-epilepsy cohort identified loci at 2q24.3 (p=8·71 × 10−10), implicating SCN1A, and at 4p15.1 (p=5·44 × 10−9), harbouring PCDH7, which encodes a protocadherin molecule not previously implicated in epilepsy. For the cohort of genetic generalised epilepsy, we noted a single signal at 2p16.1 (p=9·99 × 10−9), implicating VRK2 or FANCL. No single nucleotide polymorphism achieved genome-wide significance for focal epilepsy. Interpretation This meta-analysis describes a new locus not previously implicated in epilepsy and provides further evidence about the genetic architecture of these disorders, with the ultimate aim of assisting in disease classification and prognosis. The data suggest that specific loci can act pleiotropically raising risk for epilepsy broadly, or can have effects limited to a specific epilepsy subtype. Future genetic analyses might benefit from both lumping (ie, grouping of epilepsy types together) or splitting (ie, analysis of specific clinical subtypes). Funding International League Against Epilepsy and multiple governmental and philanthropic agencies. PMID:25087078
Analysis of a genetically structured variance heterogeneity model using the Box-Cox transformation.
Yang, Ye; Christensen, Ole F; Sorensen, Daniel
2011-02-01
Over recent years, statistical support for the presence of genetic factors operating at the level of the environmental variance has come from fitting a genetically structured heterogeneous variance model to field or experimental data in various species. Misleading results may arise due to skewness of the marginal distribution of the data. To investigate how the scale of measurement affects inferences, the genetically structured heterogeneous variance model is extended to accommodate the family of Box-Cox transformations. Litter size data in rabbits and pigs that had previously been analysed in the untransformed scale were reanalysed in a scale equal to the mode of the marginal posterior distribution of the Box-Cox parameter. In the rabbit data, the statistical evidence for a genetic component at the level of the environmental variance is considerably weaker than that resulting from an analysis in the original metric. In the pig data, the statistical evidence is stronger, but the coefficient of correlation between additive genetic effects affecting mean and variance changes sign, compared to the results in the untransformed scale. The study confirms that inferences on variances can be strongly affected by the presence of asymmetry in the distribution of data. We recommend that to avoid one important source of spurious inferences, future work seeking support for a genetic component acting on environmental variation using a parametric approach based on normality assumptions confirms that these are met.
Family Communication in Inherited Cardiovascular Conditions in Ireland.
Whyte, Sinead; Green, Andrew; McAllister, Marion; Shipman, Hannah
2016-12-01
Over 100,000 individuals living in Ireland carry a mutated gene for an inherited cardiac condition (ICC), most of which demonstrate an autosomal dominant pattern of inheritance. First-degree relatives of individuals with these mutations are at a 50 % risk of being a carrier: disclosing genetic information to family members can be complex. This study explored how families living in Ireland communicate genetic information about ICCs and looked at the challenges of communicating information, factors that may affect communication and what influence this had on family relationships. Face to face interviews were conducted with nine participants using an approved topic guide and results analysed using thematic analysis. The participants disclosed that responsibility to future generations, gender, proximity and lack of contact all played a role in family communication. The media was cited as a source of information about genetic information and knowledge of genetic information tended to have a positive effect on families. Results from this study indicate that individuals are willing to inform family members, particularly when there are children and grandchildren at risk, and different strategies are utilised. Furthermore, understanding of genetics is partially regulated not only by their families, but by the way society handles information. Therefore, genetic health professionals should take into account the familial influence on individuals and their decision to attend genetic services, and also that of the media.
Miller, Mark; Haig, Susan M.; Wagner, R.S.
2005-01-01
Endemic to Oregon in the northwestern US, the Oregon slender salamander (Batrachoseps wrighti) is a terrestrial plethodontid found associated with late successional mesic forests. Consequently, forest management practices such as timber harvesting may impact their persistence. Therefore, to infer possible future effects of these practices on population structure and differentiation, we used mitochondrial DNA sequences (cytochrome b) and RAPD markers to analyze 22 populations across their range. Phylogenetic analyses of sequence data (774 bp) revealed two historical lineages corresponding to northern and southern-distributed populations. Relationships among haplotypes and haplotype diversity within lineages suggested that the northern region may have more recently been colonized compared to the southern region. In contrast to the mitochondrial data, analyses of 46 RAPD loci suggested an overall pattern of isolation-by-distance in the set of populations examined and no particularly strong clustering of populations based on genetic distances. We propose two non-exclusive hypotheses to account for discrepancies between mitochondrial and nuclear data sets. First, our data may reflect an overall ancestral pattern of isolation-by-distance that has subsequently been influenced by vicariance. Alternately, our analyses may suggest that male-mediated gene flow and female philopatry are important contributors to the pattern of genetic diversity. We discuss the importance of distinguishing between these two hypotheses for the purposes of identifying conservation units and note that, regardless of the relative contribution of each mechanism towards the observed pattern of diversity, protection of habitat will likely prove critical for the long-term persistence of this species.
Msalya, George; Kim, Eui-Soo; Laisser, Emmanuel L. K.; Kipanyula, Maulilio J.; Karimuribo, Esron D.; Kusiluka, Lughano J. M.; Chenyambuga, Sebastian W.; Rothschild, Max F.
2017-01-01
Background More than 90 percent of cattle in Tanzania belong to the indigenous Tanzania Short Horn Zebu (TSZ) population which has been classified into 12 strains based on historical evidence, morphological characteristics, and geographic distribution. However, specific genetic information of each TSZ population has been lacking and has caused difficulties in designing programs such as selection, crossbreeding, breed improvement or conservation. This study was designed to evaluate the genetic structure, assess genetic relationships, and to identify signatures of selection among cattle of Tanzania with the main goal of understanding genetic relationship, variation and uniqueness among them. Methodology/Principal findings The Illumina Bos indicus SNP 80K BeadChip was used to genotype genome wide SNPs in 168 DNA samples obtained from three strains of TSZ cattle namely Maasai, Tarime and Sukuma as well as two comparative breeds; Boran and Friesian. Population structure and signatures of selection were examined using principal component analysis (PCA), admixture analysis, pairwise distances (FST), integrated haplotype score (iHS), identical by state (IBS) and runs of homozygosity (ROH). There was a low level of inbreeding (F~0.01) in the TSZ population compared to the Boran and Friesian breeds. The analyses of FST, IBS and admixture identified no considerable differentiation between TSZ trains. Importantly, common ancestry in Boran and TSZ were revealed based on admixture and IBD, implying gene flow between two populations. In addition, Friesian ancestry was found in Boran. A few common significant iHS were detected, which may reflect influence of recent selection in each breed or strain. Conclusions Population admixture and selection signatures could be applied to develop conservation plan of TSZ cattle as well as future breeding programs in East African cattle. PMID:28129396
2014-01-01
Among Australian endemic tephritid fruit flies, the sibling species Bactrocera tryoni and Bactrocera neohumeralis have been serious horticultural pests since the introduction of horticulture in the nineteenth century. More recently, Bactrocera jarvisi has also been declared a pest in northern Australia. After several decades of genetic research there is now a range of classical and molecular genetic tools that can be used to develop improved Sterile Insect Technique (SIT) strains for control of these pests. Four-way crossing strategies have the potential to overcome the problem of inbreeding in mass-reared strains of B. tryoni. The ability to produce hybrids between B. tryoni and the other two species in the laboratory has proved useful for the development of genetically marked strains. The identification of Y-chromosome markers in B. jarvisi means that male and female embryos can be distinguished in any strain that carries a B. jarvisi Y chromosome. This has enabled the study of homologues of the sex-determination genes during development of B jarvisi and B. tryoni, which is necessary for the generation of genetic-sexing strains. Germ-line transformation has been established and a draft genome sequence for B. tryoni released. Transcriptomes from various species, tissues and developmental stages, to aid in identification of manipulation targets for improving SIT, have been assembled and are in the pipeline. Broad analyses of the microbiome have revealed a metagenome that is highly variable within and across species and defined by the environment. More specific analyses detected Wolbachia at low prevalence in the tropics but absent in temperate regions, suggesting a possible role for this endosymbiont in future control strategies. PMID:25470996
Genetic variation in Tunisia in the context of human diversity worldwide.
Cherni, Lotfi; Pakstis, Andrew J; Boussetta, Sami; Elkamel, Sarra; Frigi, Sabeh; Khodjet-El-Khil, Houssein; Barton, Alison; Haigh, Eva; Speed, William C; Ben Ammar Elgaaied, Amel; Kidd, Judith R; Kidd, Kenneth K
2016-09-01
North Africa has a complex demographic history of migrations from within Africa, Europe, and the Middle East. However, population genetic studies, especially for autosomal genetic markers, are few relative to other world regions. We examined autosomal markers for eight Tunisian and Libyan populations in order to place them in a global context. Data were collected by TaqMan on 399 autosomal single nucleotide polymorphisms on 331 individuals from Tunisia and Libya. These data were combined with data on the same SNPs previously typed on 2585 individuals from 57 populations from around the world. Where meaningful, close by SNPs were combined into multiallelic haplotypes. Data were evaluated by clustering, principal components, and population tree analyses. For a subset of 102 SNPs, data from the literature on seven additional North African populations were included in analyses. Average heterozygosity of the North African populations is high relative to our global samples, consistent with a complex demographic history. The Tunisian and Libyan samples form a discrete cluster in the global and regional views and can be separated from sub-Sahara, Middle East, and Europe. Within Tunisia the Nebeur and Smar are outlier groups. Across North Africa, pervasive East-West geographical patterns were not found. Known historical migrations and invasions did not displace or homogenize the genetic variation in the region but rather enriched it. Even a small region like Tunisia contains considerable genetic diversity. Future studies across North Africa have the potential to increase our understanding of the historical demographic factors influencing the region. Am J Phys Anthropol 161:62-71, 2016. © 2016 The Authors American Journal of Physical Anthropology Published by Wiley Periodicals, Inc. © 2016 The Authors American Journal of Physical Anthropology Published by Wiley Periodicals, Inc.
Darwell, C T; Fox, K A; Althoff, D M
2014-12-01
There is ample evidence that host shifts in plant-feeding insects have been instrumental in generating the enormous diversity of insects. Changes in host use can cause host-associated differentiation (HAD) among populations that may lead to reproductive isolation and eventual speciation. The importance of geography in facilitating this process remains controversial. We examined the geographic context of HAD in the wide-ranging generalist yucca moth Prodoxus decipiens. Previous work demonstrated HAD among sympatric moth populations feeding on two different Yucca species occurring on the barrier islands of North Carolina, USA. We assessed the genetic structure of P. decipiens across its entire geographic and host range to determine whether HAD is widespread in this generalist herbivore. Population genetic analyses of microsatellite and mtDNA sequence data across the entire range showed genetic structuring with respect to host use and geography. In particular, genetic differentiation was relatively strong between mainland populations and those on the barrier islands of North Carolina. Finer scale analyses, however, among sympatric populations using different host plant species only showed significant clustering based on host use for populations on the barrier islands. Mainland populations did not form population clusters based on host plant use. Reduced genetic diversity in the barrier island populations, especially on the derived host, suggests that founder effects may have been instrumental in facilitating HAD. In general, results suggest that the interplay of local adaptation, geography and demography can determine the tempo of HAD. We argue that future studies should include comprehensive surveys across a wide range of environmental and geographic conditions to elucidate the contribution of various processes to HAD. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.
Regional Variation in mtDNA of the Lesser Prairie-Chicken
Hagen, Christian A.; Pitman, James C.; Sandercock, Brett K.; Wolfe, Don H.; Robel, Robel J.; Applegate, Roger D.; Oyler-McCance, Sara J.
2010-01-01
Cumulative loss of habitat and long-term decline in the populations of the Lesser Prairie-Chicken (Tympanuchus pallidicinctus) have led to concerns for the species' viability throughout its range in the southern Great Plains. For more efficient conservation past and present distributions of genetic variation need to be understood. We examined the distribution of mitochondrial DNA (mtDNA) variation in the Lesser Prairie-Chicken across Kansas, Colorado, Oklahoma, and New Mexico. Throughout the range we found little genetic differentiation except for the population in New Mexico, which was significantly different from most other publications. We did, however, find significant isolation by distance at the rangewide scale (r=0.698). We found no relationship between haplotype phylogeny and geography, and our analyses provide evidence for a post-glacial population expansion within the species that is consistent with the idea that speciation within Tympanuchus is recent. Conservation actions that increase the likelihood of genetically viable populations in the future should be evaluated for implementation.
Brown, Jason L; Weber, Jennifer J; Alvarado-Serrano, Diego F; Hickerson, Michael J; Franks, Steven J; Carnaval, Ana C
2016-01-01
Climate change is a widely accepted threat to biodiversity. Species distribution models (SDMs) are used to forecast whether and how species distributions may track these changes. Yet, SDMs generally fail to account for genetic and demographic processes, limiting population-level inferences. We still do not understand how predicted environmental shifts will impact the spatial distribution of genetic diversity within taxa. We propose a novel method that predicts spatially explicit genetic and demographic landscapes of populations under future climatic conditions. We use carefully parameterized SDMs as estimates of the spatial distribution of suitable habitats and landscape dispersal permeability under present-day, past, and future conditions. We use empirical genetic data and approximate Bayesian computation to estimate unknown demographic parameters. Finally, we employ these parameters to simulate realistic and complex models of responses to future environmental shifts. We contrast parameterized models under current and future landscapes to quantify the expected magnitude of change. We implement this framework on neutral genetic data available from Penstemon deustus. Our results predict that future climate change will result in geographically widespread declines in genetic diversity in this species. The extent of reduction will heavily depend on the continuity of population networks and deme sizes. To our knowledge, this is the first study to provide spatially explicit predictions of within-species genetic diversity using climatic, demographic, and genetic data. Our approach accounts for climatic, geographic, and biological complexity. This framework is promising for understanding evolutionary consequences of climate change, and guiding conservation planning. © 2016 Botanical Society of America.
A longitudinal twin study of callous-unemotional traits during childhood.
Henry, Jeffrey; Dionne, Ginette; Viding, Essi; Petitclerc, Amélie; Feng, Bei; Vitaro, Frank; Brendgen, Mara; Tremblay, Richard E; Boivin, Michel
2018-05-01
Previous research indicates that genetic factors largely account for the stability of callous-unemotional (CU) traits in adolescence. However, the genetic-environmental etiology of the development of CU traits has not been extensively investigated in childhood, despite work showing the reliable measurement and stability of CU traits from a young age. The aim of this study was to investigate the temporal pattern of genetic and environmental etiology of CU traits across primary school, from school entry (7 years) to middle (9 and 10 years) and late childhood (12 years). Data were collected in a population sample of twins composed of 662 twin pairs (Quebec Newborn Twin Study). CU traits were reported by teachers and analyzed using a biometric latent growth curve model and a Cholesky decomposition model. Latent growth curve analyses revealed that genetic factors explain most of the variance in the intercept of CU traits. Individual differences in change over time were not significant. The Cholesky model revealed that genetic factors at 7 years had enduring contributions to CU traits at 9, 10, and 12 years. New, modest genetic contributions appeared at 9 and 10 years. Nonshared environmental contributions were generally age-specific. No shared environmental contributions were detected. In sum, both modeling approaches showed that genetic factors underlie CU traits during childhood. Initial and new genetic contributions arise during this period. Environments have substantial contributions, over and above genetic factors. Future research should investigate the source of genetic risk associated with CU traits. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Genetic population structure of marine viral haemorrhagic septicaemia virus (VHSV).
Snow, M; Bain, N; Black, J; Taupin, V; Cunningham, C O; King, J A; Skall, H F; Raynard, R S
2004-10-21
The nucleotide sequences of a specific region of the nucleoprotein gene were compared in order to investigate the genetic population structure of marine viral haemorrhagic septicaemia virus (VHSV). Analysis of the sequence from 128 isolates of diverse geographic and host origin renders this the most comprehensive molecular epidemiological study of marine VHSV conducted to date. Phylogenetic analysis of nucleoprotein gene sequences confirmed the existence of the 4 major genotypes previously identified based on N- and subsequent G-gene based analyses. The range of Genotype I included subgroups of isolates associated with rainbow trout aquaculture (Genotype Ia) and those from the Baltic marine environment (Genotype Ib) to emphasise the relatively close genetic relationship between these isolates. The existence of an additional genotype circulating within the Baltic Sea (Genotype II) was also confirmed. Genotype III included marine isolates from around the British Isles in addition to those associated with turbot mariculture, highlighting a continued risk to the development of this industry. Genotype IV consisted of isolates from the marine environment in North America. Taken together, these findings suggest a marine origin of VHSV in rainbow trout aquaculture. The implications of these findings with respect to the future control of VHSV are discussed. The capacity for molecular phylogenetic analysis to resolve complex epidemiological problems is also demonstrated and its likely future importance to disease management issues highlighted.
Listman, Jennifer B; Hasin, Deborah; Kranzler, Henry R; Malison, Robert T; Mutirangura, Apiwat; Sughondhabirom, Atapol; Aharonovich, Efrat; Spivak, Baruch; Gelernter, Joel
2010-06-14
Detecting population substructure is a critical issue for association studies of health behaviors and other traits. Whether inherent in the population or an artifact of marker choice, determining aspects of a population's genetic history as potential sources of substructure can aid in design of future genetic studies. Jewish populations, among which association studies are often conducted, have a known history of migrations. As a necessary step in understanding population structure to conduct valid association studies of health behaviors among Israeli Jews, we investigated genetic signatures of this history and quantified substructure to facilitate future investigations of these phenotypes in this population. Using 32 autosomal STR markers and the program STRUCTURE, we differentiated between Ashkenazi (AJ, N = 135) and non-Ashkenazi (NAJ, N = 226) Jewish populations in the form of Northern and Southern geographic genetic components (AJ north 73%, south 23%, NAJ north 33%, south 60%). The ability to detect substructure within these closely related populations using a small STR panel was contingent on including additional samples representing major continental populations in the analyses. Although clustering programs such as STRUCTURE are designed to assign proportions of ancestry to individuals without reference population information, when Jewish samples were analyzed in the absence of proxy parental populations, substructure within Jews was not detected. Generally, for samples with a given grandparental country of birth, STRUCTURE assignment values to Northern, Southern, African and Asian clusters agreed with mitochondrial DNA and Y-chromosomal data from previous studies as well as historical records of migration and intermarriage.
2010-01-01
Background Detecting population substructure is a critical issue for association studies of health behaviors and other traits. Whether inherent in the population or an artifact of marker choice, determining aspects of a population's genetic history as potential sources of substructure can aid in design of future genetic studies. Jewish populations, among which association studies are often conducted, have a known history of migrations. As a necessary step in understanding population structure to conduct valid association studies of health behaviors among Israeli Jews, we investigated genetic signatures of this history and quantified substructure to facilitate future investigations of these phenotypes in this population. Results Using 32 autosomal STR markers and the program STRUCTURE, we differentiated between Ashkenazi (AJ, N = 135) and non-Ashkenazi (NAJ, N = 226) Jewish populations in the form of Northern and Southern geographic genetic components (AJ north 73%, south 23%, NAJ north 33%, south 60%). The ability to detect substructure within these closely related populations using a small STR panel was contingent on including additional samples representing major continental populations in the analyses. Conclusions Although clustering programs such as STRUCTURE are designed to assign proportions of ancestry to individuals without reference population information, when Jewish samples were analyzed in the absence of proxy parental populations, substructure within Jews was not detected. Generally, for samples with a given grandparental country of birth, STRUCTURE assignment values to Northern, Southern, African and Asian clusters agreed with mitochondrial DNA and Y-chromosomal data from previous studies as well as historical records of migration and intermarriage. PMID:20546593
Dogan, Meeshanthini V; Grumbach, Isabella M; Michaelson, Jacob J; Philibert, Robert A
2018-01-01
An improved method for detecting coronary heart disease (CHD) could have substantial clinical impact. Building on the idea that systemic effects of CHD risk factors are a conglomeration of genetic and environmental factors, we use machine learning techniques and integrate genetic, epigenetic and phenotype data from the Framingham Heart Study to build and test a Random Forest classification model for symptomatic CHD. Our classifier was trained on n = 1,545 individuals and consisted of four DNA methylation sites, two SNPs, age and gender. The methylation sites and SNPs were selected during the training phase. The final trained model was then tested on n = 142 individuals. The test data comprised of individuals removed based on relatedness to those in the training dataset. This integrated classifier was capable of classifying symptomatic CHD status of those in the test set with an accuracy, sensitivity and specificity of 78%, 0.75 and 0.80, respectively. In contrast, a model using only conventional CHD risk factors as predictors had an accuracy and sensitivity of only 65% and 0.42, respectively, but with a specificity of 0.89 in the test set. Regression analyses of the methylation signatures illustrate our ability to map these signatures to known risk factors in CHD pathogenesis. These results demonstrate the capability of an integrated approach to effectively model symptomatic CHD status. These results also suggest that future studies of biomaterial collected from longitudinally informative cohorts that are specifically characterized for cardiac disease at follow-up could lead to the introduction of sensitive, readily employable integrated genetic-epigenetic algorithms for predicting onset of future symptomatic CHD.
Martinez-Bakker, Micaela E.; Sell, Stephanie K.; Swanson, Bradley J.; Kelly, Brendan P.; Tallmon, David A.
2013-01-01
Ringed seals (Pusa hispida) are broadly distributed in seasonally ice covered seas, and their survival and reproductive success is intricately linked to sea ice and snow. Climatic warming is diminishing Arctic snow and sea ice and threatens to endanger ringed seals in the foreseeable future. We investigated the population structure and connectedness within and among three subspecies: Arctic (P. hispida hispida), Baltic (P. hispida botnica), and Lake Saimaa (P. hispida saimensis) ringed seals to assess their capacity to respond to rapid environmental changes. We consider (a) the geographical scale of migration, (b) use of sea ice, and (c) the amount of gene flow between subspecies. Seasonal movements and use of sea ice were determined for 27 seals tracked via satellite telemetry. Additionally, population genetic analyses were conducted using 354 seals representative of each subspecies and 11 breeding sites. Genetic analyses included sequences from two mitochondrial regions and genotypes of 9 microsatellite loci. We found that ringed seals disperse on a pan-Arctic scale and both males and females may migrate long distances during the summer months when sea ice extent is minimal. Gene flow among Arctic breeding sites and between the Arctic and the Baltic Sea subspecies was high; these two subspecies are interconnected as are breeding sites within the Arctic subspecies. PMID:24130843
Corrêa, Ana Beatriz de Almeida; Silva, Lígia Guedes da; Pinto, Tatiana de Castro Abreu; Oliveira, Ivi Cristina Menezes de; Fernandes, Flávio Gimenis; Costa, Natalia Silva da; Mattos, Marcos Corrêa de; Fracalanzza, Sergio Eduardo Longo; Benchetrit, Leslie Claude
2011-12-01
Streptococcus agalactiae isolates are more common among pregnant women, neonates and nonpregnant adults with underlying diseases compared to other demographic groups. In this study, we evaluate the genetic and phenotypic diversity in S. agalactiae strains from Rio de Janeiro (RJ) that were isolated from asymptomatic carriers. We analysed these S. agalactiae strains using pulsed-field gel electrophoresis (PFGE), serotyping and antimicrobial susceptibility testing, as well as by determining the macrolide resistance phenotype, and detecting the presence of the ermA/B, mefA/E and lnuB genes. The serotypes Ia, II, III and V were the most prevalent serotypes observed. The 60 strains analysed were susceptible to penicillin, vancomycin and levofloxacin. Resistance to clindamycin, chloramphenicol, erythromycin, rifampin and tetracycline was observed. Among the erythromycin and/or clindamycin resistant strains, the ermA, ermB and mefA/E genes were detected and the constitutive macrolides, lincosamides and streptogramin B-type resistance was the most prevalent phenotype observed. The lnuB gene was not detected in any of the strains studied. We found 56 PFGE electrophoretic profiles and only 22 of them were allocated in polymorphism patterns. This work presents data on the genetic diversity and prevalent capsular serotypes among RJ isolates. Approximately 85% of these strains came from pregnant women; therefore, these data may be helpful in developing future prophylaxis and treatment strategies for neonatal syndromes in RJ.
ERIC Educational Resources Information Center
Hoagland, Hudson
1972-01-01
Biological evolution can be carried out in the laboratory. With new knowledge available in genetics, possibilities are raised that genetic characters can be transferred in the future to embryos according to a predetermined plan. (PS)
Multidisciplinary perspectives on banana (Musa spp.) domestication
Perrier, Xavier; De Langhe, Edmond; Donohue, Mark; Lentfer, Carol; Vrydaghs, Luc; Bakry, Frédéric; Carreel, Françoise; Hippolyte, Isabelle; Horry, Jean-Pierre; Jenny, Christophe; Lebot, Vincent; Risterucci, Ange-Marie; Tomekpe, Kodjo; Doutrelepont, Hugues; Ball, Terry; Manwaring, Jason; de Maret, Pierre; Denham, Tim
2011-01-01
Original multidisciplinary research hereby clarifies the complex geodomestication pathways that generated the vast range of banana cultivars (cvs). Genetic analyses identify the wild ancestors of modern-day cvs and elucidate several key stages of domestication for different cv groups. Archaeology and linguistics shed light on the historical roles of people in the movement and cultivation of bananas from New Guinea to West Africa during the Holocene. The historical reconstruction of domestication processes is essential for breeding programs seeking to diversify and improve banana cvs for the future. PMID:21730145
Serenius, T; Stalder, K J
2006-04-01
Sow longevity plays an important role in economically efficient piglet production because sow longevity is related to the number of piglets produced during its productive lifetime; however, selection for sow longevity is not commonly practiced in any pig breeding program. There is relatively little scientific literature concerning the genetic parameters (genetic variation and genetic correlations) or methods available for breeding value estimation for effective selection for sow longevity. This paper summarizes the current knowledge about the genetics of sow longevity and discusses the available breeding value estimation methods for sow longevity traits. The studies in the literature clearly indicate that sow longevity is a complex trait, and even the definition of sow longevity is variable depending on the researcher and research objective. In general, the measures and analyses of sow longevity can be divided into 1) continuous traits (e.g., productive lifetime) analyzed with proportional hazard models; and 2) more simple binary traits such as stayability until some predetermined fixed parity. Most studies have concluded that sufficient genetic variation exists for effective selection on sow longevity, and heritability estimates have ranged between 0.02 and 0.25. Moreover, sow longevity has shown to be genetically associated with prolificacy and leg conformation traits. Variable results from previous research have led to a lack of consensus among swine breeders concerning the valid methodology of estimating breeding values for longevity traits. One can not deny the superiority of survival analysis in the modeling approach of longevity data; however, multiple-trait analyses are not possible using currently available survival analysis software. Less sophisticated approaches have the advantage of evaluating multiple traits simultaneously, and thus, can use the genetic associations between sow longevity and other traits. Additional research is needed to identify the most efficient selection methods for sow longevity. Future research needs to concentrate on multiple trait analysis of sow longevity traits. Moreover, because longevity is a fitness trait, the nonadditive genetic effects (e.g., dominance) may play important role in the inheritance of sow longevity. Currently, not a single estimate for dominance variance of sow longevity could be identified from the scientific literature.
Poćwierz-Kotus, Anita; Bernaś, Rafał; Kent, Matthew P; Lien, Sigbjørn; Leliűna, Egidijus; Dębowski, Piotr; Wenne, Roman
2015-05-06
Native populations of Atlantic salmon in Poland, from the southern Baltic region, became extinct in the 1980s. Attempts to restitute salmon populations in Poland have been based on a Latvian salmon population from the Daugava river. Releases of hatchery reared smolts started in 1986, but to date, only one population with confirmed natural reproduction has been observed in the Slupia river. Our aim was to investigate the genetic differentiation of salmon populations in the southern Baltic using a 7K SNP (single nucleotide polymorphism) array in order to assess the impact of salmon restitution in Poland. One hundred and forty salmon samples were collected from: the Polish Slupia river including wild salmon and individuals from two hatcheries, the Swedish Morrum river and the Lithuanian Neman river. All samples were genotyped using an Atlantic salmon 7K SNP array. A set of 3218 diagnostic SNPs was used for genetic analyses. Genetic structure analyses indicated that the individuals from the investigated populations were clustered into three groups i.e. one clade that included individuals from both hatcheries and the wild population from the Polish Slupia river, which was clearly separated from the other clades. An assignment test showed that there were no stray fish from the Morrum or Neman rivers in the sample analyzed from the Slupia river. Global FST over polymorphic loci was high (0.177). A strong genetic differentiation was observed between the Lithuanian and Swedish populations (FST = 0.28). Wild juvenile salmon specimens that were sampled from the Slupia river were the progeny of fish released from hatcheries and, most likely, were not progeny of stray fish from Sweden or Lithuania. Strong genetic differences were observed between the salmon populations from the three studied locations. Our recommendation is that future stocking activities that aim at restituting salmon populations in Poland include stocking material from the Lithuanian Neman river because of its closer geographic proximity.
Kendler, Kenneth S; Ohlsson, Henrik; Sundquist, Jan; Sundquist, Kristina
2015-03-01
The authors sought to clarify the relationship between IQ and subsequent risk for schizophrenia. IQ was assessed at ages 18-20 in 1,204,983 Swedish males born between 1951 and 1975. Schizophrenia was assessed by hospital diagnosis through 2010. Cox proportional hazards models were used to investigate future risk for schizophrenia in individuals as a function of their IQ score, and then stratified models using pairs of relatives were used to adjust for familial cluster. Finally, regression models were used to examine the interaction between IQ and genetic liability on risk for schizophrenia. IQ had a monotonic relationship with schizophrenia risk across the IQ range, with a mean increase in risk of 3.8% per 1-point decrease in IQ; this association was stronger in the lower than the higher IQ range. Co-relative control analyses showed a similar association between IQ and schizophrenia in the general population and in cousin, half-sibling, and full-sibling pairs. A robust interaction was seen between genetic liability to schizophrenia and IQ in predicting schizophrenia risk. Genetic susceptibility for schizophrenia had a much stronger impact on risk of illness for those with low than high intelligence. The IQ-genetic liability interaction arose largely from IQ differences between close relatives. IQ assessed in late adolescence is a robust risk factor for subsequent onset of schizophrenia. This association is not the result of a declining IQ associated with insidious onset. In this large, representative sample, we found no evidence for a link between genius and schizophrenia. Co-relative control analyses showed that the association between lower IQ and schizophrenia is not the result of shared familial risk factors and may be causal. The strongest effect was seen with IQ differences within families. High intelligence substantially attenuates the impact of genetic liability on the risk for schizophrenia.
Bipolar polygenic loading and bipolar spectrum features in major depressive disorder
Wiste, Anna; Robinson, Elise B; Milaneschi, Yuri; Meier, Sandra; Ripke, Stephan; Clements, Caitlin C; Fitzmaurice, Garrett M; Rietschel, Marcella; Penninx, Brenda W; Smoller, Jordan W; Perlis, Roy H
2014-01-01
Objectives Family and genetic studies indicate overlapping liability for major depressive disorder and bipolar disorder. The purpose of this study was to determine whether this shared genetic liability influences clinical presentation. Methods A polygenic risk score for bipolar disorder, derived from a large genome-wide association meta-analysis, was generated for each subject of European–American ancestry (n = 1,274) in the Sequential Treatment Alternatives to Relieve Depression study (STAR*D) outpatient major depressive disorder cohort. A hypothesis-driven approach was used to test for association between bipolar disorder risk score and features of depression associated with bipolar disorder in the literature. Follow-up analyses were performed in two additional cohorts. Results A generalized linear mixed model including seven features hypothesized to be associated with bipolar spectrum illness was significantly associated with bipolar polygenic risk score [F = 2.07, degrees of freedom (df) = 7, p = 0.04). Features included early onset, suicide attempt, recurrent depression, atypical depression, subclinical mania, subclinical psychosis, and severity. Post-hoc univariate analyses demonstrated that the major contributors to this omnibus association were onset of illness at age ≤ 18 years [odds ratio (OR) = 1.2, p = 0.003], history of suicide attempt (OR = 1.21, p = 0.03), and presence of at least one manic symptom (OR = 1.16, p = 0.02). The maximal variance in these traits explained by polygenic score ranged from 0.8–1.1%. However, analyses in two replication cohorts testing a five feature model did not support this association. Conclusions Bipolar genetic loading appeared to be associated with bipolar-like presentation in major depressive disorder in the primary analysis. However, results are at most inconclusive because of lack of replication. Replication efforts are challenged by different ascertainment and assessment strategies in the different cohorts. The methodological approach described here may prove useful in applying genetic data to clarify psychiatric nosology in future studies. PMID:24725193
Clarke, T-K; Adams, M J; Davies, G; Howard, D M; Hall, L S; Padmanabhan, S; Murray, A D; Smith, B H; Campbell, A; Hayward, C; Porteous, D J; Deary, I J; McIntosh, A M
2017-01-01
Alcohol consumption has been linked to over 200 diseases and is responsible for over 5% of the global disease burden. Well-known genetic variants in alcohol metabolizing genes, for example, ALDH2 and ADH1B, are strongly associated with alcohol consumption but have limited impact in European populations where they are found at low frequency. We performed a genome-wide association study (GWAS) of self-reported alcohol consumption in 112 117 individuals in the UK Biobank (UKB) sample of white British individuals. We report significant genome-wide associations at 14 loci. These include single-nucleotide polymorphisms (SNPs) in alcohol metabolizing genes (ADH1B/ADH1C/ADH5) and two loci in KLB, a gene recently associated with alcohol consumption. We also identify SNPs at novel loci including GCKR, CADM2 and FAM69C. Gene-based analyses found significant associations with genes implicated in the neurobiology of substance use (DRD2, PDE4B). GCTA analyses found a significant SNP-based heritability of self-reported alcohol consumption of 13% (se=0.01). Sex-specific analyses found largely overlapping GWAS loci and the genetic correlation (rG) between male and female alcohol consumption was 0.90 (s.e.=0.09, P-value=7.16 × 10−23). Using LD score regression, genetic overlap was found between alcohol consumption and years of schooling (rG=0.18, s.e.=0.03), high-density lipoprotein cholesterol (rG=0.28, s.e.=0.05), smoking (rG=0.40, s.e.=0.06) and various anthropometric traits (for example, overweight, rG=−0.19, s.e.=0.05). This study replicates the association between alcohol consumption and alcohol metabolizing genes and KLB, and identifies novel gene associations that should be the focus of future studies investigating the neurobiology of alcohol consumption. PMID:28937693
Sudden unexpected death in epilepsy genetics: Molecular diagnostics and prevention.
Goldman, Alica M; Behr, Elijah R; Semsarian, Christopher; Bagnall, Richard D; Sisodiya, Sanjay; Cooper, Paul N
2016-01-01
Epidemiologic studies clearly document the public health burden of sudden unexpected death in epilepsy (SUDEP). Clinical and experimental studies have uncovered dynamic cardiorespiratory dysfunction, both interictally and at the time of sudden death due to epilepsy. Genetic analyses in humans and in model systems have facilitated our current molecular understanding of SUDEP. Many discoveries have been informed by progress in the field of sudden cardiac death and sudden infant death syndrome. It is becoming apparent that SUDEP genomic complexity parallels that of sudden cardiac death, and that there is a pauci1ty of analytically useful postmortem material. Because many challenges remain, future progress in SUDEP research, molecular diagnostics, and prevention rests in international, collaborative, and transdisciplinary dialogue in human and experimental translational research of sudden death. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.
ECUT: Energy Conversion and Utilization Technologies program - Biocatalysis research activity
NASA Technical Reports Server (NTRS)
Wilcox, R.
1984-01-01
The activities of the Biocatalysis Research Activity are organized into the Biocatalysis and Molecular Modeling work elements and a supporting planning and analysis function. In the Biocatalysis work element, progress is made in developing a method for stabilizing genetically engineered traits in microorganisms, refining a technique for monitoring cells that are genetically engineered, and identifying strains of fungi for highly efficient preprocessing of biomass for optimizing the efficiency of bioreactors. In the Molecular Modeling work element, a preliminary model of the behavior of enzymes is developed. A preliminary investigation of the potential for synthesizing enzymes for use in electrochemical processes is completed. Contact with industry and universities is made to define key biocatalysis technical issues and to broaden the range of potential participants in the activity. Analyses are conducted to identify and evaluate potential concepts for future research funding.
Sigrist, M S; Pinheiro, J B; Filho, J A Azevedo; Zucchi, M I
2011-03-09
Turmeric (Curcuma longa) is a triploid, vegetatively propagated crop introduced early during the colonization of Brazil. Turmeric rhizomes are ground into a powder used as a natural dye in the food industry, although recent research suggests a greater potential for the development of drugs and cosmetics. In Brazil, little is known about the genetic variability available for crop improvement. We examined the genetic diversity among turmeric accessions from a Brazilian germplasm collection comprising 39 accessions collected from the States of Goiás, Mato Grosso do Sul, Minas Gerais, São Paulo, and Pará. For comparison, 18 additional genotypes were analyzed, including samples from India and Puerto Rico. Total DNA was extracted from lyophilized leaf tissue and genetic analysis was performed using 17 microsatellite markers (single-sequence repeats). Shannon-Weiner indexes ranged from 0.017 (Minas Gerais) to 0.316 (São Paulo). Analyses of molecular variance (AMOVA) demonstrated major differences between countries (63.4%) and that most of the genetic diversity in Brazil is found within states (75.3%). Genotypes from São Paulo State were the most divergent and potentially useful for crop improvement. Structure analysis indicated two main groups of accessions. These results can help target future collecting efforts for introduction of new materials needed to develop more productive and better adapted cultivars.
Li, Lu; Wu, Xiangyun; Yu, Ziniu
2013-09-01
The Hong Kong oyster, Crassostrea hongkongensis, is an important fisheries resource that is cultivated in the coastal waters of the South China Sea. Despite significant advances in understanding biological and taxonomic aspects of this species, no detailed study of its population genetic diversity in regions of extensive cultivation are available. Direct sequencing of the mtDNA cox1 gene region was used to investigate genetic variation within and between eleven C. hongkongensis populations collected from typical habitats. Sixty-two haplotypes were identified; only haplotype 2 (21.74% of total haplotypes) was shared among all the eleven populations, and most of the observed haplotypes were restricted to individual populations. Both AMOVA and FST analyses revealed significant population structure, and the isolation by distance (IBD) was confirmed. The highest local differentiation was observed between the sample pools from Guangxi versus Guangdong and Fujian, which are separated by a geographic barrier, the Leizhou Peninsula. Current knowledge from seed management suggests that seed transfer from Guangxi province has likely reduced the divergence that somewhat naturally exists between these pools. The findings from the present study could be useful for genetic management and may serve as a baseline by which to monitor future changes in genetic diversity, either due to natural or anthropogenic impacts. Copyright © 2013 Elsevier B.V. All rights reserved.
Yuhara, Takeshi; Kawane, Masako; Furota, Toshio
2014-01-01
During recent decades, over 40% of Japanese estuarine tidal flats have been lost due to coastal developments. Local populations of the saltmarsh sesarmid crab Clistocoeloma sinense, designated as an endangered species due to the limited suitable saltmarsh habitat available, have decreased accordingly, being now represented as small remnant populations. Several such populations in Tokyo Bay, have been recognised as representing distributional limits of the species. To clarify the genetic diversity and connectivity among local coastal populations of Japanese Clistocoeloma sinense, including those in Tokyo Bay, mitochondrial DNA analyses were conducted in the hope of providing fundamental information for future conservation studies and an understanding of metapopulation dynamics through larval dispersal among local populations. All of the populations sampled indicated low levels of genetic diversity, which may have resulted from recent population bottlenecks or founder events. However, the results also revealed clear genetic differentiation between two enclosed-water populations in Tokyo Bay and Ise-Mikawa Bay, suggesting the existence of a barrier to larval transport between these two water bodies. Since the maintenance of genetic connectivity is a requirement of local population stability, the preservation of extant habitats and restoration of saltmarshes along the coast of Japan may be the most effective measures for conservation of this endangered species. PMID:24400112
Raevuori, Anu; Dick, Danielle M.; Keski-Rahkonen, Anna; Pulkkinen, Lea; Rose, Richard J.; Rissanen, Aila; Kaprio, Jaakko; Viken, Richard J.; Silventoinen, Karri
2007-01-01
Background We analysed genetic and environmental influences on self-esteem and its stability across adolescence. Methods Finnish twins born in 1983–1987 were assessed by questionnaire at ages 14y (N= 4132 twin individuals) and 17y (N=3841 twin individuals). Self esteem was measured using the Rosenberg global self-esteem scale and analyzed using quantitative genetic methods for twin data in the Mx statistical package. Results The heritability of self-esteem was 0.62 (95% CI 0.56–0.68) in 14-y-old boys and 0.40 (95% CI 0.26–0.54) in 14-y-old girls, while the corresponding estimates at age 17y were 0.48 (95% CI 0.39–0.56) and 0.29 (95% CI 0.11–0.45). Rosenberg self-esteem scores at age 14 y and 17 y were modestly correlated (r=0.44 in boys, r=0.46 in girls). In boys, the correlation was mainly (82%) due to genetic factors, with residual co-variation due to unique environment. In girls, genetic (31%) and common environmental (61%) factors largely explained the correlation. Conclusions In adolescence, self-esteem seems to be differently regulated in boys versus girls. A key challenge for future research is to identify environmental influences contributing to self-esteem during adolescence and how these factors interact with genetic influences. PMID:17537282
Inferring population structure and demographic history using Y-STR data from worldwide populations.
Xu, Hongyang; Wang, Chuan-Chao; Shrestha, Rukesh; Wang, Ling-Xiang; Zhang, Manfei; He, Yungang; Kidd, Judith R; Kidd, Kenneth K; Jin, Li; Li, Hui
2015-02-01
The Y chromosome is one of the best genetic materials to explore the evolutionary history of human populations. Global analyses of Y chromosomal short tandem repeats (STRs) data can reveal very interesting world population structures and histories. However, previous Y-STR works tended to focus on small geographical ranges or only included limited sample sizes. In this study, we have investigated population structure and demographic history using 17 Y chromosomal STRs data of 979 males from 44 worldwide populations. The largest genetic distances have been observed between pairs of African and non-African populations. American populations with the lowest genetic diversities also showed large genetic distances and coancestry coefficients with other populations, whereas Eurasian populations displayed close genetic affinities. African populations tend to have the oldest time to the most recent common ancestors (TMRCAs), the largest effective population sizes and the earliest expansion times, whereas the American, Siberian, Melanesian, and isolated Atayal populations have the most recent TMRCAs and expansion times, and the smallest effective population sizes. This clear geographic pattern is well consistent with serial founder model for the origin of populations outside Africa. The Y-STR dataset presented here provides the most detailed view of worldwide population structure and human male demographic history, and additionally will be of great benefit to future forensic applications and population genetic studies.
Genetic variation in food choice behaviour of amino acid-deprived Drosophila.
Toshima, Naoko; Hara, Chieko; Scholz, Claus-Jürgen; Tanimura, Teiichi
2014-10-01
To understand homeostatic regulation in insects, we need to understand the mechanisms by which they respond to external stimuli to maintain the internal milieu. Our previous study showed that Drosophila melanogaster exhibit specific amino acid preferences. Here, we used the D.melanogaster Genetic Reference Panel (DGRP), which is comprised of multiple inbred lines derived from a natural population, to examine how amino acid preference changes depending on the internal nutritional state in different lines. We performed a two-choice preference test and observed genetic variations in the response to amino acid deprivation. For example, a high-responding line showed an enhanced preference for amino acids even after only 1day of deprivation and responded to a fairly low concentration of amino acids. Conversely, a low-responding line showed no increased preference for amino acids after deprivation. We compared the gene expression profiles between selected high- and the low-responding lines and performed SNP analyses. We found several groups of genes putatively involved in altering amino acid preference. These results will contribute to future studies designed to explore how the genetic architecture of an organism evolves to adapt to different nutritional environments. Copyright © 2014 Elsevier Ltd. All rights reserved.
Arnaiz-Villena, Antonio; Palacio-Grüber, Jose; Muñiz, Ester; Campos, Cristina; Alonso-Rubio, Javier; Gomez-Casado, Eduardo; Salih, Shadallah Fareq; Martin-Villa, Manuel; Al-Qadi, Rawand
2017-01-01
Kurds from Iraq (Dohuk and Erbil Area, North Iraq) have been analyzed for HLA genes. Their HLA genetic profile has been compared with that of other Kurd groups from Iran and Tbilisi (Georgia, Caucasus) and also Worldwide populations. A total of 7,746 HLA chromosomes have been used. Genetic distances, NJ dendrograms and correspondence analyses have been carried out. Haplotype HLA-B*52-DRB1*15 is present in all three analyzed Kurd populations. HLA-A*02-B*51-DRB1*11 is present in Iraq and Georgia Kurds. Haplotypes common to Iran and Iraq Kurds are HLA DRB1*11-DQB1*03, HLA DRB1*03-DQB1*02 and others in a lower frequency. Our HLA study conclusions are that Kurds most probably belong to an ancient Mediterranean / Middle East / Caucasian genetic substratum and that present results and those previously obtained by us in Kurds may be useful for Medicine in future Kurd transplantation programs, HLA Epidemiology (HLA linked diseases) and Pharmacogenomics (HLA-associated drug side effects) and also for Anthropology. It is discussed that one of the most ancient Kurd ancestor groups is in Hurrians (2,000 years BC).
Muñiz, Ester; Campos, Cristina; Alonso-Rubio, Javier; Gomez-Casado, Eduardo; Salih, Shadallah Fareq; Martin-Villa, Manuel; Al-Qadi, Rawand
2017-01-01
Kurds from Iraq (Dohuk and Erbil Area, North Iraq) have been analyzed for HLA genes. Their HLA genetic profile has been compared with that of other Kurd groups from Iran and Tbilisi (Georgia, Caucasus) and also Worldwide populations. A total of 7,746 HLA chromosomes have been used. Genetic distances, NJ dendrograms and correspondence analyses have been carried out. Haplotype HLA-B*52—DRB1*15 is present in all three analyzed Kurd populations. HLA-A*02-B*51-DRB1*11 is present in Iraq and Georgia Kurds. Haplotypes common to Iran and Iraq Kurds are HLA DRB1*11—DQB1*03, HLA DRB1*03—DQB1*02 and others in a lower frequency. Our HLA study conclusions are that Kurds most probably belong to an ancient Mediterranean / Middle East / Caucasian genetic substratum and that present results and those previously obtained by us in Kurds may be useful for Medicine in future Kurd transplantation programs, HLA Epidemiology (HLA linked diseases) and Pharmacogenomics (HLA-associated drug side effects) and also for Anthropology. It is discussed that one of the most ancient Kurd ancestor groups is in Hurrians (2,000 years BC). PMID:28114347
A second-generation genetic linkage map of the domestic dog, Canis familiaris.
Neff, M W; Broman, K W; Mellersh, C S; Ray, K; Acland, G M; Aguirre, G D; Ziegle, J S; Ostrander, E A; Rine, J
1999-01-01
Purebred strains, pronounced phenotypic variation, and a high incidence of heritable disease make the domestic dog uniquely suited to complement genetic analyses in humans and mice. A comprehensive genetic linkage map would afford many opportunities in dogs, ranging from the positional cloning of disease genes to the dissection of quantitative differences in size, shape, and behavior. Here we report a canine linkage map with the number of mapped loci expanded to 276 and 10-cM coverage extended to 75-90% of the genome. Most of the 38 canine autosomes are likely represented in the collection of 39 autosomal linkage groups. Eight markers were sufficiently informative to detect linkage at distances of 10-13 cM, yet remained unlinked to any other marker. Taken together, the results suggested a genome size of about 27 M. As in other species, the genetic length varied between sexes, with the female autosomal distance being approximately 1.4-fold greater than that of male meioses. Fifteen markers anchored well-described genes on the map, thereby serving as landmarks for comparative mapping in dogs. We discuss the utility of the current map and outline steps necessary for future map improvement. PMID:9927471
Sazzini, Marco; Garagnani, Paolo; Sarno, Stefania; De Fanti, Sara; Lazzano, Teresa; Yang Yao, Daniele; Boattini, Alessio; Pazzola, Giulia; Maramotti, Sally; Boiardi, Luigi; Franceschi, Claudio; Salvarani, Carlo; Luiselli, Donata
2015-01-01
Behçet's disease is a multifactorial vasculitis that shows its highest prevalence in geographical areas historically involved in the Silk Road, suggesting that it might have originated somewhere along these ancient trade routes. This study aims to provide a first clue towards genetic evidence for this hypothesis by testing it via an anthropological evolutionary genetics approach. Behçet's disease variation at ancestry informative mitochondrial DNA control region and haplogroup diagnostic sites was characterised in 185 disease subjects of Italian descent and set into the Eurasian mitochondrial landscape by comparison with nearly 9,000 sequences representative of diversity observable in Italy and along the main Silk Road routes. Dissection of the actual genetic ancestry of disease individuals by means of population structure, spatial autocorrelation and haplogroup analyses revealed their closer relationships with some Middle Eastern and Central Asian groups settled along the Silk Road than with healthy Italians. These findings support the hypothesis that the Behçet's disease genetic risk has migrated to western Eurasia in parallel with ancestry components typical of Silk Road-related groups. This provided new insights that are useful to improve the understanding of disease origins and diffusion, as well as to inform future association studies aimed at properly accounting for the actual genetic ancestry of the examined Behçet's disease samples in order to minimise the detection of spurious associations and to improve the identification of genetic variants with actual clinical relevance.
Heritability of tic disorders: a twin-family study.
Zilhão, N R; Olthof, M C; Smit, D J A; Cath, D C; Ligthart, L; Mathews, C A; Delucchi, K; Boomsma, D I; Dolan, C V
2017-04-01
Genetic-epidemiological studies that estimate the contributions of genetic factors to variation in tic symptoms are scarce. We estimated the extent to which genetic and environmental influences contribute to tics, employing various phenotypic definitions ranging between mild and severe symptomatology, in a large population-based adult twin-family sample. In an extended twin-family design, we analysed lifetime tic data reported by adult mono- and dizygotic twins (n = 8323) and their family members (n = 7164; parents and siblings) from 7311 families in the Netherlands Twin Register. We measured tics by the abbreviated version of the Schedule for Tourette and Other Behavioral Syndromes. Heritability was estimated by genetic structural equation modeling for four tic disorder definitions: three dichotomous and one trichotomous phenotype, characterized by increasingly strictly defined criteria. Prevalence rates of the different tic disorders in our sample varied between 0.3 and 4.5% depending on tic disorder definition. Tic frequencies decreased with increasing age. Heritability estimates varied between 0.25 and 0.37, depending on phenotypic definitions. None of the phenotypes showed evidence of assortative mating, effects of shared environment or non-additive genetic effects. Heritabilities of mild and severe tic phenotypes were estimated to be moderate. Overlapping confidence intervals of the heritability estimates suggest overlapping genetic liabilities between the various tic phenotypes. The most lenient phenotype (defined only by tic characteristics, excluding criteria B, C and D of DSM-IV) rendered sufficiently reliable heritability estimates. These findings have implications in phenotypic definitions for future genetic studies.
Genetic Variants Related to Height and Risk of Atrial Fibrillation
Rosenberg, Michael A.; Kaplan, Robert C.; Siscovick, David S.; Psaty, Bruce M.; Heckbert, Susan R.; Newton-Cheh, Christopher; Mukamal, Kenneth J.
2014-01-01
Increased height is a known independent risk factor for atrial fibrillation (AF). However, whether genetic determinants of height influence risk is uncertain. In this candidate gene study, we examined the association of 209 height-associated single-nucleotide polymorphisms (SNPs) with incident AF in 3,309 persons of European descent from the Cardiovascular Health Study, a prospective cohort study of older adults (aged ≥65 years) enrolled in 1989–1990. After a median follow-up period of 13.2 years, 879 participants developed incident AF. The height-associated SNPs together explained approximately 10% of the variation in height (P = 6.0 × 10−8). Using an unweighted genetic height score, we found a nonsignificant association with risk of AF (per allele, hazard ratio = 1.01, 95% confidence interval: 1.00, 1.02; P = 0.06). In weighted analyses, we found that genetically predicted height was strongly associated with AF risk (per 10 cm, hazard ratio = 1.30, 95% confidence interval: 1.03, 1.64; P = 0.03). Importantly, for all models, the inclusion of actual height completely attenuated the genetic height effect. Finally, we identified 1 nonsynonymous SNP (rs1046934) that was independently associated with AF and may warrant future study. In conclusion, we found that genetic determinants of height appear to increase the risk of AF, primarily via height itself. This approach of examining SNPs associated with an intermediate phenotype should be considered as a method for identifying novel genetic targets. PMID:24944287
Urban population genetics of slum-dwelling rats (Rattus norvegicus) in Salvador, Brazil
Kajdacsi, Brittney; Costa, Federico; Hyseni, Chaz; Porter, Fleur; Brown, Julia; Rodrigues, Gorete; Farias, Helena; Reis, Mitermeyer G.; Childs, James E.; Ko, Albert I.; Caccone, Adalgisa
2013-01-01
Throughout the developing world, urban centers with sprawling slum settlements are rapidly expanding and invading previously forested ecosystems. Slum communities are characterized by untended refuse, open sewers, and overgrown vegetation, which promote rodent infestation. Norway rats (Rattus norvegicus), are reservoirs for epidemic transmission of many zoonotic pathogens of public health importance. Understanding the population ecology of R. norvegicus is essential to formulate effective rodent control strategies, as this knowledge aids estimation of the temporal stability and spatial connectivity of populations. We screened for genetic variation, characterized the population genetic structure, and evaluated the extent and patterns of gene flow in the urban landscape using 17 microsatellite loci in 146 rats from 9 sites in the city of Salvador, Brazil. These sites were divided between three neighborhoods within the city spaced an average of 2.7 km apart. Surprisingly, we detected very little relatedness among animals trapped at the same site and found high levels of genetic diversity, as well as structuring across small geographic distances. Most FST comparisons among sites were statistically significant, including sites <400 m apart. Bayesian analyses grouped the samples in three genetic clusters, each associated with distinct sampling sites from different neighborhoods or valleys within neighborhoods. These data indicate the existence of complex genetic structure in R. norvegicus in Salvador, linked to the heterogeneous urban landscape. Future rodent control measures need to take into account the spatial and temporal linkage of rat populations in Salvador, as revealed by genetic data, to develop informed eradication strategies. PMID:24118116
Genetic analyses of bolting in bulb onion (Allium cepa L.).
Baldwin, Samantha; Revanna, Roopashree; Pither-Joyce, Meeghan; Shaw, Martin; Wright, Kathryn; Thomson, Susan; Moya, Leire; Lee, Robyn; Macknight, Richard; McCallum, John
2014-03-01
We present the first evidence for a QTL conditioning an adaptive trait in bulb onion, and the first linkage and population genetics analyses of candidate genes involved in photoperiod and vernalization physiology. Economic production of bulb onion (Allium cepa L.) requires adaptation to photoperiod and temperature such that a bulb is formed in the first year and a flowering umbel in the second. 'Bolting', or premature flowering before bulb maturation, is an undesirable trait strongly selected against by breeders during adaptation of germplasm. To identify genome regions associated with adaptive traits we conducted linkage mapping and population genetic analyses of candidate genes, and QTL analysis of bolting using a low-density linkage map. We performed tagged amplicon sequencing of ten candidate genes, including the FT-like gene family, in eight diverse populations to identify polymorphisms and seek evidence of differentiation. Low nucleotide diversity and negative estimates of Tajima's D were observed for most genes, consistent with purifying selection. Significant population differentiation was observed only in AcFT2 and AcSOC1. Selective genotyping in a large 'Nasik Red × CUDH2150' F2 family revealed genome regions on chromosomes 1, 3 and 6 associated (LOD > 3) with bolting. Validation genotyping of two F2 families grown in two environments confirmed that a QTL on chromosome 1, which we designate AcBlt1, consistently conditions bolting susceptibility in this cross. The chromosome 3 region, which coincides with a functionally characterised acid invertase, was not associated with bolting in other environments, but showed significant association with bulb sucrose content in this and other mapping pedigrees. These putative QTL and candidate genes were placed on the onion map, enabling future comparative studies of adaptive traits.
Tam, Hok-Hei; Yan, Pearlly; Pfeffer, Tia L.; Bundschuh, Ralf; Warawa, Jonathan M.
2014-01-01
Klebsiella pneumoniae is a bacterial pathogen of worldwide importance and a significant contributor to multiple disease presentations associated with both nosocomial and community acquired disease. ATCC 43816 is a well-studied K. pneumoniae strain which is capable of causing an acute respiratory disease in surrogate animal models. In this study, we performed sequencing of the ATCC 43816 genome to support future efforts characterizing genetic elements required for disease. Furthermore, we performed comparative genetic analyses to the previously sequenced genomes from NTUH-K2044 and MGH 78578 to gain an understanding of the conservation of known virulence determinants amongst the three strains. We found that ATCC 43816 and NTUH-K2044 both possess the known virulence determinant for yersiniabactin, as well as a Type 4 secretion system (T4SS), CRISPR system, and an acetonin catabolism locus, all absent from MGH 78578. While both NTUH-K2044 and MGH 78578 are clinical isolates, little is known about the disease potential of these strains in cell culture and animal models. Thus, we also performed functional analyses in the murine macrophage cell lines RAW264.7 and J774A.1 and found that MGH 78578 (K52 serotype) was internalized at higher levels than ATCC 43816 (K2) and NTUH-K2044 (K1), consistent with previous characterization of the antiphagocytic properties of K1 and K2 serotype capsules. We also examined the three K. pneumoniae strains in a novel BALB/c respiratory disease model and found that ATCC 43816 and NTUH-K2044 are highly virulent (LD50<100 CFU) while MGH 78578 is relatively avirulent. PMID:25203254
Translating science into the next generation meat quality program for Australian lamb.
Pethick, D W; Ball, A J; Banks, R G; Gardner, G E; Rowe, J B; Jacob, R H
2014-02-01
This paper introduces a series of papers in the form of a special edition that reports phenotypic analyses done in parallel with genotypic analyses for the Australian Sheep Industry Cooperative Research Centre (Sheep CRC) using data generated from the information nucleus flock (INF). This has allowed new knowledge to be gained of the genetic, environment and management factors that impact on the carcase and eating quality, visual appeal, odour and health attributes of Australian lamb meat. The research described involved close collaboration with commercial partners across the supply chain in the sire breeding as well as the meat processing industries. This approach has enabled timely delivery and adoption of research results to industry in an unprecedented way and provides a good model for future research. © 2013.
Phytophthora database 2.0: update and future direction.
Park, Bongsoo; Martin, Frank; Geiser, David M; Kim, Hye-Seon; Mansfield, Michele A; Nikolaeva, Ekaterina; Park, Sook-Young; Coffey, Michael D; Russo, Joseph; Kim, Seong H; Balci, Yilmaz; Abad, Gloria; Burgess, Treena; Grünwald, Niklaus J; Cheong, Kyeongchae; Choi, Jaeyoung; Lee, Yong-Hwan; Kang, Seogchan
2013-12-01
The online community resource Phytophthora database (PD) was developed to support accurate and rapid identification of Phytophthora and to help characterize and catalog the diversity and evolutionary relationships within the genus. Since its release in 2008, the sequence database has grown to cover 1 to 12 loci for ≈2,600 isolates (representing 138 described and provisional species). Sequences of multiple mitochondrial loci were added to complement nuclear loci-based phylogenetic analyses and diagnostic tool development. Key characteristics of most newly described and provisional species have been summarized. Other additions to improve the PD functionality include: (i) geographic information system tools that enable users to visualize the geographic origins of chosen isolates on a global-scale map, (ii) a tool for comparing genetic similarity between isolates via microsatellite markers to support population genetic studies, (iii) a comprehensive review of molecular diagnostics tools and relevant references, (iv) sequence alignments used to develop polymerase chain reaction-based diagnostics tools to support their utilization and new diagnostic tool development, and (v) an online community forum for sharing and preserving experience and knowledge accumulated in the global Phytophthora community. Here we present how these improvements can support users and discuss the PD's future direction.
Yaish, Mahmoud W; Kumar, Prakash P
2015-01-01
The date palm can adapt to extreme drought, to heat, and to relatively high levels of soil salinity. However, excessive amounts of salt due to irrigation with brackish water lead to a significant reduction in the productivity of the fruits as well as marked decrease in the viable numbers of the date palm trees. It is imperative that the nature of the existing salt-adaptation mechanism be understood in order to develop future date palm varieties that can tolerate excessive soil salinity. In this perspective article, several research strategies, obstacles, and precautions are discussed in light of recent advancements accomplished in this field and the properties of this species. In addition to a physiological characterization, we propose the use of a full range of OMICS technologies, coupled with reverse genetics approaches, aimed toward understanding the salt-adaption mechanism in the date palm. Information generated by these analyses should highlight transcriptional and posttranscriptional modifications controlling the salt-adaptation mechanisms. As an extremophile with a natural tolerance for a wide range of abiotic stresses, the date palm may represent a treasure trove of novel genetic resources for salinity tolerance.
Forero, Diego A; López-León, Sandra; Shin, Hyoung Doo; Park, Byung Lae; Kim, Dai-Jin
2015-04-01
Alcohol-related problems have a large impact on human health, accounting for around 4% of deaths and 4.5% of disability-adjusted life-years around the world. Genetic factors could explain a significant fraction of the risk for alcohol dependence (AD). Recent meta-analyses have found significant pooled odds ratios (ORs) for variants in the ADH1B, ADH1C, DRD2 and HTR2A genes. In the present study, we carried out a meta-analysis of common variants in 6 candidate genes involved in neurotransmission and neuroplasticity: BDNF, DRD1, DRD3, DRD4, GRIN2B and MAOA. We carried out a systematic search for published association studies that analyzed the genes of interest. Relevant articles were retrieved and demographic and genetic data were extracted. Pooled ORs were calculated using a random-effects model using the Meta-Analyst program. Dominant, recessive and allelic models were tested and analyses were also stratified by ethnicity. Forty two published studies were included in the current meta-analysis: BDNF-rs6265 (nine studies), DRD1-rs4532 (four studies), DRD3-rs6280 (eleven studies), DRD4-VNTR (seven studies), GRIN2B-rs1806201 (three studies) and MAOA-uVNTR (eight studies). We did not find significant pooled ORs for any of the six genes, under different models and stratifying for ethnicity. In terms of the number of candidate genes included, this is one of the most comprehensive meta-analyses for genetics of AD. Pooled ORs did not support consistent associations with any of the six candidate genes tested. Future studies of novel genes of functional relevance and meta-analyses of quantitative endophenotypes could identify further susceptibility molecular factors for AD. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Reference intervals: current status, recent developments and future considerations.
Ozarda, Yesim
2016-01-01
Reliable and accurate reference intervals (RIs) for laboratory analyses are an integral part of the process of correct interpretation of clinical laboratory test results. RIs given in laboratory reports have an important role in aiding the clinician in interpreting test results in reference to values for healthy populations. Since the 1980s, the International Federation of Clinical Chemistry (IFCC) has been proactive in establishing recommendations to clarify the true significance of the term 'RIs, to select the appropriate reference population and statistically analyse the data. The C28-A3 guideline published by the Clinical and Laboratory Standards Institute (CLSI) and IFCC is still the most widely-used source of reference in this area. In recent years, protocols additional to the Guideline have been published by the IFCC, Committee on Reference Intervals and Decision Limits (C-RIDL), including all details of multicenter studies on RIs to meet the requirements in this area. Multicentric RIs studies are the most important development in the area of RIs. Recently, the C-RIDL has performed many multicentric studies to obtain common RIs. Confusion of RIs and clinical decision limits (CDLs) remains an issue and pediatric and geriatric age groups are a significant problem. For future studies of RIs, the genetic effect would seem to be the most challenging area. The aim of the review is to present the current theory and practice of RIs, with special emphasis given to multicenter RIs studies, RIs studies for pediatric and geriatric age groups, clinical decision limits and partitioning by genetic effects on RIs.
Reference intervals: current status, recent developments and future considerations
Ozarda, Yesim
2016-01-01
Reliable and accurate reference intervals (RIs) for laboratory analyses are an integral part of the process of correct interpretation of clinical laboratory test results. RIs given in laboratory reports have an important role in aiding the clinician in interpreting test results in reference to values for healthy populations. Since the 1980s, the International Federation of Clinical Chemistry (IFCC) has been proactive in establishing recommendations to clarify the true significance of the term ‘RIs, to select the appropriate reference population and statistically analyse the data. The C28-A3 guideline published by the Clinical and Laboratory Standards Institute (CLSI) and IFCC is still the most widely-used source of reference in this area. In recent years, protocols additional to the Guideline have been published by the IFCC, Committee on Reference Intervals and Decision Limits (C-RIDL), including all details of multicenter studies on RIs to meet the requirements in this area. Multicentric RIs studies are the most important development in the area of RIs. Recently, the C-RIDL has performed many multicentric studies to obtain common RIs. Confusion of RIs and clinical decision limits (CDLs) remains an issue and pediatric and geriatric age groups are a significant problem. For future studies of RIs, the genetic effect would seem to be the most challenging area. The aim of the review is to present the current theory and practice of RIs, with special emphasis given to multicenter RIs studies, RIs studies for pediatric and geriatric age groups, clinical decision limits and partitioning by genetic effects on RIs. PMID:26981015
Li, Ming-Rui; Shi, Feng-Xue; Li, Ya-Ling; Jiang, Peng; Jiao, Lili; Liu, Bao; Li, Lin-Feng
2017-09-01
Chinese ginseng (Panax ginseng Meyer) is a medicinally important herb and plays crucial roles in traditional Chinese medicine. Pharmacological analyses identified diverse bioactive components from Chinese ginseng. However, basic biological attributes including domestication and selection of the ginseng plant remain under-investigated. Here, we presented a genome-wide view of the domestication and selection of cultivated ginseng based on the whole genome data. A total of 8,660 protein-coding genes were selected for genome-wide scanning of the 30 wild and cultivated ginseng accessions. In complement, the 45s rDNA, chloroplast and mitochondrial genomes were included to perform phylogenetic and population genetic analyses. The observed spatial genetic structure between northern cultivated ginseng (NCG) and southern cultivated ginseng (SCG) accessions suggested multiple independent origins of cultivated ginseng. Genome-wide scanning further demonstrated that NCG and SCG have undergone distinct selection pressures during the domestication process, with more genes identified in the NCG (97 genes) than in the SCG group (5 genes). Functional analyses revealed that these genes are involved in diverse pathways, including DNA methylation, lignin biosynthesis, and cell differentiation. These findings suggested that the SCG and NCG groups have distinct demographic histories. Candidate genes identified are useful for future molecular breeding of cultivated ginseng. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Leavitt, Dean H; Starrett, James; Westphal, Michael F; Hedin, Marshal
2015-10-01
We use mitochondrial and multi-locus nuclear DNA sequence data to infer both species boundaries and species relationships within California nemesiid spiders. Higher-level phylogenetic data show that the California radiation is monophyletic and distantly related to European members of the genus Brachythele. As such, we consider all California nemesiid taxa to belong to the genus Calisoga Chamberlin, 1937. Rather than find support for one or two taxa as previously hypothesized, genetic data reveal Calisoga to be a species-rich radiation of spiders, including perhaps dozens of species. This conclusion is supported by multiple mitochondrial barcoding analyses, and also independent analyses of nuclear data that reveal general genealogical congruence. We discovered three instances of sympatry, and genetic data indicate reproductive isolation when in sympatry. An examination of female reproductive morphology does not reveal species-specific characters, and observed male morphological differences for a subset of putative species are subtle. Our coalescent species tree analysis of putative species lays the groundwork for future research on the taxonomy and biogeographic history of this remarkable endemic radiation. Copyright © 2015 Elsevier Inc. All rights reserved.
Ibañez, Carla; Poeschl, Yvonne; Peterson, Tom; Bellstädt, Julia; Denk, Kathrin; Gogol-Döring, Andreas; Quint, Marcel; Delker, Carolin
2017-07-06
Global increase in ambient temperatures constitute a significant challenge to wild and cultivated plant species. Forward genetic analyses of individual temperature-responsive traits have resulted in the identification of several signaling and response components. However, a comprehensive knowledge about temperature sensitivity of different developmental stages and the contribution of natural variation is still scarce and fragmented at best. Here, we systematically analyze thermomorphogenesis throughout a complete life cycle in ten natural Arabidopsis thaliana accessions grown under long day conditions in four different temperatures ranging from 16 to 28 °C. We used Q 10 , GxE, phenotypic divergence and correlation analyses to assess temperature sensitivity and genotype effects of more than 30 morphometric and developmental traits representing five phenotype classes. We found that genotype and temperature differentially affected plant growth and development with variing strengths. Furthermore, overall correlations among phenotypic temperature responses was relatively low which seems to be caused by differential capacities for temperature adaptations of individual accessions. Genotype-specific temperature responses may be attractive targets for future forward genetic approaches and accession-specific thermomorphogenesis maps may aid the assessment of functional relevance of known and novel regulatory components.
Not the time or the place: the missing spatio-temporal link in publicly available genetic data.
Pope, Lisa C; Liggins, Libby; Keyse, Jude; Carvalho, Silvia B; Riginos, Cynthia
2015-08-01
Genetic data are being generated at unprecedented rates. Policies of many journals, institutions and funding bodies aim to ensure that these data are publicly archived so that published results are reproducible. Additionally, publicly archived data can be 'repurposed' to address new questions in the future. In 2011, along with other leading journals in ecology and evolution, Molecular Ecology implemented mandatory public data archiving (the Joint Data Archiving Policy). To evaluate the effect of this policy, we assessed the genetic, spatial and temporal data archived for 419 data sets from 289 articles in Molecular Ecology from 2009 to 2013. We then determined whether archived data could be used to reproduce analyses as presented in the manuscript. We found that the journal's mandatory archiving policy has had a substantial positive impact, increasing genetic data archiving from 49 (pre-2011) to 98% (2011-present). However, 31% of publicly archived genetic data sets could not be recreated based on information supplied in either the manuscript or public archives, with incomplete data or inconsistent codes linking genetic data and metadata as the primary reasons. While the majority of articles did provide some geographic information, 40% did not provide this information as geographic coordinates. Furthermore, a large proportion of articles did not contain any information regarding date of sampling (40%). Although the inclusion of spatio-temporal data does require an increase in effort, we argue that the enduring value of publicly accessible genetic data to the molecular ecology field is greatly compromised when such metadata are not archived alongside genetic data. © 2015 John Wiley & Sons Ltd.
Spatial and temporal genetic analysis of Walleyes in the Ohio River
Page, Kevin S.; Zweifela, Richard D.; Stott, Wendylee
2017-01-01
Previous genetic analyses have shown that Walleyes Sander vitreus in the upper Ohio River comprise two distinct genetic strains: (1) fish of Great Lakes origin that were stocked into the Ohio River basin and (2) a remnant native strain (Highlands strain). Resource agencies are developing management strategies to conserve and restore the native strain within the upper reaches of the Ohio River. Hybridization between strains has impacted the genetic integrity of the native strain. To better understand the extent and effects of hybridization on the native strain, we used mitochondrial DNA and microsatellite markers to evaluate the spatial (river sections) and temporal (pre- and poststocking) genetic diversity of Ohio River Walleyes. Contemporary Lake Erie Walleyes and archival museum specimens collected from the Ohio River basin were used for comparison to contemporary Ohio River samples. Although there was evidence of hybridization between strains, most of the genetic diversity within the Ohio River was partitioned by basin of origin (Great Lakes versus the Ohio River), with greater similarity among river sections than between strains within the same section. Results also suggested that the native strain has diverged from historical populations. Furthermore, notable decreases in measures of genetic diversity and increased relatedness among native-strain Walleyes within two sections of the Ohio River may be related to stocking aimed at restoration of the Highlands strain. Our results suggest that although the Highlands strain persists within the Ohio River, it has diverged over time, and managers should consider the potential impacts of future management practices on the genetic diversity of this native strain.
Serenius, T; Stalder, K J; Baas, T J; Mabry, J W; Goodwin, R N; Johnson, R K; Robison, O W; Tokach, M; Miller, R K
2006-09-01
Data from the National Pork Producers Council Maternal Line National Genetic Evaluation Program were used to compare longevity of sows from 6 commercial genetic lines and to estimate the phenotypic associations of sow longevity with gilt backfat thickness, ADG, age at first farrowing, litter size at first farrowing, litter weight at first farrowing, average feed intake during lactation, and average backfat loss during lactation. The lines evaluated were American Diamond Genetics, Danbred North America, Dekalb-Monsanto DK44, Dekalb-Monsanto GPK347, Newsham Hybrids, and National Swine Registry. The data set contained information from 3,251 gilts, of which 17% had censored longevity records (sows lived longer than 6 parities). The line comparison was carried out by analyzing all lines simultaneously. Because the survival distribution functions differed among genetic lines, later analyses were carried out separately for each genetic line. All analyses were based on the non-parametric proportional hazard (Cox model). Dekalb-Monsanto GPK347 sows had a lower risk of being culled than sows from the other lines. Moreover, the shape of the survival distribution function of the Delkab-Monsanto GPK347 line was different from the other 5 lines. The Dekalb-Monsanto 347 line had lower culling rates because they had lower gilt reproductive failure before the first parity than gilts from the other lines. Within line, sows with lower feed intake and greater backfat loss during lactation had a shorter productive lifetime. Thus, producers should implement management practices having positive effects on sow lactation feed intake. Additionally, the swine genetics industry is challenged to simultaneously improve efficiency of gain of their terminal market pigs and to obtain high feed intake during lactation of their maternal lines for future improvement of sow longevity. Recording sow feed intake and backfat loss during lactation in nucleus and multiplication breeding herds should be considered. Between-line differences in this study indicate that it is possible to select for sow longevity, but more research is needed to determine the most efficient selection methods to improve sow longevity.
Rangel-Gamboa, Lucia; Martinez-Hernandez, Fernando; Maravilla, Pablo; Flisser, Ana
2018-02-02
Sporotrichosis is a subcutaneous mycosis that is caused by diverse species of Sporothrix. High levels of genetic diversity in Sporothrix isolates have been reported, but few population genetics analyses have been documented. To analyse the genetic variability and population genetics relations of Sporothrix schenckii Mexican clinical isolates and to compare them with other reported isolates. We studied the partial sequences of calmodulin and calcium/calmodulin-dependent kinase genes in 24 isolates; 22 from Mexico, one from Colombia, and one ATCC ® 6331™; the latter was used as a positive control. In total, 24 isolates were analysed. Phylogenetic, haplotype and population genetic analyses were performed with 24 sequences obtained by us and 345 sequences obtained from GenBank. The frequency of S. schenckii sensu stricto was 81% in the 22 Mexican isolates, while the remaining 19% were Sporothrix globosa. Mexican S. schenckii sensu stricto had high genetic diversity and was related to isolates from South America. In contrast, S. globosa showed one haplotype related to isolates from Asia, Brazil, Spain and the USA. In S. schenckii sensu stricto, S. brasiliensis and S. globosa, haplotype polymorphism (θ) values were higher than the nucleotide diversity data (π). In addition, Tajima's D plus Fu and Li's tests analyses displayed negative values, suggesting directional selection and arguing against the model of neutral evolution in these populations. In addition, analyses showed that calcium/calmodulin-dependent kinase was a suitable genetic marker to discriminate between common Sporothrix species. © 2018 Blackwell Verlag GmbH.
Djalalov, Sandjar; Yong, Jean; Beca, Jaclyn; Black, Sandra; Saposnik, Gustavo; Musa, Zahra; Siminovitch, Katherine; Moretti, Myla; Hoch, Jeffrey S
2012-12-01
To evaluate the cost effectiveness of genetic screening for the apolipoprotein (APOE) ε4 allele in combination with preventive donepezil treatment in comparison with the standard of care for amnestic mild cognitive impairment (AMCI) patients in Canada. We performed a cost-effectiveness analysis using a Markov model with a societal perspective and a time horizon of 30 years. For each strategy, we calculated quality-adjusted life-years (QALYs), using utilities from the literature. Costs were also based on the literature and, when appropriate, Ontario sources. One-way and probabilistic sensitivity analyses were performed. Expected value of perfect information (EVPI) analysis was conducted to explore the value of future research. The base case results in our exploratory study suggest that the combination of genetic testing and preventive donepezil treatment resulted in a gain of 0.027 QALYs and an incremental cost of $1,015 (in 2009 Canadian dollars [Can$]), compared with the standard of care. The incremental cost-effectiveness ratio (ICER) for the base case was Can$38,016 per QALY. The ICER was sensitive to the effectiveness of donepezil in slowing the rate of progression to Alzheimer's disease (AD), utility in AMCI patients, and AD and donepezil treatment costs. EVPI analysis showed that additional information on these parameters would be of value. Using presently available clinical evidence, this exploratory study illustrates that genetic testing combined with preventive donepezil treatment for AMCI patients may be economically attractive. Since our results were based on a secondary post hoc analysis, our study alone is insufficient to warrant recommending APOE genotyping in AMCI patients. Future research on the effectiveness of preventive donepezil as a targeted therapy is recommended.
Linsenbardt, David N.; Boehm, Stephen L.
2013-01-01
Rationale Sensitization to the locomotor stimulant effects of alcohol (ethanol) is thought to be a heritable risk factor for the development of alcoholism that reflects progressive increases in the positive motivational effects of this substance. However, very little is known about the degree to which genes influence this complex behavioral phenomenon. Objectives The primary goal of this work was to determine the heritability of ethanol-induced locomotor sensitization in mice using short-term behavioral selection. Methods Genetically heterogeneous C57BL/6J (B6) × DBA/2J (D2) F2 mice were generated from B6D2F1 progenitors, phenotyped for the expression of locomotor sensitization, and bred for high (HLS) and low (LLS) expression of this behavior. Selective breeding was conducted in two independently generated replicate sets to increase the confidence of our heritability estimates and for future correlated trait analyses. Results Large and significant differences in locomotor sensitization between HLS and LLS lines were evident by the fourth generation. Twenty-two percent of the observed line difference(s) were attributable to genes (h2=.22). Interestingly, locomotor activity in the absence of ethanol was genetically correlated with ethanol sensitization; high activity was associated with high sensitization. Conclusions That changes in ethanol sensitivity following repeated exposures are genetically regulated highlights the relevance of studies aimed at determining how genes regulate susceptibility to ethanol-induced behavioral and neural adaptations. As alcohol use and abuse disorders develop following many repeated alcohol exposures, these data emphasize the need for future studies determining the genetic basis by which changes in response to alcohol occur. PMID:23732838
From what should we protect future generations: germ-line therapy or genetic screening?
Mallia, Pierre; ten Have, Henk
2003-01-01
This paper discusses the issue of whether we have responsibilities to future generations with respect to genetic screening, including for purposes of selective abortion or discard. Future generations have been discussed at length among scholars. The concept of 'Guardian for Future Generations' is tackled and its main criticisms discussed. Whilst germ-line cures, it is argued, can only affect family trees, genetic screening and testing can have wider implications. If asking how this may affect future generations is a legitimate question and since we indeed make retrospective moral judgements, it would be wise to consider that future generations will make the same retrospective judgements on us. Moreover such technologies affect present embryos to which we indeed can be considered to have an obligation.
Genetic toxicology in the 21st century: Reflections and future directions
A symposium at the 40th anniversary of the Environmental Mutagen Society, held from October 24–28, 2009 in St. Louis, MO, surveyed the current status and future directions of genetic toxicology. This article summarizes the presentations and provides a perspective on the future. A...
Ambros, P F; Ambros, I M; Brodeur, G M; Haber, M; Khan, J; Nakagawara, A; Schleiermacher, G; Speleman, F; Spitz, R; London, W B; Cohn, S L; Pearson, A D J; Maris, J M
2009-01-01
Neuroblastoma serves as a paradigm for utilising tumour genomic data for determining patient prognosis and treatment allocation. However, before the establishment of the International Neuroblastoma Risk Group (INRG) Task Force in 2004, international consensus on markers, methodology, and data interpretation did not exist, compromising the reliability of decisive genetic markers and inhibiting translational research efforts. The objectives of the INRG Biology Committee were to identify highly prognostic genetic aberrations to be included in the new INRG risk classification schema and to develop precise definitions, decisive biomarkers, and technique standardisation. The review of the INRG database (n=8800 patients) by the INRG Task Force finally enabled the identification of the most significant neuroblastoma biomarkers. In addition, the Biology Committee compared the standard operating procedures of different cooperative groups to arrive at international consensus for methodology, nomenclature, and future directions. Consensus was reached to include MYCN status, 11q23 allelic status, and ploidy in the INRG classification system on the basis of an evidence-based review of the INRG database. Standardised operating procedures for analysing these genetic factors were adopted, and criteria for proper nomenclature were developed. Neuroblastoma treatment planning is highly dependant on tumour cell genomic features, and it is likely that a comprehensive panel of DNA-based biomarkers will be used in future risk assignment algorithms applying genome-wide techniques. Consensus on methodology and interpretation is essential for uniform INRG classification and will greatly facilitate international and cooperative clinical and translational research studies. PMID:19401703
2011-01-01
Background The International Multi-centre ADHD Genetics (IMAGE) project with 11 participating centres from 7 European countries and Israel has collected a large behavioural and genetic database for present and future research. Behavioural data were collected from 1068 probands with the combined type of attention deficit/hyperactivity disorder (ADHD-CT) and 1446 'unselected' siblings. The aim was to analyse the IMAGE sample with respect to demographic features (gender, age, family status, and recruiting centres) and psychopathological characteristics (diagnostic subtype, symptom frequencies, age at symptom detection, and comorbidities). A particular focus was on the effects of the study design and the diagnostic procedure on the homogeneity of the sample in terms of symptom-based behavioural data, and potential consequences for further analyses based on these data. Methods Diagnosis was based on the Parental Account of Childhood Symptoms (PACS) interview and the DSM-IV items of the Conners' teacher questionnaire. Demographics of the full sample and the homogeneity of a subsample (all probands) were analysed by using robust statistical procedures which were adjusted for unequal sample sizes and skewed distributions. These procedures included multi-way analyses based on trimmed means and winsorised variances as well as bootstrapping. Results Age and proband/sibling ratios differed between participating centres. There was no significant difference in the distribution of gender between centres. There was a significant interaction between age and centre for number of inattentive, but not number of hyperactive symptoms. Higher ADHD symptom frequencies were reported by parents than teachers. The diagnostic symptoms differed from each other in their frequencies. The face-to-face interview was more sensitive than the questionnaire. The differentiation between ADHD-CT probands and unaffected siblings was mainly due to differences in hyperactive/impulsive symptoms. Conclusions Despite a symptom-based standardized inclusion procedure according to DSM-IV criteria with defined symptom thresholds, centres may differ markedly in probands' ADHD symptom frequencies. Both the diagnostic procedure and the multi-centre design influence the behavioural characteristics of a sample and, thus, may bias statistical analyses, particularly in genetic or neurobehavioral studies. PMID:21473745
Dong, Yang; Dai, Fangyin; Ren, Yandong; Liu, Hui; Chen, Lei; Yang, Pengcheng; Liu, Yanqun; Li, Xin; Wang, Wen; Xiang, Hui
2015-03-17
Silk has numerous unique properties that make it a staple of textile manufacturing for several thousand years. However, wider applications of silk in modern have been stalled due to limitations of traditional silk produced by Bombyx mori. While silk is commonly produced by B. mori, several wild non-mulberry silkmoths--especially members of family Saturniidae--produce silk with superior properties that may be useful for wider applications. Further utilization of such silks is hampered by the non-domestication status or limited culturing population of wild silkworms. To date there is insufficient basic genomic or transcriptomic data on these organisms or their silk production. We sequenced and compared the transcriptomes of silk glands of six Saturniidae wild silkmoth species through next-generation sequencing technology, identifying 37758 ~ 51734 silkmoth unigenes, at least 36.3% of which are annotated with an e-value less than 10(-5). Sequence analyses of these unigenes identified a batch of genes specific to Saturniidae that are enriched in growth and development. Analyses of silk proteins including fibroin and sericin indicate intra-genus conservation and inter-genus diversification of silk protein features among the wild silkmoths, e.g., isoelectric points, hydrophilicity profile and amino acid composition in motifs of silk H-fibroin. Interestingly, we identified p25 in two of the silkmoths, which were previously predicted to be absent in Saturniidae. There are rapid evolutionary changes in sericin proteins, which might account for the highly heterogeneity of sericin in Saturniidae silkmoths. Within the six sikmoths, both colored-cocoon silkmoth specific transcripts and differentially expressed genes between the colored-cocoon and non-colored-cocoon silkmoths are significantly enriched in catalytic activity, especially transferase activity, suggesting potentially viable targets for future gene mining or genetic manipulation. Our results characterize novel and potentially valuable gene resources of saturniid silkmoths that may facilitate future genetic improvement and modification of mulberry silkworms. Our results suggest that the disparate features of silk--coloration, retention, strength, etc. --are likely not only due to silk proteins, but also to the environment of silk assembly, and more specifically, that stable silk coloration exhibited by some Saturniidae silkmoths may be attributable to active catalytic progress in pigmentation.
Elevated genetic structure in the coastal tailed frog (Ascaphus truei) in managed redwood forests.
Aguilar, Andres; Douglas, Robert B; Gordon, Eric; Baumsteiger, Jason; Goldsworthy, Matthew O
2013-03-01
Landscape alterations have dramatic impacts on the distribution of genetic variation within and among populations and understanding these effects can guide contemporary and future conservation strategies. We initiated a landscape-scale genetic study of the coastal tailed frog (Ascaphus truei) on commercial timberlands within the southern range of the species in Mendocino County (CA, USA). In total, 294 individuals from 13 populations were analyzed at 9 microsatellite loci. None of the sampled populations departed from mutation-drift equilibrium, indicating recent population bottlenecks were not detected in contemporary samples. Fine-scale analysis indicated sampled populations were structured at the watershed level (mean F (ST) = 0.077 and mean G'(ST) = 0.425). Landscape analyses suggested wet and moist areas may serve as significant corridors for gene flow within watersheds in this region (r (2) = 0.32-0.54 for moisture-related features). Results indicate populations of frogs may have persisted at this scale through intense periods of timber harvest, making southern range edge populations of coastal tailed frogs resilient to past land use practices.
Carnevale, Silvana; Malandrini, Jorge Bruno; Pantano, María Laura; Soria, Claudia Cecilia; Rodrigues-Silva, Rosângela; Machado-Silva, José Roberto; Velásquez, Jorge Néstor; Kamenetzky, Laura
2017-10-15
Fasciola hepatica is a trematode showing genetic variation among isolates from different regions of the world. The objective of this work was to characterize for the first time F. hepatica isolates circulating in different regions of Argentina. Twenty-two adult flukes were collected from naturally infected bovine livers in different areas from Argentina and used for DNA extraction. We carried out PCR amplification and sequence analysis of the ribosomal internal transcribed spacer 1 (ITS1), mitochondrial nicotinamide adenine dinucleotide dehydrogenase subunits 4 and 5 (nad4 and nad5) and mitochondrial cytochrome c oxidase subunit I (cox1) genes as genetic markers. Phylogenies were reconstructed using maximum parsimony algorithm. A total of 6 haplotypes were found for cox1, 4 haplotypes for nad4 and 3 haplotypes for nad5. The sequenced ITS1 fragment was identical in all samples. The analyzed cox1 gene fragment is the most variable marker and is recommended for future analyses. No geographic association was found in the Argentinean samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Powell, John H.; Kalinowski, Steven T.; Higgs, Megan D.; Ebinger, Michael R.; Vu, Ninh V.; Cross, Paul C.
2013-01-01
To better understand the future spread of chronic wasting disease, we conducted a genetic assessment of mule deer Odocoileus hemionus population structure across the state of Montana, USA. Individual based analyses were used to test for population structure in the absence of a priori designations of population membership across the sampling area. Samples from the states of Wyoming, Colorado and Utah were also included in the analysis to provide a geographic context to the levels of population structure observed within Montana. Results showed that mule deer across our entire study region were characterized by weak isolation by distance and a lack of spatial autocorrelation at distances > 10 km. We found evidence for contemporary male bias in dispersal, with female mule deer exhibiting higher mean individual pairwise genetic distance than males. We tested for potential homogenizing effects of past translocations within Montana, but were unable to detect a genetic signature of these events. Our results indicate high levels of connectivity among mule deer populations in Montana and suggest few, if any, detectable barriers to mule deer gene flow or chronic wasting disease transmission.
Liu, Guo-Hua; Gasser, Robin B; Su, Ang; Nejsum, Peter; Peng, Lifei; Lin, Rui-Qing; Li, Ming-Wei; Xu, Min-Jun; Zhu, Xing-Quan
2012-01-01
The whipworm, Trichuris trichiura, causes trichuriasis in ∼600 million people worldwide, mainly in developing countries. Whipworms also infect other animal hosts, including pigs (T. suis), dogs (T. vulpis) and non-human primates, and cause disease in these hosts, which is similar to trichuriasis of humans. Although Trichuris species are considered to be host specific, there has been considerable controversy, over the years, as to whether T. trichiura and T. suis are the same or distinct species. Here, we characterised the entire mitochondrial genomes of human-derived Trichuris and pig-derived Trichuris, compared them and then tested the hypothesis that the parasites from these two host species are genetically distinct in a phylogenetic analysis of the sequence data. Taken together, the findings support the proposal that T. trichiura and T. suis are separate species, consistent with previous data for nuclear ribosomal DNA. Using molecular analytical tools, employing genetic markers defined herein, future work should conduct large-scale studies to establish whether T. trichiura is found in pigs and T. suis in humans in endemic regions.
Liu, Guo-Hua; Gasser, Robin B.; Su, Ang; Nejsum, Peter; Peng, Lifei; Lin, Rui-Qing; Li, Ming-Wei; Xu, Min-Jun; Zhu, Xing-Quan
2012-01-01
The whipworm, Trichuris trichiura, causes trichuriasis in ∼600 million people worldwide, mainly in developing countries. Whipworms also infect other animal hosts, including pigs (T. suis), dogs (T. vulpis) and non-human primates, and cause disease in these hosts, which is similar to trichuriasis of humans. Although Trichuris species are considered to be host specific, there has been considerable controversy, over the years, as to whether T. trichiura and T. suis are the same or distinct species. Here, we characterised the entire mitochondrial genomes of human-derived Trichuris and pig-derived Trichuris, compared them and then tested the hypothesis that the parasites from these two host species are genetically distinct in a phylogenetic analysis of the sequence data. Taken together, the findings support the proposal that T. trichiura and T. suis are separate species, consistent with previous data for nuclear ribosomal DNA. Using molecular analytical tools, employing genetic markers defined herein, future work should conduct large-scale studies to establish whether T. trichiura is found in pigs and T. suis in humans in endemic regions. PMID:22363831
Salnikova, L E; Kolobkov, D S
2016-06-01
Oncologists have pointed out an urgent need for biomarkers that can be useful for clinical application to predict the susceptibility of patients to preoperative therapy. This review collects, evaluates and combines data on the influence of reported somatic and germline genetic variations on histological tumor regression in neoadjuvant settings of rectal and esophageal cancers. Five hundred and twenty-seven articles were identified, 204 retrieved and 61 studies included. Among 24 and 14 genetic markers reported for rectal and esophageal cancers, respectively, significant associations in meta-analyses were demonstrated for the following markers. In rectal cancer, major response was more frequent in carriers of the TYMS genotype 2 R/2 R-2 R/3 R (rs34743033), MTHFR genotype 677C/C (rs1801133), wild-type TP53 and KRAS genes. In esophageal cancer, successful therapy appeared to correlate with wild-type TP53. These results may be useful for future research directions to translate reported data into practical clinical use.
New approaches in GMO detection.
Querci, Maddalena; Van den Bulcke, Marc; Zel, Jana; Van den Eede, Guy; Broll, Hermann
2010-03-01
The steady rate of development and diffusion of genetically modified plants and their increasing diversification of characteristics, genes and genetic control elements poses a challenge in analysis of genetically modified organisms (GMOs). It is expected that in the near future the picture will be even more complex. Traditional approaches, mostly based on the sequential detection of one target at a time, or on a limited multiplexing, allowing only a few targets to be analysed at once, no longer meet the testing requirements. Along with new analytical technologies, new approaches for the detection of GMOs authorized for commercial purposes in various countries have been developed that rely on (1) a smart and accurate strategy for target selection, (2) the use of high-throughput systems or platforms for the detection of multiple targets and (3) algorithms that allow the conversion of analytical results into an indication of the presence of individual GMOs potentially present in an unknown sample. This paper reviews the latest progress made in GMO analysis, taking examples from the most recently developed strategies and tools, and addresses some of the critical aspects related to these approaches.
Ebner, Janine; Koehler, Anson V; Robertson, Gemma; Bradbury, Richard S; Jex, Aaron R; Haydon, Shane R; Stevens, Melita A; Norton, Robert; Joachim, Anja; Gasser, Robin B
2015-12-01
To date, there has been limited genetic study of the gastrointestinal pathogens Giardia and Cryptosporidium in northern parts of Australia. Here, PCR-based methods were used for the genetic characterization of Giardia and Cryptosporidium from 695 people with histories of gastrointestinal disorders from the tropical North of Australia. Genomic DNAs from fecal samples were subjected to PCR-based analyses of regions from the triose phosphate isomerase (tpi), small subunit (SSU) of the nuclear ribosomal RNA and/or the glycoprotein (gp60) genes. Giardia and Cryptosporidium were detected in 13 and four of the 695 samples, respectively. Giardia duodenalis assemblages A and B were found in 4 (31%) and 9 (69%) of the 13 samples in persons of <9 years of age. Cryptosporidium hominis (subgenotype IdA18), Cryptosporidium mink genotype (subgenotype IIA16R1) and C. felis were also identified in single patients of 11-21 years of age. Future studies might focus on a comparative study of these and other protists in rural communities in Northern Australia. Copyright © 2015 Elsevier B.V. All rights reserved.
From sexless to sexy: Why it is time for human genetics to consider and report analyses of sex.
Powers, Matthew S; Smith, Phillip H; McKee, Sherry A; Ehringer, Marissa A
2017-01-01
Science has come a long way with regard to the consideration of sex differences in clinical and preclinical research, but one field remains behind the curve: human statistical genetics. The goal of this commentary is to raise awareness and discussion about how to best consider and evaluate possible sex effects in the context of large-scale human genetic studies. Over the course of this commentary, we reinforce the importance of interpreting genetic results in the context of biological sex, establish evidence that sex differences are not being considered in human statistical genetics, and discuss how best to conduct and report such analyses. Our recommendation is to run stratified analyses by sex no matter the sample size or the result and report the findings. Summary statistics from stratified analyses are helpful for meta-analyses, and patterns of sex-dependent associations may be hidden in a combined dataset. In the age of declining sequencing costs, large consortia efforts, and a number of useful control samples, it is now time for the field of human genetics to appropriately include sex in the design, analysis, and reporting of results.
Mulder, Kevin P.; Cortazar-Chinarro, Maria; Harris, D. James; Crottini, Angelica; Grant, Evan H. Campbell; Fleischer, Robert C.; Savage, Anna E.
2017-01-01
The Major Histocompatibility Complex (MHC) is a genomic region encoding immune loci that are important and frequently used markers in studies of adaptive genetic variation and disease resistance. Given the primary role of infectious diseases in contributing to global amphibian declines, we characterized the hypervariable exon 2 and flanking introns of the MHC Class IIβ chain for 17 species of frogs in the Ranidae, a speciose and cosmopolitan family facing widespread pathogen infections and declines. We find high levels of genetic variation concentrated in the Peptide Binding Region (PBR) of the exon. Ten codons are under positive selection, nine of which are located in the mammal-defined PBR. We hypothesize that the tenth codon (residue 21) is an amphibian-specific PBR site that may be important in disease resistance. Trans-species and trans-generic polymorphisms are evident from exon-based genealogies, and co-phylogenetic analyses between intron, exon and mitochondrial based reconstructions reveal incongruent topologies, likely due to different locus histories. We developed two sets of barcoded adapters that reliably amplify a single and likely functional locus in all screened species using both 454 and Illumina based sequencing methods. These primers provide a resource for multiplexing and directly sequencing hundreds of samples in a single sequencing run, avoiding the labour and chimeric sequences associated with cloning, and enabling MHC population genetic analyses. Although the primers are currently limited to the 17 species we tested, these sequences and protocols provide a useful genetic resource and can serve as a starting point for future disease, adaptation and conservation studies across a range of anuran taxa.
Xu, Tao; Zhu, Anyou; Sun, Meiqun; Lv, Jingzhu; Qian, Zhongqing; Wang, Xiaojing; Wang, Ting; Wang, Hongtao
2018-01-02
Hepatitis B is one of the most common infectious diseases, which leads to public health problems in the world, especially in Asian counties. In recent years, extensive human genetic association studies have been carried out to identify susceptible genes and genetic polymorphisms to understand the genetic contributions to the disease progression of HBV infection. HLA-DQ gene variations have been reported to be associated with HBV infection/clearance, disease progression and the development of hepatitis B-related complications, including liver cirrhosis (LC) and hepatocellular carcinoma (HCC). However, the results are either inconclusive or controversial. Therefore, to derive a more precise estimation of the association, a meta-analysis was performed. Our data revealed that the HLA-DQ alleles rs2856718-G , rs7453920-A and rs9275319-G were significantly associated with decreased risk of HBV infection and HBV natural clearance. Logistic regression analyses showed that HLA-DQ alleles rs9275572-A significantly increased HBV infection clearance, and decreased HBV natural clearance. However, rs2856718-G and rs9275572-A were not associated with development of cirrhosis. The HLA-DQ polymorphisms ( rs2856718 and rs9275572 ) were associated with a decreased HBV-related HCC risk in all genetic models, but rs9272105-A increased the risk of HBV-related HCC. In addition, no significant association was observed between HLA-DQ rs9275319-G polymorphism and HBV-related HCC. These stratified analyses were limited due to relatively modest size of correlational studies. In future, further investigation on a large population and different ethnicities are warranted. Our findings contribute to the personalized care and prognosis in hepatitis B.
Mulder, Kevin P; Cortazar-Chinarro, Maria; Harris, D James; Crottini, Angelica; Campbell Grant, Evan H; Fleischer, Robert C; Savage, Anna E
2017-11-01
The Major Histocompatibility Complex (MHC) is a genomic region encoding immune loci that are important and frequently used markers in studies of adaptive genetic variation and disease resistance. Given the primary role of infectious diseases in contributing to global amphibian declines, we characterized the hypervariable exon 2 and flanking introns of the MHC Class IIβ chain for 17 species of frogs in the Ranidae, a speciose and cosmopolitan family facing widespread pathogen infections and declines. We find high levels of genetic variation concentrated in the Peptide Binding Region (PBR) of the exon. Ten codons are under positive selection, nine of which are located in the mammal-defined PBR. We hypothesize that the tenth codon (residue 21) is an amphibian-specific PBR site that may be important in disease resistance. Trans-species and trans-generic polymorphisms are evident from exon-based genealogies, and co-phylogenetic analyses between intron, exon and mitochondrial based reconstructions reveal incongruent topologies, likely due to different locus histories. We developed two sets of barcoded adapters that reliably amplify a single and likely functional locus in all screened species using both 454 and Illumina based sequencing methods. These primers provide a resource for multiplexing and directly sequencing hundreds of samples in a single sequencing run, avoiding the labour and chimeric sequences associated with cloning, and enabling MHC population genetic analyses. Although the primers are currently limited to the 17 species we tested, these sequences and protocols provide a useful genetic resource and can serve as a starting point for future disease, adaptation and conservation studies across a range of anuran taxa. Copyright © 2017 Elsevier Ltd. All rights reserved.
Clustering for Binary Data Sets by Using Genetic Algorithm-Incremental K-means
NASA Astrophysics Data System (ADS)
Saharan, S.; Baragona, R.; Nor, M. E.; Salleh, R. M.; Asrah, N. M.
2018-04-01
This research was initially driven by the lack of clustering algorithms that specifically focus in binary data. To overcome this gap in knowledge, a promising technique for analysing this type of data became the main subject in this research, namely Genetic Algorithms (GA). For the purpose of this research, GA was combined with the Incremental K-means (IKM) algorithm to cluster the binary data streams. In GAIKM, the objective function was based on a few sufficient statistics that may be easily and quickly calculated on binary numbers. The implementation of IKM will give an advantage in terms of fast convergence. The results show that GAIKM is an efficient and effective new clustering algorithm compared to the clustering algorithms and to the IKM itself. In conclusion, the GAIKM outperformed other clustering algorithms such as GCUK, IKM, Scalable K-means (SKM) and K-means clustering and paves the way for future research involving missing data and outliers.
Stem cells in genetically-engineered mouse models of prostate cancer
Shibata, Maho; Shen, Michael M.
2015-01-01
The cancer stem cell model proposes that tumors have a hierarchical organization in which tumorigenic cells give rise to non-tumorigenic cells, with only a subset of stem-like cells able to propagate the tumor. In the case of prostate cancer, recent analyses of genetically engineered mouse (GEM) models have provided evidence supporting the existence of cancer stem cells in vivo. These studies suggest that cancer stem cells capable of tumor propagation exist at various stages of tumor progression from prostatic intraepithelial neoplasia (PIN) to advanced metastatic and castration-resistant disease. However, studies of stem cells in prostate cancer have been limited by available approaches for evaluating their functional properties in cell culture and transplantation assays. Given the role of the tumor microenvironment and the putative cancer stem cell niche, future studies using GEM models to analyze cancer stem cells in their native tissue microenvironment are likely to be highly informative. PMID:26341780
A High-Density Linkage Map for Astyanax mexicanus Using Genotyping-by-Sequencing Technology
Carlson, Brian M.; Onusko, Samuel W.; Gross, Joshua B.
2014-01-01
The Mexican tetra, Astyanax mexicanus, is a unique model system consisting of cave-adapted and surface-dwelling morphotypes that diverged >1 million years (My) ago. This remarkable natural experiment has enabled powerful genetic analyses of cave adaptation. Here, we describe the application of next-generation sequencing technology to the creation of a high-density linkage map. Our map comprises more than 2200 markers populating 25 linkage groups constructed from genotypic data generated from a single genotyping-by-sequencing project. We leveraged emergent genomic and transcriptomic resources to anchor hundreds of anonymous Astyanax markers to the genome of the zebrafish (Danio rerio), the most closely related model organism to our study species. This facilitated the identification of 784 distinct connections between our linkage map and the Danio rerio genome, highlighting several regions of conserved genomic architecture between the two species despite ∼150 My of divergence. Using a Mendelian cave-associated trait as a proof-of-principle, we successfully recovered the genomic position of the albinism locus near the gene Oca2. Further, our map successfully informed the positions of unplaced Astyanax genomic scaffolds within particular linkage groups. This ability to identify the relative location, orientation, and linear order of unaligned genomic scaffolds will facilitate ongoing efforts to improve on the current early draft and assemble future versions of the Astyanax physical genome. Moreover, this improved linkage map will enable higher-resolution genetic analyses and catalyze the discovery of the genetic basis for cave-associated phenotypes. PMID:25520037
Diversity and population-genetic properties of copy number variations and multicopy genes in cattle
Bickhart, Derek M.; Xu, Lingyang; Hutchison, Jana L.; Cole, John B.; Null, Daniel J.; Schroeder, Steven G.; Song, Jiuzhou; Garcia, Jose Fernando; Sonstegard, Tad S.; Van Tassell, Curtis P.; Schnabel, Robert D.; Taylor, Jeremy F.; Lewin, Harris A.; Liu, George E.
2016-01-01
The diversity and population genetics of copy number variation (CNV) in domesticated animals are not well understood. In this study, we analysed 75 genomes of major taurine and indicine cattle breeds (including Angus, Brahman, Gir, Holstein, Jersey, Limousin, Nelore, and Romagnola), sequenced to 11-fold coverage to identify 1,853 non-redundant CNV regions. Supported by high validation rates in array comparative genomic hybridization (CGH) and qPCR experiments, these CNV regions accounted for 3.1% (87.5 Mb) of the cattle reference genome, representing a significant increase over previous estimates of the area of the genome that is copy number variable (∼2%). Further population genetics and evolutionary genomics analyses based on these CNVs revealed the population structures of the cattle taurine and indicine breeds and uncovered potential diversely selected CNVs near important functional genes, including AOX1, ASZ1, GAT, GLYAT, and KRTAP9-1. Additionally, 121 CNV gene regions were found to be either breed specific or differentially variable across breeds, such as RICTOR in dairy breeds and PNPLA3 in beef breeds. In contrast, clusters of the PRP and PAG genes were found to be duplicated in all sequenced animals, suggesting that subfunctionalization, neofunctionalization, or overdominance play roles in diversifying those fertility-related genes. These CNV results provide a new glimpse into the diverse selection histories of cattle breeds and a basis for correlating structural variation with complex traits in the future. PMID:27085184
Global biogeography and evolution of Cuvierina pteropods.
Burridge, Alice K; Goetze, Erica; Raes, Niels; Huisman, Jef; Peijnenburg, Katja T C A
2015-03-12
Shelled pteropods are planktonic gastropods that are potentially good indicators of the effects of ocean acidification. They also have high potential for the study of zooplankton evolution because they are metazoan plankton with a good fossil record. We investigated phenotypic and genetic variation in pteropods belonging to the genus Cuvierina in relation to their biogeographic distribution across the world's oceans. We aimed to assess species boundaries and to reconstruct their evolutionary history. We distinguished six morphotypes based on geometric morphometric analyses of shells from 926 museum and 113 fresh specimens. These morphotypes have distinct geographic distributions across the Atlantic, Pacific and Indian oceans, and belong to three major genetic clades based on COI and 28S DNA sequence data. Using a fossil-calibrated phylogeny, we estimated that these clades separated in the Late Oligocene and Early to Middle Miocene. We found evidence for ecological differentiation among all morphotypes based on ecological niche modelling with sea surface temperature, salinity and phytoplankton biomass as primary determinants. Across all analyses, we found highly congruent patterns of differentiation suggesting species level divergences between morphotypes. However, we also found distinct morphotypes (e.g. in the Atlantic Ocean) that were ecologically, but not genetically differentiated. Given the distinct ecological and phenotypic specializations found among both described and undescribed Cuvierina taxa, they may not respond equally to future ocean changes and may not be equally sensitive to ocean acidification. Our findings support the view that ecological differentiation may be an important driving force in the speciation of zooplankton.
Comparative primate genomics: emerging patterns of genome content and dynamics
Rogers, Jeffrey; Gibbs, Richard A.
2014-01-01
Preface Advances in genome sequencing technologies have created new opportunities for comparative primate genomics. Genome assemblies have been published for several primates, with analyses of several others underway. Whole genome assemblies for the great apes provide remarkable new information about the evolutionary origins of the human genome and the processes involved. Genomic data for macaques and other nonhuman primates provide valuable insight into genetic similarities and differences among species used as models for disease-related research. This review summarizes current knowledge regarding primate genome content and dynamics and offers a series of goals for the near future. PMID:24709753
[Nutrigenetics and nutrigenomics].
Svacina, S
2007-01-01
According to WHO reports diet factors influence occurrence of more than 2/3 of diseases. Most of these factors belong to the categories of nutrigenetics a nutrigenomics. Nutrigenetics concerns individual differences in the reaction to food based on the genetic factors. Nutrigenomics analyses direct influences of nutrients on gene expression. Both terms are explained in our review article. Importance of nutritional factors is explained on differences of epidemiology of the same disease in different countries and on the examples of interaction of nutrition and genes for hypertension, atherosclerosis and cancer. In the future both, nutrigenetics a nutrigenomics, will induce many changes in preventive and also in clinical medicine.
Comparative primate genomics: emerging patterns of genome content and dynamics.
Rogers, Jeffrey; Gibbs, Richard A
2014-05-01
Advances in genome sequencing technologies have created new opportunities for comparative primate genomics. Genome assemblies have been published for various primate species, and analyses of several others are underway. Whole-genome assemblies for the great apes provide remarkable new information about the evolutionary origins of the human genome and the processes involved. Genomic data for macaques and other non-human primates offer valuable insights into genetic similarities and differences among species that are used as models for disease-related research. This Review summarizes current knowledge regarding primate genome content and dynamics, and proposes a series of goals for the near future.
Bioluminescence in the Ocean: Origins of Biological, Chemical, and Ecological Diversity
NASA Astrophysics Data System (ADS)
Widder, E. A.
2010-05-01
From bacteria to fish, a remarkable variety of marine life depends on bioluminescence (the chemical generation of light) for finding food, attracting mates, and evading predators. Disparate biochemical systems and diverse phylogenetic distribution patterns of light-emitting organisms highlight the ecological benefits of bioluminescence, with biochemical and genetic analyses providing new insights into the mechanisms of its evolution. The origins and functions of some bioluminescent systems, however, remain obscure. Here, I review recent advances in understanding bioluminescence in the ocean and highlight future research efforts that will unite molecular details with ecological and evolutionary relationships.
Current status, future opportunities, and remaining challenges in landscape genetics [Chapter 14
Niko Balkenhol; Samuel A. Cushman; Lisette P. Waits; Andrew Storfer
2016-01-01
Landscape genetics has advanced the field of evolutionary ecology by providing a direct focus on relationships between landscape patterns and population processes, such as gene flow, selection, and genetic drift. This chapter discusses the current and emerging challenges and opportunities, which focus and facilitate future progress in the field. It presents ten...
Critical overview of applications of genetic testing in sport talent identification.
Roth, Stephen M
2012-12-01
Talent identification for future sport performance is of paramount interest for many groups given the challenges of finding and costs of training potential elite athletes. Because genetic factors have been implicated in many performance- related traits (strength, endurance, etc.), a natural inclination is to consider the addition of genetic testing to talent identification programs. While the importance of genetic factors to sport performance is generally not disputed, whether genetic testing can positively inform talent identification is less certain. The present paper addresses the science behind the genetic tests that are now commercially available (some under patent protection) and aimed at predicting future sport performance potential. Also discussed are the challenging ethical issues that emerge from the availability of these tests. The potential negative consequences associated with genetic testing of young athletes will very likely outweigh any positive benefit for sport performance prediction at least for the next several years. The paper ends by exploring the future possibilities for genetic testing as the science of genomics in sport matures over the coming decade(s).
Developing educational resources for population genetics in R: An open and collaborative approach
USDA-ARS?s Scientific Manuscript database
The R computing and statistical language community has developed a myriad of resources for conducting populations genetic analyses. However, resources for learning how to carry out population genetic analyses in R are scattered and often incomplete, which can make acquiring this skill unnecessarily ...
Troyer, Ryan M.; LaPatra, Scott E.; Kurath, Gael
2000-01-01
Infectious haematopoietic necrosis virus (IHNV) is the most significant virus pathogen of salmon and trout in North America. Previous studies have shown relatively low genetic diversity of IHNV within large geographical regions. In this study, the genetic heterogeneity of 84 IHNV isolates sampled from rainbow trout (Oncorhynchus mykiss) over a 20 year period at four aquaculture facilities within a 12 mile stretch of the Snake River in Idaho, USA was investigated. The virus isolates were characterized using an RNase protection assay (RPA) and nucleotide sequence analyses. Among the 84 isolates analysed, 46 RPA haplotypes were found and analyses revealed a high level of genetic heterogeneity relative to that detected in other regions. Sequence analyses revealed up to 7·6% nucleotide divergence, which is the highest level of diversity reported for IHNV to date. Phylogenetic analyses identified four distinct monophyletic clades representing four virus lineages. These lineages were distributed across facilities, and individual facilities contained multiple lineages. These results suggest that co-circulating IHNV lineages of relatively high genetic diversity are present in the IHNV populations in this rainbow trout culture study site. Three of the four lineages exhibited temporal trends consistent with rapid evolution.
Martinez-Gonzalez, L J; Alvarez-Cubero, M J; Saiz, M; Alvarez, J C; Martinez-Labarga, C; Lorente, J A
2016-09-01
Currently, the Guatemalan population comprises genetically isolated groups due to geographic, linguistic and cultural factors. For example, Mayan groups within the Guatemala population have preserved their own language, culture and religion. These practices have limited genetic admixture and have maintained the genetic identity of Mayan populations. This study is designed to define the genetic structure of the Mayan-Guatemalan groups Kaqchiquel, K'iche', Mam and Q'eqchi' through autosomal short tandem repeat (STR) polymorphisms and to analyse the genetic relationships between them and with other Mayan groups. Fifteen STR polymorphisms were analysed in 200 unrelated donors belonging to the Kaqchiquel (n = 50), K'iche' (n = 50), Mam (n = 50) and Q'eqchi' (n = 50) groups living in Guatemala. Genetic distance, non-metric MDS and AMOVA were used to analyse the genetic relationships between population groups. Within the Mayan population, the STRs D18S51 and FGA were the most informative markers and TH01 was the least informative. AMOVA and genetic distance analyses showed that the Guatemalan-Native American populations are highly similar to Mayan populations living in Mexico. The Mayan populations from Guatemala and other Native American groups display high genetic homogeneity. Genetic relationships between these groups are more affected by cultural and linguistic factors than geographical and local flow. This study represents one of the first steps in understanding Mayan-Guatemalan populations, the associations between their sub-populations and differences in gene diversity with other populations. This article also demonstrates that the Mestizo population shares most of its ancestral genetic components with the Guatemala Mayan populations.
Teaching Genetics: Past, Present, and Future
Smith, Michelle K.; Wood, William B.
2016-01-01
Genetics teaching at the undergraduate level has changed in many ways over the past century. Compared to those of 100 years ago, contemporary genetics courses are broader in content and are taught increasingly differently, using instructional techniques based on educational research and constructed around the principles of active learning and backward design. Future courses can benefit from wider adoption of these approaches, more emphasis on the practice of genetics as a science, and new methods of assessing student learning. PMID:27601614
NASA Astrophysics Data System (ADS)
Graham, N. M.
2015-12-01
The evolution and speciation of plants is directly tied to the environment as the constrained stages of dispersal creates strong genetic differentiation among populations. This can result in differing genetic patterns between nuclear and chloroplast loci, where genes are inherited differently and dispersed via separate vectors. By developing distribution models based on genetic patterns found within a species, it is possible to begin understanding the influence of historic geomorphic and/or climatic processes on population evolution. If genetic patterns of the current range correlate with specific patterns of climate variability within the Pleistocene, it is possible that future shifts in species distribution in response to climate change can be more accurately modelled due to the historic signature that is found within inherited genes. Preliminary genetic analyses of Linanthus dichotomus, an annual herb distributed across California, suggests that the current taxonomic treatment does not accurately depict how this species is evolving. Genetic patterns of chloroplast genes suggest that populations are more correlated with biogeography than what the current nomenclature states. Additionally, chloroplast and nuclear genes show discrepancies in the dispersal across the landscape, suggesting pollinator driven gene flow overcoming seed dispersal boundaries. By comparing discrepancies between pollinator and seed induced gene flow we may be able to gain insight into historical pollinator communities within the Pleistocene. This information can then be applied to projected climate models to more accurately understand how species and/or communities will respond to a changing environment.
Gillies, A C; Navarro, C; Lowe, A J; Newton, A C; Hernández, M; Wilson, J; Cornelius, J P
1999-12-01
Swietenia macrophylla King, a timber species native to tropical America, is threatened by selective logging and deforestation. To quantify genetic diversity within the species and monitor the impact of selective logging, populations were sampled across Mesoamerica, from Mexico to Panama, and analysed for RAPD DNA variation. Ten decamer primers generated 102 polymorphic RAPD bands and pairwise distances were calculated between populations according to Nei, then used to construct a radial neighbour-joining dendrogram and examine intra- and interpopulation variance coefficients, by analysis of molecular variation (AMOVA). Populations from Mexico clustered closely together in the dendrogram and were distinct from the rest of the populations. Those from Belize also clustered closely together. Populations from Panama, Guatemala, Costa Rica, Nicaragua and Honduras, however, did not cluster closely by country but were more widely scattered throughout the dendrogram. This result was also reflected by an autocorrelation analysis of genetic and geographical distance. Genetic diversity estimates indicated that 80% of detected variation was maintained within populations and regression analysis demonstrated that logging significantly decreased population diversity (P = 0.034). This study represents one of the most wide-ranging surveys of molecular variation within a tropical tree species to date. It offers practical information for the future conservation of mahogany and highlights some factors that may have influenced the partitioning of genetic diversity in this species across Mesoamerica.
Genetic diversity and connectivity of the megamouth shark (Megachasma pelagios)
Joung, Shoou Jeng; Yu, Chi-Ju; Hsu, Hua-Hsun; Tsai, Wen-Pei; Liu, Kwang Ming
2018-01-01
The megamouth shark (Megachasma pelagios) was described as a new species in 1983. Since then, only ca. 100 individuals have been observed or caught. Its horizontal migration, dispersal, and connectivity patterns are still unknown due to its rarity. Two genetic markers were used in this study to reveal its genetic diversity and connectivity pattern. This approach provides a proxy to indirectly measure gene flow between populations. Tissues from 27 megamouth sharks caught by drift nets off the Hualien coast (eastern Taiwan) were collected from 2013 to 2015. With two additional tissue samples from megamouths caught in Baja California, Mexico, and sequences obtained from GenBank, we were able to perform the first population genetic analyses of the megamouth shark. The mtDNA cox1 gene and a microsatellite (Loc 6) were sequenced and analyzed. Our results showed that there is no genetic structure in the megamouth shark, suggesting a possible panmictic population. Based on occurrence data, we also suggest that the Kuroshio region, including the Philippines, Taiwan, and Japan, may act as a passageway for megamouth sharks to reach their feeding grounds from April to August. Our results provide insights into the dispersal and connectivity of megamouth sharks. Future studies should focus on collecting more samples and conducting satellite tagging to better understand the global migration and connectivity pattern of the megamouth shark. PMID:29527411
Genetic and metabolite diversity of Sardinian populations of Helichrysum italicum.
Melito, Sara; Sias, Angela; Petretto, Giacomo L; Chessa, Mario; Pintore, Giorgio; Porceddu, Andrea
2013-01-01
Helichrysum italicum (Asteraceae) is a small shrub endemic to the Mediterranean Basin, growing in fragmented and diverse habitats. The species has attracted attention due to its secondary metabolite content, but little effort has as yet been dedicated to assessing the genetic and metabolite diversity present in these populations. Here, we describe the diversity of 50 H. italicum populations collected from a range of habitats in Sardinia. H. italicum plants were AFLP fingerprinted and the composition of their leaf essential oil characterized by GC-MS. The relationships between the genetic structure of the populations, soil, habitat and climatic variables and the essential oil chemotypes present were evaluated using Bayesian clustering, contingency analyses and AMOVA. The Sardinian germplasm could be partitioned into two AFLP-based clades. Populations collected from the southwestern region constituted a homogeneous group which remained virtually intact even at high levels of K. The second, much larger clade was more diverse. A positive correlation between genetic diversity and elevation suggested the action of natural purifying selection. Four main classes of compounds were identified among the essential oils, namely monoterpenes, oxygenated monoterpenes, sesquiterpenes and oxygenated sesquiterpenes. Oxygenated monoterpene levels were significantly correlated with the AFLP-based clade structure, suggesting a correspondence between gene pool and chemical diversity. The results suggest an association between chemotype, genetic diversity and collection location which is relevant for the planning of future collections aimed at identifying valuable sources of essential oil.
Genetics of Interstitial Lung Disease: Vol de Nuit (Night Flight)
Furukawa, Hiroshi; Oka, Shomi; Shimada, Kota; Tsuchiya, Naoyuki; Tohma, Shigeto
2015-01-01
Interstitial lung disease (ILD) is a chronic, progressive fibrotic lung disease with a dismal prognosis. ILD of unknown etiology is referred to as idiopathic interstitial pneumonia (IIP), which is sporadic in the majority of cases. ILD is frequently accompanied by rheumatoid arthritis (RA), systemic sclerosis (SSc), polymyositis/dermatomyositis (PM/DM), and other autoimmune diseases, and is referred to as collagen vascular disease-associated ILD (CVD-ILD). Susceptibility to ILD is influenced by genetic and environmental factors. Recent advances in radiographic imaging techniques such as high-resolution computed tomography (CT) scanning as well as high-throughput genomic analyses have provided insights into the genetics of ILD. These studies have repeatedly revealed an association between IIP (sporadic and familial) and a single nucleotide polymorphism (SNP) in the promoter region of the mucin 5B (MUC5B). HLA-DRB1*11 alleles have been reported to correlate with ILD in European patients with SSc, whereas in Japanese patients with RA, the HLA-DR2 serological group was identified. The aim of this review is to describe the genetic background of sporadic IIP, CVD-ILD, drug-induced-ILD (DI-ILD), pneumoconiosis, and hypersensitivity pneumonitis. The genetics of ILD is still in progress. However, this information will enhance the understanding of the pathogenesis of ILD and aid the identification of novel therapeutic targets for personalized medicine in future. PMID:26056507
In defense of prenatal genetic interventions.
Murphy, Timothy F
2014-09-01
Jürgen Habermas has argued against prenatal genetic interventions used to influence traits on the grounds that only biogenetic contingency in the conception of children preserves the conditions that make the presumption of moral equality possible. This argument fails for a number of reasons. The contingency that Habermas points to as the condition of moral equality is an artifact of evolutionary contingency and not inviolable in itself. Moreover, as a precedent for genetic interventions, parents and society already affect children's traits, which is to say there is moral precedent for influencing the traits of descendants. A veil-of-ignorance methodology can also be used to justify prenatal interventions through its method of advance consent and its preservation of the contingency of human identities in a moral sense. In any case, the selection of children's traits does not undermine the prospects of authoring a life since their future remains just as contingent morally as if no trait had been selected. Ironically, the prospect of preserving human beings as they are--to counteract genetic drift--might even require interventions to preserve the ability to author a life in a moral sense. In light of these analyses, Habermas' concerns about prenatal genetic interventions cannot succeed as objections to their practice as a matter of principle; the merits of these interventions must be evaluated individually. © 2012 John Wiley & Sons Ltd.
Genetic thinking in the study of social relationships: Five points of entry
Reiss, David
2014-01-01
For nearly a generation, researchers studying human behavioral development have combined genetically informed research designs with careful measures of social relationships: parenting, sibling relationships, peer relationships, marital processes, social class stratifications and patterns of social engagement in the elderly. In what way have these genetically informed studies altered the construction and testing of social theories of human development? We consider five points where genetic thinking is taking hold. First, genetic findings suggest an alternative scenario for explaining social data. Associations between measures of the social environment and human development may be due to genes that influence both. Second, genetic studies add to other prompts to study the early developmental origins of current social phenomena in mid-life and beyond. Third, genetic analyses promise to bring to the surface understudied social systems, such as sibling relationships, that have an impact on human development independent of genotype. Fourth, genetic analyses anchor in neurobiology individual differences in resilience and sensitivity to both adverse and favorable social environments. Finally, genetic analyses increase the utility of laboratory simulations of human social processes and of animal models. PMID:25419225
Pertoldi, Cino; Sonne, Christian; Wiig, Øystein; Baagøe, Hans J; Loeschcke, Volker; Bechshøft, Thea Østergaard
2012-06-01
A morphometric study was conducted on four skull traits of 37 male and 18 female adult East Greenland polar bears (Ursus maritimus) collected 1892-1968, and on 54 male and 44 female adult Barents Sea polar bears collected 1950-1969. The aim was to compare differences in size and shape of the bear skulls using a multivariate approach, characterizing the variation between the two populations using morphometric traits as an indicator of environmental and genetic differences. Mixture analysis testing for geographic differentiation within each population revealed three clusters for Barents Sea males and three clusters for Barents Sea females. East Greenland consisted of one female and one male cluster. A principal component analysis (PCA) conducted on the clusters defined by the mixture analysis, showed that East Greenland and Barents Sea polar bear populations overlapped to a large degree, especially with regards to females. Multivariate analyses of variance (MANOVA) showed no significant differences in morphometric means between the two populations, but differences were detected between clusters from each respective geographic locality. To estimate the importance of genetics and environment in the morphometric differences between the bears, a PCA was performed on the covariance matrix derived from the skull measurements. Skull trait size (PC1) explained approx. 80% of the morphometric variation, whereas shape (PC2) defined approx. 15%, indicating some genetic differentiation. Hence, both environmental and genetic factors seem to have contributed to the observed skull differences between the two populations. Overall, results indicate that many Barents Sea polar bears are morphometrically similar to the East Greenland ones, suggesting an exchange of individuals between the two populations. Furthermore, a subpopulation structure in the Barents Sea population was also indicated from the present analyses, which should be considered with regards to future management decisions. © 2012 The Authors.
Comparative mapping in the Fagaceae and beyond with EST-SSRs
2012-01-01
Background Genetic markers and linkage mapping are basic prerequisites for comparative genetic analyses, QTL detection and map-based cloning. A large number of mapping populations have been developed for oak, but few gene-based markers are available for constructing integrated genetic linkage maps and comparing gene order and QTL location across related species. Results We developed a set of 573 expressed sequence tag-derived simple sequence repeats (EST-SSRs) and located 397 markers (EST-SSRs and genomic SSRs) on the 12 oak chromosomes (2n = 2x = 24) on the basis of Mendelian segregation patterns in 5 full-sib mapping pedigrees of two species: Quercus robur (pedunculate oak) and Quercus petraea (sessile oak). Consensus maps for the two species were constructed and aligned. They showed a high degree of macrosynteny between these two sympatric European oaks. We assessed the transferability of EST-SSRs to other Fagaceae genera and a subset of these markers was mapped in Castanea sativa, the European chestnut. Reasonably high levels of macrosynteny were observed between oak and chestnut. We also obtained diversity statistics for a subset of EST-SSRs, to support further population genetic analyses with gene-based markers. Finally, based on the orthologous relationships between the oak, Arabidopsis, grape, poplar, Medicago, and soybean genomes and the paralogous relationships between the 12 oak chromosomes, we propose an evolutionary scenario of the 12 oak chromosomes from the eudicot ancestral karyotype. Conclusions This study provides map locations for a large set of EST-SSRs in two oak species of recognized biological importance in natural ecosystems. This first step toward the construction of a gene-based linkage map will facilitate the assignment of future genome scaffolds to pseudo-chromosomes. This study also provides an indication of the potential utility of new gene-based markers for population genetics and comparative mapping within and beyond the Fagaceae. PMID:22931513
Knowledge Integration in Cancer: Current Landscape and Future Prospects
Ioannidis, John P.A.; Schully, Sheri D.; Lam, Tram Kim; Khoury, Muin J.
2015-01-01
Knowledge integration includes knowledge management, synthesis, and translation processes. It aims to maximize the use of collected scientific information and accelerate translation of discoveries into individual and population health benefits. Accumulated evidence in cancer epidemiology constitutes a large share of the 2.7 million articles on cancer in PubMed. We examine the landscape of knowledge integration in cancer epidemiology. Past approaches have mostly used retrospective efforts of knowledge management and traditional systematic reviews and meta-analyses. Systematic searches identify 2,332 meta-analyses, about half of which are on genetics and epigenetics. Meta-analyses represent 1:89-1:1162 of published articles in various cancer subfields. Recently, there are more collaborative meta-analyses with individual-level data, including those with prospective collection of measurements [e.g., genotypes in genome-wide association studies (GWAS)]; this may help increase the reliability of inferences in the field. However, most meta-analyses are still done retrospectively with published information. There is also a flurry of candidate gene meta-analyses with spuriously prevalent "positive" results. Prospective design of large research agendas, registration of datasets, and public availability of data and analyses may improve our ability to identify knowledge gaps, maximize and accelerate translational progress or—at a minimum—recognize dead ends in a more timely fashion. PMID:23093546
Knowledge integration in cancer: current landscape and future prospects.
Ioannidis, John P A; Schully, Sheri D; Lam, Tram Kim; Khoury, Muin J
2013-01-01
Knowledge integration includes knowledge management, synthesis, and translation processes. It aims to maximize the use of collected scientific information and accelerate translation of discoveries into individual and population health benefits. Accumulated evidence in cancer epidemiology constitutes a large share of the 2.7 million articles on cancer in PubMed. We examine the landscape of knowledge integration in cancer epidemiology. Past approaches have mostly used retrospective efforts of knowledge management and traditional systematic reviews and meta-analyses. Systematic searches identify 2,332 meta-analyses, about half of which are on genetics and epigenetics. Meta-analyses represent 1:89-1:1162 of published articles in various cancer subfields. Recently, there are more collaborative meta-analyses with individual-level data, including those with prospective collection of measurements [e.g., genotypes in genome-wide association studies (GWAS)]; this may help increase the reliability of inferences in the field. However, most meta-analyses are still done retrospectively with published information. There is also a flurry of candidate gene meta-analyses with spuriously prevalent "positive" results. Prospective design of large research agendas, registration of datasets, and public availability of data and analyses may improve our ability to identify knowledge gaps, maximize and accelerate translational progress or-at a minimum-recognize dead ends in a more timely fashion.
Genetic parameter estimation for pre- and post-weaning traits in Brahman cattle in Brazil.
Vargas, Giovana; Buzanskas, Marcos Eli; Guidolin, Diego Gomes Freire; Grossi, Daniela do Amaral; Bonifácio, Alexandre da Silva; Lôbo, Raysildo Barbosa; da Fonseca, Ricardo; Oliveira, João Ademir de; Munari, Danísio Prado
2014-10-01
Beef cattle producers in Brazil use body weight traits as breeding program selection criteria due to their great economic importance. The objectives of this study were to evaluate different animal models, estimate genetic parameters, and define the most fitting model for Brahman cattle body weight standardized at 120 (BW120), 210 (BW210), 365 (BW365), 450 (BW450), and 550 (BW550) days of age. To estimate genetic parameters, single-, two-, and multi-trait analyses were performed using the animal model. The likelihood ratio test was verified between all models. For BW120 and BW210, additive direct genetic, maternal genetic, maternal permanent environment, and residual effects were considered, while for BW365 and BW450, additive direct genetic, maternal genetic, and residual effects were considered. Finally, for BW550, additive direct genetic and residual effects were considered. Estimates of direct heritability for BW120 were similar in all analyses; however, for the other traits, multi-trait analysis resulted in higher estimates. The maternal heritability and proportion of maternal permanent environmental variance to total variance were minimal in multi-trait analyses. Genetic, environmental, and phenotypic correlations were of high magnitude between all traits. Multi-trait analyses would aid in the parameter estimation for body weight at older ages because they are usually affected by a lower number of animals with phenotypic information due to culling and mortality.
Wultsch, Claudia; Waits, Lisette P; Kelly, Marcella J
2016-01-01
With increasing anthropogenic impact and landscape change, terrestrial carnivore populations are becoming more fragmented. Thus, it is crucial to genetically monitor wild carnivores and quantify changes in genetic diversity and gene flow in response to these threats. This study combined the use of scat detector dogs and molecular scatology to conduct the first genetic study on wild populations of multiple Neotropical felids coexisting across a fragmented landscape in Belize, Central America. We analyzed data from 14 polymorphic microsatellite loci in 1053 scat samples collected from wild jaguars (Panthera onca), pumas (Puma concolor), and ocelots (Leopardus pardalis). We assessed levels of genetic diversity, defined potential genetic clusters, and examined gene flow for the three target species on a countrywide scale using a combination of individual- and population-based analyses. Wild felids in Belize showed moderate levels of genetic variation, with jaguars having the lowest diversity estimates (HE = 0.57 ± 0.02; AR = 3.36 ± 0.09), followed by pumas (HE = 0.57 ± 0.08; AR = 4.20 ± 0.16), and ocelots (HE = 0.63 ± 0.03; AR = 4.16 ± 0.08). We observed low to moderate levels of genetic differentiation for all three target species, with jaguars showing the lowest degree of genetic subdivision across the country, followed by ocelots and pumas. Although levels of genetic diversity and gene flow were still fairly high, we detected evidence of fine-scale genetic subdivision, indicating that levels of genetic connectivity for wild felids in Belize are likely to decrease if habitat loss and fragmentation continue at the current rate. Our study demonstrates the value of understanding fine-scale patterns of gene flow in multiple co-occurring felid species of conservation concern, which is vital for wildlife movement corridor planning and prioritizing future conservation and management efforts within human-impacted landscapes.
Wultsch, Claudia; Waits, Lisette P.; Kelly, Marcella J.
2016-01-01
With increasing anthropogenic impact and landscape change, terrestrial carnivore populations are becoming more fragmented. Thus, it is crucial to genetically monitor wild carnivores and quantify changes in genetic diversity and gene flow in response to these threats. This study combined the use of scat detector dogs and molecular scatology to conduct the first genetic study on wild populations of multiple Neotropical felids coexisting across a fragmented landscape in Belize, Central America. We analyzed data from 14 polymorphic microsatellite loci in 1053 scat samples collected from wild jaguars (Panthera onca), pumas (Puma concolor), and ocelots (Leopardus pardalis). We assessed levels of genetic diversity, defined potential genetic clusters, and examined gene flow for the three target species on a countrywide scale using a combination of individual- and population-based analyses. Wild felids in Belize showed moderate levels of genetic variation, with jaguars having the lowest diversity estimates (HE = 0.57 ± 0.02; AR = 3.36 ± 0.09), followed by pumas (HE = 0.57 ± 0.08; AR = 4.20 ± 0.16), and ocelots (HE = 0.63 ± 0.03; AR = 4.16 ± 0.08). We observed low to moderate levels of genetic differentiation for all three target species, with jaguars showing the lowest degree of genetic subdivision across the country, followed by ocelots and pumas. Although levels of genetic diversity and gene flow were still fairly high, we detected evidence of fine-scale genetic subdivision, indicating that levels of genetic connectivity for wild felids in Belize are likely to decrease if habitat loss and fragmentation continue at the current rate. Our study demonstrates the value of understanding fine-scale patterns of gene flow in multiple co-occurring felid species of conservation concern, which is vital for wildlife movement corridor planning and prioritizing future conservation and management efforts within human-impacted landscapes. PMID:26974968
Parents' communication with siblings of children affected by an inherited genetic condition.
Plumridge, Gillian; Metcalfe, Alison; Coad, Jane; Gill, Paramjit
2011-08-01
The objective of this study was to explore parents' communication about risk with siblings of children affected by an inherited genetic condition, and to ascertain what level of support, if any, is required from health professionals. Semi-structured interviews were conducted with affected and unaffected children and their parents. Families were affected by one of six genetic conditions representing different patterns of inheritance and variations in age of onset, life expectancy and impact on families. Interviews were analysed using constructivist grounded theory and informed by models which focused on three different aspects of family communication. Interviews with 33 families showed that siblings' information and support needs go largely unrecognized by health professionals and sometimes by parents. Some siblings were actively informed about the genetic condition by parents, others were left to find out and assimilate information by themselves. Siblings were given information about the current symptoms and management of the genetic condition but were less likely to know about its hereditary nature and their own potential risk. When siblings were fully informed about the condition and included in family discussion, they had a better understanding of their role within their family, and family relationships were reported to be more harmonious. The information and support needs of siblings can be overlooked. Parents with the responsibility for caring for a child affected by a genetic condition may require support from health professionals to understand and respond to their unaffected children's need for more information about the genetic condition and its implications for the children's own future health and reproductive decision-making.
Feng, Hui; Gupta, Bhavna; Wang, Meilian; Zheng, Wenqi; Zheng, Li; Zhu, Xiaotong; Yang, Yimei; Fang, Qiang; Luo, Enjie; Fan, Qi; Tsuboi, Takafumi; Cao, Yaming; Cui, Liwang
2015-12-01
The male gamete fertilization factor P48/45 in malaria parasites is a prime transmission-blocking vaccine (TBV) candidate. Efforts to develop antimalarial vaccines are often thwarted by genetic diversity of the target antigens. Here we evaluated the genetic diversity of Pvs48/45 gene in global Plasmodium vivax populations. We determined 200 Pvs48/45 sequences collected from temperate and subtropical parasite populations in China. Population genetic and evolutionary analyses were performed to determine the levels of genetic diversity, potential signature of selection, and population differentiation. Analysis of the Pvs48/45 sequences from 200 P. vivax parasites collected in a temperate and a tropical region revealed a low level of genetic diversity (π = 0.0012) with 14 single nucleotide polymorphisms, of which 11 were nonsynonymous. Analysis of 344 Pvs48/45 sequences from nine worldwide P. vivax populations detected a total of 38 haplotypes, of which 13 haplotypes were present only once. Multiple tests for selection confirmed a signature of positive selection on Pvs48/45 with selection skewed to the second cysteine domain. Haplotype network analysis and Wright's fixation index showed large geographical differentiation with the presence of continent-or region-specific mutations in this gene. Pvs48/45 displays low levels of genetic diversity with the presence of region-specific mutations. Some of the mutations may be potential epitope targets based on their positions in the predicted structure, highlighting the need for future evaluation of these mutations in designing Pvs48/45-based TBV.
Kaur, Kuljit; Sharma, Vikas; Singh, Vijay; Wani, Mohammad Saleem; Gupta, Raghbir Chand
2016-12-01
Tribulus terrestris L., commonly called puncture vine and gokhru, is an important member of Zygophyllaceae. The species is highly important in context to therapeutic uses and provides important active principles responsible for treatment of various diseases and also used as tonic. It is widely distributed in tropical regions of India and the world. However, status of its genetic diversity remained concealed due to lack of research work in this species. In present study, genetic diversity and structure of different populations of T. terrestris from north India was examined at molecular level using newly developed Simple Sequence Repeat (SSR) markers. In total, 20 primers produced 48 alleles in a size range of 100-500 bp with maximum (4) fragments amplified by TTMS-1, TTMS-25 and TTMS-33. Mean Polymorphism Information Content (PIC) and Marker Index (MI) were 0.368 and 1.01, respectively. Dendrogram showed three groups, one of which was purely containing accessions from Rajasthan while other two groups corresponded to Punjab and Haryana regions with intermixing of few other accessions. Analysis of molecular variance partitioned 76 % genetic variance within populations and 24 % among populations. Bayesian model based STRUCTURE analysis detected two genetic stocks for analyzed germplasm and also detected some admixed individuals. Different geographical populations of this species showed high level of genetic diversity. Results of present study can be useful in identifying diverse accessions and management of this plant resource. Moreover, the novel SSR markers developed can be utilized for various genetic analyses in this species in future.
Genetics of Central Valley O. mykiss populations: drainage and watershed scale analyses
Nielsen, Jennifer L.; Pavey, Scott A.; Wiacek, Talia; Williams, Ian S.
2005-01-01
Genetic variation at 11 microsatellite loci described population genetic structure for Oncorhynchus mykiss in the Central Valley, California. Spatial and temporal variation was examined as well as relationships between hatchery and putative natural spawning anadromous stocks. Genetic diversity was analyzed at two distinct spatial scales: fine-scale within drainage for five populations on Clear Creek; between and among drainage diversity for 23 populations. Significant regional spatial structure was apparent, both within Clear Creek and among rainbow trout populations throughout the Central Valley. Significant differences in allelic frequencies were found among most river or drainage systems. Less than 1% of the molecular variance could be attributed to differences found between drainages. Hatchery populations were shown to carry similar genetic diversity to geographically proximate wild populations. Central Valley M = 0.626 (below the M < 0.68 threshold) supported recent population reductions within the Central Valley. However, average estimated effective population size was relatively high (Ne = 5066). Significant allelic differences were found in rainbow trout collected above and below impassable dams on the American, Yuba, Stanislaus and Tuolumne rivers. Rainbow trout sampled in Spring Creek were extremely bottlenecked with allelic variation at only two loci and an estimated effective population size of 62, suggesting some local freshwater O. mykiss stocks may be declining rapidly. These data support significant genetic population structure for steelhead and rainbow trout populations within the Central Valley across multiple scales. Careful consideration of this genetic diversity and its distribution across the landscape should be part of future conservation and restoration efforts.
Urban population genetics of slum-dwelling rats (Rattus norvegicus) in Salvador, Brazil.
Kajdacsi, Brittney; Costa, Federico; Hyseni, Chaz; Porter, Fleur; Brown, Julia; Rodrigues, Gorete; Farias, Helena; Reis, Mitermayer G; Childs, James E; Ko, Albert I; Caccone, Adalgisa
2013-10-01
Throughout the developing world, urban centres with sprawling slum settlements are rapidly expanding and invading previously forested ecosystems. Slum communities are characterized by untended refuse, open sewers and overgrown vegetation, which promote rodent infestation. Norway rats (Rattus norvegicus) are reservoirs for epidemic transmission of many zoonotic pathogens of public health importance. Understanding the population ecology of R. norvegicus is essential to formulate effective rodent control strategies, as this knowledge aids estimation of the temporal stability and spatial connectivity of populations. We screened for genetic variation, characterized the population genetic structure and evaluated the extent and patterns of gene flow in the urban landscape using 17 microsatellite loci in 146 rats from nine sites in the city of Salvador, Brazil. These sites were divided between three neighbourhoods within the city spaced an average of 2.7 km apart. Surprisingly, we detected very little relatedness among animals trapped at the same site and found high levels of genetic diversity, as well as structuring across small geographical distances. Most F(ST) comparisons among sites were statistically significant, including sites <400 m apart. Bayesian analyses grouped the samples in three genetic clusters, each associated with distinct sampling sites from different neighbourhoods or valleys within neighbourhoods. These data indicate the existence of complex genetic structure in R. norvegicus in Salvador, linked to the heterogeneous urban landscape. Future rodent control measures need to take into account the spatial and temporal linkage of rat populations in Salvador, as revealed by genetic data, to develop informed eradication strategies. © 2013 John Wiley & Sons Ltd.
Atkinson, Elizabeth G.; Rogers, Jeffrey; Mahaney, Michael C.; Cox, Laura A.; Cheverud, James M.
2015-01-01
Folding of the primate brain cortex allows for improved neural processing power by increasing cortical surface area for the allocation of neurons. The arrangement of folds (sulci) and ridges (gyri) across the cerebral cortex is thought to reflect the underlying neural network. Gyrification, an adaptive trait with a unique evolutionary history, is affected by genetic factors different from those affecting brain volume. Using a large pedigreed population of ∼1000 Papio baboons, we address critical questions about the genetic architecture of primate brain folding, the interplay between genetics, brain anatomy, development, patterns of cortical–cortical connectivity, and gyrification’s potential for future evolution. Through Mantel testing and cluster analyses, we find that the baboon cortex is quite evolvable, with high integration between the genotype and phenotype. We further find significantly similar partitioning of variation between cortical development, anatomy, and connectivity, supporting the predictions of tension-based models for sulcal development. We identify a significant, moderate degree of genetic control over variation in sulcal length, with gyrus-shape features being more susceptible to environmental effects. Finally, through QTL mapping, we identify novel chromosomal regions affecting variation in brain folding. The most significant QTL contain compelling candidate genes, including gene clusters associated with Williams and Down syndromes. The QTL distribution suggests a complex genetic architecture for gyrification with both polygeny and pleiotropy. Our results provide a solid preliminary characterization of the genetic basis of primate brain folding, a unique and biomedically relevant phenotype with significant implications in primate brain evolution. PMID:25873632
Genetic diversity of wild germplasm of "yerba mate" (Ilex paraguariensis St. Hil.) from Uruguay.
Cascales, Jimena; Bracco, Mariana; Poggio, Lidia; Gottlieb, Alexandra Marina
2014-12-01
The "yerba mate" tree, Ilex paraguariensis St. Hil., is a crop native to subtropical South America, marketed for the elaboration of the highly popular "mate" beverage. The Uruguayan germplasm occupies the southernmost area of the species distribution range and carries adaptations to environments that considerably differ from the current production area. We characterized the genetic variability of the germplasm from this unexplored area by jointly analyzing individuals from the diversification center (ABP, Argentina, Brazil and Paraguay) with 19 nuclear and 11 plastidic microsatellite markers. For the Uruguayan germplasm, we registered 55 alleles (18 % private), and 80 genotypes (44 % exclusive), whereas 63 alleles (28.6 % private) and 81 genotypes (42 % exclusive) were recorded for individuals from ABP. Only two plastidic haplotypes were detected. Distance-based and multilocus genotype analyses showed that individuals from ABP intermingle and that the Uruguayan germplasm is differentiated in three gene-pools. Significant positive correlations between genetic and geographic distances were detected. Our results concur in that ABP individuals harbor greater genetic variation than those from the tail of the distribution, as to the number of alleles (1.15-fold), He (1.19-fold), Rs (1.39-fold), and the between-group genetic distances (1.16-fold). Also the shape of the genetic landscape interpolation analysis suggests that the genetic variation decays southward towards the Uruguayan territory. We showed that Uruguayan germplasm hosts a combination of nuclear alleles not present in the central region, constituting a valuable breeding resource. Future conservation efforts should concentrate in collecting numerous individuals of "yerba mate" per site to gather the existent variation.
Partition of genetic trends by origin in Landrace and Large-White pigs.
Škorput, D; Gorjanc, G; Kasap, A; Luković, Z
2015-10-01
The objective of this study was to analyse the effectiveness of genetic improvement via domestic selection and import for backfat thickness and time on test in a conventional pig breeding programme for Landrace (L) and Large-White (LW) breeds. Phenotype data was available for 25 553 L and 10 432 LW pigs born between 2002 and 2012 from four large-scale farms and 72 family farms. Pedigree information indicated whether each animal was born and registered within the domestic breeding programme or has been imported. This information was used for defining the genetic groups of unknown parents in a pedigree and the partitioning analysis. Breeding values were estimated using a Bayesian analysis of an animal model with and without genetic groups. Such analysis enabled full Bayesian inference of the genetic trends and their partitioning by the origin of germplasm. Estimates of genetic group indicated that imported germplasm was overall better than domestic and substantial changes in estimates of breeding values was observed when genetic group were fitted. The estimated genetic trends in L were favourable and significantly different from zero by the end of the analysed period. Overall, the genetic trends in LW were not different from zero. The relative contribution of imported germplasm to genetic trends was large, especially towards the end of analysed period with 78% and 67% in L and from 50% to 67% in LW. The analyses suggest that domestic breeding activities and sources of imported animals need to be re-evaluated, in particular in LW breed.
ERIC Educational Resources Information Center
Ebejer, Jane L.; Coventry, William L.; Byrne, Brian; Willcutt, Erik G.; Olson, Richard K.; Corley, Robin; Samuelsson, Stefan
2010-01-01
Twin children from Australia, Scandinavia, and the United States were assessed for inattention, hyperactivity-impulsivity, and reading across the first 3 school years. Univariate behavior-genetic analyses indicated substantial heritability for all three variables in all years. Longitudinal analyses showed one genetic source operating across the…
Levin, M
1999-01-01
Screening for genetic disorders, particularly Tay-Sachs Disease, has been traditionally welcome by the Jewish community. I review the history of genetic screening among Jews and the views from the Jewish tradition on the subject, and then discuss ethical challenges of screening and the impact of historical memories upon future acceptance of screening programs. Some rational principles to guide future design of genetic screening programs among Jews are proposed.
Using Twins to Better Understand Sibling Relationships.
Mark, Katharine M; Pike, Alison; Latham, Rachel M; Oliver, Bonamy R
2017-03-01
We compared the nature of the sibling relationship in dyads of varying genetic relatedness, employing a behavioural genetic design to estimate the contribution that genes and the environment have on this familial bond. Two samples were used-the Sisters and Brothers Study consisted of 173 families with two target non-twin children (mean ages = 7.42 and 5.22 years respectively); and the Twins, Family and Behaviour study included 234 families with two target twin children (mean age = 4.70 years). Mothers and fathers reported on their children's relationship with each other, via a postal questionnaire (the Sisters and Brothers Study) or a telephone interview (the Twins, Family and Behaviour study). Contrary to expectations, no mean level differences emerged when monozygotic twin pairs, dizygotic twin pairs, and non-twin pairs were compared on their sibling relationship quality. Behavioural genetic analyses also revealed that the sibling bond was modestly to moderately influenced by the genetic propensities of the children within the dyad, and moderately to substantially influenced by the shared environment common to both siblings. In addition, for sibling negativity, we found evidence of twin-specific environmental influence-dizygotic twins showed more reciprocity than did non-twins. Our findings have repercussions for the broader application of results from future twin-based investigations.
Graham, Carly F; Eberts, Rebecca L; Morgan, Thomas D; Boreham, Douglas R; Lance, Stacey L; Manzon, Richard G; Martino, Jessica A; Rogers, Sean M; Wilson, Joanna Y; Somers, Christopher M
2016-01-01
Thermal pollution from industrial processes can have negative impacts on the spawning and development of cold-water fish. Point sources of thermal effluent may need to be managed to avoid affecting discrete populations. Correspondingly, we examined fine-scale ecological and genetic population structure of two whitefish species (Coregonus clupeaformis and Prosopium cylindraceum) on Lake Huron, Canada, in the immediate vicinity of thermal effluent from nuclear power generation. Niche metrics using δ13C and δ15N stable isotopes showed high levels of overlap (48.6 to 94.5%) in resource use by adult fish captured in areas affected by thermal effluent compared to nearby reference locations. Isotopic niche size, a metric of resource use diversity, was 1.3- to 2.8-fold higher than reference values in some thermally affected areas, indicative of fish mixing. Microsatellite analyses of genetic population structure (Fst, STRUCTURE and DAPC) indicated that fish captured at all locations in the vicinity of the power plant were part of a larger population extending beyond the study area. In concert, ecological and genetic markers do not support the presence of an evolutionarily significant unit in the vicinity of the power plant. Thus, future research should focus on the potential impacts of thermal emissions on development and recruitment.
Exome Sequencing Fails to Identify the Genetic Cause of Aicardi Syndrome.
Lund, Caroline; Striano, Pasquale; Sorte, Hanne Sørmo; Parisi, Pasquale; Iacomino, Michele; Sheng, Ying; Vigeland, Magnus D; Øye, Anne-Marte; Møller, Rikke Steensbjerre; Selmer, Kaja K; Zara, Federico
2016-09-01
Aicardi syndrome (AS) is a well-characterized neurodevelopmental disorder with an unknown etiology. In this study, we performed whole-exome sequencing in 11 female patients with the diagnosis of AS, in order to identify the disease-causing gene. In particular, we focused on detecting variants in the X chromosome, including the analysis of variants with a low number of sequencing reads, in case of somatic mosaicism. For 2 of the patients, we also sequenced the exome of the parents to search for de novo mutations. We did not identify any genetic variants likely to be damaging. Only one single missense variant was identified by the de novo analyses of the 2 trios, and this was considered benign. The failure to identify a disease gene in this study may be due to technical limitations of our study design, including the possibility that the genetic aberration leading to AS is situated in a non-exonic region or that the mutation is somatic and not detectable by our approach. Alternatively, it is possible that AS is genetically heterogeneous and that 11 patients are not sufficient to reveal the causative genes. Future studies of AS should consider designs where also non-exonic regions are explored and apply a sequencing depth so that also low-grade somatic mosaicism can be detected.
Advances in Maize Genomics and Their Value for Enhancing Genetic Gains from Breeding
Xu, Yunbi; Skinner, Debra J.; Wu, Huixia; Palacios-Rojas, Natalia; Araus, Jose Luis; Yan, Jianbing; Gao, Shibin; Warburton, Marilyn L.; Crouch, Jonathan H.
2009-01-01
Maize is an important crop for food, feed, forage, and fuel across tropical and temperate areas of the world. Diversity studies at genetic, molecular, and functional levels have revealed that, tropical maize germplasm, landraces, and wild relatives harbor a significantly wider range of genetic variation. Among all types of markers, SNP markers are increasingly the marker-of-choice for all genomics applications in maize breeding. Genetic mapping has been developed through conventional linkage mapping and more recently through linkage disequilibrium-based association analyses. Maize genome sequencing, initially focused on gene-rich regions, now aims for the availability of complete genome sequence. Conventional insertion mutation-based cloning has been complemented recently by EST- and map-based cloning. Transgenics and nutritional genomics are rapidly advancing fields targeting important agronomic traits including pest resistance and grain quality. Substantial advances have been made in methodologies for genomics-assisted breeding, enhancing progress in yield as well as abiotic and biotic stress resistances. Various genomic databases and informatics tools have been developed, among which MaizeGDB is the most developed and widely used by the maize research community. In the future, more emphasis should be given to the development of tools and strategic germplasm resources for more effective molecular breeding of tropical maize products. PMID:19688107
Parental involvement as an etiological moderator of middle childhood oppositional defiant disorder.
Li, Ishien; Clark, D Angus; Klump, Kelly L; Burt, S Alexandra
2017-09-01
The goal of this study was to investigate parental involvement as an etiologic moderator of oppositional defiant disorder (ODD) during middle childhood. Previous studies examining the influence of genetic and environmental factors on ODD have not considered whether and how these factors might vary by parental involvement. We thus conducted a series of "latent genetic by measured environmental" interaction analyses, in which measured parental involvement was allowed to moderate genetic, shared, and nonshared environmental influences on child ODD. Participants include 1,027 twin pairs (age ranged from 6 to 11 years old) from the Michigan State University Twin Registry. Results did indeed suggest that the etiology of ODD varies with maternal involvement, such that genetic influence on ODD became more prominent as maternal involvement decreased. However, these results were specific to children's perceptions of maternal involvement and did not extend to maternal perceptions of her involvement. There was no evidence that paternal involvement moderated the etiology of ODD, regardless of informant. The different results found in twins' and parents' data are consistent with those in previous research showing that children may have different perceptions from parents' about their family relationships and that this discrepancy needs to be taken into account in future research. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Siol, V; Lange, A; Prenzler, A; Neubauer, S; Frank, M
2017-05-01
Objectives: The present study aims to investigate the interest of young adults in predictive oncological genetic testing and their willingness to pay for such a test. Furthermore, major determinants of the 2 variables of interest were identified. Methods: 348 students of economics from the Leibniz University of Hanover were queried in July 2013 using an extensive questionnaire. Among other things, the participants were asked if they are interested in information about the probability to develop cancer in the future and their willingness to pay for such information. Data were analysed using descriptive statistics and ordinal probit regressions. Additionally marginal effects were calculated. Results: About 50% of the students were interested in predictive oncological genetic testing and were willing to pay for the test. Moreover, the participants who were willing to pay for the test partly attach high monetary values to the information that could so be obtained. The study shows that the interest of the students and their willingness to pay were primarily influenced by individual attitudes and perceptions. Conclusions: The study proves that young adults were interested in predictive genetic testing and appreciate information about their probability of develop cancer someday. © Georg Thieme Verlag KG Stuttgart · New York.
Raffini, Francesca; Fruciano, Carmelo; Meyer, Axel
2018-06-01
The scale-eating cichlid fish Perissodus microlepis is a textbook example of bilateral asymmetry due to its left or right-bending heads and of negative frequency-dependent selection, which is proposed to maintain this stable polymorphism. The mechanisms that underlie this asymmetry remain elusive. Several studies had initially postulated a simple genetic basis for this trait, but this explanation has been questioned, particularly by reports observing a unimodal distribution of mouth shapes. We hypothesize that this unimodal distribution might be due to a combination of genetic and phenotypically plastic components. Here, we expanded on previous work by investigating a formerly identified candidate SNP associated to mouth laterality, documenting inter-individual variation in feeding preference using stable isotope analyses, and testing their association with mouth asymmetry. Our results suggest that this polymorphism is influenced by both a polygenic basis and inter-individual non-genetic variation, possibly due to feeding experience, individual specialization, and intraspecific competition. We introduce a hypothesis potentially explaining the simultaneous maintenance of left, right, asymmetric and symmetric mouth phenotypes due to the interaction between diverse eco-evolutionary dynamics including niche construction and balancing selection. Future studies will have to further tease apart the relative contribution of genetic and environmental factors and their interactions in an integrated fashion.
Graham, Carly F.; Eberts, Rebecca L.; Morgan, Thomas D.; Boreham, Douglas R.; Lance, Stacey L.; Manzon, Richard G.; Martino, Jessica A.; Rogers, Sean M.; Wilson, Joanna Y.; Somers, Christopher M.
2016-01-01
Thermal pollution from industrial processes can have negative impacts on the spawning and development of cold-water fish. Point sources of thermal effluent may need to be managed to avoid affecting discrete populations. Correspondingly, we examined fine-scale ecological and genetic population structure of two whitefish species (Coregonus clupeaformis and Prosopium cylindraceum) on Lake Huron, Canada, in the immediate vicinity of thermal effluent from nuclear power generation. Niche metrics using δ13C and δ15N stable isotopes showed high levels of overlap (48.6 to 94.5%) in resource use by adult fish captured in areas affected by thermal effluent compared to nearby reference locations. Isotopic niche size, a metric of resource use diversity, was 1.3- to 2.8-fold higher than reference values in some thermally affected areas, indicative of fish mixing. Microsatellite analyses of genetic population structure (Fst, STRUCTURE and DAPC) indicated that fish captured at all locations in the vicinity of the power plant were part of a larger population extending beyond the study area. In concert, ecological and genetic markers do not support the presence of an evolutionarily significant unit in the vicinity of the power plant. Thus, future research should focus on the potential impacts of thermal emissions on development and recruitment. PMID:26807722
Tanaka, Haruka; Ogata, Soshiro; Omura, Kayoko; Honda, Chika; Kamide, Kei; Hayakawa, Kazuo
2016-03-01
The aim of this study was to investigate the association between subjective memory complaints (SMCs) and depressive symptoms, with and without adjustment for genetic and family environmental factors. We conducted a cross-sectional study using twins and measured SMCs and depressive symptoms as outcomes and explanatory variables, respectively. First, we performed regression analyses using generalized estimating equations to investigate the associations between SMCs and depressive symptoms without adjustment for genetic and family environmental factors (individual-level analyses). We then performed regression analyses for within-pair differences using monozygotic (MZ) and dizygotic (DZ) twin pairs and MZ twin pairs to investigate these associations with adjustment for genetic and family environmental factors by subtracting the values of one twin from those of co-twin variables (within-pair level analyses). Therefore, differences between the associations at individual- and within-pair level analyses suggested confounding by genetic factors. We included 556 twins aged ≥ 20 years. In the individual-level analyses, SMCs were significantly associated with depressive symptoms in both males and females [standardized coefficients: males, 0.23 (95% CI 0.08-0.38); females, 0.35 (95% CI 0.23-0.46)]. In the within-pair level analyses using MZ and same-sex DZ twin pairs, SMCs were significantly associated with depressive symptoms. In the within-pair level analyses using the MZ twin pairs, SMCs were significantly associated with depressive symptoms [standardized coefficients: males, 0.32 (95% CI 0.08-0.56); females, 0.24 (95% CI 0.13-0.42)]. This study suggested that SMCs were significantly associated with depressive symptoms after adjustment for genetic and family environmental factors.
Marital assortment for genetic similarity.
Eckman, Ronael E; Williams, Robert; Nagoshi, Craig
2002-10-01
The present study involved analyses of a Caucasian American sample (n=949) and a Japanese American sample (n=400) for factors supporting Genetic Similarity Theory (GST). The analyses found no evidence for the presence of genetic similarity between spouses in either sample for the blood group analyses of nine loci. All results indicated random mating for blood group genes. The results did not provide consistent substantial support to show that spousal similarity is correlated with the degree of genetic component of a trait for a set of seventeen individual differences variables, with only the Caucasian sample yielding significant correlations for this analysis. A third analysis examining the correlation between presence of spousal genetic similarity and spousal similarity on observable traits was not performed because spousal genetic similarity was not observed in either sample. The overall implication of the study is that GST is not supported as an explanation for spousal similarity in humans.
Moffitt, Terrie E; Baker, Timothy B; Biddle, Andrea K; Evans, James P; Harrington, HonaLee; Houts, Renate; Meier, Madeline; Sugden, Karen; Williams, Benjamin; Poulton, Richie; Caspi, Avshalom
2013-01-01
OBJECTIVE To test how genomic loci identified in genome-wide association studies (GWAS) influence the developmental progression of smoking behavior. DESIGN A 38-year prospective longitudinal study of a representative birth-cohort. SETTING The Dunedin Multidisciplinary Health and Development Study, New Zealand. PARTICIPANTS N=1037 male and female study members. MAIN EXPOSURES We assessed genetic risk with a multi-locus genetic risk score (GRS). The GRS was composed of single-nucleotide polymorphisms identified in three meta-analyses of GWAS of smoking quantity phenotypes. OUTCOME MEASURES Smoking initiation, conversion to daily smoking, progression to heavy smoking, nicotine dependence (Fagerstrom Test of Nicotine Dependence), and cessation difficulties were evaluated at eight assessments spanning ages 11-38 years. RESULTS Genetic risk score was unrelated to smoking initiation. However, individuals at higher genetic risk were more likely to convert to daily smoking as teenagers, progressed more rapidly from smoking initiation to heavy smoking, persisted longer in smoking heavily, developed nicotine dependence more frequently, were more reliant on smoking to cope with stress, and were more likely to fail in their cessation attempts. Further analysis revealed that two adolescent developmental phenotypes—early conversion to daily smoking and rapid progression to heavy smoking--mediated associations between the genetic risk score and mature phenotypes of persistent heavy smoking, nicotine dependence, and cessation failure. The genetic risk score predicted smoking risk over and above family history. CONCLUSIONS Initiatives that disrupt the developmental progression of smoking behavior among adolescents may mitigate genetic risks for developing adult smoking problems. Future genetic research may maximize discovery potential by focusing on smoking behavior soon after smoking initiation and by studying young smokers. PMID:23536134
Herrero-Medrano, J M; Megens, H J; Crooijmans, R P; Abellaneda, J M; Ramis, G
2013-06-01
The Chato Murciano (CM), a pig breed from the Murcia region in the southeastern region of Spain, is a good model for endangered livestock populations. The remaining populations are bred on approximately 15 small farms, and no herdbook exists. To assess the genetic threats to the integrity and survival of the CM breed, and to aid in designing a conservation program, three genetic marker systems - microsatellites, SNPs and mtDNA - were applied across the majority of the total breeding stock. In addition, mtDNA and SNPs were genotyped in breeds that likely contributed genetically to the current CM gene pool. The analyses revealed the levels of genetic diversity within the range of other European local breeds (H(e) = 0.53). However, when the eight farms that rear at least 10 CM pigs were independently analyzed, high levels of inbreeding were found in some. Despite the evidence for recent crossbreeding with commercial breeds on a few farms, the entire breeding stock remains readily identifiable as CM, facilitating the design of traceability assays. The genetic management of the breed is consistent with farm size, farm owner and presence of other pig breeds on the farm, demonstrating the highly ad hoc nature of current CM breeding. The results of genetic diversity and substructure of the entire breed, as well as admixture and crossbreeding obtained in the present study, provide a benchmark to develop future conservation strategies. Furthermore, this study demonstrates that identifying farm-based practices and farm-based breeding stocks can aid in the design of a sustainable breeding program for minority breeds. © 2012 The Authors, Animal Genetics © 2012 Stichting International Foundation for Animal Genetics.
Aegisdóttir, Hafdís Hanna; Kuss, Patrick; Stöcklin, Jürg
2009-12-01
Gene flow and genetic variability within and among alpine plant populations can be greatly influenced by the steep environmental gradients and heterogeneous topography of alpine landscapes. In this study, the effects are examined of natural isolation of alpine habitats on genetic diversity and geographic structure in populations of C. thyrsoides, a rare and isolated European Alpine monocarpic perennial with limited seed dispersal capacity. Molecular diversity was analysed for 736 individuals from 32 populations in the Swiss Alps and adjacent Jura mountains using five polymorphic microsatellite loci. Pollen flow was estimated using pollen grain-sized fluorescent powder. In addition, individual-based Bayesian approaches were applied to examine population structure. High within-population genetic diversity (H(E) = 0.76) and a relatively low inbreeding coefficient (F(IS) = 0.022) were found. Genetic differentiation among populations measured with a standardized measure was considerable (G'(ST) = 0.53). A significant isolation-by-distance relationship was found (r = 0.62, P < 0.001) and a significant geographic sub-structure, coinciding with proposed postglacial migration patterns. Altitudinal location and size of populations did not influence molecular variation. Direct measures of pollen flow revealed that insect-mediated pollen dispersal was restricted to short distances within a population. The natural isolation of suitable habitats for C. thyrsoides restricts gene flow among the populations as expected for a monocarpic species with very limited seed dispersal capacities. The observed high within-population genetic diversity in this rare monocarpic perennial is best explained by its outcrossing behaviour, long-lived individuals and overlapping generations. Despite the high within-population genetic diversity, the considerable genetic differentiation and the clear western-eastern differentiation in this species merits consideration in future conservation efforts.
Black and white and read all over: the past, present and future of giant panda genetics.
Wei, Fuwen; Hu, Yibo; Zhu, Lifeng; Bruford, Michael W; Zhan, Xiangjiang; Zhang, Lei
2012-12-01
Few species attract much more attention from the public and scientists than the giant panda (Ailuropoda melanoleuca), a popular, enigmatic but highly endangered species. The application of molecular genetics to its biology and conservation has facilitated surprising insights into the biology of giant pandas as well as the effectiveness of conservation efforts during the past decades. Here, we review the history of genetic advances in this species, from phylogeny, demographical history, genetic variation, population structure, noninvasive population census and adaptive evolution to reveal to what extent the current status of the giant panda is a reflection of its evolutionary legacy, as opposed to the influence of anthropogenic factors that have negatively impacted this species. In addition, we summarize the conservation implications of these genetic findings applied for the management of this high-profile species. Finally, on the basis of these advances and predictable future changes in genetic technology, we discuss future research directions that seem promising for giant panda biology and conservation. © 2012 Blackwell Publishing Ltd.
Genetics of ischemic stroke: future clinical applications.
Wang, Michael M
2006-11-01
Ischemic stroke has long been thought to have a genetic component that is independent of conventional vascular risk factors. It has been estimated that over one half of stroke risk is determined by inherited genes. However, until recently, strong evidence of genetic influence on ischemic stroke has been subject to criticism because the risk factors for stroke are also inherited and because previous studies suffered from limitations imposed by this highly heterogeneous neurological disorder. Recent advances in molecular genetics have led to the identification of specific genetic loci that impart susceptibility to ischemic stroke. We review the studies of these genes and discuss the future potential applications of genetic markers on the management of ischemic stroke patients.
Flores-Alanis, Alejandro; González-Cerón, Lilia; Santillán, Frida; Ximenez, Cecilia; Sandoval, Marco A; Cerritos, René
2017-05-02
Mexico advanced to the pre-elimination phase in 2009 due to a significant reduction in malaria cases, and since 2000, Plasmodium vivax is the only species transmitted. During the last two decades, malaria transmission has been mostly local and isolated to a few regions. It is important to gain further insights into the impact of control measures on the parasite population structure. Hence, the aim of the current study was to determine detailed changes in P. vivax genetic diversity and population structure based on analysing the gene that encodes the apical membrane antigen 1 (pvama1). This analysis covered from control to pre-elimination (1993-2011) in a hypo-endemic region in southern Mexico. The 213 pvama1 I-II sequences presently analysed were grouped into six periods of three years each. They showed low genetic diversity, with 15 haplotypes resolved. Among the DNA sequences, there was a gradual decrease in genetic diversity, the number of mixed genotype infections and the intensity of positive selection, in agreement with the parallel decline in malaria cases. At the same time, linkage disequilibrium (R 2 ) increased. The three-dimensional haplotype network revealed that pvama1 I-II haplotypes were separated by 1-11 mutational steps, and between one another by 0-3 unsampled haplotypes. In the temporal network, seven haplotypes were detected in at least two of the six-time layers, and only four distinct haplotypes were evidenced in the pre-elimination phase. Structure analysis indicated that three subpopulations fluctuated over time. Only 8.5% of the samples had mixed ancestry. In the pre-elimination phase, subpopulation P1 was drastically reduced, and the admixture was absent. The results suggest that P. vivax in southern Mexico evolved based on local adaptation into three "pseudoclonal" subpopulations that diversified at the regional level and persisted over time, although with varying frequency. Control measures and climate events influenced the number of malaria cases and the genetic structure. The sharp decrease in parasite diversity and other related genetic parameters during the pre-elimination phase suggests that malaria elimination is possible in the near future. These results are useful for epidemiological surveillance.
Gruber, Bernd; Unmack, Peter J; Berry, Oliver F; Georges, Arthur
2018-05-01
Although vast technological advances have been made and genetic software packages are growing in number, it is not a trivial task to analyse SNP data. We announce a new r package, dartr, enabling the analysis of single nucleotide polymorphism data for population genomic and phylogenomic applications. dartr provides user-friendly functions for data quality control and marker selection, and permits rigorous evaluations of conformation to Hardy-Weinberg equilibrium, gametic-phase disequilibrium and neutrality. The package reports standard descriptive statistics, permits exploration of patterns in the data through principal components analysis and conducts standard F-statistics, as well as basic phylogenetic analyses, population assignment, isolation by distance and exports data to a variety of commonly used downstream applications (e.g., newhybrids, faststructure and phylogeny applications) outside of the r environment. The package serves two main purposes: first, a user-friendly approach to lower the hurdle to analyse such data-therefore, the package comes with a detailed tutorial targeted to the r beginner to allow data analysis without requiring deep knowledge of r. Second, we use a single, well-established format-genlight from the adegenet package-as input for all our functions to avoid data reformatting. By strictly using the genlight format, we hope to facilitate this format as the de facto standard of future software developments and hence reduce the format jungle of genetic data sets. The dartr package is available via the r CRAN network and GitHub. © 2017 John Wiley & Sons Ltd.
van der Sluis, Rencia; Badenhorst, Christoffel P S; Erasmus, Elardus; van Dyk, Etresia; van der Westhuizen, Francois H; van Dijk, Alberdina A
2015-10-15
Thorough investigation of the glycine conjugation pathway has been neglected. No defect of the glycine conjugation pathway has been reported and this could reflect the essential role of glycine conjugation in hepatic metabolism. Therefore, we hypothesised that genetic variation in the open reading frame (ORF) of the GLYAT gene should be low and that deleterious alleles would be found at low frequencies. This hypothesis was investigated by analysing the genetic variation of the human GLYAT ORF using data available in public databases. We also sequenced the GLYAT ORF of a small cohort of South African Afrikaner Caucasian individuals. In total, data from 1537 individuals was analysed. The two most prominent GLYAT haplotypes in all populations analysed, were S156 (70%) and T17S156 (20%). The S156C199 and S156H131 haplotypes, which have a negative effect on the enzyme activity of a recombinant human GLYAT, were detected at very low frequencies. In the Afrikaner Caucasian cohort a novel Q61L SNP occurring at a high frequency (12%) was detected. The results of this study indicated that the GLYAT ORF is highly conserved and supported the hypothesis that the glycine conjugation pathway is an essential detoxification pathway. These findings emphasise the importance of future investigations to determine the in vivo capacity of the glycine conjugation pathway for the detoxification of benzoate and other xenobiotics. Copyright © 2015 Elsevier B.V. All rights reserved.
Assis, J; Serrão, E A; Claro, B; Perrin, C; Pearson, G A
2014-06-01
The climate-driven dynamics of species ranges is a critical research question in evolutionary ecology. We ask whether present intraspecific diversity is determined by the imprint of past climate. This is an ongoing debate requiring interdisciplinary examination of population genetic pools and persistence patterns across global ranges. Previously, contrasting inferences and predictions have resulted from distinct genomic coverage and/or geographical information. We aim to describe and explain the causes of geographical contrasts in genetic diversity and their consequences for the future baseline of the global genetic pool, by comparing present geographical distribution of genetic diversity and differentiation with predictive species distribution modelling (SDM) during past extremes, present time and future climate scenarios for a brown alga, Fucus vesiculosus. SDM showed that both atmospheric and oceanic variables shape the global distribution of intertidal species, revealing regions of persistence, extinction and expansion during glacial and postglacial periods. These explained the distribution and structure of present genetic diversity, consisting of differentiated genetic pools with maximal diversity in areas of long-term persistence. Most of the present species range comprises postglacial expansion zones and, in contrast to highly dispersive marine organisms, expansions involved only local fronts, leaving distinct genetic pools at rear edges. Besides unravelling a complex phylogeographical history and showing congruence between genetic diversity and persistent distribution zones, supporting the hypothesis of niche conservatism, range shifts and loss of unique genetic diversity at the rear edge were predicted for future climate scenarios, impoverishing the global gene pool. © 2014 John Wiley & Sons Ltd.
GeNets: a unified web platform for network-based genomic analyses.
Li, Taibo; Kim, April; Rosenbluh, Joseph; Horn, Heiko; Greenfeld, Liraz; An, David; Zimmer, Andrew; Liberzon, Arthur; Bistline, Jon; Natoli, Ted; Li, Yang; Tsherniak, Aviad; Narayan, Rajiv; Subramanian, Aravind; Liefeld, Ted; Wong, Bang; Thompson, Dawn; Calvo, Sarah; Carr, Steve; Boehm, Jesse; Jaffe, Jake; Mesirov, Jill; Hacohen, Nir; Regev, Aviv; Lage, Kasper
2018-06-18
Functional genomics networks are widely used to identify unexpected pathway relationships in large genomic datasets. However, it is challenging to compare the signal-to-noise ratios of different networks and to identify the optimal network with which to interpret a particular genetic dataset. We present GeNets, a platform in which users can train a machine-learning model (Quack) to carry out these comparisons and execute, store, and share analyses of genetic and RNA-sequencing datasets.
Genetic Thinking in the Study of Social Relationships: Five Points of Entry.
Reiss, David
2010-09-01
For nearly a generation, researchers studying human behavioral development have combined genetically informed research designs with careful measures of social relationships such as parenting, sibling relationships, peer relationships, marital processes, social class stratifications, and patterns of social engagement in the elderly. In what way have these genetically informed studies altered the construction and testing of social theories of human development? We consider five points of entry where genetic thinking is taking hold. First, genetic findings suggest an alternative scenario for explaining social data. Associations between measures of the social environment and human development may be due to genes that influence both. Second, genetic studies add to other prompts to study the early developmental origins of current social phenomena in midlife and beyond. Third, genetic analyses promise to shed light on understudied social systems, such as sibling relationships, that have an impact on human development independent of genotype. Fourth, genetic analyses anchor in neurobiology individual differences in resilience and sensitivity to both adverse and favorable social environments. Finally, genetic analyses increase the utility of laboratory simulations of human social processes and of animal models. © The Author(s) 2010.
Family Environmental and Genetic Influences on Children's Future Chemical Dependency.
ERIC Educational Resources Information Center
Kumpfer, Karol L.; DeMarsh, Joseph
1985-01-01
Discusses the following in relation to their predictability to future drug abuse in youth: (1) susceptibility of children of chemically dependent parents; (2) genetic transmutation; (3) family structure and management; (4) socialization; and (5) cognitive family characteristics. (Author/LHW)
Quraishi, Umar Masood; Murat, Florent; Abrouk, Mickael; Pont, Caroline; Confolent, Carole; Oury, François Xavier; Ward, Jane; Boros, Danuta; Gebruers, Kurt; Delcour, Jan A; Courtin, Christophe M; Bedo, Zoltan; Saulnier, Luc; Guillon, Fabienne; Balzergue, Sandrine; Shewry, Peter R; Feuillet, Catherine; Charmet, Gilles; Salse, Jerome
2011-03-01
Grain dietary fiber content in wheat not only affects its end use and technological properties including milling, baking and animal feed but is also of great importance for health benefits. In this study, integration of association genetics (seven detected loci on chromosomes 1B, 3A, 3D, 5B, 6B, 7A, 7B) and meta-QTL (three consensus QTL on chromosomes 1B, 3D and 6B) analyses allowed the identification of seven chromosomal regions underlying grain dietary fiber content in bread wheat. Based either on a diversity panel or on bi-parental populations, we clearly demonstrate that this trait is mainly driven by a major locus located on chromosome 1B associated with a log of p value >13 and a LOD score >8, respectively. In parallel, we identified 73 genes differentially expressed during the grain development and between genotypes with contrasting grain fiber contents. Integration of quantitative genetics and transcriptomic data allowed us to propose a short list of candidate genes that are conserved in the rice, sorghum and Brachypodium chromosome regions orthologous to the seven wheat grain fiber content QTL and that can be considered as major candidate genes for future improvement of the grain dietary fiber content in bread wheat breeding programs.
Zhang, Gui-Hua; Yuan, Zhi-Jun; Zhang, Chuan-Xi; Yin, Kun-Shan; Tang, Mei-Jun; Guo, Hua-Wei; Fu, Jian-Yu; Xiao, Qiang
2014-01-01
The tea geometrid (Ectropis obliqua Prout, Lepidoptera: Geometridae) is a dominant chewing insect endemic in most tea-growing areas in China. Recently some E. obliqua populations have been found to be resistant to the nucleopolyhedrovirus (EoNPV), a host-specific virus that has so far been found only in E. obliqua. Although the resistant populations are morphologically indistinguishable from susceptible populations, we conducted a nationwide collection and examined the genetic divergence in the COI region of the mtDNA in E. obliqua. Phylogenetic analyses of mtDNA in 17 populations revealed two divergent clades with genetic distance greater than 3.7% between clades and less than 0.7% within clades. Therefore, we suggest that E. obliqua falls into two distinct groups. Further inheritance analyses using reciprocal single-pair mating showed an abnormal F₁ generation with an unbalanced sex ratio and the inability to produce fertile eggs (or any eggs) through F1 self-crossing. These data revealed a potential cryptic species complex with deep divergence and reproductive isolation within E. obliqua. Uneven distribution of the groups suggests a possible geographic effect on the divergence. Future investigations will be conducted to examine whether EoNPV selection or other factors prompted the evolution of resistance.
Park, Jae Hyon; Kim, Joo Hi; Jo, Kye Eun; Na, Se Whan; Eisenhut, Michael; Kronbichler, Andreas; Lee, Keum Hwa; Shin, Jae Il
2018-07-01
To provide an up-to-date summary of multiple sclerosis-susceptible gene variants and assess the noteworthiness in hopes of finding true associations, we investigated the results of 44 meta-analyses on gene variants and multiple sclerosis published through December 2016. Out of 70 statistically significant genotype associations, roughly a fifth (21%) of the comparisons showed noteworthy false-positive rate probability (FPRP) at a statistical power to detect an OR of 1.5 and at a prior probability of 10 -6 assumed for a random single nucleotide polymorphism. These associations (IRF8/rs17445836, STAT3/rs744166, HLA/rs4959093, HLA/rs2647046, HLA/rs7382297, HLA/rs17421624, HLA/rs2517646, HLA/rs9261491, HLA/rs2857439, HLA/rs16896944, HLA/rs3132671, HLA/rs2857435, HLA/rs9261471, HLA/rs2523393, HLA-DRB1/rs3135388, RGS1/rs2760524, PTGER4/rs9292777) also showed a noteworthy Bayesian false discovery probability (BFDP) and one additional association (CD24 rs8734/rs52812045) was also noteworthy via BFDP computation. Herein, we have identified several noteworthy biomarkers of multiple sclerosis susceptibility. We hope these data are used to study multiple sclerosis genetics and inform future screening programs.
A unifying theory for genetic epidemiological analysis of binary disease data
2014-01-01
Background Genetic selection for host resistance offers a desirable complement to chemical treatment to control infectious disease in livestock. Quantitative genetics disease data frequently originate from field studies and are often binary. However, current methods to analyse binary disease data fail to take infection dynamics into account. Moreover, genetic analyses tend to focus on host susceptibility, ignoring potential variation in infectiousness, i.e. the ability of a host to transmit the infection. This stands in contrast to epidemiological studies, which reveal that variation in infectiousness plays an important role in the progression and severity of epidemics. In this study, we aim at filling this gap by deriving an expression for the probability of becoming infected that incorporates infection dynamics and is an explicit function of both host susceptibility and infectiousness. We then validate this expression according to epidemiological theory and by simulating epidemiological scenarios, and explore implications of integrating this expression into genetic analyses. Results Our simulations show that the derived expression is valid for a range of stochastic genetic-epidemiological scenarios. In the particular case of variation in susceptibility only, the expression can be incorporated into conventional quantitative genetic analyses using a complementary log-log link function (rather than probit or logit). Similarly, if there is moderate variation in both susceptibility and infectiousness, it is possible to use a logarithmic link function, combined with an indirect genetic effects model. However, in the presence of highly infectious individuals, i.e. super-spreaders, the use of any model that is linear in susceptibility and infectiousness causes biased estimates. Thus, in order to identify super-spreaders, novel analytical methods using our derived expression are required. Conclusions We have derived a genetic-epidemiological function for quantitative genetic analyses of binary infectious disease data, which, unlike current approaches, takes infection dynamics into account and allows for variation in host susceptibility and infectiousness. PMID:24552188
A unifying theory for genetic epidemiological analysis of binary disease data.
Lipschutz-Powell, Debby; Woolliams, John A; Doeschl-Wilson, Andrea B
2014-02-19
Genetic selection for host resistance offers a desirable complement to chemical treatment to control infectious disease in livestock. Quantitative genetics disease data frequently originate from field studies and are often binary. However, current methods to analyse binary disease data fail to take infection dynamics into account. Moreover, genetic analyses tend to focus on host susceptibility, ignoring potential variation in infectiousness, i.e. the ability of a host to transmit the infection. This stands in contrast to epidemiological studies, which reveal that variation in infectiousness plays an important role in the progression and severity of epidemics. In this study, we aim at filling this gap by deriving an expression for the probability of becoming infected that incorporates infection dynamics and is an explicit function of both host susceptibility and infectiousness. We then validate this expression according to epidemiological theory and by simulating epidemiological scenarios, and explore implications of integrating this expression into genetic analyses. Our simulations show that the derived expression is valid for a range of stochastic genetic-epidemiological scenarios. In the particular case of variation in susceptibility only, the expression can be incorporated into conventional quantitative genetic analyses using a complementary log-log link function (rather than probit or logit). Similarly, if there is moderate variation in both susceptibility and infectiousness, it is possible to use a logarithmic link function, combined with an indirect genetic effects model. However, in the presence of highly infectious individuals, i.e. super-spreaders, the use of any model that is linear in susceptibility and infectiousness causes biased estimates. Thus, in order to identify super-spreaders, novel analytical methods using our derived expression are required. We have derived a genetic-epidemiological function for quantitative genetic analyses of binary infectious disease data, which, unlike current approaches, takes infection dynamics into account and allows for variation in host susceptibility and infectiousness.
Wereszczuk, Anna; Leblois, Raphaël; Zalewski, Andrzej
2017-12-22
Population genetic diversity and structure are determined by past and current evolutionary processes, among which spatially limited dispersal, genetic drift, and shifts in species distribution boundaries have major effects. In most wildlife species, environmental modifications by humans often lead to contraction of species' ranges and/or limit their dispersal by acting as environmental barriers. However, in species well adapted to anthropogenic habitat or open landscapes, human induced environmental changes may facilitate dispersal and range expansions. In this study, we analysed whether isolation by distance and deforestation, among other environmental features, promotes or restricts dispersal and expansion in stone marten (Martes foina) populations. We genotyped 298 martens from eight sites at twenty-two microsatellite loci to characterize the genetic variability, population structure and demographic history of stone martens in Poland. At the landscape scale, limited genetic differentiation between sites in a mosaic of urban, rural and forest habitats was mostly influenced by isolation by distance. Statistical clustering and multivariate analyses showed weak genetic structuring with two to four clusters and a high rate of gene flow between them. Stronger genetic differentiation was detected for one stone marten population (NE1) located inside a large forest complex. Genetic differentiation between this site and all others was 20% higher than between other sites separated by similar distances. The genetic uniqueness index of NE1 was also twofold higher than in other sites. Past demographic history analyses showed recent expansion of this species in north-eastern Poland. A decrease in genetic diversity from south to north, and MIGRAINE analyses indicated the direction of expansion of stone marten. Our results showed that two processes, changes in species distribution boundaries and limited dispersal associated with landscape barriers, affect genetic diversity and structure in stone marten. Analysis of local barriers that reduced dispersal and large scale analyses of genetic structure and demographic history highlight the importance of isolation by distance and forest cover for the past colonization of central Europe by stone marten. This confirmed the hypothesis that human-landscape changes (deforestation) accelerated stone marten expansion, to which climate warming probably has also been contributing over the last few decades.
Hierarchical spatial genetic structure in a distinct population segment of greater sage-grouse
Oyler-McCance, Sara J.; Casazza, Michael L.; Fike, Jennifer A.; Coates, Peter S.
2014-01-01
Greater sage-grouse (Centrocercus urophasianus) within the Bi-State Management Zone (area along the border between Nevada and California) are geographically isolated on the southwestern edge of the species’ range. Previous research demonstrated that this population is genetically unique, with a high proportion of unique mitochondrial DNA (mtDNA) haplotypes and with significant differences in microsatellite allele frequencies compared to populations across the species’ range. As a result, this population was considered a distinct population segment (DPS) and was recently proposed for listing as threatened under the U.S. Endangered Species Act. A more comprehensive understanding of the boundaries of this genetically unique population (where the Bi-State population begins) and an examination of genetic structure within the Bi-State is needed to help guide effective management decisions. We collected DNA from eight sampling locales within the Bi-State (N = 181) and compared those samples to previously collected DNA from the two most proximal populations outside of the Bi-State DPS, generating mtDNA sequence data and amplifying 15 nuclear microsatellites. Both mtDNA and microsatellite analyses support the idea that the Bi-State DPS represents a genetically unique population, which has likely been separated for thousands of years. Seven mtDNA haplotypes were found exclusively in the Bi-State population and represented 73 % of individuals, while three haplotypes were shared with neighboring populations. In the microsatellite analyses both STRUCTURE and FCA separate the Bi-State from the neighboring populations. We also found genetic structure within the Bi-State as both types of data revealed differences between the northern and southern part of the Bi-State and there was evidence of isolation-by-distance. STRUCTURE revealed three subpopulations within the Bi-State consisting of the northern Pine Nut Mountains (PNa), mid Bi-State, and White Mountains (WM) following a north–south gradient. This genetic subdivision within the Bi-State is likely the result of habitat loss and fragmentation that has been exacerbated by recent human activities and the encroachment of singleleaf pinyon (Pinus monophylla) and juniper (Juniperus spp.) trees. While genetic concerns may be only one of many priorities for the conservation and management of the Bi-State greater sage-grouse, we believe that they warrant attention along with other issues (e.g., quality of sagebrush habitat, preventing future loss of habitat). Management actions that promote genetic connectivity, especially with respect to WM and PNa, may be critical to the long-term viability of the Bi-State DPS.
de Moor, Marleen H M; van den Berg, Stéphanie M; Verweij, Karin J H; Krueger, Robert F; Luciano, Michelle; Arias Vasquez, Alejandro; Matteson, Lindsay K; Derringer, Jaime; Esko, Tõnu; Amin, Najaf; Gordon, Scott D; Hansell, Narelle K; Hart, Amy B; Seppälä, Ilkka; Huffman, Jennifer E; Konte, Bettina; Lahti, Jari; Lee, Minyoung; Miller, Mike; Nutile, Teresa; Tanaka, Toshiko; Teumer, Alexander; Viktorin, Alexander; Wedenoja, Juho; Abecasis, Goncalo R; Adkins, Daniel E; Agrawal, Arpana; Allik, Jüri; Appel, Katja; Bigdeli, Timothy B; Busonero, Fabio; Campbell, Harry; Costa, Paul T; Davey Smith, George; Davies, Gail; de Wit, Harriet; Ding, Jun; Engelhardt, Barbara E; Eriksson, Johan G; Fedko, Iryna O; Ferrucci, Luigi; Franke, Barbara; Giegling, Ina; Grucza, Richard; Hartmann, Annette M; Heath, Andrew C; Heinonen, Kati; Henders, Anjali K; Homuth, Georg; Hottenga, Jouke-Jan; Iacono, William G; Janzing, Joost; Jokela, Markus; Karlsson, Robert; Kemp, John P; Kirkpatrick, Matthew G; Latvala, Antti; Lehtimäki, Terho; Liewald, David C; Madden, Pamela A F; Magri, Chiara; Magnusson, Patrik K E; Marten, Jonathan; Maschio, Andrea; Medland, Sarah E; Mihailov, Evelin; Milaneschi, Yuri; Montgomery, Grant W; Nauck, Matthias; Ouwens, Klaasjan G; Palotie, Aarno; Pettersson, Erik; Polasek, Ozren; Qian, Yong; Pulkki-Råback, Laura; Raitakari, Olli T; Realo, Anu; Rose, Richard J; Ruggiero, Daniela; Schmidt, Carsten O; Slutske, Wendy S; Sorice, Rossella; Starr, John M; St Pourcain, Beate; Sutin, Angelina R; Timpson, Nicholas J; Trochet, Holly; Vermeulen, Sita; Vuoksimaa, Eero; Widen, Elisabeth; Wouda, Jasper; Wright, Margaret J; Zgaga, Lina; Porteous, David; Minelli, Alessandra; Palmer, Abraham A; Rujescu, Dan; Ciullo, Marina; Hayward, Caroline; Rudan, Igor; Metspalu, Andres; Kaprio, Jaakko; Deary, Ian J; Räikkönen, Katri; Wilson, James F; Keltikangas-Järvinen, Liisa; Bierut, Laura J; Hettema, John M; Grabe, Hans J; van Duijn, Cornelia M; Evans, David M; Schlessinger, David; Pedersen, Nancy L; Terracciano, Antonio; McGue, Matt; Penninx, Brenda W J H; Martin, Nicholas G; Boomsma, Dorret I
2015-07-01
Neuroticism is a pervasive risk factor for psychiatric conditions. It genetically overlaps with major depressive disorder (MDD) and is therefore an important phenotype for psychiatric genetics. The Genetics of Personality Consortium has created a resource for genome-wide association analyses of personality traits in more than 63,000 participants (including MDD cases). To identify genetic variants associated with neuroticism by performing a meta-analysis of genome-wide association results based on 1000 Genomes imputation; to evaluate whether common genetic variants as assessed by single-nucleotide polymorphisms (SNPs) explain variation in neuroticism by estimating SNP-based heritability; and to examine whether SNPs that predict neuroticism also predict MDD. Genome-wide association meta-analysis of 30 cohorts with genome-wide genotype, personality, and MDD data from the Genetics of Personality Consortium. The study included 63,661 participants from 29 discovery cohorts and 9786 participants from a replication cohort. Participants came from Europe, the United States, or Australia. Analyses were conducted between 2012 and 2014. Neuroticism scores harmonized across all 29 discovery cohorts by item response theory analysis, and clinical MDD case-control status in 2 of the cohorts. A genome-wide significant SNP was found on 3p14 in MAGI1 (rs35855737; P = 9.26 × 10-9 in the discovery meta-analysis). This association was not replicated (P = .32), but the SNP was still genome-wide significant in the meta-analysis of all 30 cohorts (P = 2.38 × 10-8). Common genetic variants explain 15% of the variance in neuroticism. Polygenic scores based on the meta-analysis of neuroticism in 27 cohorts significantly predicted neuroticism (1.09 × 10-12 < P < .05) and MDD (4.02 × 10-9 < P < .05) in the 2 other cohorts. This study identifies a novel locus for neuroticism. The variant is located in a known gene that has been associated with bipolar disorder and schizophrenia in previous studies. In addition, the study shows that neuroticism is influenced by many genetic variants of small effect that are either common or tagged by common variants. These genetic variants also influence MDD. Future studies should confirm the role of the MAGI1 locus for neuroticism and further investigate the association of MAGI1 and the polygenic association to a range of other psychiatric disorders that are phenotypically correlated with neuroticism.
Smith-Paine, Julia; Wade, Shari L; Treble-Barna, Amery; Zhang, Nanhua; Zang, Huaiyu; Martin, Lisa J; Yeates, Keith Owen; Taylor, H Gerry; Kurowski, Brad G
2018-05-02
This study examined whether the ankyrin repeat and kinase domain containing 1 gene (ANKK1) C/T single-nucleotide polymorphism (SNP) rs1800497 moderated the association of family environment with long-term executive function (EF) following traumatic injury in early childhood. Caregivers of children with traumatic brain injury (TBI) and children with orthopedic injury (OI) completed the Behavior Rating Inventory of Executive Function (BRIEF) at post injury visits. DNA was collected to identify the rs1800497 genotype in the ANKK1 gene. General linear models examined gene-environment interactions as moderators of the effects of TBI on EF at two times post injury (12 months and 7 years). At 12 months post injury, analyses revealed a significant 3-way interaction of genotype with level of permissive parenting and injury type. Post-hoc analyses showed genetic effects were more pronounced for children with TBI from more positive family environments, such that children with TBI who were carriers of the risk allele (T-allele) had significantly poorer EF compared to non-carriers only when they were from more advantaged environments. At 7 years post injury, analyses revealed a significant 2-way interaction of genotype with level of authoritarian parenting. Post-hoc analyses found that carriers of the risk allele had significantly poorer EF compared to non-carriers only when they were from more advantaged environments. These results suggest a gene-environment interaction involving the ANKK1 gene as a predictor of EF in a pediatric injury population. The findings highlight the importance of considering environmental influences in future genetic studies on recovery following TBI and other traumatic injuries in childhood.
Dissecting the genetics of complex traits using summary association statistics.
Pasaniuc, Bogdan; Price, Alkes L
2017-02-01
During the past decade, genome-wide association studies (GWAS) have been used to successfully identify tens of thousands of genetic variants associated with complex traits and diseases. These studies have produced extensive repositories of genetic variation and trait measurements across large numbers of individuals, providing tremendous opportunities for further analyses. However, privacy concerns and other logistical considerations often limit access to individual-level genetic data, motivating the development of methods that analyse summary association statistics. Here, we review recent progress on statistical methods that leverage summary association data to gain insights into the genetic basis of complex traits and diseases.
Brown, Jason L; Bennett, Joseph R; French, Connor M
2017-01-01
SDMtoolbox 2.0 is a software package for spatial studies of ecology, evolution, and genetics. The release of SDMtoolbox 2.0 allows researchers to use the most current ArcGIS software and MaxEnt software, and reduces the amount of time that would be spent developing common solutions. The central aim of this software is to automate complicated and repetitive spatial analyses in an intuitive graphical user interface. One core tenant facilitates careful parameterization of species distribution models (SDMs) to maximize each model's discriminatory ability and minimize overfitting. This includes carefully processing of occurrence data, environmental data, and model parameterization. This program directly interfaces with MaxEnt, one of the most powerful and widely used species distribution modeling software programs, although SDMtoolbox 2.0 is not limited to species distribution modeling or restricted to modeling in MaxEnt. Many of the SDM pre- and post-processing tools have 'universal' analogs for use with any modeling software. The current version contains a total of 79 scripts that harness the power of ArcGIS for macroecology, landscape genetics, and evolutionary studies. For example, these tools allow for biodiversity quantification (such as species richness or corrected weighted endemism), generation of least-cost paths and corridors among shared haplotypes, assessment of the significance of spatial randomizations, and enforcement of dispersal limitations of SDMs projected into future climates-to only name a few functions contained in SDMtoolbox 2.0. Lastly, dozens of generalized tools exists for batch processing and conversion of GIS data types or formats, which are broadly useful to any ArcMap user.
Genealogy of wine grape cultivars: "Pinot" is related to "Syrah".
Vouillamoz, J F; Grando, M S
2006-08-01
Since the domestication of wild grapes ca 6000 years ago, numerous cultivars have been generated by spontaneous or deliberate crosses, and up to 10 000 are still in existence today. Just as in human paternity analysis, DNA typing can reveal unexpected parentage of grape cultivars. In this study, we have analysed 89 grape cultivars with 60 microsatellite markers in order to accurately calculate the identity-by-descent (IBD) and relatedness (r) coefficients among six putatively related cultivars from France ("Pinot", "Syrah" and "Dureza") and northern Italy ("Teroldego", "Lagrein" and "Marzemino"). Using a recently developed likelihood-based approach to analyse kinship in grapes, we provide the first evidence of a genetic link between grapes across the Alps: "Dureza" and "Teroldego" turn out to be full-siblings (FS). For the first time in grapevine genetics we were able to detect FS without knowing one of the parents and identify unexpected second-degree relatives. We reconstructed the most likely pedigree that revealed a third-degree relationship between the worldwide-cultivated "Pinot" from Burgundy and "Syrah" from the Rhone Valley. Our finding was totally unsuspected by classical ampelography and it challenges the commonly assumed independent origins of these grape cultivars. Our results and this new approach in grape genetics will (a) help grape breeders to avoid choosing closely related varieties for new crosses, (b) provide pedigrees of cultivars in order to detect inheritance of disease-resistance genes and (c) open the way for future discoveries of first- and second-degree relationships between grape cultivars in order to better understand viticultural migrations.
Yang, Qiong; Tofler, Geoffrey H; Cupples, L Adrienne; Larson, Martin G; Feng, DaLi; Lindpaintner, Klaus; Levy, Daniel; D'Agostino, Ralph B; O'Donnell, Christopher J
2003-04-15
Circulating levels of fibrinogen are associated with atherosclerosis and predict future coronary heart disease and stroke. Levels of fibrinogen are correlated among family members, suggesting a heritable component. Variants of the beta-fibrinogen gene subunit on 4q28 are associated with fibrinogen levels but explain only a small proportion of the total genetic variability. It remains unknown what role, if any, is played by other genetic variants in the inter-individual variability in levels of fibrinogen in the general population. We conducted a 10-cM spaced genome-wide scan using 402 original cohort subjects and 1193 offspring subjects from 330 extended families of the Framingham Heart Study. Heritability and linkage analyses were carried out using variance component methods. Regression analyses were performed to adjust for traditional risk factors and HindIII beta-148 genotypes. The total heritability was estimated as 0.24. The highest and second highest LOD scores of linkage were found on chromosomes 2 (LOD=1.5 at 243 cM) and 10 (LOD=2.4 at 87 cM) using only offspring subjects in the analysis, and on chromosomes 2 (LOD=2.1 at 242 cM) and 10(LOD=1.4 at 86 cM), 17 (LOD=1.4 at 96 cM) and 20 (LOD=1.4 at 80 cM) using both original cohort and offspring. These results suggest that there may be influential genetic regions on these chromosomes. While no linkage with genome-wide significance was detected, further research to confirm our findings is warranted.
Temporal analysis of genetic structure to assess population dynamics of reintroduced swift foxes.
Cullingham, Catherine I; Moehrenschlager, Axel
2013-12-01
Reintroductions are increasingly used to reestablish species, but a paucity of long-term postrelease monitoring has limited understanding of whether and when viable populations subsequently persist. We conducted temporal genetic analyses of reintroduced populations of swift foxes (Vulpes velox) in Canada (Alberta and Saskatchewan) and the United States (Montana). We used samples collected 4 years apart, 17 years from the initiation of the reintroduction, and 3 years after the conclusion of releases. To assess program success, we genotyped 304 hair samples, subsampled from the known range in 2000 and 2001, and 2005 and 2006, at 7 microsatellite loci. We compared diversity, effective population size, and genetic connectivity over time in each population. Diversity remained stable over time and there was evidence of increasing effective population size. We determined population structure in both periods after correcting for differences in sample sizes. The geographic distribution of these populations roughly corresponded with the original release locations, which suggests the release sites had residual effects on the population structure. However, given that both reintroduction sites had similar source populations, habitat fragmentation, due to cropland, may be associated with the population structure we found. Although our results indicate growing, stable populations, future connectivity analyses are warranted to ensure both populations are not subject to negative small-population effects. Our results demonstrate the importance of multiple sampling years to fully capture population dynamics of reintroduced populations. Análisis Temporal de la Estructura Genética para Evaluar la Dinámica Poblacional de Zorros (Vulpes velox) Reintroducidos. © 2013 Society for Conservation Biology.
Pereira, Vania; Tomas, Carmen; Sanchez, Juan J; Syndercombe-Court, Denise; Amorim, António; Gusmão, Leonor; Prata, Maria João; Morling, Niels
2015-01-01
The peopling of Greenland has a complex history shaped by population migrations, isolation and genetic drift. The Greenlanders present a genetic heritage with components of European and Inuit groups; previous studies using uniparentally inherited markers in Greenlanders have reported evidence of a sex-biased, admixed genetic background. This work further explores the genetics of the Greenlanders by analysing autosomal and X-chromosomal data to obtain deeper insights into the factors that shaped the genetic diversity in Greenlanders. Fourteen Greenlandic subsamples from multiple geographical settlements were compared to assess the level of genetic substructure in the Greenlandic population. The results showed low levels of genetic diversity in all sets of the genetic markers studied, together with an increased number of X-chromosomal loci in linkage disequilibrium in relation to the Danish population. In the broader context of worldwide populations, Greenlanders are remarkably different from most populations, but they are genetically closer to some Inuit groups from Alaska. Admixture analyses identified an Inuit component in the Greenlandic population of approximately 80%. The sub-populations of Ammassalik and Nanortalik are the least diverse, presenting the lowest levels of European admixture. Isolation-by-distance analyses showed that only 16% of the genetic substructure of Greenlanders is most likely to be explained by geographic barriers. We suggest that genetic drift and a differentiated settlement history around the island explain most of the genetic substructure of the population in Greenland. PMID:24801759
Pereira, Vania; Tomas, Carmen; Sanchez, Juan J; Syndercombe-Court, Denise; Amorim, António; Gusmão, Leonor; Prata, Maria João; Morling, Niels
2015-02-01
The peopling of Greenland has a complex history shaped by population migrations, isolation and genetic drift. The Greenlanders present a genetic heritage with components of European and Inuit groups; previous studies using uniparentally inherited markers in Greenlanders have reported evidence of a sex-biased, admixed genetic background. This work further explores the genetics of the Greenlanders by analysing autosomal and X-chromosomal data to obtain deeper insights into the factors that shaped the genetic diversity in Greenlanders. Fourteen Greenlandic subsamples from multiple geographical settlements were compared to assess the level of genetic substructure in the Greenlandic population. The results showed low levels of genetic diversity in all sets of the genetic markers studied, together with an increased number of X-chromosomal loci in linkage disequilibrium in relation to the Danish population. In the broader context of worldwide populations, Greenlanders are remarkably different from most populations, but they are genetically closer to some Inuit groups from Alaska. Admixture analyses identified an Inuit component in the Greenlandic population of approximately 80%. The sub-populations of Ammassalik and Nanortalik are the least diverse, presenting the lowest levels of European admixture. Isolation-by-distance analyses showed that only 16% of the genetic substructure of Greenlanders is most likely to be explained by geographic barriers. We suggest that genetic drift and a differentiated settlement history around the island explain most of the genetic substructure of the population in Greenland.
Constraining the Deep Origin of Parasitic Flatworms and Host-Interactions with Fossil Evidence.
De Baets, Kenneth; Dentzien-Dias, Paula; Upeniece, Ieva; Verneau, Olivier; Donoghue, Philip C J
2015-01-01
Novel fossil discoveries have contributed to our understanding of the evolutionary appearance of parasitism in flatworms. Furthermore, genetic analyses with greater coverage have shifted our views on the coevolution of parasitic flatworms and their hosts. The putative record of parasitic flatworms is consistent with extant host associations and so can be used to put constraints on the evolutionary origin of the parasites themselves. The future lies in new molecular clock analyses combined with additional discoveries of exceptionally preserved flatworms associated with hosts and coprolites. Besides direct evidence, the host fossil record and biogeography have the potential to constrain their evolutionary history, albeit with caution needed to avoid circularity, and a need for calibrations to be implemented in the most conservative way. This might result in imprecise, but accurate divergence estimates for the evolution of parasitic flatworms. Copyright © 2015 Elsevier Ltd. All rights reserved.
Genome-wide pleiotropy and shared biological pathways for resistance to bovine pathogens
Zeng, Y.; Yin, T.; Brügemann, K.
2018-01-01
Host genetic architecture is a major factor in resistance to pathogens and parasites. The collection and analysis of sufficient data on both disease resistance and host genetics has, however, been a major obstacle to dissection the genetics of resistance to single or multiple pathogens. A severe challenge in the estimation of heritabilities and genetic correlations from pedigree-based studies has been the confounding effects of the common environment shared among relatives which are difficult to model in pedigree analyses, especially for health traits with low incidence rates. To circumvent this problem we used genome-wide single-nucleotide polymorphism data and implemented the Genomic-Restricted Maximum Likelihood (G-REML) method to estimate the heritabilities and genetic correlations for resistance to 23 different infectious pathogens in calves and cows in populations undergoing natural pathogen challenge. Furthermore, we conducted gene-based analysis and generalized gene-set analysis to understand the biological background of resistance to infectious diseases. The results showed relatively higher heritabilities of resistance in calves than in cows and significant pleiotropy (both positive and negative) among some calf and cow resistance traits. We also found significant pleiotropy between resistance and performance in both calves and cows. Finally, we confirmed the role of the B-lymphocyte pathway as one of the most important biological pathways associated with resistance to all pathogens. These results both illustrate the potential power of these approaches to illuminate the genetics of pathogen resistance in cattle and provide foundational information for future genomic selection aimed at improving the overall production fitness of cattle. PMID:29608619
NASA Astrophysics Data System (ADS)
De Girolamo, Mirko; Torboli, Valentina; Pallavicini, Alberto; Isidro, Eduardo
2017-11-01
Megabalanus azoricus giant barnacles are the most traditional seafood of the Azores archipelago (NE Atlantic). This valuable commercial species has been highly exploited in the past and it is considered one of the key species for the development of aquaculture in the region. Despite the importance for conservation and aquaculture there is still a lack of basic information about M. azoricus genetic diversity and population structure. Here we used seven microsatellites markers to analyse 300 samples collected at six out of nine islands of the Azores archipelago, including also different locations from a single island, to provide information on the scale of genetic diversity and population structure of this species. Parameters like heterozygosity, allelic richness and effective number of alleles indicated a high genetic diversity and variability among islands. Pairwise comparisons and PCoA analysis on FST and Jost's DEST showed significant and evident differentiation among sampling locations. Additionally, AMOVA allocates a small (6.02%) but statistically significant portion of the variance to the among Island level revealing also a weak resolution (1.87%) at finer scale. Additionally Monte Carlo resampling methods indicated the most likely sources of the recruits were the local or adjacent populations. Genetic risks associated with the giant barnacle potential production scheme should be taken into account in a future management plan delimiting, as precautionary measure, this culture at a single island or at groups of islands here identified. Moreover a monitoring strategy should be implemented with the aim to evaluate possible changes in genetic parameters of native populations.
[Autism, genetics and synaptic function alterations].
Perche, O; Laumonnier, F; Baala, L; Ardourel, M-Y; Menuet, A; Robin, V; Mortaud, S; Montécot-Dubourg, C; Richard, O; Pichon, J; Briault, S
2010-10-01
Autism is a neurodevelopmental disorder characterized by a deficit of language and communication both associated with a restricted repertoire of activities and interests. The current prevalence of autistic disorder stricto sensu is estimated at 1/500 whereas autism spectrum disorders (ASD) increases up to 1/150 to 1/200. Mental deficiency (MD) and epilepsy are present in numerous autistic individuals. Consequently, autism is as a major public health issue. Autism was first considered as a non biological disease; however various rational approaches for analysing epidemiological data suggested the possibility of the influence of genetic factors. In 2003, this hypothesis was clearly illustrated by the characterization of genetic mutations transmitted through a mendelian manner. Subsequently, the glutamate synapse appeared as a preferential causal target in autism because the identified genes encoded proteins present in this structure. Strikingly, the findings that an identical genetic dysfunction of the synapse might also explain some MD suggested the possibility of a genetic comorbidity between these neurodevelopmental conditions. To date, various identified genes are considered indifferently as "autism" or "MD" genes. The characterization of mutations in the NLGN4X gene in patients with Asperger syndrome, autism without MD, or MD without autism, was the first example. It appears that a genetic continuum between ASD on one hand, and between autism and MD on the other hand, is present. Consequently, it is likely that genes already involved in MD will be found mutated in autistic patients and will represent future target for finding new factors in autism. Copyright © 2010 Elsevier Masson SAS. All rights reserved.
Incorporating climate science in applications of the US endangered species act for aquatic species.
McClure, Michelle M; Alexander, Michael; Borggaard, Diane; Boughton, David; Crozier, Lisa; Griffis, Roger; Jorgensen, Jeffrey C; Lindley, Steven T; Nye, Janet; Rowland, Melanie J; Seney, Erin E; Snover, Amy; Toole, Christopher; VAN Houtan, Kyle
2013-12-01
Aquatic species are threatened by climate change but have received comparatively less attention than terrestrial species. We gleaned key strategies for scientists and managers seeking to address climate change in aquatic conservation planning from the literature and existing knowledge. We address 3 categories of conservation effort that rely on scientific analysis and have particular application under the U.S. Endangered Species Act (ESA): assessment of overall risk to a species; long-term recovery planning; and evaluation of effects of specific actions or perturbations. Fewer data are available for aquatic species to support these analyses, and climate effects on aquatic systems are poorly characterized. Thus, we recommend scientists conducting analyses supporting ESA decisions develop a conceptual model that links climate, habitat, ecosystem, and species response to changing conditions and use this model to organize analyses and future research. We recommend that current climate conditions are not appropriate for projections used in ESA analyses and that long-term projections of climate-change effects provide temporal context as a species-wide assessment provides spatial context. In these projections, climate change should not be discounted solely because the magnitude of projected change at a particular time is uncertain when directionality of climate change is clear. Identifying likely future habitat at the species scale will indicate key refuges and potential range shifts. However, the risks and benefits associated with errors in modeling future habitat are not equivalent. The ESA offers mechanisms for increasing the overall resilience and resistance of species to climate changes, including establishing recovery goals requiring increased genetic and phenotypic diversity, specifying critical habitat in areas not currently occupied but likely to become important, and using adaptive management. Incorporación de las Ciencias Climáticas en las Aplicaciones del Acta Estadunidense de Especies en Peligro para Especies Acuáticas. © 2013 Society for Conservation Biology No claim to original US government works.
Eastman, Alexander W; Heinrichs, David E; Yuan, Ze-Chun
2014-10-03
Members of the genus Paenibacillus are important plant growth-promoting rhizobacteria that can serve as bio-reactors. Paenibacillus polymyxa promotes the growth of a variety of economically important crops. Our lab recently completed the genome sequence of Paenibacillus polymyxa CR1. As of January 2014, four P. polymyxa genomes have been completely sequenced but no comparative genomic analyses have been reported. Here we report the comparative and genetic analyses of four sequenced P. polymyxa genomes, which revealed a significantly conserved core genome. Complex metabolic pathways and regulatory networks were highly conserved and allow P. polymyxa to rapidly respond to dynamic environmental cues. Genes responsible for phytohormone synthesis, phosphate solubilization, iron acquisition, transcriptional regulation, σ-factors, stress responses, transporters and biomass degradation were well conserved, indicating an intimate association with plant hosts and the rhizosphere niche. In addition, genes responsible for antimicrobial resistance and non-ribosomal peptide/polyketide synthesis are present in both the core and accessory genome of each strain. Comparative analyses also reveal variations in the accessory genome, including large plasmids present in strains M1 and SC2. Furthermore, a considerable number of strain-specific genes and genomic islands are irregularly distributed throughout each genome. Although a variety of plant-growth promoting traits are encoded by all strains, only P. polymyxa CR1 encodes the unique nitrogen fixation cluster found in other Paenibacillus sp. Our study revealed that genomic loci relevant to host interaction and ecological fitness are highly conserved within the P. polymyxa genomes analysed, despite variations in the accessory genome. This work suggets that plant-growth promotion by P. polymyxa is mediated largely through phytohormone production, increased nutrient availability and bio-control mechanisms. This study provides an in-depth understanding of the genome architecture of this species, thus facilitating future genetic engineering and applications in agriculture, industry and medicine. Furthermore, this study highlights the current gap in our understanding of complex plant biomass metabolism in Gram-positive bacteria.
Genetics, the facial plastic and reconstructive surgeon, and the future.
Seidman, M D
2001-01-01
Predicting the future is a daunting task that is typically reserved for visionaries or tarot card readers. Nonetheless, the challenge is set, and this brief essay will predict how genetics and molecular biology may affect diseases in facial plastic and reconstructive surgery.
Genetic variants related to height and risk of atrial fibrillation: the cardiovascular health study.
Rosenberg, Michael A; Kaplan, Robert C; Siscovick, David S; Psaty, Bruce M; Heckbert, Susan R; Newton-Cheh, Christopher; Mukamal, Kenneth J
2014-07-15
Increased height is a known independent risk factor for atrial fibrillation (AF). However, whether genetic determinants of height influence risk is uncertain. In this candidate gene study, we examined the association of 209 height-associated single-nucleotide polymorphisms (SNPs) with incident AF in 3,309 persons of European descent from the Cardiovascular Health Study, a prospective cohort study of older adults (aged ≥ 65 years) enrolled in 1989-1990. After a median follow-up period of 13.2 years, 879 participants developed incident AF. The height-associated SNPs together explained approximately 10% of the variation in height (P = 6.0 × 10(-8)). Using an unweighted genetic height score, we found a nonsignificant association with risk of AF (per allele, hazard ratio = 1.01, 95% confidence interval: 1.00, 1.02; P = 0.06). In weighted analyses, we found that genetically predicted height was strongly associated with AF risk (per 10 cm, hazard ratio = 1.30, 95% confidence interval: 1.03, 1.64; P = 0.03). Importantly, for all models, the inclusion of actual height completely attenuated the genetic height effect. Finally, we identified 1 nonsynonymous SNP (rs1046934) that was independently associated with AF and may warrant future study. In conclusion, we found that genetic determinants of height appear to increase the risk of AF, primarily via height itself. This approach of examining SNPs associated with an intermediate phenotype should be considered as a method for identifying novel genetic targets. © The Author 2014. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Genetic improvement of purslane (Portulaca oleracea L.) and its future prospects.
Amirul Alam, Md; Juraimi, Abdul Shukor; Rafii, M Y; Hamid, Azizah Abdul; Kamal Uddin, Md; Alam, M Z; Latif, M A
2014-11-01
Common purslane (Portulaca oleracea), also known as pigweed, fatweed, pusle, and little hogweed, is an annual succulent herb in the family Portulacaceae that is found in most corners of the globe. From the ancient ages purslane has been treated as a major weed of vegetables as well as other crops. However, worldwide researchers and nutritionists have studied this plant as a potential vegetable crop for humans as well as animals. Purslane is a nutritious vegetable with high antioxidant properties and recently has been recognized as the richest source of α-linolenic acid, essential omega-3 and 6 fatty acids, ascorbic acid, glutathione, α-tocopherol and β-carotene. The lack of vegetable sources of ω-3 fatty acids has resulted in a growing level of attention to introduce purslane as a new cultivated vegetable. In the rapid-revolutionizing worldwide atmosphere, the ability to produce improved planting material appropriate to diverse and varying rising conditions is a supreme precedence. Though various published reports on morphological, physiological, nutritional and medicinal aspects of purslane are available, research on the genetic improvement of this promising vegetable crop are scant. Now it is necessary to conduct research for the genetic improvement of this plant. Genetic improvement of purslane is also a real scientific challenge. Scientific modernization of conventional breeding with the advent of advance biotechnological and molecular approaches such as tissue culture, protoplast fusion, genetic transformation, somatic hybridization, marker-assisted selection, qualitative trait locus mapping, genomics, informatics and various statistical representation have opened up new opportunities of revising the relationship between genetic diversity, agronomic performance and response to breeding for varietal improvement. This review is an attempt to amalgamate the assorted scientific information on purslane propagation, cultivation, varietal improvement, nutrient analyses, medicinal uses and to describe prospective research especially for genetic improvement of this crop.
Recent Patterns in Genetic Testing for Breast and Ovarian Cancer Risk in the U.S.
Han, Xuesong; Jemal, Ahmedin
2017-10-01
Mutations in BRCA genes are strongly associated with increased risk of breast and ovarian cancer, and it is recommended that women at high risk for these mutations be referred for genetic counseling and testing. The Affordable Care Act (ACA) provision implemented in 2010 eliminated cost sharing for BRCA genetic testing for privately insured women with family history of BRCA-related cancers. Using a nationally representative sample from the National Health Interview Survey, this study examined trends in genetic testing for breast and ovarian cancer risk from 2005 to 2015 among women by family history and insurance status. To assess the impact of the ACA provision, a difference-in-differences strategy was used to compare changes in genetic testing after ACA implementation between women with a family history of breast or ovarian cancer and those with a family history of other cancers, stratified by insurance type. Analyses were conducted in 2016. Genetic testing for breast and ovarian cancer risk increased among women with private or public insurance, but not among uninsured women. Among privately insured women, those with family history of breast or ovarian cancer experienced a net increase of 2.9 percentage points (p=0.001) over those with a family history of other cancers, but no significant difference was observed among women with public insurance, suggesting a positive effect of the ACA provision. This study underscores the continued need to improve access to care for all populations. Future work should monitor the impact of policy on genetic testing among the high-risk population. Copyright © 2017 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.
Meegahakumbura, M. K.; Wambulwa, M. C.; Thapa, K. K.; Li, M. M.; Möller, M.; Xu, J. C.; Yang, J. B.; Liu, B. Y.; Ranjitkar, S.; Liu, J.; Li, D. Z.; Gao, L. M.
2016-01-01
Background Tea is the world’s most popular non-alcoholic beverage. China and India are known to be the largest tea producing countries and recognized as the centers for the domestication of the tea plant (Camellia sinensis (L.) O. Kuntze). However, molecular studies on the origin, domestication and relationships of the main teas, China type, Assam type and Cambod type are lacking. Methodology/Principal Findings Twenty-three nuclear microsatellite markers were used to investigate the genetic diversity, relatedness, and domestication history of cultivated tea in both China and India. Based on a total of 392 samples, high levels of genetic diversity were observed for all tea types in both countries. The cultivars clustered into three distinct genetic groups (i.e. China tea, Chinese Assam tea and Indian Assam tea) based on STRUCTURE, PCoA and UPGMA analyses with significant pairwise genetic differentiation, corresponding well with their geographical distribution. A high proportion (30%) of the studied tea samples were shown to possess genetic admixtures of different tea types suggesting a hybrid origin for these samples, including the Cambod type. Conclusions We demonstrate that Chinese Assam tea is a distinct genetic lineage from Indian Assam tea, and that China tea sampled from India was likely introduced from China directly. Our results further indicate that China type tea, Chinese Assam type tea and Indian Assam type tea are likely the result of three independent domestication events from three separate regions across China and India. Our findings have important implications for the conservation of genetic stocks, as well as future breeding programs. PMID:27218820
Jahanshad, Neda; Kochunov, Peter; Sprooten, Emma; Mandl, René C.; Nichols, Thomas E.; Almassy, Laura; Blangero, John; Brouwer, Rachel M.; Curran, Joanne E.; de Zubicaray, Greig I.; Duggirala, Ravi; Fox, Peter T.; Hong, L. Elliot; Landman, Bennett A.; Martin, Nicholas G.; McMahon, Katie L.; Medland, Sarah E.; Mitchell, Braxton D.; Olvera, Rene L.; Peterson, Charles P.; Starr, John M.; Sussmann, Jessika E.; Toga, Arthur W.; Wardlaw, Joanna M.; Wright, Margaret J.; Hulshoff Pol, Hilleke E.; Bastin, Mark E.; McIntosh, Andrew M.; Deary, Ian J.; Thompson, Paul M.; Glahn, David C.
2013-01-01
The ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) Consortium was set up to analyze brain measures and genotypes from multiple sites across the world to improve the power to detect genetic variants that influence the brain. Diffusion tensor imaging (DTI) yields quantitative measures sensitive to brain development and degeneration, and some common genetic variants may be associated with white matter integrity or connectivity. DTI measures, such as the fractional anisotropy (FA) of water diffusion, may be useful for identifying genetic variants that influence brain microstructure. However, genome-wide association studies (GWAS) require large populations to obtain sufficient power to detect and replicate significant effects, motivating a multi-site consortium effort. As part of an ENIGMA–DTI working group, we analyzed high-resolution FA images from multiple imaging sites across North America, Australia, and Europe, to address the challenge of harmonizing imaging data collected at multiple sites. Four hundred images of healthy adults aged 18–85 from four sites were used to create a template and corresponding skeletonized FA image as a common reference space. Using twin and pedigree samples of different ethnicities, we used our common template to evaluate the heritability of tract-derived FA measures. We show that our template is reliable for integrating multiple datasets by combining results through meta-analysis and unifying the data through exploratory mega-analyses. Our results may help prioritize regions of the FA map that are consistently influenced by additive genetic factors for future genetic discovery studies. Protocols and templates are publicly available at (http://enigma.loni.ucla.edu/ongoing/dti-working-group/). PMID:23629049
Dubé, Caroline E; Planes, Serge; Zhou, Yuxiang; Berteaux-Lecellier, Véronique; Boissin, Emilie
2017-01-01
Quantifying the genetic diversity in natural populations is crucial to address ecological and evolutionary questions. Despite recent advances in whole-genome sequencing, microsatellite markers have remained one of the most powerful tools for a myriad of population genetic approaches. Here, we used the 454 sequencing technique to develop microsatellite loci in the fire coral Millepora platyphylla , an important reef-builder of Indo-Pacific reefs . We tested the cross-species amplification of these loci in five other species of the genus Millepora and analysed its success in correlation with the genetic distances between species using mitochondrial 16S sequences. We succeeded in discovering fifteen microsatellite loci in our target species M. platyphylla, among which twelve were polymorphic with 2-13 alleles and a mean observed heterozygosity of 0.411. Cross-species amplification in the five other Millepora species revealed a high probability of amplification success (71%) and polymorphism (59%) of the loci. Our results show no evidence of decreased heterozygosity with increasing genetic distance. However, only one locus enabled measures of genetic diversity in the Caribbean species M. complanata due to high proportions of null alleles for most of the microsatellites. This result indicates that our novel markers may only be useful for the Indo-Pacific species of Millepora. Measures of genetic diversity revealed significant linkage disequilibrium, moderate levels of observed heterozygosity (0.323-0.496) and heterozygote deficiencies for the Indo-Pacific species. The accessibility to new polymorphic microsatellite markers for hydrozoan Millepora species creates new opportunities for future research on processes driving the complexity of their colonisation success on many Indo-Pacific reefs.
Genetic diversity is related to climatic variation and vulnerability in threatened bull trout
Kovach, Ryan; Muhlfeld, Clint C.; Wade, Alisa A.; Hand, Brian K.; Whited, Diane C.; DeHaan, Patrick W.; Al-Chokhachy, Robert K.; Luikart, Gordon
2015-01-01
Understanding how climatic variation influences ecological and evolutionary processes is crucial for informed conservation decision-making. Nevertheless, few studies have measured how climatic variation influences genetic diversity within populations or how genetic diversity is distributed across space relative to future climatic stress. Here, we tested whether patterns of genetic diversity (allelic richness) were related to climatic variation and habitat features in 130 bull trout (Salvelinus confluentus) populations from 24 watersheds (i.e., ~4–7th order river subbasins) across the Columbia River Basin, USA. We then determined whether bull trout genetic diversity was related to climate vulnerability at the watershed scale, which we quantified on the basis of exposure to future climatic conditions (projected scenarios for the 2040s) and existing habitat complexity. We found a strong gradient in genetic diversity in bull trout populations across the Columbia River Basin, where populations located in the most upstream headwater areas had the greatest genetic diversity. After accounting for spatial patterns with linear mixed models, allelic richness in bull trout populations was positively related to habitat patch size and complexity, and negatively related to maximum summer temperature and the frequency of winter flooding. These relationships strongly suggest that climatic variation influences evolutionary processes in this threatened species and that genetic diversity will likely decrease due to future climate change. Vulnerability at a watershed scale was negatively correlated with average genetic diversity (r = −0.77;P < 0.001); watersheds containing populations with lower average genetic diversity generally had the lowest habitat complexity, warmest stream temperatures, and greatest frequency of winter flooding. Together, these findings have important conservation implications for bull trout and other imperiled species. Genetic diversity is already depressed where climatic vulnerability is highest; it will likely erode further in the very places where diversity may be most needed for future persistence.
Argentine Population Genetic Structure: Large Variance in Amerindian Contribution
Seldin, Michael F.; Tian, Chao; Shigeta, Russell; Scherbarth, Hugo R.; Silva, Gabriel; Belmont, John W.; Kittles, Rick; Gamron, Susana; Allevi, Alberto; Palatnik, Simon A.; Alvarellos, Alejandro; Paira, Sergio; Caprarulo, Cesar; Guillerón, Carolina; Catoggio, Luis J.; Prigione, Cristina; Berbotto, Guillermo A.; García, Mercedes A.; Perandones, Carlos E.; Pons-Estel, Bernardo A.; Alarcon-Riquelme, Marta E.
2011-01-01
Argentine population genetic structure was examined using a set of 78 ancestry informative markers (AIMs) to assess the contributions of European, Amerindian, and African ancestry in 94 individuals members of this population. Using the Bayesian clustering algorithm STRUCTURE, the mean European contribution was 78%, the Amerindian contribution was 19.4%, and the African contribution was 2.5%. Similar results were found using weighted least mean square method: European, 80.2%; Amerindian, 18.1%; and African, 1.7%. Consistent with previous studies the current results showed very few individuals (four of 94) with greater than 10% African admixture. Notably, when individual admixture was examined, the Amerindian and European admixture showed a very large variance and individual Amerindian contribution ranged from 1.5 to 84.5% in the 94 individual Argentine subjects. These results indicate that admixture must be considered when clinical epidemiology or case control genetic analyses are studied in this population. Moreover, the current study provides a set of informative SNPs that can be used to ascertain or control for this potentially hidden stratification. In addition, the large variance in admixture proportions in individual Argentine subjects shown by this study suggests that this population is appropriate for future admixture mapping studies. PMID:17177183
Asthma pharmacogenetics and the development of genetic profiles for personalized medicine
Ortega, Victor E; Meyers, Deborah A; Bleecker, Eugene R
2015-01-01
Human genetics research will be critical to the development of genetic profiles for personalized or precision medicine in asthma. Genetic profiles will consist of gene variants that predict individual disease susceptibility and risk for progression, predict which pharmacologic therapies will result in a maximal therapeutic benefit, and predict whether a therapy will result in an adverse response and should be avoided in a given individual. Pharmacogenetic studies of the glucocorticoid, leukotriene, and β2-adrenergic receptor pathways have focused on candidate genes within these pathways and, in addition to a small number of genome-wide association studies, have identified genetic loci associated with therapeutic responsiveness. This review summarizes these pharmacogenetic discoveries and the future of genetic profiles for personalized medicine in asthma. The benefit of a personalized, tailored approach to health care delivery is needed in the development of expensive biologic drugs directed at a specific biologic pathway. Prior pharmacogenetic discoveries, in combination with additional variants identified in future studies, will form the basis for future genetic profiles for personalized tailored approaches to maximize therapeutic benefit for an individual asthmatic while minimizing the risk for adverse events. PMID:25691813
Machalek, Dorothy A; Wark, John D; Tabrizi, Sepehr N; Hopper, John L; Bui, Minh; Dite, Gillian S; Cornall, Alyssa M; Pitts, Marian; Gertig, Dorota; Erbas, Bircan; Garland, Suzanne M
2017-02-01
Persistent high-risk human papillomavirus (HPV) infection is a necessary prerequisite for development of cervical cancer and its precursor lesion, high-grade squamous intraepithelial lesion (HSIL). However, HPV infection is not sufficient to drive this process, and genetic and environmental factors may also play a role. The Cervical Cancer, Genetics and Environment Twin Study was established to investigate the environmental and genetic influences on variation in susceptibility to cervical pre-cancer in 25- to 69-year-old monozygotic (MZ) and dizygotic (DZ) twins recruited through the Australian Twin Registry. Reviews of Papanicolaou (Pap) screening histories were undertaken to identify individual women with a history of an abnormal Pap test. This was followed by detection of HPV in archival Pap smears of selected twin pairs to determine HPV persistence. Selected twin pairs also completed a detailed questionnaire on socio-demographic characteristics, sexual behavior, and HPV knowledge. In future analyses, under the assumptions of the classical twin design, case-wise concordance for persistent HPV infection and HSIL will be calculated for MZ and DZ twin pairs, and twin pairs (both MZ and DZ) who are discordant for the above outcomes will be used to assess the contributions of measured environmental risk factors. The study examines factors related to HPV persistence and development of HSIL among female MZ and DZ twins. The results will contribute to our understanding of the natural history of cervical HPV infection and the relative contributions of genetic and environmental factors in disease progression.
Genetic and Metabolite Diversity of Sardinian Populations of Helichrysum italicum
Melito, Sara; Sias, Angela; Petretto, Giacomo L.; Chessa, Mario; Pintore, Giorgio; Porceddu, Andrea
2013-01-01
Background Helichrysum italicum (Asteraceae) is a small shrub endemic to the Mediterranean Basin, growing in fragmented and diverse habitats. The species has attracted attention due to its secondary metabolite content, but little effort has as yet been dedicated to assessing the genetic and metabolite diversity present in these populations. Here, we describe the diversity of 50 H. italicum populations collected from a range of habitats in Sardinia. Methods H. italicum plants were AFLP fingerprinted and the composition of their leaf essential oil characterized by GC-MS. The relationships between the genetic structure of the populations, soil, habitat and climatic variables and the essential oil chemotypes present were evaluated using Bayesian clustering, contingency analyses and AMOVA. Key results The Sardinian germplasm could be partitioned into two AFLP-based clades. Populations collected from the southwestern region constituted a homogeneous group which remained virtually intact even at high levels of K. The second, much larger clade was more diverse. A positive correlation between genetic diversity and elevation suggested the action of natural purifying selection. Four main classes of compounds were identified among the essential oils, namely monoterpenes, oxygenated monoterpenes, sesquiterpenes and oxygenated sesquiterpenes. Oxygenated monoterpene levels were significantly correlated with the AFLP-based clade structure, suggesting a correspondence between gene pool and chemical diversity. Conclusions The results suggest an association between chemotype, genetic diversity and collection location which is relevant for the planning of future collections aimed at identifying valuable sources of essential oil. PMID:24260149
Usher syndrome: an effective sequencing approach to establish a genetic and clinical diagnosis.
Lenarduzzi, S; Vozzi, D; Morgan, A; Rubinato, E; D'Eustacchio, A; Osland, T M; Rossi, C; Graziano, C; Castorina, P; Ambrosetti, U; Morgutti, M; Girotto, G
2015-02-01
Usher syndrome is an autosomal recessive disorder characterized by retinitis pigmentosa, sensorineural hearing loss and, in some cases, vestibular dysfunction. The disorder is clinically and genetically heterogeneous and, to date, mutations in 11 genes have been described. This finding makes difficult to get a precise molecular diagnosis and offer patients accurate genetic counselling. To overcome this problem and to increase our knowledge of the molecular basis of Usher syndrome, we designed a targeted resequencing custom panel. In a first validation step a series of 16 Italian patients with known molecular diagnosis were analysed and 31 out of 32 alleles were detected (97% of accuracy). After this step, 31 patients without a molecular diagnosis were enrolled in the study. Three out of them with an uncertain Usher diagnosis were excluded. One causative allele was detected in 24 out 28 patients (86%) while the presence of both causative alleles characterized 19 patients out 28 (68%). Sixteen novel and 27 known alleles were found in the following genes: USH2A (50%), MYO7A (7%), CDH23 (11%), PCDH15 (7%) and USH1G (2%). Overall, on the 44 patients the protocol was able to characterize 74 alleles out of 88 (84%). These results suggest that our panel is an effective approach for the genetic diagnosis of Usher syndrome leading to: 1) an accurate molecular diagnosis, 2) better genetic counselling, 3) more precise molecular epidemiology data fundamental for future interventional plans. Copyright © 2014 Elsevier B.V. All rights reserved.
Conditions for success of engineered underdominance gene drive systems.
Edgington, Matthew P; Alphey, Luke S
2017-10-07
Engineered underdominance is one of a number of different gene drive strategies that have been proposed for the genetic control of insect vectors of disease. Here we model a two-locus engineered underdominance based gene drive system that is based on the concept of mutually suppressing lethals. In such a system two genetic constructs are introduced, each possessing a lethal element and a suppressor of the lethal at the other locus. Specifically, we formulate and analyse a population genetics model of this system to assess when different combinations of release strategies (i.e. single or multiple releases of both sexes or males only) and genetic systems (i.e. bisex lethal or female-specific lethal elements and different strengths of suppressors) will give population replacement or fail to do so. We anticipate that results presented here will inform the future design of engineered underdominance gene drive systems as well as providing a point of reference regarding release strategies for those looking to test such a system. Our discussion is framed in the context of genetic control of insect vectors of disease. One of several serious threats in this context are Aedes aegypti mosquitoes as they are the primary vectors of dengue viruses. However, results are also applicable to Ae. aegypti as vectors of Zika, yellow fever and chikungunya viruses and also to the control of a number of other insect species and thereby of insect-vectored pathogens. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Knowlton, Michelle N; Li, Tongbin; Ren, Yongliang; Bill, Brent R; Ellis, Lynda Bm; Ekker, Stephen C
2008-01-07
The zebrafish is a powerful model vertebrate amenable to high throughput in vivo genetic analyses. Examples include reverse genetic screens using morpholino knockdown, expression-based screening using enhancer trapping and forward genetic screening using transposon insertional mutagenesis. We have created a database to facilitate web-based distribution of data from such genetic studies. The MOrpholino DataBase is a MySQL relational database with an online, PHP interface. Multiple quality control levels allow differential access to data in raw and finished formats. MODBv1 includes sequence information relating to almost 800 morpholinos and their targets and phenotypic data regarding the dose effect of each morpholino (mortality, toxicity and defects). To improve the searchability of this database, we have incorporated a fixed-vocabulary defect ontology that allows for the organization of morpholino affects based on anatomical structure affected and defect produced. This also allows comparison between species utilizing Phenotypic Attribute Trait Ontology (PATO) designated terminology. MODB is also cross-linked with ZFIN, allowing full searches between the two databases. MODB offers users the ability to retrieve morpholino data by sequence of morpholino or target, name of target, anatomical structure affected and defect produced. MODB data can be used for functional genomic analysis of morpholino design to maximize efficacy and minimize toxicity. MODB also serves as a template for future sequence-based functional genetic screen databases, and it is currently being used as a model for the creation of a mutagenic insertional transposon database.
Miller, Mark P.; Bellinger, R.M.; Forsman, E.D.; Haig, Susan M.
2006-01-01
Phylogeographical analyses conducted in the Pacific Northwestern United States have often revealed concordant patterns of genetic diversity among taxa. These studies demonstrate distinct North/South genetic discontinuities that have been attributed to Pleistocene glaciation. We examined phylogeographical patterns of red tree voles (Phenacomys longicaudus) in western Oregon by analysing mitochondrial control region sequences for 169 individuals from 18 areas across the species' range. Cytochrome b sequences were also analysed from a subset of our samples to confirm the presence of major haplotype groups. Phylogenetic network analyses suggested the presence of two haplotype groups corresponding to northern and southern regions of P. longicaudus' range. Spatial genetic analyses (samova and Genetic Landscape Shapes) of control region sequences demonstrated a primary genetic discontinuity separating northern and southern sampling areas, while a secondary discontinuity separated northern sampling areas into eastern and western groups divided by the Willamette Valley. The North/South discontinuity likely corresponds to a region of secondary contact between lineages rather than an overt barrier. Although the Cordilleran ice sheet (maximum a??12 000 years ago) did not move southward to directly affect the region occupied by P. longicaudus, climate change during glaciation fragmented the forest landscape that it inhabits. Signatures of historical fragmentation were reflected by positive associations between latitude and variables such as Tajima's D and patterns associated with location-specific alleles. Genetic distances between southern sampling areas were smaller, suggesting that forest fragmentation was reduced in southern vs. northern regions.
Ananian, Viviana; Tozzo, Pamela; Ponzano, Elena; Nitti, Donato; Rodriguez, Daniele; Caenazzo, Luciana
2011-05-01
In certain circumstances, tumour tissue specimens are the only DNA resource available for forensic DNA analysis. However, cancer tissues can show microsatellite instability and loss of heterozygosity which, if concerning the short tandem repeats (STRs) used in the forensic field, can cause misinterpretation of the results. Moreover, though formalin-fixed paraffin-embedded tissues (FFPET) represent a large resource for these analyses, the quality of the DNA obtained from this kind of specimen can be an important limit. In this study, we evaluated the use of tumoural tissue as biological material for the determination of genetic profiles in the forensic field, highlighting which STR polymorphisms are more susceptible to tumour genetic alterations and which of the analysed tumours show a higher genetic variability. The analyses were conducted on samples of the same tissues conserved in different storage conditions, to compare genetic profiles obtained by frozen tissues and formalin-fixed paraffin-embedded tissues. The importance of this study is due to the large number of specimens analysed (122), the large number of polymorphisms analysed for each specimen (39), and the possibility to compare, many years after storage, the same tissue frozen and formalin-fixed paraffin-embedded. In the comparison between the genetic profiles of frozen tumour tissues and FFPET, the same genetic alterations have been reported in both kinds of specimens. However, FFPET showed new alterations. We conclude that the use of FFPET requires greater attention than frozen tissues in the results interpretation and great care in both pre-extraction and extraction processes.
Social Science Methods for Twins Data: Integrating Causality, Endowments and Heritability
Kohler, Hans-Peter; Behrman, Jere R.; Schnittker, Jason
2011-01-01
Twins have been extensively used in economics, sociology and behavioral genetics to investigate the role of genetic endowments on a broad range of social, demographic and economic outcomes. However, the focus in these literatures has been distinct: the economic literature has been primarily concerned with the need to control for unobserved endowments—including as an important subset, genetic endowments—in analyses that attempt to establish the impact of one variable, often schooling, on a variety of economic, demographic and health outcomes. Behavioral genetic analyses have mostly been concerned with decomposing the variation in the outcomes of interest into genetic, shared environmental and non-shared environmental components, with recent multivariate analyses investigating the contributions of genes and the environment to the correlation and causation between variables. Despite the fact that twins studies and the recognition of the role of endowments are central to both of these literatures, they have mostly evolved independently. In this paper we develop formally the relationship between the economic and behavioral genetic approaches to the analyses of twins, and we develop an integrative approach that combines the identification of causal effects, which dominates the economic literature, with the decomposition of variances and covariances into genetic and environmental factors that is the primary goal of behavioral genetic approaches. We apply this integrative ACE-β approach to an illustrative investigation of the impact of schooling on several demographic outcomes such as fertility and nuptiality and health. PMID:21845929
Multi-locus Analyses Reveal Four Giraffe Species Instead of One.
Fennessy, Julian; Bidon, Tobias; Reuss, Friederike; Kumar, Vikas; Elkan, Paul; Nilsson, Maria A; Vamberger, Melita; Fritz, Uwe; Janke, Axel
2016-09-26
Traditionally, one giraffe species and up to eleven subspecies have been recognized [1]; however, nine subspecies are commonly accepted [2]. Even after a century of research, the distinctness of each giraffe subspecies remains unclear, and the genetic variation across their distribution range has been incompletely explored. Recent genetic studies on mtDNA have shown reciprocal monophyly of the matrilines among seven of the nine assumed subspecies [3, 4]. Moreover, until now, genetic analyses have not been applied to biparentally inherited sequence data and did not include data from all nine giraffe subspecies. We sampled natural giraffe populations from across their range in Africa, and for the first time individuals from the nominate subspecies, the Nubian giraffe, Giraffa camelopardalis camelopardalis Linnaeus 1758 [5], were included in a genetic analysis. Coalescence-based multi-locus and population genetic analyses identify at least four separate and monophyletic clades, which should be recognized as four distinct giraffe species under the genetic isolation criterion. Analyses of 190 individuals from maternal and biparental markers support these findings and further suggest subsuming Rothschild's giraffe into the Nubian giraffe, as well as Thornicroft's giraffe into the Masai giraffe [6]. A giraffe survey genome produced valuable data from microsatellites, mobile genetic elements, and accurate divergence time estimates. Our findings provide the most inclusive analysis of giraffe relationships to date and show that their genetic complexity has been underestimated, highlighting the need for greater conservation efforts for the world's tallest mammal. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nolan, Matthew J; Unger, Melisa; Yeap, Yuen-Ting; Rogers, Emma; Millet, Ilary; Harman, Kimberley; Fox, Mark; Kalema-Zikusoka, Gladys; Blake, Damer P
2017-07-18
Over 60 % of human emerging infectious diseases are zoonotic, and there is growing evidence of the zooanthroponotic transmission of diseases from humans to livestock and wildlife species, with major implications for public health, economics, and conservation. Zooanthroponoses are of relevance to critically endangered species; amongst these is the mountain gorilla (Gorilla beringei beringei) of Uganda. Here, we assess the occurrence of Cryptosporidium, Cyclospora, Giardia, and Entamoeba infecting mountain gorillas in the Bwindi Impenetrable National Park (BINP), Uganda, using molecular methods. We also assess the occurrence of these parasites in humans and livestock species living in overlapping/adjacent geographical regions. Diagnostic PCR detected Cryptosporidium parvum in one sample from a mountain gorilla (IIdA23G2) and one from a goat (based on SSU). Cryptosporidium was not detected in humans or cattle. Cyclospora was not detected in any of the samples analysed. Giardia was identified in three human and two cattle samples, which were linked to assemblage A, B and E of G. duodenalis. Sequences defined as belonging to the genus Entamoeba were identified in all host groups. Of the 86 sequence types characterised, one, seven and two have been recorded previously to represent genotypes of Cryptosporidium, Giardia, and Entamoeba, respectively, from humans, other mammals, and water sources globally. This study provides a snapshot of the occurrence and genetic make-up of selected protists in mammals in and around BINP. The genetic analyses indicated that 54.6% of the 203 samples analysed contained parasites that matched species, genotypes, or genetic assemblages found globally. Seventy-six new sequence records were identified here for the first time. As nothing is known about the zoonotic/zooanthroponotic potential of the corresponding parasites, future work should focus on wider epidemiological investigations together with continued surveillance of all parasites in humans, other mammals, the environment, and water in this highly impoverished area.
A nationwide genetic testing survey in Italy, year 2007.
Dallapiccola, Bruno; Torrente, Isabella; Agolini, Emanuele; Morena, Arnaldo; Mingarelli, Rita
2010-02-01
The aim of this study was to collect the practices of cytogenetic and molecular genetic testing and genetic counseling activities in Italy in the year 2007 and provide guidance to the national and regional health systems to improve the organization of genetic services. A web-based survey was carried out to assess the total number and the type of analyses, the number and type of genetic counseling sessions, and the personnel attending these activities. The quality management system of the responding structures, in terms of certification and accreditation standards, was also investigated. The appropriateness of requests for genetic testing was evaluated for six disorders. Data were collected from 278 responding centers, half of which were located in the northern regions of the country. Twenty-eight percent of the total were certified according to quality standards. A total of 217 molecular genetic and 171 cytogenetic laboratories, and 102 clinical genetic services were surveyed. About 560,000 genetic tests, including 311,069 cytogenetic and 248,691 molecular genetic analyses of 556 genes, were recorded. The fetal karyotype was examined on either trophoblast or amniocytes in about one of every 4.4 pregnancies. Only 11.5% of cytogenetic analyses and 13.5% of molecular tests were accompanied by genetic counseling. Concerning the appropriateness of a request for genetic testing, a low congruity was found between the clinical diagnosis and the laboratory results. This study highlights the need for reorganizing the genetic structure network in Italy, which at present is oversized, improving the quality management systems, expanding the availability of testing for rare disease genes, and improving access to pretest and posttest genetic counseling.
Hart, Sara A; Petrill, Stephen A; Willcutt, Erik; Thompson, Lee A; Schatschneider, Christopher; Deater-Deckard, Kirby; Cutting, Laurie E
2010-11-01
Children with attention-deficit/hyperactivity disorder (ADHD) tend to perform more poorly on tests of reading and mathematical performance than their typical peers. Quantitative genetic analyses allow for a better understanding of the etiology of ADHD and reading and mathematics outcomes, by examining their common and unique genetic and environmental influences. Analyses were conducted on a sample 271 pairs of 10-year-old monozygotic and dizygotic twins drawn from the Western Reserve Reading and Mathematics Project. In general, the results suggested that the associations among ADHD symptoms, reading outcomes, and math outcomes were influenced by both general genetic and general shared-environment factors. The analyses also suggested significant independent genetic effects for ADHD symptoms. The results imply that differing etiological factors underlie the relationships among ADHD and reading and mathematics performance. It appears that both genetic and common family or school environments link ADHD with academic performance.
Hsu, Jeremy L; Crawford, Jeremy Chase; Tammone, Mauro N; Ramakrishnan, Uma; Lacey, Eileen A; Hadly, Elizabeth A
2017-11-24
Marked reductions in population size can trigger corresponding declines in genetic variation. Understanding the precise genetic consequences of such reductions, however, is often challenging due to the absence of robust pre- and post-reduction datasets. Here, we use heterochronous genomic data from samples obtained before and immediately after the 2011 eruption of the Puyehue-Cordón Caulle volcanic complex in Patagonia to explore the genetic impacts of this event on two parapatric species of rodents, the colonial tuco-tuco (Ctenomys sociabilis) and the Patagonian tuco-tuco (C. haigi). Previous analyses using microsatellites revealed no post-eruption changes in genetic variation in C. haigi, but an unexpected increase in variation in C. sociabilis. To explore this outcome further, we used targeted gene capture to sequence over 2,000 putatively neutral regions for both species. Our data revealed that, contrary to the microsatellite analyses, the eruption was associated with a small but significant decrease in genetic variation in both species. We suggest that genome-level analyses provide greater power than traditional molecular markers to detect the genetic consequences of population size changes, particularly changes that are recent, short-term, or modest in size. Consequently, genomic analyses promise to generate important new insights into the effects of specific environmental events on demography and genetic variation.
Bao, Wenquan; Li, Tiezhu; Liu, Huimin; Jiang, Zhongmao; Zhu, Xuchun; Du, Hongyan; Bai, Yu-e
2017-01-01
Prunus mira Koehne, an important economic fruit crop with high breeding and medicinal values, and an ancestral species of many cultivated peach species, has recently been declared an endangered species. However, basic information about genetic diversity, population structure, and morphological variation is still limited for this species. In this study, we sampled 420 P. mira individuals from 21 wild populations in the Tibet plateau to conduct a comprehensive analysis of genetic and morphological characteristics. The results of molecular analyses based on simple sequence repeat (SSR) markers indicated moderate genetic diversity and inbreeding (A = 3.8, Ae = 2.5, He = 0.52, Ho = 0.44, I = 0.95, FIS = 0.17) within P. mira populations. STRUCTURE, GENELAND, and phylogenetic analyses assigned the 21 populations to three genetic clusters that were moderately correlated with geographic altitudes, and this may have resulted from significantly different climatic and environmental factors at different altitudinal ranges. Significant isolation-by-distance was detected across the entire distribution of P. mira populations, but geographic altitude might have more significant effects on genetic structure than geographic distance in partial small-scale areas. Furthermore, clear genetic structure, high genetic differentiation, and restricted gene flow were detected between pairwise populations from different geographic groups, indicating that geographic barriers and genetic drift have significant effects on P. mira populations. Analyses of molecular variance based on the SSR markers indicated high variation (83.7% and 81.7%), whereas morphological analyses revealed low variation (1.30%–36.17%) within the populations. Large and heavy fruits were better adapted than light fruits and nutlets to poor climate and environmental conditions at high altitudes. Based on the results of molecular and morphological analyses, we classified the area into three conservation units and proposed several conservation strategies for wild P. mira populations in the Tibet plateau. PMID:29186199
Bao, Wenquan; Wuyun, Tana; Li, Tiezhu; Liu, Huimin; Jiang, Zhongmao; Zhu, Xuchun; Du, Hongyan; Bai, Yu-E
2017-01-01
Prunus mira Koehne, an important economic fruit crop with high breeding and medicinal values, and an ancestral species of many cultivated peach species, has recently been declared an endangered species. However, basic information about genetic diversity, population structure, and morphological variation is still limited for this species. In this study, we sampled 420 P. mira individuals from 21 wild populations in the Tibet plateau to conduct a comprehensive analysis of genetic and morphological characteristics. The results of molecular analyses based on simple sequence repeat (SSR) markers indicated moderate genetic diversity and inbreeding (A = 3.8, Ae = 2.5, He = 0.52, Ho = 0.44, I = 0.95, FIS = 0.17) within P. mira populations. STRUCTURE, GENELAND, and phylogenetic analyses assigned the 21 populations to three genetic clusters that were moderately correlated with geographic altitudes, and this may have resulted from significantly different climatic and environmental factors at different altitudinal ranges. Significant isolation-by-distance was detected across the entire distribution of P. mira populations, but geographic altitude might have more significant effects on genetic structure than geographic distance in partial small-scale areas. Furthermore, clear genetic structure, high genetic differentiation, and restricted gene flow were detected between pairwise populations from different geographic groups, indicating that geographic barriers and genetic drift have significant effects on P. mira populations. Analyses of molecular variance based on the SSR markers indicated high variation (83.7% and 81.7%), whereas morphological analyses revealed low variation (1.30%-36.17%) within the populations. Large and heavy fruits were better adapted than light fruits and nutlets to poor climate and environmental conditions at high altitudes. Based on the results of molecular and morphological analyses, we classified the area into three conservation units and proposed several conservation strategies for wild P. mira populations in the Tibet plateau.
Genetics of Attention Deficit Hyperactivity Disorder: A Current Review and Future Prospects
ERIC Educational Resources Information Center
Levy, Florence; Hay, David A.; Bennett, Kellie S.
2006-01-01
While there have been significant advances in both the behaviour genetics and molecular genetics of Attention Deficit Hyperactivity Disorder (ADHD), researchers are now beginning to develop hypotheses about relationships between phenotypes and genetic mechanisms. Twin studies are able to model genetic, shared environmental and non-shared…
Chen, Minmin; Zheng, Jinsong; Wu, Min; Ruan, Rui; Zhao, Qingzhong; Wang, Ding
2014-01-01
Ecological surveys have indicated that the population of the critically endangered Yangtze finless porpoise (YFP, Neophocaena asiaeorientalis asiaeorientalis) is becoming increasingly small and fragmented, and will be at high risk of extinction in the near future. Genetic conservation of this population will be an important component of the long-term conservation effort. We used a 597 base pair mitochondrial DNA (mtDNA) control region and 11 microsatellite loci to analyze the genetic diversity and population structure of the YFP. The analysis of both mtDNA and microsatellite loci suggested that the genetic diversity of the YFP will possibly decrease in the future if the population keeps declining at a rapid rate, even though these two types of markers revealed different levels of genetic diversity. In addition, mtDNA revealed strong genetic differentiation between one local population, Xingchang–Shishou (XCSS), and the other five downstream local populations; furthermore, microsatellite DNA unveiled fine but significant genetic differentiation between three of the local populations (not only XCSS but also Poyang Lake (PY) and Tongling (TL)) and the other local populations. With an increasing number of distribution gaps appearing in the Yangtze main steam, the genetic differentiation of local populations will likely intensify in the future. The YFP is becoming a genetically fragmented population. Therefore, we recommend attention should be paid to the genetic conservation of the YFP. PMID:24968271
STOCKING THE GENETIC SUPERMARKET: REPRODUCTIVE GENETIC TECHNOLOGIES AND COLLECTIVE ACTION PROBLEMS
Gyngell, Chris; Douglas, Thomas
2015-01-01
Reproductive genetic technologies (RGTs) allow parents to decide whether their future children will have or lack certain genetic predispositions. A popular model that has been proposed for regulating access to RGTs is the ‘genetic supermarket’. In the genetic supermarket, parents are free to make decisions about which genes to select for their children with little state interference. One possible consequence of the genetic supermarket is that collective action problems will arise: if rational individuals use the genetic supermarket in isolation from one another, this may have a negative effect on society as a whole, including future generations. In this article we argue that RGTs targeting height, innate immunity, and certain cognitive traits could lead to collective action problems. We then discuss whether this risk could in principle justify state intervention in the genetic supermarket. We argue that there is a plausible prima facie case for the view that such state intervention would be justified and respond to a number of arguments that might be adduced against that view. PMID:24720568
Uphyrkina, Olga; O'Brien, Stephen J
2003-08-01
A role for molecular genetic approaches in conservation of endangered taxa is now commonly recognized. Because conservation genetic analyses provide essential insights on taxonomic status, recent evolutionary history and current health of endangered taxa, they are considered in nearly all conservation programs. Genetic analyses of the critically endangered Far Eastern, or Amur leopard, Panthera pardus orientalis, have been done recently to address all of these questions and develop strategies for survival of the leopard in the wild. The genetic status and implication for conservation management of the Far Eastern leopard subspecies are discussed.
Probing the evolution, ecology and physiology of marine protists using transcriptomics.
Caron, David A; Alexander, Harriet; Allen, Andrew E; Archibald, John M; Armbrust, E Virginia; Bachy, Charles; Bell, Callum J; Bharti, Arvind; Dyhrman, Sonya T; Guida, Stephanie M; Heidelberg, Karla B; Kaye, Jonathan Z; Metzner, Julia; Smith, Sarah R; Worden, Alexandra Z
2017-01-01
Protists, which are single-celled eukaryotes, critically influence the ecology and chemistry of marine ecosystems, but genome-based studies of these organisms have lagged behind those of other microorganisms. However, recent transcriptomic studies of cultured species, complemented by meta-omics analyses of natural communities, have increased the amount of genetic information available for poorly represented branches on the tree of eukaryotic life. This information is providing insights into the adaptations and interactions between protists and other microorganisms and macroorganisms, but many of the genes sequenced show no similarity to sequences currently available in public databases. A better understanding of these newly discovered genes will lead to a deeper appreciation of the functional diversity and metabolic processes in the ocean. In this Review, we summarize recent developments in our understanding of the ecology, physiology and evolution of protists, derived from transcriptomic studies of cultured strains and natural communities, and discuss how these novel large-scale genetic datasets will be used in the future.
Long-term outcome of deep brain stimulation in fragile X-associated tremor/ataxia syndrome.
Weiss, Daniel; Mielke, Carina; Wächter, Tobias; Bender, Benjamin; Liscic, Rajka M; Scholten, Marlieke; Naros, Georgios; Plewnia, Christian; Gharabaghi, Alireza; Krüger, Rejko
2015-03-01
Fragile X-associated tremor/ataxia syndrome (FXTAS) presents as complex movement disorder including tremor and cerebellar ataxia. The efficacy and safety of deep brain stimulation of the nucleus ventralis intermedius of the thalamus in atypical tremor syndromes like FXTAS remains to be determined. Here, we report the long-term outcome of three male genetically confirmed FXTAS patients treated with bilateral neurostimulation of the nucleus ventralis intermedius for up to four years. All patients demonstrated sustained improvement of both tremor and ataxia - the latter included improvement of intention tremor and axial tremor. Kinematic gait analyses further demonstrated a regularization of the gait cycle. Initial improvements of hand functional disability were not sustained and reached the preoperative level of impairment within one to two years from surgery. Our data on patients with a genetic cause of tremor show favorable outcome and may contribute to improved patient stratification for neurostimulation therapy in the future. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ostergren, Jenny
2013-01-01
Direct-to-consumer genetic testing (DTC-GT) has sparked much controversy and undergone dramatic changes in its brief history. Debates over appropriate health policies regarding DTC-GT would benefit from empirical research on its benefits, harms, and limitations. We review the recent literature (2011-present) and summarize findings across (1) content analyses of DTC-GT websites, (2) studies of consumer perspectives and experiences, and (3) surveys of relevant health care providers. Findings suggest that neither the health benefits envisioned by DTC-GT proponents (e.g., significant improvements in positive health behaviors) nor the worst fears expressed by its critics (e.g., catastrophic psychological distress and misunderstanding of test results, undue burden on the health care system) have materialized to date. However, research in this area is in its early stages and possesses numerous key limitations. We note needs for future studies to illuminate the impact of DTC-GT and thereby guide practice and policy regarding this rapidly evolving approach to personal genomics. PMID:24058877
Insights from Genome-Wide Association Analyses of Nonalcoholic Fatty Liver Disease
Kahali, Bratati; Halligan, Brian; Speliotes, Elizabeth K.
2016-01-01
Nonalcoholic fatty liver disease (NAFLD) is caused by hepatic steatosis, which can progress to nonalcoholic steatohepatitis, fibrosis/cirrhosis, and hepatocellular carcinoma in the absence of excessive alcohol consumption. Nonalcoholic fatty liver disease will become the number one cause of liver disease worldwide by 2020. Nonalcoholic fatty liver disease is correlated albeit imperfectly with obesity and other metabolic diseases such as diabetes, hyperlipidemia, and cardiovascular disease, but exactly how having one of these diseases contributes to the development of other metabolic diseases is only now being elucidated. Development of NAFLD and related metabolic diseases is genetically influenced in the population, and recent genome-wide association studies (GWASs) have discovered genetic variants that associate with these diseases. These GWAS-associated variants cannot only help us to identify individuals at high risk of developing NAFLD, but also to better understand its pathophysiology so that we can develop more effective treatments for this disease and related metabolic diseases in the future. PMID:26676813
Naoumkina, Marina A.; Modolo, Luzia V.; Huhman, David V.; Urbanczyk-Wochniak, Ewa; Tang, Yuhong; Sumner, Lloyd W.; Dixon, Richard A.
2010-01-01
Saponins, an important group of bioactive plant natural products, are glycosides of triterpenoid or steroidal aglycones (sapogenins). Saponins possess many biological activities, including conferring potential health benefits for humans. However, most of the steps specific for the biosynthesis of triterpene saponins remain uncharacterized at the molecular level. Here, we use comprehensive gene expression clustering analysis to identify candidate genes involved in the elaboration, hydroxylation, and glycosylation of the triterpene skeleton in the model legume Medicago truncatula. Four candidate uridine diphosphate glycosyltransferases were expressed in Escherichia coli, one of which (UGT73F3) showed specificity for multiple sapogenins and was confirmed to glucosylate hederagenin at the C28 position. Genetic loss-of-function studies in M. truncatula confirmed the in vivo function of UGT73F3 in saponin biosynthesis. This report provides a basis for future studies to define genetically the roles of multiple cytochromes P450 and glycosyltransferases in triterpene saponin biosynthesis in Medicago. PMID:20348429
Fine-scale analysis of genetic structure in the brooding coral Seriatopora hystrix from the Red Sea
NASA Astrophysics Data System (ADS)
Maier, E.; Tollrian, R.; Nürnberger, B.
2009-09-01
The dispersal of gametes and larvae plays a key role in the population dynamics of sessile marine invertebrates. Species with internal fertilisation are often associated with very localised larval dispersal, which may cause small-scale patterns of neutral genetic variation. This study on the brooding coral Seriatopora hystrix from the Red Sea focused on the smallest possible scale: Two S. hystrix stands (~100 colonies each) near Dahab were completely sampled, mapped and analysed at five microsatellite markers. The sexual mode of reproduction, the likely occurrence of selfing and the level of immigration were in agreement with previous studies on this species. Contrary to previous findings, both stands were in Hardy-Weinberg proportions. Also, no evidence for spatially restricted larval dispersal within the sampled areas was found. Differences between this and previous studies on S. hystrix could reflect variation in life history or varying environmental conditions, which opens intriguing questions for future research.
Genetic evidence of illegal trade in protected whales links Japan with the US and South Korea.
Baker, C Scott; Steel, Debbie; Choi, Yeyong; Lee, Hang; Kim, Kyung Seok; Choi, Sung Kyoung; Ma, Yong-Un; Hambleton, Charles; Psihoyos, Louie; Brownell, R L; Funahashi, Naoko
2010-10-23
We report on genetic identification of 'whale meat' purchased in sushi restaurants in Los Angeles, CA (USA) in October 2009 and in Seoul, South Korea in June and September 2009. Phylogenetic analyses of mtDNA cytochrome b sequences confirmed that the products included three species of whale currently killed in the controversial scientific whaling programme of Japan, but which are protected from international trade: the fin, sei and Antarctic minke. The DNA profile of the fin whale sold in Seoul established a match to products purchased previously in Japan in September 2007, confirming unauthorized trade between these two countries. Following species identification, these products were handed over to the appropriate national or local authorities for further investigation. The illegal trade of products from protected species of whales, presumably taken under a national permit for scientific research, is a timely reminder of the need for independent, transparent and robust monitoring of any future whaling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Layton, Alice; Smart, Abby E.; Chauhan, Archana
Pseudomonas fluorescens HK44 represented the first genetically engineered microorganism to be approved in the United States for field release for applications related to subsurface soil bioremediation. In October 1996, strain HK44 was introduced into a replicated semi-contained array of soil lysimeters where its luciferase (luxCDABE)-based bioluminescent response to soil-borne polycyclic aromatic hydrocarbon (PAH) contaminants was detected and monitored for the next two years. At the termination of this experiment, it was decided that the lysimeters remain available for future longer-term monitoring efforts, and were thus covered and left essentially undisturbed until the initiation of a large sampling event in 2010,more » fourteen years after the original release. Although after extensive sampling culturable HK44 cells were not found, additional molecular and metagenomic analyses indicated that genetic signatures of HK44 cells still persisted, with genes diagnostic for the bioluminescent transposon carried by strain HK44 (luxA and tetA) being found at low concentrations (< 5000 copies/g).« less
Genetic variation in the USDA Chamaecrista fasciculata collection
USDA-ARS?s Scientific Manuscript database
Germplasm collections serve as critical repositories of genetic variation. Characterizing genetic diversity in existing collections is necessary to maximize their utility and to guide future collecting efforts. We have used AFLP markers to characterize genetic variation in the USDA germplasm collect...
Lu, Chenqi; Liu, Xiaoqin; Wang, Lin; Jiang, Ning; Yu, Jun; Zhao, Xiaobo; Hu, Hairong; Zheng, Saihua; Li, Xuelian; Wang, Guiying
2017-01-10
Due to genetic heterogeneity and variable diagnostic criteria, genetic studies of polycystic ovary syndrome are particularly challenging. Furthermore, lack of sufficiently large cohorts limits the identification of susceptibility genes contributing to polycystic ovary syndrome. Here, we carried out a systematic search of studies deposited in the Gene Expression Omnibus database through August 31, 2016. The present analyses included studies with: 1) patients with polycystic ovary syndrome and normal controls, 2) gene expression profiling of messenger RNA, and 3) sufficient data for our analysis. Ultimately, a total of 9 studies with 13 datasets met the inclusion criteria and were performed for the subsequent integrated analyses. Through comprehensive analyses, there were 13 genetic factors overlapped in all datasets and identified as significant specific genes for polycystic ovary syndrome. After quality control assessment, there were six datasets remained. Further gene ontology enrichment and pathway analyses suggested that differentially expressed genes mainly enriched in oocyte pathways. These findings provide potential molecular markers for diagnosis and prognosis of polycystic ovary syndrome, and need in-depth studies on the exact function and mechanism in polycystic ovary syndrome.
Thomas, Evert; van Zonneveld, Maarten; Loo, Judy; Hodgkin, Toby; Galluzzi, Gea; van Etten, Jacob
2012-01-01
Cacao (Theobroma cacao L.) is indigenous to the Amazon basin, but is generally believed to have been domesticated in Mesoamerica for the production of chocolate beverage. However, cacao's distribution of genetic diversity in South America is also likely to reflect pre-Columbian human influences that were superimposed on natural processes of genetic differentiation. Here we present the results of a spatial analysis of the intra-specific diversity of cacao in Latin America, drawing on a dataset of 939 cacao trees genotypically characterized by means of 96 SSR markers. To assess continental diversity patterns we performed grid-based calculations of allelic richness, Shannon diversity and Nei gene diversity, and distinguished different spatially coherent genetic groups by means of cluster analysis. The highest levels of genetic diversity were observed in the Upper Amazon areas from southern Peru to the Ecuadorian Amazon and the border areas between Colombia, Peru and Brazil. On the assumption that the last glaciation (22,000-13,000 BP) had the greatest pre-human impact on the current distribution and diversity of cacao, we modeled the species' Pleistocene niche suitability and overlaid this with present-day diversity maps. The results suggest that cacao was already widely distributed in the Western Amazon before the onset of glaciation. During glaciations, cacao populations were likely to have been restricted to several refugia where they probably underwent genetic differentiation, resulting in a number of genetic clusters which are representative for, or closest related to, the original wild cacao populations. The analyses also suggested that genetic differentiation and geographical distribution of a number of other clusters seem to have been significantly affected by processes of human management and accompanying genetic bottlenecks. We discuss the implications of these results for future germplasm collection and in situ, on farm and ex situ conservation of cacao.
Thomas, Evert; van Zonneveld, Maarten; Loo, Judy; Hodgkin, Toby; Galluzzi, Gea; van Etten, Jacob
2012-01-01
Cacao (Theobroma cacao L.) is indigenous to the Amazon basin, but is generally believed to have been domesticated in Mesoamerica for the production of chocolate beverage. However, cacao’s distribution of genetic diversity in South America is also likely to reflect pre-Columbian human influences that were superimposed on natural processes of genetic differentiation. Here we present the results of a spatial analysis of the intra-specific diversity of cacao in Latin America, drawing on a dataset of 939 cacao trees genotypically characterized by means of 96 SSR markers. To assess continental diversity patterns we performed grid-based calculations of allelic richness, Shannon diversity and Nei gene diversity, and distinguished different spatially coherent genetic groups by means of cluster analysis. The highest levels of genetic diversity were observed in the Upper Amazon areas from southern Peru to the Ecuadorian Amazon and the border areas between Colombia, Peru and Brazil. On the assumption that the last glaciation (22,000–13,000 BP) had the greatest pre-human impact on the current distribution and diversity of cacao, we modeled the species’ Pleistocene niche suitability and overlaid this with present-day diversity maps. The results suggest that cacao was already widely distributed in the Western Amazon before the onset of glaciation. During glaciations, cacao populations were likely to have been restricted to several refugia where they probably underwent genetic differentiation, resulting in a number of genetic clusters which are representative for, or closest related to, the original wild cacao populations. The analyses also suggested that genetic differentiation and geographical distribution of a number of other clusters seem to have been significantly affected by processes of human management and accompanying genetic bottlenecks. We discuss the implications of these results for future germplasm collection and in situ, on farm and ex situ conservation of cacao. PMID:23112832
Page, K.S.; Scribner, K.T.; Burnham-Curtis, M.
2004-01-01
The biological diversity of lake trout Salvelinus namaycush in the upper Great Lakes was historically high, consisting of many recognizable morphological types and discrete spawning populations. During the 1950s and 1960s, lake trout populations were extirpated from much of the Great Lakes primarily as a result of overfishing and predation by the parasitic sea lamprey Petromyzon marinus. Investigations of how genetic diversity is partitioned among remnant wild lake trout populations and hatchery broodstocks have been advocated to guide lake trout management and conservation planning. Using microsatellite genetic markers, we estimated measures of genetic diversity and the apportionment of genetic variance among 6 hatchery broodstocks and 10 wild populations representing three morphotypes (lean, humper, and siscowet). Analyses revealed that different hatchery broodstocks and wild populations contributed disproportionally to the total levels of genetic diversity. The genetic affinities of hatchery lake trout reflected the lake basins of origin of the wild source populations. The variance in allele frequency over all sampled extant wild populations was apportioned primarily on the basis of morphotype (??MT = 0.029) and secondarily among geographically dispersed populations within each morphotype (??ST = 0.024). The findings suggest that the genetic divergence reflected in recognized morphotypes and the associated ecological and physiological specialization occurred prior to the partitioning of large proglacial lakes into the Great Lakes or as a consequence of higher contemporary levels of gene flow within than among morphotypes. Information on the relative contributions of different broodstocks to total gene diversity within the regional hatchery program can be used to prioritize the broodstocks to be retained and to guide future stocking strategies. The findings highlight the importance of ecological and phenotypic diversity in Great Lakes fish communities and emphasize that the management of wild remnant lake trout populations and the restoration of extirpated populations should recognize and make greater use of the genetic diversity that still exists.
ASSESSMENT OF ALLERGENIC POTENTIAL OF GENETICALLY MODIFIED FOODS: AN AGENDA FOR FUTURE RESEARCH
Abstract
Speakers and participants in the Workshop Assessment of the Allergenic Potential of Genetically Modified Foods met in breakout groups to discuss a number of issues including needs for future research. There was agreement that research should move forward quickly in t...
Laurino, Mercy Y; Leppig, Kathleen A; Abad, Peter James; Cham, Breana; Chu, Yoyo Wing Yiu; Kejriwal, Saahil; Lee, Juliana M H; Sternen, Darci L; Thompson, Jennifer K; Burgess, Matthew J; Chien, Shu; Elackatt, Niby; Lim, Jiin Ying; Sura, Thanyachai; Faradz, Sultana; Padilla, Carmencita; Paz, Eva Cutiongco de-la; Nauphar, Donny; Nguyen, Khanh Ngoc; Zayts, Olya; Vu, Dung Chi; Thong, Meow-Keong
2018-02-01
The Professional Society of Genetic Counselors in Asia (PSGCA) was recently established as a special interest group of the Asia Pacific Society of Human Genetics. Fostering partnerships across the globe, the PSGCA's vision is to be the lead organization that advances and mainstreams the genetic counseling profession in Asia and ensures individuals have access to genetic counseling services. Its mission is to promote quality genetic counseling services in the region by enhancing practice and curricular standards, research and continuing education. The PSGCA was formally launched during the Genetic Counseling Pre-Conference Workshop held at the 11th Asia-Pacific Conference on Human Genetics in Hanoi, Viet Nam, September 16, 2015. The pre-conference workshop provided an opportunity for medical geneticists and genetic counselors from across 10 Asia Pacific countries to learn about the varied genetic counseling practices and strategies for genetic counseling training. This paper provides an overview of the current status and challenges in these countries, and proposed course of unified actions for the future of the genetic counseling profession.
[Genetically modified organisms: a new threat to food safety].
Spendeler, Liliane
2005-01-01
This article analyzes all of the food safety-related aspects related to the use of genetically modified organisms into agriculture and food. A discussion is provided as to the uncertainties related to the insertion of foreign genes into organisms, providing examples of unforeseen, undesirable effects and of instabilities of the organisms thus artificially fabricated. Data is then provided from both official agencies as well as existing literature questioning the accuracy and reliability of the risk analyses as to these organisms being harmless to health and discusses the almost total lack of scientific studies analyzing the health safety/dangerousness of transgenic foods. Given all these unknowns, other factors must be taken into account, particularly genetic contamination of the non-genetically modified crops, which is now starting to become widespread in some parts of the world. Not being able of reversing the situation in the even of problems is irresponsible. Other major aspects are the impacts on the environment (such as insects building up resistances, the loss of biodiversity, the increase in chemical products employed) with indirect repercussions on health and/or future food production. Lastly, thoughts for discussion are added concerning food safety in terms of food availability and food sovereignty, given that the transgenic seed and related agrochemicals market is currently cornered by five large-scale transnational companies. The conclusion entails an analysis of biotechnological agriculture's contribution to sustainability.
Graham, Carly F.; Eberts, Rebecca L.; Morgan, Thomas D.; ...
2016-01-25
Thermal pollution from industrial processes can have negative impacts on the spawning and development of cold-water fish. Point sources of thermal effluent may need to be managed to avoid affecting discrete populations. Correspondingly, we examined fine-scale ecological and genetic population structure of two whitefish species ( Coregonus clupeaformis and Prosopium cylindraceum) on Lake Huron, Canada, in the immediate vicinity of thermal effluent from nuclear power generation. Niche metrics using δ 13C and δ 15N stable isotopes showed high levels of overlap (48.6 to 94.5%) in resource use by adult fish captured in areas affected by thermal effluent compared to nearbymore » reference locations. Isotopic niche size, a metric of resource use diversity, was 1.3- to 2.8-fold higher than reference values in some thermally affected areas, indicative of fish mixing. Microsatellite analyses of genetic population structure (F st, STRUCTURE and DAPC) indicated that fish captured at all locations in the vicinity of the power plant were part of a larger population extending beyond the study area. In concert, ecological and genetic markers do not support the presence of an evolutionarily significant unit in the vicinity of the power plant. Furthermore, future research should focus on the potential impacts of thermal emissions on development and recruitment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graham, Carly F.; Eberts, Rebecca L.; Morgan, Thomas D.
Thermal pollution from industrial processes can have negative impacts on the spawning and development of cold-water fish. Point sources of thermal effluent may need to be managed to avoid affecting discrete populations. Correspondingly, we examined fine-scale ecological and genetic population structure of two whitefish species ( Coregonus clupeaformis and Prosopium cylindraceum) on Lake Huron, Canada, in the immediate vicinity of thermal effluent from nuclear power generation. Niche metrics using δ 13C and δ 15N stable isotopes showed high levels of overlap (48.6 to 94.5%) in resource use by adult fish captured in areas affected by thermal effluent compared to nearbymore » reference locations. Isotopic niche size, a metric of resource use diversity, was 1.3- to 2.8-fold higher than reference values in some thermally affected areas, indicative of fish mixing. Microsatellite analyses of genetic population structure (F st, STRUCTURE and DAPC) indicated that fish captured at all locations in the vicinity of the power plant were part of a larger population extending beyond the study area. In concert, ecological and genetic markers do not support the presence of an evolutionarily significant unit in the vicinity of the power plant. Furthermore, future research should focus on the potential impacts of thermal emissions on development and recruitment.« less
Genetic diversity in Carthamus tinctorius (Asteraceae; safflower), an underutilized oilseed crop.
Pearl, Stephanie A; Burke, John M
2014-10-01
• Underutilized crops are potentially valuable resources for meeting increasing food demands. Safflower, an oilseed crop, is an example of one such underutilized crop that thrives in moisture-limited areas. Characterization of the genetic diversity maintained within the gene pools of underutilized crops such as safflower is an important step in their further development.• A total of 190 safflower individuals, including 134 USDA accessions, 48 breeding lines from two private North American safflower breeding companies, and eight wild safflower individuals, were genotyped using 133 single nucleotide polymorphism (SNP) markers. We then used the resulting data to assess the amount and distribution of genetic diversity within and among these collections of safflower.• Although just a modest reduction in gene diversity was observed in the commercial breeding lines (relative to the other safflower groupings), safflower domestication was accompanied by a significant decrease in allelic richness. Further, our results suggest that most safflower breeding lines originated from a single pool of diversity within the Old World safflower germplasm.• Taken together, our results suggest that both the safflower germplasm collection and related, wild species harbor previously undocumented genetic diversity that could help fuel future improvement efforts. Paired with analyses of functional diversity, the molecular resources described herein will be thus be useful in the continued development of safflower as an oilseed crop. © 2014 Botanical Society of America, Inc.
Wang, Jinjin; Yu, Xiaomu; Zhao, Kai; Zhang, Yaoguang; Tong, Jingou; Peng, Zuogang
2012-01-01
Megalobrama pellegrini is an endemic fish species found in the upper Yangtze River basin in China. This species has become endangered due to the construction of the Three Gorges Dam and overfishing. However, the available genetic data for this species is limited. Here, we developed 26 polymorphic microsatellite markers from the M. pellegrini genome using next-generation sequencing techniques. A total of 257,497 raw reads were obtained from a quarter-plate run on 454 GS-FLX titanium platforms and 49,811 unique sequences were generated with an average length of 404 bp; 24,522 (49.2%) sequences contained microsatellite repeats. Of the 53 loci screened, 33 were amplified successfully and 26 were polymorphic. The genetic diversity in M. pellegrini was moderate, with an average of 3.08 alleles per locus, and the mean observed and expected heterozygosity were 0.47 and 0.51, respectively. In addition, we tested cross-species amplification for all 33 loci in four additional breams: M. amblycephala, M. skolkovii, M. terminalis, and Sinibrama wui. The cross-species amplification showed a significant high level of transferability (79%–97%), which might be due to their dramatically close genetic relationships. The polymorphic microsatellites developed in the current study will not only contribute to further conservation genetic studies and parentage analyses of this endangered species, but also facilitate future work on the other closely related species. PMID:22489139
Pereira, Vania; Mogensen, Helle S; Børsting, Claus; Morling, Niels
2017-05-01
The application of massive parallel sequencing (MPS) methodologies in forensic genetics is promising and it is gradually being implemented in forensic genetic case work. One of the major advantages of these technologies is that several traditional electrophoresis assays can be combined into one single MPS assay. This reduces both the amount of sample used and the time of the investigations. This study assessed the utility of the Precision ID Ancestry Panel (Thermo Fisher Scientific, Waltham, USA) in forensic genetics. This assay was developed for the Ion Torrent PGM™ System and genotypes 165 ancestry informative SNPs. The performance of the assay and the accompanying software solution for ancestry inference was assessed by typing 142 Danes and 98 Somalis. Locus balance, heterozygote balance, and noise levels were calculated and future analysis criteria for crime case work were estimated. Overall, the Precision ID Ancestry Panel performed well, and only minor changes to the recommended protocol were implemented. Three out of the 165 loci (rs459920, rs7251928, and rs7722456) had consistently poor performance, mainly due to misalignment of homopolymeric stretches. We suggest that these loci should be excluded from the analyses. The different statistical methods for reporting ancestry in forensic genetic case work are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.
Nelson, Justin; Simpkins, Scott W; Safizadeh, Hamid; Li, Sheena C; Piotrowski, Jeff S; Hirano, Hiroyuki; Yashiroda, Yoko; Osada, Hiroyuki; Yoshida, Minoru; Boone, Charles; Myers, Chad L
2018-04-01
Chemical-genomic approaches that map interactions between small molecules and genetic perturbations offer a promising strategy for functional annotation of uncharacterized bioactive compounds. We recently developed a new high-throughput platform for mapping chemical-genetic (CG) interactions in yeast that can be scaled to screen large compound collections, and we applied this system to generate CG interaction profiles for more than 13 000 compounds. When integrated with the existing global yeast genetic interaction network, CG interaction profiles can enable mode-of-action prediction for previously uncharacterized compounds as well as discover unexpected secondary effects for known drugs. To facilitate future analysis of these valuable data, we developed a public database and web interface named MOSAIC. The website provides a convenient interface for querying compounds, bioprocesses (Gene Ontology terms) and genes for CG information including direct CG interactions, bioprocesses and gene-level target predictions. MOSAIC also provides access to chemical structure information of screened molecules, chemical-genomic profiles and the ability to search for compounds sharing structural and functional similarity. This resource will be of interest to chemical biologists for discovering new small molecule probes with specific modes-of-action as well as computational biologists interested in analysing CG interaction networks. MOSAIC is available at http://mosaic.cs.umn.edu. hisyo@riken.jp, yoshidam@riken.jp, charlie.boone@utoronto.ca or chadm@umn.edu. Supplementary data are available at Bioinformatics online.
Assisted reproductive technology (ART) in humans: facts and uncertainties.
Ménézo, Y J; Veiga, A; Pouly, J L
2000-01-15
Since the first in vitro fertilization (IVF) in human, the number of patients using Assisted Reproductive Technologies (ART) has increased tremendously. ART technologies have increased in number and their spectrum has also widened. The first IVF babies are now more than 20 years old. All the retrospective analyses have demonstrated that the obstetrical and pediatrical impact has not really affected single births. The main problems observed occur with multiple pregnancies, including high costs for the couples and for society. The decrease in the number of embryos transferred has improved the situation and moreover does not impair the final results. IntraCytoplasmic Sperm Injection (ICSI) is a more debatable and questionable technique with a real negative genetic impact. The main problem is chromosome abnormalities more specifically related to the sex chromosomes. The question of a systematic genetic work-up on the patients entering ICSI programs is discussed. No negative impact of cryopreservation has been demonstrated even though some controversy arises from time to time. Pre-implantation Genetic Diagnosis (PGD) is now a interesting tool for patients carrying genetic defects. Blastocyst biopsy now has a future role in reproductive medicine. Gender selection through sperm sorting is also now a reality. As with the other developing bio-technologies related to reproduction, there are ethical questions. The decisions concerning these technologies do not belong solely to scientists but are rather a matter for society to decide.
Razo-Mendivil, Ulises; Vázquez-Domínguez, Ella; de León, Gerardo Pérez-Ponce
2013-12-01
Genetic analyses of hosts and their parasites are key to understand the evolutionary patterns and processes that have shaped host-parasite associations. We evaluated the genetic structure of the digenean Crassicutis cichlasomae and its most common host, the Mayan cichlid "Cichlasoma" urophthalmus, encompassing most of their geographical range in Middle-America (river basins in southeastern Mexico, Belize, and Guatemala together with the Yucatan Peninsula). Genetic diversity and structure analyses were done based on 167 cytochrome c oxidase subunit 1 sequences (330 bp) for C. cichlasomae from 21 populations and 161 cytochrome b sequences (599 bp) for "C." urophthalmus from 26 populations. Analyses performed included phylogenetic tree estimation under Bayesian inference and maximum likelihood analysis, genetic diversity, distance and structure estimates, haplotype networks, and demographic evaluations. Crassicutis cichlasomae showed high genetic diversity values and genetic structuring, corresponding with 4 groups clearly differentiated and highly divergent. Conversely, "C." urophthalmus showed low levels of genetic diversity and genetic differentiation, defined as 2 groups with low divergence and with no correspondence with geographical distribution. Our results show that species of cichlids parasitized by C. cichlasomae other than "C." urophthalmus, along with multiple colonization events and subsequent isolation in different basins, are likely factors that shaped the genetic structure of the parasite. Meanwhile, historical long-distance dispersal and drought periods during the Holocene, with significant population size reductions and fragmentations, are factors that could have shaped the genetic structure of the Mayan cichlid.
Anttila, Verneri; Hibar, Derrek P; van Hulzen, Kimm J E; Arias-Vasquez, Alejandro; Smoller, Jordan W; Nichols, Thomas E; Neale, Michael C; McIntosh, Andrew M; Lee, Phil; McMahon, Francis J; Meyer-Lindenberg, Andreas; Mattheisen, Manuel; Andreassen, Ole A; Gruber, Oliver; Sachdev, Perminder S; Roiz-Santiañez, Roberto; Saykin, Andrew J; Ehrlich, Stefan; Mather, Karen A; Turner, Jessica A; Schwarz, Emanuel; Thalamuthu, Anbupalam; Shugart, Yin Yao; Ho, Yvonne YW; Martin, Nicholas G; Wright, Margaret J
2016-01-01
Schizophrenia is a devastating psychiatric illness with high heritability. Brain structure and function differ, on average, between schizophrenia cases and healthy individuals. As common genetic associations are emerging for both schizophrenia and brain imaging phenotypes, we can now use genome-wide data to investigate genetic overlap. Here we integrated results from common variant studies of schizophrenia (33,636 cases, 43,008 controls) and volumes of several (mainly subcortical) brain structures (11,840 subjects). We did not find evidence of genetic overlap between schizophrenia risk and subcortical volume measures either at the level of common variant genetic architecture or for single genetic markers. The current study provides proof-of-concept (albeit based on a limited set of structural brain measures), and defines a roadmap for future studies investigating the genetic covariance between structural/functional brain phenotypes and risk for psychiatric disorders. PMID:26854805
Genomic signal processing: from matrix algebra to genetic networks.
Alter, Orly
2007-01-01
DNA microarrays make it possible, for the first time, to record the complete genomic signals that guide the progression of cellular processes. Future discovery in biology and medicine will come from the mathematical modeling of these data, which hold the key to fundamental understanding of life on the molecular level, as well as answers to questions regarding diagnosis, treatment, and drug development. This chapter reviews the first data-driven models that were created from these genome-scale data, through adaptations and generalizations of mathematical frameworks from matrix algebra that have proven successful in describing the physical world, in such diverse areas as mechanics and perception: the singular value decomposition model, the generalized singular value decomposition model comparative model, and the pseudoinverse projection integrative model. These models provide mathematical descriptions of the genetic networks that generate and sense the measured data, where the mathematical variables and operations represent biological reality. The variables, patterns uncovered in the data, correlate with activities of cellular elements such as regulators or transcription factors that drive the measured signals and cellular states where these elements are active. The operations, such as data reconstruction, rotation, and classification in subspaces of selected patterns, simulate experimental observation of only the cellular programs that these patterns represent. These models are illustrated in the analyses of RNA expression data from yeast and human during their cell cycle programs and DNA-binding data from yeast cell cycle transcription factors and replication initiation proteins. Two alternative pictures of RNA expression oscillations during the cell cycle that emerge from these analyses, which parallel well-known designs of physical oscillators, convey the capacity of the models to elucidate the design principles of cellular systems, as well as guide the design of synthetic ones. In these analyses, the power of the models to predict previously unknown biological principles is demonstrated with a prediction of a novel mechanism of regulation that correlates DNA replication initiation with cell cycle-regulated RNA transcription in yeast. These models may become the foundation of a future in which biological systems are modeled as physical systems are today.
2014-01-01
Background Deciphering the genetic structure of Arabidopsis thaliana diversity across its geographic range provides the bases for elucidating the demographic history of this model plant. Despite the unique A. thaliana genomic resources currently available, its history in North Africa, the extreme southern limit in the biodiversity hotspot of the Mediterranean Basin, remains virtually unknown. Results To approach A. thaliana evolutionary history in North Africa, we have analysed the genetic diversity and structure of 151 individuals collected from 20 populations distributed across Morocco. Genotyping of 249 genome-wide SNPs indicated that Morocco contains substantially lower diversity than most analyzed world regions. However, IBD, STRUCTURE and PCA clustering analyses showed that genetic variation is strongly geographically structured. We also determined the genetic relationships between Morocco and the closest European region, the Iberian Peninsula, by analyses of 201 populations from both regions genotyped with the same SNPs. These analyses detected four genetic groups, but all Moroccan accessions belonged to a common Iberian/Moroccan cluster that appeared highly differentiated from the remaining groups. Thus, we identified a genetic lineage with an isolated demographic history in the south-western Mediterranean region. The existence of this lineage was further supported by the study of several flowering genes and traits, which also found Moroccan accessions similar to the same Iberian group. Nevertheless, genetic diversity for neutral SNPs and flowering genes was higher in Moroccan than in Iberian populations of this lineage. Furthermore, we analyzed the genetic relationships between Morocco and other world regions by joint analyses of a worldwide collection of 337 accessions, which detected an additional weak relationship between North Africa and Asia. Conclusions The patterns of genetic diversity and structure of A. thaliana in Morocco show that North Africa is part of the species native range and support the occurrence of a glacial refugium in the Atlas Mountains. In addition, the identification of a genetic lineage specific of Morocco and the Iberian Peninsula indicates that the Strait of Gibraltar has been an A. thaliana migration route between Europe and Africa. Finally, the genetic relationship between Morocco and Asia suggests another migration route connecting north-western Africa and Asia. PMID:24411008
Calkins, Monica E.; Dobie, Dorcas J.; Cadenhead, Kristin S.; Olincy, Ann; Freedman, Robert; Green, Michael F.; Greenwood, Tiffany A.; Gur, Raquel E.; Gur, Ruben C.; Light, Gregory A.; Mintz, Jim; Nuechterlein, Keith H.; Radant, Allen D.; Schork, Nicholas J.; Seidman, Larry J.; Siever, Larry J.; Silverman, Jeremy M.; Stone, William S.; Swerdlow, Neal R.; Tsuang, Debby W.; Tsuang, Ming T.; Turetsky, Bruce I.; Braff, David L.
2007-01-01
Background: The Consortium on the Genetics of Schizophrenia (COGS) is an ongoing, National Institute of Mental Health–funded, 7-site collaboration investigating the occurrence and genetic architecture of quantitative endophenotypes related to schizophrenia. The purpose of this article is to provide a description of the COGS structure and methods, including participant recruitment and assessment. Methods: The hypothesis-driven recruitment strategy ascertains families that include a proband with a Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition diagnosis of schizophrenia, and at least one unaffected full sibling available for genotyping and endophenotyping, along with parents available for genotyping and (optional depending on age) endophenotyping. The family structure is selected to provide contrast in quantitative endophenotypic traits and thus to maximize the power of the planned genetic analyses. Probands are recruited from many sources including clinician referrals, local National Alliance for the Mentally Ill chapters, and advertising via the media. All participants undergo a standardized protocol that includes clinical characterization, a blood draw for genotyping, and endophenotype assessments (P50 suppression, prepulse inhibition, antisaccade performance, continuous performance tasks, letter-number span, verbal memory, and a computerized neurocognitive battery). Investigators participate in weekly teleconferences to coordinate and evaluate recruitment, clinical assessment, endophenotyping, and continuous quality control of data gathering and analyses. Data integrity is maintained through use of a highly quality-assured, centralized web-based database. Results: As of February 2006, 355 families have been enrolled and 688 participants have been endophenotyped, including schizophrenia probands (n = 154, M:F = 110:44), first-degree biological relatives (n = 343, M:F = 151:192), and community comparison subjects (n = 191, M:F = 81:110). Discussion: Successful multisite genetics collaborations must institute standardized methodological criteria for assessment and recruitment that are clearly defined, well communicated, and uniformly applied. In parallel, studies utilizing endophenotypes require strict adherence to criteria for cross-site data acquisition, equipment calibration and testing and software equivalence, and continuous quality assurance for many measures obtained across sites. This report describes methods and presents the structure of the COGS as a model of multisite endophenotype genetic studies. It also provides demographic information after the first 2 years of data collection on a sample for whom the behavioral data and genetics of endophenotype performance will be fully characterized in future articles. Some issues discussed in the reviews that follow reflect the challenges of evaluating endophenotypes in studies of the genetic architecture of endophenotypes in schizophrenia. PMID:17035358
Yashin, Anatoliy I.; Arbeev, Konstantin G.; Wu, Deqing; Arbeeva, Liubov; Kulminski, Alexander; Kulminskaya, Irina; Akushevich, Igor; Ukraintseva, Svetlana V.
2016-01-01
Background and Objective To clarify mechanisms of genetic regulation of human aging and longevity traits, a number of genome-wide association studies (GWAS) of these traits have been performed. However, the results of these analyses did not meet expectations of the researchers. Most detected genetic associations have not reached a genome-wide level of statistical significance, and suffered from the lack of replication in the studies of independent populations. The reasons for slow progress in this research area include low efficiency of statistical methods used in data analyses, genetic heterogeneity of aging and longevity related traits, possibility of pleiotropic (e.g., age dependent) effects of genetic variants on such traits, underestimation of the effects of (i) mortality selection in genetically heterogeneous cohorts, (ii) external factors and differences in genetic backgrounds of individuals in the populations under study, the weakness of conceptual biological framework that does not fully account for above mentioned factors. One more limitation of conducted studies is that they did not fully realize the potential of longitudinal data that allow for evaluating how genetic influences on life span are mediated by physiological variables and other biomarkers during the life course. The objective of this paper is to address these issues. Data and Methods We performed GWAS of human life span using different subsets of data from the original Framingham Heart Study cohort corresponding to different quality control (QC) procedures and used one subset of selected genetic variants for further analyses. We used simulation study to show that approach to combining data improves the quality of GWAS. We used FHS longitudinal data to compare average age trajectories of physiological variables in carriers and non-carriers of selected genetic variants. We used stochastic process model of human mortality and aging to investigate genetic influence on hidden biomarkers of aging and on dynamic interaction between aging and longevity. We investigated properties of genes related to selected variants and their roles in signaling and metabolic pathways. Results We showed that the use of different QC procedures results in different sets of genetic variants associated with life span. We selected 24 genetic variants negatively associated with life span. We showed that the joint analyses of genetic data at the time of bio-specimen collection and follow up data substantially improved significance of associations of selected 24 SNPs with life span. We also showed that aging related changes in physiological variables and in hidden biomarkers of aging differ for the groups of carriers and non-carriers of selected variants. Conclusions . The results of these analyses demonstrated benefits of using biodemographic models and methods in genetic association studies of these traits. Our findings showed that the absence of a large number of genetic variants with deleterious effects may make substantial contribution to exceptional longevity. These effects are dynamically mediated by a number of physiological variables and hidden biomarkers of aging. The results of these research demonstrated benefits of using integrative statistical models of mortality risks in genetic studies of human aging and longevity. PMID:27773987
Multi-gene panel testing in Korean patients with common genetic generalized epilepsy syndromes.
Lee, Cha Gon; Lee, Jeehun; Lee, Munhyang
2018-01-01
Genetic heterogeneity of common genetic generalized epilepsy syndromes is frequently considered. The present study conducted a focused analysis of potential candidate or susceptibility genes for common genetic generalized epilepsy syndromes using multi-gene panel testing with next-generation sequencing. This study included patients with juvenile myoclonic epilepsy, juvenile absence epilepsy, and epilepsy with generalized tonic-clonic seizures alone. We identified pathogenic variants according to the American College of Medical Genetics and Genomics guidelines and identified susceptibility variants using case-control association analyses and family analyses for familial cases. A total of 57 patients were enrolled, including 51 sporadic cases and 6 familial cases. Twenty-two pathogenic and likely pathogenic variants of 16 different genes were identified. CACNA1H was the most frequently observed single gene. Variants of voltage-gated Ca2+ channel genes, including CACNA1A, CACNA1G, and CACNA1H were observed in 32% of variants (n = 7/22). Analyses to identify susceptibility variants using case-control association analysis indicated that KCNMA1 c.400G>C was associated with common genetic generalized epilepsy syndromes. Only 1 family (family A) exhibited a candidate pathogenic variant p.(Arg788His) on CACNA1H, as determined via family analyses. This study identified candidate genetic variants in about a quarter of patients (n = 16/57) and an average of 2.8 variants was identified in each patient. The results reinforced the polygenic disorder with very high locus and allelic heterogeneity of common GGE syndromes. Further, voltage-gated Ca2+ channels are suggested as important contributors to common genetic generalized epilepsy syndromes. This study extends our comprehensive understanding of common genetic generalized epilepsy syndromes.
Brand, Arnon; Borovsky, Yelena; Meir, Sagit; Rogachev, Ilana; Aharoni, Asaph; Paran, Ilan
2012-03-01
Studies on the genetic control of pigment content in pepper fruit have focused mainly on monogenic mutations leading to changes in fruit color. In addition to the qualitative variation in fruit color, quantitative variation in pigment content and color intensity exists in pepper giving rise to a range of color intensities. However, the genetic basis for this variation is poorly understood, hindering the development of peppers that are rich in these beneficial compounds. In this paper, quantitative variation in pigment content was studied in a cross between a dark-green Capsicum annuum pepper and a light-green C. chinense pepper. Two major pigment content QTLs that control chlorophyll content were identified, pc8.1 and pc10.1. The major QTL pc8.1, also affected carotenoid content in the ripe fruit. However, additional analyses in subsequent generations did not reveal a consistent effect of this QTL on carotenoid content in ripe fruit. Confocal microscopy analyses of green immature fruits of the parents and of near-isogenic lines for pc8.1 indicated that the QTL exerts its effect via increasing chloroplast compartment size in the dark-green genotypes, predominantly in a fruit-specific manner. Metabolic analyses indicated that in addition to chlorophyll, chloroplast-associated tocopherols and carotenoids are also elevated. Future identification of the genes controlling pigment content QTLs in pepper will provide a better understanding of this important trait and new opportunities for breeding peppers and other Solanaceae species with enhanced nutritional value.
Global trends on fears and concerns of genetic discrimination: a systematic literature review.
Wauters, Annet; Van Hoyweghen, Ine
2016-04-01
Since the 1990s, developments in the field of genetics have led to many questions on the use and possible misuse of genetic information. 'Genetic discrimination' has been defined as the differential treatment of asymptomatic individuals or their relatives on the basis of their real or assumed genetic characteristics. Despite the public policy attention around genetic discrimination, there is currently still much confusion surrounding this phenomenon. On the one hand, there is little evidence of the occurrence of genetic discrimination. On the other hand, it appears that people remain concerned about this theme, and this fear influences their health and life choices. This article makes use of a systematic literature review to investigate what is already known about the nature, extent and background of these fears and concerns. The 42 included studies have found considerable levels of concerns about genetic discrimination. Concerns dominate in insurance contexts and within personal interactions. The extent of concerns appears to vary depending on the type of genetic illness. Furthermore, installed laws prohibiting genetic discrimination do not seem to alleviate existing fears. This raises important questions as to the origins of these fears. Based on the findings, recommendations for future research are made. First, research on the background of fears is needed. Second, future research needs to assess more fully all different forms (for example, direct and indirect) of genetic discrimination. Thirdly, it has to be studied whether genetic discrimination is a form of discrimination that is distinguishable from discrimination based on an illness or disability. Finally, a last element that should be addressed in future research is the most recent developments in research on genomics, such as next-generation sequencing or genome-wide association studies.
Robinson, Elise B.; Kirby, Andrew; Ruparel, Kosha; Yang, Jian; McGrath, Lauren; Anttila, Verneri; Neale, Benjamin M.; Merikangas, Kathleen; Lehner, Thomas; Sleiman, Patrick M.A.; Daly, Mark J.; Gur, Ruben; Gur, Raquel; Hakonarson, Hakon
2014-01-01
The objective of this analysis was to examine the genetic architecture of diverse cognitive abilities in children and adolescents, including the magnitude of common genetic effects and patterns of shared and unique genetic influences. Subjects included 3,689 members of the Philadelphia Neurodevelopmental Cohort, a general population sample of ages 8-21 years who completed an extensive battery of cognitive tests. We used genome-wide complex trait analysis (GCTA) to estimate the SNP-based heritability of each domain, as well as the genetic correlation between all domains that showed significant genetic influence. Several of the individual domains suggested strong influence of common genetic variants (e.g. reading ability, h2g=0.43, p=4e-06; emotion identification, h2g=0.36, p=1e-05; verbal memory, h2g=0.24, p=0.005). The genetic correlations highlighted trait domains that are candidates for joint interrogation in future genetic studies (e.g. language reasoning and spatial reasoning, r(g)=0.72, p=0.007). These results can be used to structure future genetic and neuropsychiatric investigations of diverse cognitive abilities. PMID:25023143
Intracolonial genetic variation in the scleractinian coral Seriatopora hystrix
NASA Astrophysics Data System (ADS)
Maier, E.; Buckenmaier, A.; Tollrian, R.; Nürnberger, B.
2012-06-01
In recent years, increasing numbers of studies revealed intraorganismal genetic variation, primarily in modular organisms like plants or colonial marine invertebrates. Two underlying mechanisms are distinguished: Mosaicism is caused by somatic mutation, whereas chimerism originates from allogeneic fusion. We investigated the occurrence of intracolonial genetic variation at microsatellite loci in five natural populations of the scleractinian coral Seriatopora hystrix on the Great Barrier Reef. This coral is a widely distributed, brooding species that is at present a target of intensive population genetic research on reproduction and dispersal patterns. From each of 155 S. hystrix colonies, either two or three samples were genotyped at five or six loci. Twenty-seven (~17%) genetically heterogeneous colonies were found. Statistical analyses indicated the occurrence of both mosaicism and chimerism. In most cases, intracolonial variation was found only at a single allele. Our analyses suggest that somatic mutations present a major source of genetic heterogeneity within a single colony. Moreover, we observed large, apparently stable chimeric colonies that harbored clearly distinct genotypes and contrast these findings with the patterns typically observed in laboratory-based experiments. We discuss the error that mosaicism and chimerism introduce into population genetic analyses.
Pérez-Portela, R; Bumford, A; Coffman, B; Wedelich, S; Davenport, M; Fogg, A; Swenarton, M K; Coleman, F; Johnston, M A; Crawford, D L; Oleksiak, M F
2018-03-22
Despite the devastating impact of the lionfish (Pterois volitans) invasion on NW Atlantic ecosystems, little genetic information about the invasion process is available. We applied Genotyping by Sequencing techniques to identify 1,220 single nucleotide polymorphic sites (SNPs) from 162 lionfish samples collected between 2013 and 2015 from two areas chronologically identified as the first and last invaded areas in US waters: the east coast of Florida and the Gulf of Mexico. We used population genomic analyses, including phylogenetic reconstruction, Bayesian clustering, genetic distances, Discriminant Analyses of Principal Components, and coalescence simulations for detection of outlier SNPs, to understand genetic trends relevant to the lionfish's long-term persistence. We found no significant differences in genetic structure or diversity between the two areas (F ST p-values > 0.01, and t-test p-values > 0.05). In fact, our genomic analyses showed genetic homogeneity, with enough gene flow between the east coast of Florida and Gulf of Mexico to erase previous signals of genetic divergence detected between these areas, secondary spreading, and bottlenecks in the Gulf of Mexico. These findings suggest rapid genetic changes over space and time during the invasion, resulting in one panmictic population with no signs of divergence between areas due to local adaptation.
Wojczynski, Mary K; Parnell, Laurence D; Pollin, Toni I; Lai, Chao Q; Feitosa, Mary F; O'Connell, Jeff R; Frazier-Wood, Alexis C; Gibson, Quince; Aslibekyan, Stella; Ryan, Kathy A; Province, Michael A; Tiwari, Hemant K; Ordovas, Jose M; Shuldiner, Alan R; Arnett, Donna K; Borecki, Ingrid B
2015-10-01
The triglyceride (TG) response to a high-fat meal (postprandial lipemia, PPL) affects cardiovascular disease risk and is influenced by genes and environment. Genes involved in lipid metabolism have dominated genetic studies of PPL TG response. We sought to elucidate common genetic variants through a genome-wide association (GWA) study in the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN). The GOLDN GWAS discovery sample consisted of 872 participants within families of European ancestry. Genotypes for 2,543,887 variants were measured or imputed from HapMap. Replication of our top results was performed in the Heredity and Phenotype Intervention (HAPI) Heart Study (n = 843). PPL TG response phenotypes were constructed from plasma TG measured at baseline (fasting, 0 hour), 3.5 and 6 hours after a high-fat meal, using a random coefficient regression model. Association analyses were adjusted for covariates and principal components, as necessary, in a linear mixed model using the kinship matrix; additional models further adjusted for fasting TG were also performed. Meta-analysis of the discovery and replication studies (n = 1715) was performed on the top SNPs from GOLDN. GOLDN revealed 111 suggestive (p < 1E-05) associations, with two SNPs meeting GWA significance level (p < 5E-08). Of the two significant SNPs, rs964184 demonstrated evidence of replication (p = 1.20E-03) in the HAPI Heart Study and in a joint analysis, was GWA significant (p = 1.26E-09). Rs964184 has been associated with fasting lipids (TG and HDL) and is near ZPR1 (formerly ZNF259), close to the APOA1/C3/A4/A5 cluster. This association was attenuated upon additional adjustment for fasting TG. This is the first report of a genome-wide significant association with replication for a novel phenotype, namely PPL TG response. Future investigation into response phenotypes is warranted using pathway analyses, or newer genetic technologies such as metabolomics. Copyright © 2015 Elsevier Inc. All rights reserved.
Wojczynski, M.K.; Parnel, L.D.; Pollin, T.I.; Lai, C.Q.; Feitosa, M.F.; O’Connell, J.R.; Frazier-Wood, A.C.; Gibson, Q.; Aslibekyan, S.; Ryan, K.A.; Province, M.A.; Tiwari, H.K.; Ordovas, J.M.; Shuldiner, A.R.; Arnett, D.K.; Borecki, I.B.
2015-01-01
Objective The triglyceride (TG) response to a high-fat meal (postprandial lipemia, PPL) affects cardiovascular disease risk and is influenced by genes and environment. Genes involved in lipid metabolism have dominated genetic studies of PPL TG response. We sought to elucidate common genetic variants through a genome-wide association (GWA) study in the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN). Methods The GOLDN GWAS discovery sample consisted of 872 participants within families of European ancestry. Genotypes for 2,543,887 variants were measured or imputed from HapMap. Replication of our top results was performed in the Heredity and Phenotype Intervention (HAPI) Heart Study (n=843). PPL TG response phenotypes were constructed from plasma TG measured at baseline (fasting, 0 hour), 3.5 and 6 hours after a high-fat meal, using a random coefficient regression model. Association analyses were adjusted for covariates and principal components, as necessary, in a linear mixed model using the kinship matrix; additional models further adjusted for fasting TG were also performed. Meta-analysis of the discovery and replication studies (n=1,715) was performed on the top SNPs from GOLDN. Results GOLDN revealed 111 suggestive (p<1E-05) associations, with two SNPs meeting GWA significance level (p<5E-08). Of the two significant SNPs, rs964184 demonstrated evidence of replication (p=1.20E-03) in the HAPI Heart Study and in a joint analysis, was GWA significant (p=1.26E-09). Rs964184 has been associated with fasting lipids (TG and HDL) and is near ZPR1 (formerly ZNF259), close to the APOA1/C3/A4/A5 cluster. This association was attenuated upon additional adjustment for fasting TG. Conclusion This is the first report of a genome-wide significant association with replication for a novel phenotype, namely PPL TG response. Future investigation into response phenotypes is warranted using pathway analyses, or newer genetic technologies such as metabolomics. PMID:26256467
Genetic signatures of natural selection in a model invasive ascidian
NASA Astrophysics Data System (ADS)
Lin, Yaping; Chen, Yiyong; Yi, Changho; Fong, Jonathan J.; Kim, Won; Rius, Marc; Zhan, Aibin
2017-03-01
Invasive species represent promising models to study species’ responses to rapidly changing environments. Although local adaptation frequently occurs during contemporary range expansion, the associated genetic signatures at both population and genomic levels remain largely unknown. Here, we use genome-wide gene-associated microsatellites to investigate genetic signatures of natural selection in a model invasive ascidian, Ciona robusta. Population genetic analyses of 150 individuals sampled in Korea, New Zealand, South Africa and Spain showed significant genetic differentiation among populations. Based on outlier tests, we found high incidence of signatures of directional selection at 19 loci. Hitchhiking mapping analyses identified 12 directional selective sweep regions, and all selective sweep windows on chromosomes were narrow (~8.9 kb). Further analyses indentified 132 candidate genes under selection. When we compared our genetic data and six crucial environmental variables, 16 putatively selected loci showed significant correlation with these environmental variables. This suggests that the local environmental conditions have left significant signatures of selection at both population and genomic levels. Finally, we identified “plastic” genomic regions and genes that are promising regions to investigate evolutionary responses to rapid environmental change in C. robusta.
Mbenoun, Michael; Wingfield, Michael J; Letsoalo, Teboho; Bihon, Wubetu; Wingfield, Brenda D; Roux, Jolanda
2015-11-01
Thielaviopsis ethacetica was recently reinstated as a distinct taxon using DNA phylogenies. It is widespread affecting several crop plants of global economic importance. In this study, microsatellite markers were developed and used in conjunction with sequence data to investigate the genetic diversity and structure of Th. ethacetica in Cameroon. A collection of 71 isolates from cacao, oil palm, and pineapple, supplemented with nine isolates from other countries were analysed. Four genetic groups were identified. Two of these were associated with oil palm in Cameroon and showed high genetic diversity, suggesting that they might represent an indigenous population of the pathogen. In contrast, the remaining two groups, associated with cacao and pineapple, had low genetic diversity and, most likely, represent introduced populations. There was no evidence of gene flow between these groups. Phylogenetic analyses based on sequences of the tef1-α as well as the combined flanking regions of six microsatellite loci were consistent with population genetic analyses and suggested that Th. ethacetica is comprised of two divergent genetic lineages. Copyright © 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.
The Sensitivity of Genetic Connectivity Measures to Unsampled and Under-Sampled Sites
Koen, Erin L.; Bowman, Jeff; Garroway, Colin J.; Wilson, Paul J.
2013-01-01
Landscape genetic analyses assess the influence of landscape structure on genetic differentiation. It is rarely possible to collect genetic samples from all individuals on the landscape and thus it is important to assess the sensitivity of landscape genetic analyses to the effects of unsampled and under-sampled sites. Network-based measures of genetic distance, such as conditional genetic distance (cGD), might be particularly sensitive to sampling intensity because pairwise estimates are relative to the entire network. We addressed this question by subsampling microsatellite data from two empirical datasets. We found that pairwise estimates of cGD were sensitive to both unsampled and under-sampled sites, and FST, Dest, and deucl were more sensitive to under-sampled than unsampled sites. We found that the rank order of cGD was also sensitive to unsampled and under-sampled sites, but not enough to affect the outcome of Mantel tests for isolation by distance. We simulated isolation by resistance and found that although cGD estimates were sensitive to unsampled sites, by increasing the number of sites sampled the accuracy of conclusions drawn from landscape genetic analyses increased, a feature that is not possible with pairwise estimates of genetic differentiation such as FST, Dest, and deucl. We suggest that users of cGD assess the sensitivity of this measure by subsampling within their own network and use caution when making extrapolations beyond their sampled network. PMID:23409155
Ethylene Production Via Sunlight Opens Door to Future | News | NREL
genetically engineered strains to promote ethylene production. Photo by Dennis Schroeder Here's the future of (storage) compounds in cyanobacteria at the molecular biology lab at NREL. Photo by Dennis Schroeder Jianping Yu to cultivate genetic strains of cyanobacteria to increase ethylene production. Photo by Dennis
Morselli, Lisa L; Gamazon, Eric R; Tasali, Esra; Cox, Nancy J; Van Cauter, Eve; Davis, Lea K
2018-01-01
Over the past 20 years, a large body of experimental and epidemiologic evidence has linked sleep duration and quality to glucose homeostasis, although the mechanistic pathways remain unclear. The aim of the current study was to determine whether genetic variation influencing both sleep and glucose regulation could underlie their functional relationship. We hypothesized that the genetic regulation of electroencephalographic (EEG) activity during non-rapid eye movement sleep, a highly heritable trait with fingerprint reproducibility, is correlated with the genetic control of metabolic traits including insulin sensitivity and β-cell function. We tested our hypotheses through univariate and bivariate heritability analyses in a three-generation pedigree with in-depth phenotyping of both sleep EEG and metabolic traits in 48 family members. Our analyses accounted for age, sex, adiposity, and the use of psychoactive medications. In univariate analyses, we found significant heritability for measures of fasting insulin sensitivity and β-cell function, for time spent in slow-wave sleep, and for EEG spectral power in the delta, theta, and sigma ranges. Bivariate heritability analyses provided the first evidence for a shared genetic control of brain activity during deep sleep and fasting insulin secretion rate. © 2017 by the American Diabetes Association.
Dahlgren, Thomas G; Wiklund, Helena; Rabone, Muriel; Amon, Diva J; Ikebe, Chiho; Watling, Les; Smith, Craig R; Glover, Adrian G
2016-01-01
We present data from a DNA taxonomy register of the abyssal Cnidaria collected as part of the Abyssal Baseline (ABYSSLINE) environmental survey cruise 'AB01' to the UK Seabed Resources Ltd (UKSRL) polymetallic-nodule exploration area 'UK-1' in the eastern Clarion-Clipperton Zone (CCZ), central Pacific Ocean abyssal plain. This is the second paper in a series to provide regional taxonomic data for a region that is undergoing intense deep-sea mineral exploration for high-grade polymetallic nodules. Data were collected from the UK-1 exploration area following the methods described in Glover et al. (2015b). Morphological and genetic data are presented for 10 species and 18 records identified by a combination of morphological and genetic data, including molecular phylogenetic analyses. These included 2 primnoid octocorals, 2 isidid octocorals, 1 anemone, 4 hydroids (including 2 pelagic siphonophores accidentally caught) and a scyphozoan jellyfish (in the benthic stage of the life cycle). Two taxa matched previously published genetic sequences (pelagic siphonophores), two taxa matched published morphological descriptions (abyssal primnoids described from the same locality in 2015) and the remaining 6 taxa are potentially new species, for which we make the raw data, imagery and vouchers available for future taxonomic study. We have used a precautionary approach in taxon assignments to avoid over-estimating species ranges. The Clarion-Clipperton Zone is a region undergoing intense exploration for potential deep-sea mineral extraction. We present these data to facilitate future taxonomic and environmental impact study by making both data and voucher materials available through curated and accessible biological collections. For some of the specimens we also provide image data collected at the seabed by ROV, wich may facilitate more accurate taxon designation in coming ROV or AUV surveys.
Bamorovat, Mehdi; Sharifi, Iraj; Mohammadi, Mohammad Ali; Eybpoosh, Sana; Nasibi, Saeid; Aflatoonian, Mohammad Reza; Khosravi, Ahmad
2018-03-01
The precise identification of the parasite species causing leishmaniasis is essential for selecting proper treatment modality. The present study aims to compare the nucleotide variations of the ITS1, 7SL RNA, and Hsp70 sequences between non-healed and healed anthroponotic cutaneous leishmaniasis (ACL) patients in major foci in Iran. A case-control study was carried out from September 2015 to October 2016 in the cities of Kerman and Bam, in the southeast of Iran. Randomly selected skin-scraping lesions of 40 patients (20 non-healed and 20 healed) were examined and the organisms were grown in a culture medium. Promastigotes were collected by centrifugation and kept for further molecular examinations. The extracted DNA was amplified and sequenced. After global sequence alignment with BioEdit software, maximum likelihood phylogenetic analysis was performed in PhyML for typing of Leishmania isolates. Nucleotide composition of each genetic region was also compared between non-healed and healed patients. Our results showed that all isolates belonged to the Leishmania tropica complex, with their genetic composition in the ITS1 region being different among non-healed and healed patients. 7SL RNA and Hsp70 regions were genetically identical between both groups. Variability in nucleotide patterns observed between both groups in the ITS1 region may serve to encourage future research on the function of these polymorphisms and may improve our understanding of the role of parasite genome properties on patients' response to Leishmania treatment. Our results also do not support future use of 7SL RNA and Hsp70 regions of the parasite for comparative genomic analyses. Copyright © 2018 Elsevier Ltd. All rights reserved.
Kim, Tae-Sung; He, Qiang; Kim, Kyu-Won; Yoon, Min-Young; Ra, Won-Hee; Li, Feng Peng; Tong, Wei; Yu, Jie; Oo, Win Htet; Choi, Buung; Heo, Eun-Beom; Yun, Byoung-Kook; Kwon, Soon-Jae; Kwon, Soon-Wook; Cho, Yoo-Hyun; Lee, Chang-Yong; Park, Beom-Seok; Park, Yong-Jin
2016-05-26
Rice germplasm collections continue to grow in number and size around the world. Since maintaining and screening such massive resources remains challenging, it is important to establish practical methods to manage them. A core collection, by definition, refers to a subset of the entire population that preserves the majority of genetic diversity, enhancing the efficiency of germplasm utilization. Here, we report whole-genome resequencing of the 137 rice mini core collection or Korean rice core set (KRICE_CORE) that represents 25,604 rice germplasms deposited in the Korean genebank of the Rural Development Administration (RDA). We implemented the Illumina HiSeq 2000 and 2500 platform to produce short reads and then assembled those with 9.8 depths using Nipponbare as a reference. Comparisons of the sequences with the reference genome yielded more than 15 million (M) single nucleotide polymorphisms (SNPs) and 1.3 M INDELs. Phylogenetic and population analyses using 2,046,529 high-quality SNPs successfully assigned rice accessions to the relevant rice subgroups, suggesting that these SNPs capture evolutionary signatures that have accumulated in rice subpopulations. Furthermore, genome-wide association studies (GWAS) for four exemplary agronomic traits in the KRIC_CORE manifest the utility of KRICE_CORE; that is, identifying previously defined genes or novel genetic factors that potentially regulate important phenotypes. This study provides strong evidence that the size of KRICE_CORE is small but contains high genetic and functional diversity across the genome. Thus, our resequencing results will be useful for future breeding, as well as functional and evolutionary studies, in the post-genomic era.
Issues in solid-organ transplantation in children: translational research from bench to bedside
Lipshultz, Steven E.; Chandar, Jayanthi J.; Rusconi, Paolo G.; Fornoni, Alessia; Abitbol, Carolyn L.; Burke III, George W.; Zilleruelo, Gaston E.; Pham, Si M.; Perez, Elena E.; Karnik, Ruchika; Hunter, Juanita A.; Dauphin, Danielle D.; Wilkinson, James D.
2014-01-01
In this review, we identify important challenges facing physicians responsible for renal and cardiac transplantation in children based on a review of the contemporary medical literature. Regarding pediatric renal transplantation, we discuss the challenge of antibody-mediated rejection, focusing on both acute and chronic antibody-mediated rejection. We review new diagnostic approaches to antibody-mediated rejection, such as panel-reactive antibodies, donor-specific cross-matching, antibody assays, risk assessment and diagnosis of antibody-mediated rejection, the pathology of antibody-mediated rejection, the issue of ABO incompatibility in renal transplantation, new therapies for antibody-mediated rejection, inhibiting of residual antibodies, the suppression or depletion of B-cells, genetic approaches to treating acute antibody-mediated rejection, and identifying future translational research directions in kidney transplantation in children. Regarding pediatric cardiac transplantation, we discuss the mechanisms of cardiac transplant rejection, including the role of endomyocardial biopsy in detecting graft rejection and the role of biomarkers in detecting cardiac graft rejection, including biomarkers of inflammation, cardiomyocyte injury, or stress. We review cardiac allograft vasculopathy. We also address the role of genetic analyses, including genome-wide association studies, gene expression profiling using entities such as AlloMap®, and adenosine triphosphate release as a measure of immune function using the Cylex® ImmuKnow™ cell function assay. Finally, we identify future translational research directions in heart transplantation in children. PMID:24860861
Genetic approaches to addiction: genes and alcohol
Ducci, Francesca; Goldman, David
2008-01-01
Aims Alcoholism is a chronic relapsing disorder with an enormous societal impact. Understanding the genetic basis of alcoholism is crucial to characterize individuals' risk and to develop efficacious prevention and treatment strategies. Methods We examined the available scientific literature to provide an overview of different approaches that are being integrated increasingly to advance our knowledge of the genetic bases of alcoholism. Examples of genes that have been shown to influence vulnerability to alcoholism and related phenotypes are also discussed. Results Genetic factors account for more than 50% of the variance in alcoholism liability. Susceptibility loci for alcoholism include both alcohol-specific genes acting either at the pharmacokinetic or pharmacodynamic levels, as well as loci moderating neuronal pathways such as reward, behavioral control and stress resiliency, that are involved in several psychiatric diseases. In recent years, major progress in gene identification has occurred using intermediate phenotypes such as task-related brain activation that confer the advantage of increased power and the opportunity of exploring the neuronal mechanisms through which genetic variation is translated into behavior. Fundamental to the detection of gene effects is also the understanding of the interplay between genes as well as genes/environment interactions. Whole Genome Association studies represent a unique opportunity to identify alcohol-related loci in hypothesis-free fashion. Finally, genome-wide analyses of transcripts and chromatin remodeling promise an increase in our understanding of the genome function and of the mechanisms through which gene and environment cause diseases. Conclusions Although the genetic bases of alcoholism remain largely unknown, there are reasons to think that more genes will be discovered in the future. Multiple and complementary approaches will be required to piece together the mosaic of causation. PMID:18422824
Analysis of East Asia Genetic Substructure Using Genome-Wide SNP Arrays
Tian, Chao; Kosoy, Roman; Lee, Annette; Ransom, Michael; Belmont, John W.; Gregersen, Peter K.; Seldin, Michael F.
2008-01-01
Accounting for population genetic substructure is important in reducing type 1 errors in genetic studies of complex disease. As efforts to understand complex genetic disease are expanded to different continental populations the understanding of genetic substructure within these continents will be useful in design and execution of association tests. In this study, population differentiation (Fst) and Principal Components Analyses (PCA) are examined using >200 K genotypes from multiple populations of East Asian ancestry. The population groups included those from the Human Genome Diversity Panel [Cambodian, Yi, Daur, Mongolian, Lahu, Dai, Hezhen, Miaozu, Naxi, Oroqen, She, Tu, Tujia, Naxi, Xibo, and Yakut], HapMap [ Han Chinese (CHB) and Japanese (JPT)], and East Asian or East Asian American subjects of Vietnamese, Korean, Filipino and Chinese ancestry. Paired Fst (Wei and Cockerham) showed close relationships between CHB and several large East Asian population groups (CHB/Korean, 0.0019; CHB/JPT, 00651; CHB/Vietnamese, 0.0065) with larger separation with Filipino (CHB/Filipino, 0.014). Low levels of differentiation were also observed between Dai and Vietnamese (0.0045) and between Vietnamese and Cambodian (0.0062). Similarly, small Fst's were observed among different presumed Han Chinese populations originating in different regions of mainland of China and Taiwan (Fst's <0.0025 with CHB). For PCA, the first two PC's showed a pattern of relationships that closely followed the geographic distribution of the different East Asian populations. PCA showed substructure both between different East Asian groups and within the Han Chinese population. These studies have also identified a subset of East Asian substructure ancestry informative markers (EASTASAIMS) that may be useful for future complex genetic disease association studies in reducing type 1 errors and in identifying homogeneous groups that may increase the power of such studies. PMID:19057645
Szczecińska, Monika
2016-01-01
Background Research into the protection of rare and endangered plant species involves genetic analyses to determine their genetic variation and genetic structure. Various categories of genetic markers are used for this purpose. Microsatellites, also known as simple sequence repeats (SSR), are the most popular category of markers in population genetics research. In most cases, microsatellites account for a large part of the noncoding DNA and exert a neutral effect on the genome. Neutrality is a desirable feature in evaluations of genetic differences between populations, but it does not support analyses of a population’s ability to adapt to a given environment or its evolutionary potential. Despite the numerous advantages of microsatellites, non-neutral markers may supply important information in conservation genetics research. They are used to evaluate adaptation to specific environmental conditions and a population’s adaptive potential. The aim of this study was to compare the level of genetic variation in Pulsatilla patens populations revealed by neutral SSR markers and putatively adaptive ISJ markers (intron-exon splice junction). Methods The experiment was conducted on 14 Polish populations of P. patens and three P. patens populations from the nearby region of Vitebsk in Belarus. A total of 345 individuals were examined. Analyses were performed with the use of eight SSR primers specific to P. patens and three ISJ primers. Results SSR markers revealed a higher level of genetic variation than ISJ markers (He = 0.609, He = 0.145, respectively). An analysis of molecular variance (AMOVA) revealed that, the overall genetic diversity between the analyzed populations defined by parameters FST and ΦPT for SSR (20%) and ΦPT for ISJ (21%) markers was similar. Analysis conducted in the Structure program divided analyzed populations into two groups (SSR loci) and three groups (ISJ markers). Mantel test revealed correlations between the geographic distance and genetic diversity of Polish populations of P. patens for ISJ markers, but not for SSR markers. Conclusions The results of the present study suggest that ISJ markers can complement the analyses based on SSRs. However, neutral and adaptive markers should not be alternatively applied. Neutral microsatellite markers cannot depict the full range of genetic variation in a population because they do not enable to analyze functional variation. Although ISJ markers are less polymorphic, they can contribute to the reliability of analyses based on SSRs. PMID:27833793
Hamzah, Azhar; Thoa, Ngo Phu; Nguyen, Nguyen Hong
2017-11-01
Quantitative genetic analysis was performed on 10,919 data records collected over three generations from the selection programme for increased body weight at harvest in red tilapia (Oreochromis spp.). They were offspring of 224 sires and 226 dams (50 sires and 60 dams per generation, on average). Linear mixed models were used to analyse body traits (weight, length, width and depth), whereas threshold generalised models assuming probit distribution were employed to examine genetic inheritance of survival rate, sexual maturity and body colour. The estimates of heritability for traits studied (body weight, standard length, body width, body depth, body colour, early sexual maturation and survival) across statistical models were moderate to high (0.13-0.45). Genetic correlations among body traits and survival were high and positive (0.68-0.96). Body length and width exhibited negative genetic correlations with body colour (- 0.47 to - 0.25). Sexual maturity was genetically correlated positively with measurements of body traits (weight and length). Direct and correlated genetic responses to selection were measured as estimated breeding values in each generation and expressed in genetic standard deviation units (σ G ). The cumulative improvement achieved for harvest body weight was 1.72 σ G after three generations or 12.5% per generation when the gain was expressed as a percentage of the base population. Selection for improved body weight also resulted in correlated increase in other body traits (length, width and depth) and survival rate (ranging from 0.25 to 0.81 genetic standard deviation units). Avoidance of black spot parent matings also improved the overall red colour of the selected population. It is concluded that the selective breeding programme for red tilapia has succeeded in achieving significant genetic improvement for a range of commercially important traits in this species, and the large genetic variation in body colour and survival also shows that there are prospects for future improvement of these traits in this population of red tilapia.
Hart, Sara A.; Petrill, Stephen A.; Willcutt, Erik; Thompson, Lee A.; Schatschneider, Christopher; Deater-Deckard, Kirby; Cutting, Laurie E.
2013-01-01
Children with attention-deficit/hyperactivity disorder (ADHD) tend to perform more poorly on tests of reading and mathematical performance than their typical peers. Quantitative genetic analyses allow for a better understanding of the etiology of ADHD and reading and mathematics outcomes, by examining their common and unique genetic and environmental influences. Analyses were conducted on a sample 271 pairs of 10-year-old monozygotic and dizygotic twins drawn from the Western Reserve Reading and Mathematics Project. In general, the results suggested that the associations among ADHD symptoms, reading outcomes, and math outcomes were influenced by both general genetic and general shared-environment factors. The analyses also suggested significant independent genetic effects for ADHD symptoms. The results imply that differing etiological factors underlie the relationships among ADHD and reading and mathematics performance. It appears that both genetic and common family or school environments link ADHD with academic performance. PMID:20966487
Predicted extinction of unique genetic diversity in marine forests of Cystoseira spp.
Buonomo, Roberto; Chefaoui, Rosa M; Lacida, Ricardo Bermejo; Engelen, Aschwin H; Serrão, Ester A; Airoldi, Laura
2018-07-01
Climate change is inducing shifts in species ranges across the globe. These can affect the genetic pools of species, including loss of genetic variability and evolutionary potential. In particular, geographically enclosed ecosystems, like the Mediterranean Sea, have a higher risk of suffering species loss and genetic erosion due to barriers to further range shifts and to dispersal. In this study, we address these questions for three habitat-forming seaweed species, Cystoseira tamariscifolia, C. amentacea and C. compressa, throughout their entire ranges in the Atlantic and Mediterranean regions. We aim to 1) describe their population genetic structure and diversity, 2) model the present and predict the future distribution and 3) assess the consequences of predicted future range shifts for their population genetic structure, according to two contrasting future climate change scenarios. A net loss of suitable areas was predicted in both climatic scenarios across the range of distribution of the three species. This loss was particularly severe for C. amentacea in the Mediterranean Sea (less 90% in the most extreme climatic scenario), suggesting that the species could become potentially at extinction risk. For all species, genetic data showed very differentiated populations, indicating low inter-population connectivity, and high and distinct genetic diversity in areas that were predicted to become lost, causing erosion of unique evolutionary lineages. Our results indicated that the Mediterranean Sea is the most threatened region, where future suitable Cystoseira habitats will become more limited. This is likely to have wider ecosystem impacts as there is a lack of species with the same ecological niche and functional role in the Mediterranean. The projected accelerated loss of already fragmented and disturbed populations and the long-term genetic effects highlight the urge for local scale management strategies that sustain the capacity of these habitat-forming species to persist despite climatic impacts while waiting for global emission reductions. Copyright © 2018 Elsevier Ltd. All rights reserved.
Genome-Wide Analyses Reveal Genes Subject to Positive Selection in Pasteurella multocida
Cao, Peili; Guo, Dongchun; Liu, Jiasen; Jiang, Qian; Xu, Zhuofei; Qu, Liandong
2017-01-01
Pasteurella multocida, a Gram-negative opportunistic pathogen, has led to a broad range of diseases in mammals and birds, including fowl cholera in poultry, pneumonia and atrophic rhinitis in swine and rabbit, hemorrhagic septicemia in cattle, and bite infections in humans. In order to better interpret the genetic diversity and adaptation evolution of this pathogen, seven genomes of P. multocida strains isolated from fowls, rabbit and pigs were determined by using high-throughput sequencing approach. Together with publicly available P. multocida genomes, evolutionary features were systematically analyzed in this study. Clustering of 70,565 protein-coding genes showed that the pangenome of 33 P. multocida strains was composed of 1,602 core genes, 1,364 dispensable genes, and 1,070 strain-specific genes. Of these, we identified a full spectrum of genes related to virulence factors and revealed genetic diversity of these potential virulence markers across P. multocida strains, e.g., bcbAB, fcbC, lipA, bexDCA, ctrCD, lgtA, lgtC, lic2A involved in biogenesis of surface polysaccharides, hsf encoding autotransporter adhesin, and fhaB encoding filamentous haemagglutinin. Furthermore, based on genome-wide positive selection scanning, a total of 35 genes were subject to strong selection pressure. Extensive analyses of protein subcellular location indicated that membrane-associated genes were highly abundant among all positively selected genes. The detected amino acid sites undergoing adaptive selection were preferably located in extracellular space, perhaps associated with bacterial evasion of host immune responses. Our findings shed more light on conservation and distribution of virulence-associated genes across P. multocida strains. Meanwhile, this study provides a genetic context for future researches on the mechanism of adaptive evolution in P. multocida. PMID:28611758
Pereza, Nina; Ostojić, Saša; Kapović, Miljenko; Peterlin, Borut
2017-01-01
1) To perform the first comprehensive systematic review of genetic association studies (GASs) in idiopathic recurrent spontaneous abortion (IRSA); 2) to analyze studies according to recurrent spontaneous abortion (RSA) definition and selection criteria for patients and control subjects; and 3) to perform meta-analyses for the association of candidate genes with IRSA. Systematic review and meta-analysis. Not applicable. Couples with IRSA and their spontaneously aborted embryos. Summary odds ratios (ORs) were calculated by means of fixed- or random-effects models. Association of genetic variants with IRSA. The systematic review included 428 case-control studies (1990-2015), which differed substantially regarding RSA definition, clinical evaluation of patients, and selection of control subjects. In women, 472 variants in 187 genes were investigated. Meta-analyses were performed for 36 variants in 16 genes. Association with IRSA defined as three or more spontaneous abortions (SAs) was detected for 21 variants in genes involved in immune response (IFNG, IL10, KIR2DS2, KIR2DS3, KIR2DS4, MBL, TNF), coagulation (F2, F5, PAI-1, PROZ), metabolism (GSTT1, MTHFR), and angiogenesis (NOS3, VEGFA). However, ORs were modest (0.51-2.37), with moderate or weak epidemiologic credibility. Minor differences in summary ORs were detected between IRSA defined as two or more and as three or more SAs. Male partners were included in 12.1% of studies, and one study included spontaneously aborted embryos. Candidate gene studies show moderate associations with IRSA. Owing to large differences in RSA definition and selection criteria for participants, consensus is needed. Future GASs should include both partners and spontaneously aborted embryos. Genome-wide association studies and large-scale replications of identified associations are recommended. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Bennett, Joseph R.; French, Connor M.
2017-01-01
SDMtoolbox 2.0 is a software package for spatial studies of ecology, evolution, and genetics. The release of SDMtoolbox 2.0 allows researchers to use the most current ArcGIS software and MaxEnt software, and reduces the amount of time that would be spent developing common solutions. The central aim of this software is to automate complicated and repetitive spatial analyses in an intuitive graphical user interface. One core tenant facilitates careful parameterization of species distribution models (SDMs) to maximize each model’s discriminatory ability and minimize overfitting. This includes carefully processing of occurrence data, environmental data, and model parameterization. This program directly interfaces with MaxEnt, one of the most powerful and widely used species distribution modeling software programs, although SDMtoolbox 2.0 is not limited to species distribution modeling or restricted to modeling in MaxEnt. Many of the SDM pre- and post-processing tools have ‘universal’ analogs for use with any modeling software. The current version contains a total of 79 scripts that harness the power of ArcGIS for macroecology, landscape genetics, and evolutionary studies. For example, these tools allow for biodiversity quantification (such as species richness or corrected weighted endemism), generation of least-cost paths and corridors among shared haplotypes, assessment of the significance of spatial randomizations, and enforcement of dispersal limitations of SDMs projected into future climates—to only name a few functions contained in SDMtoolbox 2.0. Lastly, dozens of generalized tools exists for batch processing and conversion of GIS data types or formats, which are broadly useful to any ArcMap user. PMID:29230356
Rochus, Christina M; Johansson, Anna M
2017-01-01
Breeds with small population size are in danger of an increased inbreeding rate and loss of genetic diversity, which puts them at risk for extinction. In Sweden there are a number of local breeds, native breeds which have adapted to specific areas in Sweden, for which efforts are being made to keep them pure and healthy over time. One example of such a breed is the Swedish Gute sheep. The objective of this study was to estimate inbreeding and genetic diversity of Swedish Gute sheep. Three datasets were analysed: pedigree information of the whole population, pedigree information for 100 animals of the population, and microsatellite genotypes for 94 of the 100 animals. The average inbreeding coefficient for lambs born during a six year time period (2007-2012) did not increase during that time period. The inbreeding calculated from the entire pedigree (0.038) and for a sample of the population (0.018) was very low. Sheep were more heterozygous at the microsatellite markers than expected (average multilocus heterozygosity and Ritland inbreeding estimates 1.01845 and -0.03931) and five of seven microsatellite markers were not in Hardy Weinberg equilibrium due to heterozygosity excess. The total effective population size estimated from the pedigree information was 155.4 and the average harmonic mean effective population size estimated from microsatellites was 88.3. Pedigree and microsatellite genotype estimations of inbreeding were consistent with a breeding program with the purpose of reducing inbreeding. Our results showed that current breeding programs of the Swedish Gute sheep are consistent with efforts of keeping this breed viable and these breeding programs are an example for other small local breeds in conserving breeds for the future.
Weedon, Michael N; Clark, Vanessa J; Qian, Yudong; Ben-Shlomo, Yoav; Timpson, Nicholas; Ebrahim, Shah; Lawlor, Debbie A; Pembrey, Marcus E; Ring, Susan; Wilkin, Terry J; Voss, Linda D; Jeffery, Alison N; Metcalf, Brad; Ferrucci, Luigi; Corsi, Anna Maria; Murray, Anna; Melzer, David; Knight, Bridget; Shields, Bev; Smith, George Davey; Hattersley, Andrew T; Di Rienzo, Anna; Frayling, Tim M
2006-12-01
Fasting glucose is associated with future risk of type 2 diabetes and ischemic heart disease and is tightly regulated despite considerable variation in quantity, type, and timing of food intake. In pregnancy, maternal fasting glucose concentration is an important determinant of offspring birth weight. The key determinant of fasting glucose is the enzyme glucokinase (GCK). Rare mutations of GCK cause fasting hyperglycemia and alter birth weight. The extent to which common variation of GCK explains normal variation of fasting glucose and birth weight is not known. We aimed to comprehensively define the role of variation of GCK in determination of fasting glucose and birth weight, using a tagging SNP (tSNP) approach and studying 19,806 subjects from six population-based studies. Using 22 tSNPs, we showed that the variant rs1799884 is associated with fasting glucose at all ages in the normal population and exceeded genomewide levels of significance (P=10-9). rs3757840 was also highly significantly associated with fasting glucose (P=8x10-7), but haplotype analysis revealed that this is explained by linkage disequilibrium (r2=0.2) with rs1799884. A maternal A allele at rs1799884 was associated with a 32-g (95% confidence interval 11-53 g) increase in offspring birth weight (P=.002). Genetic variation influencing birth weight may have conferred a selective advantage in human populations. We performed extensive population-genetics analyses to look for evidence of recent positive natural selection on patterns of GCK variation. However, we found no strong signature of positive selection. In conclusion, a comprehensive analysis of common variation of the glucokinase gene shows that this is the first gene to be reproducibly associated with fasting glucose and fetal growth.
The molecular genetics of eyelid tumors: recent advances and future directions.
Milman, Tatyana; McCormick, Steven A
2013-02-01
Unprecedented recent advances in the molecular genetics of cutaneous malignancies have markedly improved our ability to diagnose, treat, and counsel patients with skin tumors. This review provides an update on molecular genetics of periocular cutaneous basal cell carcinoma, squamous cell carcinoma, sebaceous carcinoma, Merkel cell carcinoma, and malignant melanoma and describes how the knowledge of molecular genetics is translated into clinical practice. A literature search of peer-reviewed and indexed publications from 1965 to 2012 using the PubMed search engine was performed. Key terms included: molecular genetics, eyelid, basal cell carcinoma, squamous cell carcinoma, sebaceous adenoma, sebaceous epithelioma, sebaceoma, sebaceous carcinoma, Merkel cell carcinoma, and melanoma. Seminal articles prior to 1965 were selected from primary sources and reviews from the initial search. Articles were chosen based on pertinence to clinical, genetic, and therapeutic topics reviewed in this manuscript. We reviewed the literature regarding the advances in molecular genetics of cutaneous basal cell carcinoma, squamous cell carcinoma, sebaceous neoplasia, Merkel cell carcinoma, and malignant melanoma, and possible future directions towards diagnosing and treating cutaneous tumors at the genetic level. Cell culture experiments, animal models, and molecular genetic studies on the patients' tumor tissues helped to elucidate genetic aberrations in these lesions. Cell culture experiments, animal studies and, ultimately, clinical trials provided means to test and develop novel therapeutic strategies, namely targeted therapy directed at specific molecular genetic defects. While remarkable progress has been made in this process, the complexity of the molecular genetics of skin tumors makes complete elucidation of the genetic mechanisms and the search for ideal therapies challenging. The recent studies focusing on molecular genetics of cutaneous malignancies show promising results, thereby improving our ability to diagnose, treat and counsel patients with these lesions. Future studies will hopefully help unravel further molecular mechanisms involved in cutaneous neoplasia and provide insights into novel preventative and therapeutic modalities.
Barriers for integrating personalized medicine into clinical practice: a qualitative analysis.
Najafzadeh, Mehdi; Davis, Jennifer C; Joshi, Pamela; Marra, Carlo
2013-04-01
Personalized medicine-tailoring interventions based on individual's genetic information-will likely change routine clinical practice in the future. Yet, how practitioners plan to apply genetic information to inform medical decision making remains unclear. We aimed to investigate physician's perception about the future role of personalized medicine, and to identify the factors that influence their decision in using genetic testing in their practice. We conducted three semi-structured focus groups in three health regions (Fraser, Vancouver coastal, and Interior) in British Columbia, Canada. In the focus groups, participants discussed four topics on personalized medicine: (i) physicians' general understanding, (ii) advantages and disadvantages, (iii) potential impact and role in future clinical practice, and (iv) perceived barriers to integrating personalized medicine into clinical practice. Approximately 36% (n = 9) of physicians self-reported that they were not familiar with the concept of personalized medicine. After introducing the concept, the majority of physicians (68%, n = 19 of 28) were interested in incorporating personalized medicine in their practice, provided they have access to the necessary knowledge and tools. Participants mostly believed that genetic developments will directly affect their practice in the future. The key concerns highlighted were physician's access to clinical guidelines and training opportunities for the use of genetic testing and data interpretation. Despite the challenges that personalized medicine can create, in general, physicians in the focus groups expressed strong interest in using genetic information in their practice if they have access to the necessary knowledge and tools. Copyright © 2013 Wiley Periodicals, Inc.
Is Genetic Background Important in Lung Cancer Survival?
Lindström, Linda S.; Hall, Per; Hartman, Mikael; Wiklund, Fredrik; Czene, Kamila
2009-01-01
Background In lung cancer, a patient's survival is poor with a wide variation in survival within the stage of disease. The aim of this study was to investigate the familial concordance in lung cancer survival by means of analyses of pairs with different degrees of familial relationships. Methods Our population-based Swedish family database included three million families and over 58 100 lung cancer patients. We modelled the proband (parent, sibling, spouse) survival utilizing a multivariate proportional hazard (Cox) model adjusting for possible confounders of survival. Subsequently, the survival in proband's relative (child, sibling, spouse) was analysed with a Cox model. Findings By use of Cox modelling with 5 years follow-up, we noted a decreased hazard ratio for death in children with good parental survival (Hazard Ratio [HR] = 0.71, 95% CI = 0.51 to 0.99), compared to those with poor parental survival. Also for siblings, a very strong protective effect was seen (HR = 0.14, 95% CI = 0.030 to 0.65). Finally, in spouses no correlation in survival was found. Interpretation Our findings suggest that genetic factors are important in lung cancer survival. In a clinical setting, information on prognosis in a relative may be vital in foreseeing the survival in an individual newly diagnosed with lung cancer. Future molecular studies enhancing the understanding of the underlying mechanisms and pathways are needed. PMID:19478952
Yavorska, Olena O; Burgess, Stephen
2017-12-01
MendelianRandomization is a software package for the R open-source software environment that performs Mendelian randomization analyses using summarized data. The core functionality is to implement the inverse-variance weighted, MR-Egger and weighted median methods for multiple genetic variants. Several options are available to the user, such as the use of robust regression, fixed- or random-effects models and the penalization of weights for genetic variants with heterogeneous causal estimates. Extensions to these methods, such as allowing for variants to be correlated, can be chosen if appropriate. Graphical commands allow summarized data to be displayed in an interactive graph, or the plotting of causal estimates from multiple methods, for comparison. Although the main method of data entry is directly by the user, there is also an option for allowing summarized data to be incorporated from the PhenoScanner database of genotype-phenotype associations. We hope to develop this feature in future versions of the package. The R software environment is available for download from [https://www.r-project.org/]. The MendelianRandomization package can be downloaded from the Comprehensive R Archive Network (CRAN) within R, or directly from [https://cran.r-project.org/web/packages/MendelianRandomization/]. Both R and the MendelianRandomization package are released under GNU General Public Licenses (GPL-2|GPL-3). © The Author 2017. Published by Oxford University Press on behalf of the International Epidemiological Association.
Witt, S H; Streit, F; Jungkunz, M; Frank, J; Awasthi, S; Reinbold, C S; Treutlein, J; Degenhardt, F; Forstner, A J; Heilmann-Heimbach, S; Dietl, L; Schwarze, C E; Schendel, D; Strohmaier, J; Abdellaoui, A; Adolfsson, R; Air, T M; Akil, H; Alda, M; Alliey-Rodriguez, N; Andreassen, O A; Babadjanova, G; Bass, N J; Bauer, M; Baune, B T; Bellivier, F; Bergen, S; Bethell, A; Biernacka, J M; Blackwood, D H R; Boks, M P; Boomsma, D I; Børglum, A D; Borrmann-Hassenbach, M; Brennan, P; Budde, M; Buttenschøn, H N; Byrne, E M; Cervantes, P; Clarke, T-K; Craddock, N; Cruceanu, C; Curtis, D; Czerski, P M; Dannlowski, U; Davis, T; de Geus, E J C; Di Florio, A; Djurovic, S; Domenici, E; Edenberg, H J; Etain, B; Fischer, S B; Forty, L; Fraser, C; Frye, M A; Fullerton, J M; Gade, K; Gershon, E S; Giegling, I; Gordon, S D; Gordon-Smith, K; Grabe, H J; Green, E K; Greenwood, T A; Grigoroiu-Serbanescu, M; Guzman-Parra, J; Hall, L S; Hamshere, M; Hauser, J; Hautzinger, M; Heilbronner, U; Herms, S; Hitturlingappa, S; Hoffmann, P; Holmans, P; Hottenga, J-J; Jamain, S; Jones, I; Jones, L A; Juréus, A; Kahn, R S; Kammerer-Ciernioch, J; Kirov, G; Kittel-Schneider, S; Kloiber, S; Knott, S V; Kogevinas, M; Landén, M; Leber, M; Leboyer, M; Li, Q S; Lissowska, J; Lucae, S; Martin, N G; Mayoral-Cleries, F; McElroy, S L; McIntosh, A M; McKay, J D; McQuillin, A; Medland, S E; Middeldorp, C M; Milaneschi, Y; Mitchell, P B; Montgomery, G W; Morken, G; Mors, O; Mühleisen, T W; Müller-Myhsok, B; Myers, R M; Nievergelt, C M; Nurnberger, J I; O'Donovan, M C; Loohuis, L M O; Ophoff, R; Oruc, L; Owen, M J; Paciga, S A; Penninx, B W J H; Perry, A; Pfennig, A; Potash, J B; Preisig, M; Reif, A; Rivas, F; Rouleau, G A; Schofield, P R; Schulze, T G; Schwarz, M; Scott, L; Sinnamon, G C B; Stahl, E A; Strauss, J; Turecki, G; Van der Auwera, S; Vedder, H; Vincent, J B; Willemsen, G; Witt, C C; Wray, N R; Xi, H S; Tadic, A; Dahmen, N; Schott, B H; Cichon, S; Nöthen, M M; Ripke, S; Mobascher, A; Rujescu, D; Lieb, K; Roepke, S; Schmahl, C; Bohus, M; Rietschel, M
2017-06-20
Borderline personality disorder (BOR) is determined by environmental and genetic factors, and characterized by affective instability and impulsivity, diagnostic symptoms also observed in manic phases of bipolar disorder (BIP). Up to 20% of BIP patients show comorbidity with BOR. This report describes the first case-control genome-wide association study (GWAS) of BOR, performed in one of the largest BOR patient samples worldwide. The focus of our analysis was (i) to detect genes and gene sets involved in BOR and (ii) to investigate the genetic overlap with BIP. As there is considerable genetic overlap between BIP, major depression (MDD) and schizophrenia (SCZ) and a high comorbidity of BOR and MDD, we also analyzed the genetic overlap of BOR with SCZ and MDD. GWAS, gene-based tests and gene-set analyses were performed in 998 BOR patients and 1545 controls. Linkage disequilibrium score regression was used to detect the genetic overlap between BOR and these disorders. Single marker analysis revealed no significant association after correction for multiple testing. Gene-based analysis yielded two significant genes: DPYD (P=4.42 × 10 -7 ) and PKP4 (P=8.67 × 10 -7 ); and gene-set analysis yielded a significant finding for exocytosis (GO:0006887, P FDR =0.019; FDR, false discovery rate). Prior studies have implicated DPYD, PKP4 and exocytosis in BIP and SCZ. The most notable finding of the present study was the genetic overlap of BOR with BIP (r g =0.28 [P=2.99 × 10 -3 ]), SCZ (r g =0.34 [P=4.37 × 10 -5 ]) and MDD (r g =0.57 [P=1.04 × 10 -3 ]). We believe our study is the first to demonstrate that BOR overlaps with BIP, MDD and SCZ on the genetic level. Whether this is confined to transdiagnostic clinical symptoms should be examined in future studies.
Harden, K Paige; Patterson, Megan W; Briley, Daniel A; Engelhardt, Laura E; Kretsch, Natalie; Mann, Frank D; Tackett, Jennifer L; Tucker-Drob, Elliot M
2015-12-01
Antisocial behavior (ASB) can be meaningfully divided into nonaggressive rule-breaking versus aggressive dimensions, which differ in developmental course and etiology. Previous research has found that genetic influences on rule-breaking, but not aggression, increase from late childhood to mid-adolescence. This study tested the extent to which the developmental increase in genetic influence on rule-breaking was associated with pubertal development compared to chronological age. Child and adolescent twins (n = 1,031), ranging in age from 8 to 20 years (M age = 13.5 years), were recruited from public schools as part of the Texas Twin Project. Participants reported on their pubertal development using the Pubertal Development Scale and on their involvement in ASB on items from the Child Behavior Checklist. Measurement invariance of ASB subtypes across age groups (≤12 years vs. >12 years old) was tested using confirmatory factor analyses. Quantitative genetic modeling was used to test whether the genetic and environmental influences on aggression and rule-breaking were moderated by age, pubertal status, or both. Quantitative genetic modeling indicated that genetic influences specific to rule-breaking increased as a function of pubertal development controlling for age (a gene × puberty interaction), but did not vary as a function of age controlling for pubertal status. There were no developmental differences in the genetic etiology of aggression. Family-level environmental influences common to aggression and rule-breaking decreased with age, further contributing to the differentiation between these subtypes of ASB from childhood to adolescence. Future research should discriminate between alternative possible mechanisms underlying gene × puberty interactions on rule-breaking forms of antisocial behavior, including possible effects of pubertal hormones on gene expression. © 2015 Association for Child and Adolescent Mental Health.
Stocking the genetic supermarket: reproductive genetic technologies and collective action problems.
Gyngell, Chris; Douglas, Thomas
2015-05-01
Reproductive genetic technologies (RGTs) allow parents to decide whether their future children will have or lack certain genetic predispositions. A popular model that has been proposed for regulating access to RGTs is the 'genetic supermarket'. In the genetic supermarket, parents are free to make decisions about which genes to select for their children with little state interference. One possible consequence of the genetic supermarket is that collective action problems will arise: if rational individuals use the genetic supermarket in isolation from one another, this may have a negative effect on society as a whole, including future generations. In this article we argue that RGTs targeting height, innate immunity, and certain cognitive traits could lead to collective action problems. We then discuss whether this risk could in principle justify state intervention in the genetic supermarket. We argue that there is a plausible prima facie case for the view that such state intervention would be justified and respond to a number of arguments that might be adduced against that view. © 2014 The Authors. Bioethics published by John Wiley & Sons Ltd.
Zhao, Yong-Bin; Zhang, Ye; Zhang, Quan-Chao; Li, Hong-Jie; Cui, Ying-Qiu; Xu, Zhi; Jin, Li; Zhou, Hui; Zhu, Hong
2015-01-01
The Han Chinese are the largest ethnic group in the world, and their origins, development, and expansion are complex. Many genetic studies have shown that Han Chinese can be divided into two distinct groups: northern Han Chinese and southern Han Chinese. The genetic history of the southern Han Chinese has been well studied. However, the genetic history of the northern Han Chinese is still obscure. In order to gain insight into the genetic history of the northern Han Chinese, 89 human remains were sampled from the Hengbei site which is located in the Central Plain and dates back to a key transitional period during the rise of the Han Chinese (approximately 3,000 years ago). We used 64 authentic mtDNA data obtained in this study, 27 Y chromosome SNP data profiles from previously studied Hengbei samples, and genetic datasets of the current Chinese populations and two ancient northern Chinese populations to analyze the relationship between the ancient people of Hengbei and present-day northern Han Chinese. We used a wide range of population genetic analyses, including principal component analyses, shared mtDNA haplotype analyses, and geographic mapping of maternal genetic distances. The results show that the ancient people of Hengbei bore a strong genetic resemblance to present-day northern Han Chinese and were genetically distinct from other present-day Chinese populations and two ancient populations. These findings suggest that the genetic structure of northern Han Chinese was already shaped 3,000 years ago in the Central Plain area.
Zhang, Quan-Chao; Li, Hong-Jie; Cui, Ying-Qiu; Xu, Zhi; Jin, Li; Zhou, Hui; Zhu, Hong
2015-01-01
The Han Chinese are the largest ethnic group in the world, and their origins, development, and expansion are complex. Many genetic studies have shown that Han Chinese can be divided into two distinct groups: northern Han Chinese and southern Han Chinese. The genetic history of the southern Han Chinese has been well studied. However, the genetic history of the northern Han Chinese is still obscure. In order to gain insight into the genetic history of the northern Han Chinese, 89 human remains were sampled from the Hengbei site which is located in the Central Plain and dates back to a key transitional period during the rise of the Han Chinese (approximately 3,000 years ago). We used 64 authentic mtDNA data obtained in this study, 27 Y chromosome SNP data profiles from previously studied Hengbei samples, and genetic datasets of the current Chinese populations and two ancient northern Chinese populations to analyze the relationship between the ancient people of Hengbei and present-day northern Han Chinese. We used a wide range of population genetic analyses, including principal component analyses, shared mtDNA haplotype analyses, and geographic mapping of maternal genetic distances. The results show that the ancient people of Hengbei bore a strong genetic resemblance to present-day northern Han Chinese and were genetically distinct from other present-day Chinese populations and two ancient populations. These findings suggest that the genetic structure of northern Han Chinese was already shaped 3,000 years ago in the Central Plain area. PMID:25938511
Hercher, Laura; Uhlmann, Wendy R; Hoffman, Erin P; Gustafson, Shanna; Chen, Kelly M
2016-12-01
Advances in genetic testing and the availability of such testing in pregnancy allows prospective parents to test their future child for adult-onset conditions. This ability raises several complex ethical issues. Prospective parents have reproductive rights to obtain information about their fetus. This information may or may not alter pregnancy management. These rights can be in conflict with the rights of the future individual, who will be denied the right to elect or decline testing. This paper highlights the complexity of these issues, details discussions that went into the National Society of Genetic Counselors (NSGC) Public Policy Task Force's development of the Prenatal testing for Adult-Onset Conditions position statement adopted in November 2014, and cites relevant literature on this topic through December 2015. Issues addressed include parental rights and autonomy, rights of the future child, the right not to know, possible adverse effects on childhood and the need for genetic counseling. This paper will serve as a reference to genetic counselors and healthcare professionals when faced with this situation in clinical practice.
Ecogeographic Genetic Epidemiology
Sloan, Chantel D.; Duell, Eric J.; Shi, Xun; Irwin, Rebecca; Andrew, Angeline S.; Williams, Scott M.; Moore, Jason H.
2009-01-01
Complex diseases such as cancer and heart disease result from interactions between an individual's genetics and environment, i.e. their human ecology. Rates of complex diseases have consistently demonstrated geographic patterns of incidence, or spatial “clusters” of increased incidence relative to the general population. Likewise, genetic subpopulations and environmental influences are not evenly distributed across space. Merging appropriate methods from genetic epidemiology, ecology and geography will provide a more complete understanding of the spatial interactions between genetics and environment that result in spatial patterning of disease rates. Geographic Information Systems (GIS), which are tools designed specifically for dealing with geographic data and performing spatial analyses to determine their relationship, are key to this kind of data integration. Here the authors introduce a new interdisciplinary paradigm, ecogeographic genetic epidemiology, which uses GIS and spatial statistical analyses to layer genetic subpopulation and environmental data with disease rates and thereby discern the complex gene-environment interactions which result in spatial patterns of incidence. PMID:19025788
The Canadian Pharmacogenomics Network for Drug Safety: a model for safety pharmacology.
Ross, Colin J D; Visscher, Henk; Sistonen, Johanna; Brunham, Liam R; Pussegoda, Kusala; Loo, Tenneille T; Rieder, Michael J; Koren, Gideon; Carleton, Bruce C; Hayden, Michael R
2010-07-01
Adverse drug reactions (ADRs) rank as one of the top 10 leading causes of death in the developed world, and the direct medical costs of ADRs exceed $100 billion annually in the United States alone. Pharmacogenomics research seeks to identify genetic factors that are responsible for individual differences in drug efficacy and susceptibility to ADRs. This has led to several genetic tests that are currently being used to provide clinical recommendations. The Canadian Pharmacogenomics Network for Drug Safety is a nation-wide effort established in Canada to identify novel predictive genomic markers of severe ADRs in children and adults. A surveillance network has been established in 17 of Canada's major hospitals to identify patients experiencing specific ADRs and to collect biological samples and relevant clinical history for genetic association studies. To identify ADR-associated genetic markers that could be incorporated into predictive tests that will reduce the occurrence of serious ADRs, high-throughput genomic analyses are conducted with samples from patients that have suffered serious ADRs and matched control patients. ADRs represent a significant unmet medical problem with significant morbidity and mortality, and Canadian Pharmacogenomics Network for Drug Safety is a nation-wide network in Canada that seeks to identify genetic factors responsible for interindividual differences in susceptibility to serious ADRs. Active ADR surveillance is necessary to identify and recruit patients who suffer from serious ADRs. National and international collaborations are required to recruit sufficient patients for these studies. Several pharmacogenomics tests are currently in clinical use to provide dosing recommendations, and the number of pharmacogenomics tests is expected to significantly increase in the future.
Epidemiology, genetics, and subtyping of preserved ratio impaired spirometry (PRISm) in COPDGene.
Wan, Emily S; Castaldi, Peter J; Cho, Michael H; Hokanson, John E; Regan, Elizabeth A; Make, Barry J; Beaty, Terri H; Han, MeiLan K; Curtis, Jeffrey L; Curran-Everett, Douglas; Lynch, David A; DeMeo, Dawn L; Crapo, James D; Silverman, Edwin K
2014-08-06
Preserved Ratio Impaired Spirometry (PRISm), defined as a reduced FEV1 in the setting of a preserved FEV1/FVC ratio, is highly prevalent and is associated with increased respiratory symptoms, systemic inflammation, and mortality. Studies investigating quantitative chest tomographic features, genetic associations, and subtypes in PRISm subjects have not been reported. Data from current and former smokers enrolled in COPDGene (n = 10,192), an observational, cross-sectional study which recruited subjects aged 45-80 with ≥10 pack years of smoking, were analyzed. To identify epidemiological and radiographic predictors of PRISm, we performed univariate and multivariate analyses comparing PRISm subjects both to control subjects with normal spirometry and to subjects with COPD. To investigate common genetic predictors of PRISm, we performed a genome-wide association study (GWAS). To explore potential subgroups within PRISm, we performed unsupervised k-means clustering. The prevalence of PRISm in COPDGene is 12.3%. Increased dyspnea, reduced 6-minute walk distance, increased percent emphysema and decreased total lung capacity, as well as increased segmental bronchial wall area percentage were significant predictors (p-value <0.05) of PRISm status when compared to control subjects in multivariate models. Although no common genetic variants were identified on GWAS testing, a significant association with Klinefelter's syndrome (47XXY) was observed (p-value < 0.001). Subgroups identified through k-means clustering include a putative "COPD-subtype", "Restrictive-subtype", and a highly symptomatic "Metabolic-subtype". PRISm subjects are clinically and genetically heterogeneous. Future investigations into the pathophysiological mechanisms behind and potential treatment options for subgroups within PRISm are warranted. Clinicaltrials.gov Identifier: NCT000608764.
A multivariate twin study of trait mindfulness, depressive symptoms, and anxiety sensitivity.
Waszczuk, Monika A; Zavos, Helena M S; Antonova, Elena; Haworth, Claire M; Plomin, Robert; Eley, Thalia C
2015-04-01
Mindfulness-based therapies have been shown to be effective in treating depression and reducing cognitive biases. Anxiety sensitivity is one cognitive bias that may play a role in the association between mindfulness and depressive symptoms. It refers to an enhanced sensitivity toward symptoms of anxiety, with a belief that these are harmful. Currently, little is known about the mechanisms underpinning the association between mindfulness, depression, and anxiety sensitivity. The aim of this study was to examine the role of genetic and environmental factors in trait mindfulness, and its genetic and environmental overlap with depressive symptoms and anxiety sensitivity. Over 2,100 16-year-old twins from a population-based study rated their mindfulness, depressive symptoms, and anxiety sensitivity. Twin modeling analyses revealed that mindfulness is 32% heritable and 66% due to nonshared environmental factors, with no significant influence of shared environment. Genetic influences explained over half of the moderate phenotypic associations between low mindfulness, depressive symptoms, and anxiety sensitivity. About two-thirds of genetic influences and almost all nonshared environmental influences on mindfulness were independent of depression and anxiety sensitivity. This is the first study to show that both genes and environment play an important role in the etiology of mindfulness in adolescence. Future research should identify the specific environmental factors that influence trait mindfulness during development to inform targeted treatment and resilience interventions. Shared genetic liability underpinning the co-occurrence of low mindfulness, depression, and anxiety sensitivity suggests that the biological pathways shared between these traits should also be examined. © 2015 The Authors. Depression and Anxiety published by Wiley Periodicals, Inc.
Attentional switching forms a genetic link between attention problems and autistic traits in adults.
Polderman, T J C; Hoekstra, R A; Vinkhuyzen, A A E; Sullivan, P F; van der Sluis, S; Posthuma, D
2013-09-01
Attention deficit hyperactivity disorder (ADHD) symptoms and autistic traits often occur together. The pattern and etiology of co-occurrence are largely unknown, particularly in adults. This study investigated the co-occurrence between both traits in detail, and subsequently examined the etiology of the co-occurrence, using two independent adult population samples. Method Data on ADHD traits (Inattention and Hyperactivity/Impulsivity) were collected in a population sample (S1, n = 559) of unrelated individuals. Data on Attention Problems (AP) were collected in a population-based family sample of twins and siblings (S2, n = 560). In both samples five dimensions of autistic traits were assessed (social skills, routine, attentional switching, imagination, patterns). Hyperactive traits (S1) did not correlate substantially with the autistic trait dimensions. For Inattention (S1) and AP (S2), the correlations with the autistic trait dimensions were low, apart from a prominent correlation with the attentional switching scale (0.47 and 0.32 respectively). Analyses in the genetically informative S2 revealed that this association could be explained by a shared genetic factor. Our findings suggest that the co-occurrence of ADHD traits and autistic traits in adults is not determined by problems with hyperactivity, social skills, imagination or routine preferences. Instead, the association between those traits is due primarily to shared attention-related problems (inattention and attentional switching capacity). As the etiology of this association is purely genetic, biological pathways involving attentional control could be a promising focus of future studies aimed at unraveling the genetic causes of these disorders.
German Ethics Council on genetic diagnostics: trend setting?
Buechner, Bianca
2014-06-01
On 30 April 2013, the German Ethics Council ('Council') published its opinion on 'The future of genetic diagnostics--from research to clinical application' ('the Opinion'). The Council was asked by the German government to discuss the future of genetic diagnostic methods in relation to the current applicable laws and regulations as well as the ethical stand points. The Council's 23 recommendations show that the existing regulations in Germany, and indirectly on a European level, lack in protecting consumers sufficiently. Consumer protection built the major focus of the Council's opinion. However, the opinion misses a critical overall analysis of genetic testing and, for example, the potential misuse of genetic test results by insures or the risk of disclosure toward employers. The Council missed an opportunity to discuss which barriers are necessary from a legal and ethical perspective but which still do not prohibit genetic testing and research.
Molecular Population Genetic Structure in the Piping Plover
Miller, Mark P.; Haig, Susan M.; Gratto-Trevor, Cheri L.; Mullins, Thomas D.
2009-01-01
The Piping Plover (Charadrius melodus) is a migratory shorebird currently listed as Endangered in Canada and the U.S. Great Lakes, and threatened throughout the remainder of its U.S. breeding and winter range. In this study, we undertook the first comprehensive molecular genetic-based investigation of Piping Plovers. Our primary goals were to (1) address higher level subspecific taxonomic issues, (2) characterize population genetic structure, and (3) make inferences regarding past bottlenecks or population expansions that have occurred within this species. Our analyses included samples of individuals from 23 U.S. States and Canadian Provinces, and were based on mitochondrial DNA sequences (580 bp, n = 245 individuals) and eight nuclear microsatellite loci (n = 229 individuals). Our findings illustrate strong support for separate Atlantic and Interior Piping Plover subspecies (C. m. melodus and C. m. circumcinctus, respectively). Birds from the Great Lakes region were allied with the Interior subspecies group and should be taxonomically referred to as C. m. circumcinctus. Population genetic analyses suggested that genetic structure was stronger among Atlantic birds relative to the Interior group. This pattern indicates that natal and breeding site fidelity may be reduced among Interior birds. Furthermore, analyses suggested that Interior birds have previously experienced genetic bottlenecks, whereas no evidence for such patterns existed among the Atlantic subspecies. Likewise, genetic analyses indicated that the Great Lakes region has experienced a population expansion. This finding may be interpreted as population growth following a previous bottleneck event. No genetic evidence for population expansions was found for Atlantic, Prairie Canada, or U.S. Northern Great Plains individuals. We interpret our population history insights in light of 25 years of Piping Plover census data. Overall, differences observed between Interior and Atlantic birds may reflect differences in spatiotemporal stability of Piping Plover nesting habitat between regions.
Michael J. Firko; Jane Leslie Hayes
1990-01-01
Quantitative genetic studies of resistance can provide estimates of genetic parameters not available with other types of genetic analyses. Three methods are discussed for estimating the amount of additive genetic variation in resistance to individual insecticides and subsequent estimation of heritability (h2) of resistance. Sibling analysis and...
Genetic Diseases and Genetic Determinism Models in French Secondary School Biology Textbooks
ERIC Educational Resources Information Center
Castera, Jeremy; Bruguiere, Catherine; Clement, Pierre
2008-01-01
The presentation of genetic diseases in French secondary school biology textbooks is analysed to determine the major conceptions taught in the field of human genetics. References to genetic diseases, and the processes by which they are explained (monogeny, polygeny, chromosomal anomaly and environmental influence) are studied in recent French…
2010-01-01
Background The family Polypteridae, commonly known as "bichirs", is a lineage that diverged early in the evolutionary history of Actinopterygii (ray-finned fish), but has been the subject of far less evolutionary study than other members of that clade. Uncovering patterns of morphological change within Polypteridae provides an important opportunity to evaluate if the mechanisms underlying morphological evolution are shared among actinoptyerygians, and in fact, perhaps the entire osteichthyan (bony fish and tetrapods) tree of life. However, the greatest impediment to elucidating these patterns is the lack of a well-resolved, highly-supported phylogenetic tree of Polypteridae. In fact, the interrelationships of polypterid species have never been subject to molecular phylogenetic analysis. Here, we infer the first molecular phylogeny of bichirs, including all 12 recognized species and multiple subspecies using Bayesian analyses of 16S and cyt-b mtDNA. We use this mitochondrial phylogeny, ancestral state reconstruction, and geometric morphometrics to test whether patterns of morphological evolution, including the evolution of body elongation, pelvic fin reduction, and craniofacial morphology, are shared throughout the osteichthyan tree of life. Results Our molecular phylogeny reveals 1) a basal divergence between Erpetoichthys and Polypterus, 2) polyphyly of P. endlicheri and P. palmas, and thus 3) the current taxonomy of Polypteridae masks its underlying genetic diversity. Ancestral state reconstructions suggest that pelvic fins were lost independently in Erpetoichthys, and unambiguously estimate multiple independent derivations of body elongation and shortening. Our mitochondrial phylogeny suggested species that have lower jaw protrusion and up-righted orbit are closely related to each other, indicating a single transformation of craniofacial morphology. Conclusion The mitochondrial phylogeny of polypterid fish provides a strongly-supported phylogenetic framework for future comparative evolutionary, physiological, ecological, and genetic analyses. Indeed, ancestral reconstruction and geometric morphometric analyses revealed that the patterns of morphological evolution in Polypteridae are similar to those seen in other osteichthyans, thus implying the underlying genetic and developmental mechanisms responsible for those patterns were established early in the evolutionary history of Osteichthyes. We propose developmental and genetic mechanisms to be tested under the light of this new phylogenetic framework. PMID:20100320
Gemenetzi, M; Yang, Y; Lotery, A J
2012-01-01
Glaucoma is a common, complex, heterogenous disease and it constitutes the major cause of irreversible blindness worldwide. Primary open-angle glaucoma (POAG) is the most common type of glaucoma in all populations. Most of the molecular mechanisms leading to POAG development are still unknown. Gene mutations in various populations have been identified by genetic studies and a genetic basis for glaucoma pathogenesis has been established. Linkage analysis and association studies are genetic approaches in the investigation of the genetic basis of POAG. Genome-wide association studies (GWAS) are more powerful compared with linkage analysis in discovering genes of small effect that might contribute to the development of the disease. POAG links to at least 20 genetic loci, but only 2 genes identified in these loci, myocilin and optineurin, are considered as well-established glaucoma-causing genes, whereas the role of other loci, genes, and variants implicated in the development of POAG remains controversial. Gene mutations associated with POAG result in retinal ganglion cell death, which is the common outcome of pathogenetic mechanisms in glaucoma. In future, if the sensitivity and specificity of genotyping increases, it may be possible to screen individuals routinely for disease susceptibility. This review is an update on the latest progress of genetic studies associated with POAG. It emphasizes the correlation of recent achievements in genetics with glaucoma pathophysiology, glaucoma treatment perspectives, and the possibility of future prevention of irreversible visual loss caused by the disease. PMID:22173078
Sunny, Armando; Monroy-Vilchis, Octavio; Zarco-González, Martha M; Mendoza-Martínez, Germán David; Martínez-Gómez, Daniel
2015-12-01
It is necessary to determine genetic diversity of fragmented populations in highly modified landscapes to understand how populations respond to land-use change. This information will help guide future conservation and management strategies. We conducted a population genetic study on an endemic Mexican Dusky Rattlesnake (Crotalus triseriatus) in a highly modified landscape near the Toluca metropolitan area, in order to provide crucial information for the conservation of this species. There was medium levels of genetic diversity, with a few alleles and genotypes. We identified three genetically differentiated clusters, likely as a result of different habitat cover type. We also found evidence of an ancestral genetic bottleneck and medium values of effective population size. Inbreeding coefficients were low and there was a moderate gene flow. Our results can be used as a basis for future research and C. triseriatus conservation efforts, particularly considering that the Trans-Mexican Volcanic Belt is heavily impacted by destructive land-use practices.
Statistics for Learning Genetics
ERIC Educational Resources Information Center
Charles, Abigail Sheena
2012-01-01
This study investigated the knowledge and skills that biology students may need to help them understand statistics/mathematics as it applies to genetics. The data are based on analyses of current representative genetics texts, practicing genetics professors' perspectives, and more directly, students' perceptions of, and performance in, doing…
How lay people respond to messages about genetics, health, and race.
Condit, C; Bates, B
2005-08-01
There is a growing movement in medical genetics to develop, implement, and promote a model of race-based medicine. Although race-based medicine may become a widely disseminated standard of care, messages that advocate race-based selection for diagnosing, screening and prescribing drugs may exacerbate health disparities. These messages are present in clinical genetic counseling sessions, mass media, and everyday talk. Messages promoting linkages among genes, race, and health and messages emphasizing genetic causation may promote both general racism and genetically based racism. This mini-review examines research in three areas: studies that address the effects of these messages about genetics on levels of genetic determinism and genetic discrimination; studies that address the effects of these messages on attitudes about race; and, studies of the impacts of race-specific genetic messages on recipients. Following an integration of this research, this mini-review suggests that the current literature appears fragmented because of methodological and measurement issues and offers strategies for future research. Finally, the authors offer a path model to help organize future research examining the effects of messages about genetics on socioculturally based racism, genetically based racism, and unaccounted for racism. Research in this area is needed to understand and mitigate the negative attitudinal effects of messages that link genes, race, and health and/or emphasize genetic causation.
Multivariate analysis in a genetic divergence study of Psidium guajava.
Nogueira, A M; Ferreira, M F S; Guilhen, J H S; Ferreira, A
2014-12-18
The family Myrtaceae is widespread in the Atlantic Forest and is well-represented in the Espírito Santo State in Brazil. In the genus Psidium of this family, guava (Psidium guajava L.) is the most economically important species. Guava is widely cultivated in tropical and subtropical countries; however, the widespread cultivation of only a small number of guava tree cultivars may cause the genetic vulnerability of this crop, making the search for promising genotypes in natural populations important for breeding programs and conservation. In this study, the genetic diversity of 66 guava trees sampled in the southern region of Espírito Santo and in Caparaó, MG, Brazil were evaluated. A total of 28 morphological descriptors (11 quantitative and 17 multicategorical) and 18 microsatellite markers were used. Principal component, discriminant and cluster analyses, descriptive analyses, and genetic diversity analyses using simple sequence repeats were performed. Discrimination of accessions using molecular markers resulted in clustering of genotypes of the same origin, which was not observed using morphological data. Genetic diversity was detected between and within the localities evaluated, regardless of the methodology used. Genetic differentiation among the populations using morphological and molecular data indicated the importance of the study area for species conservation, genetic erosion estimation, and exploitation in breeding programs.
Patryn, Rafał; Sak, Jarosław
2017-09-21
The aim of the article is a critical presentation of the typology of consents included in the European Convention on Bioethics and in other formal solutions concerning the gathering of genetic material in institutions called Biobanks. Existing types of Acts of Consent are inaccurate in their scope and possess insufficient information regarding the gathering of genetic material (application, usage, processing) and their final (future and diverse) use. Lack of precise legal regulations on the broad future use of genetic material may result in various formal problems relating both to research participants as well as those commissioning the research. Ultimately, it may lead to various complications with the appropriate legal interpretation of consent and possible claims on behalf of the donors. The presented proposition of consent with a terminal premise is to be applied eventually to legal and formal aspects of the collecting of genetic material. It is a possible solution which would clarify the issue of informed consent, and may be implemented in the regulations of the Convention as well as constitute a self-contained legislative solution to this matter. For example, Polish law in its current form, without the ratification of the Bioethical Convention, allows the collecting of material for genetic testing for determination of the risk of genetic defects in common genetic material from people who are planning to have a child.
Sjöqvist, C; Godhe, A; Jonsson, P R; Sundqvist, L; Kremp, A
2015-01-01
Drivers of population genetic structure are still poorly understood in marine micro-organisms. We exploited the North Sea–Baltic Sea transition for investigating the seascape genetics of a marine diatom, Skeletonema marinoi. Eight polymorphic microsatellite loci were analysed in 354 individuals from ten locations to analyse population structure of the species along a 1500-km-long salinity gradient ranging from 3 to 30 psu. To test for salinity adaptation, salinity reaction norms were determined for sets of strains originating from three different salinity regimes of the gradient. Modelled oceanographic connectivity was compared to directional relative migration by correlation analyses to examine oceanographic drivers. Population genetic analyses showed distinct genetic divergence of a low-salinity Baltic Sea population and a high-salinity North Sea population, coinciding with the most evident physical dispersal barrier in the area, the Danish Straits. Baltic Sea populations displayed reduced genetic diversity compared to North Sea populations. Growth optima of low salinity isolates were significantly lower than those of strains from higher native salinities, indicating local salinity adaptation. Although the North Sea–Baltic Sea transition was identified as a barrier to gene flow, migration between Baltic Sea and North Sea populations occurred. However, the presence of differentiated neutral markers on each side of the transition zone suggests that migrants are maladapted. It is concluded that local salinity adaptation, supported by oceanographic connectivity patterns creating an asymmetric migration pattern between the Baltic Sea and the North Sea, determines genetic differentiation patterns in the transition zone. PMID:25892181
Recommendations for the Integration of Genomics into Clinical Practice
Bowdin, Sarah; Gilbert, Adel; Bedoukian, Emma; Carew, Christopher; Adam, Margaret P; Belmont, John; Bernhardt, Barbara; Biesecker, Leslie; Bjornsson, Hans T.; Blitzer, Miriam; D’Alessandro, Lisa C. A.; Deardorff, Matthew A.; Demmer, Laurie; Elliott, Alison; Feldman, Gerald L.; Glass, Ian A.; Herman, Gail; Hindorff, Lucia; Hisama, Fuki; Hudgins, Louanne; Innes, A. Micheil; Jackson, Laird; Jarvik, Gail; Kim, Raymond; Korf, Bruce; Ledbetter, David H.; Li, Mindy; Liston, Eriskay; Marshall, Christian; Medne, Livija; Meyn, M. Stephen; Monfared, Nasim; Morton, Cynthia; Mulvihill, John J.; Plon, Sharon E.; Rehm, Heidi; Roberts, Amy; Shuman, Cheryl; Spinner, Nancy B.; Stavropoulos, D. James; Valverde, Kathleen; Waggoner, Darrel J.; Wilkens, Alisha; Cohn, Ronald D.; Krantz, Ian D.
2017-01-01
The introduction of diagnostic clinical genome and exome sequencing (CGES) is changing the scope of practice for clinical geneticists. Many large institutions are making a significant investment in infrastructure and technology, allowing clinicians to access CGES especially as health care coverage begins to extend to clinically indicated genomic sequencing-based tests. Translating and realizing the comprehensive clinical benefits of genomic medicine remains a key challenge for the current and future care of patients. With the increasing application of CGES, it is necessary for geneticists and other health care providers to understand its benefits and limitations, in order to interpret the clinical relevance of genomic variants identified in the context of health and disease. Establishing new, collaborative working relationships with specialists across diverse disciplines (e.g., clinicians, laboratorians, bioinformaticians) will undoubtedly be key attributes of the future practice of clinical genetics and may serve as an example for other specialties in medicine. These new skills and relationships will also inform the development of the future model of clinical genetics training curricula. To address the evolving role of the clinical geneticist in the rapidly changing climate of genomic medicine, two Clinical Genetics Think Tank meetings were held which brought together physicians, laboratorians, scientists, genetic counselors, trainees and patients with experience in clinical genetics, genetic diagnostics, and genetics education. This paper provides recommendations that will guide the integration of genomics into clinical practice. PMID:27171546
Chen, Eric C H; Morin, Emmanuelle; Beaudet, Denis; Noel, Jessica; Yildirir, Gokalp; Ndikumana, Steve; Charron, Philippe; St-Onge, Camille; Giorgi, John; Krüger, Manuela; Marton, Timea; Ropars, Jeanne; Grigoriev, Igor V; Hainaut, Matthieu; Henrissat, Bernard; Roux, Christophe; Martin, Francis; Corradi, Nicolas
2018-01-22
Arbuscular mycorrhizal fungi (AMF) are known to improve plant fitness through the establishment of mycorrhizal symbioses. Genetic and phenotypic variations among closely related AMF isolates can significantly affect plant growth, but the genomic changes underlying this variability are unclear. To address this issue, we improved the genome assembly and gene annotation of the model strain Rhizophagus irregularis DAOM197198, and compared its gene content with five isolates of R. irregularis sampled in the same field. All isolates harbor striking genome variations, with large numbers of isolate-specific genes, gene family expansions, and evidence of interisolate genetic exchange. The observed variability affects all gene ontology terms and PFAM protein domains, as well as putative mycorrhiza-induced small secreted effector-like proteins and other symbiosis differentially expressed genes. High variability is also found in active transposable elements. Overall, these findings indicate a substantial divergence in the functioning capacity of isolates harvested from the same field, and thus their genetic potential for adaptation to biotic and abiotic changes. Our data also provide a first glimpse into the genome diversity that resides within natural populations of these symbionts, and open avenues for future analyses of plant-AMF interactions that link AMF genome variation with plant phenotype and fitness. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
Plant contributions to our understanding of sex chromosome evolution.
Charlesworth, Deborah
2015-10-01
A minority of angiosperms have male and female flowers separated in distinct individuals (dioecy), and most dioecious plants do not have cytologically different (heteromorphic) sex chromosomes. Plants nevertheless have several advantages for the study of sex chromosome evolution, as genetic sex determination has evolved repeatedly and is often absent in close relatives. I review sex-determining regions in non-model plant species, which may help us to understand when and how (and, potentially, test hypotheses about why) recombination suppression evolves within young sex chromosomes. I emphasize high-throughput sequencing approaches that are increasingly being applied to plants to test for non-recombining regions. These data are particularly illuminating when combined with sequence data that allow phylogenetic analyses, and estimates of when these regions evolved. Together with comparative genetic mapping, this has revealed that sex-determining loci and sex-linked regions evolved independently in many plant lineages, sometimes in closely related dioecious species, and often within the past few million years. In reviewing recent progress, I suggest areas for future work, such as the use of phylogenies to allow the informed choice of outgroup species suitable for inferring the directions of changes, including testing whether Y chromosome-like regions are undergoing genetic degeneration, a predicted consequence of losing recombination. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
A DNA fingerprinting procedure for ultra high-throughput genetic analysis of insects.
Schlipalius, D I; Waldron, J; Carroll, B J; Collins, P J; Ebert, P R
2001-12-01
Existing procedures for the generation of polymorphic DNA markers are not optimal for insect studies in which the organisms are often tiny and background molecular information is often non-existent. We have used a new high throughput DNA marker generation protocol called randomly amplified DNA fingerprints (RAF) to analyse the genetic variability in three separate strains of the stored grain pest, Rhyzopertha dominica. This protocol is quick, robust and reliable even though it requires minimal sample preparation, minute amounts of DNA and no prior molecular analysis of the organism. Arbitrarily selected oligonucleotide primers routinely produced approximately 50 scoreable polymorphic DNA markers, between individuals of three independent field isolates of R. dominica. Multivariate cluster analysis using forty-nine arbitrarily selected polymorphisms generated from a single primer reliably separated individuals into three clades corresponding to their geographical origin. The resulting clades were quite distinct, with an average genetic difference of 37.5 +/- 6.0% between clades and of 21.0 +/- 7.1% between individuals within clades. As a prelude to future gene mapping efforts, we have also assessed the performance of RAF under conditions commonly used in gene mapping. In this analysis, fingerprints from pooled DNA samples accurately and reproducibly reflected RAF profiles obtained from individual DNA samples that had been combined to create the bulked samples.
Veenstra, Jenna; Kalsbeek, Anya; Westra, Jason; Disselkoen, Craig; Smith, Caren; Tintle, Nathan
2017-08-18
Numerous genetic loci have been identified as being associated with circulating fatty acid (FA) levels and/or inflammatory biomarkers of cardiovascular health (e.g., C-reactive protein). Recently, using red blood cell (RBC) FA data from the Framingham Offspring Study, we conducted a genome-wide association study of over 2.5 million single nucleotide polymorphisms (SNPs) and 22 RBC FAs (and associated ratios), including the four Omega-3 FAs (ALA, DHA, DPA, and EPA). Our analyses identified numerous causal loci. In this manuscript, we investigate the extent to which polyunsaturated fatty acid (PUFA) levels moderate the relationship of genetics to cardiovascular health biomarkers using a genome-wide interaction study approach. In particular, we test for possible gene-FA interactions on 9 inflammatory biomarkers, with 2.5 million SNPs and 12 FAs, including all Omega-3 PUFAs. We identified eighteen novel loci, including loci which demonstrate strong evidence of modifying the impact of heritable genetics on biomarker levels, and subsequently cardiovascular health. The identified genes provide increased clarity on the biological functioning and role of Omega-3 PUFAs, as well as other common fatty acids, in cardiovascular health, and suggest numerous candidate loci for future replication and biological characterization.
Zhang, Lu; Ru, Huan-wei; Chen, Fu-zeng; Jin, Chun-yan; Sun, Rui-feng; Fan, Xiao-yong; Guo, Ming; Mai, Jun-tao; Xu, Wen-xi; Lin, Qing-xia; Liu, Jun
2016-01-01
Bacille Calmette–Guérin (BCG), an attenuated strain of Mycobacterium bovis, is the only vaccine available for tuberculosis (TB) control. However, BCG is not an ideal vaccine and has two major limitations: BCG exhibits highly variable effectiveness against the development of TB both in pediatric and adult populations and can cause disseminated BCG disease in immunocompromised individuals. BCG comprises a number of substrains that are genetically distinct. Whether and how these genetic differences affect BCG efficacy remains largely unknown. In this study, we performed comparative analyses of the virulence and efficacy of 13 BCG strains, representing different genetic lineages, in SCID and BALB/c mice. Our results show that BCG strains of the DU2 group IV (BCG-Phipps, BCG-Frappier, BCG-Pasteur, and BCG-Tice) exhibit the highest levels of virulence, and BCG strains of the DU2 group II (BCG-Sweden, BCG-Birkhaug) are among the least virulent group. These distinct levels of virulence may be explained by strain-specific duplications and deletions of genomic DNA. There appears to be a general trend that more virulent BCG strains are also more effective in protection against Mycobacterium tuberculosis challenge. Our findings have important implications for current BCG vaccine programs and for future TB vaccine development. PMID:26643797
Zhang, Lu; Ru, Huan-Wei; Chen, Fu-Zeng; Jin, Chun-Yan; Sun, Rui-Feng; Fan, Xiao-Yong; Guo, Ming; Mai, Jun-Tao; Xu, Wen-Xi; Lin, Qing-Xia; Liu, Jun
2016-02-01
Bacille Calmette-Guérin (BCG), an attenuated strain of Mycobacterium bovis, is the only vaccine available for tuberculosis (TB) control. However, BCG is not an ideal vaccine and has two major limitations: BCG exhibits highly variable effectiveness against the development of TB both in pediatric and adult populations and can cause disseminated BCG disease in immunocompromised individuals. BCG comprises a number of substrains that are genetically distinct. Whether and how these genetic differences affect BCG efficacy remains largely unknown. In this study, we performed comparative analyses of the virulence and efficacy of 13 BCG strains, representing different genetic lineages, in SCID and BALB/c mice. Our results show that BCG strains of the DU2 group IV (BCG-Phipps, BCG-Frappier, BCG-Pasteur, and BCG-Tice) exhibit the highest levels of virulence, and BCG strains of the DU2 group II (BCG-Sweden, BCG-Birkhaug) are among the least virulent group. These distinct levels of virulence may be explained by strain-specific duplications and deletions of genomic DNA. There appears to be a general trend that more virulent BCG strains are also more effective in protection against Mycobacterium tuberculosis challenge. Our findings have important implications for current BCG vaccine programs and for future TB vaccine development.
Parental involvement as an etiological moderator of middle childhood oppositional defiant disorder
Li, I.; Clark, D.A.; Klump, K. L.; Burt, S. A.
2018-01-01
The goal of this study was to investigate parental involvement as an etiologic moderator of oppositional defiant disorder (ODD) during middle childhood. Previous studies examining the influence of genetic and environmental factors on ODD have not considered whether and how these factors might vary by parental involvement. We thus conducted a series of “latent G by measured E” interaction analyses, in which measured parental involvement was allowed to moderate genetic, shared, and non-shared environmental influences on child ODD. Participants include 1027 twin pairs (age ranged from 6 to 11 years old) from the Michigan State University Twin Registry (MSUTR). Results did indeed suggest that the etiology of ODD varies with maternal involvement, such that genetic influence on ODD became more prominent as maternal involvement decreased. However, these results were specific to children’s perceptions of maternal involvement and did not extend to maternal perceptions of her involvement. There was no evidence that paternal involvement moderated the etiology of ODD, regardless of informant. The different results found in twins’ and parents’ data is consistent with previous research that children may have different perceptions from parents about their family relationships and this discrepancy needs to be taken into account in future research. PMID:28263622
A perspective on interaction effects in genetic association studies
2016-01-01
ABSTRACT The identification of gene–gene and gene–environment interaction in human traits and diseases is an active area of research that generates high expectation, and most often lead to high disappointment. This is partly explained by a misunderstanding of the inherent characteristics of standard regression‐based interaction analyses. Here, I revisit and untangle major theoretical aspects of interaction tests in the special case of linear regression; in particular, I discuss variables coding scheme, interpretation of effect estimate, statistical power, and estimation of variance explained in regard of various hypothetical interaction patterns. Linking this components it appears first that the simplest biological interaction models—in which the magnitude of a genetic effect depends on a common exposure—are among the most difficult to identify. Second, I highlight the demerit of the current strategy to evaluate the contribution of interaction effects to the variance of quantitative outcomes and argue for the use of new approaches to overcome this issue. Finally, I explore the advantages and limitations of multivariate interaction models, when testing for interaction between multiple SNPs and/or multiple exposures, over univariate approaches. Together, these new insights can be leveraged for future method development and to improve our understanding of the genetic architecture of multifactorial traits. PMID:27390122
Saw, Woei-Yuh; Tantoso, Erwin; Begum, Husna; Zhou, Lihan; Zou, Ruiyang; He, Cheng; Chan, Sze Ling; Tan, Linda Wei-Lin; Wong, Lai-Ping; Xu, Wenting; Moong, Don Kyin Nwe; Lim, Yenly; Li, Bowen; Pillai, Nisha Esakimuthu; Peterson, Trevor A; Bielawny, Tomasz; Meikle, Peter J; Mundra, Piyushkumar A; Lim, Wei-Yen; Luo, Ma; Chia, Kee-Seng; Ong, Rick Twee-Hee; Brunham, Liam R; Khor, Chiea-Chuen; Too, Heng Phon; Soong, Richie; Wenk, Markus R; Little, Peter; Teo, Yik-Ying
2017-09-21
The Singapore Integrative Omics Study provides valuable insights on establishing population reference measurement in 364 Chinese, Malay, and Indian individuals. These measurements include > 2.5 millions genetic variants, 21,649 transcripts expression, 282 lipid species quantification, and 284 clinical, lifestyle, and dietary variables. This concept paper introduces the depth of the data resource, and investigates the extent of ethnic variation at these omics and non-omics biomarkers. It is evident that there are specific biomarkers in each of these platforms to differentiate between the ethnicities, and intra-population analyses suggest that Chinese and Indians are the most biologically homogeneous and heterogeneous, respectively, of the three groups. Consistent patterns of correlations between lipid species also suggest the possibility of lipid tagging to simplify future lipidomics assays. The Singapore Integrative Omics Study is expected to allow the characterization of intra-omic and inter-omic correlations within and across all three ethnic groups through a systems biology approach.The Singapore Genome Variation projects characterized the genetics of Singapore's Chinese, Malay, and Indian populations. The Singapore Integrative Omics Study introduced here goes further in providing multi-omic measurements in individuals from these populations, including genetic, transcriptome, lipidome, and lifestyle data, and will facilitate the study of common diseases in Asian communities.
Risk and protective factors for spasmodic dysphonia: a case-control investigation.
Tanner, Kristine; Roy, Nelson; Merrill, Ray M; Kimber, Kamille; Sauder, Cara; Houtz, Daniel R; Doman, Darrin; Smith, Marshall E
2011-01-01
Spasmodic dysphonia (SD) is a chronic, incurable, and often disabling voice disorder of unknown pathogenesis. The purpose of this study was to identify possible endogenous and exogenous risk and protective factors uniquely associated with SD. Prospective, exploratory, case-control investigation. One hundred fifty patients with SD and 150 medical controls (MCs) were interviewed regarding their personal and family histories, environmental exposures, illnesses, injuries, voice use patterns, and general health using a previously vetted and validated epidemiologic questionnaire. Odds ratios and multiple logistic regression analyses (α<0.15) identified several factors that significantly increased the likelihood of having SD. These factors included (1) a personal history of mumps, blepharospasm, tremor, intense occupational and avocational voice use, and a family history of voice disorders; (2) an immediate family history of meningitis, tremor, tics, cancer, and compulsive behaviors; and (3) an extended family history of tremor and cancer. SD is likely multifactorial in etiology, involving both genetic and environmental factors. Viral infections/exposures, along with intense voice use, may trigger the onset of SD in genetically predisposed individuals. Future studies should examine the interaction among genetic and environmental factors to determine the pathogenesis of SD. Copyright © 2011 The Voice Foundation. Published by Mosby, Inc. All rights reserved.
No Association between Personality and Candidate Gene Polymorphisms in a Wild Bird Population
Durieux, Gillian; Burke, Terry; Dugdale, Hannah L.
2015-01-01
Consistency of between-individual differences in behaviour or personality is a phenomenon in populations that can have ecological consequences and evolutionary potential. One way that behaviour can evolve is to have a genetic basis. Identifying the molecular genetic basis of personality could therefore provide insight into how and why such variation is maintained, particularly in natural populations. Previously identified candidate genes for personality in birds include the dopamine receptor D4 (DRD4), and serotonin transporter (SERT). Studies of wild bird populations have shown that exploratory and bold behaviours are associated with polymorphisms in both DRD4 and SERT. Here we tested for polymorphisms in DRD4 and SERT in the Seychelles warbler (Acrocephalus sechellensis) population on Cousin Island, Seychelles, and then investigated correlations between personality and polymorphisms in these genes. We found no genetic variation in DRD4, but identified four polymorphisms in SERT that clustered into five haplotypes. There was no correlation between bold or exploratory behaviours and SERT polymorphisms/haplotypes. The null result was not due to lack of power, and indicates that there was no association between these behaviours and variation in the candidate genes tested in this population. These null findings provide important data to facilitate representative future meta-analyses on candidate personality genes. PMID:26473495
Pernetta, A P; Allen, J A; Beebee, T J C; Reading, C J
2011-09-01
Human-induced alteration of natural habitats has the potential to impact on the genetic structuring of remnant populations at multiple spatial scales. Species from higher trophic levels, such as snakes, are expected to be particularly susceptible to land-use changes. We examined fine-scale population structure and looked for evidence of sex-biased dispersal in smooth snakes (Coronella austriaca), sampled from 10 heathland localities situated within a managed coniferous forest in Dorset, United Kingdom. Despite the limited distances between heathland areas (maximum <6 km), there was a small but significant structuring of populations based on eight microsatellite loci. This followed an isolation-by-distance model using both straight line and 'biological' distances between sampling sites, suggesting C. austriaca's low vagility as the causal factor, rather than closed canopy conifer forest exerting an effect as a barrier to dispersal. Within population comparisons of male and female snakes showed evidence for sex-biased dispersal, with three of four analyses finding significantly higher dispersal in males than in females. We suggest that the fine-scale spatial genetic structuring and sex-biased dispersal have important implications for the conservation of C. austriaca, and highlight the value of heathland areas within commercial conifer plantations with regards to their future management.
Vite-Garín, Tania; Estrada-Bárcenas, Daniel Alfonso; Cifuentes, Joaquín; Taylor, Maria Lucia
2014-01-01
Advances in the classification of the human pathogen Histoplasma capsulatum (H. capsulatum) (ascomycete) are sustained by the results of several genetic analyses that support the high diversity of this dimorphic fungus. The present mini-review highlights the great genetic plasticity of H. capsulatum. Important records with different molecular tools, mainly single- or multi-locus sequence analyses developed with this fungus, are discussed. Recent phylogenetic data with a multi-locus sequence analysis using 5 polymorphic loci support a new clade and/or phylogenetic species of H. capsulatum for the Americas, which was associated with fungal isolates obtained from the migratory bat Tadarida brasiliensis. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012). Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.
Illera, Juan Carlos; Palmero, Ana M; Laiolo, Paola; Rodríguez, Felipe; Moreno, Ángel C; Navascués, Miguel
2014-08-01
Songbirds with recently (i.e., early Holocene) founded populations are suitable models for studying incipient differentiation in oceanic islands. On such systems each colonization event represents a different evolutionary episode that can be studied by addressing sets of diverging phenotypic and genetic traits. We investigate the process of early differentiation in the spectacled warbler (Sylvia conspicillata) in 14 populations separated by sea barriers from three Atlantic archipelagos and from continental regions spanning from tropical to temperate latitudes. Our approach involved the study of sexual acoustic signals, morphology, and genetic data. Mitochondrial DNA did not provide clear population structure. However, microsatellites analyses consistently identified two genetic groups, albeit without correspondence to subspecies classification and little correspondence to geography. Coalescent analyses showed significant evidence for gene flow between the two genetic groups. Discriminant analyses could not correctly assign morphological or acoustic traits to source populations. Therefore, although theory predicting that in isolated populations genetic, morphological, or acoustic traits can lead to radiation, we have strikingly failed to document differentiation on these attributes in a resident passerine throughout three oceanic archipelagos. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.
Genetic signatures of natural selection in a model invasive ascidian
Lin, Yaping; Chen, Yiyong; Yi, Changho; Fong, Jonathan J.; Kim, Won; Rius, Marc; Zhan, Aibin
2017-01-01
Invasive species represent promising models to study species’ responses to rapidly changing environments. Although local adaptation frequently occurs during contemporary range expansion, the associated genetic signatures at both population and genomic levels remain largely unknown. Here, we use genome-wide gene-associated microsatellites to investigate genetic signatures of natural selection in a model invasive ascidian, Ciona robusta. Population genetic analyses of 150 individuals sampled in Korea, New Zealand, South Africa and Spain showed significant genetic differentiation among populations. Based on outlier tests, we found high incidence of signatures of directional selection at 19 loci. Hitchhiking mapping analyses identified 12 directional selective sweep regions, and all selective sweep windows on chromosomes were narrow (~8.9 kb). Further analyses indentified 132 candidate genes under selection. When we compared our genetic data and six crucial environmental variables, 16 putatively selected loci showed significant correlation with these environmental variables. This suggests that the local environmental conditions have left significant signatures of selection at both population and genomic levels. Finally, we identified “plastic” genomic regions and genes that are promising regions to investigate evolutionary responses to rapid environmental change in C. robusta. PMID:28266616
2011-01-01
Background The Sorbs are an ethnic minority in Germany with putative genetic isolation, making the population interesting for disease mapping. A sample of N = 977 Sorbs is currently analysed in several genome-wide meta-analyses. Since genetic differences between populations are a major confounding factor in genetic meta-analyses, we compare the Sorbs with the German outbred population of the KORA F3 study (N = 1644) and other publically available European HapMap populations by population genetic means. We also aim to separate effects of over-sampling of families in the Sorbs sample from effects of genetic isolation and compare the power of genetic association studies between the samples. Results The degree of relatedness was significantly higher in the Sorbs. Principal components analysis revealed a west to east clustering of KORA individuals born in Germany, KORA individuals born in Poland or Czech Republic, Half-Sorbs (less than four Sorbian grandparents) and Full-Sorbs. The Sorbs cluster is nearest to the cluster of KORA individuals born in Poland. The number of rare SNPs is significantly higher in the Sorbs sample. FST between KORA and Sorbs is an order of magnitude higher than between different regions in Germany. Compared to the other populations, Sorbs show a higher proportion of individuals with runs of homozygosity between 2.5 Mb and 5 Mb. Linkage disequilibrium (LD) at longer range is also slightly increased but this has no effect on the power of association studies. Oversampling of families in the Sorbs sample causes detectable bias regarding higher FST values and higher LD but the effect is an order of magnitude smaller than the observed differences between KORA and Sorbs. Relatedness in the Sorbs also influenced the power of uncorrected association analyses. Conclusions Sorbs show signs of genetic isolation which cannot be explained by over-sampling of relatives, but the effects are moderate in size. The Slavonic origin of the Sorbs is still genetically detectable. Regarding LD structure, a clear advantage for genome-wide association studies cannot be deduced. The significant amount of cryptic relatedness in the Sorbs sample results in inflated variances of Beta-estimators which should be considered in genetic association analyses. PMID:21798003
Unlocking Triticeae genomics to sustainably feed the future
Mochida, Keiichi; Shinozaki, Kazuo
2013-01-01
The tribe Triticeae includes the major crops wheat and barley. Within the last few years, the whole genomes of four Triticeae species—barley, wheat, Tausch’s goatgrass (Aegilops tauschii) and wild einkorn wheat (Triticum urartu)—have been sequenced. The availability of these genomic resources for Triticeae plants and innovative analytical applications using next-generation sequencing technologies are helping to revitalize our approaches in genetic work and to accelerate improvement of the Triticeae crops. Comparative genomics and integration of genomic resources from Triticeae plants and the model grass Brachypodium distachyon are aiding the discovery of new genes and functional analyses of genes in Triticeae crops. Innovative approaches and tools such as analysis of next-generation populations, evolutionary genomics and systems approaches with mathematical modeling are new strategies that will help us discover alleles for adaptive traits to future agronomic environments. In this review, we provide an update on genomic tools for use with Triticeae plants and Brachypodium and describe emerging approaches toward crop improvements in Triticeae. PMID:24204022
Rosen, G D
2006-06-01
Meta-analysis is a vague descriptor used to encompass very diverse methods of data collection analysis, ranging from simple averages to more complex statistical methods. Holo-analysis is a fully comprehensive statistical analysis of all available data and all available variables in a specified topic, with results expressed in a holistic factual empirical model. The objectives and applications of holo-analysis include software production for prediction of responses with confidence limits, translation of research conditions to praxis (field) circumstances, exposure of key missing variables, discovery of theoretically unpredictable variables and interactions, and planning future research. Holo-analyses are cited as examples of the effects on broiler feed intake and live weight gain of exogenous phytases, which account for 70% of variation in responses in terms of 20 highly significant chronological, dietary, environmental, genetic, managemental, and nutrient variables. Even better future accountancy of variation will be facilitated if and when authors of papers routinely provide key data for currently neglected variables, such as temperatures, complete feed formulations, and mortalities.
Khankari, Nikhil K; Shu, Xiao-Ou; Wen, Wanqing; Kraft, Peter; Lindström, Sara; Peters, Ulrike; Schildkraut, Joellen; Schumacher, Fredrick; Bofetta, Paolo; Risch, Angela; Bickeböller, Heike; Amos, Christopher I; Easton, Douglas; Eeles, Rosalind A; Gruber, Stephen B; Haiman, Christopher A; Hunter, David J; Chanock, Stephen J; Pierce, Brandon L; Zheng, Wei
2016-09-01
Observational studies examining associations between adult height and risk of colorectal, prostate, and lung cancers have generated mixed results. We conducted meta-analyses using data from prospective cohort studies and further carried out Mendelian randomization analyses, using height-associated genetic variants identified in a genome-wide association study (GWAS), to evaluate the association of adult height with these cancers. A systematic review of prospective studies was conducted using the PubMed, Embase, and Web of Science databases. Using meta-analyses, results obtained from 62 studies were summarized for the association of a 10-cm increase in height with cancer risk. Mendelian randomization analyses were conducted using summary statistics obtained for 423 genetic variants identified from a recent GWAS of adult height and from a cancer genetics consortium study of multiple cancers that included 47,800 cases and 81,353 controls. For a 10-cm increase in height, the summary relative risks derived from the meta-analyses of prospective studies were 1.12 (95% CI 1.10, 1.15), 1.07 (95% CI 1.05, 1.10), and 1.06 (95% CI 1.02, 1.11) for colorectal, prostate, and lung cancers, respectively. Mendelian randomization analyses showed increased risks of colorectal (odds ratio [OR] = 1.58, 95% CI 1.14, 2.18) and lung cancer (OR = 1.10, 95% CI 1.00, 1.22) associated with each 10-cm increase in genetically predicted height. No association was observed for prostate cancer (OR = 1.03, 95% CI 0.92, 1.15). Our meta-analysis was limited to published studies. The sample size for the Mendelian randomization analysis of colorectal cancer was relatively small, thus affecting the precision of the point estimate. Our study provides evidence for a potential causal association of adult height with the risk of colorectal and lung cancers and suggests that certain genetic factors and biological pathways affecting adult height may also affect the risk of these cancers.
Movement behavior explains genetic differentiation in American black bears
Samuel A Cushman; Jesse S. Lewis
2010-01-01
Individual-based landscape genetic analyses provide empirically based models of gene flow. It would be valuable to verify the predictions of these models using independent data of a different type. Analyses using different data sources that produce consistent results provide strong support for the generality of the findings. Mating and dispersal movements are the...
Wiklund, Helena; Taylor, John D.; Dahlgren, Thomas G.; Todt, Christiane; Ikebe, Chiho; Rabone, Muriel; Glover, Adrian G.
2017-01-01
Abstract We present the first DNA taxonomy publication on abyssal Mollusca from the Clarion-Clipperton Zone (CCZ), central Pacific ocean, using material collected as part of the Abyssal Baseline (ABYSSLINE) environmental survey cruise ‘AB01’ to the UK Seabed Resources Ltd (UKSRL) polymetallic-nodule exploration area ‘UK-1’ in the eastern CCZ. This is the third paper in a series to provide regional taxonomic data for a region that is undergoing intense deep-sea mineral exploration for high-grade polymetallic nodules. Taxonomic data are presented for 21 species from 42 records identified by a combination of morphological and genetic data, including molecular phylogenetic analyses. These included 3 heterodont bivalves, 5 protobranch bivalves, 4 pteriomorph bivalves, 1 caudofoveate, 1 monoplacophoran, 1 polyplacophoran, 4 scaphopods and 2 solenogastres. Gastropoda were recovered but will be the subject of a future study. Seven taxa matched published morphological descriptions for species with deep Pacific type localities, and our sequences provide the first genetic data for these taxa. One taxon morphologically matched a known cosmopolitan species but with a type locality in a different ocean basin and was assigned the open nomenclature ‘cf’ as a precautionary approach in taxon assignments to avoid over-estimating species ranges. One taxon is here described as a new species, Ledella knudseni sp. n. For the remaining 12 taxa, we have determined them to be potentially new species, for which we make the raw data, imagery and vouchers available for future taxonomic study. The Clarion-Clipperton Zone is a region undergoing intense exploration for potential deep-sea mineral extraction. We present these data to facilitate future taxonomic and environmental impact study by making both data and voucher materials available through curated and accessible biological collections. PMID:29118626
Hegde, John V; Wang, Xiaoyan; Attai, Deanna J; DiNome, Maggie L; Kusske, Amy; Hoyt, Anne C; Hurvitz, Sara A; Weidhaas, Joanne B; Steinberg, Michael L; McCloskey, Susan A
2017-11-01
For women with a personal history of breast cancer (PHBC), no validated mechanisms exist to calculate future contralateral breast cancer (CBC) risk. The Manchester risk stratification guidelines were developed to evaluate CBC risk in women with a PHBC, primarily for surgical decision making. This tool may be informative for the use of MRI screening, as CBC risk is an assumed consideration for high-risk surveillance. Three hundred twenty-two women with a PHBC were treated with unilateral surgery within our multidisciplinary breast clinic. We calculated lifetime CBC risk using the Manchester tool, which incorporates age at diagnosis, family history, genetic mutation status, estrogen receptor positivity, and endocrine therapy use. Univariate and multivariate logistic regression analyses (UVA/MVA) were performed, evaluating whether CBC risk predicted MRI surveillance. For women with invasive disease undergoing MRI surveillance, 66% had low, 23% above-average, and 11% moderate/high risk for CBC. On MVA, previous mammography-occult breast cancer [odds ratio (OR) 18.95, p < 0.0001], endocrine therapy use (OR 3.89, p = 0.009), dense breast tissue (OR 3.69, p = 0.0007), mastectomy versus lumpectomy (OR 3.12, p = 0.0041), and CBC risk (OR 3.17 for every 10% increase, p = 0.0002) were associated with MRI surveillance. No pathologic factors increasing ipsilateral breast cancer recurrence were significant on MVA. Although CBC risk predicted MRI surveillance, 89% with invasive disease undergoing MRI had <20% calculated CBC risk. Concerns related to future breast cancer detectability (dense breasts and/or previous mammography-occult disease) predominate decision making. Pathologic factors important for determining ipsilateral recurrence risk, aside from age, were not associated with MRI surveillance.
Pousada, Guillermo; Lago-Docampo, Mauro; Baloira, Adolfo; Valverde, Diana
2018-03-08
Pulmonary arterial hypertension associated with systemic lupus erythematosus (PAH-SLE) is a rare disease with a low incidence rate. In this study, PAH related genes and genetic modifiers were characterised molecularly in patients with PAH-SLE. Three patients diagnosed with PAH-SLE and 100 control individuals were analysed after signing an informed consent. Two out of the three analysed patients with PAH-SLE were carriers of pathogenic mutations in the genes BMPR2 and ENG. After an in silico analysis, pathogenic mutations were searched for in control individuals and different databases, with negative results, and they were thus functionally analysed. The third patients only showed polymorphisms in the genes BMPR2, ACVRL1 and ENG. Several genetic variants and genetic modifiers were identified in the three analysed patients. These modifiers, along with the pathogenic mutations, could lead to a more severe clinical course in patients with PAH. We present, for the first time, patients with PAH-SLE carrying pathogenic mutations in the main genes related to PAH and alterations in the genetic modifiers. Copyright © 2018 Elsevier España, S.L.U. All rights reserved.
Genetic co-structuring in host-parasite systems: Empirical data from raccoons and raccoon ticks
Dharmarajan, Guha; Beasley, James C.; Beatty, William S.; ...
2016-03-31
Many aspects of parasite biology critically depend on their hosts, and understanding how host-parasite populations are co-structured can help improve our understanding of the ecology of parasites, their hosts, and host-parasite interactions. Here, this study utilized genetic data collected from raccoons (Procyon lotor), and a specialist parasite, the raccoon tick (Ixodes texanus), to test for genetic co-structuring of host-parasite populations at both landscape and host scales. At the landscape scale, our analyses revealed a significant correlation between genetic and geographic distance matrices (i.e., isolation by distance) in ticks, but not their hosts. While there are several mechanisms that could leadmore » to a stronger pattern of isolation by distance in tick vs. raccoon datasets, our analyses suggest that at least one reason for the above pattern is the substantial increase in statistical power (due to the ≈8-fold increase in sample size) afforded by sampling parasites. Host-scale analyses indicated higher relatedness between ticks sampled from related vs. unrelated raccoons trapped within the same habitat patch, a pattern likely driven by increased contact rates between related hosts. Lastly, by utilizing fine-scale genetic data from both parasites and hosts, our analyses help improve our understanding of epidemiology and host ecology.« less
USDA-ARS?s Scientific Manuscript database
Limited polymorphism and narrow genetic base, due to genetic bottleneck through historic domestication, highlight a need for comprehensive characterization and utilization of existing genetic diversity in cotton germplasm collections. In this study, 288 worldwide Gossypium barbadense L. cotton germ...
[Preimplantation genetic diagnosis in order to choose a saviour sibling].
Shenfield, F
2005-10-01
Preimplantation genetic diagnosis with HLA matching in order to bring about the birth of a saviour sibling is not mere instrumentalisation of the future child, as long as the post natal test is used and the future child will be looked after with the same love and care as if he/she had not been selected as well for the purpose.
Kogelman, Lisette J. A.; Pant, Sameer D.; Fredholm, Merete; Kadarmideen, Haja N.
2014-01-01
Obesity is a complex condition with world-wide exponentially rising prevalence rates, linked with severe diseases like Type 2 Diabetes. Economic and welfare consequences have led to a raised interest in a better understanding of the biological and genetic background. To date, whole genome investigations focusing on single genetic variants have achieved limited success, and the importance of including genetic interactions is becoming evident. Here, the aim was to perform an integrative genomic analysis in an F2 pig resource population that was constructed with an aim to maximize genetic variation of obesity-related phenotypes and genotyped using the 60K SNP chip. Firstly, Genome Wide Association (GWA) analysis was performed on the Obesity Index to locate candidate genomic regions that were further validated using combined Linkage Disequilibrium Linkage Analysis and investigated by evaluation of haplotype blocks. We built Weighted Interaction SNP Hub (WISH) and differentially wired (DW) networks using genotypic correlations amongst obesity-associated SNPs resulting from GWA analysis. GWA results and SNP modules detected by WISH and DW analyses were further investigated by functional enrichment analyses. The functional annotation of SNPs revealed several genes associated with obesity, e.g., NPC2 and OR4D10. Moreover, gene enrichment analyses identified several significantly associated pathways, over and above the GWA study results, that may influence obesity and obesity related diseases, e.g., metabolic processes. WISH networks based on genotypic correlations allowed further identification of various gene ontology terms and pathways related to obesity and related traits, which were not identified by the GWA study. In conclusion, this is the first study to develop a (genetic) obesity index and employ systems genetics in a porcine model to provide important insights into the complex genetic architecture associated with obesity and many biological pathways that underlie it. PMID:25071839
Raising Awareness of Pre-Symptomatic Genetic Testing
ERIC Educational Resources Information Center
Boerwinkel, Dirk Jan; Knippels, Marie-Christine; Waarlo, Arend Jan
2011-01-01
Presymptomatic genetic testing generates socioscientific issues in which decision making is complicated by several complexity factors. These factors include weighing of advantages and disadvantages, different interests of stakeholders, uncertainty of genetic information and conflicting values. Education preparing students for future decision…
ERIC Educational Resources Information Center
Crawford, Shawn; And Others
1990-01-01
The utility of developmental behavioral genetics in the study of reading disability is considered. Research which has found reading disability to be partly genetically determined is cited, and future research applications are discussed. (Author/JDD)
A practical guide to environmental association analysis in landscape genomics.
Rellstab, Christian; Gugerli, Felix; Eckert, Andrew J; Hancock, Angela M; Holderegger, Rolf
2015-09-01
Landscape genomics is an emerging research field that aims to identify the environmental factors that shape adaptive genetic variation and the gene variants that drive local adaptation. Its development has been facilitated by next-generation sequencing, which allows for screening thousands to millions of single nucleotide polymorphisms in many individuals and populations at reasonable costs. In parallel, data sets describing environmental factors have greatly improved and increasingly become publicly accessible. Accordingly, numerous analytical methods for environmental association studies have been developed. Environmental association analysis identifies genetic variants associated with particular environmental factors and has the potential to uncover adaptive patterns that are not discovered by traditional tests for the detection of outlier loci based on population genetic differentiation. We review methods for conducting environmental association analysis including categorical tests, logistic regressions, matrix correlations, general linear models and mixed effects models. We discuss the advantages and disadvantages of different approaches, provide a list of dedicated software packages and their specific properties, and stress the importance of incorporating neutral genetic structure in the analysis. We also touch on additional important aspects such as sampling design, environmental data preparation, pooled and reduced-representation sequencing, candidate-gene approaches, linearity of allele-environment associations and the combination of environmental association analyses with traditional outlier detection tests. We conclude by summarizing expected future directions in the field, such as the extension of statistical approaches, environmental association analysis for ecological gene annotation, and the need for replication and post hoc validation studies. © 2015 John Wiley & Sons Ltd.
MtDNA genetic diversity and structure of Eurasian Collared Dove (Streptopelia decaocto).
Bagi, Zoltán; Dimopoulos, Evangelos Antonis; Loukovitis, Dimitrios; Eraud, Cyril; Kusza, Szilvia
2018-01-01
The Eurasian Collared Dove (Streptopelia decaocto) is one of the most successful biological invaders among terrestrial vertebrates. However, little information is available on the genetic diversity of the species. A total of 134 Eurasian Collared Doves from Europe, Asia and the Caribbean (n = 20) were studied by sequencing a 658-bp length of mitochondrial DNA (mtDNA) cytochrome oxidase I (COI). Fifty-two different haplotypes and relatively high haplotype and nucleotide diversities (Hd±SD = 0.843±0.037 and π±SD = 0.026±0.013) were detected. Haplotype Ht1 was particularly dominant: it included 44.03% of the studied individuals, and contained sequences from 75% of the studied countries. Various analyses (FST, AMOVA, STRUCTURE) distinguished 2 groups on the genetic level, designated 'A' and 'B'. Two groups were also separated in the median-joining network and the maximum likelihood tree. The results of the neutrality tests were negative (Fu FS = -25.914; Tajima D = -2.606) and significantly different from zero (P≤0.001) for group A, whereas both values for group B were positive (Fu FS = 1.811; Tajima D = 0.674) and not significant (P>0.05). Statistically significant positive autocorrelation was revealed among individuals located up to 2000 km apart (r = 0.124; P = 0.001). The present results provide the first information on the genetic diversity and structure of the Eurasian Collared Dove, and can thereby serve as a factual and comparative basis for similar studies in the future.
Habel, J C; Mulwa, R K; Gassert, F; Rödder, D; Ulrich, W; Borghesio, L; Husemann, M; Lens, L
2014-01-01
The Eastern Afromontane cloud forests occur as geographically distinct mountain exclaves. The conditions of these forests range from large to small and from fairly intact to strongly degraded. For this study, we sampled individuals of the forest bird species, the Montane White-eye Zosterops poliogaster from 16 sites and four mountain archipelagos. We analysed 12 polymorphic microsatellites and three phenotypic traits, and calculated Species Distribution Models (SDMs) to project past distributions and predict potential future range shifts under a scenario of climate warming. We found well-supported genetic and morphologic clusters corresponding to the mountain ranges where populations were sampled, with 43% of all alleles being restricted to single mountains. Our data suggest that large-scale and long-term geographic isolation on mountain islands caused genetically and morphologically distinct population clusters in Z. poliogaster. However, major genetic and biometric splits were not correlated to the geographic distances among populations. This heterogeneous pattern can be explained by past climatic shifts, as highlighted by our SDM projections. Anthropogenically fragmented populations showed lower genetic diversity and a lower mean body mass, possibly in response to suboptimal habitat conditions. On the basis of these findings and the results from our SDM analysis we predict further loss of genotypic and phenotypic uniqueness in the wake of climate change, due to the contraction of the species' climatic niche and subsequent decline in population size. PMID:24713824
Habel, J C; Mulwa, R K; Gassert, F; Rödder, D; Ulrich, W; Borghesio, L; Husemann, M; Lens, L
2014-09-01
The Eastern Afromontane cloud forests occur as geographically distinct mountain exclaves. The conditions of these forests range from large to small and from fairly intact to strongly degraded. For this study, we sampled individuals of the forest bird species, the Montane White-eye Zosterops poliogaster from 16 sites and four mountain archipelagos. We analysed 12 polymorphic microsatellites and three phenotypic traits, and calculated Species Distribution Models (SDMs) to project past distributions and predict potential future range shifts under a scenario of climate warming. We found well-supported genetic and morphologic clusters corresponding to the mountain ranges where populations were sampled, with 43% of all alleles being restricted to single mountains. Our data suggest that large-scale and long-term geographic isolation on mountain islands caused genetically and morphologically distinct population clusters in Z. poliogaster. However, major genetic and biometric splits were not correlated to the geographic distances among populations. This heterogeneous pattern can be explained by past climatic shifts, as highlighted by our SDM projections. Anthropogenically fragmented populations showed lower genetic diversity and a lower mean body mass, possibly in response to suboptimal habitat conditions. On the basis of these findings and the results from our SDM analysis we predict further loss of genotypic and phenotypic uniqueness in the wake of climate change, due to the contraction of the species' climatic niche and subsequent decline in population size.
Tchouassi, David P.; Bastos, Armanda D. S.; Sole, Catherine L.; Diallo, Mawlouth; Lutomiah, Joel; Mutisya, James; Mulwa, Francis; Borgemeister, Christian; Sang, Rosemary; Torto, Baldwyn
2014-01-01
Rift Valley fever (RVF) outbreaks in Kenya have increased in frequency and range to include northeastern Kenya where viruses are increasingly being isolated from known (Aedes mcintoshi) and newly-associated (Ae. ochraceus) vectors. The factors contributing to these changing outbreak patterns are unclear and the population genetic structure of key vectors and/or specific virus-vector associations, in particular, are under-studied. By conducting mitochondrial and nuclear DNA analyses on >220 Kenyan specimens of Ae. mcintoshi and Ae. ochraceus, we uncovered high levels of vector complexity which may partly explain the disease outbreak pattern. Results indicate that Ae. mcintoshi consists of a species complex with one of the member species being unique to the newly-established RVF outbreak-prone northeastern region of Kenya, whereas Ae. ochraceus is a homogeneous population that appears to be undergoing expansion. Characterization of specimens from a RVF-prone site in Senegal, where Ae. ochraceus is a primary vector, revealed direct genetic links between the two Ae. ochraceus populations from both countries. Our data strongly suggest that unlike Ae. mcintoshi, Ae. ochraceus appears to be a relatively recent, single 'introduction' into Kenya. These results, together with increasing isolations from this vector, indicate that Ae. ochraceus will likely be of greater epidemiological importance in future RVF outbreaks in Kenya. Furthermore, the overall vector complexity calls into question the feasibility of mosquito population control approaches reliant on genetic modification. PMID:25474018
History of Larix decidua Mill. (European larch) since 130 ka
NASA Astrophysics Data System (ADS)
Wagner, Stefanie; Litt, Thomas; Sánchez-Goñi, Maria-Fernanda; Petit, Rémy J.
2015-09-01
Retrospective studies focussing on forest dynamics using fossil and genetic data can provide important keys to prepare forests for the future. In this study we analyse the impact of past climate and anthropogenic changes on Larix decidua Mill. (European larch) populations based on a new range-wide fossil compilation encompassing the last 130 ka and on recently produced genetic data (nuclear, mitochondrial). Results demonstrate that during the last 130 ka L. decidua persisted close to its current distribution range and colonized vast areas outside this range during the first two early Weichselian interstadials (c. 87-109 ka and c. 83-78 ka), reaching a distributional maxima in the north-central European lowlands. Some fossil sites point to notably rapid responses to some abrupt climate events (Dansgaard-Oeschger cycles and Heinrich Events). Combined fossil and genetic data identify at least six MIS 2 refuges and postglacial recolonization pathways. The establishment of extant L. decidua forests dates back to the first two millennia of the Holocene (c. 11.5-9.5 ka) and the onset of anthropogenic impact was inferred since the late Neolithic (c. 6 ka), with major changes occurring since the Bronze Age (c. 4 ka). During the last 300 years human-induced translocations resulted in recent admixture of populations originating from separate refuges. Altogether, the results of this study provide valuable clues for developing sustainable conservation and management strategies targeting ancient genetic lineages and for studying evolutionary issues.
de Zeeuw, Eveline L; van Beijsterveldt, Catharina E M; Ehli, Erik A; de Geus, Eco J C; Boomsma, Dorret I
2017-05-01
Attention Deficit Hyperactivity Disorder (ADHD) and educational achievement are negatively associated in children. Here we test the hypothesis that there is a direct causal effect of ADHD on educational achievement. The causal effect is tested in a genetically sensitive design to exclude the possibility of confounding by a third factor (e.g. genetic pleiotropy) and by comparing educational achievement and secondary school career in children with ADHD who take or do not take methylphenidate. Data on ADHD symptoms, educational achievement and methylphenidate usage were available in a primary school sample of ~10,000 12-year-old twins from the Netherlands Twin Register. A substantial group also had longitudinal data at ages 7-12 years. ADHD symptoms were cross-sectionally and longitudinally, associated with lower educational achievement at age 12. More ADHD symptoms predicted a lower-level future secondary school career at age 14-16. In both the cross-sectional and longitudinal analyses, testing the direct causal effect of ADHD on educational achievement, while controlling for genetic and environmental factors, revealed an association between ADHD symptoms and educational achievement independent of genetic and environmental pleiotropy. These findings were confirmed in MZ twin intra-pair differences models, twins with more ADHD symptoms scored lower on educational achievement than their co-twins. Furthermore, children with ADHD medication, scored significantly higher on the educational achievement test than children with ADHD who did not use medication. Taken together, the results are consistent with a direct causal effect of ADHD on educational achievement.
Gaudeul, Myriam; Rouhan, Germinal; Gardner, Martin F; Hollingsworth, Peter M
2012-01-01
Despite its small size, New Caledonia is characterized by a very diverse flora and striking environmental gradients, which make it an ideal setting to study species diversification. Thirteen of the 19 Araucaria species are endemic to the territory and form a monophyletic group, but patterns and processes that lead to such a high species richness are largely unexplored. We used 142 polymorphic AFLP markers and performed analyses based on Bayesian clustering algorithms, genetic distances, and cladistics on 71 samples representing all New Caledonian Araucaria species. We examined correlations between the inferred evolutionary relationships and shared morphological, ecological, or geographic parameters among species, to investigate evolutionary processes that may have driven speciation. We showed that genetic divergence among the present New Caledonian Araucaria species is low, suggesting recent diversification rather than pre-existence on Gondwana. We identified three genetic groups that included small-leaved, large-leaved, and coastal species, but detected no association with soil preference, ecological habitat, or rainfall. The observed patterns suggested that speciation events resulted from both differential adaptation and vicariance. Last, we hypothesize that speciation is ongoing and/or there are cryptic species in some genetically (sometimes also morphologically) divergent populations. Further data are required to provide better resolution and understanding of the diversification of New Caledonian Araucaria species. Nevertheless, our study allowed insights into their evolutionary relationships and provides a framework for future investigations on the evolution of this emblematic group of plants in one of the world's biodiversity hotspots.
Much ado about mice: Standard-setting in model organism research.
Hardesty, Rebecca A
2018-04-11
Recently there has been a practice turn in the philosophy of science that has called for analyses to be grounded in the actual doings of everyday science. This paper is in furtherance of this call and it does so by employing participant-observation ethnographic methods as a tool for discovering epistemological features of scientific practice in a neuroscience lab. The case I present focuses on a group of neurobiologists researching the genetic underpinnings of cognition in Down syndrome (DS) and how they have developed a new mouse model which they argue should be regarded as the "gold standard" for all DS mouse research. Through use of ethnographic methods, interviews, and analyses of publications, I uncover how the lab constructed their new mouse model. Additionally, I describe how model organisms can serve as abstract standards for scientific work that impact the epistemic value of scientific claims, regulate practice, and constrain future work. Copyright © 2018 Elsevier Ltd. All rights reserved.
EU-AIMS Longitudinal European Autism Project (LEAP): the autism twin cohort.
Isaksson, Johan; Tammimies, Kristiina; Neufeld, Janina; Cauvet, Élodie; Lundin, Karl; Buitelaar, Jan K; Loth, Eva; Murphy, Declan G M; Spooren, Will; Bölte, Sven
2018-01-01
EU-AIMS is the largest European research program aiming to identify stratification biomarkers and novel interventions for autism spectrum disorder (ASD). Within the program, the Longitudinal European Autism Project (LEAP) has recruited and comprehensively phenotyped a rare sample of 76 monozygotic and dizygotic twins, discordant, or concordant for ASD plus 30 typically developing twins. The aim of this letter is to complete previous descriptions of the LEAP case-control sample, clinically characterize, and investigate the suitability of the sample for ASD twin-control analyses purposes and share some 'lessons learnt.' Among the twins, a diagnosis of ASD is associated with increased symptom levels of ADHD, higher rates of intellectual disability, and lower family income. For the future, we conclude that the LEAP twin cohort offers multiple options for analyses of genetic and shared and non-shared environmental factors to generate new hypotheses for the larger cohort of LEAP singletons, but particularly cross-validate and refine evidence from it.
Genomic evidence for plant-parasitic nematodes as the earliest Wolbachia hosts
Brown, Amanda M. V.; Wasala, Sulochana K.; Howe, Dana K.; Peetz, Amy B.; Zasada, Inga A.; Denver, Dee R.
2016-01-01
Wolbachia, one of the most widespread endosymbionts, is a target for biological control of mosquito-borne diseases (malaria and dengue virus), and antibiotic elimination of infectious filarial nematodes. We sequenced and analyzed the genome of a new Wolbachia strain (wPpe) in the plant-parasitic nematode Pratylenchus penetrans. Phylogenomic analyses placed wPpe as the earliest diverging Wolbachia, suggesting two evolutionary invasions into nematodes. The next branches comprised strains in sap-feeding insects, suggesting Wolbachia may have first evolved as a nutritional mutualist. Genome size, protein content, %GC, and repetitive DNA allied wPpe with mutualistic Wolbachia, whereas gene repertoire analyses placed it between parasite (A, B) and mutualist (C, D, F) groups. Conservation of iron metabolism genes across Wolbachia suggests iron homeostasis as a potential factor in its success. This study enhances our understanding of this globally pandemic endosymbiont, highlighting genetic patterns associated with host changes. Combined with future work on this strain, these genomic data could help provide potential new targets for plant-parasitic nematode control. PMID:27734894
Parasites as valuable stock markers for fisheries in Australasia, East Asia and the Pacific Islands.
Lester, R J G; Moore, B R
2015-01-01
Over 30 studies in Australasia, East Asia and the Pacific Islands region have collected and analysed parasite data to determine the ranges of individual fish, many leading to conclusions about stock delineation. Parasites used as biological tags have included both those known to have long residence times in the fish and those thought to be relatively transient. In many cases the parasitological conclusions have been supported by other methods especially analysis of the chemical constituents of otoliths, and to a lesser extent, genetic data. In analysing parasite data, authors have applied multiple different statistical methodologies, including summary statistics, and univariate and multivariate approaches. Recently, a growing number of researchers have found non-parametric methods, such as analysis of similarities and cluster analysis, to be valuable. Future studies into the residence times, life cycles and geographical distributions of parasites together with more robust analytical methods will yield much important information to clarify stock structures in the area.
Human germline genetic modification: scientific and bioethical perspectives.
Smith, Kevin R; Chan, Sarah; Harris, John
2012-10-01
The latest mammalian genetic modification technology offers efficient and reliable targeting of genomic sequences, in the guise of designer genetic recombination tools. These and other improvements in genetic engineering technology suggest that human germline genetic modification (HGGM) will become a safe and effective prospect in the relatively near future. Several substantive ethical objections have been raised against HGGM including claims of unacceptably high levels of risk, damage to the status of future persons, and violations of justice and autonomy. This paper critically reviews the latest GM science and discusses the key ethical objections to HGGM. We conclude that major benefits are likely to accrue through the use of safe and effective HGGM and that it would thus be unethical to take a precautionary stance against HGGM. Copyright © 2012 IMSS. Published by Elsevier Inc. All rights reserved.
Applications of landscape genetics in conservation biology: concepts and challenges
Gernot Segelbacher; Samuel A. Cushman; Bryan K. Epperson; Marie-Josee Fortin; Olivier Francois; Olivier J. Hardy; Rolf Holderegger; Stephanie Manel
2010-01-01
Landscape genetics plays an increasingly important role in the management and conservation of species. Here, we highlight some of the opportunities and challenges in using landscape genetic approaches in conservation biology. We first discuss challenges related to sampling design and introduce several recent methodological developments in landscape genetics (analyses...
Nambeesan, Savithri U; Mandel, Jennifer R; Bowers, John E; Marek, Laura F; Ebert, Daniel; Corbi, Jonathan; Rieseberg, Loren H; Knapp, Steven J; Burke, John M
2015-03-11
Shoot branching is an important determinant of plant architecture and influences various aspects of growth and development. Selection on branching has also played an important role in the domestication of crop plants, including sunflower (Helianthus annuus L.). Here, we describe an investigation of the genetic basis of variation in branching in sunflower via association mapping in a diverse collection of cultivated sunflower lines. Detailed phenotypic analyses revealed extensive variation in the extent and type of branching within the focal population. After correcting for population structure and kinship, association analyses were performed using a genome-wide collection of SNPs to identify genomic regions that influence a variety of branching-related traits. This work resulted in the identification of multiple previously unidentified genomic regions that contribute to variation in branching. Genomic regions that were associated with apical and mid-apical branching were generally distinct from those associated with basal and mid-basal branching. Homologs of known branching genes from other study systems (i.e., Arabidopsis, rice, pea, and petunia) were also identified from the draft assembly of the sunflower genome and their map positions were compared to those of associations identified herein. Numerous candidate branching genes were found to map in close proximity to significant branching associations. In sunflower, variation in branching is genetically complex and overall branching patterns (i.e., apical vs. basal) were found to be influenced by distinct genomic regions. Moreover, numerous candidate branching genes mapped in close proximity to significant branching associations. Although the sunflower genome exhibits localized islands of elevated linkage disequilibrium (LD), these non-random associations are known to decay rapidly elsewhere. The subset of candidate genes that co-localized with significant associations in regions of low LD represents the most promising target for future functional analyses.
Nascimento, C; Di Lorenzo Alho, A T; Bazan Conceição Amaral, C; Leite, R E P; Nitrini, R; Jacob-Filho, W; Pasqualucci, C A; Hokkanen, S R K; Hunter, S; Keage, H; Kovacs, G G; Grinberg, L T; Suemoto, C K
2018-04-01
To perform a systematic review and meta-analysis on the prevalence of transactive response DNA-binding protein 43 (TDP-43) proteinopathy in cognitively normal older adults. We systematically reviewed and performed a meta-analysis on the prevalence of TDP-43 proteinopathy in older adults with normal cognition, evaluated by the Mini-Mental State Examination or the Clinical Dementia Rating. We estimated the overall prevalence of TDP-43 using random-effect models, and stratified by age, sex, sample size, study quality, antibody used to assess TDP-43 aggregates, analysed brain regions, Braak stage, Consortium to Establish a Registry for Alzheimer's Disease score, hippocampal sclerosis and geographic location. A total of 505 articles were identified in the systematic review, and 7 were included in the meta-analysis with 1196 cognitively normal older adults. We found an overall prevalence of TDP-43 proteinopathy of 24%. Prevalence of TDP-43 proteinopathy varied widely across geographic location (North America: 37%, Asia: 29%, Europe: 14%, and Latin America: 11%). Estimated prevalence of TDP-43 proteinopathy also varied according to study quality (quality score >7: 22% vs. quality score <7: 42%), antibody used to assess TDP-43 proteinopathy (native: 18% vs. hyperphosphorylated: 24%) and presence of hippocampal sclerosis (without 24% vs. with hippocampal sclerosis: 48%). Other stratified analyses by age, sex, analysed brain regions, sample size and severity of AD neuropathology showed similar pooled TDP-43 prevalence. Different methodology to access TDP-43, and also differences in lifestyle and genetic factors across different populations could explain our results. Standardization of TDP-43 measurement, and future studies about the impact of genetic and lifestyle characteristics on the development of neurodegenerative diseases are needed. © 2017 British Neuropathological Society.
Identification of Immune Traits Correlated with Dairy Cow Health, Reproduction and Productivity
Banos, Georgios; Wall, Eileen; Coffey, Michael P.; Bagnall, Ainsley; Gillespie, Sandra; Russell, George C.; McNeilly, Tom N.
2013-01-01
Detailed biological analyses (e.g. epidemiological, genetic) of animal health and fitness in the field are limited by the lack of large-scale recording of individual animals. An alternative approach is to identify immune traits that are associated with these important functions and can be subsequently used in more detailed studies. We have used an experimental dairy herd with uniquely dense phenotypic data to identify a range of potentially useful immune traits correlated with enhanced (or depressed) health and fitness. Blood samples from 248 dairy cows were collected at two-monthly intervals over a 10-month period and analysed for a number of immune traits, including levels of serum proteins associated with the innate immune response and circulating leukocyte populations. Immune measures were matched to individual cow records related to productivity, fertility and disease. Correlations between traits were calculated using bivariate analyses based on animal repeatability and random regression models with a Bonferroni correction to account for multiple testing. A number of significant correlations were found between immune traits and other recorded traits including: CD4+:CD8+ T lymphocyte ratio and subclinical mastitis; % CD8+ lymphocytes and fertility; % CD335+ natural killer cells and lameness episodes; and serum haptoglobin levels and clinical mastitis. Importantly these traits were not associated with reduced productivity and, in the case of cellular immune traits, were highly repeatable. Moreover these immune traits displayed significant between-animal variation suggesting that they may be altered by genetic selection. This study represents the largest simultaneous analysis of multiple immune traits in dairy cattle to-date and demonstrates that a number of immune traits are associated with health events. These traits represent useful selection markers for future programmes aimed at improving animal health and fitness. PMID:23776543
Edenberg, Howard J; Foroud, Tatiana
2014-01-01
Multiple lines of evidence strongly indicate that genetic factors contribute to the risk for alcohol use disorders (AUD). There is substantial heterogeneity in AUD, which complicates studies seeking to identify specific genetic factors. To identify these genetic effects, several different alcohol-related phenotypes have been analyzed, including diagnosis and quantitative measures related to AUDs. Study designs have used candidate gene analyses, genetic linkage studies, genomewide association studies (GWAS), and analyses of rare variants. Two genes that encode enzymes of alcohol metabolism have the strongest effect on AUD: aldehyde dehydrogenase 2 and alcohol dehydrogenase 1B each has strongly protective variants that reduce risk, with odds ratios approximately 0.2-0.4. A number of other genes important in AUD have been identified and replicated, including GABRA2 and alcohol dehydrogenases 1B and 4. GWAS have identified additional candidates. Rare variants are likely also to play a role; studies of these are just beginning. A multifaceted approach to gene identification, targeting both rare and common variations and assembling much larger datasets for meta-analyses, is critical for identifying the key genes and pathways important in AUD. © 2014 Elsevier B.V. All rights reserved.
What is the impact of disease prevalence upon health technology assessment?
Rotily, Michel; Roze, Stéphane
2013-12-01
As national budgets for health care will remain under stress for the foreseeable future, health technology assessment (HTA) aimed at offering guidance to policy-making will have an increasing role to play in optimizing resources. The emergence of new treatment paradigms and health technologies, and the prevalence studies which determine when a disease is a current or future burden for patients and the community are in the roots of the HTA process. Analysing studies on screening test strategies and health care policy, this paper revisits two key concepts in epidemiology, prevalence and incidence, in order to show their major impact upon HTA. Utilization of the predictive values of screening tests that include prevalence in their calculations, and analysing all options for screening strategies are necessary in HTA. Cost-effectiveness analyses and statistical models should include potential externalities, especially the impact of prevention and treatment on infectious disease prevalence. Beyond estimates of cost-effectiveness ratios, decision makers also need to know by how much their annual health care budget is likely to increase or decrease in the years following the emergence of new technologies: hence the importance of incidence- or prevalence-based economic evaluations. As new paradigms are occurring, especially in the field of oncology, with treatments targeted to 'small' groups of patients identified through genetic testing, prevalence data are strongly needed. Precise estimates of disease prevalence, in general populations as well as in risk or targeted groups, will therefore be necessary to improve HTA process. Copyright © 2013 Elsevier Ltd. All rights reserved.
Olsen, Nanna J; Ängquist, Lars; Larsen, Sofus C; Linneberg, Allan; Skaaby, Tea; Husemoen, Lise Lotte N; Toft, Ulla; Tjønneland, Anne; Halkjær, Jytte; Hansen, Torben; Pedersen, Oluf; Overvad, Kim; Ahluwalia, Tarunveer S; Sørensen, Thorkild Ia; Heitmann, Berit L
2016-09-01
Intake of sugar-sweetened beverages is associated with obesity, and this association may be modified by a genetic predisposition to obesity. We examined the interactions between a molecular genetic predisposition to various aspects of obesity and the consumption of soft drinks, which are a major part of sugar-sweetened beverages, in relation to changes in adiposity measures. A total of 4765 individuals were included in the study. On the basis of 50 obesity-associated single nucleotide polymorphisms that are associated with body mass index (BMI), waist circumference (WC), or the waist-to-hip ratio adjusted for BMI (WHRBMI), the following 4 genetic predisposition scores (GRSs) were constructed: a complete genetic predisposition score including all 50 single nucleotide polymorphisms (GRSComplete), a genetic predisposition score including BMI-associated single nucleotide polymorphisms (GRSBMI), a genetic predisposition score including waist circumference-associated single nucleotide polymorphisms (GRSWC), and a genetic predisposition score including the waist-to-hip ratio adjusted for BMI-associated single nucleotide polymorphisms (GRSWHR). Associations between soft drink intake and the annual change (Δ) in body weight (BW), WC, or waist circumference adjusted for BMI (WCBMI) and possible interactions with the GRSs were examined with the use of linear regression analyses and meta-analyses. For each soft drink serving per day, soft drink consumption was significantly associated with a higher ΔBW of 0.07 kg/y (95% CI: 0.01, 0.13 kg/y; P = 0.020) but not with the ΔWC or ΔWCBMI In analyses of the ΔBW, we showed an interaction only with the GRSWC (per risk allele for each soft drink serving per day: -0.06 kg/y; 95% CI: -0.10, -0.02 kg/y; P = 0.006). In analyses of the ΔWC, we showed interactions only with the GRSBMI and GRSComplete [per risk allele for each soft drink serving per day: 0.05 cm/y (95% CI: 0.02, 0.09 cm/y; P = 0.001) and 0.05 cm/y (95% CI: 0.02, 0.07 cm/y; P = 0.001), respectively]. Nearly identical results were observed in analyses of the ΔWCBMI CONCLUSIONS: A genetic predisposition to a high WC may attenuate the association between soft drink intake and BW gain. A genetic predisposition to high BMI as well as a genetic predisposition to high BMI, WC, and WHRBMI combined may strengthen the association between soft drink intake and WC gain. However, the public health impact may be limited. © 2016 American Society for Nutrition.
Explanatory Models of Genetics and Genetic Risk among a Selected Group of Students.
Goltz, Heather Honoré; Bergman, Margo; Goodson, Patricia
2016-01-01
This exploratory qualitative study focuses on how college students conceptualize genetics and genetic risk, concepts essential for genetic literacy (GL) and genetic numeracy (GN), components of overall health literacy (HL). HL is dependent on both the background knowledge and culture of a patient, and lower HL is linked to increased morbidity and mortality for a number of chronic health conditions (e.g., diabetes and cancer). A purposive sample of 86 students from three Southwestern universities participated in eight focus groups. The sample ranged in age from 18 to 54 years, and comprised primarily of female (67.4%), single (74.4%), and non-White (57%) participants, none of whom were genetics/biology majors. A holistic-content approach revealed broad categories concerning participants' explanatory models (EMs) of genetics and genetic risk. Participants' EMs were grounded in highly contextualized narratives that only partially overlapped with biomedical models. While higher education levels should be associated with predominately knowledge-based EM of genetic risk, this study shows that even in well-educated populations cultural factors can dominate. Study findings reveal gaps in how this sample of young adults obtains, processes, and understands genetic/genomic concepts. Future studies should assess how individuals with low GL and GN obtain and process genetics and genetic risk information and incorporate this information into health decision making. Future work should also address the interaction of communication between health educators, providers, and genetic counselors, to increase patient understanding of genetic risk.
The role of genomics in conservation and reproductive sciences.
Johnson, Warren E; Koepfli, Klaus
2014-01-01
Genomics, the study of an organism's genome through DNA analyses, is a central part of the biological sciences and is rapidly changing approaches to animal conservation. The genomes of thousands of organisms, including vertebrates, invertebrates, and plants have been sequenced and the results annotated, augmented and refined through the application of new approaches in transcriptomics, proteomics, and metabolomics that enhance the characterization of messenger RNA, proteins, and metabolites. The same computational advances that are catalyzing "-omic" technologies and novel approaches to address fundamental research questions are facilitating bioinformatic analysis and enabling access of primary and derivative data and results in public and private databases (Zhao and Grant. Curr Pharm Biotechnol 12:293-305, 2011). These tools will be used to provide fundamental advances in our understanding of reproductive biology across vertebrate species and promise to revolutionize our approach to conservation biology.The vulnerability of animal populations and their genetic diversity is well documented, as are the myriad of causes and threats to their persistence, including habitat degradation and loss, overexploitation, pollution, invasive alien species, and climate change. Of the 64,283 vertebrates assessed by the International Union for Conservation of Nature in their 2012 Red List of Threatened Species, 7,250 or ~11 % are threatened with extinction, a percentage that has been increasing steadily for at least the last decade ( www.iucnredlist.org ). Among many of these species, important genetic diversity has been lost, thereby increasing their vulnerability as genetically diverse populations have higher fitness, generally are more resilient to environmental challenges, and have more adaptive potential (Reed and Frankham Conserv Biol 17:230-237, 2003; Luikart et al. Nat Rev Genet 4:981-994, 2003). In turn, genetic variation within and among populations may be essential to maintaining functional ecosystems, evolutionary process and will impact future food supplies, human health, biomaterial development and geopolitics (Myers and Knoll Proc Natl Acad Sci U S A 98:5389-5392, 2001; Templeton et al. Proc Natl Acad Sci U S A 98:5426-5432, 2001). Therefore, conservation of genetic diversity is a social, cultural, scientific, and economic prerogative and is the key to adaptation in the uncertain future of a human-dominated environment. Once lost, genetic resources are nearly impossible to regain, increasing the urgency of fundamental global approaches (e.g. www.cbd.int/sp/targets ).In this chapter we provide a review of current research and recent advances in biotechnology and genomic approaches for animal conservation and the management of genetic resources, with an emphasis on reproductive sciences. It is intended to provide information and insights for research and to provoke thoughts on how to take advantage of these opportunities.
Dominguez-Guerrero, Iliana Karina; del Rocío Mariscal-Lucero, Samantha; Hernández-Díaz, José Ciro; Heinze, Berthold; Prieto-Ruiz, José Ángel
2017-01-01
Background Picea chihuahuana, which is endemic to Mexico, is currently listed as “Endangered” on the Red List. Chihuahua spruce is only found in the Sierra Madre Occidental (SMO), Mexico. About 42,600 individuals are distributed in forty populations. These populations are fragmented and can be classified into three geographically distinct clusters in the SMO. The total area covered by P. chihuahuana populations is less than 300 ha. A recent study suggested assisted migration as an alternative to the ex situ conservation of P. chihuahuana, taking into consideration the genetic structure and diversity of the populations and the predictions regarding the future climate of the habitat. However, detailed background information is required to enable development of plans for protecting and conserving species and for successful assisted migration. Thus, it is important to identify differences between populations in relation to environmental conditions. The genetic diversity of populations, which affect vigor, evolution and adaptability of the species, must also be considered. In this study, we examined 14 populations of P. chihuahuana, with the overall aim of discriminating the populations and form clusters of this species. Methods Each population was represented by one 50 × 50 m plot established in the center of its respective location. Climate, soil, dasometric, density variables and genetic and species diversities were assessed in these plots for further analyses. The putatively neutral and adaptive AFLP markers were used to calculate genetic diversity. Affinity Propagation (AP) clustering technique and k-means clustering algorithm were used to classify the populations in the optimal number of clusters. Later stepwise binomial logistic regression was applied to test for significant differences in variables of the southern and northern P. chihuahuana populations. Spearman’s correlation test was used to analyze the relationships among all variables studied. Results The binomial logistic regression analysis revealed that seven climate variables, the geographical longitude and sand proportion in the soil separated the southern from northern populations. The northern populations grow in more arid and continental conditions and on soils with lower sand proportion. The mean genetic diversity using all AFLP studied of P. chihuahuana was significantly correlated with the mean temperature in the warmest month, where warmer temperatures are associated to larger genetic diversity. Genetic diversity of P. chihuahuana calculated with putatively adaptive AFLP was not statistically significantly correlated with any environmental factor. Discussion Future reforestation programs should take into account that at least two different groups (the northern and southern cluster) of P. chihuahuana exist, as local adaptation takes place because of different environmental conditions. PMID:28626616
Choice of Reading Comprehension Test Influences the Outcomes of Genetic Analyses
Betjemann, Rebecca S.; Keenan, Janice M.; Olson, Richard K.; DeFries, John C.
2010-01-01
Does the choice of test for assessing reading comprehension influence the outcome of genetic analyses? A twin design compared two types of reading comprehension tests classified as primarily associated with word decoding (RC-D) or listening comprehension (RC-LC). For both types of tests, the overall genetic influence is high and nearly identical. However, the tests differed significantly in how they covary with the genes associated with decoding and listening comprehension. Although Cholesky decomposition showed that both types of comprehension tests shared significant genetic influence with both decoding and listening comprehension, RC-D tests shared most genetic variance with decoding, and RC-LC tests shared most with listening comprehension. Thus, different tests used to measure the same construct may manifest very different patterns of genetic covariation. These results suggest that the apparent discrepancies among the findings of previous twin studies of reading comprehension could be due at least in part to test differences. PMID:21804757
Genetic influences in caries and periodontal diseases.
Hassell, T M; Harris, E L
1995-01-01
Deciphering the relative roles of heredity and environmental factors ("nature vs. nurture") in the pathogenesis of dental caries and diseases of the periodontium has occupied clinical and basic researchers for decades. Success in the endeavor has come more easily in the case of caries; the complex interactions that occur between host-response mechanisms and putative microbiologic pathogens in periodontal disease have made elucidation of genetic factors in disease susceptibility more difficult. In addition, during the 30-year period between 1958 and 1987, only meager resources were targeted toward the "nature" side of the nature/nurture dipole in periodontology. In this article, we present a brief history of the development of genetic epistemology, then describe the three main research mechanisms by which questions about the hereditary component of diseases in humans can be addressed. A critical discussion of the evidence for a hereditary component in caries susceptibility is next presented, also from a historical perspective. The evolution of knowledge concerning possible genetic ("endogenous", "idiotypic") factors in the pathogenesis of inflammatory periodontal disease is initiated with an analysis of some foreign-language (primarily German) literature that is likely to be unfamiliar to the reader. We identify a turning point at about 1960, when the periodontal research community turned away from genetics in favor of microbiology research. During the past five years, investigators have re-initiated the search for the hereditary component in susceptibility to common adult periodontal disease; this small but growing body of literature is reviewed. Recent applications of in vitro methods for genetic analyses in periodontal research are presented, with an eye toward a future in which persons who are at risk--genetically predisposed--to periodontal disease may be identified and targeted for interventive strategies. Critical is the realization that genes and environment do not act independently of each other; the appearance or magnitude of heritability may differ with various environments.
USDA-ARS?s Scientific Manuscript database
The objective was to study alternative models for genetic analyses of carcass traits assessed by ultrasonography in Guzerá cattle. Data from 947 measurements (655 animals) of Rib-eye area (REA), rump fat thickness (RFT) and backfat thickness (BFT) were used. Finite polygenic models (FPM), infinitesi...
The Genetic Privacy Act and commentary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Annas, G.J.; Glantz, L.H.; Roche, P.A.
1995-02-28
The Genetic Privacy Act is a proposal for federal legislation. The Act is based on the premise that genetic information is different from other types of personal information in ways that require special protection. The DNA molecule holds an extensive amount of currently indecipherable information. The major goal of the Human Genome Project is to decipher this code so that the information it contains is accessible. The privacy question is, accessible to whom? The highly personal nature of the information contained in DNA can be illustrated by thinking of DNA as containing an individual`s {open_quotes}future diary.{close_quotes} A diary is perhapsmore » the most personal and private document a person can create. It contains a person`s innermost thoughts and perceptions, and is usually hidden and locked to assure its secrecy. Diaries describe the past. The information in one`s genetic code can be thought of as a coded probabilistic future diary because it describes an important part of a unique and personal future. This document presents an introduction to the proposal for federal legislation `the Genetic Privacy Act`; a copy of the proposed act; and comment.« less
Genetic Tests for Ability?: Talent Identification and the Value of an Open Future
ERIC Educational Resources Information Center
Miah, Andy; Rich, Emma
2006-01-01
This paper explores the prospect of genetic tests for performance in physical activity and sports practices. It investigates the terminology associated with genetics, testing, selection and ability as a means towards a socio-ethical analysis of its value within sport, education and society. Our argument suggests that genetic tests need not even be…
Manni, Mosè; Lima, Kátia Manuela; Guglielmino, Carmela Rosalba; Lanzavecchia, Silvia Beatriz; Juri, Marianela; Vera, Teresa; Cladera, Jorge; Scolari, Francesca; Gomulski, Ludvik; Bonizzoni, Mariangela; Gasperi, Giuliano; Silva, Janisete Gomes; Malacrida, Anna Rodolfa
2015-01-01
Abstract We used a population genetic approach to detect the presence of genetic diversity among six populations of Anastrepha fraterculus across Brazil. To this aim, we used Simple Sequence Repeat (SSR) markers, which may capture the presence of differentiative processes across the genome in distinct populations. Spatial analyses of molecular variance were used to identify groups of populations that are both genetically and geographically homogeneous while also being maximally differentiated from each other. The spatial analysis of genetic diversity indicates that the levels of diversity among the six populations vary significantly on an eco-geographical basis. Particularly, altitude seems to represent a differentiating adaptation, as the main genetic differentiation is detected between the two populations present at higher altitudes and the other four populations at sea level. The data, together with the outcomes from different cluster analyses, identify a genetic diversity pattern that overlaps with the distribution of the known morphotypes in the Brazilian area. PMID:26798258
Reisch, Christoph; Schmidkonz, Sonja; Meier, Katrin; Schöpplein, Quirin; Meyer, Carina; Hums, Christian; Putz, Christina; Schmid, Christoph
2017-04-24
Habitat fragmentation is considered to be a main reason for decreasing genetic diversity of plant species. However, the results of many fragmentation studies are inconsistent. This may be due to the influence of habitat conditions, having an indirect effect on genetic variation via reproduction. Consequently we took a comparative approach to analyse the impact of habitat fragmentation and habitat conditions on the genetic diversity of calcareous grassland species in this study. We selected five typical grassland species (Primula veris, Dianthus carthusianorum, Medicago falcata, Polygala comosa and Salvia pratensis) occurring in 18 fragments of calcareous grasslands in south eastern Germany. We sampled 1286 individuals in 87 populations and analysed genetic diversity using amplified fragment length polymorphisms. Additionally, we collected data concerning habitat fragmentation (historical and present landscape structure) and habitat conditions (vegetation structure, soil conditions) of the selected study sites. The whole data set was analysed using Bayesian multiple regressions. Our investigation indicated a habitat loss of nearly 80% and increasing isolation between grasslands since 1830. Bayesian analysis revealed a significant impact of the historical landscape structure, whereas habitat conditions played no important role for the present-day genetic variation of the studied plant species. Our study indicates that the historical landscape structure may be more important for genetic diversity than present habitat conditions. Populations persisting in abandoned grassland fragments may contribute significantly to the species' variability even under deteriorating habitat conditions. Therefore, these populations should be included in approaches to preserve the genetic variation of calcareous grassland species.
García-Fernández, Alfredo; Iriondo, Jose M; Escudero, Adrián; Aguilar, Javier Fuertes; Feliner, Gonzalo Nieto
2013-08-01
Mountain plants are among the species most vulnerable to global warming, because of their isolation, narrow geographic distribution, and limited geographic range shifts. Stochastic and selective processes can act on the genome, modulating genetic structure and diversity. Fragmentation and historical processes also have a great influence on current genetic patterns, but the spatial and temporal contexts of these processes are poorly known. We aimed to evaluate the microevolutionary processes that may have taken place in Mediterranean high-mountain plants in response to changing historical environmental conditions. Genetic structure, diversity, and loci under selection were analyzed using AFLP markers in 17 populations distributed over the whole geographic range of Armeria caespitosa, an endemic plant that inhabits isolated mountains (Sierra de Guadarrama, Spain). Differences in altitude, geographic location, and climate conditions were considered in the analyses, because they may play an important role in selective and stochastic processes. Bayesian clustering approaches identified nine genetic groups, although some discrepancies in assignment were found between alternative analyses. Spatially explicit analyses showed a weak relationship between genetic parameters and spatial or environmental distances. However, a large proportion of outlier loci were detected, and some outliers were related to environmental variables. A. caespitosa populations exhibit spatial patterns of genetic structure that cannot be explained by the isolation-by-distance model. Shifts along the altitude gradient in response to Pleistocene climatic oscillations and environmentally mediated selective forces might explain the resulting structure and genetic diversity values found.
Genetics of Addiction: Future Focus on Gene × Environment Interaction?
Vink, Jacqueline M
2016-09-01
The heritability of substance use is moderate to high. Successful efforts to find genetic variants associated with substance use (smoking, alcohol, cannabis) have been undertaken by large consortia. However, the proportion of phenotypic variance explained by the identified genetic variants is small. Interestingly, there is overlap between the genetic variants that influence different substances. Moreover, there are sets of "substance-specific" genes and sets of genes contributing to a "vulnerability for addictive behavior" in general. It is important to recognize that genes alone do not determine addiction phenotypes: Environmental factors such as parental monitoring, peer pressure, or socioeconomic status also play an important role. Despite a rich epidemiologic literature focused on the social determinants of substance use, few studies have examined the moderation of genetic influences like gene-environment (G × E) interactions. Understanding this balance may hold the key to understanding the individual differences in substance use, abuse, and addictive behavior. Recommendations for future research are described in this commentary and include increasing the power of G × E studies by using state-of-the-art methods such as polygenic risk scores instead of single genetic variants and taking genetic overlap between substances into account. Future genetic studies should also investigate environmental risk factors for addictive behavior more extensively to unravel the interaction between nature and nurture. Focusing on G × E interactions not only will give insight into the underlying biological mechanism but will also characterize subgroups (based on environmental factors) at high risk for addictive behaviors. With this information, we could bridge the gap between fundamental research and applications for society.
Jonas, Susanna; Wild, Claudia; Schamberger, Chantal
2003-02-01
The aim of this health technology assessment was to analyse the current scientific and genetic counselling on predictive genetic testing for hereditary breast and colorectal cancer. Predictive genetic testing will be available for several common diseases in the future and questions related to financial issues and quality standards will be raised. This report is based on a systematic/nonsystematic literature search in several databases (e.g. EmBase, Medline, Cochrane Library) and on a specific health technology assessment report (CCOHTA) and review (American Gastroenterological Ass.), respectively. Laboratory test methods, early detection methods and the benefit from prophylactic interventions were analysed and social consequences interpreted. Breast and colorectal cancer are counted among the most frequently cancer diseases. Most of them are based on random accumulation of risk factors, 5-10% show a familial determination. A hereditary modified gene is responsible for the increased cancer risk. In these families, high tumour frequency, young age at diagnosis and multiple primary tumours are remarkable. GENETIC DIAGNOSIS: Sequence analysis is the gold standard. Denaturing high performance liquid chromatography is a quick alternative method. The identification of the responsible gene defect in an affected family member is important. If the test result is positive there is an uncertainty whether the disease will develop or not, when and in which degree, which is founded in the geno-/phenotype correlation. The individual risk estimation is based upon empirical evidence. The test results affect the whole family. Currently, primary prevention is possible for familial adenomatous polyposis (celecoxib, prophylactic colectomy) and for hereditary mamma carcinoma (prophylactic mastectomy). The so-called preventive medical check-ups are early detection examinations. The evidence about early detection methods for colorectal cancer is better than for breast cancer. Prophylactic mastectomy (PM) reduces the relative breast cancer risk by approximately 90%. The question is if PM has an impact on mortality. The acceptance of PM is culture-dependent. Colectomy can be used as a prophylactic (FAP) and therapeutic method. After surgery, the cancer risk remains high and so early detection examinations are still necessary. EVIDENCE-BASED STATEMENTS: The evidence is often fragmentary and of limited quality. For objective test result presentation information about sensitivity, specificity, positive predictive value, and number needed to screen and treat, respectively, are necessary. New identification of mutations and demand will lead to an increase of predictive genetic counselling and testing. There is a gap between predictive genetic diagnosis and prediction, prevention, early detection and surgical interventions. These circumstances require a basic strategy. Since predictive genetic diagnosis is a very sensitive issue it is important to deal with it carefully in order to avoid inappropriate hopes. Thus, media, experts and politicians need to consider opportunities and limitations in their daily decision-making processes.
Silva-Brandão, Karina Lucas; Peruchi, Aline; Seraphim, Noemy; Murad, Natália Faraj; Carvalho, Renato Assis; Farias, Juliano Ricardo; Omoto, Celso; Cônsoli, Fernando Luis; Figueira, Antonio; Brandão, Marcelo Mendes
2018-01-01
We applied the ddRAD genotyping-by-sequencing technique to investigate the genetic distinctiveness of Brazilian populations of the noctuid moth Spodoptera frugiperda, the fall armyworm (FAW), and the role of host-plant association as a source of genetic diversification. By strain-genotyping all field-collected individuals we found that populations collected from corn were composed primarily of corn-strain individuals, while the population collected from rice was composed almost entirely of rice-strain individuals. Outlier analyses indicated 1,184 loci putatively under selection (ca. 15% of the total) related to 194 different Gene Ontologies (GOs); the most numerous GOs were nucleotide binding, ATP binding, metal-ion binding and nucleic-acid binding. The association analyses indicated 326 loci associated with the host plant, and 216 loci associated with the individual strain, including functions related to Bacillus thuringiensis and insecticide resistance. The genetic-structure analyses indicated a moderate level of differentiation among all populations, and lower genetic structure among populations collected exclusively from corn, which suggests that the population collected from rice has a strong influence on the overall genetic structure. Populations of S. frugiperda are structured partially due to the host plant, and pairs of populations using the same host plant are more genetically similar than pairs using different hosts. Loci putatively under selection are the main factors responsible for the genetic structure of these populations, which indicates that adaptive selection on important traits, including the response to control tactics, is acting in the genetic differentiation of FAW populations in Brazil.
Peruchi, Aline; Seraphim, Noemy; Murad, Natália Faraj; Carvalho, Renato Assis; Farias, Juliano Ricardo; Omoto, Celso; Cônsoli, Fernando Luis; Figueira, Antonio; Brandão, Marcelo Mendes
2018-01-01
We applied the ddRAD genotyping-by-sequencing technique to investigate the genetic distinctiveness of Brazilian populations of the noctuid moth Spodoptera frugiperda, the fall armyworm (FAW), and the role of host-plant association as a source of genetic diversification. By strain-genotyping all field-collected individuals we found that populations collected from corn were composed primarily of corn-strain individuals, while the population collected from rice was composed almost entirely of rice-strain individuals. Outlier analyses indicated 1,184 loci putatively under selection (ca. 15% of the total) related to 194 different Gene Ontologies (GOs); the most numerous GOs were nucleotide binding, ATP binding, metal-ion binding and nucleic-acid binding. The association analyses indicated 326 loci associated with the host plant, and 216 loci associated with the individual strain, including functions related to Bacillus thuringiensis and insecticide resistance. The genetic-structure analyses indicated a moderate level of differentiation among all populations, and lower genetic structure among populations collected exclusively from corn, which suggests that the population collected from rice has a strong influence on the overall genetic structure. Populations of S. frugiperda are structured partially due to the host plant, and pairs of populations using the same host plant are more genetically similar than pairs using different hosts. Loci putatively under selection are the main factors responsible for the genetic structure of these populations, which indicates that adaptive selection on important traits, including the response to control tactics, is acting in the genetic differentiation of FAW populations in Brazil. PMID:29787608
Epilepsy Genetics—Past, Present, and Future
Poduri, Annapurna; Lowenstein, Daniel
2014-01-01
Human epilepsy is a common and heterogeneous condition in which genetics play an important etiological role. We begin by reviewing the past history of epilepsy genetics, a field that has traditionally included studies of pedigrees with epilepsy caused by defects in ion channels and neurotransmitters. We highlight important recent discoveries that have expanded the field beyond the realm of channels and neurotransmitters and that have challenged the notion that single genes produce single disorders. Finally, we project toward an exciting future for epilepsy genetics as large-scale collaborative phenotyping studies come face to face with new technologies in genomic medicine. PMID:21277190
Investigating the relationship between iron and depression.
Mills, Natalie T; Maier, Robert; Whitfield, John B; Wright, Margaret J; Colodro-Conde, Lucia; Byrne, Enda M; Scott, James G; Byrne, Gerard J; Hansell, Narelle K; Vinkhuyzen, Anna A E; CouvyDuchesne, Baptiste; Montgomery, Grant W; Henders, Anjali K; Martin, Nicholas G; Wray, Naomi R; Benyamin, Beben
2017-11-01
Lower levels of circulating iron have been associated with depression. Our objective was to investigate the phenotypic and genetic relationship between measures of circulating levels of iron (serum iron, transferrin, transferrin saturation, and ferritin) and depressive symptoms. Data were available from ongoing studies at QIMR Berghofer Medical Research Institute (QIMRB), including twin adolescents (mean age 15.1 years, standard deviation (SD) 3.2 years), and twin adults (mean age 23.2 years, SD 2.2 years). In the adolescent cohort, there were 3416 participants from 1688 families. In the adult cohort there were 9035 participants from 4533 families. We estimated heritabilities of, and phenotypic and genetic correlations between, traits. We conducted analyses that linked results from published large-scale genome-wide association studies (including iron and Major Depressive Disorder) with our study samples using single SNP and multi-SNP genetic risk score analyses, and LD score regression analyses. In both cohorts, measures of iron, transferrin, transferrin saturation, and log 10 of ferritin (L10Fer) were all highly heritable, while depressive measures were moderately heritable. In adolescents, depression measures were higher in those in the middle 10th versus top 10th percentile of transferrin saturation measures (p = 0.002). Genetic profile risk scores of the iron measures were not significantly associated with depression in study participants. LD score analyses showed no significant genetic relationship between iron and depression. Genetic factors strongly influence iron measures in adolescents and adults. Using several different strategies we find no evidence for a genetic contribution to the relationship between blood measures of iron and measures of depression. Copyright © 2017 Elsevier Ltd. All rights reserved.
Monoallelic Gene Expression in Mammals.
Chess, Andrew
2016-11-23
Monoallelic expression not due to cis-regulatory sequence polymorphism poses an intriguing problem in epigenetics because it requires the unequal treatment of two segments of DNA that are present in the same nucleus and that can indeed have absolutely identical sequences. Here, I focus on a few recent developments in the field of monoallelic expression that are of particular interest and raise interesting questions for future work. One development is regarding analyses of imprinted genes, in which recent work suggests the possibility that intriguing networks of imprinted genes exist and are important for genetic and physiological studies. Another issue that has been raised in recent years by a number of publications is the question of how skewed allelic expression should be for it to be designated as monoallelic expression and, further, what methods are appropriate or inappropriate for analyzing genomic data to examine allele-specific expression. Perhaps the most exciting recent development in mammalian monoallelic expression is a clever and carefully executed analysis of genetic diversity of autosomal genes subject to random monoallelic expression (RMAE), which provides compelling evidence for distinct evolutionary forces acting on random monoallelically expressed genes.
Genes and exercise intolerance: insights from McArdle disease.
Nogales-Gadea, Gisela; Godfrey, Richard; Santalla, Alfredo; Coll-Cantí, Jaume; Pintos-Morell, Guillem; Pinós, Tomàs; Arenas, Joaquín; Martín, Miguel Angel; Lucia, Alejandro
2016-02-01
McArdle disease (glycogen storage disease type V) is caused by inherited deficiency of a key enzyme in muscle metabolism, the skeletal muscle-specific isoform of glycogen phosphorylase, "myophosphorylase," which is encoded by the PYGM gene. Here we review the main pathophysiological, genotypic, and phenotypic features of McArdle disease and their interactions. To date, moderate-intensity exercise (together with pre-exercise carbohydrate ingestion) is the only treatment option that has proven useful for these patients. Furthermore, regular physical activity attenuates the clinical severity of McArdle disease. This is quite remarkable for a monogenic disorder that consistently leads to the same metabolic defect at the muscle tissue level, that is, complete inability to use muscle glycogen stores. Further knowledge of this disorder would help patients and enhance understanding of exercise metabolism as well as exercise genomics. Indeed, McArdle disease is a paradigm of human exercise intolerance and PYGM genotyping should be included in the genetic analyses that might be applied in the coming personalized exercise medicine as well as in future research on genetics and exercise-related phenotypes. Copyright © 2016 the American Physiological Society.
Functional toxicology: tools to advance the future of toxicity testing
Gaytán, Brandon D.; Vulpe, Chris D.
2014-01-01
The increased presence of chemical contaminants in the environment is an undeniable concern to human health and ecosystems. Historically, by relying heavily upon costly and laborious animal-based toxicity assays, the field of toxicology has often neglected examinations of the cellular and molecular mechanisms of toxicity for the majority of compounds—information that, if available, would strengthen risk assessment analyses. Functional toxicology, where cells or organisms with gene deletions or depleted proteins are used to assess genetic requirements for chemical tolerance, can advance the field of toxicity testing by contributing data regarding chemical mechanisms of toxicity. Functional toxicology can be accomplished using available genetic tools in yeasts, other fungi and bacteria, and eukaryotes of increased complexity, including zebrafish, fruit flies, rodents, and human cell lines. Underscored is the value of using less complex systems such as yeasts to direct further studies in more complex systems such as human cell lines. Functional techniques can yield (1) novel insights into chemical toxicity; (2) pathways and mechanisms deserving of further study; and (3) candidate human toxicant susceptibility or resistance genes. PMID:24847352
Jia, Huixia; Yang, Haifeng; Sun, Pei; Li, Jianbo; Zhang, Jin; Guo, Yinghua; Han, Xiaojiao; Zhang, Guosheng; Lu, Mengzhu; Hu, Jianjun
2016-01-01
Salix psammophila, a sandy shrub known as desert willow, is regarded as a potential biomass feedstock and plays an important role in maintaining local ecosystems. However, a lack of genomic data and efficient molecular markers limit the study of its population evolution and genetic breeding. In this study, chromosome counts, flow cytometry and SSR analyses indicated that S. psammophila is tetraploid. A total of 6,346 EST-SSRs were detected based on 71,458 de novo assembled unigenes from transcriptome data. Twenty-seven EST-SSR markers were developed to evaluate the genetic diversity and population structure of S. psammophila from eight natural populations in Northern China. High levels of genetic diversity (mean 10.63 alleles per locus; mean HE 0.689) were dectected in S. psammophila. The weak population structure and little genetic differentiation (pairwise FST = 0.006–0.016) were found among Population 1-Population 7 (Pop1-Pop7; Inner Mongolia and Shaanxi), but Pop8 (Ningxia) was clearly separated from Pop1-Pop7 and moderate differentiation (pairwise FST = 0.045–0.055) was detected between them, which may be influenced by local habitat conditions. Molecular variance analyses indicated that most of the genetic variation (94.27%) existed within populations. These results provide valuable genetic informations for natural resource conservation and breeding programme optimisation of S. psammophila. PMID:27995985