Villarreal, Miguel; Labiosa, Bill; Aiello, Danielle
2017-05-23
The Puget Sound Basin, Washington, has experienced rapid urban growth in recent decades, with varying impacts to local ecosystems and natural resources. To plan for future growth, land managers often use scenarios to assess how the pattern and volume of growth may affect natural resources. Using three different land-management scenarios for the years 2000–2060, we assessed various spatial patterns of urban growth relative to maps depicting a model-based characterization of the ecological integrity and recent development pressure of individual land parcels. The three scenarios depict future trajectories of land-use change under alternative management strategies—status quo, managed growth, and unconstrained growth. The resulting analysis offers a preliminary assessment of how future growth patterns in the Puget Sound Basin may impact land targeted for conservation and how short-term metrics of land-development pressure compare to longer term growth projections.
Human Population: Fundamentals of Growth and Change.
ERIC Educational Resources Information Center
Stauffer, Cheryl Lynn, Ed.
This booklet focuses on eight elements of population dynamics: "Population Growth and Distribution"; "Natural Increase and Future Growth"; "Effect of Migration on Population Growth"; "Three Patterns of Population Change"; "Patterns of World Urbanization"; "The Status of Women";…
The Uniform Pattern of Growth and Skeletal Maturation during the Human Adolescent Growth Spurt.
Sanders, James O; Qiu, Xing; Lu, Xiang; Duren, Dana L; Liu, Raymond W; Dang, Debbie; Menendez, Mariano E; Hans, Sarah D; Weber, David R; Cooperman, Daniel R
2017-12-01
Humans are one of the few species undergoing an adolescent growth spurt. Because children enter the spurt at different ages making age a poor maturity measure, longitudinal studies are necessary to identify the growth patterns and identify commonalities in adolescent growth. The standard maturity determinant, peak height velocity (PHV) timing, is difficult to estimate in individuals due to diurnal, postural, and measurement variation. Using prospective longitudinal populations of healthy children from two North American populations, we compared the timing of the adolescent growth spurt's peak height velocity to normalized heights and hand skeletal maturity radiographs. We found that in healthy children, the adolescent growth spurt is standardized at 90% of final height with similar patterns for children of both sexes beginning at the initiation of the growth spurt. Once children enter the growth spurt, their growth pattern is consistent between children with peak growth at 90% of final height and skeletal maturity closely reflecting growth remaining. This ability to use 90% of final height as easily identified important maturity standard with its close relationship to skeletal maturity represents a significant advance allowing accurate prediction of future growth for individual children and accurate maturity comparisons for future studies of children's growth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Y.
1993-01-01
Based on model approaches, three conifer species, red pine, Norway spruce and Scots pine grown in plantations at Pack Demonstration Forest, in the southeastern Adirondack mountains of New York, were chosen to study growth response to different environmental changes, including silvicultural treatments and changes in climate and chemical environment. Detailed stem analysis data provided a basis for constructing tree growth models. These models were organized into three groups: morphological, dynamic and predictive. The morphological model was designed to evaluate relationship between tree attributes and interactive influences of intrinsic and extrinsic factors on the annual increments. Three types of morphological patternsmore » have been characterized: space-time patterns of whole-stem rings, intrinsic wood deposition pattern along the tree-stem, and bolewood allocation ratio patterns along the tree-stem. The dynamic model reflects the growth process as a system which responds to extrinsic signal inputs, including fertilization pulses, spacing effects and climatic disturbance, as well as intrinsic feedback. Growth signals indicative of climatic effects were used to construct growth-climate models using both multivariate analysis and Kalman filter methods. The predictive model utilized GCMs and growth-climate relationships to forecast tree growth responses in relation to future scenarios of CO[sub 2]-induced climate change. Prediction results indicate that different conifer species have individualistic growth response to future climatic change and suggest possible changes in future growth and distribution of naturally occurring conifers in this region.« less
EVALUATING THE IMPACT OF POLICY OPTIONS ON AGRICULTURAL LANDSCAPES: AN ALTERNATIVE-FUTURES APPROACH
Alternative-futures analysis was used to analyze different scenarios of future growth patterns and attendant resource allocations on the agricultural system of Oregon's Willamette River Basin. A stakeholder group formulated three policy alternatives: a continuation of current tr...
Forecasting urban growth across the United States-Mexico border
Norman, L.M.; Feller, M.; Phillip, Guertin D.
2009-01-01
The sister-city area of Nogales, Arizona, and Nogales, Sonora, Mexico, is known collectively as Ambos (both) Nogales. This area was historically one city and was administratively divided by the Gadsden Purchase in 1853. These arid-lands have limited and sensitive natural resources. Environmental planning can support sustainable development to accommodate the predicted influx of population. The objective of this research is to quantify the amount of predicted urban growth for the Ambos Nogales watershed to support future planning for sustainable development. Two modeling regimes are explored. Our goal is to identify possible growth patterns associated with the twin-city area as a whole and with the two cities modeled as separate entities. We analyzed the cross-border watershed using regression analysis from satellite images from 1975, 1983, 1996, and 2002 and created urban area classifications. We used these classifications as input to the urban growth model, SLEUTH, to simulate likely patterns of development and define projected conversion probabilities. Model results indicate that the two cities are undergoing very different patterns of change and identify locations of expected growth based on historical development. Growth in Nogales, Arizona is stagnant while the urban area in Nogales, Sonora is exploding. This paper demonstrates an application that portrays how future binational urban growth could develop and affect the environment. This research also provides locations of potential growth for use in city planning.
McKenzie, D.; Hessl, Amy E.; Peterson, D.L.
2001-01-01
We explored spatial patterns of low-frequency variability in radial tree growth among western North American conifer species and identified predictors of the variability in these patterns. Using 185 sites from the International Tree-Ring Data Bank, each of which contained 10a??60 raw ring-width series, we rebuilt two chronologies for each site, using two conservative methods designed to retain any low-frequency variability associated with recent environmental change. We used factor analysis to identify regional low-frequency patterns in site chronologies and estimated the slope of the growth trend since 1850 at each site from a combination of linear regression and time-series techniques. This slope was the response variable in a regression-tree model to predict the effects of environmental gradients and species-level differences on growth trends. Growth patterns at 27 sites from the American Southwest were consistent with quasi-periodic patterns of drought. Either 12 or 32 of the 185 sites demonstrated patterns of increasing growth between 1850 and 1980 A.D., depending on the standardization technique used. Pronounced growth increases were associated with high-elevation sites (above 3000 m) and high-latitude sites in maritime climates. Future research focused on these high-elevation and high-latitude sites should address the precise mechanisms responsible for increased 20th century growth.
Zhang, Wenting; Wang, Haijun; Han, Fengxiang; Gao, Juan; Nguyen, Thuminh; Chen, Yarong; Huang, Bo; Zhan, F Benjamin; Zhou, Lequn; Hong, Song
2014-11-01
Urban growth is an unavoidable process caused by economic development and population growth. Traditional urban growth models represent the future urban growth pattern by repeating the historical urban growth regulations, which can lead to a lot of environmental problems. The Yangtze watershed is the largest and the most prosperous economic area in China, and it has been suffering from rapid urban growth from the 1970s. With the built-up area increasing from 23,238 to 31,054 km(2) during the period from 1980 to 2005, the watershed has suffered from serious nonpoint source (NPS) pollution problems, which have been mainly caused by the rapid urban growth. To protect the environment and at the same time maintain the economic development, a multiobjective optimization (MOP) is proposed to tradeoff the multiple objectives during the urban growth process of the Yangtze watershed. In particular, the four objectives of minimization of NPS pollution, maximization of GDP value, minimization of the spatial incompatibility between the land uses, and minimization of the cost of land-use change are considered by the MOP approach. Conventionally, a genetic algorithm (GA) is employed to search the Pareto solution set. In our MOP approach, a two-dimensional GA, rather than the traditional one-dimensional GA, is employed to assist with the search for the spatial optimization solution, where the land-use cells in the two-dimensional space act as genes in the GA. Furthermore, to confirm the superiority of the MOP approach over the traditional prediction approaches, a widely used urban growth prediction model, cellular automata (CA), is also carried out to allow a comparison with the Pareto solution of MOP. The results indicate that the MOP approach can make a tradeoff between the multiple objectives and can achieve an optimal urban growth pattern for Yangtze watershed, while the CA prediction model just represents the historical urban growth pattern as the future growth pattern. Moreover, according to the spatial clustering index, the urban growth pattern predicted through MOP is more reasonable. In summary, the proposed model provides a set of Pareto urban growth solutions, which compromise environmental and economic issues for the Yangtze watershed.
Genetics and Genomics of Longitudinal Lung Function Patterns in Individuals with Asthma
Yates, Katherine P.; Zhou, Xiaobo; Guo, Feng; Sternberg, Alice L.; Van Natta, Mark L.; Wise, Robert A.; Szefler, Stanley J.; Sharma, Sunita; Kho, Alvin T.; Cho, Michael H.; Croteau-Chonka, Damien C.; Castaldi, Peter J.; Jain, Gaurav; Sanyal, Amartya; Zhan, Ye; Lajoie, Bryan R.; Dekker, Job; Stamatoyannopoulos, John; Covar, Ronina A.; Zeiger, Robert S.; Adkinson, N. Franklin; Williams, Paul V.; Kelly, H. William; Grasemann, Hartmut; Vonk, Judith M.; Koppelman, Gerard H.; Postma, Dirkje S.; Raby, Benjamin A.; Houston, Isaac; Lu, Quan; Fuhlbrigge, Anne L.; Tantisira, Kelan G.; Silverman, Edwin K.; Tonascia, James; Strunk, Robert C.; Weiss, Scott T.
2016-01-01
Rationale: Patterns of longitudinal lung function growth and decline in childhood asthma have been shown to be important in determining risk for future respiratory ailments including chronic airway obstruction and chronic obstructive pulmonary disease. Objectives: To determine the genetic underpinnings of lung function patterns in subjects with childhood asthma. Methods: We performed a genome-wide association study of 581 non-Hispanic white individuals with asthma that were previously classified by patterns of lung function growth and decline (normal growth, normal growth with early decline, reduced growth, and reduced growth with early decline). The strongest association was also measured in two additional cohorts: a small asthma cohort and a large chronic obstructive pulmonary disease metaanalysis cohort. Interaction between the genomic region encompassing the most strongly associated single-nucleotide polymorphism and nearby genes was assessed by two chromosome conformation capture assays. Measurements and Main Results: An intergenic single-nucleotide polymorphism (rs4445257) on chromosome 8 was strongly associated with the normal growth with early decline pattern compared with all other pattern groups (P = 6.7 × 10−9; odds ratio, 2.8; 95% confidence interval, 2.0–4.0); replication analysis suggested this variant had opposite effects in normal growth with early decline and reduced growth with early decline pattern groups. Chromosome conformation capture experiments indicated a chromatin interaction between rs4445257 and the promoter of the distal CSMD3 gene. Conclusions: Early decline in lung function after normal growth is associated with a genetic polymorphism that may also protect against early decline in reduced growth groups. Clinical trial registered with www.clinicaltrials.gov (NCT00000575). PMID:27367781
NASA Astrophysics Data System (ADS)
Gomben, Peter; Lilieholm, Robert; Gonzalez-Guillen, Manuel
2012-02-01
During the post-World War II era, the Mojave Desert Region of San Bernardino County, California, has experienced rapid levels of population growth. Over the past several decades, growth has accelerated, accompanied by significant shifts in ethnic composition, most notably from predominantly White non-Hispanic to Hispanic. This study explores the impacts of changing ethnicity on future development and the loss of open space by modeling ethnic propensities regarding family size and settlement preferences reflected by U.S. Census Bureau data. Demographic trends and land conversion data were obtained for seven Mojave Desert communities for the period between 1990 and 2001. Using a spatially explicit, logistic regression-based urban growth model, these data and trends were used to project community-specific future growth patterns from 2000 to 2020 under three future settlement scenarios: (1) an "historic" scenario reported in earlier research that uses a Mojave-wide average settlement density of 3.76 persons/ha; (2) an "existing" scenario based on community-specific settlement densities as of 2001; and (3) a "demographic futures" scenario based on community-specific settlement densities that explicitly model the Region's changing ethnicity. Results found that under the demographic futures scenario, by 2020 roughly 53% of within-community open space would remain, under the existing scenario only 40% would remain, and under the historic scenario model the communities would have what amounts to a deficit of open space. Differences in the loss of open space across the scenarios demonstrate the importance of considering demographic trends that are reflective of the residential needs and preferences of projected future populations.
Gomben, Peter; Lilieholm, Robert; Gonzalez-Guillen, Manuel
2012-02-01
During the post-World War II era, the Mojave Desert Region of San Bernardino County, California, has experienced rapid levels of population growth. Over the past several decades, growth has accelerated, accompanied by significant shifts in ethnic composition, most notably from predominantly White non-Hispanic to Hispanic. This study explores the impacts of changing ethnicity on future development and the loss of open space by modeling ethnic propensities regarding family size and settlement preferences reflected by U.S. Census Bureau data. Demographic trends and land conversion data were obtained for seven Mojave Desert communities for the period between 1990 and 2001. Using a spatially explicit, logistic regression-based urban growth model, these data and trends were used to project community-specific future growth patterns from 2000 to 2020 under three future settlement scenarios: (1) an "historic" scenario reported in earlier research that uses a Mojave-wide average settlement density of 3.76 persons/ha; (2) an "existing" scenario based on community-specific settlement densities as of 2001; and (3) a "demographic futures" scenario based on community-specific settlement densities that explicitly model the Region's changing ethnicity. Results found that under the demographic futures scenario, by 2020 roughly 53% of within-community open space would remain, under the existing scenario only 40% would remain, and under the historic scenario model the communities would have what amounts to a deficit of open space. Differences in the loss of open space across the scenarios demonstrate the importance of considering demographic trends that are reflective of the residential needs and preferences of projected future populations.
Biological invasion hotspots: a trait-based perspective reveals new sub-continental patterns
Basil V. Iannone III; Kevin M. Potter; Qinfeng Guo; Andrew M. Liebhold; Bryan C. Pijanowski; Christopher M. Oswalt; Songlin Fei
2015-01-01
Invader traits (including plant growth form) may play an important, and perhaps overlooked, role in determining macroscale patterns of biological invasions and therefore warrant greater consideration in future investigations aimed at understanding these patterns. To assess this need, we used empirical data from a national-level survey of forest in the contiguous 48...
Shishkova, Svetlana; García-Mendoza, Edith; Castillo-Díaz, Vicente; Moreno, Norma E; Arellano, Jesús; Dubrovsky, Joseph G
2007-05-01
In some Sonoran Desert Cactaceae the primary root has a determinate root growth: the cells of the root apical meristem undergo only a few cell division cycles and then differentiate. The determinate growth of primary roots in Cactaceae was found in plants cultivated under various growth conditions, and could not be reverted by any treatment tested. The mechanisms involved in root meristem maintenance and determinate root growth in plants remain poorly understood. In this study, we have shown that roots regenerated from the callus of two Cactaceae species, Stenocereus gummosus and Ferocactus peninsulae, have a determinate growth pattern, similar to that of the primary root. To demonstrate this, a protocol for root regeneration from callus was established. The determinate growth pattern of roots regenerated from callus suggests that the program of root development is very stable in these species. These findings will permit future analysis of the role of certain Cactaceae genes in the determinate pattern of root growth via the regeneration of transgenic roots from transformed calli.
S.B. McLaughlin; S.D. Wullschleger; G. Sun
2007-01-01
A lack of data on responses of mature tree growth and water use to ambient ozone (O3) concentrations has been a major limitation in efforts to understand and model responses of forests to current and future changes in climate.Here, hourly to seasonal patterns of stem growth and sap flow velocity were...
NASA Astrophysics Data System (ADS)
Zhao, Yaolong; Zhao, Junsan; Murayama, Yuji
2008-10-01
The period of high economic growth in Japan which began in the latter half of the 1950s led to a massive migration of population from rural regions to the Tokyo metropolitan area. This phenomenon brought about rapid urban growth and urban structure changes in this area. Purpose of this study is to establish a constrained CA (Cellular Automata) model with GIS (Geographical Information Systems) to simulate urban growth pattern in the Tokyo metropolitan area towards predicting urban form and landscape for the near future. Urban land-use is classified into multi-categories for interpreting the effect of interaction among land-use categories in the spatial process of urban growth. Driving factors of urban growth pattern, such as land condition, railway network, land-use zoning, random perturbation, and neighborhood interaction and so forth, are explored and integrated into this model. These driving factors are calibrated based on exploratory spatial data analysis (ESDA), spatial statistics, logistic regression, and "trial and error" approach. The simulation is assessed at both macro and micro classification levels in three ways: visual approach; fractal dimension; and spatial metrics. Results indicate that this model provides an effective prototype to simulate and predict urban growth pattern of the Tokyo metropolitan area.
Uncertainty of wheat water use: Simulated patterns and sensitivity to temperature and CO2
USDA-ARS?s Scientific Manuscript database
Projected global warming and population growth will reduce water availability for agriculture, so it is essential to increase the effective use of water to ensure future crop productivity. Quantifying future crop water use (WU; i.e. actual evapotranspiration) is a critical step towards this goal. Th...
Foster, Jane R.; D'Amato, Anthony W.; Bradford, John B.
2014-01-01
Forest biomass growth is almost universally assumed to peak early in stand development, near canopy closure, after which it will plateau or decline. The chronosequence and plot remeasurement approaches used to establish the decline pattern suffer from limitations and coarse temporal detail. We combined annual tree ring measurements and mortality models to address two questions: first, how do assumptions about tree growth and mortality influence reconstructions of biomass growth? Second, under what circumstances does biomass production follow the model that peaks early, then declines? We integrated three stochastic mortality models with a census tree-ring data set from eight temperate forest types to reconstruct stand-level biomass increments (in Minnesota, USA). We compared growth patterns among mortality models, forest types and stands. Timing of peak biomass growth varied significantly among mortality models, peaking 20–30 years earlier when mortality was random with respect to tree growth and size, than when mortality favored slow-growing individuals. Random or u-shaped mortality (highest in small or large trees) produced peak growth 25–30 % higher than the surviving tree sample alone. Growth trends for even-aged, monospecific Pinus banksiana or Acer saccharum forests were similar to the early peak and decline expectation. However, we observed continually increasing biomass growth in older, low-productivity forests of Quercus rubra, Fraxinus nigra, and Thuja occidentalis. Tree-ring reconstructions estimated annual changes in live biomass growth and identified more diverse development patterns than previous methods. These detailed, long-term patterns of biomass development are crucial for detecting recent growth responses to global change and modeling future forest dynamics.
Ong, Joyce J L; Rountrey, Adam N; Black, Bryan A; Nguyen, Hoang Minh; Coulson, Peter G; Newman, Stephen J; Wakefield, Corey B; Meeuwig, Jessica J; Meekan, Mark G
2018-05-01
Entrainment of growth patterns of multiple species to single climatic drivers can lower ecosystem resilience and increase the risk of species extinction during stressful climatic events. However, predictions of the effects of climate change on the productivity and dynamics of marine fishes are hampered by a lack of historical data on growth patterns. We use otolith biochronologies to show that the strength of a boundary current, modulated by the El Niño-Southern Oscillation, accounted for almost half of the shared variance in annual growth patterns of five of six species of tropical and temperate marine fishes across 23° of latitude (3000 km) in Western Australia. Stronger flow during La Niña years drove increased growth of five species, whereas weaker flow during El Niño years reduced growth. Our work is the first to link the growth patterns of multiple fishes with a single oceanographic/climate phenomenon at large spatial scales and across multiple climate zones, habitat types, trophic levels and depth ranges. Extreme La Niña and El Niño events are predicted to occur more frequently in the future and these are likely to have implications for these vulnerable ecosystems, such as a limited capacity of the marine taxa to recover from stressful climatic events. © 2018 John Wiley & Sons Ltd.
Cohort profile: Pacific Islands Families (PIF) growth study, Auckland, New Zealand
Rush, E; Oliver, M; Plank, L D; Taylor, S; Iusitini, L; Jalili-Moghaddam, S; Savila, F; Paterson, J; Tautolo, E
2016-01-01
Purpose This article profiles a birth cohort of Pacific children participating in an observational prospective study and describes the study protocol used at ages 14–15 years to investigate how food and activity patterns, metabolic risk and family and built environment are related to rates of physical growth of Pacific children. Participants From 2000 to 2015, the Pacific Islands Families Study has followed, from birth, the growth and development of over 1000 Pacific children born in Auckland, New Zealand. In 2014, 931 (66%) of the original cohort had field measures of body composition, blood pressure and glycated haemoglobin. A nested subsample (n=204) was drawn by randomly selecting 10 males and 10 females from each decile of body weight. These participants had measurement of body composition by dual-energy X-ray absorptiometry, food frequency, 6 min walk test and accelerometer-determined physical activity and sedentary behaviours, and blood biomarkers for metabolic disease such as diabetes. Built environment variables were generated from individual addresses. Findings to date Compared to the Centres for Disease Control and Prevention (CDC) reference population with mean SD scores (SDS) of 0, this cohort of 931 14-year-olds was taller, weighed more and had a higher body mass index (BMI) (mean SDS height >0.6, weight >1.6 and BMI >1.4). 7 of 10 youth were overweight or obese. The nested-sampling frame achieved an even distribution by body weight. Future plans Cross-sectional relationships between body size, fatness and growth rate, food patterns, activity patterns, pubertal development, risks for diabetes and hypertension and the family and wider environment will be examined. In addition, analyses will investigate relationships with data collected earlier in the life course and measures of the cohort in the future. Understanding past and present influences on child growth and health will inform timely interventions to optimise future health and reduce inequalities for Pacific people. PMID:27807091
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duchkov, A. A., E-mail: DuchkovAA@ipgg.sbras.ru; Novosibirsk State University, Novosibirsk, 630090; Stefanov, Yu. P., E-mail: stefanov@ispms.tsc.ru
2015-10-27
We have developed and illustrated an approach for geomechanic modeling of elastic wave generation (microsiesmic event occurrence) during incremental fracture growth. We then derived properties of effective point seismic sources (radiation patterns) approximating obtained wavefields. These results establish connection between geomechanic models of hydraulic fracturing and microseismic monitoring. Thus, the results of the moment tensor inversion of microseismic data can be related to different geomechanic scenarios of hydraulic fracture growth. In future, the results can be used for calibrating hydrofrac models. We carried out a series of numerical simulations and made some observations about wave generation during fracture growth. Inmore » particular when the growing fracture hits pre-existing crack then it generates much stronger microseismic event compared to fracture growth in homogeneous medium (radiation pattern is very close to the theoretical dipole-type source mechanism)« less
NASA Astrophysics Data System (ADS)
Tabi Tataw, James; Baier, Fabian; Krottenthaler, Florian; Pachler, Bernadette; Schwaiger, Elisabeth; Whylidal, Stefan; Formayer, Herbert; Hösch, Johannes; Baumgarten, Andreas; Zaller, Johann G.
2014-05-01
Wheat is a crop of global importance supplying more than half of the world's population with carbohydrates. We examined, whether climate change induced rainfall patterns towards less frequent but heavier events alter wheat agroecosystem productivity and functioning under three different soil types. Therefore, in a full-factorial experiment Triticum aestivum L. was cultivated in 3 m2 lysimeter plots containing the soil types sandy calcaric phaeozem, gleyic phaeozem or calcic chernozem. Prognosticated rainfall patterns based on regionalised climate change model calculations were compared with current long-term rainfall patterns; each treatment combination was replicated three times. Future rainfall patterns significantly reduced wheat growth and yield, reduced the leaf area index, accelerated crop development, reduced arbuscular mycorrhizal fungi colonisation of roots, increased weed density and the stable carbon isotope signature (δ13C) of both old and young wheat leaves. Different soil types affected wheat growth and yield, ecosystem root production as well as weed abundance and biomass. The interaction between climate and soil type was significant only for the harvest index. Our results suggest that even slight changes in rainfall patterns can significantly affect the functioning of wheat agroecosystems. These rainfall effects seemed to be little influenced by soil types suggesting more general impacts of climate change across different soil types. Wheat production under future conditions will likely become more challenging as further concurrent climate change factors become prevalent.
Chowell, Gerardo; Viboud, Cécile; Hyman, James M; Simonsen, Lone
2015-01-21
While many infectious disease epidemics are initially characterized by an exponential growth in time, we show that district-level Ebola virus disease (EVD) outbreaks in West Africa follow slower polynomial-based growth kinetics over several generations of the disease. We analyzed epidemic growth patterns at three different spatial scales (regional, national, and subnational) of the Ebola virus disease epidemic in Guinea, Sierra Leone and Liberia by compiling publicly available weekly time series of reported EVD case numbers from the patient database available from the World Health Organization website for the period 05-Jan to 17-Dec 2014. We found significant differences in the growth patterns of EVD cases at the scale of the country, district, and other subnational administrative divisions. The national cumulative curves of EVD cases in Guinea, Sierra Leone, and Liberia show periods of approximate exponential growth. In contrast, local epidemics are asynchronous and exhibit slow growth patterns during 3 or more EVD generations, which can be better approximated by a polynomial than an exponential function. The slower than expected growth pattern of local EVD outbreaks could result from a variety of factors, including behavior changes, success of control interventions, or intrinsic features of the disease such as a high level of clustering. Quantifying the contribution of each of these factors could help refine estimates of final epidemic size and the relative impact of different mitigation efforts in current and future EVD outbreaks.
Chowell, Gerardo; Viboud, Cécile; Hyman, James M; Simonsen, Lone
2015-01-01
Background: While many infectious disease epidemics are initially characterized by an exponential growth in time, we show that district-level Ebola virus disease (EVD) outbreaks in West Africa follow slower polynomial-based growth kinetics over several generations of the disease. Methods: We analyzed epidemic growth patterns at three different spatial scales (regional, national, and subnational) of the Ebola virus disease epidemic in Guinea, Sierra Leone and Liberia by compiling publicly available weekly time series of reported EVD case numbers from the patient database available from the World Health Organization website for the period 05-Jan to 17-Dec 2014. Results: We found significant differences in the growth patterns of EVD cases at the scale of the country, district, and other subnational administrative divisions. The national cumulative curves of EVD cases in Guinea, Sierra Leone, and Liberia show periods of approximate exponential growth. In contrast, local epidemics are asynchronous and exhibit slow growth patterns during 3 or more EVD generations, which can be better approximated by a polynomial than an exponential function. Conclusions: The slower than expected growth pattern of local EVD outbreaks could result from a variety of factors, including behavior changes, success of control interventions, or intrinsic features of the disease such as a high level of clustering. Quantifying the contribution of each of these factors could help refine estimates of final epidemic size and the relative impact of different mitigation efforts in current and future EVD outbreaks. PMID:25685633
Productivity Bargaining--Pattern for the Future?
ERIC Educational Resources Information Center
Smith, Ralph R.
1977-01-01
How to measure productivity increases in service occupations is a problem that still awaits a solution. Efforts being made in the federal sector to gauge productivity growth are discussed, along with implications in private-sector bargaining. (Editor/LBH)
Acemoglu, Daron; Akcigit, Ufuk; Kerr, William R.
2016-01-01
Technological progress builds upon itself, with the expansion of invention in one domain propelling future work in linked fields. Our analysis uses 1.8 million US patents and their citation properties to map the innovation network and its strength. Past innovation network structures are calculated using citation patterns across technology classes during 1975–1994. The interaction of this preexisting network structure with patent growth in upstream technology fields has strong predictive power on future innovation after 1995. This pattern is consistent with the idea that when there is more past upstream innovation for a particular technology class to build on, then that technology class innovates more. PMID:27681628
Nanostructures and functional materials fabricated by interferometric lithography.
Xia, Deying; Ku, Zahyun; Lee, S C; Brueck, S R J
2011-01-11
Interferometric lithography (IL) is a powerful technique for the definition of large-area, nanometer-scale, periodically patterned structures. Patterns are recorded in a light-sensitive medium, such as a photoresist, that responds nonlinearly to the intensity distribution associated with the interference of two or more coherent beams of light. The photoresist patterns produced with IL are a platform for further fabrication of nanostructures and growth of functional materials and are building blocks for devices. This article provides a brief review of IL technologies and focuses on various applications for nanostructures and functional materials based on IL including directed self-assembly of colloidal nanoparticles, nanophotonics, semiconductor materials growth, and nanofluidic devices. Perspectives on future directions for IL and emerging applications in other fields are presented.
Evidence for climate-driven synchrony of marine and terrestrial ecosystems in northwest Australia.
Ong, Joyce J L; Rountrey, Adam N; Zinke, Jens; Meeuwig, Jessica J; Grierson, Pauline F; O'Donnell, Alison J; Newman, Stephen J; Lough, Janice M; Trougan, Mélissa; Meekan, Mark G
2016-08-01
The effects of climate change are difficult to predict for many marine species because little is known of their response to climate variations in the past. However, long-term chronologies of growth, a variable that integrates multiple physical and biological factors, are now available for several marine taxa. These allow us to search for climate-driven synchrony in growth across multiple taxa and ecosystems, identifying the key processes driving biological responses at very large spatial scales. We hypothesized that in northwest (NW) Australia, a region that is predicted to be strongly influenced by climate change, the El Niño Southern Oscillation (ENSO) phenomenon would be an important factor influencing the growth patterns of organisms in both marine and terrestrial environments. To test this idea, we analyzed existing growth chronologies of the marine fish Lutjanus argentimaculatus, the coral Porites spp. and the tree Callitris columellaris and developed a new chronology for another marine fish, Lethrinus nebulosus. Principal components analysis and linear model selection showed evidence of ENSO-driven synchrony in growth among all four taxa at interannual time scales, the first such result for the Southern Hemisphere. Rainfall, sea surface temperatures, and sea surface salinities, which are linked to the ENSO system, influenced the annual growth of fishes, trees, and corals. All four taxa had negative relationships with the Niño-4 index (a measure of ENSO status), with positive growth patterns occurring during strong La Niña years. This finding implies that future changes in the strength and frequency of ENSO events are likely to have major consequences for both marine and terrestrial taxa. Strong similarities in the growth patterns of fish and trees offer the possibility of using tree-ring chronologies, which span longer time periods than those of fish, to aid understanding of both historical and future responses of fish populations to climate variation. © 2016 John Wiley & Sons Ltd.
Sociology of the growth/no-growth debate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humphrey, C.R.; Buttel, F.H.
The properties of conservative, liberal, and radical patterns in social science are analyzed and applied to the growth/no-growth debate in environmental policy literature. The fact that conservatives work with an evolutionary model of society suggests that environmental problems are imperfections to be remedied by science, technology, and the free market. Liberals recognize the benefits and costs of growth, and they articulate ways to minimize the costs through state regulation and planning. Radicals argue for state ownership of the means of production and new cultural values about growth as the only effective environmental policies. This analysis closes with a discussion ofmore » the future of the growth debate in terms of these paradigms. 40 references.« less
Urban vegetation and thermal patterns following city growth in different socio-economic contexts
NASA Astrophysics Data System (ADS)
Dronova, I.; Clinton, N.; Yang, J.; Radke, J.; Marx, S. S.; Gong, P.
2015-12-01
Urban expansion accompanied by losses of vegetated spaces and their ecological services raises significant concerns about the future of humans in metropolitan "habitats". Despite recent growth of urban studies globally, it is still not well understood how environmental effects of urbanization vary with the rate and socioeconomic context of development. Our study hypothesized that with urban development, spatial patterns of surface thermal properties and green plant cover would shift towards higher occurrence of relatively warmer and less vegetated spaces such as built-up areas, followed by losses of greener and cooler areas such as urban forests, and that these shifts would be more pronounced with higher rate of economic and/or population growth. To test these ideas, we compared 1992-2011 changes in remotely sensed patterns of green vegetation and surface temperature in three example cities that experienced peripheral growth under contrasting socio-economic context - Dallas, TX, USA, Beijing, China and Kyiv, Ukraine. To assess their transformation, we proposed a metric of thermal-vegetation angle (TVA) estimated from per-pixel proxies of vegetation greenness and surface temperature from Landsat satellite data and examined changes in TVA distributions within each city's core and two decadal zones of peripheral sprawl delineated from nighttime satellite data. We found that higher economic and population growth were coupled with more pronounced changes in TVA distributions, and more urbanized zones often exhibited higher frequencies of warmer, less green than average TVA values with novel patterns such as "cooler" clusters of building shadows. Although greener and cooler spaces generally diminished with development, they remained relatively prevalent in low-density residential areas of Dallas and peripheral zones of Kyiv with exurban subsistence farming. Overall, results indicate that the effects of modified green space and thermal patterns within growing cities highly vary depending on economy, population trends and historical legacies of planned green spaces. Remote sensing-based metrics such as TVA facilitate their comparisons and offer useful strategies to cost-effectively monitor urban transformation and inform more explicit environmental modeling of cities in the future.
The history of infrastructures and the future of cyberinfrastructure in the Earth system sciences
NASA Astrophysics Data System (ADS)
Edwards, P. N.
2012-12-01
Infrastructures display similar historical patterns of inception, development, growth and decay. They typically begin as centralized systems which later proliferate into competing variants. Users' desire for seamless functionality tends eventually to push these variants toward interoperability, usually through "gateway" technologies that link incompatible systems into networks. Another stage is reached when these networks are linked to others, as in the cases of container transport (connecting trucking, rail, and shipping) or the Internet. End stages of infrastructure development include "splintering" (specialized service tiering) and decay, as newer infrastructures displace older ones. Temporal patterns are also visible in historical infrastructure development. This presentation, by a historian of science and technology, describes these patterns through examples of both physical and digital infrastructures, focusing on the global weather forecast infrastructure since the 19th century. It then investigates how some of these patterns might apply to the future of cyberinfrastructure for the Earth system sciences.
NASA Astrophysics Data System (ADS)
Alarcon, T.; Garcia, M. E.; Small, D. L.; Portney, K.; Islam, S.
2013-12-01
Providing water to the expanding population of megacities, which have over 10 million people, with a stressed and aging water infrastructure creates unprecedented challenges. These challenges are exacerbated by dwindling supply and competing demands, altered precipitation and runoff patterns in a changing climate, fragmented water utility business models, and changing consumer behavior. While there is an extensive literature on the effects of climate change on water resources, the uncertainty of climate change predictions continues to be high. This hinders the value of these predictions for municipal water supply planning. The ability of water utilities to meet future water needs will largely depend on their capacity to make decisions under uncertainty. Water stressors, like changes in demographics, climate, and socioeconomic patterns, have varying degrees of uncertainty. Identifying which stressors will have a greater impact on water resources, may reduce the level of future uncertainty for planning and managing water utilities. Within this context, we analyze historical and projected changes of population and climate to quantify the relative impacts of these two stressors on water resources. We focus on megacities that rely primarily on surface water resources to evaluate (a) population growth pattern from 1950-2010 and projected population for 2010-2060; (b) climate change impact on projected climate change scenarios for 2010-2060; and (c) water access for 1950-2010; projected needs for 2010-2060.
Water footprint scenarios for 2050: a global analysis.
Ercin, A Ertug; Hoekstra, Arjen Y
2014-03-01
This study develops water footprint scenarios for 2050 based on a number of drivers of change: population growth, economic growth, production/trade pattern, consumption pattern (dietary change, bioenergy use) and technological development. The objective the study is to understand the changes in the water footprint (WF) of production and consumption for possible futures by region and to elaborate the main drivers of this change. In addition, we assess virtual water flows between the regions of the world to show dependencies of regions on water resources in other regions under different possible futures. We constructed four scenarios, along two axes, representing two key dimensions of uncertainty: globalization versus regional selfsufficiency, and economy-driven development versus development driven by social and environmental objectives. The study shows how different drivers will change the level of water consumption and pollution globally in 2050. The presented scenarios can form a basis for a further assessment of how humanity can mitigate future freshwater scarcity. We showed with this study that reducing humanity's water footprint to sustainable levels is possible even with increasing populations, provided that consumption patterns change. This study can help to guide corrective policies at both national and international levels, and to set priorities for the years ahead in order to achieve sustainable and equitable use of the world's fresh water resources. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ong, Joyce J. L.; Rountrey, Adam N.; Marriott, Ross J.; Newman, Stephen J.; Meeuwig, Jessica J.; Meekan, Mark G.
2017-03-01
Biochronologies provide important insights into the growth responses of fishes to past variability in physical and biological environments and, in so doing, allow modelling of likely responses to climate change in the future. We examined spatial variability in the key drivers of inter-annual growth patterns of a widespread, tropical snapper, Lutjanus bohar, at similar tropical latitudes on the north-western and north-eastern coasts of the continent of Australia. For this study, we developed biochronologies from otoliths that provided proxies of somatic growth and these were analysed using mixed-effects models to examine the historical drivers of growth. Our analyses demonstrated that growth patterns of fish were driven by different climatic and biological factors in each region, including Pacific Ocean climate indices, regional sea level and the size structure of the fish community. Our results showed that the local oceanographic and biological context of reef systems strongly influenced the growth of L. bohar and that a single age-related growth trend cannot be assumed for separate populations of this species that are likely to experience different environmental conditions. Generalised predictions about the growth response of fishes to climate change will thus require adequate characterisation of the spatial variability in growth determinants likely to be found throughout the range of species that have cosmopolitan distributions.
Regional infant brain development: an MRI-based morphometric analysis in 3 to 13 month olds.
Choe, Myong-Sun; Ortiz-Mantilla, Silvia; Makris, Nikos; Gregas, Matt; Bacic, Janine; Haehn, Daniel; Kennedy, David; Pienaar, Rudolph; Caviness, Verne S; Benasich, April A; Grant, P Ellen
2013-09-01
Elucidation of infant brain development is a critically important goal given the enduring impact of these early processes on various domains including later cognition and language. Although infants' whole-brain growth rates have long been available, regional growth rates have not been reported systematically. Accordingly, relatively less is known about the dynamics and organization of typically developing infant brains. Here we report global and regional volumetric growth of cerebrum, cerebellum, and brainstem with gender dimorphism, in 33 cross-sectional scans, over 3 to 13 months, using T1-weighted 3-dimensional spoiled gradient echo images and detailed semi-automated brain segmentation. Except for the midbrain and lateral ventricles, all absolute volumes of brain regions showed significant growth, with 6 different patterns of volumetric change. When normalized to the whole brain, the regional increase was characterized by 5 differential patterns. The putamen, cerebellar hemispheres, and total cerebellum were the only regions that showed positive growth in the normalized brain. Our results show region-specific patterns of volumetric change and contribute to the systematic understanding of infant brain development. This study greatly expands our knowledge of normal development and in future may provide a basis for identifying early deviation above and beyond normative variation that might signal higher risk for neurological disorders.
Regional Infant Brain Development: An MRI-Based Morphometric Analysis in 3 to 13 Month Olds
Choe, Myong-sun; Ortiz-Mantilla, Silvia; Makris, Nikos; Gregas, Matt; Bacic, Janine; Haehn, Daniel; Kennedy, David; Pienaar, Rudolph; Caviness, Verne S.; Benasich, April A.; Grant, P. Ellen
2013-01-01
Elucidation of infant brain development is a critically important goal given the enduring impact of these early processes on various domains including later cognition and language. Although infants’ whole-brain growth rates have long been available, regional growth rates have not been reported systematically. Accordingly, relatively less is known about the dynamics and organization of typically developing infant brains. Here we report global and regional volumetric growth of cerebrum, cerebellum, and brainstem with gender dimorphism, in 33 cross-sectional scans, over 3 to 13 months, using T1-weighted 3-dimensional spoiled gradient echo images and detailed semi-automated brain segmentation. Except for the midbrain and lateral ventricles, all absolute volumes of brain regions showed significant growth, with 6 different patterns of volumetric change. When normalized to the whole brain, the regional increase was characterized by 5 differential patterns. The putamen, cerebellar hemispheres, and total cerebellum were the only regions that showed positive growth in the normalized brain. Our results show region-specific patterns of volumetric change and contribute to the systematic understanding of infant brain development. This study greatly expands our knowledge of normal development and in future may provide a basis for identifying early deviation above and beyond normative variation that might signal higher risk for neurological disorders. PMID:22772652
NASA Astrophysics Data System (ADS)
Achmad, A.; Irwansyah, M.; Ramli, I.
2018-03-01
Banda Aceh experienced rapid growth, both physically, socially, and economically, after the Tsunami that devastated it the end of December in 2004. Hence policy controls are needed to direct the pattern of urban growth to achieve sustainable development for the future. The purpose of this paper is to generate a growth model for Banda Aceh using the CA-Markov process. By knowing the changes in land use between 2005 and 2009 from the results of previous research, simulations for 2013, 2019 and 2029 using the application of Idrisi@Selva. CA-Markov models were prepared to determine the quantity of changes. The simulation results showed that, after the Tsunami, the City of Banda Aceh tended to grow towards the coast. For the control of the LUC, the Banda Aceh City government needs to prepare comprehensive and detailed maps and inventory of LUC for the city to provide basic data and information needed for monitoring and evaluation that can be done effectively and efficiently. An institution for monitoring and evaluation of the urban landscape and the LUC should be formed immediately. This institution could consist of representatives from government, academia, community leaders, the private sector and other experts. The findings from this study can be used to start the monitoring and evaluation of future urban growth. Especially for the coastal areas, the local government should immediately prepare special spatial coastal area plans to control growth in those areas and to ensure that the economic benefits from disaster mitigation and coastal protection are preserved. For the development of the city in the future, it is necessary to achieve a balance between economic development, and social welfare with environmental protection and disaster mitigation. iIt will become a big challenge to achieve sustainable development for the future.
Beyond the Baby Boom: The Depopulation of America.
ERIC Educational Resources Information Center
Morrison, Peter
Trends toward zero population growth, more elderly drawing social security, racial polarization, changing migratory habits, and two-paycheck families will cause problems in planning educational policy. If present patterns of fertility and migration continue, society in the future may be very different from the present one. Educational policymakers…
Life-history theory and climate change: resolving population and parental investment paradoxes.
Caudell, Mark; Quinlan, Robert
2016-11-01
Population growth in the next half-century is on pace to raise global carbon emissions by half. Carbon emissions are associated with fertility as a by-product of somatic and parental investment, which is predicted to involve time orientation/preference as a mediating psychological mechanism. Here, we draw upon life-history theory (LHT) to investigate associations between future orientation and fertility, and their impacts on carbon emissions. We argue ' K -strategy' life history (LH) in high-income countries has resulted in parental investment behaviours involving future orientation that, paradoxically, promote unsustainable carbon emissions, thereby lowering the Earth's K or carrying capacity. Increasing the rate of approach towards this capacity are ' r -strategy' LHs in low-income countries that promote population growth. We explore interactions between future orientation and development that might slow the rate of approach towards global K . Examination of 67 000 individuals across 75 countries suggests that future orientation interacts with the relationship between environmental risk and fertility and with development related parental investment, particularly investment in higher education, to slow population growth and mitigate per capita carbon emissions. Results emphasize that LHT will be an important tool in understanding the demographic and consumption patterns that drive anthropogenic climate change.
Land use planning and wildfire: development policies influence future probability of housing loss
Syphard, Alexandra D.; Massada, Avi Bar; Butsic, Van; Keeley, Jon E.
2013-01-01
Increasing numbers of homes are being destroyed by wildfire in the wildland-urban interface. With projections of climate change and housing growth potentially exacerbating the threat of wildfire to homes and property, effective fire-risk reduction alternatives are needed as part of a comprehensive fire management plan. Land use planning represents a shift in traditional thinking from trying to eliminate wildfires, or even increasing resilience to them, toward avoiding exposure to them through the informed placement of new residential structures. For land use planning to be effective, it needs to be based on solid understanding of where and how to locate and arrange new homes. We simulated three scenarios of future residential development and projected landscape-level wildfire risk to residential structures in a rapidly urbanizing, fire-prone region in southern California. We based all future development on an econometric subdivision model, but we varied the emphasis of subdivision decision-making based on three broad and common growth types: infill, expansion, and leapfrog. Simulation results showed that decision-making based on these growth types, when applied locally for subdivision of individual parcels, produced substantial landscape-level differences in pattern, location, and extent of development. These differences in development, in turn, affected the area and proportion of structures at risk from burning in wildfires. Scenarios with lower housing density and larger numbers of small, isolated clusters of development, i.e., resulting from leapfrog development, were generally predicted to have the highest predicted fire risk to the largest proportion of structures in the study area, and infill development was predicted to have the lowest risk. These results suggest that land use planning should be considered an important component to fire risk management and that consistently applied policies based on residential pattern may provide substantial benefits for future risk reduction.
Motivations and usage patterns of Weibo.
Zhang, Lixuan; Pentina, Iryna
2012-06-01
Referred to as "Weibo," microblogging in China has witnessed an exponential growth. In addition to the Twitter-like functionality, Weibo allows rich media uploads into user feeds, provides threaded comments, and offers applications, games, and Weibo medals. This expanded functionality, as well as the observed differences in trending content, suggests potentially different user motivations to join Weibo and their usage patterns compared to Twitter. This pioneering study identifies dominant Weibo user motivations and their effects on usage patterns. We discuss the findings of an online survey of 234 Weibo users and suggest managerial implications and future research directions.
Population movements to a growth-pole: the case of Hosur, Tamil Nadu.
Heins, J J; Meijer, E N
1990-08-01
This study examines the characteristics of population growth in Hosur, a small town in Tamil Nadu, India. "A special feature of the population in Hosur is the phenomenon of bachelors living together, mostly young men who have migrated from big cities. Commuting is not important in the mobility pattern of Hosur, less than ten per cent of employees in the industrial areas travelling daily from outside. Only one-third of the non-migrant labour force has access to the more attractive jobs in the modern factories, while short-term wage labour plays an important role in the labour structure of commuters. The demographic future of Hosur is not connected strongly with commuting patterns, but more with the spatial behaviour of the bachelors." excerpt
Long-term growth rates and effects of bleaching in Acropora hyacinthus
NASA Astrophysics Data System (ADS)
Gold, Zachary; Palumbi, Stephen R.
2018-03-01
Understanding the response of coral growth to natural variation in the environment, as well as to acute temperature stress under current and future climate change conditions, is critical to predicting the future health of coral reef ecosystems. As such, ecological surveys are beginning to focus on corals that live in high thermal stress environments to understand how future coral populations may adapt to climate change. We investigated the relationship between coral growth, thermal microhabitat, symbionts type, and thermal acclimatization of four species of the Acropora hyacinthus complex in back-reef lagoons in American Samoa. Coral growth was measured from August 2010 to April 2016 using horizontal planar area of coral colonies derived from photographs and in situ maximum width measurements. Despite marked intraspecific variation, we found that planar colony growth rates were significantly different among cryptic species. The highly heat tolerant A. hyacinthus variant "HE" increased in area an average of 2.9% month-1 (0.03 cm average mean radial extension month-1). By contrast, the three less tolerant species averaged 6.1% (0.07 cm average mean radial extension month-1). Planar growth rates were 40% higher on average in corals harboring Clade C versus Clade D symbiont types, although marked inter-colony variation in growth rendered this difference nonsignificant. Planar growth rates for all four species dropped to near zero following a 2015 bleaching event, independent of the visually estimated percent area of bleaching. Within 1 yr, growth rates recovered to previous levels, confirming previous studies that found sublethal effects of thermal stress on coral growth. Long-term studies of individual coral colonies provide an important tool to measure impacts of environmental change and allow integration of coral physiology, genetics, symbionts, and microclimate on reef growth patterns.
National Economic Value Assessment of Plug-in Electric Vehicles: Volume I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melaina, Marc; Bush, Brian; Eichman, Joshua
The adoption of plug-in electric vehicles (PEVs) can reduce household fuel expenditures by substituting electricity for gasoline while reducing greenhouse gas emissions and petroleum imports. A scenario approach is employed to provide insights into the long-term economic value of increased PEV market growth across the United States. The analytic methods estimate fundamental costs and benefits associated with an economic allocation of PEVs across households based upon household driving patterns, projected vehicle cost and performance attributes, and simulations of a future electricity grid. To explore the full technological potential of PEVs and resulting demands on the electricity grid, very high PEVmore » market growth projections from previous studies are relied upon to develop multiple future scenarios.« less
Dynamic patterns of cortical expansion during folding of the preterm human brain.
Garcia, Kara E; Robinson, Emma C; Alexopoulos, Dimitrios; Dierker, Donna L; Glasser, Matthew F; Coalson, Timothy S; Ortinau, Cynthia M; Rueckert, Daniel; Taber, Larry A; Van Essen, David C; Rogers, Cynthia E; Smyser, Christopher D; Bayly, Philip V
2018-03-20
During the third trimester of human brain development, the cerebral cortex undergoes dramatic surface expansion and folding. Physical models suggest that relatively rapid growth of the cortical gray matter helps drive this folding, and structural data suggest that growth may vary in both space (by region on the cortical surface) and time. In this study, we propose a unique method to estimate local growth from sequential cortical reconstructions. Using anatomically constrained multimodal surface matching (aMSM), we obtain accurate, physically guided point correspondence between younger and older cortical reconstructions of the same individual. From each pair of surfaces, we calculate continuous, smooth maps of cortical expansion with unprecedented precision. By considering 30 preterm infants scanned two to four times during the period of rapid cortical expansion (28-38 wk postmenstrual age), we observe significant regional differences in growth across the cortical surface that are consistent with the emergence of new folds. Furthermore, these growth patterns shift over the course of development, with noninjured subjects following a highly consistent trajectory. This information provides a detailed picture of dynamic changes in cortical growth, connecting what is known about patterns of development at the microscopic (cellular) and macroscopic (folding) scales. Since our method provides specific growth maps for individual brains, we are also able to detect alterations due to injury. This fully automated surface analysis, based on tools freely available to the brain-mapping community, may also serve as a useful approach for future studies of abnormal growth due to genetic disorders, injury, or other environmental variables.
DOT National Transportation Integrated Search
1991-07-01
This report provides guidelines for the planning and design of land use patterns that are sensitive to the needs of public transit. These guidelines are meant to create an efficient environment for future growth in suburban areas. The guidelines have...
Should Nuclear Energy Form Part of the UK's Energy Future?
ERIC Educational Resources Information Center
Campbell, Peter
2003-01-01
Energy policies are under review everywhere, as the world tries to meet targets for reducing climate change despite continuing population growth. A major change in energy patterns is needed, with the critical period for transition predictably happening when young people currently at school are in their middle years of their lives. This article…
ERIC Educational Resources Information Center
Morgan, Michelle
2014-01-01
The global growth in postgraduate (PG) study since the mid-1990s has been attributed to the expansion in Masters by Coursework participation (Bekhradnia, B. (2005). Postgraduate education in the UK: Trends and challenges higher education policy institute. Paper presented at a conference "The future of postgraduate education supporting the…
Harrison, Matthew T; Tardieu, François; Dong, Zhanshan; Messina, Carlos D; Hammer, Graeme L
2014-03-01
Global climate change is predicted to increase temperatures, alter geographical patterns of rainfall and increase the frequency of extreme climatic events. Such changes are likely to alter the timing and magnitude of drought stresses experienced by crops. This study used new developments in the classification of crop water stress to first characterize the typology and frequency of drought-stress patterns experienced by European maize crops and their associated distributions of grain yield, and second determine the influence of the breeding traits anthesis-silking synchrony, maturity and kernel number on yield in different drought-stress scenarios, under current and future climates. Under historical conditions, a low-stress scenario occurred most frequently (ca. 40%), and three other stress types exposing crops to late-season stresses each occurred in ca. 20% of cases. A key revelation shown was that the four patterns will also be the most dominant stress patterns under 2050 conditions. Future frequencies of low drought stress were reduced by ca. 15%, and those of severe water deficit during grain filling increased from 18% to 25%. Despite this, effects of elevated CO2 on crop growth moderated detrimental effects of climate change on yield. Increasing anthesis-silking synchrony had the greatest effect on yield in low drought-stress seasonal patterns, whereas earlier maturity had the greatest effect in crops exposed to severe early-terminal drought stress. Segregating drought-stress patterns into key groups allowed greater insight into the effects of trait perturbation on crop yield under different weather conditions. We demonstrate that for crops exposed to the same drought-stress pattern, trait perturbation under current climates will have a similar impact on yield as that expected in future, even though the frequencies of severe drought stress will increase in future. These results have important ramifications for breeding of maize and have implications for studies examining genetic and physiological crop responses to environmental stresses. © 2013 John Wiley & Sons Ltd.
Mutirwara, Ruwimbo; Radloff, Frans G T; Codron, Daryl
2018-01-15
Stable isotope analysis (SIA) of whiskers has been used to identify temporal feeding habits, intra-population diet variation, as well as individual dietary specialisation of marine and terrestrial carnivores. However, the potential of the method to disclose such dietary information for large wild felids is hampered by lack of information on species-specific whisker growth rates, whisker growth patterns and whisker-diet trophic discrimination factors (TDFs). Whisker growth rates and growth patterns were measured for four lions (Panthera leo) and one leopard (Panthera pardus) held at the National Zoological Gardens, Pretoria, South Africa. Actively growing whiskers of the felids were 'marked' four times over 185 days using 13 C-depleted, C 3 -based giraffe (Giraffa camelopardalis) meat. The periods with low δ 13 C values, identified following serial sectioning of the regrown whiskers at 1 mm intervals and isotopic analysis, were then correlated to specific giraffe meat feeding bouts and hence growth periods. δ 13 C and δ 15 N whisker-diet TDFs were estimated for five lions whose diet remained consistent over multiple years. The whisker growth rates of three lionesses and the leopard were similar (mean = 0.65 mm day -1 ), despite species, sex and age differences. There was a decrease in whisker growth rate over time, suggesting a non-linear whisker growth pattern. However, linear and non-linear growth simulations showed slight differences between the two growth patterns for the proximal ~50 mm of whiskers. δ 13 C and δ 15 N lion whisker-diet TDFs were also similar amongst individuals (mean = 2.7 ± 0.12 ‰ for δ 13 C values and 2.5 ± 0.08 ‰ for δ 15 N values), irrespective of age and sex. The whisker growth rate and δ 13 C and δ 15 N lion whisker-diet TDFs obtained in this study can be applied in future studies to assign dietary information contained in analysed felid whiskers to the correct time period and improve deductions of prey species consumed by wild felids. Copyright © 2017 John Wiley & Sons, Ltd.
Growth phenology of coast Douglas-fir seed sources planted in diverse environments.
Gould, Peter J; Harrington, Constance A; St Clair, J Bradley
2012-12-01
The timing of periodic life cycle events in plants (phenology) is an important factor determining how species and populations will react to climate change. We evaluated annual patterns of basal-area and height growth of coast Douglas-fir (Pseudotusga menziesii var. menziesii (Mirb.) Franco) seedlings from four seed sources that were planted in four diverse environments as part of the Douglas-fir Seed-Source Movement Trial. Stem diameters and heights were measured periodically during the 2010 growing season on 16 open-pollinated families at each study installation. Stem diameters were measured on a subset of trees with electronic dendrometers during the 2010 and 2011 growing seasons. Trees from the four seed sources differed in phenology metrics that described the timing of basal-area and height-growth initiation, growth cessation and growth rates. Differences in the height-growth metrics were generally larger than differences in the basal-area growth metrics and differences among installations were larger than differences among seed sources, highlighting the importance of environmental signals on growth phenology. Variations in the height- and basal-area growth metrics were correlated with different aspects of the seed-source environments: precipitation in the case of height growth and minimum temperature in the case of basal-area growth. The detailed dendrometer measurements revealed differences in growth patterns between seed sources during distinct periods in the growing season. Our results indicate that multiple aspects of growth phenology should be considered along with other traits when evaluating adaptation of populations to future climates.
Xu, Jinshi; Chai, Yongfu; Wang, Mao; Dang, Han; Guo, Yaoxin; Chen, Yu; Zhang, Chenguang; Li, Ting; Zhang, Lixia; Yue, Ming
2018-01-01
Species respond to changes in their environments. A core goal in ecology is to understand the process of plant community assembly in response to a changing climate. Examining the performance of functional traits and trait-based assembly patterns across species among different growth forms is a useful way to explore the assembly process. In this study, we constructed a habitat severity gradient including several environment factors along a 2300 m wide elevational range at Taibai Mountain, central China. Then we assessed the shift on functional trait values and community assembly patterns along this gradient across species among different growth forms. We found that (1) although habitat-severity values closely covaried with elevation in this study, an examined communities along a habitat severity gradient might reveal community dynamics and species responses under future climate change. (2) the occurrence of trait values along the habitat severity gradient across different growth forms were similar, whereas the assembly pattern of herbaceous species was inconsistent with the community and woody species. (3) the trait-trait relationships of herbaceous species were dissimilar to those of the community and woody species. These results suggest that (1) community would re-assemble along habitat severity gradient through environmental filtering, regardless of any growth forms and that (2) different growth forms' species exhibiting similar trait values' shift but different trait-trait relationship by different trait combinations.
NASA Technical Reports Server (NTRS)
Clem, Michelle M.; Woike, Mark R.
2013-01-01
The Aeronautical Sciences Project under NASA`s Fundamental Aeronautics Program is extremely interested in the development of novel measurement technologies, such as optical surface measurements in the internal parts of a flow path, for in situ health monitoring of gas turbine engines. In situ health monitoring has the potential to detect flaws, i.e. cracks in key components, such as engine turbine disks, before the flaws lead to catastrophic failure. In the present study, a cross-correlation imaging technique is investigated in a proof-of-concept study as a possible optical technique to measure the radial growth and strain field on an already cracked sub-scale turbine engine disk under loaded conditions in the NASA Glenn Research Center`s High Precision Rotordynamics Laboratory. The optical strain measurement technique under investigation offers potential fault detection using an applied high-contrast random speckle pattern and imaging the pattern under unloaded and loaded conditions with a CCD camera. Spinning the cracked disk at high speeds induces an external load, resulting in a radial growth of the disk of approximately 50.0-im in the flawed region and hence, a localized strain field. When imaging the cracked disk under static conditions, the disk will be undistorted; however, during rotation the cracked region will grow radially, thus causing the applied particle pattern to be .shifted`. The resulting particle displacements between the two images will then be measured using the two-dimensional cross-correlation algorithms implemented in standard Particle Image Velocimetry (PIV) software to track the disk growth, which facilitates calculation of the localized strain field. In order to develop and validate this optical strain measurement technique an initial proof-of-concept experiment is carried out in a controlled environment. Using PIV optimization principles and guidelines, three potential speckle patterns, for future use on the rotating disk, are developed and investigated in the controlled experiment. A range of known shifts are induced on the patterns; reference and data images are acquired before and after the induced shift, respectively, and the images are processed using the cross-correlation algorithms in order to determine the particle displacements. The effectiveness of each pattern at resolving the known shift is evaluated and discussed in order to choose the most suitable pattern to be implemented onto a rotating disk in the Rotordynamics Lab. Although testing on the rotating disk has not yet been performed, the driving principles behind the development of the present optical technique are based upon critical aspects of the future experiment, such as the amount of expected radial growth, disk analysis, and experimental design and are therefore addressed in the paper.
Xuesong, Du; Wei, Xue; Heng, Liu; Xiao, Chen; Shunan, Wang; Yu, Guo; Weiguo, Zhang
2017-09-01
Background Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has been proved useful in evaluating glioma angiogenesis, but the utility in evaluating neovascularization patterns has not been reported. Purpose To evaluate in vivo real-time glioma neovascularization patterns by measuring glioma perfusion quantitatively using DCE-MRI. Material and Methods Thirty Sprague-Dawley rats were used to establish C6 orthotopic glioma model and underwent MRI and pathology detections. As MRI and pathology were performed at six time points (i.e. 4, 8, 12, 16, 20, and 24 days) post transplantation, neovascularization patterns were evaluated via DCE-MRI. Results Four neovascularization patterns were observed in glioma tissues. Sprout angiogenesis and intussusceptive microvascular growth located inside tumor, while vascular co-option and vascular mimicry were found in the tumor margin and necrotic area, respectively. Sprout angiogenesis and intussusceptive microvascular growth increased with K trans , K ep , and V p inside tumor tissue. In addition, K ep and V p were positively correlated with sprout angiogenesis and intussusceptive microvascular growth. Vascular co-option was decreased at 12 and 16 days post transplantation and correlated negatively with K trans and K ep detected in the glioma margin, respectively. Changes of vascular mimicry showed no significant statistical difference at the six time points. Conclusion Our results indicate that DCE-MRI can evaluate neovascularization patterns in a glioma model. Furthermore, DCE-MRI could be an imaging biomarker for guidance of antiangiogenic treatments in humans in the future.
Durand, C P; Andalib, M; Dunton, G F; Wolch, J; Pentz, M A
2011-05-01
Smart growth is an approach to urban planning that provides a framework for making community development decisions. Despite its growing use, it is not known whether smart growth can impact physical activity. This review utilizes existing built environment research on factors that have been used in smart growth planning to determine whether they are associated with physical activity or body mass. Searching the MEDLINE, Psycinfo and Web-of-Knowledge databases, 204 articles were identified for descriptive review, and 44 for a more in-depth review of studies that evaluated four or more smart growth planning principles. Five smart growth factors (diverse housing types, mixed land use, housing density, compact development patterns and levels of open space) were associated with increased levels of physical activity, primarily walking. Associations with other forms of physical activity were less common. Results varied by gender and method of environmental assessment. Body mass was largely unaffected. This review suggests that several features of the built environment associated with smart growth planning may promote important forms of physical activity. Future smart growth community planning could focus more directly on health, and future research should explore whether combinations or a critical mass of smart growth features is associated with better population health outcomes. © 2011 The Authors. obesity reviews © 2011 International Association for the Study of Obesity.
Life-history theory and climate change: resolving population and parental investment paradoxes
Quinlan, Robert
2016-01-01
Population growth in the next half-century is on pace to raise global carbon emissions by half. Carbon emissions are associated with fertility as a by-product of somatic and parental investment, which is predicted to involve time orientation/preference as a mediating psychological mechanism. Here, we draw upon life-history theory (LHT) to investigate associations between future orientation and fertility, and their impacts on carbon emissions. We argue ‘K-strategy’ life history (LH) in high-income countries has resulted in parental investment behaviours involving future orientation that, paradoxically, promote unsustainable carbon emissions, thereby lowering the Earth's K or carrying capacity. Increasing the rate of approach towards this capacity are ‘r-strategy’ LHs in low-income countries that promote population growth. We explore interactions between future orientation and development that might slow the rate of approach towards global K. Examination of 67 000 individuals across 75 countries suggests that future orientation interacts with the relationship between environmental risk and fertility and with development related parental investment, particularly investment in higher education, to slow population growth and mitigate per capita carbon emissions. Results emphasize that LHT will be an important tool in understanding the demographic and consumption patterns that drive anthropogenic climate change. PMID:28018631
Future year emissions depend highly on economic, technological, societal and regulatory drivers. A scenario framework was adopted to analyze technology development pathways and changes in consumer preferences, and evaluate resulting emissions growth patterns while considering fut...
Sarah M. Butler; Alan S. White; Katherine J. Elliott; Robert S. Seymour
2014-01-01
Understanding the patterns of past disturbance allows further insight into the complex composition, structure, and function of current and future forests, which is increasingly important in a world where disturbance characteristics are changing. Our objectives were to define disturbance causes, rates (percent disturbance per decade), magnitudes and frequency (time...
Controllable growth of GeSi nanostructures by molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Ma, Yingjie; Zhou, Tong; Zhong, Zhenyang; Jiang, Zuimin
2018-06-01
We present an overview on the recent progress achieved on the controllable growth of diverse GeSi alloy nanostructures by molecular beam epitaxy. Prevailing theories for controlled growth of Ge nanostructures on patterned as well as inclined Si surfaces are outlined firstly, followed by reviews on the preferential growth of Ge nanoislands on patterned Si substrates, Ge nanowires and high density nanoislands grown on inclined Si surfaces, and the readily tunable Ge nanostructures on Si nanopillars. Ge nanostructures with controlled geometries, spatial distributions and densities, including two-dimensional ordered nanoislands, three-dimensional ordered quantum dot crystals, ordered nanorings, coupled quantum dot molecules, ordered nanowires and nanopillar alloys, are discussed in detail. A single Ge quantum dot-photonic crystal microcavity coupled optical emission device demonstration fabricated by using the preferentially grown Ge nanoisland technique is also introduced. Finally, we summarize the current technology status with a look at the future development trends and application challenges for controllable growth of Ge nanostructures. Project supports by the Natural Science Foundation of China (Nos. 61605232, 61674039) and the Open Research Project of State Key Laboratory of Surface Physics from Fudan University (Nos. KF2016_15s, KF2017_05).
Hurricane Activity and the Large-Scale Pattern of Spread of an Invasive Plant Species
Bhattarai, Ganesh P.; Cronin, James T.
2014-01-01
Disturbances are a primary facilitator of the growth and spread of invasive species. However, the effects of large-scale disturbances, such as hurricanes and tropical storms, on the broad geographic patterns of invasive species growth and spread have not been investigated. We used historical aerial imagery to determine the growth rate of invasive Phragmites australis patches in wetlands along the Atlantic and Gulf Coasts of the United States. These were relatively undisturbed wetlands where P. australis had room for unrestricted growth. Over the past several decades, invasive P. australis stands expanded in size by 6–35% per year. Based on tropical storm and hurricane activity over that same time period, we found that the frequency of hurricane-force winds explained 81% of the variation in P. australis growth over this broad geographic range. The expansion of P. australis stands was strongly and positively correlated with hurricane frequency. In light of the many climatic models that predict an increase in the frequency and intensity of hurricanes over the next century, these results suggest a strong link between climate change and species invasion and a challenging future ahead for the management of invasive species. PMID:24878928
Projected effects of climate and development on California wildfire emissions through 2100.
Hurteau, Matthew D; Westerling, Anthony L; Wiedinmyer, Christine; Bryant, Benjamin P
2014-02-18
Changing climatic conditions are influencing large wildfire frequency, a globally widespread disturbance that affects both human and natural systems. Understanding how climate change, population growth, and development patterns will affect the area burned by and emissions from wildfires and how populations will in turn be exposed to emissions is critical for climate change adaptation and mitigation planning. We quantified the effects of a range of population growth and development patterns in California on emission projections from large wildfires under six future climate scenarios. Here we show that end-of-century wildfire emissions are projected to increase by 19-101% (median increase 56%) above the baseline period (1961-1990) in California for a medium-high temperature scenario, with the largest emissions increases concentrated in northern California. In contrast to other measures of wildfire impacts previously studied (e.g., structural loss), projected population growth and development patterns are unlikely to substantially influence the amount of projected statewide wildfire emissions. However, increases in wildfire emissions due to climate change may have detrimental impacts on air quality and, combined with a growing population, may result in increased population exposure to unhealthy air pollutants.
Fishman, Tomer; Schandl, Heinz; Tanikawa, Hiroki
2016-04-05
The recent acceleration of urbanization and industrialization of many parts of the developing world, most notably in Asia, has resulted in a fast-increasing demand for and accumulation of construction materials in society. Despite the importance of physical stocks in society, the empirical assessment of total material stock of buildings and infrastructure and reasons for its growth have been underexplored in the sustainability literature. We propose an innovative approach for explaining material stock dynamics in society and create a country typology for stock accumulation trajectories using the ARIMA (Autoregressive Integrated Moving Average) methodology, a stochastic approach commonly used in business studies and economics to inspect and forecast time series. This enables us to create scenarios for future demand and accumulation of building materials in society, including uncertainty estimates. We find that the so-far overlooked aspect of acceleration trends of material stock accumulation holds the key to explaining material stock growth, and that despite tremendous variability in country characteristics, stock accumulation is limited to only four archetypal growth patterns. The ability of nations to change their pattern will be a determining factor for global sustainability.
Smoking behavior of Mexicans: patterns by birth-cohort, gender, and education.
Christopoulou, Rebekka; Lillard, Dean R; Balmori de la Miyar, Josè R
2013-06-01
Little is known about historical smoking patterns in Mexico. Policy makers must rely on imprecise predictions of human or fiscal burdens from smoking-related diseases. In this paper we document intergenerational patterns of smoking, project them for future cohorts, and discuss those patterns in the context of Mexico's impressive economic growth. We use retrospectively collected information to generate life-course smoking prevalence rates of five birth-cohorts, by gender and education. With dynamic panel data methods, we regress smoking rates on indicators of economic development. Smoking is most prevalent among men and the highly educated. Smoking rates peaked in the 1980s and have since decreased, slowly on average, and fastest among the highly educated. Development significantly contributed to this decline; a 1 % increase in development is associated with an average decline in smoking prevalence of 0.02 and 0.07 percentage points for women and men, respectively. Mexico's development may have triggered forces that decrease smoking, such as the spread of health information. Although smoking rates are falling, projections suggest that they will be persistently high for several future generations.
Short-term growth in head circumference and its relationship with supine length in healthy infants.
Caino, Silvia; Kelmansky, Diana; Adamo, Paula; Lejarraga, Horacio
2010-01-01
Daily changes in height have been found to be a non-linear process. Its exact pattern is still controversial. In previous studies on 34 healthy children aged 0.32-12.99 years, we found that growth is a tri-phasic process: stasis, steep changes (or saltation) and continuous growth. There is very little information in the literature about daily changes in head circumference. The present study analysed growth in head circumference and supine length in eight healthy infants. Supine length and head circumference was measured five times a week during 151 days. Mean intra-observer technical error of measurement (TEM) for head circumference and supine length were 0.10 and 0.15 cm, respectively; smoothing techniques used were based on the TEM with a hard rejection criterion. The three types of events previously found in supine length are also present in head circumference. The number of steep changes was greater in supine length than in head circumference. Growth is a discontinuous and irregular process, present not only in long bones but also in skull bones. Although long-term growth curves of head circumference and supine length are different, when measured on a daily basis findings suggest that skull and long bones have a common pattern; the physiological basis needs future research.
United States geological survey's reserve-growth models and their implementation
Klett, T.R.
2005-01-01
The USGS has developed several mathematical models to forecast reserve growth of fields both in the United States (U.S.) and the world. The models are based on historical reserve growth patterns of fields in the U.S. The patterns of past reserve growth are extrapolated to forecast future reserve growth. Changes of individual field sizes through time are extremely variable, therefore, the reserve growth models take on a statistical approach whereby volumetric changes for populations of fields are used in the models. Field age serves as a measure of the field-development effort that is applied to promote reserve growth. At the time of the USGS World Petroleum Assessment 2000, a reserve growth model for discovered fields of the world was not available. Reserve growth forecasts, therefore, were made based on a model of historical reserve growth of fields of the U.S. To test the feasibility of such an application, reserve growth forecasts were made of 186 giant oil fields of the world (excluding the U.S. and Canada). In addition, forecasts were made for these giant oil fields subdivided into those located in and outside of Organization of Petroleum Exporting Countries (OPEC). The model provided a reserve-growth forecast that closely matched the actual reserve growth that occurred from 1981 through 1996 for the 186 fields as a whole, as well as for both OPEC and non-OPEC subdivisions, despite the differences in reserves definition among the fields of the U.S. and the rest of the world. ?? 2005 International Association for Mathematical Geology.
Kotowska, Martyna M; Hertel, Dietrich; Rajab, Yasmin Abou; Barus, Henry; Schuldt, Bernhard
2015-01-01
For decades it has been assumed that the largest vessels are generally found in roots and that vessel size and corresponding sapwood area-specific hydraulic conductivity are acropetally decreasing toward the distal twigs. However, recent studies from the perhumid tropics revealed a hump-shaped vessel size distribution. Worldwide tropical perhumid forests are extensively replaced by agroforestry systems often using introduced species of various biogeographical and climatic origins. Nonetheless, it is unknown so far what kind of hydraulic architectural patterns are developed in those agroforestry tree species and which impact this exerts regarding important tree functional traits, such as stem growth, hydraulic efficiency and wood density (WD). We investigated wood anatomical and hydraulic properties of the root, stem and branch wood in Theobroma cacao and five common shade tree species in agroforestry systems on Sulawesi (Indonesia); three of these were strictly perhumid tree species, and the other three tree species are tolerating seasonal drought. The overall goal of our study was to relate these properties to stem growth and other tree functional traits such as foliar nitrogen content and sapwood to leaf area ratio. Our results confirmed a hump-shaped vessel size distribution in nearly all species. Drought-adapted species showed divergent patterns of hydraulic conductivity, vessel density, and relative vessel lumen area between root, stem and branch wood compared to wet forest species. Confirming findings from natural old-growth forests in the same region, WD showed no relationship to specific conductivity. Overall, aboveground growth performance was better predicted by specific hydraulic conductivity than by foliar traits and WD. Our study results suggest that future research on conceptual trade-offs of tree hydraulic architecture should consider biogeographical patterns underlining the importance of anatomical adaptation mechanisms to environment.
Munthali, Richard J; Kagura, Juliana; Lombard, Zané; Norris, Shane A
2017-10-01
There is growing evidence of variations in adiposity trajectories among individuals, but the influence of early life growth patterns on these trajectories is underresearched in low- and middle-income countries. Therefore, our aim was to examine the association between early life conditional weight gain and childhood adiposity trajectories. We previously identified distinct adiposity trajectories (four for girls and three for boys) in black South African children (boys = 877; girls = 947). The association between the trajectories and early life growth patterns, and future obesity risk was assessed by multivariate linear and multinomial logistic and logistic regressions. Conditional weight gain independent of height was computed for infancy (0-2 years) and early childhood (2-4 years). Conditional weight gain before 5 years of age was significantly associated with early onset of obesity or overweight (excess weight) BMI trajectories in both boys and girls. In girls, greater conditional weight gain in infancy was associated with increased relative risk of being in the early-onset obese to morbid obese trajectory, with relative risk ratios of 2.03 (95% confidence interval: 1.17-3.52) compared to belonging to a BMI trajectory in the normal range. Boys and girls in the early-onset obesity or overweight BMI trajectories were more likely to be overweight or obese in early adulthood. Excessive weight gain in infancy and early childhood, independent of linear growth, predicts childhood and adolescent BMI trajectories toward obesity. These results underscore the importance of early life factors in the development of obesity and other NCDs in later life.
USDA-ARS?s Scientific Manuscript database
The paradigm of integrated water resources management requires coupled analysis of hydrology and water resources in a river basin. Population growth and uncertainties due to climate change make historic data not a reliable source of information for future planning of water resources, hence necessit...
Land Use Planning and Wildfire: Development Policies Influence Future Probability of Housing Loss
Syphard, Alexandra D.; Bar Massada, Avi; Butsic, Van; Keeley, Jon E.
2013-01-01
Increasing numbers of homes are being destroyed by wildfire in the wildland-urban interface. With projections of climate change and housing growth potentially exacerbating the threat of wildfire to homes and property, effective fire-risk reduction alternatives are needed as part of a comprehensive fire management plan. Land use planning represents a shift in traditional thinking from trying to eliminate wildfires, or even increasing resilience to them, toward avoiding exposure to them through the informed placement of new residential structures. For land use planning to be effective, it needs to be based on solid understanding of where and how to locate and arrange new homes. We simulated three scenarios of future residential development and projected landscape-level wildfire risk to residential structures in a rapidly urbanizing, fire-prone region in southern California. We based all future development on an econometric subdivision model, but we varied the emphasis of subdivision decision-making based on three broad and common growth types: infill, expansion, and leapfrog. Simulation results showed that decision-making based on these growth types, when applied locally for subdivision of individual parcels, produced substantial landscape-level differences in pattern, location, and extent of development. These differences in development, in turn, affected the area and proportion of structures at risk from burning in wildfires. Scenarios with lower housing density and larger numbers of small, isolated clusters of development, i.e., resulting from leapfrog development, were generally predicted to have the highest predicted fire risk to the largest proportion of structures in the study area, and infill development was predicted to have the lowest risk. These results suggest that land use planning should be considered an important component to fire risk management and that consistently applied policies based on residential pattern may provide substantial benefits for future risk reduction. PMID:23977120
Leatham, Gary F.
1985-01-01
Although the commercially important mushroom Lentinus (= Lentinula) edodes (Berk.) Sing. can be rapidly cultivated on supplemented wood particles, fruiting is not reliable. This study addressed the problem by developing more information about growth and development on a practical oakwood-oatmeal medium. The study determined (i) the components degraded during a 150-day incubation at 22°C, (ii) the apparent vegetative growth pattern, (iii) the likely growth-limiting nutrient, and (iv) assays that can be used to study key extracellular enzymes. All major components of the medium were degraded, lignin selectively so. The vegetative growth rate was most rapid during the initial 90 days, during which weight loss correlated with glucosamine accumulation (assayed after acid hydrolysis). The rate then slowed; in apparent preparation for fruiting, the cultures rapidly accumulated glucosamine (or its oligomer or polymer). Nitrogen was growth limiting. Certain enzyme activities were associated with the pattern of medium degradation, with growth, or with development. They included cellulolytic system enzymes, hemicellulases, the ligninolytic system, (gluco-)amylase, pectinase, acid protease, cell wall lytic enzymes (laminarinase, 1,4-β-d-glucosidase, β-N-acetyl-d-glucosaminidase, α-d-galactosidase, β-d-mannosidase), acid phosphatase, and laccase. Enzyme activities over the 150-day incubation period with and without a fruiting stimulus are reported. These results provide a basis for future investigations into the physiology and biochemistry of growth and fruiting. PMID:16346918
A combinatorial code for pattern formation in Drosophila oogenesis.
Yakoby, Nir; Bristow, Christopher A; Gong, Danielle; Schafer, Xenia; Lembong, Jessica; Zartman, Jeremiah J; Halfon, Marc S; Schüpbach, Trudi; Shvartsman, Stanislav Y
2008-11-01
Two-dimensional patterning of the follicular epithelium in Drosophila oogenesis is required for the formation of three-dimensional eggshell structures. Our analysis of a large number of published gene expression patterns in the follicle cells suggests that they follow a simple combinatorial code based on six spatial building blocks and the operations of union, difference, intersection, and addition. The building blocks are related to the distribution of inductive signals, provided by the highly conserved epidermal growth factor receptor and bone morphogenetic protein signaling pathways. We demonstrate the validity of the code by testing it against a set of patterns obtained in a large-scale transcriptional profiling experiment. Using the proposed code, we distinguish 36 distinct patterns for 81 genes expressed in the follicular epithelium and characterize their joint dynamics over four stages of oogenesis. The proposed combinatorial framework allows systematic analysis of the diversity and dynamics of two-dimensional transcriptional patterns and guides future studies of gene regulation.
Cohort profile: Pacific Islands Families (PIF) growth study, Auckland, New Zealand.
Rush, E; Oliver, M; Plank, L D; Taylor, S; Iusitini, L; Jalili-Moghaddam, S; Savila, F; Paterson, J; Tautolo, E
2016-11-02
This article profiles a birth cohort of Pacific children participating in an observational prospective study and describes the study protocol used at ages 14-15 years to investigate how food and activity patterns, metabolic risk and family and built environment are related to rates of physical growth of Pacific children. From 2000 to 2015, the Pacific Islands Families Study has followed, from birth, the growth and development of over 1000 Pacific children born in Auckland, New Zealand. In 2014, 931 (66%) of the original cohort had field measures of body composition, blood pressure and glycated haemoglobin. A nested subsample (n=204) was drawn by randomly selecting 10 males and 10 females from each decile of body weight. These participants had measurement of body composition by dual-energy X-ray absorptiometry, food frequency, 6 min walk test and accelerometer-determined physical activity and sedentary behaviours, and blood biomarkers for metabolic disease such as diabetes. Built environment variables were generated from individual addresses. Compared to the Centres for Disease Control and Prevention (CDC) reference population with mean SD scores (SDS) of 0, this cohort of 931 14-year-olds was taller, weighed more and had a higher body mass index (BMI) (mean SDS height >0.6, weight >1.6 and BMI >1.4). 7 of 10 youth were overweight or obese. The nested-sampling frame achieved an even distribution by body weight. Cross-sectional relationships between body size, fatness and growth rate, food patterns, activity patterns, pubertal development, risks for diabetes and hypertension and the family and wider environment will be examined. In addition, analyses will investigate relationships with data collected earlier in the life course and measures of the cohort in the future. Understanding past and present influences on child growth and health will inform timely interventions to optimise future health and reduce inequalities for Pacific people. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Gilliland, N J; Chappelka, A H; Muntifering, R B; Ditchkoff, S S
2016-01-01
Forage species common to the southern USA Piedmont region, Lolium arundinacea, Paspalum dilatatum, Cynodon dactylon and Trifolium repens, were established in a model pasture system to test the future climate change scenario of increasing ozone exposure in combination with varying rainfall amounts on community structure and nutritive quality. Forages were exposed to two levels of ozone [ambient (non-filtered; NF) and twice ambient (2×) concentrations] with three levels of precipitation (average or ±20% of average) in modified open-top chambers (OTCs) from June to September 2009. Dry matter (DM) yield did not differ over the growing season between forage types, except in primary growth grasses where DM yield was higher in 2× than NF treatment. Primary growth clover decreased in nutritive quality in 2× ozone because of increased concentrations of neutral detergent fibre (NDF), acid detergent fibre (ADF) and acid detergent lignin (ADL). Re-growth clover exhibited the largest decrease in nutritive quality, whereas grasses were not adversely affected in 2× ozone. Re-growth grasses responded positively to 2× ozone exposure, as indicated in increased relative food value (RFV) and percentage crude protein (CP) than NF-exposed re-growth grasses. Effects of precipitation were not significant over the growing season for primary or re-growth forage, except in primary growth grasses where DM yield was higher in chambers with above average (+20%) precipitation. Total canopy cover was significantly higher over the growing season in chambers receiving above average precipitation, but no significant effects were observed with ozone. Results indicate shifts in plant community structure and functioning related to mammalian herbivore herbivory in future climate change scenarios. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.
End-of-life care at academic medical centers: implications for future workforce requirements.
Goodman, David C; Stukel, Thérèse A; Chang, Chiang-hua; Wennberg, John E
2006-01-01
The expansion of U.S. physician workforce training has been justified on the basis of population growth, technological innovation, and economic expansion. Our analyses found threefold differences in physician full-time-equivalent (FTE) inputs for Medicare cohorts cared for at academic medical centers (AMCs); AMC inputs were highly correlated with the number of physician FTEs per Medicare beneficiary in AMC regions. Given the apparent inefficiency of current physician practices, the supply pipeline is sufficient to meet future needs through 2020, with adoption of the workforce deployment patterns now seen among AMCs and regions dominated by large group practices.
Future forestland area: impacts from population growth and other factors that affect land values.
Ralph J. Alig; Andrew J. Plantinga
2004-01-01
Shifting patterns of land use in the United States are associated with many of today's environmental concerns. Land-use shifts occur because of relative changes in land rents, which are determined in part by financial returns in commodity markets. In recent decades, more than 3 million ac shifted annually in or out of US forest use. Cross amounts of land-use...
Searching for modified growth patterns with tomographic surveys
NASA Astrophysics Data System (ADS)
Zhao, Gong-Bo; Pogosian, Levon; Silvestri, Alessandra; Zylberberg, Joel
2009-04-01
In alternative theories of gravity, designed to produce cosmic acceleration at the current epoch, the growth of large scale structure can be modified. We study the potential of upcoming and future tomographic surveys such as Dark Energy Survey (DES) and Large Synoptic Survey Telescope (LSST), with the aid of cosmic microwave background (CMB) and supernovae data, to detect departures from the growth of cosmic structure expected within general relativity. We employ parametric forms to quantify the potential time- and scale-dependent variation of the effective gravitational constant and the differences between the two Newtonian potentials. We then apply the Fisher matrix technique to forecast the errors on the modified growth parameters from galaxy clustering, weak lensing, CMB, and their cross correlations across multiple photometric redshift bins. We find that even with conservative assumptions about the data, DES will produce nontrivial constraints on modified growth and that LSST will do significantly better.
Endocrine regulation of fetal skeletal muscle growth: impact on future metabolic health
Brown, Laura D.
2014-01-01
Establishing sufficient skeletal muscle mass is essential for lifelong metabolic health. The intrauterine environment is a major determinant of the muscle mass that is present for the life course of an individual, because muscle fiber number is set at the time of birth. Thus, a compromised intrauterine environment from maternal nutrient restriction or placental insufficiency that restricts development of muscle fiber number can have permanent effects on the amount of muscle an individual will live with. Reduced muscle mass due to fewer muscle fibers persists even after compensatory or “catch up” postnatal growth occurs. Furthermore, muscle hypertrophy can only partially compensate for this limitation in fiber number. Compelling associations link low birth weight and decreased muscle mass to future insulin resistance, which can drive the development of the metabolic syndrome and type 2 diabetes, and risk for cardiovascular events later in life. There are gaps in knowledge about the origins of reduced muscle growth at the cellular level and how these patterns are set during fetal development. By understanding the nutrient and endocrine regulation of fetal skeletal muscle growth and development, we can direct research efforts towards improving muscle growth early in life in order to prevent the development of chronic metabolic disease later in life. PMID:24532817
Global linkages between teleconnection patterns and the terrestrial biosphere
NASA Astrophysics Data System (ADS)
Dahlin, Kyla M.; Ault, Toby R.
2018-07-01
Interannual variability in the global carbon cycle is largely due to variations in carbon uptake by terrestrial ecosystems, yet linkages between climate variability and variability in the terrestrial carbon cycle are not well understood at the global scale. Using a 30-year satellite record of semi-monthly leaf area index (LAI), we show that four modes of climate variability - El Niño/Southern Oscillation, the North Atlantic Oscillation, the Atlantic Meridional Mode, and the Indian Ocean Dipole Mode - strongly impact interannual vegetation growth patterns, with 68% of the land surface impacted by at least one of these teleconnection patterns, yet the spatial distribution of these impacts is heterogeneous. Considering the patterns' impacts by biome, none has an exclusively positive or negative relationship with LAI. Our findings imply that future changes in the frequency and/or magnitude of teleconnection patterns will lead to diverse changes to the terrestrial biosphere and the global carbon cycle.
Lind-Null, Angie; Larsen, Kim
2011-01-01
The Nisqually Fall Chinook salmon (Oncorhynchus tshawytscha) population is one of 27 stocks in the Puget Sound (Washington) evolutionarily significant unit listed as threatened under the federal Endangered Species Act (ESA). Extensive restoration of the Nisqually River delta ecosystem has taken place to assist in recovery of the stock since estuary habitat is a critical transition zone for juvenile fall Chinook salmon. A pre-restoration baseline that includes the characterization of life history strategies, estuary residence times, growth rates and habitat use is needed to evaluate the potential response of hatchery and natural origin Chinook salmon to restoration efforts and to determine restoration success. Otolith microstructure analysis was selected as a tool to examine Chinook salmon life history, growth and residence in the Nisqually River estuary. The purpose of the current study is to incorporate microstructural analysis from the otoliths of juvenile Nisqually Chinook salmon collected at the downstream migrant trap within true freshwater (FW) habitat of the Nisqually River. The results from this analysis confirmed the previously documented Nisqually-specific FW microstructure pattern and revealed a Nisqually-specific microstructure pattern early in development (“developmental pattern”). No inter-annual variation in the microstructure pattern was visually observed when compared to samples from previous years. Furthermore, the Nisqually-specific “developmental pattern” and the FW microstructure pattern used in combination during analysis will allow us to recognize and separate with further confidence future unmarked Chinook salmon otolith collections into Nisqually-origin (natural or unmarked hatchery) and non-Nisqually origin categories. Freshwater mean increment width, growth rate and residence time were also calculated.
The Long-Term Growth Prospects for Planetary and Space Colonies
NASA Astrophysics Data System (ADS)
Ashworth, S.
In order to live and function, multicellular creatures such as human beings need land area with gravity, an atmosphere and plentiful liquid water. The resources of the Solar System offer opportunities for extraterrestrial colonisation at locations where these basic services may be found or engineered. Two different patterns of activity are possible: planetary versus space colonisation, and these are compared. It is concluded that space colonisation, based on asteroidal resources, offers a prospect of growth greater than that of planetary settlement by three orders of magnitude, as well as a better springboard to growth on an interstellar scale. The space-based rather than planet-based mode of technological life is therefore likely to predominate in the long-term future of successful industrial species.
Climate-growth relationships of Abies spectabilis in a central Himalayan treeline ecotone
NASA Astrophysics Data System (ADS)
Schwab, Niels; Kaczka, Ryszard J.; Schickhoff, Udo
2017-04-01
Climate warming is expected to induce treelines to advance to higher elevations. Empirical studies in diverse mountain ranges, however, give evidence of both advancing alpine treelines as well as rather insignificant responses. The large spectrum of responses is not fully understood. In the framework of investigating the sensitivity and response of a near-natural treeline ecotone in Rolwaling Himal, Nepal, to climate warming we present results from dendroclimatological analyses of Abies spectabilis (Himalayan Fir) increment cores. Tree ring width was measured and cross-dated. After standardization, the chronology was correlated with temperature and precipitation variables. Preliminary results point to positive correlations with autumn temperature and precipitation. We will present improved climate-growth relationships. The resulting climate - tree growth relationships may be used as an indication of future growth patterns and treeline dynamics under climate change conditions.
Crystal Growth of Graphene Films and Graphene Nanoribbons via Chemical Vapor Deposition
NASA Astrophysics Data System (ADS)
Jacobberger, Robert Michael
Graphene is a two-dimensional carbon allotrope that has exceptional properties, including high charge carrier mobility, thermal conductivity, mechanical strength, and flexibility. Graphene is a semimetal, prohibiting its use in semiconductor applications in which a bandgap is required. However, graphene can be transformed from a semimetal into a semiconductor if it is confined into one-dimensional nanoribbons narrower than 10 nm with well-defined armchair edges. In this work, we study the crystal growth of graphene via chemical vapor deposition (CVD), which is the most promising method to produce graphene films on the industrial scale. We explore the growth of isolated graphene crystals, continuous graphene films, and narrow graphene nanoribbons with armchair edges. We gain key insight into the critical growth parameters and mechanisms that influence the crystal morphology, orientation, defect density, and evolution, providing an empirical understanding of the diverse growth behaviors observed in literature. Using this knowledge, we synthesize graphene with remarkably low pinhole density and achieve high-quality graphene at 750 °C on Cu(111), which is over 250 °C lower than the temperature typically used to grow graphene on copper from methane. We also describe our breakthrough in graphene nanoribbon synthesis. Highly anisotropic nanoribbons are formed on Ge(001) if an exceptionally slow growth rate is used. The nanoribbons are self-defining with predominantly smooth armchair edges, are self-aligning, and have tunable width to < 10 nm. High-performance field-effect transistors incorporating these nanoribbons as channels display high conductance modulation > 10,000 and high conductance > 5 muS. This directional and anisotropic growth enables the fabrication of semiconducting nanoribbons directly on conventional semiconductor wafers and, thus, promises to allow the integration of nanoribbons into future hybrid integrated circuits. We additionally report our discovery that chemical patterns consisting of alternating stripes of graphene and germanium can direct the self-assembly of block copolymers into rationally-designed patterns with nanoscale features. Density multiplication of 10 is achieved and faster assembly kinetics are observed on graphene/germanium templates than on conventional chemical patterns based on polymer mats and brushes. This work opens the door for extensive assembly studies on chemical patterns based on two-dimensional materials.
Cheesman, Alexander W; Winter, Klaus
2013-09-01
Predictions of how tropical forests will respond to future climate change are constrained by the paucity of data on the performance of tropical species under elevated growth temperatures. In particular, little is known about the potential of tropical species to acclimate physiologically to future increases in temperature. Seedlings of 10 neo-tropical tree species from different functional groups were cultivated in controlled-environment chambers under four day/night temperature regimes between 30/22 °C and 39/31 °C. Under well-watered conditions, all species showed optimal growth at temperatures above those currently found in their native range. While non-pioneer species experienced catastrophic failure or a substantially reduced growth rate under the highest temperature regime employed (i.e. daily average of 35 °C), growth in three lowland pioneers showed only a marginal reduction. In a subsequent experiment, three species (Ficus insipida, Ormosia macrocalyx, and Ochroma pyramidale) were cultivated at two temperatures determined as sub- and superoptimal for growth, but which resulted in similar biomass accumulation despite a 6°C difference in growth temperature. Through reciprocal transfer and temperature adjustment, the role of thermal acclimation in photosynthesis and respiration was investigated. Acclimation potential varied among species, with two distinct patterns of respiration acclimation identified. The study highlights the role of both inherent temperature tolerance and thermal acclimation in determining the ability of tropical tree species to cope with enhanced temperatures.
The southern megalopolis: using the past to predict the future of urban sprawl in the Southeast U.S.
Terando, Adam; Costanza, Jennifer; Belyea, Curtis; Dunn, Robert R.; McKerrow, Alexa; Collazo, Jaime
2014-01-01
The future health of ecosystems is arguably as dependent on urban sprawl as it is on human-caused climatic warming. Urban sprawl strongly impacts the urban ecosystems it creates and the natural and agro-ecosystems that it displaces and fragments. Here, we project urban sprawl changes for the next 50 years for the fast-growing Southeast U.S. Previous studies have focused on modeling population density, but the urban extent is arguably as important as population density per se in terms of its ecological and conservation impacts. We develop simulations using the SLEUTH urban growth model that complement population-driven models but focus on spatial pattern and extent. To better capture the reach of low-density suburban development, we extend the capabilities of SLEUTH by incorporating street-network information. Our simulations point to a future in which the extent of urbanization in the Southeast is projected to increase by 101% to 192%. Our results highlight areas where ecosystem fragmentation is likely, and serve as a benchmark to explore the challenging tradeoffs between ecosystem health, economic growth and cultural desires.
The Southern Megalopolis: Using the Past to Predict the Future of Urban Sprawl in the Southeast U.S
Terando, Adam J.; Costanza, Jennifer; Belyea, Curtis; Dunn, Robert R.; McKerrow, Alexa; Collazo, Jaime A.
2014-01-01
The future health of ecosystems is arguably as dependent on urban sprawl as it is on human-caused climatic warming. Urban sprawl strongly impacts the urban ecosystems it creates and the natural and agro-ecosystems that it displaces and fragments. Here, we project urban sprawl changes for the next 50 years for the fast-growing Southeast U.S. Previous studies have focused on modeling population density, but the urban extent is arguably as important as population density per se in terms of its ecological and conservation impacts. We develop simulations using the SLEUTH urban growth model that complement population-driven models but focus on spatial pattern and extent. To better capture the reach of low-density suburban development, we extend the capabilities of SLEUTH by incorporating street-network information. Our simulations point to a future in which the extent of urbanization in the Southeast is projected to increase by 101% to 192%. Our results highlight areas where ecosystem fragmentation is likely, and serve as a benchmark to explore the challenging tradeoffs between ecosystem health, economic growth and cultural desires. PMID:25054329
S.B. McLaughlin; S.D. Wullschleger; G. Sun; M. Nosal
2007-01-01
Documentation of the degree and direction of effects of ozone on transpiration of canopies of mature forest trees is critically needed to model ozone effects on forest water use and growth in a warmer future climate.Patterns of sap flow in stems and soil moisture in the rooting zones of mature trees, coupled with late-season...
NASA Astrophysics Data System (ADS)
Chinnayakanahalli, K.; Adam, J. C.; Stockle, C.; Nelson, R.; Brady, M.; Rajagopalan, K.; Barber, M. E.; Dinesh, S.; Malek, K.; Yorgey, G.; Kruger, C.; Marsh, T.; Yoder, J.
2011-12-01
For better management and decision making in the face of climate change, earth system models must explicitly account for natural resource and agricultural management activities. Including crop system, water management, and economic models into an earth system modeling framework can help in answering questions related to the impacts of climate change on irrigation water and crop productivity, how agricultural producers can adapt to anticipated climate change, and how agricultural practices can mitigate climate change. Herein we describe the coupling of the Variability Infiltration Capacity (VIC) land surface model, which solves the water and energy balances of the hydrologic cycle at regional scales, with a crop-growth model, CropSyst. This new model, VIC-CropSyst, is the land surface model that will be used in a new regional-scale model development project focused on the Pacific Northwest, termed BioEarth. Here we describe the VIC-CropSyst coupling process and its application over the Columbia River basin (CRB) using agricultural-specific land cover information. The Washington State Department of Agriculture (WSDA) and U. S. Department of Agriculture (USDA) cropland data layers were used to identify agricultural land use patterns, in which both irrigated and dry land crops were simulated. The VIC-CropSyst model was applied over the CRB for the historical period of 1976 - 2006 to establish a baseline for surface water availability, irrigation demand, and crop production. The model was then applied under future (2030s) climate change scenarios derived from statistically-downscaled Global Circulation Models output under two emission scenarios (A1B and B1). Differences between simulated future and historical irrigation demand, irrigation water availability, and crop production were used in an economics model to identify the most economically-viable future cropping pattern. The economics model was run under varying scenarios of regional growth, trade, water pricing, and water capacity providing a spectrum of possible future cropping patterns. The resulting cropping patterns were then used in VIC-CropSyst to quantify the impacts of climate change, economic, and water management scenarios on crop production, and water resources availability. This modeling framework provides opportunities to study the interactions between human activities and complex natural processes and is a valuable tool for inclusion in an earth system model with the goal of informing land use and water management.
Bahrami, A; Behzadi, Sh; Miraei-Ashtiani, S R; Roh, S-G; Katoh, K
2013-09-15
The somatotropic axis, the control system for growth hormone (GH) secretion and its endogenous factors involved in the regulation of metabolism and energy partitioning, has promising potentials for producing economically valuable traits in farm animals. Here we investigated single nucleotide polymorphisms (SNPs) of the genes of factors involved in the somatotropic axis for growth hormone (GH1), growth hormone receptor (GHR), ghrelin (GHRL), insulin-like growth factor 1 (IGF-I) and leptin (LEP), using polymerase chain reaction-single-strand conformation polymorphism (PCR-SSCP) and DNA sequencing methods in 452 individual Mehraban sheep. A nonradioactive method to allow SSCP detection was used for genomic DNA and PCR amplification of six fragments: exons 4 and 5 of GH1; exon 10 of GH receptor (GHR); exon 1 of ghrelin (GHRL); exon 1 of insulin-like growth factor-I (IGF-I), and exon 3 of leptin (LEP). Polymorphisms were detected in five of the six PCR products. Two electrophoretic patterns were detected for GH1 exon 4. Five conformational patterns were detected for GH1 exon 5 and LEP exon 3, and three for IGF-I exon 1. Only GHR and GHRL were monomorphic. Changes in protein structures due to variable SNPs were also analyzed. The results suggest that Mehraban sheep, a major breed that is important for the animal industry in Middle East countries, has high genetic variability, opening interesting prospects for future selection programs and preservation strategies. Copyright © 2013 Elsevier B.V. All rights reserved.
Kotowska, Martyna M.; Hertel, Dietrich; Rajab, Yasmin Abou; Barus, Henry; Schuldt, Bernhard
2015-01-01
For decades it has been assumed that the largest vessels are generally found in roots and that vessel size and corresponding sapwood area-specific hydraulic conductivity are acropetally decreasing toward the distal twigs. However, recent studies from the perhumid tropics revealed a hump-shaped vessel size distribution. Worldwide tropical perhumid forests are extensively replaced by agroforestry systems often using introduced species of various biogeographical and climatic origins. Nonetheless, it is unknown so far what kind of hydraulic architectural patterns are developed in those agroforestry tree species and which impact this exerts regarding important tree functional traits, such as stem growth, hydraulic efficiency and wood density (WD). We investigated wood anatomical and hydraulic properties of the root, stem and branch wood in Theobroma cacao and five common shade tree species in agroforestry systems on Sulawesi (Indonesia); three of these were strictly perhumid tree species, and the other three tree species are tolerating seasonal drought. The overall goal of our study was to relate these properties to stem growth and other tree functional traits such as foliar nitrogen content and sapwood to leaf area ratio. Our results confirmed a hump-shaped vessel size distribution in nearly all species. Drought-adapted species showed divergent patterns of hydraulic conductivity, vessel density, and relative vessel lumen area between root, stem and branch wood compared to wet forest species. Confirming findings from natural old-growth forests in the same region, WD showed no relationship to specific conductivity. Overall, aboveground growth performance was better predicted by specific hydraulic conductivity than by foliar traits and WD. Our study results suggest that future research on conceptual trade-offs of tree hydraulic architecture should consider biogeographical patterns underlining the importance of anatomical adaptation mechanisms to environment. PMID:25873922
Byrne, Maria; Ho, Melanie A; Koleits, Lucas; Price, Casandra; King, Catherine K; Virtue, Patti; Tilbrook, Bronte; Lamare, Miles
2013-07-01
Stenothermal polar benthic marine invertebrates are highly sensitive to environmental perturbations but little is known about potential synergistic effects of concurrent ocean warming and acidification on development of their embryos and larvae. We examined the effects of these stressors on development to the calcifying larval stage in the Antarctic sea urchin Sterechinus neumayeri in embryos reared in present and future (2100+) ocean conditions from fertilization. Embryos were reared in 2 temperature (ambient: -1.0 °C, + 2 °C : 1.0 °C) and 3 pH (ambient: pH 8.0, -0.2-0.4 pH units: 7.8,7.6) levels. Principle coordinates analysis on five larval metrics showed a significant effect of temperature and pH on the pattern of growth. Within each temperature, larvae were separated by pH treatment, a pattern primarily influenced by larval arm and body length. Growth was accelerated by temperature with a 20-28% increase in postoral (PO) length at +2 °C across all pH levels. Growth was strongly depressed by reduced pH with a 8-19% decrease in PO length at pH 7.6-7.8 at both temperatures. The boost in growth caused by warming resulted in larvae that were larger than would be observed if acidification was examined in the absence of warming. However, there was no significant interaction between these stressors. The increase in left-right asymmetry and altered body allometry indicated that decreased pH disrupted developmental patterning and acted as a teratogen (agent causing developmental malformation). Decreased developmental success with just a 2 °C warming indicates that development in S. neumayeri is particularly sensitive to increased temperature. Increased temperature also altered larval allometry. Altered body shape impairs swimming and feeding in echinoplutei. In the absence of adaptation, it appears that the larval phase may be a bottleneck for survivorship of S. neumayeri in a changing ocean in a location where poleward migration to escape inhospitable conditions is not possible. © 2013 Blackwell Publishing Ltd.
Sanfelice, Domenico; Koss, Hans; Bunney, Tom D; Thompson, Gary S; Farrell, Brendan; Katan, Matilda; Breeze, Alexander L
2018-03-26
Fibroblast growth factors receptors (FGFR) are transmembrane protein tyrosine kinases involved in many cellular process, including growth, differentiation and angiogenesis. Dysregulation of FGFR enzymatic activity is associated with developmental disorders and cancers; therefore FGFRs have become attractive targets for drug discovery, with a number of agents in late-stage clinical trials. Here, we present the backbone resonance assignments of FGFR3 tyrosine kinase domain in the ligand-free form and in complex with the canonical FGFR kinase inhibitor PD173074. Analysis of chemical shift changes upon inhibitor binding highlights a characteristic pattern of allosteric network perturbations that is of relevance for future drug discovery activities aimed at development of conformationally-selective FGFR inhibitors.
Kimberlin, Sara E; Schwartz, Sara L; Austin, Michael J
2011-01-01
Knowledge of organizational history is important for recognizing patterns in effective management and understanding how organizations respond to internal and external challenges. This cross-case analysis of 12 histories of pioneering nonprofit human service organizations contributes an important longitudinal perspective on organizational history, complementing the cross-sectional case studies that dominate the existing research on nonprofit organizations. The literature on organizational growth, including lifecycle models and growth management, is reviewed, along with the literature on organizational resilience. Based on analysis of the 12 organizational histories, a conceptual model is presented that synthesizes key factors in the areas of leadership, internal operations, and external relations that influence organizational growth and resilience to enable nonprofit organizations to survive and thrive over time. Both cross-sectional and longitudinal examples from the organizational histories illustrate the conceptual map. The paper concludes with a discussion of directions for future research on nonprofit organizational history.
Rossi, Sergio; Anfodillo, Tommaso; Cufar, Katarina; Cuny, Henri E; Deslauriers, Annie; Fonti, Patrick; Frank, David; Gricar, Jozica; Gruber, Andreas; King, Gregory M; Krause, Cornelia; Morin, Hubert; Oberhuber, Walter; Prislan, Peter; Rathgeber, Cyrille B K
2013-12-01
Ongoing global warming has been implicated in shifting phenological patterns such as the timing and duration of the growing season across a wide variety of ecosystems. Linear models are routinely used to extrapolate these observed shifts in phenology into the future and to estimate changes in associated ecosystem properties such as net primary productivity. Yet, in nature, linear relationships may be special cases. Biological processes frequently follow more complex, non-linear patterns according to limiting factors that generate shifts and discontinuities, or contain thresholds beyond which responses change abruptly. This study investigates to what extent cambium phenology is associated with xylem growth and differentiation across conifer species of the northern hemisphere. Xylem cell production is compared with the periods of cambial activity and cell differentiation assessed on a weekly time scale on histological sections of cambium and wood tissue collected from the stems of nine species in Canada and Europe over 1-9 years per site from 1998 to 2011. The dynamics of xylogenesis were surprisingly homogeneous among conifer species, although dispersions from the average were obviously observed. Within the range analysed, the relationships between the phenological timings were linear, with several slopes showing values close to or not statistically different from 1. The relationships between the phenological timings and cell production were distinctly non-linear, and involved an exponential pattern. The trees adjust their phenological timings according to linear patterns. Thus, shifts of one phenological phase are associated with synchronous and comparable shifts of the successive phases. However, small increases in the duration of xylogenesis could correspond to a substantial increase in cell production. The findings suggest that the length of the growing season and the resulting amount of growth could respond differently to changes in environmental conditions.
Li, Jing; Huang, Lu; Yan, Li Jiao
2016-06-01
Three economic patterns, i.e., Zhujiang Model, Wenzhou Model and Sunan Model, were all generated in the developed areas of China. Sustainability assessment of those areas plays an important role in guiding future development of the economy of China. Genuine progress indicator (GPI) was adopted in this study to evaluate the sustainability of 6 typical cities (Guangzhou, Shenzhen, Wenzhou, Suzhou, Wuxi, and Changzhou) of the three economic patterns from 1995 to 2012. During the study period, the values of GDP for the six cities had experienced exponential growth, while the values of GPI started to increase since 2005 after a relatively constant period between 1995 and 2005. The gap between GPI and GDP had been widening from a historical perspective. Zhujiang Model made great progress in economic growth, however, the economic, social, and environmental costs were evident. It should tackle income inequality, traffic jam, and environmental pollution to reach sustainability. The development of Wenzhou Model slowed down in the late pe-riod, with inadequate potential to develop. Its income inequality was tough, social and economic development was slow, and the economic development pattern needed to be urgently changed. Sunan Model had a higher value of GPI and the potential to reach sustainability, with remarkable growth of economy, median level of the GPI costs, and steady improvement of social development, although its natural resources were depleted. Three economic patterns should focus on the three dimensions of sustainability (economy, environment, and society), and Zhujiang Model and Wenzhou Model needed to be more active to search for transition of their development.
NASA Astrophysics Data System (ADS)
Witherell, B. B.; Bain, D. J.; Salant, N.; Aloysius, N. R.
2009-12-01
Humans impact the hydrologic cycle at local, regional and global scales. Understanding how spatial patterns of human water use and hydrologic impact have changed over time is important to future water management in an era of increasing water constraints and globalization of high water-use resources. This study investigates spatial dependence and spatial patterns of hydro-social metrics for the Northeastern United States from 1600 to 1920 through the use of spatial statistical techniques. Several relevant hydro-social metrics, including water residence time, surface water storage (natural and human engineered) and per capita water availability, are analyzed. This study covers a region and period of time that saw significant population growth, landscape change, and industrial growth. These changes had important impacts on water availability. Although some changes such as the elimination of beavers, and the resulting loss of beaver ponds on low-order streams, are felt at a regional scale, preliminary analysis indicates that humans responded to water constraints by acting locally (e.g., mill ponds for water power and water supply reservoirs for public health). This 320-year historical analysis of spatial patterns of hydro-social metrics provides unique insight into long-term changes in coupled human-water systems.
The Powder Diffraction File: Past, Present, and Future
Smith, Deane K.; Jenkins, Ron
1996-01-01
The Powder Diffraction file has been the primary reference for Powder Diffraction Data for more than half a century. The file is a collection of about 65 000 reduced powder patterns stored as sets of d/I data along with the appropriate crystallographic, physical and experimental information. This paper reviews the development and growth of the PDF and discusses the role of the ICDD in the maintenance and dissemination of the file. PMID:27805163
Targeting the Prostate Cancer Microenvironment to Improve Therapeutic Outcomes
2015-08-01
molecular chaperone HSP27 upon such a series of cell Figure 4. Growth potential and expression pattern of cell line specific markers. A. Colony-forming...cells that were subject to 3 microtubule toxins and 3 DNA damaging agents, respectively, with p38 and HSP27 as major cytoplasmic objectives. E...LY2228820) and HSP27 (genetic eliminationon) are intensively carried out in our lab, with relevant data to be reported systematically in future
Targeting the Prostate Cancer Microenvironment to Improve Therapeutic Outcomes
2014-06-01
chaperone HSP27 upon such a series of cell Figure 4. Growth potential and expression pattern of cell line specific markers. A. Colony-forming unit...lysates collected from PSC27 cells that were subject to 3 microtubule toxins and 3 DNA damaging agents, respectively, with p38 and HSP27 as major...and HSP27 (genetic eliminationon) are intensively carried out in our lab, with relevant data to be reported systematically in future
Should nuclear energy form part of the UK's energy future?
NASA Astrophysics Data System (ADS)
Campbell, Peter
2003-03-01
Energy policies are under review everywhere, as the world tries to meet targets for reducing climate change despite continuing population growth. A major change in energy patterns is needed, with the critical period for transition predictably happening when young people currently at school are in their middle years of their lives. This article describes one way of bringing the debate surrounding energy demand and supply to life in physics classrooms.
TOPICAL PROBLEMS: The phenomenological theory of world population growth
NASA Astrophysics Data System (ADS)
Kapitza, Sergei P.
1996-01-01
Of all global problems world population growth is the most significant. Demographic data describe this process in a concise and quantitative way in its past and present. Analysing this development it is possible by applying the concepts of systems analysis and synergetics, to work out a mathematical model for a phenomenological description of the global demographic process and to project its trends into the future. Assuming self-similarity as the dynamic principle of development, growth can be described practically over the whole of human history, assuming the growth rate to be proportional to the square of the number of people. The large parameter of the theory and the effective size of a coherent population group is of the order of 105 and the microscopic parameter of the phenomenology is the human lifespan. The demographic transition — a transition to a stabilised world population of some 14 billion in a foreseeable future — is a systemic singularity and is determined by the inherent pattern of growth of an open system, rather than by the lack of resources. The development of a quantitative nonlinear theory of the world population is of interest for interdisciplinary research in anthropology and demography, history and sociology, for population genetics and epidemiology, for studies in evolution of humankind and the origin of man. The model also provides insight into the stability of growth and the present predicament of humankind, and provides a setting for discussing the main global problems.
NASA Astrophysics Data System (ADS)
Wang, Xue; Hartmann, Jana; Mandl, Martin; Sadat Mohajerani, Matin; Wehmann, Hergo-H.; Strassburg, Martin; Waag, Andreas
2014-04-01
Three-dimensional GaN columns recently have attracted a lot of attention as the potential basis for core-shell light emitting diodes for future solid state lighting. In this study, the fundamental insights into growth kinetics and mass transport mechanisms of N-polar GaN columns during selective area metal organic vapor phase epitaxy on patterned SiOx/sapphire templates are systematically investigated using various pitch of apertures, growth time, and silane flow. Species impingement fluxes on the top surface of columns Jtop and on their sidewall Jsw, as well as, the diffusion flux from the substrate Jsub contribute to the growth of the GaN columns. The vertical and lateral growth rates devoted by Jtop, Jsw and Jsub are estimated quantitatively. The diffusion length of species on the SiOx mask surface λsub as well as on the sidewall surfaces of the 3D columns λsw are determined. The influences of silane on the growth kinetics are discussed. A growth model is developed for this selective area metal organic vapor phase epitaxy processing.
Characterizing growth patterns in longitudinal MRI using image contrast
NASA Astrophysics Data System (ADS)
Vardhan, Avantika; Prastawa, Marcel; Vachet, Clement; Piven, Joseph; Gerig, Guido
2014-03-01
Understanding the growth patterns of the early brain is crucial to the study of neuro-development. In the early stages of brain growth, a rapid sequence of biophysical and chemical processes take place. A crucial component of these processes, known as myelination, consists of the formation of a myelin sheath around a nerve fiber, enabling the effective transmission of neural impulses. As the brain undergoes myelination, there is a subsequent change in the contrast between gray matter and white matter as observed in MR scans. In this work, gray-white matter contrast is proposed as an effective measure of appearance which is relatively invariant to location, scanner type, and scanning conditions. To validate this, contrast is computed over various cortical regions for an adult human phantom. MR (Magnetic Resonance) images of the phantom were repeatedly generated using different scanners, and at different locations. Contrast displays less variability over changing conditions of scan compared to intensity-based measures, demonstrating that it is less dependent than intensity on external factors. Additionally, contrast is used to analyze longitudinal MR scans of the early brain, belonging to healthy controls and Down's Syndrome (DS) patients. Kernel regression is used to model subject-specific trajectories of contrast changing with time. Trajectories of contrast changing with time, as well as time-based biomarkers extracted from contrast modeling, show large differences between groups. The preliminary applications of contrast based analysis indicate its future potential to reveal new information not covered by conventional volumetric or deformation-based analysis, particularly for distinguishing between normal and abnormal growth patterns.
NASA Astrophysics Data System (ADS)
Jurasinski, Gerald; Scharnweber, Tobias; Schröder, Christian; Lennartz, Bernd; Bauwe, Andreas
2017-04-01
Tree growth depends, among other factors, largely on the prevailing climatic conditions. Therefore, tree growth patterns are to be expected under climate change. Here, we analyze the tree-ring growth response of three major European tree species to projected future climate across a climatic (mostly precipitation) gradient in northeastern Germany. We used monthly data for temperature, precipitation, and the standardized precipitation evapotranspiration index (SPEI) over multiple time scales (1, 3, 6, 12, and 24 months) to construct models of tree-ring growth for Scots pine (Pinus syl- vestris L.) at three pure stands, and for Common beech (Fagus sylvatica L.) and Pedunculate oak (Quercus robur L.) at three mature mixed stands. The regression models were derived using a two-step approach based on partial least squares regression (PLSR) to extract potentially well explaining variables followed by ordinary least squares regression (OLSR) to consolidate the models to the least number of variables while retaining high explanatory power. The stability of the models was tested with a comprehensive calibration-verification scheme. All models were successfully verified with R2s ranging from 0.21 for the western pine stand to 0.62 for the beech stand in the east. For growth prediction, climate data forecasted until 2100 by the regional climate model WETTREG2010 based on the A1B Intergovernmental Panel on Climate Change (IPCC) emission scenario was used. For beech and oak, growth rates will likely decrease until the end of the 21st century. For pine, modeled growth trends vary and range from a slight growth increase to a weak decrease in growth rates depending on the position along the climatic gradient. The climatic gradient across the study area will possibly affect the future growth of oak with larger growth reductions towards the drier east. For beech, site-specific adaptations seem to override the influence of the climatic gradient. We conclude that in Northeastern Germany Scots pine has great potential to remain resilient to projected climate change without any greater impairment, whereas Common beech and Pedunculate oak will likely face lesser growth under the expected warmer and dryer climate conditions. The results call for an adaptation of forest management to mitigate the negative effects of climate change for beech and oak in the region.
Davatzikos, Christos
2016-10-01
The past 20 years have seen a mushrooming growth of the field of computational neuroanatomy. Much of this work has been enabled by the development and refinement of powerful, high-dimensional image warping methods, which have enabled detailed brain parcellation, voxel-based morphometric analyses, and multivariate pattern analyses using machine learning approaches. The evolution of these 3 types of analyses over the years has overcome many challenges. We present the evolution of our work in these 3 directions, which largely follows the evolution of this field. We discuss the progression from single-atlas, single-registration brain parcellation work to current ensemble-based parcellation; from relatively basic mass-univariate t-tests to optimized regional pattern analyses combining deformations and residuals; and from basic application of support vector machines to generative-discriminative formulations of multivariate pattern analyses, and to methods dealing with heterogeneity of neuroanatomical patterns. We conclude with discussion of some of the future directions and challenges. Copyright © 2016. Published by Elsevier B.V.
Davatzikos, Christos
2017-01-01
The past 20 years have seen a mushrooming growth of the field of computational neuroanatomy. Much of this work has been enabled by the development and refinement of powerful, high-dimensional image warping methods, which have enabled detailed brain parcellation, voxel-based morphometric analyses, and multivariate pattern analyses using machine learning approaches. The evolution of these 3 types of analyses over the years has overcome many challenges. We present the evolution of our work in these 3 directions, which largely follows the evolution of this field. We discuss the progression from single-atlas, single-registration brain parcellation work to current ensemble-based parcellation; from relatively basic mass-univariate t-tests to optimized regional pattern analyses combining deformations and residuals; and from basic application of support vector machines to generative-discriminative formulations of multivariate pattern analyses, and to methods dealing with heterogeneity of neuroanatomical patterns. We conclude with discussion of some of the future directions and challenges. PMID:27514582
Koh, Gar Yee; Rowling, Matthew J; Schalinske, Kevin L; Grapentine, Kelly; Loo, Yi Ting
2016-10-12
We previously demonstrated that feeding of dietary resistant starch (RS) prior to the induction of diabetes delayed the progression of diabetic nephropathy and maintained vitamin D balance in streptozotocin (STZ)-induced type 1 diabetic (T1D) rats. Here, we examined the impact of RS on kidney function and vitamin D homeostasis following STZ injection. Male Sprague-Dawley rats were administered STZ and fed a standard diet containing cornstarch or 20, 10, or 5% RS for 4 weeks. T1D rats fed 10 and 20% RS, but not 5% RS, gained more weight than cornstarch-fed rats. Yet, renal health and glucose metabolism were not improved by RS. Our data suggest that RS normalized growth patterns in T1D rats after diabetes induction in a dose-dependent manner despite having no effect on blood glucose and vitamin D balances. Future interventions should focus on the preventative strategies with RS in T1D.
Title: Freshwater phytoplankton responses to global warming.
Wagner, Heiko; Fanesi, Andrea; Wilhelm, Christian
2016-09-20
Global warming alters species composition and function of freshwater ecosystems. However, the impact of temperature on primary productivity is not sufficiently understood and water quality models need to be improved in order to assess the quantitative and qualitative changes of aquatic communities. On the basis of experimental data, we demonstrate that the commonly used photosynthetic and water chemistry parameters alone are not sufficient for modeling phytoplankton growth under changing temperature regimes. We present some new aspects of the acclimation process with respect to temperature and how contrasting responses may be explained by a more complete physiological knowledge of the energy flow from photons to new biomass. We further suggest including additional bio-markers/traits for algal growth such as carbon allocation patterns to increase the explanatory power of such models. Although carbon allocation patterns are promising and functional cellular traits for growth prediction under different nutrient and light conditions, their predictive power still waits to be tested with respect to temperature. A great challenge for the near future will be the prediction of primary production efficiencies under the global change scenario using a uniform model for phytoplankton assemblages. Copyright © 2016 Elsevier GmbH. All rights reserved.
Mitchell, Christine C; Ashley, Stanley W; Zinner, Michael J; Moore, Francis D
2007-04-01
To develop a model to predict future staffing for the surgery service at a teaching hospital. Tertiary hospital. A computer model with potential future variables was constructed. Some of the variables were distribution of resident staff, fellows, and physician extenders; salary/wages; work hours; educational value of rotations; work units, inpatient wards, and clinics; future volume growth; and efficiency savings. Outcomes Number of staff to be hired, staffing expense, and educational impact. On a busy general surgery service, we estimated the impact of changes in resident work hours, service growth, and workflow efficiency in the next 5 years. Projecting a reduction in resident duty hours to 60 hours per week will require the hiring of 10 physician assistants at a cost of $1 134 000, a cost that is increased by $441 000 when hiring hospitalists instead. Implementing a day of didactic and simulator time (10 hours) will further increase the costs by $568 000. A 10% improvement in the efficiency of floor care, as might be gained by advanced information technology capability or by regionalization of patients, can mitigate these expenses by as much as 21%. On the other hand, a modest annual growth of 2% will increase the costs by $715 000 to $2 417 000. To simply replace residents with alternative providers requires large amounts of human and fiscal capital. The potential for simple efficiencies to mitigate some of this expense suggests that traditional patterns of care in teaching hospitals will have to change in response to educational mandates.
Hutchins, David A.; Walworth, Nathan G.; Webb, Eric A.; Saito, Mak A.; Moran, Dawn; McIlvin, Matthew R.; Gale, Jasmine; Fu, Fei-Xue
2015-01-01
Nitrogen fixation rates of the globally distributed, biogeochemically important marine cyanobacterium Trichodesmium increase under high carbon dioxide (CO2) levels in short-term studies due to physiological plasticity. However, its long-term adaptive responses to ongoing anthropogenic CO2 increases are unknown. Here we show that experimental evolution under extended selection at projected future elevated CO2 levels results in irreversible, large increases in nitrogen fixation and growth rates, even after being moved back to lower present day CO2 levels for hundreds of generations. This represents an unprecedented microbial evolutionary response, as reproductive fitness increases acquired in the selection environment are maintained after returning to the ancestral environment. Constitutive rate increases are accompanied by irreversible shifts in diel nitrogen fixation patterns, and increased activity of a potentially regulatory DNA methyltransferase enzyme. High CO2-selected cell lines also exhibit increased phosphorus-limited growth rates, suggesting a potential advantage for this keystone organism in a more nutrient-limited, acidified future ocean. PMID:26327191
NASA Astrophysics Data System (ADS)
Hutchins, David A.; Walworth, Nathan G.; Webb, Eric A.; Saito, Mak A.; Moran, Dawn; McIlvin, Matthew R.; Gale, Jasmine; Fu, Fei-Xue
2015-09-01
Nitrogen fixation rates of the globally distributed, biogeochemically important marine cyanobacterium Trichodesmium increase under high carbon dioxide (CO2) levels in short-term studies due to physiological plasticity. However, its long-term adaptive responses to ongoing anthropogenic CO2 increases are unknown. Here we show that experimental evolution under extended selection at projected future elevated CO2 levels results in irreversible, large increases in nitrogen fixation and growth rates, even after being moved back to lower present day CO2 levels for hundreds of generations. This represents an unprecedented microbial evolutionary response, as reproductive fitness increases acquired in the selection environment are maintained after returning to the ancestral environment. Constitutive rate increases are accompanied by irreversible shifts in diel nitrogen fixation patterns, and increased activity of a potentially regulatory DNA methyltransferase enzyme. High CO2-selected cell lines also exhibit increased phosphorus-limited growth rates, suggesting a potential advantage for this keystone organism in a more nutrient-limited, acidified future ocean.
GaN based nanorods for solid state lighting
NASA Astrophysics Data System (ADS)
Li, Shunfeng; Waag, Andreas
2012-04-01
In recent years, GaN nanorods are emerging as a very promising novel route toward devices for nano-optoelectronics and nano-photonics. In particular, core-shell light emitting devices are thought to be a breakthrough development in solid state lighting, nanorod based LEDs have many potential advantages as compared to their 2 D thin film counterparts. In this paper, we review the recent developments of GaN nanorod growth, characterization, and related device applications based on GaN nanorods. The initial work on GaN nanorod growth focused on catalyst-assisted and catalyst-free statistical growth. The growth condition and growth mechanisms were extensively investigated and discussed. Doping of GaN nanorods, especially p-doping, was found to significantly influence the morphology of GaN nanorods. The large surface of 3 D GaN nanorods induces new optical and electrical properties, which normally can be neglected in layered structures. Recently, more controlled selective area growth of GaN nanorods was realized using patterned substrates both by metalorganic chemical vapor deposition (MOCVD) and by molecular beam epitaxy (MBE). Advanced structures, for example, photonic crystals and DBRs are meanwhile integrated in GaN nanorod structures. Based on the work of growth and characterization of GaN nanorods, GaN nanoLEDs were reported by several groups with different growth and processing methods. Core/shell nanoLED structures were also demonstrated, which could be potentially useful for future high efficient LED structures. In this paper, we will discuss recent developments in GaN nanorod technology, focusing on the potential advantages, but also discussing problems and open questions, which may impose obstacles during the future development of a GaN nanorod based LED technology.
The Changing Science of Urban Transportation Planning
NASA Astrophysics Data System (ADS)
Kloster, Tom
2010-03-01
The last half of the 20th Century was the age of the automobile, and the development of bigger and faster roads defined urban planning for more than 50 years. During this period, transportation planners developed sophisticated behavior models to help predict future travel patterns in an attempt to keep pace with ever-growing congestion and public demand for more roads. By the 1990s, however, it was clear that eliminating congestion with new road capacity was an unattainable outcome, and had unintended effects that were never considered when the automobile era first emerged. Today, public expectations are rapidly evolving beyond ``building our way out'' of congestion, and toward more complex definitions of desired outcomes in transportation planning. In this new century, planners must improve behavior models to predict not only the travel patterns of the future, but also the subsequent environmental, social and public health effects associated with growth and changes in travel behavior, and provide alternative transportation solutions that respond to these broader outcomes.
Monitoring the expansion of built-up areas in Seberang Perai region, Penang State, Malaysia
NASA Astrophysics Data System (ADS)
Samat, N.
2014-02-01
Rapid urbanization has caused land use transformation and encroachment of built environment into arable agriculture land. Uncontrolled expansion could bring negative impacts to society, space and the environment. Therefore, information on expansion and future spatial pattern of built-up areas would be useful for planners and decision makers in formulating policies towards managing and planning for sustainable urban development. This study demonstrates the usage of Geographic Information System in monitoring the expansion of built-up area in Seberang Perai region, Penang State, Malaysia. Built-up area has increased by approximately 20% between 1990 and 2001 and further increased by 12% between 2001 and 2007. New development is expected to continue encroach into existing open space and agriculture area since those are the only available land in this study area. The information on statistics of the expansion of built-up area and future spatial pattern of urban expansion were useful in planning and managing urban spatial growth.
Tyler, Sheena E B
2017-01-01
Natural endogenous voltage gradients not only predict and correlate with growth and development but also drive wound healing and regeneration processes. This review summarizes the existing literature for the nature, sources, and transmission of information-bearing bioelectric signals involved in controlling wound healing and regeneration in animals, humans, and plants. It emerges that some bioelectric characteristics occur ubiquitously in a range of animal and plant species. However, the limits of similarities are probed to give a realistic assessment of future areas to be explored. Major gaps remain in our knowledge of the mechanistic basis for these processes, on which regenerative therapies ultimately depend. In relation to this, it is concluded that the mapping of voltage patterns and the processes generating them is a promising future research focus, to probe three aspects: the role of wound/regeneration currents in relation to morphology; the role of endogenous flux changes in driving wound healing and regeneration; and the mapping of patterns in organisms of extreme longevity, in contrast with the aberrant voltage patterns underlying impaired healing, to inform interventions aimed at restoring them.
Auestad, Nancy; Fulgoni, Victor L
2015-01-01
The concept of sustainable diets, although not new, is gaining increased attention across the globe, especially in relation to projected population growth and growing concerns about climate change. As defined by the FAO (Proceedings of the International Scientific Symposium, Biodiversity and Sustainable Diets 2010; FAO 2012), "Sustainable diets are those diets with low environmental impacts which contribute to food and nutrition security and to healthy life for present and future generations." Consistent and credible science that brings together agriculture, food systems, nutrition, public health, environment, economics, culture, and trade is needed to identify synergies and trade-offs and to inform guidance on vital elements of healthy, sustainable diets. The aim of this article is to review the emerging research on environmental and related economic impacts of dietary patterns, including habitual eating patterns, nutritionally balanced diets, and a variety of different dietary scenarios. Approaches to research designs, methodologies, and data sources are compared and contrasted to identify research gaps and future research needs. To date, it is difficult to assimilate all of the disparate approaches, and more concerted efforts for multidisciplinary studies are needed. © 2015 American Society for Nutrition.
Tyler, Sheena E. B.
2017-01-01
Natural endogenous voltage gradients not only predict and correlate with growth and development but also drive wound healing and regeneration processes. This review summarizes the existing literature for the nature, sources, and transmission of information-bearing bioelectric signals involved in controlling wound healing and regeneration in animals, humans, and plants. It emerges that some bioelectric characteristics occur ubiquitously in a range of animal and plant species. However, the limits of similarities are probed to give a realistic assessment of future areas to be explored. Major gaps remain in our knowledge of the mechanistic basis for these processes, on which regenerative therapies ultimately depend. In relation to this, it is concluded that the mapping of voltage patterns and the processes generating them is a promising future research focus, to probe three aspects: the role of wound/regeneration currents in relation to morphology; the role of endogenous flux changes in driving wound healing and regeneration; and the mapping of patterns in organisms of extreme longevity, in contrast with the aberrant voltage patterns underlying impaired healing, to inform interventions aimed at restoring them. PMID:28928669
Auestad, Nancy; Fulgoni, Victor L
2015-01-01
The concept of sustainable diets, although not new, is gaining increased attention across the globe, especially in relation to projected population growth and growing concerns about climate change. As defined by the FAO (Proceedings of the International Scientific Symposium, Biodiversity and Sustainable Diets 2010; FAO 2012), “Sustainable diets are those diets with low environmental impacts which contribute to food and nutrition security and to healthy life for present and future generations.” Consistent and credible science that brings together agriculture, food systems, nutrition, public health, environment, economics, culture, and trade is needed to identify synergies and trade-offs and to inform guidance on vital elements of healthy, sustainable diets. The aim of this article is to review the emerging research on environmental and related economic impacts of dietary patterns, including habitual eating patterns, nutritionally balanced diets, and a variety of different dietary scenarios. Approaches to research designs, methodologies, and data sources are compared and contrasted to identify research gaps and future research needs. To date, it is difficult to assimilate all of the disparate approaches, and more concerted efforts for multidisciplinary studies are needed. PMID:25593141
A Method for Mapping Future Urbanization in the United States
NASA Technical Reports Server (NTRS)
Bounoua, Lahouari; Nigro, Joseph; Thome, Kurtis; Zhang, Ping; Fathi, Najlaa; Lachir, Asia
2018-01-01
Cities are poised to absorb additional people. Their sustainability, or ability to accommodate a population increase without depleting resources or compromising future growth, depends on whether they harness the efficiency gains from urban land management. Population is often projected as a bulk national number without details about spatial distribution. We use Landsat and population data in a methodology to project and map U.S. urbanization for the year 2020 and document its spatial pattern. This methodology is important to spatially disaggregate projected population and assist land managers to monitor land use, assess infrastructure and distribute resources. We found the U.S. west coast urban areas to have the fastest population growth with relatively small land consumption resulting in future decrease in per capita land use. Except for Miami (FL), most other U.S. large urban areas, especially in the Midwest, are growing spatially faster than their population and inadvertently consuming land needed for ecosystem services. In large cities, such as New York, Chicago, Houston and Miami, land development is expected more in suburban zones than urban cores. In contrast, in Los Angeles land development within the city core is greater than in its suburbs.
Spatial statistical analysis of basal stem root disease under natural field epidemic of oil palm
NASA Astrophysics Data System (ADS)
Kamu, Assis; Phin, Chong Khim; Seman, Idris Abu; Wan, Hoong Hak; Mun, Ho Chong
2015-02-01
Oil palm or scientifically known as Elaeis guineensis Jacq. is the most important commodity crop in Malaysia and has greatly contributed to the economy growth of the country. As far as disease is concerned in the industry, Basal Stem Rot (BSR) caused by Ganoderma boninence remains the most important disease. BSR disease is the most widely studied with information available for oil palm disease in Malaysia. However, there is still limited study on the spatial as well as temporal pattern or distribution of the disease especially under natural field epidemic condition in oil palm plantation. The objective of this study is to spatially identify the pattern of BSR disease under natural field epidemic using two geospatial analytical techniques, which are quadrat analysis for the first order properties of partial pattern analysis and nearest-neighbor analysis (NNA) for the second order properties of partial pattern analysis. Two study sites were selected with different age of tree. Both sites are located in Tawau, Sabah and managed by the same company. The results showed that at least one of the point pattern analysis used which is NNA (i.e. the second order properties of partial pattern analysis) has confirmed the disease is complete spatial randomness. This suggests the spread of the disease is not from tree to tree and the age of palm does not play a significance role in determining the spatial pattern of the disease. From the spatial pattern of the disease, it would help in the disease management program and for the industry in the future. The statistical modelling is expected to help in identifying the right model to estimate the yield loss of oil palm due to BSR disease in the future.
Declining Radial Growth Response of Coastal Forests to Hurricanes and Nor'easters
NASA Astrophysics Data System (ADS)
Fernandes, Arnold; Rollinson, Christine R.; Kearney, William S.; Dietze, Michael C.; Fagherazzi, Sergio
2018-03-01
The Mid-Atlantic coastal forests in Virginia are stressed by episodic disturbance from hurricanes and nor'easters. Using annual tree ring data, we adopt a dendroclimatic and statistical modeling approach to understand the response and resilience of a coastal pine forest to extreme storm events, over the past few decades. Results indicate that radial growth of trees in the study area is influenced by age, regional climate trends, and individual tree effects but dominated periodically by growth disturbance due to storms. We evaluated seven local extreme storm events to understand the effect of nor'easters and hurricanes on radial growth. A general decline in radial growth was observed in the year of the extreme storm and 3 years following it, after which the radial growth started recovering. The decline in radial growth showed a statistically significant correlation with the magnitude of the extreme storm (storm surge height and wind speed). This study contributes to understanding declining tree growth response and resilience of coastal forests to past disturbances. Given the potential increase in hurricanes and storm surge severity in the region, this can help predict vegetation response patterns to similar disturbances in the future.
Batchwise growth of silica cone patterns via self-assembly of aligned nanowires.
Luo, Shudong; Zhou, Weiya; Chu, Weiguo; Shen, Jun; Zhang, Zengxing; Liu, Lifeng; Liu, Dongfang; Xiang, Yanjuan; Ma, Wenjun; Xie, Sishen
2007-03-01
Silica-cone patterns self-assembled from well-aligned nanowires are synthesized using gallium droplets as the catalyst and silicon wafers as the silicon source. The cones form a triangular pattern array radially on almost the whole surface of the molten Ga ball. Detailed field-emission scanning electron microscopy (SEM) analysis shows that the cone-pattern pieces frequently slide off and are detached from the molten Ga ball surface, which leads to the exposure of the catalyst surface and the growth of a new batch of silicon oxide nanowires as well as the cone patterns. The processes of growth and detachment alternate, giving rise to the formation of a volcano-like or a flower-like structure with bulk-quantity pieces of cone patterns piled up around the Ga ball. Consequently, the cone-patterned layer grows batch by batch until the reaction is terminated. Different to the conventional metal-catalyzed growth model, the batch-by-batch growth of the triangular cone patterns proceeds on the molten Ga balls via alternate growth on and detachment from the catalyst surface of the patterns; the Ga droplet can be used continuously and circularly as an effective catalyst for the growth of amorphous SiO(x) nanowires during the whole growth period. The intriguing batchwise growth phenomena may enrich our understanding of the vapour-liquid-solid (VLS) growth mechanism for the catalyst growth of nanowires or other nanostructures and may offer a different way of self-assembling novel silica nanostructures.
How to make a tree ring: Coupling stem water flow and cambial activity in mature Alpine conifers
NASA Astrophysics Data System (ADS)
Peters, Richard L.; Frank, David C.; Treydte, Kerstin; Steppe, Kathy; Kahmen, Ansgar; Fonti, Patrick
2017-04-01
Inter-annual tree-ring measurements are used to understand tree-growth responses to climatic variability and reconstruct past climate conditions. In parallel, mechanistic models use experimentally defined plant-atmosphere interactions to explain past growth responses and predict future environmental impact on forest productivity. Yet, substantial inconsistencies within mechanistic model ensembles and mismatches with empirical data indicate that significant progress is still needed to understand the processes occurring at an intra-annual resolution that drive annual growth. However, challenges arise due to i) few datasets describing climatic responses of high-resolution physiological processes over longer time-scales, ii) uncertainties on the main mechanistic process limiting radial stem growth and iii) complex interactions between multiple environmental factors which obscure detection of the main stem growth driver, generating a gap between our understanding of intra- and inter-annual growth mechanisms. We attempt to bridge the gap between inter-annual tree-ring width and sub-daily radial stem-growth and provide a mechanistic perspective on how environmental conditions affect physiological processes that shape tree rings in conifers. We combine sub-hourly sap flow and point dendrometer measurements performed on mature Alpine conifers (Larix decidua) into an individual-based mechanistic tree-growth model to simulate sub-hourly cambial activity. The monitored trees are located along a high elevational transect in the Swiss Alps (Lötschental) to analyse the effect of increasing temperature. The model quantifies internal tree hydraulic pathways that regulate the turgidity within the cambial zone and induce cell enlargement for radial growth. The simulations are validated against intra-annual growth patterns derived from xylogenesis data and anatomical analyses. Our efforts advance the process-based understanding of how climate shapes the annual tree-ring structures and could potentially improve our ability to reconstruct the climate of the past and predict future growth under changing climate.
Periodic Two-Dimensional GaAs and InGaAs Quantum Rings Grown on GaAs (001) by Droplet Epitaxy.
Tung, Kar Hoo Patrick; Huang, Jian; Danner, Aaron
2016-06-01
Growth of ordered GaAs and InGaAs quantum rings (QRs) in a patterned SiO2 nanohole template by molecular beam epitaxy (MBE) using droplet epitaxy (DE) process is demonstrated. DE is an MBE growth technique used to fabricate quantum nanostructures of high crystal quality by supplying group III and group V elements in separate phases. In this work, ordered QRs grown on an ordered nanohole template are compared to self-assembled QRs grown with the same DE technique without the nanohole template. This study allows us to understand and compare the surface kinetics of Ga and InGa droplets when a template is present. It is found that template-grown GaAs QRs form clustered rings which can be attributed to low mobility of Ga droplets resulting in multiple nucleation sites for QR formation when As is supplied. However, the case of template-grown InGaAs QRs only one ring is formed per nanohole; no clustering is observed. The outer QR diameter is a close match to the nanohole template diameter. This can be attributed to more mobile InGa droplets, which coalesce from an Ostwald ripening to form a single large droplet before As is supplied. Thus, well-patterned InGaAs QRs are demonstrated and the kinetics of their growth are better understood which could potentially lead to improvements in the future devices that require the unique properties of patterned QRs.
Excellent approach to modeling urban expansion by fuzzy cellular automata: agent base model
NASA Astrophysics Data System (ADS)
Khajavigodellou, Yousef; Alesheikh, Ali A.; Mohammed, Abdulrazak A. S.; Chapi, Kamran
2014-09-01
Recently, the interaction between humans and their environment is the one of important challenges in the world. Landuse/ cover change (LUCC) is a complex process that includes actors and factors at different social and spatial levels. The complexity and dynamics of urban systems make the applicable practice of urban modeling very difficult. With the increased computational power and the greater availability of spatial data, micro-simulation such as the agent based and cellular automata simulation methods, has been developed by geographers, planners, and scholars, and it has shown great potential for representing and simulating the complexity of the dynamic processes involved in urban growth and land use change. This paper presents Fuzzy Cellular Automata in Geospatial Information System and remote Sensing to simulated and predicted urban expansion pattern. These FCA-based dynamic spatial urban models provide an improved ability to forecast and assess future urban growth and to create planning scenarios, allowing us to explore the potential impacts of simulations that correspond to urban planning and management policies. A fuzzy inference guided cellular automata approach. Semantic or linguistic knowledge on Land use change is expressed as fuzzy rules, based on which fuzzy inference is applied to determine the urban development potential for each pixel. The model integrates an ABM (agent-based model) and FCA (Fuzzy Cellular Automata) to investigate a complex decision-making process and future urban dynamic processes. Based on this model rapid development and green land protection under the influences of the behaviors and decision modes of regional authority agents, real estate developer agents, resident agents and non- resident agents and their interactions have been applied to predict the future development patterns of the Erbil metropolitan region.
Margiotta, M; Bella, S; Buffa, F; Caleca, V; Floris, I; Giorno, V; Lo Verde, G; Rapisarda, C; Sasso, R; Suma, P; Tortorici, F; Laudonia, S
2017-04-01
Glycaspis brimblecombei Moore (Hemiptera: Aphalaridae) is an invasive psyllid introduced into the Mediterranean area, where it affects several species of Eucalyptus. Psyllaephagus bliteus Riek (Hymenoptera: Encyrtidae) is a specialized parasitoid of this psyllid that was accidentally introduced into Italy in 2011. We developed a model of this host-parasitoid system that accounts for the influence of environmental conditions on the G. brimblecombei population dynamics and P. bliteus parasitism rates in the natural ecosystem. The Lotka-Volterra-based model predicts non-constant host growth and parasitoid mortality rates in association with variation in environmental conditions. The model was tested by analyzing sampling data collected in Naples in 2011 (before the parasitoid was present) and defining several environmental patterns, termed Temperature-Rain or T-R patterns, which correspond to the host growth rate. A mean value of the host growth rate was assigned to each T-R pattern, as well as a variation of the parasitoid mortality rate based on temperature thresholds. The proposed model was applied in simulation tests related to T-R patterns carried out with a data series sampled between June 2014 and July 2015 in five Italian sites located in Campania, Lazio, Sicily, and Sardinia regions. The simulation results showed that the proposed model provides an accurate approximation of population trends, although oscillation details may not be apparent. Results predict a 64% reduction in G. brimblecombei population density owing to P. bliteus parasitoid activity. Our results are discussed with respect to features of the host-parasitoid interaction that could be exploited in future biological control programs. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Sarkar, Subhendu Sinha; Katiyar, Ajit K.; Sarkar, Arijit; Dhar, Achintya; Rudra, Arun; Khatri, Ravinder K.; Ray, Samit Kumar
2018-04-01
It is important to investigate the growth dynamics of Ge adatoms under different surface stress regimes of the patterned dielectric to control the selective growth of self-assembled Ge nanostructures on silicon. In the present work, we have studied the growth of Ge by molecular beam epitaxy on nanometer scale patterned Si3N4/Si(001) substrates generated using electron beam lithography. The pitch of the patterns has been varied to investigate its effect on the growth of Ge in comparison to un-patterned Si3N4. For the patterned Si3N4 film, Ge did not desorbed completely from the Si3N4 film and hence no site selective growth pattern is observed. Instead, depending upon the pitch, Ge growth has occurred in different growth modes around the openings in the Si3N4. For the un-patterned substrate, the morphology exhibits the occurrence of uniform 3D clustering of Ge adatoms on Si3N4 film. This variation in the growth modes of Ge is attributed to the variation of residual stress in the Si3N4 film for different pitch of holes, which has been confirmed theoretically through Comsol Multiphysics simulation. The variation in stress for different pitches resulted in modulation of surface energy of the Si3N4 film leading to the different growth modes of Ge.
Pattern formation with proportionate growth
NASA Astrophysics Data System (ADS)
Dhar, Deepak
It is a common observation that as baby animals grow, different body parts grow approximately at same rate. This property, called proportionate growth is remarkable in that it is not encountered easily outside biology. The models of growth that have been studied in Physics so far, e.g diffusion -limited aggregation, surface deposition, growth of crystals from melt etc. involve only growth at the surface, with the inner structure remaining frozen. Interestingly, patterns formed in growing sandpiles provide a very wide variety of patterns that show proportionate growth. One finds patterns with different features, with sharply defined boundaries. In particular, even with very simple rules, one can produce patterns that show striking resemblance to those seen in nature. We can characterize the asymptotic pattern exactly in some special cases. I will discuss in particular the patterns grown on noisy backgrounds. Supported by J. C. Bose fellowship from DST (India).
NASA Astrophysics Data System (ADS)
Rochelo, Mark
Urbanization is a fundamental reality in the developed and developing countries around the world creating large concentrations of the population centering on cities and urban centers. Cities can offer many opportunities for those residing there, including infrastructure, health services, rescue services and more. The living space density of cities allows for the opportunity of more effective and environmentally friendly housing, transportation and resources. Cities play a vital role in generating economic production as entities by themselves and as a part of larger urban complex. The benefits can provide for extraordinary amount of people, but only if proper planning and consideration is undertaken. Global urbanization is a progressive evolution, unique in spatial location while consistent to an overall growth pattern and trend. Remotely sensing these patterns from the last forty years of space borne satellites to understand how urbanization has developed is important to understanding past growth as well as planning for the future. Imagery from the Landsat sensor program provides the temporal component, it was the first satellite launched in 1972, providing appropriate spatial resolution needed to cover a large metropolitan statistical area to monitor urban growth and change on a large scale. This research maps the urban spatial and population growth over the Miami - Fort Lauderdale - West Palm Beach Metropolitan Statistical Area (MSA) covering Miami-Dade, Broward, and Palm Beach counties in Southeast Florida from 1974 to 2010 using Landsat imagery. Supervised Maximum Likelihood classification was performed with a combination of spectral and textural training fields employed in ERDAS Image 2014 to classify the images into urban and non-urban areas. Dasymetric mapping of the classification results were combined with census tract data then created a coherent depiction of the Miami - Fort Lauderdale - West Palm Beach MSA. Static maps and animated files were created from the final datasets for enhanced visualizations and understanding of the MSA evolution from 60-meter resolution remotely sensed Landsat images. The simplified methodology will create a database for urban planning and population growth as well as future work in this area.
Material growth and characterization for solid state devices
NASA Technical Reports Server (NTRS)
Collis, Ward J.; Abul-Fadl, Ali; Iyer, Shanthi
1988-01-01
During the period of this research grant, the process of liquid phase electroepitaxy (LPEE) was used to grow ternary and quaternary alloy III-V semiconductor thin films. Selective area growth of InGaAs was performed on InP substrates using a patterned sputtered quartz or spin-on glass layer. The etch back and growth characteristics with respect to substrate orientation were investigated. The etch back behavior is somewhat different from wet chemical etching with respect to the sidewall profiles which are observed. LPEE was also employed to grow epitaxial layers of InGaAsP alloys on InP substrates. The behavior of Mn as an acceptor dopant was investigated with low temperature Hall coefficient and photoluminescence measurements. A metal-organic vapor phase epitaxy system was partially complete within the grant period. This atmospheric pressure system will be used to deposit III-V compound and alloy semiconductor layers in future research efforts.
High quality factor GaAs-based photonic crystal microcavities by epitaxial re-growth.
Prieto, Ivan; Herranz, Jesús; Wewior, Lukasz; González, Yolanda; Alén, Benito; González, Luisa; Postigo, Pablo A
2013-12-16
We investigate L7 photonic crystal microcavities (PCMs) fabricated by epitaxial re-growth of GaAs pre-patterned substrates, containing InAs quantum dots. The resulting PCMs show hexagonal shaped nano-holes due to the development of preferential crystallographic facets during the re-growth step. Through a careful control of the fabrication processes, we demonstrate that the photonic modes are preserved throughout the process. The quality factor (Q) of the photonic modes in the re-grown PCMs strongly depends on the relative orientation between photonic lattice and crystallographic directions. The optical modes of the re-grown PCMs preserve the linear polarization and, for the most favorable orientation, a 36% of the Q measured in PCMs fabricated by the conventional procedure is observed, exhibiting values up to ~6000. The results aim to the future integration of site-controlled QDs with high-Q PCMs for quantum photonics and quantum integrated circuits.
From Experiment to Theory: What Can We Learn from Growth Curves?
Kareva, Irina; Karev, Georgy
2018-01-01
Finding an appropriate functional form to describe population growth based on key properties of a described system allows making justified predictions about future population development. This information can be of vital importance in all areas of research, ranging from cell growth to global demography. Here, we use this connection between theory and observation to pose the following question: what can we infer about intrinsic properties of a population (i.e., degree of heterogeneity, or dependence on external resources) based on which growth function best fits its growth dynamics? We investigate several nonstandard classes of multi-phase growth curves that capture different stages of population growth; these models include hyperbolic-exponential, exponential-linear, exponential-linear-saturation growth patterns. The constructed models account explicitly for the process of natural selection within inhomogeneous populations. Based on the underlying hypotheses for each of the models, we identify whether the population that it best fits by a particular curve is more likely to be homogeneous or heterogeneous, grow in a density-dependent or frequency-dependent manner, and whether it depends on external resources during any or all stages of its development. We apply these predictions to cancer cell growth and demographic data obtained from the literature. Our theory, if confirmed, can provide an additional biomarker and a predictive tool to complement experimental research.
Mikkelsen, B L; Olsen, C E; Lyngkjær, M F
2015-10-01
Plants produce secondary metabolites promoting adaptation to changes in the environment and challenges by pathogenic microorganisms. A future climate with increased temperature and CO2 and ozone levels will likely alter the chemical composition of plants and thereby plant-pathogen interactions. To investigate this, barley was grown at elevated CO2, temperature and ozone levels as single factors or in combination resembling future climatic conditions. Increased basal resistance to the powdery mildew fungus was observed when barley was grown under elevated CO2, temperature and ozone as single factors. However, this effect was neutralized in the combination treatments. Twenty-five secondary metabolites were putatively identified in healthy and diseased barley leaves, including phenylpropanoids, phenolamides and hydroxynitrile glucosides. Accumulation of the compounds was affected by the climatic growth conditions. Especially elevated temperature, but also ozone, showed a strong impact on accumulation of many compounds, suggesting that these metabolites play a role in adaptation to unfavorable growth conditions. Many compounds were found to increase in powdery mildew diseased leaves, in correlation with a strong and specific influence of the climatic growth conditions. The observed disease phenotypes could not be explained by accumulation of single compounds. However, decreased accumulation of the powdery mildew associated defense compound p-coumaroylhydroxyagmatine could be implicated in the increased disease susceptibility observed when barley was grown under combination of elevated CO2, temperature and ozone. The accumulation pattern of the compounds in both healthy and diseased leaves from barley grown in the combination treatments could not be deduced from the individual single factor treatments. This highlights the complex role and regulation of secondary metabolites in plants' adaptation to unfavorable growth conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.
Boumans, Iris J M M; de Boer, Imke J M; Hofstede, Gert Jan; Bokkers, Eddie A M
2018-07-01
Domesticated pigs, Sus scrofa, vary considerably in feeding, social interaction and growth patterns. This variation originates partly from genetic variation that affects physiological factors and partly from behavioural strategies (avoid or approach) in competitive food resource situations. Currently, it is unknown how variation in physiological factors and in behavioural strategies among animals contributes to variation in feeding, social interaction and growth patterns in animals. The aim of this study was to unravel causation of variation in these patterns among pigs. We used an agent-based model to explore the effects of physiological factors and behavioural strategies in pigs on variation in feeding, social interaction and growth patterns. Model results show that variation in feeding, social interaction and growth patterns are caused partly by chance, such as time effects and coincidence of conflicts. Furthermore, results show that seemingly contradictory empirical findings in literature can be explained by variation in pig characteristics (i.e. growth potential, positive feedback, dominance, and coping style). Growth potential mainly affected feeding and growth patterns, whereas positive feedback, dominance and coping style affected feeding patterns, social interaction patterns, as well as growth patterns. Variation in behavioural strategies among pigs can reduce aggression at group level, but also make some pigs more susceptible to social constraints inhibiting them from feeding when they want to, especially low-ranking pigs and pigs with a passive coping style. Variation in feeding patterns, such as feeding rate or meal frequency, can indicate social constraints. Feeding patterns, however, can say something different about social constraints at group versus individual level. A combination of feeding patterns, such as a decreased feed intake, an increased feeding rate, and an increased meal frequency might, therefore, be needed to measure social constraints at individual level. Copyright © 2018 Elsevier Inc. All rights reserved.
Rossi, Sergio; Anfodillo, Tommaso; Čufar, Katarina; Cuny, Henri E.; Deslauriers, Annie; Fonti, Patrick; Frank, David; Gričar, Jožica; Gruber, Andreas; King, Gregory M.; Krause, Cornelia; Morin, Hubert; Oberhuber, Walter; Prislan, Peter; Rathgeber, Cyrille B. K.
2013-01-01
Background and Aims Ongoing global warming has been implicated in shifting phenological patterns such as the timing and duration of the growing season across a wide variety of ecosystems. Linear models are routinely used to extrapolate these observed shifts in phenology into the future and to estimate changes in associated ecosystem properties such as net primary productivity. Yet, in nature, linear relationships may be special cases. Biological processes frequently follow more complex, non-linear patterns according to limiting factors that generate shifts and discontinuities, or contain thresholds beyond which responses change abruptly. This study investigates to what extent cambium phenology is associated with xylem growth and differentiation across conifer species of the northern hemisphere. Methods Xylem cell production is compared with the periods of cambial activity and cell differentiation assessed on a weekly time scale on histological sections of cambium and wood tissue collected from the stems of nine species in Canada and Europe over 1–9 years per site from 1998 to 2011. Key Results The dynamics of xylogenesis were surprisingly homogeneous among conifer species, although dispersions from the average were obviously observed. Within the range analysed, the relationships between the phenological timings were linear, with several slopes showing values close to or not statistically different from 1. The relationships between the phenological timings and cell production were distinctly non-linear, and involved an exponential pattern Conclusions The trees adjust their phenological timings according to linear patterns. Thus, shifts of one phenological phase are associated with synchronous and comparable shifts of the successive phases. However, small increases in the duration of xylogenesis could correspond to a substantial increase in cell production. The findings suggest that the length of the growing season and the resulting amount of growth could respond differently to changes in environmental conditions. PMID:24201138
Early life factors in the pathogenesis of osteoporosis.
Winsloe, Chivon; Earl, Susie; Dennison, Elaine M; Cooper, Cyrus; Harvey, Nicholas C
2009-12-01
Osteoporosis is a major public health burden through associated fragility fractures. Bone mass, a composite of bone size and volumetric density, increases through early life and childhood to a peak in early adulthood. The peak bone mass attained is a strong predictor of future risk of osteoporosis. Evidence is accruing that environmental factors in utero and in early infancy may permanently modify the postnatal pattern of skeletal growth to peak and thus influence risk of osteoporosis in later life. This article describes the latest data in this exciting area of research, including novel epigenetic and translation work, which should help to elucidate the underlying mechanisms and give rise to potential public health interventions to reduce the burden of osteoporotic fracture in future generations.
Pattern-process interactions at alpine treeline in southwest Yukon, Canada
NASA Astrophysics Data System (ADS)
Danby, R.
2011-12-01
Results from an ensemble of studies conduced in southwest Yukon have uncovered a distinct "top-down/bottom-up" interaction at alpine treeline whereby terrain-induced gradients of solar radiation result in fundamental differences in plant-scale biological processes which, in turn, structure vegetation pattern at the landscape scale. Varied insolation creates differences in snow depth and timing of melt, soil temperature, and permafrost on opposing slopes that result in distinct physiological differences in white spruce (Picea glauca), the dominant treeline conifer. Measurement of young individuals indicated that secondary growth and lateral growth was significantly greater on south-facing slopes. Photosynthetic efficiency was reduced in individuals on south-facing slopes, while over-winter damage and mortality was significantly greater. Population-level processes also differed. Dendroecology and repeat photography indicated that treeline advanced on south-facing slopes during the 20th century, but that range expansion was limited on north-facing slopes. These process-related differences appear to be the mechanism for differences in treeline pattern at the landscape scale, including a higher treeline elevation and greater clustering of individuals on south-facing slopes. These results can be used to inform theory on the functional causation of treeline, rationalize differential treeline dynamics observed worldwide, and better inform predictions of future treeline dynamics.
Michelot, Alice; Simard, Sonia; Rathgeber, Cyrille; Dufrêne, Eric; Damesin, Claire
2012-08-01
Monitoring cambial phenology and intra-annual growth dynamics is a useful approach for characterizing the tree growth response to climate change. However, there have been few reports concerning intra-annual wood formation in lowland temperate forests with high time resolution, especially for the comparison between deciduous and coniferous species. The main objective of this study was to determine how the timing, duration and rate of radial growth change between species as related to leaf phenology and the dynamics of non-structural carbohydrates (NSC) under the same climatic conditions. We studied two deciduous species, Fagus sylvatica L. and Quercus petraea (Matt.) Liebl., and an evergreen conifer, Pinus sylvestris L. During the 2009 growing season, we weekly monitored (i) the stem radial increment using dendrometers, (ii) the xylem growth using microcoring and (iii) the leaf phenology from direct observations of the tree crowns. The NSC content was also measured in the eight last rings of the stem cores in April, June and August 2009. The leaf phenology, NSC storage and intra-annual growth were clearly different between species, highlighting their contrasting carbon allocation. Beech growth began just after budburst, with a maximal growth rate when the leaves were mature and variations in the NSC content were low. Thus, beech radial growth seemed highly dependent on leaf photosynthesis. For oak, earlywood quickly developed before budburst, which probably led to the starch decrease quantified in the stem from April to June. For pine, growth began before the needles unfolding and the lack of NSC decrease during the growing season suggested that the substrates for radial growth were new assimilates of the needles from the previous year. Only for oak, the pattern determined from the intra-annual growth measured using microcoring differed from the pattern determined from dendrometer data. For all species, the ring width was significantly influenced by growth duration and not by growth rate, which differs from previous studies. The observed between-species difference at the intra-annual scale is key information for anticipating suitability of future species in temperate forests.
Predicted shortage of vascular surgeons in the United Kingdom: A matter for debate?
Harkin, D W; Beard, J D; Shearman, C P; Wyatt, M G
2016-10-01
Vascular surgery became a new independent surgical specialty in the United Kingdom (UK) in 2013. In this matter for debate we discuss the question, is there a "shortage of vascular surgeons in the United Kingdom?" We used data derived from the "Vascular Surgery United Kingdom Workforce Survey 2014", NHS Employers Electronic Staff Records (ESR), and the National Vascular Registry (NVR) surgeon-level public report to estimate current and predict future workforce requirements. We estimate there are approximately 458 Consultant Vascular Surgeons for the current UK population of 63 million, or 1 per 137,000 population. In several UK Regions there are a large number of relatively small teams (3 or less) of vascular surgeons working in separate NHS Trusts in close geographical proximity. In developed countries, both the number and complexity of vascular surgery procedures (open and endovascular) per capita population is increasing, and concerns have been raised that demand cannot be met without a significant expansion in numbers of vascular surgeons. Additional workforce demand arises from the impact of population growth and changes in surgical work-patterns with respect to gender, working-life-balance and 7-day services. We predict a future shortage of Consultant Vascular Surgeons in the UK and recommend an increase in training numbers and an expansion in the UK Consultant Vascular Surgeon workforce to accommodate population growth, facilitate changes in work-patterns and to create safe sustainable services. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
Farthing, M J; Campbell, C A; Walker-Smith, J; Edwards, C R; Rees, L H; Dawson, A M
1981-01-01
Although impaired growth hormone secretion in response to pharmacological stimuli occurs in some growth retarded children with Crohn's disease, its relationship to past and future th is uncertain. We have therefore determined the growth hormone and gonadotrophin response to the physiological stimulus of sleep by continuous venous sampling in five severely gonadotrophin profiles, the mean plasma hormone concentrations during the first five hours of sleep were determined. In three of the five patients, five hour mean growth hormone levels were reduced (3.8, 5.0, and 8.5 mU/l) compared with levels reported previously in normal short children (10-43 mU/l), although the pulsatile pattern of growth hormone secretion was preserved in all. Nocturnal growth hormone secretion was unrelated to the growth velocities of these children during both pre- and post-treatment assessment periods but a significant correlation was found between growth hormone concentration and a disease activity score (r = 0.79, P less than 0.05), suggesting that growth hormone release by the pituitary was influenced by the severity of the disease. Nocturnal growth hormone secretion was also correlated with gonadotrophin secretion (luteinising hormones, r = 0.99, and follicle stimulating hormone, r = 0.96; p less than 0.01) indicating more extensive hypothalamic-pituitary disturbance. These findings suggest that hypothalamic-pituitary function is depressed in growth retarded children with Crohn's disease, but that abnormalities of growth hormone secretion are unlikely to be directly involved in the growth retardation seen in this condition. PMID:7308847
Wu, Yiming; Zhang, Xiujuan; Pan, Huanhuan; Deng, Wei; Zhang, Xiaohong; Zhang, Xiwei; Jie, Jiansheng
2013-01-01
Single-crystalline organic nanowires (NWs) are important building blocks for future low-cost and efficient nano-optoelectronic devices due to their extraordinary properties. However, it remains a critical challenge to achieve large-scale organic NW array assembly and device integration. Herein, we demonstrate a feasible one-step method for large-area patterned growth of cross-aligned single-crystalline organic NW arrays and their in-situ device integration for optical image sensors. The integrated image sensor circuitry contained a 10 × 10 pixel array in an area of 1.3 × 1.3 mm2, showing high spatial resolution, excellent stability and reproducibility. More importantly, 100% of the pixels successfully operated at a high response speed and relatively small pixel-to-pixel variation. The high yield and high spatial resolution of the operational pixels, along with the high integration level of the device, clearly demonstrate the great potential of the one-step organic NW array growth and device construction approach for large-scale optoelectronic device integration. PMID:24287887
Synoptic-scale circulation patterns during summer derived from tree rings in mid-latitude Asia
NASA Astrophysics Data System (ADS)
Seim, Andrea; Schultz, Johannes A.; Leland, Caroline; Davi, Nicole; Byambasuren, Oyunsanaa; Liang, Eryuan; Wang, Xiaochun; Beck, Christoph; Linderholm, Hans W.; Pederson, Neil
2017-09-01
Understanding past and recent climate and atmospheric circulation variability is vital for regions that are affected by climate extremes. In mid-latitude Asia, however, the synoptic climatology is complex and not yet fully understood. The aim of this study was to investigate dominant synoptic-scale circulation patterns during the summer season using a multi-species tree-ring width (TRW) network comprising 78 sites from mid-latitude Asia. For each TRW chronology, we calculated an atmospheric circulation tree-ring index (ACTI), based on 1000 hPa geopotential height data, to directly link tree growth to 13 summertime weather types and their associated local climate conditions for the period 1871-1993. Using the ACTI, three groups of similarly responding tree-ring sites can be associated with distinct large-scale atmospheric circulation patterns: 1. growth of drought sensitive trees is positively affected by a cyclone over northern Russia; 2. temperature sensitive trees show positive associations to a cyclone over northwestern Russia and an anticyclone over Mongolia; 3. trees at two high elevation sites show positive relations to a zonal cyclone extending from mid-latitude Eurasia to the West Pacific. The identified synoptic-scale circulation patterns showed spatiotemporal variability in their intensity and position, causing temporally varying climate conditions in mid-latitude Asia. Our results highlight that for regions with less pronounced atmospheric action centers during summer such as the occurrence of large-scale cyclones and anticyclones, synoptic-scale circulation patterns can be extracted and linked to the Northern Hemisphere circulation system. Thus, we provide a new and solid envelope for climate studies covering the past to the future.
NASA Astrophysics Data System (ADS)
Bergström, Per; Lindegarth, Susanne; Lindegarth, Mats
2013-10-01
Human pressures on coastal seas are increasing and methods for sustainable management, including spatial planning and mitigative actions, are therefore needed. In coastal areas worldwide, the development of mussel farming as an economically and ecologically sustainable industry requires geographic information on the growth and potential production capacity. In practice this means that coherent maps of temporally stable spatial patterns of growth need to be available in the planning process and that maps need to be based on mechanistic or empirical models. Therefore, as a first step towards development of models of growth, we assessed empirically the fundamental requirement that there are temporally consistent spatial patterns of growth in the blue mussel, Mytilus edulis. Using a pilot study we designed and dimensioned a transplant experiment, where the spatial consistency in the growth of mussels was evaluated at two resolutions. We found strong temporal and scale-dependent spatial variability in growth but patterns suggested that spatial patterns were uncoupled between growth of shell and that of soft tissue. Spatial patterns of shell growth were complex and largely inconsistent among years. Importantly, however, the growth of soft tissue was qualitatively consistent among years at the scale of km. The results suggest that processes affecting the whole coastal area cause substantial differences in growth of soft tissue among years but that factors varying at the scale of km create strong and persistent spatial patterns of growth, with a potential doubling of productivity by identifying the most suitable locations. We conclude that the observed spatial consistency provides a basis for further development of predictive modelling and mapping of soft tissue growth in these coastal areas. Potential causes of observed patterns, consequences for mussel-farming as a tool for mitigating eutrophication, aspects of precision of modelling and sampling of mussel growth as well as ecological functions in general are discussed.
Maurya, Jay P; Bhalerao, Rishikesh P
2017-09-01
How plants adapt their developmental patterns to regular seasonal changes is an important question in biology. The annual growth cycle in perennial long-lived trees is yet another example of how plants can adapt to seasonal changes. The two main signals that plants rely on to respond to seasonal changes are photoperiod and temperature, and these signals have critical roles in the temporal regulation of the annual growth cycle of trees. This review presents the latest findings to provide insight into the molecular mechanisms that underlie how photoperiodic and temperature signals regulate seasonal growth in trees. The results point to a high level of conservation in the signalling pathways that mediate photoperiodic control of seasonal growth in trees and flowering in annual plants such as arabidopsis. Furthermore, the data indicate that symplastic communication may mediate certain aspects of seasonal growth. Although considerable insight into the control of phenology in model plants such as poplar and spruce has been obtained, the future challenge is extending these studies to other, non-model trees. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Shafizadeh-Moghadam, Hossein; Tayyebi, Amin; Helbich, Marco
2017-06-01
Transition index maps (TIMs) are key products in urban growth simulation models. However, their operationalization is still conflicting. Our aim was to compare the prediction accuracy of three TIM-based spatially explicit land cover change (LCC) models in the mega city of Mumbai, India. These LCC models include two data-driven approaches, namely artificial neural networks (ANNs) and weight of evidence (WOE), and one knowledge-based approach which integrates an analytical hierarchical process with fuzzy membership functions (FAHP). Using the relative operating characteristics (ROC), the performance of these three LCC models were evaluated. The results showed 85%, 75%, and 73% accuracy for the ANN, FAHP, and WOE. The ANN was clearly superior compared to the other LCC models when simulating urban growth for the year 2010; hence, ANN was used to predict urban growth for 2020 and 2030. Projected urban growth maps were assessed using statistical measures, including figure of merit, average spatial distance deviation, producer accuracy, and overall accuracy. Based on our findings, we recomend ANNs as an and accurate method for simulating future patterns of urban growth.
Hormone-Mediated Pattern Formation in Seedling of Plants: a Competitive Growth Dynamics Model
NASA Astrophysics Data System (ADS)
Kawaguchi, Satoshi; Mimura, Masayasu; Ohya, Tomoyuki; Oikawa, Noriko; Okabe, Hirotaka; Kai, Shoichi
2001-10-01
An ecologically relevant pattern formation process mediated by hormonal interactions among growing seedlings is modeled based on the experimental observations on the effects of indole acetic acid, which can act as an inhibitor and activator of root growth depending on its concentration. In the absence of any lateral root with constant hormone-sensitivity, the edge effect phenomenon is obtained depending on the secretion rate of hormone from the main root. Introduction of growth-stage-dependent hormone-sensitivity drastically amplifies the initial randomness, resulting in spatially irregular macroscopic patterns. When the lateral root growth is introduced, periodic patterns are obtained whose periodicity depends on the length of lateral roots. The growth-stage-dependent hormone-sensitivity and the lateral root growth are crucial for macroscopic periodic-pattern formation.
New insights from coral growth band studies in an era of rapid environmental change
NASA Astrophysics Data System (ADS)
Lough, Janice M.; Cooper, Timothy F.
2011-10-01
The rapid formation of calcium carbonate coral skeletons (calcification) fuelled by the coral-algal symbiosis is the backbone of tropical coral reef ecosystems. However, the efficacy of calcification is measurably influenced by the sea's physico-chemical environment, which is changing rapidly. Warming oceans have already led to increased frequency and severity of coral bleaching, and ocean acidification has a demonstrable potential to cause reduced rates of calcification. There is now general agreement that ocean warming and acidification are attributable to human activities increasing greenhouse gas concentrations in the atmosphere, and the large part of the extra carbon dioxide (the main greenhouse gas) that is absorbed by oceans. Certain massive corals provide historical perspectives on calcification through the presence of dateable annual density banding patterns. Each band is a page in an environmental archive that reveals past responses of growth (linear extension, skeletal density and calcification rate) and provides a basis for prediction of future of coral growth. A second major line of research focuses on the measurement of various geochemical tracers incorporated into the growth bands, allowing the reconstruction of past marine climate conditions (i.e. palaeoclimatology). Here, we focus on the structural properties of the annual density bands themselves (viz. density; linear extension), exploring their utility in providing both perspectives on the past and pointers to the future of calcification on coral reefs. We conclude that these types of coral growth records, though relatively neglected in recent years compared to the geochemical studies, remain immensely valuable aids to unravelling the consequences of anthropogenic climate change on coral reefs. Moreover, an understanding of coral growth processes is an essential pre-requisite for proper interpretation of studies of geochemical tracers in corals.
NASA Experimental Program to Stimulate Competitive Research: South Carolina
NASA Technical Reports Server (NTRS)
Sutton, Michael A.
2004-01-01
The use of an appropriate relationship model is critical for reliable prediction of future urban growth. Identification of proper variables and mathematic functions and determination of the weights or coefficients are the key tasks for building such a model. Although the conventional logistic regression model is appropriate for handing land use problems, it appears insufficient to address the issue of interdependency of the predictor variables. This study used an alternative approach to simulation and modeling urban growth using artificial neural networks. It developed an operational neural network model trained using a robust backpropagation method. The model was applied in the Myrtle Beach region of South Carolina, and tested with both global datasets and areal datasets to examine the strength of both regional models and areal models. The results indicate that the neural network model not only has many theoretic advantages over other conventional mathematic models in representing the complex urban systems, but also is practically superior to the logistic model in its capability to predict urban growth with better - accuracy and less variation. The neural network model is particularly effective in terms of successfully identifying urban patterns in the rural areas where the logistic model often falls short. It was also found from the area-based tests that there are significant intra-regional differentiations in urban growth with different rules and rates. This suggests that the global modeling approach, or one model for the entire region, may not be adequate for simulation of a urban growth at the regional scale. Future research should develop methods for identification and subdivision of these areas and use a set of area-based models to address the issues of multi-centered, intra- regionally differentiated urban growth.
Patterns of Growth and Decline in Lung Function in Persistent Childhood Asthma.
McGeachie, M J; Yates, K P; Zhou, X; Guo, F; Sternberg, A L; Van Natta, M L; Wise, R A; Szefler, S J; Sharma, S; Kho, A T; Cho, M H; Croteau-Chonka, D C; Castaldi, P J; Jain, G; Sanyal, A; Zhan, Y; Lajoie, B R; Dekker, J; Stamatoyannopoulos, J; Covar, R A; Zeiger, R S; Adkinson, N F; Williams, P V; Kelly, H W; Grasemann, H; Vonk, J M; Koppelman, G H; Postma, D S; Raby, B A; Houston, I; Lu, Q; Fuhlbrigge, A L; Tantisira, K G; Silverman, E K; Tonascia, J; Weiss, S T; Strunk, R C
2016-05-12
Tracking longitudinal measurements of growth and decline in lung function in patients with persistent childhood asthma may reveal links between asthma and subsequent chronic airflow obstruction. We classified children with asthma according to four characteristic patterns of lung-function growth and decline on the basis of graphs showing forced expiratory volume in 1 second (FEV1), representing spirometric measurements performed from childhood into adulthood. Risk factors associated with abnormal patterns were also examined. To define normal values, we used FEV1 values from participants in the National Health and Nutrition Examination Survey who did not have asthma. Of the 684 study participants, 170 (25%) had a normal pattern of lung-function growth without early decline, and 514 (75%) had abnormal patterns: 176 (26%) had reduced growth and an early decline, 160 (23%) had reduced growth only, and 178 (26%) had normal growth and an early decline. Lower baseline values for FEV1, smaller bronchodilator response, airway hyperresponsiveness at baseline, and male sex were associated with reduced growth (P<0.001 for all comparisons). At the last spirometric measurement (mean [±SD] age, 26.0±1.8 years), 73 participants (11%) met Global Initiative for Chronic Obstructive Lung Disease spirometric criteria for lung-function impairment that was consistent with chronic obstructive pulmonary disease (COPD); these participants were more likely to have a reduced pattern of growth than a normal pattern (18% vs. 3%, P<0.001). Childhood impairment of lung function and male sex were the most significant predictors of abnormal longitudinal patterns of lung-function growth and decline. Children with persistent asthma and reduced growth of lung function are at increased risk for fixed airflow obstruction and possibly COPD in early adulthood. (Funded by the Parker B. Francis Foundation and others; ClinicalTrials.gov number, NCT00000575.).
NASA Technical Reports Server (NTRS)
Noever, David A.
1990-01-01
With and without bioconvective pattern formation, a theoretical model predicts growth in light-limited cultures of motile algae. At the critical density for pattern formation, the resulting doubly exponential population curves show an inflection. Such growth corresponds quantitatively to experiments in mechanically unstirred cultures. This attaches survival value to synchronized pattern formation.
Modeling the Impact of Spatial Structure on Growth Dynamics of Invasive Plant Species
NASA Astrophysics Data System (ADS)
Murphy, James T.; Johnson, Mark P.; Walshe, Ray
2013-07-01
Invasive nonindigenous plant species can have potentially serious detrimental effects on local ecosystems and, as a result, costly control efforts often have to be put in place to protect habitats. An example of an invasive problem on a global scale involves the salt marsh grass species from the genus Spartina. The spread of Spartina anglica in Europe and Asia has drawn much concern due to its ability to convert coastal habitats into cord-grass monocultures and to alter the native food webs. However, the patterns of invasion of Spartina species are amenable to spatially-explicit modeling strategies that take into account both temporal and spatio-temporal processes. In this study, an agent-based model of Spartina growth on a simulated mud flat environment was developed in order to study the effects of spatial pattern and initial seedling placement on the invasion dynamics of the population. The spatial pattern of an invasion plays a key role in the rate of spread of the species and understanding this can lead to significant cost savings when designing efficient control strategies. We present here a model framework that can be used to explicitly represent complex spatial and temporal patterns of invasion in order to be able to predict quantitatively the impact of these factors on invasion dynamics. This would be a useful tool for assessing eradication strategies and choosing optimal control solutions in order to be able to minimize future control costs.
FIB Secondary Etching Method for Fabrication of Fine CNT Forest Metamaterials
NASA Astrophysics Data System (ADS)
Pander, Adam; Hatta, Akimitsu; Furuta, Hiroshi
2017-10-01
Anisotropic materials, like carbon nanotubes (CNTs), are the perfect substitutes to overcome the limitations of conventional metamaterials; however, the successful fabrication of CNT forest metamaterial structures is still very challenging. In this study, a new method utilizing a focused ion beam (FIB) with additional secondary etching is presented, which can obtain uniform and fine patterning of CNT forest nanostructures for metamaterials and ranging in sizes from hundreds of nanometers to several micrometers. The influence of the FIB processing parameters on the morphology of the catalyst surface and the growth of the CNT forest was investigated, including the removal of redeposited material, decreasing the average surface roughness (from 0.45 to 0.15 nm), and a decrease in the thickness of the Fe catalyst. The results showed that the combination of FIB patterning and secondary etching enabled the growth of highly aligned, high-density CNT forest metamaterials. The improvement in the quality of single-walled CNTs (SWNTs), defined by the very high G/D peak ratio intensity of 10.47, demonstrated successful fine patterning of CNT forest for the first time. With a FIB patterning depth of 10 nm and a secondary etching of 0.5 nm, a minimum size of 150 nm of CNT forest metamaterials was achieved. The development of the FIB secondary etching method enabled for the first time, the fabrication of SWNT forest metamaterials for the optical and infrared regime, for future applications, e.g., in superlenses, antennas, or thermal metamaterials.
Kweldam, Charlotte F; Nieboer, Daan; Algaba, Ferran; Amin, Mahul B; Berney, Dan M; Billis, Athanase; Bostwick, David G; Bubendorf, Lukas; Cheng, Liang; Compérat, Eva; Delahunt, Brett; Egevad, Lars; Evans, Andrew J; Hansel, Donna E; Humphrey, Peter A; Kristiansen, Glen; van der Kwast, Theodorus H; Magi-Galluzzi, Cristina; Montironi, Rodolfo; Netto, George J; Samaratunga, Hemamali; Srigley, John R; Tan, Puay H; Varma, Murali; Zhou, Ming; van Leenders, Geert J L H
2016-09-01
To assess the interobserver reproducibility of individual Gleason grade 4 growth patterns. Twenty-three genitourinary pathologists participated in the evaluation of 60 selected high-magnification photographs. The selection included 10 cases of Gleason grade 3, 40 of Gleason grade 4 (10 per growth pattern), and 10 of Gleason grade 5. Participants were asked to select a single predominant Gleason grade per case (3, 4, or 5), and to indicate the predominant Gleason grade 4 growth pattern, if present. 'Consensus' was defined as at least 80% agreement, and 'favoured' as 60-80% agreement. Consensus on Gleason grading was reached in 47 of 60 (78%) cases, 35 of which were assigned to grade 4. In the 13 non-consensus cases, ill-formed (6/13, 46%) and fused (7/13, 54%) patterns were involved in the disagreement. Among the 20 cases where at least one pathologist assigned the ill-formed growth pattern, none (0%, 0/20) reached consensus. Consensus for fused, cribriform and glomeruloid glands was reached in 2%, 23% and 38% of cases, respectively. In nine of 35 (26%) consensus Gleason grade 4 cases, participants disagreed on the growth pattern. Six of these were characterized by large epithelial proliferations with delicate intervening fibrovascular cores, which were alternatively given the designation fused or cribriform growth pattern ('complex fused'). Consensus on Gleason grade 4 growth pattern was predominantly reached on cribriform and glomeruloid patterns, but rarely on ill-formed and fused glands. The complex fused glands seem to constitute a borderline pattern of unknown prognostic significance on which a consensus could not be reached. © 2016 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Huan, Qing; Hu, Hao; Pan, Li-Da; Xiao, Jiang; Du, Shi-Xuan; Gao, Hong-Jun
2010-08-01
Deposition patterns of tetracyanoquinodimethane (TCNQ) molecules on different surfaces are investigated by atomic force microscopy. A homemade physical vapour deposition system allows the better control of molecule deposition. Taking advantage of this system, we investigate TCNQ thin film growth on both SiO2 and mica surfaces. It is found that dense island patterns form at a high deposition rate, and a unique seahorse-like pattern forms at a low deposition rate. Growth patterns on different substrates suggest that the fractal pattern formation is dominated by molecule-molecule interaction. Finally, a phenomenal “two-branch" model is proposed to simulate the growth process of the seahorse pattern.
Brian R Lockhart; Emile S Gardiner; Theran Stautz; Theodor D. Leininger
2012-01-01
Lindera melissifolia (Walt.) Blume seedlings were raised in a growth chamber to determine the effects of light availability on shoot growth pattern, and basic leaf and stem growth. Lindera melissifolia seedlings exhibited a sympodial shoot growth pattern for 3 months following emergence from the soil medium, but this pattern was characterized by a reduction in leaf...
ERIC Educational Resources Information Center
Ghadirian, Hajar; Ayub, Ahmad Fauzi Mohd; Bakar, Kamariah Binti Abu; Hassanzadeh, Maryam
2016-01-01
This study presents a case study of asynchronous online discussions' (AOD) growth patterns in an undergraduate blended course to address the gap in our current understanding of how threads are developed in peer-moderated AODs. Building on a taxonomy of thread pattern proposed by Chan, Hew and Cheung (2009), growth patterns of thirty-six forums…
Float-zone processing in a weightless environment
NASA Technical Reports Server (NTRS)
Fowle, A. A.; Haggerty, J. S.; Perron, R. R.; Strong, P. F.; Swanson, J. L.
1976-01-01
The results were reported of investigations to: (1) test the validity of analyses which set maximum practical diameters for Si crystals that can be processed by the float zone method in a near weightless environment, (2) determine the convective flow patterns induced in a typical float zone, Si melt under conditions perceived to be advantageous to the crystal growth process using flow visualization techniques applied to a dimensionally scaled model of the Si melt, (3) revise the estimates of the economic impact of space produced Si crystal by the float zone method on the U.S. electronics industry, and (4) devise a rational plan for future work related to crystal growth phenomena wherein low gravity conditions available in a space site can be used to maximum benefit to the U.S. electronics industry.
2015-01-01
Lateral appendages often show allometric growth with a specific growth polarity along the proximo-distal axis. Studies on leaf growth in model plants have identified a basipetal growth direction with the highest growth rate at the proximal end and progressively lower rates toward the distal end. Although the molecular mechanisms governing such a growth pattern have been studied recently, variation in leaf growth polarity and, therefore, its evolutionary origin remain unknown. By surveying 75 eudicot species, here we report that leaf growth polarity is divergent. Leaf growth in the proximo-distal axis is polar, with more growth arising from either the proximal or the distal end; dispersed with no apparent polarity; or bidirectional, with more growth contributed by the central region and less growth at either end. We further demonstrate that the expression gradient of the miR396-GROWTH-REGULATING FACTOR module strongly correlates with the polarity of leaf growth. Altering the endogenous pattern of miR396 expression in transgenic Arabidopsis thaliana leaves only partially modified the spatial pattern of cell expansion, suggesting that the diverse growth polarities might have evolved via concerted changes in multiple gene regulatory networks. PMID:26410303
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seiferlein, Katherine E.
A generation ago the Ford Foundation convened a group of experts to explore and assess the Nation’s energy future, and published their conclusions in A Time To Choose: America’s Energy Future (Cambridge, MA: Ballinger, 1974). The Energy Policy Project developed scenarios of U.S. potential energy use in 1985 and 2000. Now, with 1985 well behind us and 2000 nearly on the record books, it may be of interest to take a look back to see what actually happened and consider what it means for our future. The study group sketched three primary scenarios with differing assumptions about the growth ofmore » energy use. The Historical Growth scenario assumed that U.S. energy consumption would continue to expand by 3.4 percent per year, the average rate from 1950 to 1970. This scenario assumed no intentional efforts to change the pattern of consumption, only efforts to encourage development of our energy supply. The Technical Fix scenario anticipated a “conscious national effort to use energy more efficiently through engineering know-how." The Zero Energy Growth scenario, while not clamping down on the economy or calling for austerity, incorporated the Technical Fix efficiencies plus additional efficiencies. This third path anticipated that economic growth would depend less on energy-intensive industries and more on those that require less energy, i.e., the service sector. In 2000, total energy consumption was projected to be 187 quadrillion British thermal units (Btu) in the Historical Growth case, 124 quadrillion Btu in the Technical Fix case, and 100 quadrillion Btu in the Zero Energy Growth case. The Annual Energy Review 1999 reports a preliminary total consumption for 1999 of 97 quadrillion Btu (see Table 1.1), and the Energy Information Administration’s Short-Term Energy Outlook (April 2000) forecasts total energy consumption of 98 quadrillion Btu in 2000. What energy consumption path did the United States actually travel to get from 1974, when the scenarios were drawn, to the end of the century? What happened to the relationship between growth and energy consumption? How did the fuel mix change over this period? What are the effects of energy usage on our environment? What level of consumption will the United States—and the world—record in the Annual Energy Review 2025? We present this edition of the Annual Energy Review to help investigate these important questions and to stimulate and inform our thinking about what the future holds.« less
Sundareswaran, Shobha; Kumar, Vinay
2015-01-01
Introduction: Beta angle as a skeletal anteroposterior dysplasia indicator is known to be useful in evaluating normodivergent growth patterns. Hence, we compared and verified the accuracy of Beta angle in predicting sagittal jaw discrepancy among subjects with hyperdivergent, hypodivergent and normodivergent growth patterns. Materials and Methods: Lateral cephalometric radiographs of 179 patients belonging to skeletal Classes I, II, and III were further divided into normodivergent, hyperdivergent, and hypodivergent groups based on their vertical growth patterns. Sagittal dysplasia indicators - angle ANB, Wits appraisal, and Beta angle values were measured and tabulated. The perpendicular point of intersection on line CB (Condylion-Point B) in Beta angle was designated as ‘X’ and linear dimension XB was evaluated. Results: Statistically significant increase was observed in the mean values of Beta angle and XB distance in the vertical growth pattern groups of both skeletal Class I and Class II patients thus pushing them toward Class III and Class I, respectively. Conclusions: Beta angle is a reliable indicator of sagittal dysplasia in normal and horizontal patterns of growth. However, vertical growth patterns significantly increased Beta angle values, thus affecting their reliability as a sagittal discrepancy assessment tool. Hence, Beta angle may not be a valid tool for assessment of sagittal jaw discrepancy in patients exhibiting vertical growth patterns with skeletal Class I and Class II malocclusions. Nevertheless, Class III malocclusions having the highest Beta angle values were unaffected. PMID:25810649
NASA Astrophysics Data System (ADS)
Rahman, Mizanur; Islam, Rofiqul; Islam, Mahmuda
2017-04-01
Tropical forests are carbon rich ecosystems and small changes in tropical forest tree growth substantially influence the global carbon cycle. Forest monitoring studies report inconsistent growth changes in tropical forest trees over the past decades. Most of the studies highlighted changes in the forest level carbon gain, neglecting the species-specific growth changes which ultimately determine community-level responses. Tree-ring analysis can provide historical data on species-specific tree growth with annual resolution. Such studies are inadequate in Bangladesh, which is one of the most climate sensitive regions in the tropics. In this study, we investigated long-term growth rates of Toona ciliata in a moist tropical forest of Bangladesh by using tree-ring analysis. We sampled 50 trees of varying size, obtained increment cores from these trees and measured tree-ring width. Analyses of growth patterns revealed size-dependent growth increments. After correcting for the effect of tree size on tree growth (ontogenetic changes) by two different methods we found declining growth rates in T. ciliata from 1960 to 2013. Standardized ring-width index (RWI) was strongly negatively correlated with annual mean and maximum temperatures suggesting that rising temperature might cause the observed growth decline in T. ciliata. Assuming that global temperatures will rise at the current rate, the observed growth decline is assumed to continue. The analysis of stable carbon and oxygen isotopes may reveal more insight on the physiological response of this species to future climatic changes.
The present and the future of breast cancer burden in the Kingdom of Saudi Arabia.
Ibrahim, Ezzeldin M; Zeeneldin, Ahmed A; Sadiq, Bakr Bin; Ezzat, Adnan A
2008-01-01
Despite the low cancer incidence in the Kingdom of Saudi Arabia (KSA), the country must be ready to face the challenge of foreseeable increase in cancer burden attributed to growth and aging of population. This work was designed to study female breast cancer as a model to assess future cancer burden and the impact on healthcare resources. Cancer statistics for the KSA were compared with that for the USA. The Joinpoint regression program was used to identify changes in secular trends, while the GLOBOCAN 2002 software projected future incidence and mortality. In the KSA, the age-standardized cancer rate (ASR) is 61 per 100,000 population, while the median age at diagnosis is 54 and 49 years for men and women, respectively. Fitting the ASR for breast cancer did not show any significant trend over a 10-year calendar period (16.2-18.2 per 100,000), a pattern that was similar to that for the USA in the prescreening mammography era. Considering the growth and aging of population and using conservative estimates for the annual percent change in incidence (increase) and mortality (decrease) by 2025, incidence and mortality cases are expected to increase by about 350% and 160%, respectively. In developing countries, future cancer rates could demonstrate a considerable increase and enormous demands on healthcare resources. The present work may provide an impetus to study other prevalent cancer types particularly in developing countries.
Infant obesity and severe obesity growth patterns in the first two years of life.
Gittner, Lisaann S; Ludington-Hoe, Susan M; Haller, Harold S
2014-04-01
Distinguishing an obesity growth pattern that originates during infancy is clinically important. Infancy based obesity prevention interventions may be needed while precursors of later health are forming. Infant obesity and severe obesity growth patterns in the first 2-years are described and distinguished from a normal weight growth pattern. A retrospective chart review was conducted. Body mass index (BMI) growth patterns from birth to 2-years are described for children categorized at 5-years as normal weight (n = 61), overweight (n = 47), obese (n = 41) and severely obese (n = 72) cohorts using WHO reference standards. BMI values were calculated at birth, 1-week; 2-, 4-, 6-, 9-, 12-, 15-, 18-months; and 2- and 5-years. Graphs of the longitudinal Analysis of Variance of Means of BMI values identified the earliest significant divergence of a cohort's average BMI pattern from other cohorts' patterns. ANOVA and Pearson Product Moment correlations were also performed. Statistically significant differences in BMI values and differences in growth patterns between cohorts were evident as early as 2-6 months post-birth. Children who were obese or severely obese at 5-years demonstrated a BMI pattern that differed within the first 2-years of life from that of children who were normal weight at 5-years. The earliest significant correlation between early BMI values and 5-year BMI value was at 4-months post-birth. The study fills an important gap by demonstrating early onset of an infant obesity growth pattern in full-term children who were healthy throughout their first 5 years of life.
Development of disease-specific growth charts in Turner syndrome and Noonan syndrome.
Isojima, Tsuyoshi; Yokoya, Susumu
2017-12-01
Many congenital diseases are associated with growth failure, and patients with these diseases have specific growth patterns. As the growth patterns of affected individuals differ from those of normal populations, it is challenging to detect additional conditions that can influence growth using standard growth charts. Disease-specific growth charts are thus very useful tools and can be helpful for understanding the growth pattern and pathogenesis of congenital diseases. In addition, disease-specific growth charts allow doctors to detect deviations from the usual growth patterns for early diagnosis of an additional condition and can be used to evaluate the effects of growth-promoting treatment for patients. When developing these charts, factors that can affect the reliability of the charts should be considered. These factors include the definition of the disease with growth failure, selection bias in the measurements used to develop the charts, secular trends of the subjects, the numbers of subjects of varying ages and ethnicities, and the statistical method used to develop the charts. In this review, we summarize the development of disease-specific growth charts for Japanese individuals with Turner syndrome and Noonan syndrome and evaluate the efforts to collect unbiased measurements of subjects with these diseases. These charts were the only available disease-specific growth charts of Turner syndrome and Noonan syndrome for Asian populations and were developed using a Japanese population. Therefore, when these charts are adopted for Asian populations other than Japanese, different growth patterns should be considered.
Influence of infant feeding patterns over the first year of life on growth from birth to 5 years.
Betoko, A; Lioret, S; Heude, B; Hankard, R; Carles, S; Forhan, A; Regnault, N; Botton, J; Charles, M A; de Lauzon-Guillain, B
2017-08-01
As early-life feeding experiences may influence later health, we aimed to examine relations between feeding patterns over the first year of life and child's growth in the first 5 years of life. Our analysis included 1022 children from the EDEN mother-child cohort. Three feeding patterns were previously identified, i.e. 'Later dairy products introduction and use of ready-prepared baby foods' (pattern-1), 'Long breastfeeding, later main meal food introduction and use of home-made foods' (pattern-2) and 'Use of ready-prepared adult foods' (pattern-3). Associations between the feeding patterns and growth [weight, height and body mass index {BMI}] were analysed by multivariable linear regressions. Anthropometric changes were assessed by the final value adjusted for the initial value. Even though infant feeding patterns were not related to anthropometric measurements at 1, 3 and 5 years, high scores on pattern-1 were associated with higher 1-3 years weight and height changes. High scores on pattern-2 were related to lower 0-1 year weight and height changes, higher 1-5 years weight and height changes but not to BMI changes, after controlling for a wide range of potential confounding variables including parental BMI. Scores on pattern-3 were not significantly related to growth. Additional adjustment for breastfeeding duration reduced the strength of the associations between pattern-2 and growth but not those between pattern-1 and height growth. Our findings emphasize the relevance of considering infant feeding patterns including breastfeeding duration, age of complementary foods introduction as well as type of foods used when examining effects of early infant feeding practices on later health. © 2017 World Obesity Federation. © 2017 World Obesity Federation.
Upper air teleconnections to Ob River flows and tree rings
NASA Astrophysics Data System (ADS)
Meko, David; Panyushkina, Irina; Agafonov, Leonid
2015-04-01
The Ob River, one of the world's greatest rivers, with a catchment basin about the size of Western Europe, contributes 12% or more of the annual freshwater inflow to the Arctic Ocean. The input of heat and fresh water is important to the global climate system through effects on sea ice, salinity, and the thermohaline circulation of the ocean. As part of a tree-ring project to obtain multi-century long information on variability of Ob River flows, a network of 18 sites of Pinus, Larix, Populus and Salix has been collected along the Ob in the summers of 2013 and 2014. Analysis of collections processed so far indicates a significant relationship of tree-growth to river discharge. Moderation of the floodplain air temperature regime by flooding appears to be an important driver of the tree-ring response. In unraveling the relationship of tree-growth to river flows, it is important to identify atmospheric circulation features directly linked to observed time series variations of flow and tree growth. In this study we examine statistical links between primary teleconnection modes of Northern Hemisphere upper-air (500 mb) circulation, Ob River flow, and tree-ring chronologies. Annual discharge at the mouth of the Ob River is found to be significantly positively related to the phase of the East Atlantic (EA) pattern, the second prominent mode of low-frequency variability over the North Atlantic. The EA pattern, consisting of a north-south dipole of pressure-anomaly centers spanning the North Atlantic from east to west, is associated with a low-pressure anomaly centered over the Ob River Basin, and with a pattern of positive precipitation anomaly of the same region. The positive correlation of discharge and EA is consistent with these know patterns, and is contrasted with generally negative (though smaller) correlations between EA and tree-ring chronologies. The signs of correlations are consistent with a conceptual model of river influence on tree growth through air temperature. Future work aims at combining the tree-ring samples from living trees and remnant wood to reconstruction to quantitiative reconstruction of annual flow over the past millennium.
Huang, Jian-Guo; Bergeron, Yves; Berninger, Frank; Zhai, Lihong; Tardif, Jacques C.; Denneler, Bernhard
2013-01-01
Immediate phenotypic variation and the lagged effect of evolutionary adaptation to climate change appear to be two key processes in tree responses to climate warming. This study examines these components in two types of growth models for predicting the 2010–2099 diameter growth change of four major boreal species Betula papyrifera, Pinus banksiana, Picea mariana, and Populus tremuloides along a broad latitudinal gradient in eastern Canada under future climate projections. Climate-growth response models for 34 stands over nine latitudes were calibrated and cross-validated. An adaptive response model (A-model), in which the climate-growth relationship varies over time, and a fixed response model (F-model), in which the relationship is constant over time, were constructed to predict future growth. For the former, we examined how future growth of stands in northern latitudes could be forecasted using growth-climate equations derived from stands currently growing in southern latitudes assuming that current climate in southern locations provide an analogue for future conditions in the north. For the latter, we tested if future growth of stands would be maximally predicted using the growth-climate equation obtained from the given local stand assuming a lagged response to climate due to genetic constraints. Both models predicted a large growth increase in northern stands due to more benign temperatures, whereas there was a minimal growth change in southern stands due to potentially warm-temperature induced drought-stress. The A-model demonstrates a changing environment whereas the F-model highlights a constant growth response to future warming. As time elapses we can predict a gradual transition between a response to climate associated with the current conditions (F-model) to a more adapted response to future climate (A-model). Our modeling approach provides a template to predict tree growth response to climate warming at mid-high latitudes of the Northern Hemisphere. PMID:23468879
Huang, Jian-Guo; Bergeron, Yves; Berninger, Frank; Zhai, Lihong; Tardif, Jacques C; Denneler, Bernhard
2013-01-01
Immediate phenotypic variation and the lagged effect of evolutionary adaptation to climate change appear to be two key processes in tree responses to climate warming. This study examines these components in two types of growth models for predicting the 2010-2099 diameter growth change of four major boreal species Betula papyrifera, Pinus banksiana, Picea mariana, and Populus tremuloides along a broad latitudinal gradient in eastern Canada under future climate projections. Climate-growth response models for 34 stands over nine latitudes were calibrated and cross-validated. An adaptive response model (A-model), in which the climate-growth relationship varies over time, and a fixed response model (F-model), in which the relationship is constant over time, were constructed to predict future growth. For the former, we examined how future growth of stands in northern latitudes could be forecasted using growth-climate equations derived from stands currently growing in southern latitudes assuming that current climate in southern locations provide an analogue for future conditions in the north. For the latter, we tested if future growth of stands would be maximally predicted using the growth-climate equation obtained from the given local stand assuming a lagged response to climate due to genetic constraints. Both models predicted a large growth increase in northern stands due to more benign temperatures, whereas there was a minimal growth change in southern stands due to potentially warm-temperature induced drought-stress. The A-model demonstrates a changing environment whereas the F-model highlights a constant growth response to future warming. As time elapses we can predict a gradual transition between a response to climate associated with the current conditions (F-model) to a more adapted response to future climate (A-model). Our modeling approach provides a template to predict tree growth response to climate warming at mid-high latitudes of the Northern Hemisphere.
Outbreak of Salmonella Oslo Infections Linked to Persian Cucumbers - United States, 2016.
Bottichio, Lyndsay; Medus, Carlota; Sorenson, Alida; Donovan, Danielle; Sharma, Reeti; Dowell, Natasha; Williams, Ian; Wellman, Allison; Jackson, Alikeh; Tolar, Beth; Griswold, Taylor; Basler, Colin
2016-12-30
In April 2016, PulseNet, the national molecular subtyping network for foodborne disease surveillance, detected a multistate cluster of Salmonella enterica serotype Oslo infections with an indistinguishable pulsed-field gel electrophoresis (PFGE) pattern (XbaI PFGE pattern OSLX01.0090).* This PFGE pattern was new in the database; no previous infections or outbreaks have been identified. CDC, state and local health and agriculture departments and laboratories, and the Food and Drug Administration (FDA) conducted epidemiologic, traceback, and laboratory investigations to identify the source of this outbreak. A total of 14 patients in eight states were identified, with illness onsets occurring during March 21-April 9, 2016. Whole genome sequencing, a highly discriminating subtyping method, was used to further characterize PFGE pattern OSLX01.0090 isolates. Epidemiologic evidence indicates Persian cucumbers as the source of Salmonella Oslo infections in this outbreak. This is the fourth identified multistate outbreak of salmonellosis associated with cucumbers since 2013. Further research is needed to understand the mechanism and factors that contribute to contamination of cucumbers during growth, harvesting, and processing to prevent future outbreaks.
Varella, Marcia H; Moss, William J
2015-08-01
To assess whether patterns of growth trajectory during infancy are associated with intelligence quotient (IQ) scores at 4 years of age in children born small-for-gestational age (SGA). Children in the Collaborative Perinatal Project born SGA were eligible for analysis. The primary outcome was the Stanford-Binet IQ score at 4 years of age. Growth patterns were defined based on changes in weight-for-age z-scores from birth to 4 months and 4 to 12 months of age and consisted of steady, early catch-up, late catch-up, constant catch-up, early catch-down, late catch-down, constant catch-down, early catch-up & late catch-down, and early catch-down & late catch-up. Multivariate linear regression was used to assess associations between patterns of growth and IQ. We evaluated patterns of growth and IQ in 5640 children. Compared with children with steady growth, IQ scores were 2.9 [standard deviation (SD)=0.54], 1.5 (SD=0.63), and 2.2 (SD=0.9) higher in children with early catch-up, early catch-up and later catch-down, and constant catch-up growth patterns, respectively, and 4.4 (SD=1.4) and 3.9 (SD=1.5) lower in children with early catch-down & late catch-up, and early catch-down growth patterns, respectively. Patterns in weight gain before 4 months of age were associated with differences in IQ scores at 4 years of age, with children with early catch-up having slightly higher IQ scores than children with steady growth and children with early catch-down having slightly lower IQ scores. These findings have implications for early infant nutrition in children born SGA. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Cieslak, Mikolaj; Seleznyova, Alla N; Hanan, Jim
2011-04-01
Functional-structural modelling can be used to increase our understanding of how different aspects of plant structure and function interact, identify knowledge gaps and guide priorities for future experimentation. By integrating existing knowledge of the different aspects of the kiwifruit (Actinidia deliciosa) vine's architecture and physiology, our aim is to develop conceptual and mathematical hypotheses on several of the vine's features: (a) plasticity of the vine's architecture; (b) effects of organ position within the canopy on its size; (c) effects of environment and horticultural management on shoot growth, light distribution and organ size; and (d) role of carbon reserves in early shoot growth. Using the L-system modelling platform, a functional-structural plant model of a kiwifruit vine was created that integrates architectural development, mechanistic modelling of carbon transport and allocation, and environmental and management effects on vine and fruit growth. The branching pattern was captured at the individual shoot level by modelling axillary shoot development using a discrete-time Markov chain. An existing carbon transport resistance model was extended to account for several source/sink components of individual plant elements. A quasi-Monte Carlo path-tracing algorithm was used to estimate the absorbed irradiance of each leaf. Several simulations were performed to illustrate the model's potential to reproduce the major features of the vine's behaviour. The model simulated vine growth responses that were qualitatively similar to those observed in experiments, including the plastic response of shoot growth to local carbon supply, the branching patterns of two Actinidia species, the effect of carbon limitation and topological distance on fruit size and the complex behaviour of sink competition for carbon. The model is able to reproduce differences in vine and fruit growth arising from various experimental treatments. This implies it will be a valuable tool for refining our understanding of kiwifruit growth and for identifying strategies to improve production.
Gee, Hugo K.W.; King, Sammy L.; Keim, Richard F.
2014-01-01
Flooding is a defining disturbance in floodplain forests affecting seed germination, seedling establishment, and tree growth. Globally, flood control, including artificial levees, dams, and channelization has altered flood regimes in floodplains. However, a paucity of data are available in regards to the long-term effects of levees on stand establishment and tree growth in floodplain forests. In this study, we used dendrochronological techniques to reconstruct tree recruitment and tree growth over a 90-year period at three stands within a ring levee in the Mississippi River Alluvial Valley (MAV) and to evaluate whether recruitment patterns and tree growth changed following levee construction. We hypothesized that: (1) sugarberry is increasing in dominance and overcup oak (Quercus lyrata) is becoming less dominant since the levee, and that changes in hydrology are playing a greater role than canopy disturbance in these changes in species dominance; and (2) that overcup oak growth has declined following construction of the levee and cessation of overbank flooding whereas that of sugarberry has increased. Recruitment patterns shifted from flood-tolerant overcup oak to flood-intolerant sugarberry (Celtis laevigata) after levee construction. None of the 122 sugarberry trees cored in this study established prior to the levee, but it was the most common species established after the levee. The mechanisms behind the compositional change are unknown, however, the cosmopolitan distribution of overcup oak during the pre-levee period and sugarberry during the post-levee period, the lack of sugarberry establishment in the pre-levee period, and the confinement of overcup oak regeneration to the lowest areas in each stand after harvest in the post-levee period indicate that species-specific responses to flooding and light availability are forcing recruitment patterns. Overcup oak growth was also affected by levee construction, but in contrast to our hypothesis, growth actually increased for several decades before declining during a drought in the late 1990s. We interpret this result as removal of flood stress following levee construction. This finding emphasizes the fact that flooding can be stressful to trees regardless of their flood tolerance and that growth in floodplain trees can be sustained provided adequate soil moisture is present, regardless of the source of soil moisture. However, future research efforts should focus on the long-term effect of hydrologic modification on stand development and on how hydrologic modifications, such as elimination of surface flooding and groundwater declines, affect the vulnerability of floodplain forests to drought.
Das Gupta, Mainak; Nath, Utpal
2015-10-01
Lateral appendages often show allometric growth with a specific growth polarity along the proximo-distal axis. Studies on leaf growth in model plants have identified a basipetal growth direction with the highest growth rate at the proximal end and progressively lower rates toward the distal end. Although the molecular mechanisms governing such a growth pattern have been studied recently, variation in leaf growth polarity and, therefore, its evolutionary origin remain unknown. By surveying 75 eudicot species, here we report that leaf growth polarity is divergent. Leaf growth in the proximo-distal axis is polar, with more growth arising from either the proximal or the distal end; dispersed with no apparent polarity; or bidirectional, with more growth contributed by the central region and less growth at either end. We further demonstrate that the expression gradient of the miR396-GROWTH-REGULATING FACTOR module strongly correlates with the polarity of leaf growth. Altering the endogenous pattern of miR396 expression in transgenic Arabidopsis thaliana leaves only partially modified the spatial pattern of cell expansion, suggesting that the diverse growth polarities might have evolved via concerted changes in multiple gene regulatory networks. © 2015 American Society of Plant Biologists. All rights reserved.
Bowsher, Julia H; Wray, Gregory A; Abouheif, Ehab
2007-12-15
Over the last decade, it has become clear that organismal form is largely determined by developmental and evolutionary changes in the growth and pattern formation of tissues. Yet, there is little known about how these two integrated processes respond to environmental cues or how they evolve relative to one another. Here, we present the discovery of vestigial wing imaginal discs in worker larvae of the red imported fire ant, Solenopsis invicta. These vestigial wing discs are present in all worker larvae, which is uncommon for a species with a large worker size distribution. Furthermore, the growth trajectory of these vestigial discs is distinct from all of the ant species examined to date because they grow at a rate slower than the leg discs. We predicted that the growth trajectory of the vestigial wing discs would be mirrored by evolutionary changes in their patterning. We tested this prediction by examining the expression of three patterning genes, extradenticle, ultrabithorax, and engrailed, known to underlie the wing polyphenism in ants. Surprisingly, the expression patterns of these three genes in the vestigial wing discs was the same as those found in ant species with different worker size distributions and wing disc growth than fire ants. We conclude that growth and patterning are evolutionarily dissociated in the vestigial wing discs of S. invicta because patterning in these discs is conserved, whereas their growth trajectories are not. The evolutionary dissociation of growth and patterning may be an important feature of gene networks that underlie polyphenic traits. 2007 Wiley-Liss, Inc
Selective LPCVD growth of graphene on patterned copper and its growth mechanism
NASA Astrophysics Data System (ADS)
Zhang, M.; Huang, B.-C.; Wang, Y.; Woo, J. C. S.
2016-12-01
Copper-catalyzed graphene low-pressure chemical-vapor deposition (LPCVD) growth has been regarded as a viable solution towards its integration to CMOS technology, and the wafer-bonding method provides a reliable alternative for transferring the selective graphene grown on a patterned metal film for IC manufacturing. In this paper, selective LPCVD graphene growth using patterned copper dots has been studied. The Raman spectra of grown films have demonstrated large dependence on the growth conditions. To explain the results, the growth mechanisms based on surface adsorption and copper-vapor-assisted growth are investigated by the comparison between the blanket copper films with/without the additional copper source. The copper vapor density is found to be critical for high-quality graphene growth. In addition, the copper-vapor-assisted growth is also evidenced by the carbon deposition on the SiO2 substrate of the patterned-copper-dot sample and chamber wall during graphene growth. This growth mechanism explains the correlation between the growth condition and Raman spectrum for films on copper dots. The study on the copper-catalyzed selective graphene growth on the hard substrate paves the way for the synthesis and integration of the 2D material in VLSI.
Vasuri, Francesco; Fittipaldi, Silvia; Giunchi, Francesca; Monica, Melissa; Ravaioli, Matteo; Degiovanni, Alessio; Bonora, Sonia; Golfieri, Rita; Bolondi, Luigi; Grigioni, Walter F; Pasquinelli, Gianandrea; D'Errico-Grigioni, Antonia
2016-02-01
In this paper we aimed to analyse the typology and the phenotype of the different vascular modifications in human hepatocellular carcinomas (HCCs) with a new immunomorphological and gene expression approach. We also attempted to correlate these modifications with the histological parameters of tumour aggressiveness and the surrounding liver parenchyma. Ninety-six HCCs (from 80 patients) were retrospectively enrolled, 46 occurring in non-cirrhotic livers, and 50 in livers transplanted for cirrhosis. Histopathological analysis, immunohistochemistry for CD34, Nestin and WT1 and RT-PCR for Nestin, transforming growth factor-β1 (TGFβ1) and insulin-like growth factor 1 (IGF1R) mRNA were performed in all nodules. By correlating the CD34 and Nestin immunoreactivity in HCC vasculature with the tumorous architecture, we identified four vascular patterns (named from 'a' to 'd'). Each of them was characterised by different expressions of TGFβ1 and IGF1R mRNA. Pattern a showed CD34-positive/Nestin-negative sinusoids, and was prevalent in microtrabecular lesions. Pattern b showed similar morphology and architecture as pattern a, but with Nestin-positive sinusoids and a significant 'boost' in IGF1R and TGFβ1 mRNAs. In patterns c and d a progressive sinusoid loss and a gain of newly formed arterioles were seen. Notably, HCCs with pattern a arose more frequently in cirrhosis (p=0.024), and showed lower incidence of microvascular invasion (p=0.002) and infiltration (p=0.005) compared with HCCs with other patterns. Although future studies are surely required, the identification of different vascular profiles in HCCs from cirrhotic and non-cirrhotic livers may help clarify the relationship between HCC progression and aggressiveness. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Tully, Katherine L; Lawrence, Deborah
2012-06-01
In a coffee agroforest, the crop is cultivated under the shade of fruit-bearing and nitrogen (N)-fixing trees. These trees are periodically pruned to promote flowering and fruiting as well as to make nutrients stored in tree biomass available to plants. We investigated the effect of canopy composition and substrate quality on decomposition rates and patterns of nutrient release from pruning residues in a coffee agroforest located in Costa Rica's Central Valley. Initial phosphorus (P) release was enhanced under a canopy composed solely of N-fixing, Erythrina poeppigiana compared to a mixed canopy of Erythrina and Musa acuminata (banana). Both initial and final N release were similar under the two canopy types. However, after five months of decomposition, a higher proportion of initial N had been released under the single canopy. Although patterns of decomposition and nutrient release were not predicted by initial substrate quality, mass loss in leaf mixtures rates were well predicted by mean mass loss of their component species. This study identifies specific pruning regimes that may regulate N and P release during crucial growth periods, and it suggests that strategic pruning can enhance nutrient availability. For example, during the onset of rapid fruit growth, a two-species mixture may release more P than a three-species mixture. However, by the time of the harvest, the two- and three-species mixtures have released roughly the same amount of N and P. These nutrients do not always follow the same pattern, as N release can be maximized in single-species substrates, while P release is often facilitated in species mixtures. Our study indicates the importance of management practices in mediating patterns of nutrient release. Future research should investigate how canopy composition and farm management can also mediate on-farm nutrient losses.
Savolainen, Outi; Kujala, Sonja T; Sokol, Catherina; Pyhäjärvi, Tanja; Avia, Komlan; Knürr, Timo; Kärkkäinen, Katri; Hicks, Sheila
2011-01-01
The adaptive potential of the northernmost Pinus sylvestris L. (and other northern tree) populations is considered by examining first the current patterns of quantitative genetic adaptive traits, which show high population differentiation and clines. We then consider the postglacial history of the populations using both paleobiological and genetic data. The current patterns of diversity at nuclear genes suggest that the traces of admixture are mostly visible in mitochondrial DNA variation patterns. There is little evidence of increased diversity due to admixture between an eastern and western colonization lineage, but no signal of reduced diversity (due to sequential bottlenecks) either. Quantitative trait variation in the north is not associated with the colonizing lineages. The current clines arose rapidly and may be based on standing genetic variation. The initial phenotypic response of Scots pine in the north is predicted to be increased survival and growth. The genetic responses are examined based on quantitative genetic predictions of sustained selection response and compared with earlier simulation results that have aimed at more ecological realism. The phenotypic responses of increased growth and survival reduce the opportunity for selection and delay the evolutionary responses. The lengthening of the thermal growing period also causes selection on the critical photoperiod in the different populations. Future studies should aim at including multiple ecological and genetic factors in evaluating potential responses.
Which climate change path are we following? Bad news from Scots pine
D’Andrea, Ettore; Rezaie, Negar; Cammarano, Mario; Matteucci, Giorgio
2017-01-01
Current expectations on future climate derive from coordinated experiments, which compile many climate models for sampling the entire uncertainty related to emission scenarios, initial conditions, and modelling process. Quantifying this uncertainty is important for taking decisions that are robust under a wide range of possible future conditions. Nevertheless, if uncertainty is too large, it can prevent from planning specific and effective measures. For this reason, reducing the spectrum of the possible scenarios to a small number of one or a few models that actually represent the climate pathway influencing natural ecosystems would substantially increase our planning capacity. Here we adopt a multidisciplinary approach based on the comparison of observed and expected spatial patterns of response to climate change in order to identify which specific models, among those included in the CMIP5, catch the real climate variation driving the response of natural ecosystems. We used dendrochronological analyses for determining the geographic pattern of recent growth trends for three European species of trees. At the same time, we modelled the climatic niche for the same species and forecasted the suitability variation expected across Europe under each different GCM. Finally, we estimated how well each GCM explains the real response of ecosystems, by comparing the expected variation with the observed growth trends. Doing this, we identified four climatic models that are coherent with the observed trends. These models are close to the highest range limit of the climatic variations expected by the ensemble of the CMIP5 models, suggesting that current predictions of climate change impacts on ecosystems could be underestimated. PMID:29252985
Which climate change path are we following? Bad news from Scots pine.
Bombi, Pierluigi; D'Andrea, Ettore; Rezaie, Negar; Cammarano, Mario; Matteucci, Giorgio
2017-01-01
Current expectations on future climate derive from coordinated experiments, which compile many climate models for sampling the entire uncertainty related to emission scenarios, initial conditions, and modelling process. Quantifying this uncertainty is important for taking decisions that are robust under a wide range of possible future conditions. Nevertheless, if uncertainty is too large, it can prevent from planning specific and effective measures. For this reason, reducing the spectrum of the possible scenarios to a small number of one or a few models that actually represent the climate pathway influencing natural ecosystems would substantially increase our planning capacity. Here we adopt a multidisciplinary approach based on the comparison of observed and expected spatial patterns of response to climate change in order to identify which specific models, among those included in the CMIP5, catch the real climate variation driving the response of natural ecosystems. We used dendrochronological analyses for determining the geographic pattern of recent growth trends for three European species of trees. At the same time, we modelled the climatic niche for the same species and forecasted the suitability variation expected across Europe under each different GCM. Finally, we estimated how well each GCM explains the real response of ecosystems, by comparing the expected variation with the observed growth trends. Doing this, we identified four climatic models that are coherent with the observed trends. These models are close to the highest range limit of the climatic variations expected by the ensemble of the CMIP5 models, suggesting that current predictions of climate change impacts on ecosystems could be underestimated.
Byrne, Maria; Lamare, Miles; Winter, David; Dworjanyn, Symon A; Uthicke, Sven
2013-01-01
The stunting effect of ocean acidification on development of calcifying invertebrate larvae has emerged as a significant effect of global change. We assessed the arm growth response of sea urchin echinoplutei, here used as a proxy of larval calcification, to increased seawater acidity/pCO2 and decreased carbonate mineral saturation in a global synthesis of data from 15 species. Phylogenetic relatedness did not influence the observed patterns. Regardless of habitat or latitude, ocean acidification impedes larval growth with a negative relationship between arm length and increased acidity/pCO2 and decreased carbonate mineral saturation. In multiple linear regression models incorporating these highly correlated parameters, pCO2 exerted the greatest influence on decreased arm growth in the global dataset and also in the data subsets for polar and subtidal species. Thus, reduced growth appears largely driven by organism hypercapnia. For tropical species, decreased carbonate mineral saturation was most important. No single parameter played a dominant role in arm size reduction in the temperate species. For intertidal species, the models were equivocal. Levels of acidification causing a significant (approx. 10-20+%) reduction in arm growth varied between species. In 13 species, reduction in length of arms and supporting skeletal rods was evident in larvae reared in near-future (pCO2 800+ µatm) conditions, whereas greater acidification (pCO2 1000+ µatm) reduced growth in all species. Although multi-stressor studies are few, when temperature is added to the stressor mix, near-future warming can reduce the negative effect of acidification on larval growth. Broadly speaking, responses of larvae from across world regions showed similar trends despite disparate phylogeny, environments and ecology. Larval success may be the bottleneck for species success with flow-on effects for sea urchin populations and marine ecosystems.
Byrne, Maria; Lamare, Miles; Winter, David; Dworjanyn, Symon A.; Uthicke, Sven
2013-01-01
The stunting effect of ocean acidification on development of calcifying invertebrate larvae has emerged as a significant effect of global change. We assessed the arm growth response of sea urchin echinoplutei, here used as a proxy of larval calcification, to increased seawater acidity/pCO2 and decreased carbonate mineral saturation in a global synthesis of data from 15 species. Phylogenetic relatedness did not influence the observed patterns. Regardless of habitat or latitude, ocean acidification impedes larval growth with a negative relationship between arm length and increased acidity/pCO2 and decreased carbonate mineral saturation. In multiple linear regression models incorporating these highly correlated parameters, pCO2 exerted the greatest influence on decreased arm growth in the global dataset and also in the data subsets for polar and subtidal species. Thus, reduced growth appears largely driven by organism hypercapnia. For tropical species, decreased carbonate mineral saturation was most important. No single parameter played a dominant role in arm size reduction in the temperate species. For intertidal species, the models were equivocal. Levels of acidification causing a significant (approx. 10–20+%) reduction in arm growth varied between species. In 13 species, reduction in length of arms and supporting skeletal rods was evident in larvae reared in near-future (pCO2 800+ µatm) conditions, whereas greater acidification (pCO2 1000+ µatm) reduced growth in all species. Although multi-stressor studies are few, when temperature is added to the stressor mix, near-future warming can reduce the negative effect of acidification on larval growth. Broadly speaking, responses of larvae from across world regions showed similar trends despite disparate phylogeny, environments and ecology. Larval success may be the bottleneck for species success with flow-on effects for sea urchin populations and marine ecosystems. PMID:23980242
Xue, J L; Ma, J Z; Louis, T A; Collins, A J
2001-12-01
As the United States end-stage renal disease (ESRD) program enters the new millennium, the continued growth of the ESRD population poses a challenge for policy makers, health care providers, and financial planners. To assist in future planning for the ESRD program, the growth of patient numbers and Medicare costs was forecasted to the year 2010 by modeling of historical data from 1982 through 1997. A stepwise autoregressive method and exponential smoothing models were used. The forecasting models for ESRD patient numbers demonstrated mean errors of -0.03 to 1.03%, relative to the observed values. The model for Medicare payments demonstrated -0.12% mean error. The R(2) values for the forecasting models ranged from 99.09 to 99.98%. On the basis of trends in patient numbers, this forecast projects average annual growth of the ESRD populations of approximately 4.1% for new patients, 6.4% for long-term ESRD patients, 7.1% for dialysis patients, 6.1% for patients with functioning transplants, and 8.2% for patients on waiting lists for transplants, as well as 7.7% for Medicare expenditures. The numbers of patients with ESRD in 2010 are forecasted to be 129,200 +/- 7742 (95% confidence limits) new patients, 651,330 +/- 15,874 long-term ESRD patients, 520,240 +/- 25,609 dialysis patients, 178,806 +/- 4349 patients with functioning transplants, and 95,550 +/- 5478 patients on waiting lists. The forecasted Medicare expenditures are projected to increase to $28.3 +/- 1.7 billion by 2010. These projections are subject to many factors that may alter the actual growth, compared with the historical patterns. They do, however, provide a basis for discussing the future growth of the ESRD program and how the ESRD community can meet the challenges ahead.
Embodied crop calories in animal products
NASA Astrophysics Data System (ADS)
Pradhan, Prajal; Lüdeke, Matthias K. B.; Reusser, Dominik E.; Kropp, Jürgen P.
2013-12-01
Increases in animal products consumption and the associated environmental consequences have been a matter of scientific debate for decades. Consequences of such increases include rises in greenhouse gas emissions, growth of consumptive water use, and perturbation of global nutrients cycles. These consequences vary spatially depending on livestock types, their densities and their production system. In this letter, we investigate the spatial distribution of embodied crop calories in animal products. On a global scale, about 40% of the global crop calories are used as livestock feed (we refer to this ratio as crop balance for livestock) and about 4 kcal of crop products are used to generate 1 kcal of animal products (embodied crop calories of around 4). However, these values vary greatly around the world. In some regions, more than 100% of the crops produced is required to feed livestock requiring national or international trade to meet the deficit in livestock feed. Embodied crop calories vary between less than 1 for 20% of the livestock raising areas worldwide and greater than 10 for another 20% of the regions. Low values of embodied crop calories are related to production systems for ruminants based on fodder and forage, while large values are usually associated with production systems for non-ruminants fed on crop products. Additionally, we project the future feed demand considering three scenarios: (a) population growth, (b) population growth and changes in human dietary patterns and (c) changes in population, dietary patterns and feed conversion efficiency. When considering dietary changes, we project the global feed demand to be almost doubled (1.8-2.3 times) by 2050 compared to 2000, which would force us to produce almost equal or even more crops to raise our livestock than to directly nourish ourselves in the future. Feed demand is expected to increase over proportionally in Africa, South-Eastern Asia and Southern Asia, putting additional stress on these regions.
Hurricanes and coral bleaching linked to changes in coral recruitment in Tobago.
Mallela, J; Crabbe, M J C
2009-10-01
Knowledge of coral recruitment patterns helps us understand how reefs react following major disturbances and provides us with an early warning system for predicting future reef health problems. We have reconstructed and interpreted historical and modern-day recruitment patterns, using a combination of growth modelling and in situ recruitment experiments, in order to understand how hurricanes, storms and bleaching events have influenced coral recruitment on the Caribbean coastline of Tobago. Whilst Tobago does not lie within the main hurricane belt results indicate that regional hurricane events negatively impact coral recruitment patterns in the Southern Caribbean. In years following hurricanes, tropical storms and bleaching events, coral recruitment was reduced when compared to normal years (p=0.016). Following Hurricane Ivan in 2004 and the 2005-2006 bleaching event, coral recruitment was markedly limited with only 2% (n=6) of colonies estimated to have recruited during 2006 and 2007. Our experimental results indicate that despite multiple large-scale disturbances corals are still recruiting on Tobago's marginal reef systems, albeit in low numbers.
Kim, Jeong; Kim, Sun Il; Cho, Seong-Ho; Hwang, Sungwoo; Lee, Young Hee; Hur, Jaehyun
2015-11-01
We report on new fabrication methods for a transparent, hierarchical, and patterned electrode comprised of either carbon nanotubes or zinc oxide nanorods. Vertically aligned carbon nanotubes or zinc oxide nanorod arrays were fabricated by either chemical vapor deposition or hydrothermal growth, in combination with photolithography. A transparent conductive graphene layer or zinc oxide seed layer was employed as the transparent electrode. On the patterned surface defined using photoresist, the vertically grown carbon nanotubes or zinc oxides could produce a concentrated electric field under applied DC voltage. This periodic electric field was used to align liquid crystal molecules in localized areas within the optical cell, effectively modulating the refractive index. Depending on the material and morphology of these patterned electrodes, the diffraction efficiency presented different behavior. From this study, we established the relationship between the hierarchical structure of the different electrodes and their efficiency for modulating the refractive index. We believe that this study will pave a new path for future optoelectronic applications.
VisualUrText: A Text Analytics Tool for Unstructured Textual Data
NASA Astrophysics Data System (ADS)
Zainol, Zuraini; Jaymes, Mohd T. H.; Nohuddin, Puteri N. E.
2018-05-01
The growing amount of unstructured text over Internet is tremendous. Text repositories come from Web 2.0, business intelligence and social networking applications. It is also believed that 80-90% of future growth data is available in the form of unstructured text databases that may potentially contain interesting patterns and trends. Text Mining is well known technique for discovering interesting patterns and trends which are non-trivial knowledge from massive unstructured text data. Text Mining covers multidisciplinary fields involving information retrieval (IR), text analysis, natural language processing (NLP), data mining, machine learning statistics and computational linguistics. This paper discusses the development of text analytics tool that is proficient in extracting, processing, analyzing the unstructured text data and visualizing cleaned text data into multiple forms such as Document Term Matrix (DTM), Frequency Graph, Network Analysis Graph, Word Cloud and Dendogram. This tool, VisualUrText, is developed to assist students and researchers for extracting interesting patterns and trends in document analyses.
Global Simulation of Aviation Operations
NASA Technical Reports Server (NTRS)
Sridhar, Banavar; Sheth, Kapil; Ng, Hok Kwan; Morando, Alex; Li, Jinhua
2016-01-01
The simulation and analysis of global air traffic is limited due to a lack of simulation tools and the difficulty in accessing data sources. This paper provides a global simulation of aviation operations combining flight plans and real air traffic data with historical commercial city-pair aircraft type and schedule data and global atmospheric data. The resulting capability extends the simulation and optimization functions of NASA's Future Air Traffic Management Concept Evaluation Tool (FACET) to global scale. This new capability is used to present results on the evolution of global air traffic patterns from a concentration of traffic inside US, Europe and across the Atlantic Ocean to a more diverse traffic pattern across the globe with accelerated growth in Asia, Australia, Africa and South America. The simulation analyzes seasonal variation in the long-haul wind-optimal traffic patterns in six major regions of the world and provides potential time-savings of wind-optimal routes compared with either great circle routes or current flight-plans if available.
Na, Hyungjoo; Eun, Youngkee; Kim, Min-Ook; Choi, Jungwook; Kim, Jongbaeg
2015-01-01
We report a unique approach for the patterned growth of single-crystalline tungsten oxide (WOx) nanowires based on localized stress-induction. Ions implanted into the desired growth area of WOx thin films lead to a local increase in the compressive stress, leading to the growth of nanowire at lower temperatures (600 °C vs. 750–900 °C) than for equivalent non-implanted samples. Nanowires were successfully grown on the microscale patterns using wafer-level ion implantation and on the nanometer scale patterns using a focused ion beam (FIB). Experimental results show that nanowire growth is influenced by a number of factors including the dose of the implanted ions and their atomic radius. The implanted-ion-assisted, stress-induced method proposed here for the patterned growth of WOx nanowires is simpler than alternative approaches and enhances the compatibility of the process by reducing the growth temperature. PMID:26666843
Global population trends and policy options.
Ezeh, Alex C; Bongaarts, John; Mberu, Blessing
2012-07-14
Rapid population growth is a threat to wellbeing in the poorest countries, whereas very low fertility increasingly threatens the future welfare of many developed countries. The mapping of global trends in population growth from 2005-10 shows four distinct patterns. Most of the poorest countries, especially in sub-Saharan Africa, are characterised by rapid growth of more than 2% per year. Moderate annual growth of 1-2% is concentrated in large countries, such as India and Indonesia, and across north Africa and western Latin America. Whereas most advanced-economy countries and large middle-income countries, such as China and Brazil, are characterised by low or no growth (0-1% per year), most of eastern Europe, Japan, and a few western European countries are characterised by population decline. Countries with rapid growth face adverse social, economic, and environmental pressures, whereas those with low or negative growth face rapid population ageing, unsustainable burdens on public pensions and health-care systems, and slow economic growth. Countries with rapid growth should consider the implementation of voluntary family planning programmes as their main policy option to reduce the high unmet need for contraception, unwanted pregnancies, and probirth reproductive norms. In countries with low or negative growth, policies to address ageing and very low fertility are still evolving. Further research into the potential effect of demographic policies on other social systems, social groups, and fertility decisions and trends is therefore recommended. Copyright © 2012 Elsevier Ltd. All rights reserved.
Trajectories of posttraumatic growth and depreciation after two major earthquakes.
Marshall, Emma M; Frazier, Patricia; Frankfurt, Sheila; Kuijer, Roeline G
2015-03-01
This study examined trajectories of posttraumatic growth or depreciation (i.e., positive or negative life change) in personal strength and relationships after 2 major earthquakes in Canterbury, New Zealand using group-based trajectory modeling. Participants completed questionnaires regarding posttraumatic growth or depreciation in personal strength and relationship domains 1 month after the first earthquake in September 2010 (N = 185) and 3 months (n = 156) and 12 months (n = 144) after the more severe February 2011 earthquake. Three classes of growth or depreciation patterns were found for both domains. For personal strength, most of the participants were grouped into a "no growth or depreciation" class and smaller proportions were grouped into either a "posttraumatic depreciation" or "posttraumatic growth" class. The 3 classes for relationships all reported posttraumatic growth, differing only in degree. None of the slopes were significant for any of the classes, indicating that levels of growth or depreciation reported after the first earthquake remained stable when assessed at 2 time points after the second earthquake. Multinomial logistic regression analyses examining pre- and postearthquake predictors of trajectory class membership revealed that those in the "posttraumatic growth" personal strength class were significantly younger and had significantly higher pre-earthquake mental health than those in the "posttraumatic depreciation" class. Sex was the only predictor of the relationship classes: No men were assigned to the "high posttraumatic growth" class. Implications and future directions are discussed. (PsycINFO Database Record (c) 2015 APA, all rights reserved).
Anticipatory Water Management in Phoenix using Advanced Scenario Planning and Analyses: WaterSim 5
NASA Astrophysics Data System (ADS)
Sampson, D. A.; Quay, R.; White, D. D.; Gober, P.; Kirkwood, C.
2013-12-01
Complexity, uncertainty, and variability are inherent properties of linked social and natural processes; sustainable resource management must somehow consider all three. Typically, a decision support tool (using scenario analyses) is used to examine management alternatives under suspected trajectories in driver variables (i.e., climate forcing's, growth or economic projections, etc.). This traditional planning focuses on a small set of envisioned scenarios whose outputs are compared against one-another in order to evaluate their differing impacts on desired metrics. Human cognition typically limits this to three to five scenarios. However, complex and highly uncertain issues may require more, often much more, than five scenarios. In this case advanced scenario analysis provides quantitative or qualitative methods that can reveal patterns and associations among scenario metrics for a large ensemble of scenarios. From this analysis, then, a smaller set of heuristics that describe the complexity and uncertainty revealed provides a basis to guide planning in an anticipatory fashion. Our water policy and management model, termed WaterSim, permits advanced scenario planning and analysis for the Phoenix Metropolitan Area. In this contribution we examine the concepts of advanced scenario analysis on a large scale ensemble of scenarios using our work with WaterSim as a case study. For this case study we created a range of possible water futures by creating scenarios that encompasses differences in water supplies (our surrogates for climate change, drought, and inherent variability in riverine flows), population growth, and per capital water consumption. We used IPCC estimates of plausible, future, alterations in riverine runoff, locally produced and vetted estimates of population growth projections, and empirical trends in per capita water consumption for metropolitan cities. This ensemble consisted of ~ 30, 700 scenarios (~575 k observations). We compared and contrasted two metropolitan communities that exhibit differing growth projections and water portfolios; moderate growth with a diverse portfolio versus high growth for a more restrictive portfolio. Results illustrate that both communities exhibited an expanding envelope of possible, future water outcomes with rational water management trajectories. However, a more diverse portfolio resulted in a broad, time-insensitive decision space for management interventions. The reverse was true for the more restrictive water portfolio with high growth projections.
Understanding Long-term Greenness, Water Use, and Redevelopment in Denver, Colorado
NASA Astrophysics Data System (ADS)
Neel, A.; Hogue, T. S.; Read, L.
2016-12-01
In 2015 the U.S. Census Bureau's found Denver to have the fastest growth rate among large cities in America. With the population of Metro Denver expected to increase from 2.9 to 3.3 million it is critical to consider the impacts of expected redevelopment and increased housing density on the City's ecosystem and future water supply. While prior studies have shown outdoor water use to account for as much as 40-60% of single-family residential water use in western cities, currently no published research examines patterns in urban vegetation, greenness, temperature and water use for cities in the Rocky Mountain West. Normalized Differential Vegetation Index (NDVI) calculated from Landsat imagery was examined to assess how redevelopment in Denver's urban center impacts regional greenness patterns, land surface temperatures and water budgets. Over the last twenty-seven years Denver has shown an overall 4.4% decrease in greenness, with a more rapid decline starting in 2006. While NDVI and cumulative precipitation have a significant relationship over the study period, decreasing NDVI trends across all seasons suggests other factors, such as redevelopment, may be influencing the city's greenness. Comparing water use, NDVI, and precipitation reveals that not only do climate and redevelopment affect NDVI patterns, but mandated water restrictions may also be having a significant impact on NDVI values. NDVI and precipitation patterns are being assessed against regional surface temperatures over time. Surface temperatures, taken from Landsat data, reveal that Urban Heat Island effect may become more pronounced with decreasing NDVI values. As Denver continues to grow, managers can utilize results to better inform decisions about landscape patterns relative to outdoor water use, the effectiveness of restrictions on consumption, and future planning for green infrastructure.
Tutkuviene, Janina; Cattaneo, Cristina; Obertová, Zuzana; Ratnayake, Melanie; Poppa, Pasquale; Barkus, Arunas; Khalaj-Hedayati, Kerstin; Schroeder, Inge; Ritz-Timme, Stefanie
2016-11-01
Craniofacial growth changes in young children are not yet completely understood. Up-to-date references for craniofacial measurements are crucial for clinical assessment of orthodontic anomalies, craniofacial abnormalities and subsequent planning of interventions. To provide normal reference data and to identify growth patterns for craniofacial dimensions of European boys and girls aged 3-6 years. Using standard anthropometric methodology, body weight, body height and 23 craniofacial measurements were acquired for a cross-sectional sample of 681 healthy children (362 boys and 319 girls) aged 3-6 years from Germany, Italy and Lithuania. Descriptive statistics, correlation coefficients, percentage annual changes and percentage growth rates were used to analyse the dataset. Between the ages of 3-6 years, craniofacial measurements showed age- and sex-related patterns independent from patterns observed for body weight and body height. Sex-related differences were observed in the majority of craniofacial measurements. In both sexes, face heights and face depths showed the strongest correlation with age. Growth patterns differed by craniofacial measurement and can be summarised into eight distinct age- and sex-related patterns. This study provided reference data and identified sex- and age-related growth patterns of the craniofacial complex of young European children, which may be used for detailed assessment of normal growth in paediatrics, maxillofacial reconstructive surgery and possibly for forensic age assessment.
Lakshmi, K Bhagya; Yelchuru, Sri Harsha; Chandrika, V; Lakshmikar, O G; Sagar, V Lakshmi; Reddy, G Vivek
2018-01-01
The main aim is to determine whether growth pattern had an effect on the upper airway by comparing different craniofacial patterns with pharyngeal widths and its importance during the clinical examination. Sixty lateral cephalograms of patients aged between 16 and 24 years with no pharyngeal pathology or nasal obstruction were selected for the study. These were divided into skeletal Class I ( n = 30) and skeletal Class II ( n = 30) using ANB angle subdivided into normodivergent, hyperdivergent, and hypodivergent facial patterns based on SN-GoGn angle. McNamara's airway analysis was used to determine the upper- and lower-airway dimensions. One-way ANOVA was used to do the intergroup comparisons and the Tukey's test as the secondary statistical analysis. Statistically significant difference exists between the upper-airway dimensions in both the skeletal malocclusions with hyperdivergent growth patterns when compared to other growth patterns. In both the skeletal malocclusions, vertical growers showed a significant decrease in the airway size than the horizontal and normal growers. There is no statistical significance between the lower airway and craniofacial growth pattern.
NASA Astrophysics Data System (ADS)
Inkoom, J. N.; Nyarko, B. K.
2014-12-01
The integration of geographic information systems (GIS) and agent-based modelling (ABM) can be an efficient tool to improve spatial planning practices. This paper utilizes GIS and ABM approaches to simulate spatial growth patterns of settlement structures in Shama. A preliminary household survey on residential location decision-making choice served as the behavioural rule for household agents in the model. Physical environment properties of the model were extracted from a 2005 image implemented in NetLogo. The resulting growth pattern model was compared with empirical growth patterns to ascertain the model's accuracy. The paper establishes that the development of unplanned structures and its evolving structural pattern are a function of land price, proximity to economic centres, household economic status and location decision-making patterns. The application of the proposed model underlines its potential for integration into urban planning policies and practices, and for understanding residential decision-making processes in emerging cities in developing countries. Key Words: GIS; Agent-based modelling; Growth patterns; NetLogo; Location decision making; Computational Intelligence.
The interplay of climate and land use change affects the distribution of EU bumblebees.
Marshall, Leon; Biesmeijer, Jacobus C; Rasmont, Pierre; Vereecken, Nicolas J; Dvorak, Libor; Fitzpatrick, Una; Francis, Frédéric; Neumayer, Johann; Ødegaard, Frode; Paukkunen, Juho P T; Pawlikowski, Tadeusz; Reemer, Menno; Roberts, Stuart P M; Straka, Jakub; Vray, Sarah; Dendoncker, Nicolas
2018-01-01
Bumblebees in Europe have been in steady decline since the 1900s. This decline is expected to continue with climate change as the main driver. However, at the local scale, land use and land cover (LULC) change strongly affects the occurrence of bumblebees. At present, LULC change is rarely included in models of future distributions of species. This study's objective is to compare the roles of dynamic LULC change and climate change on the projected distribution patterns of 48 European bumblebee species for three change scenarios until 2100 at the scales of Europe, and Belgium, Netherlands and Luxembourg (BENELUX). We compared three types of models: (1) only climate covariates, (2) climate and static LULC covariates and (3) climate and dynamic LULC covariates. The climate and LULC change scenarios used in the models include, extreme growth applied strategy (GRAS), business as might be usual and sustainable European development goals. We analysed model performance, range gain/loss and the shift in range limits for all bumblebees. Overall, model performance improved with the introduction of LULC covariates. Dynamic models projected less range loss and gain than climate-only projections, and greater range loss and gain than static models. Overall, there is considerable variation in species responses and effects were most pronounced at the BENELUX scale. The majority of species were predicted to lose considerable range, particularly under the extreme growth scenario (GRAS; overall mean: 64% ± 34). Model simulations project a number of local extinctions and considerable range loss at the BENELUX scale (overall mean: 56% ± 39). Therefore, we recommend species-specific modelling to understand how LULC and climate interact in future modelling. The efficacy of dynamic LULC change should improve with higher thematic and spatial resolution. Nevertheless, current broad scale representations of change in major land use classes impact modelled future distribution patterns. © 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Ohr, C. A.; Godsey, S.; Welhan, J. A.; Larson, D. M.; Lohse, K. A.; Finney, B.; Derryberry, D.
2015-12-01
Many regions rely on quality groundwater to support urban growth. Groundwater quality often responds in a complex manner to stressors such as land use change, climate change, or policy decisions. Urban growth patterns in mid-sized cities, especially ones that are growing urban centers in water-limited regions in the western US, control and are controlled by water availability and its quality. We present a case study from southeastern Idaho where urban growth over the past 20 years has included significant ex-urban expansion of houses that rely on septic systems rather than city sewer lines for their wastewater treatment. Septic systems are designed to mitigate some contaminants, but not others. In particular, nitrates and emerging contaminants, such as pharmaceuticals, are not removed by most septic systems. Thus, even well-maintained septic systems at sufficiently high densities can impact down gradient water quality. Here we present patterns of nitrate concentrations over the period from 1985-2015 from the Lower Portneuf River Valley in southeastern Idaho. Concentrations vary from 0.03 to 27.09 nitrate-nitrogen mg/L, with average values increasing significantly over the 30 year time period from 3.15 +/- 0.065 to 3.57 +/- 0.43 mg/L. We examine temporal changes in locations of nitrate hotspots, and present pilot data on emerging contaminants of concern. Initial results suggest that high nitrate levels are generally associated with higher septic densities, but that this pattern is influenced by legacy agricultural uses and strongly controlled by underlying aquifer properties. Future work will include more detailed hydrological modeling to predict changes in hotspot locations under potential climate change scenarios.
Climate mitigation and the future of tropical landscapes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomson, Allison M.; Calvin, Katherine V.; Chini, Louise Parsons
2010-11-16
Land use change to meet 21st Century demands for food, fuel, and fiber will occur in the context of both a changing climate as well as societal efforts to mitigate climate change. This changing natural and human environment will have large consequences for forest resources, terrestrial carbon storage and emissions, and food and energy crop production over the next century. Any climate change mitigation policies enacted will change the environment under which land-use decisions are made and alter global land use change patterns. Here we use the GCAM integrated assessment model to explore how climate mitigation policies that achieve amore » climate stabilization at 4.5 W m-2 radiative forcing in 2100 and value carbon in terrestrial ecosystems interact with future agricultural productivity and food and energy demands to influence land use in the tropics. The regional land use results are downscaled from GCAM regions to produce gridded maps of tropical land use change. We find that tropical forests are preserved only in cases where a climate mitigation policy that values terrestrial carbon is in place, and crop productivity growth continues throughout the century. Crop productivity growth is also necessary to avoid large scale deforestation globally and enable the production of bioenergy crops. The terrestrial carbon pricing assumptions in GCAM are effective at avoiding deforestation even when cropland must expand to meet future food demand.« less
NASA Astrophysics Data System (ADS)
Mandapaka, Pradeep; Kamarajugedda, Shankar A.; Lo, Edmond Y. M.
2017-04-01
Southeast Asia (SEA) is undergoing rapid urbanization, with urban population percentage increasing from 32% in 1990 to 48% in 2015. It is projected that by the year 2040, urban regions in SEA account for 60% of its total population. The region is home to 600 million people, with many densely populated cities, including megacities such as Jakarta, Bangkok, and Manila. The region has more than 20,000 islands, and many cities lie on coastal low-lands and floodplains. These geographical characteristics together with the increasing population, infrastructure growth, and changing climate makes the region highly vulnerable to natural hazards. This study assessed urban growth dynamics in major (defined as population exceeding 1 million) SEA cities using remotely sensed night-time lights (NTL) data. A recently proposed brightness gradient approach was applied on 21 years (1992-2012) of NTL annual composites to derive core-urban (CU) and peri-urban (PU) regions within each city. The study also assessed the sensitivity of above extracted urban categories to different NTL thresholds. The temporal trends in CU and PU regions were quantified, and compared with trends in socio-economic indicators. The spatial expansion of CU and PU regions were found to depend on geographical constraints and socio-economic factors. Quantification of urban growth spatial-temporal patterns, as conducted here contributes towards the understanding of exposure and vulnerability of people and infrastructures to natural hazards, as well as the evolving trends for assessment under projected urbanization conditions. This will underpin better risk assessment efforts for present and future planning.
NASA Astrophysics Data System (ADS)
Chaouachi, Marwen; Falenty, Andrzej; Sell, Kathleen; Enzmann, Frieder; Kersten, Michael; Haberthür, David; Kuhs, Werner F.
2015-06-01
The formation process of gas hydrates in sedimentary matrices is of crucial importance for the physical and transport properties of the resulting aggregates. This process has never been observed in situ at submicron resolution. Here we report on synchrotron-based microtomographic studies by which the nucleation and growth processes of gas hydrate were observed at 276 K in various sedimentary matrices such as natural quartz (with and without admixtures of montmorillonite type clay) or glass beads with different surface properties, at varying water saturation. Both juvenile water and metastably gas-enriched water obtained from gas hydrate decomposition was used. Xenon gas was employed to enhance the density contrast between gas hydrate and the fluid phases involved. The nucleation sites can be easily identified and the various growth patterns are clearly established. In sediments under-saturated with juvenile water, nucleation starts at the water-gas interface resulting in an initially several micrometer thick gas hydrate film; further growth proceeds to form isometric single crystals of 10-20 µm size. The growth of gas hydrate from gas-enriched water follows a different pattern, via the nucleation in the bulk of liquid producing polyhedral single crystals. A striking feature in both cases is the systematic appearance of a fluid phase film of up to several micron thickness between gas hydrates and the surface of the quartz grains. These microstructural findings are relevant for future efforts of quantitative rock physics modeling of gas hydrates in sedimentary matrices and explain the anomalous attenuation of seismic/sonic waves.
Stoddard, Mary Caswell; Fayet, Annette L.; Kilner, Rebecca M.; Hinde, Camilla A.
2012-01-01
Many passerine birds lay white eggs with reddish brown speckles produced by protoporphyrin pigment. However, the function of these spots is contested. Recently, the sexually selected eggshell coloration (SSEC) hypothesis proposed that eggshell color is a sexually selected signal through which a female advertises her quality (and hence the potential quality of her future young) to her male partner, thereby encouraging him to contribute more to breeding attempts. We performed a test of the SSEC hypothesis in a common passerine, the great tit Parus major. We used a double cross-fostering design to determine whether males change their provisioning behavior based on eggshell patterns they observe at the nest. We also tested the assumption that egg patterning reflects female and/or offspring quality. Because birds differ from humans in their color and pattern perception, we used digital photography and models of bird vision to quantify egg patterns objectively. Neither male provisioning nor chick growth was related to the pattern of eggs males observed during incubation. Although heavy females laid paler, less speckled eggs, these eggs did not produce chicks that grew faster. Therefore, we conclude that the SSEC hypothesis is an unlikely explanation for the evolution of egg speckling in great tits. PMID:22815730
Sustainable diets: harnessing the nutrition agenda.
Buttriss, Judith; Riley, Helen
2013-10-01
There has been rapid growth in the global population over the last century and estimates for 2050 are a global population of over 9billion. These mouths need to be fed and the nutritional quality of the food received will be a key determinant of future health. Alongside this expansion in the world's population, rapid economic growth in China, India and South America is increasing demand for protein-rich foods, especially meat and dairy products, causing concern about the impact this may have on green house gas emissions. As economies strengthen and dietary and lifestyle patterns become more westernised, the so-called diseases of affluence are becoming ever more evident, often alongside malnutrition. This paper considers these challenges and the need to embed thinking about nutrition into discussions about sustainability of the food supply. Copyright © 2013 Elsevier Ltd. All rights reserved.
Sonne, Christian; Dietz, Rune; Born, Erik W; Riget, Frank F; Leifsson, Pall S; Bechshøft, Thea Ø; Kirkegaard, Maja
2007-11-15
Sexual organs and their development are susceptible to atmospheric transported environmental xenoendocrine pollutants and climate change (food availability). We therefore investigated sexual organs from 55 male and 44 female East Greenland polar bears (Ursus maritimus) to obtain information about growth/size and sexual maturity. Then, the genitalia size was compared with those previously reported from Canadian and Svalbard polar bears. Growth models showed that East Greenland male polar bears reached sexual maturity around 7 years of age and females around 4 years of age. When comparing East Greenland and Svalbard polar bears, the size of baculum and uterus were significantly lower in the East Greenland polar bears (ANOVA: all p < 0.05). Based on previously published baculum mean values from Canadian polar bears, a similar baculum pattern was found for East Greenland vs. Canadian polar bears. It is speculated whether this could be a result of the general high variation in polar bear body size, temporal distribution patterns of anthropogenic long-range transported persistent organic pollutants or climate change (decreasing food availability). The present investigation represents conservation and background data for future spatial and temporal assessments of hunting, pollution and climate change scenarios.
NASA Astrophysics Data System (ADS)
Carus, Jana; Heuner, Maike; Paul, Maike; Schröder, Boris
2017-09-01
Due to increasing pressure on estuarine marshes from sea level rise and river training, there is a growing need to understand how species-environment relationships influence the zonation and growth of tidal marsh vegetation. In the present study, we investigated the distribution and stand characteristics of the two key brackish marsh species Bolboschoenus maritimus and Phragmites australis in the Elbe estuary together with several abiotic habitat factors. We then tested the effect of these habitat factors on plant growth and zonation with generalised linear models (GLMs). Our study provides detailed information on the importance of single habitat factors and their interactions for controlling the distribution patterns and stand characteristics of two key marsh species. Our results suggest that flow velocity is the main factor influencing species distribution and stand characteristics and together with soil-water salinity even affects the inundation tolerance of the two specie investigated here. Additionally, inundation height and duration as well as interspecific competition helped explain the distribution patterns and stand characteristics. By identifying the drivers of marsh zonation and stand characteristics and quantifying their effects, this study provides useful information for evaluating a future contribution of tidal marsh vegetation to ecosystem-based shore protection.
Maboreke, Hazel R; Feldhahn, Lasse; Bönn, Markus; Tarkka, Mika T; Buscot, Francois; Herrmann, Sylvie; Menzel, Ralph; Ruess, Liliane
2016-08-12
Pedunculate oak (Quercus robur L.), an important forest tree in temperate ecosystems, displays an endogenous rhythmic growth pattern, characterized by alternating shoot and root growth flushes paralleled by oscillations in carbon allocation to below- and aboveground tissues. However, these common plant traits so far have largely been neglected as a determining factor for the outcome of plant biotic interactions. This study investigates the response of oak to migratory root-parasitic nematodes in relation to rhythmic growth, and how this plant-nematode interaction is modulated by an ectomycorrhizal symbiont. Oaks roots were inoculated with the nematode Pratylenchus penetrans solely and in combination with the fungus Piloderma croceum, and the systemic impact on oak plants was assessed by RNA transcriptomic profiles in leaves. The response of oaks to the plant-parasitic nematode was strongest during shoot flush, with a 16-fold increase in the number of differentially expressed genes as compared to root flush. Multi-layered defence mechanisms were induced at shoot flush, comprising upregulation of reactive oxygen species formation, hormone signalling (e.g. jasmonic acid synthesis), and proteins involved in the shikimate pathway. In contrast during root flush production of glycerolipids involved in signalling cascades was repressed, suggesting that P. penetrans actively suppressed host defence. With the presence of the mycorrhizal symbiont, the gene expression pattern was vice versa with a distinctly stronger effect of P. penetrans at root flush, including attenuated defence, cell and carbon metabolism, likely a response to the enhanced carbon sink strength in roots induced by the presence of both, nematode and fungus. Meanwhile at shoot flush, when nutrients are retained in aboveground tissue, oak defence reactions, such as altered photosynthesis and sugar pathways, diminished. The results highlight that gene response patterns of plants to biotic interactions, both negative (i.e. plant-parasitic nematodes) and beneficial (i.e. mycorrhiza), are largely modulated by endogenous rhythmic growth, and that such plant traits should be considered as an important driver of these relationships in future studies.
NASA Astrophysics Data System (ADS)
Wada, Y.; Luan, Y.; Fischer, G.; Sun, L.; Shi, P.
2015-12-01
Forcing with the population growth and consequently increasing food requirement, food security in sub-Saharan Africa is one of the most emergent and challenging issues. The purposes of this work are 1) what's the future food requirement and their food security status in each sub-Saharan African countries? What is the distance from current and future food security status, corresponding to the food requirement, to the targeted food security status? 2) To what extent Sub-Saharan countries could meet their present and future food requirement, and whether they have potential to improve their food insecurity status on currently cultivated land? 3) Whether or, if there have, how the pressures on land resources from meeting the food requirements? To figure those questions out, we firstly use socio-economic pathways datasets, and historical food diet pattern classification to forecast the 2010-2050 food commodity and feed calories demand per country. A new food security indicator, which considered the influences of both the food energy and quality intake, was used to evaluate the food insecurity status and the distances to different targeted statuses of the specific country. The latest Global Agro-Ecological Zones (GAEZ) databases were used to estimate the current and future crop yield gap and crop potential production. For current to future scenario analysis, we considered population growth, dietary change, climate change, agricultural input level, and target food security status. Then the balance of food requirement with the current and potential crop production was analyzed for different scenarios. Land requirements were calculated for meeting those food requirements, and the pressures on land resources are evaluated. Our works are hoping to provide scientific-based evidences for policy recommendations for local government to tackle food insecurity problems in Sub-Saharan Africa.
Towards artificial tissue models: past, present, and future of 3D bioprinting.
Arslan-Yildiz, Ahu; El Assal, Rami; Chen, Pu; Guven, Sinan; Inci, Fatih; Demirci, Utkan
2016-03-01
Regenerative medicine and tissue engineering have seen unprecedented growth in the past decade, driving the field of artificial tissue models towards a revolution in future medicine. Major progress has been achieved through the development of innovative biomanufacturing strategies to pattern and assemble cells and extracellular matrix (ECM) in three-dimensions (3D) to create functional tissue constructs. Bioprinting has emerged as a promising 3D biomanufacturing technology, enabling precise control over spatial and temporal distribution of cells and ECM. Bioprinting technology can be used to engineer artificial tissues and organs by producing scaffolds with controlled spatial heterogeneity of physical properties, cellular composition, and ECM organization. This innovative approach is increasingly utilized in biomedicine, and has potential to create artificial functional constructs for drug screening and toxicology research, as well as tissue and organ transplantation. Herein, we review the recent advances in bioprinting technologies and discuss current markets, approaches, and biomedical applications. We also present current challenges and provide future directions for bioprinting research.
ERIC Educational Resources Information Center
Phatak, Pramila; And Others
This study reports various aspects of the analyses carried out on the longitudinal data reported in a previous study (PS 007 345) for determining the general growth patterns and growth velocity of mental and motor development. Preliminary analyses focused on the selection of the growth curve, its evaluation in the 208 individual cases, and the…
Nash, Andrea; Dunn, Michael; Asztalos, Elizabeth; Corey, Mary; Mulvihill-Jory, Bridget; O'Connor, Deborah L
2011-08-01
Several Canadian professional organizations recently recommended that the growth of preterm infants be monitored using the World Health Organization Growth Standards (WHO-GS) after hospital discharge. The WHO-GS are a prescriptive set of growth charts that describe how term infants should grow under ideal environmental conditions. Whether preterm infants following this pattern of growth have better outcomes than infants that do not has yet to be evaluated. Our aim was to determine whether the pattern of growth of very low birth weight (VLBW) infants during the first 2 years, assessed using the WHO-GS or the traditional Centers for Disease Control and Prevention reference growth charts (CDC-RGC), is associated with neurodevelopment. Pattern of weight, length, and head circumference gain of appropriate-for-gestation VLBW preterm infants (n = 289) from birth to 18-24 months corrected age was classified, using the WHO-GS and CDC-RGC, as sustained (change in Z-score ≤1 SD), decelerated (decline >1 SD), or accelerated (incline >1 SD). Development was assessed using the Bayley Scales of Infant and Toddler Development (BSID)-III at 18-24 months corrected age. Using the WHO-GS, children with a decelerated pattern of weight gain had lower cognitive (10 points), language (6 points), and motor (4 points) scores than infants with sustained weight gain (p < 0.05), even after adjustment for morbidities. No association was found using the CDC-RGC. In conclusion, a decelerated pattern of weight gain, determined with the WHO-GS, but not the CDC-GRC, is associated with poorer neurodevelopment scores on the BSID-III than a pattern of sustained growth.
The current and future state of companion diagnostics
Agarwal, Amit; Ressler, Dan; Snyder, Glenn
2015-01-01
Companion diagnostics are an indispensable part of personalized medicine and will likely continue to rapidly increase in number and application to disease areas. The first companion diagnostics were launched in the 1980s and in the face of significant initial skepticism from drug developers as to whether segmenting a drug’s market through a diagnostic was advisable. The commercial success of drugs such as Herceptin® (trastuzumab) and Gleevec® (imatinib), which both require testing with companion diagnostics before they can be prescribed, has moved the entire companion diagnostic field forward. From an initial start of a handful of oncology drugs with corresponding diagnostics, the field has expanded to include multiple therapeutic areas, and the number of combinations has grown by 12-fold. Based on drugs in clinical trials, the rapid growth will likely continue for the foreseeable future. This expansion of companion diagnostics will also have a global component as markets in Europe will evolve in a similar but not identical pattern as the US. One of the greatest challenges to future growth in companion diagnostics is aligning the incentives of all stakeholders. A major driver of growth will continue to be the economic incentives for drug developers to pair their products with diagnostics. However, diagnostic companies are caught between the conflicting demands of two major stakeholders, pharmaceutical companies on one hand and payers/providers on the other. Regulators are also becoming more demanding in aligning development time lines between drugs and diagnostics. In order to survive and prosper, diagnostic companies will need to think more broadly about companion diagnostics than the historical match between a specific drug and a single diagnostic. They will also have to continue the process of consolidation and global expansion that the industry has already begun. Despite these potential obstacles, companion diagnostics have become one of the hottest areas of deal making in the diagnostic space in recent years, and the future trends continue to look bright. PMID:25897259
Evaluating growth assumptions using diameter or radial increments in natural even-aged longleaf pine
John C. Gilbert; Ralph S. Meldahl; Jyoti N. Rayamajhi; John S. Kush
2010-01-01
When using increment cores to predict future growth, one often assumes future growth is identical to past growth for individual trees. Once this assumption is accepted, a decision has to be made between which growth estimate should be used, constant diameter growth or constant basal area growth. Often, the assumption of constant diameter growth is used due to the ease...
Predicting past and future diameter growth for trees in the northeastern United States
James A. Westfall
2006-01-01
Tree diameter growth models are widely used in forestry applications, often to predict tree size at a future point in time. Also, there are instances where projections of past diameters are needed. A relative diameter growth model was developed to allow prediction of both future and past growth rates. Coefficients were estimated for 15 species groups that cover most...
Ohtsuki, Hisashi; Tsuji, Kazuki
2009-06-01
Evolutionary theories predict conflicts over sex allocation, male parentage, and reproductive allocation in hymenopteran societies. However, no theory to date has considered the evolution when a colony faces these three conflicts simultaneously. We tackled this issue by developing a dynamic game model, focusing especially on worker policing. Whereas a Nash equilibrium predicts male parentage patterns that are basically the same as those of relatedness-based worker-policing theory (queen multiple mating impedes worker reproduction), we also show the potential for worker policing under queen single mating. Worker policing will depend on the stage of colony growth that is caused by interaction with reproductive allocation conflict or a trade-off between current and future reproduction. Male production at an early stage greatly hinders the growth of the work force and undermines future inclusive fitness of colony members, leading to worker policing at the ergonomic stage. This new mechanism can explain much broader ranges of existing worker-policing behavior than that predicted from relatedness. Predictions differ in many respects from those of models assuming operation of only one or two of the three conflicts, suggesting the importance of interactions among conflicts.
Climate Simulations of Past, Present and Future
NASA Technical Reports Server (NTRS)
Hansen, James E.
1999-01-01
The forcings that drive long-term climate change are not known with an accuracy sufficient to define future climate change. Anthropogenic greenhouse gases (GHGs), which are well measured, cause a strong positive (warming) forcing. But other, poorly measured, anthropogenic forcings, especially changes of atmospheric aerosols, clouds, and land-use patterns, cause a negative forcing that tends to offset greenhouse warming. One consequence of this partial balance is that the natural forcing due to solar irradiance changes may play a larger role in long-term climate change than inferred from comparison with GHGs alone. Current trends in GHG climate forcings are smaller than in popular "business as usual" or 1% per year CO2 growth scenarios. The summary implication is a paradigm change for long-term climate projections: uncertainties in climate forcings have supplanted global climate sensitivity as the predominant issue.
Reed, Thomas E.; Daunt, Francis; Kiploks, Adam J.; Burthe, Sarah J.; Granroth-Wilding, Hanna M. V.; Takahashi, Emi A.; Newell, Mark; Wanless, Sarah; Cunningham, Emma J. A.
2012-01-01
Parasitism experienced early in ontogeny can have a major impact on host growth, development and future fitness, but whether siblings are affected equally by parasitism is poorly understood. In birds, hatching asynchrony induced by hormonal or behavioural mechanisms largely under parental control might predispose young to respond to infection in different ways. Here we show that parasites can have different consequences for offspring depending on their position in the family hierarchy. We experimentally treated European Shag (Phalacrocorax aristoteli) nestlings with the broad-spectrum anti-parasite drug ivermectin and compared their growth rates with nestlings from control broods. Average growth rates measured over the period of linear growth (10 days to 30 days of age) and survival did not differ for nestlings from treated and control broods. However, when considering individuals within broods, parasite treatment reversed the patterns of growth for individual family members: last-hatched nestlings grew significantly slower than their siblings in control nests but grew faster in treated nests. This was at the expense of their earlier-hatched brood-mates, who showed an overall growth rate reduction relative to last-hatched nestlings in treated nests. These results highlight the importance of exploring individual variation in the costs of infection and suggest that parasites could be a key factor modulating within-family dynamics, sibling competition and developmental trajectories from an early age. PMID:22384190
Landbird migration in the American West: Recent progress and future research directions
Carlisle, J.D.; Skagen, S.K.; Kus, B.E.; van Riper, Charles; Paxton, K.L.; Kelly, J.F.
2009-01-01
Our knowledge of avian behaviors during the nonbreeding period still lags behind that of the breeding season, but the last decade has witnessed a proliferation in research that has yielded significant progress in understanding migration patterns of North American birds. And, although historically the great majority of migration research has been conducted in the eastern half of the continent, there has been much recent progress on aspects of avian migration in the West. In particular, expanded use of techniques such as radar, plasma metabolites, mist-netting, count surveys, stable isotopes, genetic data, and animal tracking, coupled with an increase in multi-investigator collaborations, have all contributed to this growth of knowledge. There is increasing recognition that migration is likely the most limiting time of year for migratory birds, increasing the importance of continuing to decipher patterns of stopover ecology, identifying critical stopover habitats, and documenting migration routes in the diverse and changing landscapes of the American West. Here, we review and briefly synthesize the latest findings and advances in avian migration and consider research needs to guide future research on migration in the West. ?? 2009 by The Cooper Ornithological Society. All rights reserved.
Abrams, Elizabeth T; Miller, Elizabeth M
2011-01-01
Life history theory posits that, as long as survival is assured, finite resources are available for reproduction, maintenance, and growth/storage. To maximize lifetime reproductive success, resources are subject to trade-offs both within individuals and between current and future investment. For women, reproducing is costly and time-consuming; the bulk of available resources must be allocated to reproduction at the expense of more flexible systems like immune function. When reproducing women contract infectious diseases, the resources required for immune activation can fundamentally shift the patterns of resource allocation. Adding to the complexity of the reproductive-immune trade-offs in women are the pleiotropic effects of many immune factors, which were modified to serve key roles in mammalian reproduction. In this review, we explore the complex intersections between immune function and female reproduction to situate proximate immunological processes within a life history framework. After a brief overview of the immune system, we discuss some important physiological roles of immune factors in women's reproduction and the conflicts that may arise when these factors must play dual roles. We then discuss the influence of reproductive-immune trade-offs on the patterning of lifetime reproductive success: (1) the effect of immune activation/infectious disease on the timing of life history events; (2) the role of the immune system, immune activation, and infectious disease on resource allocation within individual reproductive events, particularly pregnancy; and (3) the role of the immune system in shaping the offspring's patterns of future life history trade-offs. We close with a discussion of future directions in reproductive immunology for anthropologists. Copyright © 2011 Wiley Periodicals, Inc.
Critical Point in Self-Organized Tissue Growth
NASA Astrophysics Data System (ADS)
Aguilar-Hidalgo, Daniel; Werner, Steffen; Wartlick, Ortrud; González-Gaitán, Marcos; Friedrich, Benjamin M.; Jülicher, Frank
2018-05-01
We present a theory of pattern formation in growing domains inspired by biological examples of tissue development. Gradients of signaling molecules regulate growth, while growth changes these graded chemical patterns by dilution and advection. We identify a critical point of this feedback dynamics, which is characterized by spatially homogeneous growth and proportional scaling of patterns with tissue length. We apply this theory to the biological model system of the developing wing of the fruit fly Drosophila melanogaster and quantitatively identify signatures of the critical point.
NASA Astrophysics Data System (ADS)
Han, B.; Benner, S. G.; Glenn, N. F.; Lindquist, E.; Dahal, K. R.; Bolte, J.; Vache, K. B.; Flores, A. N.
2014-12-01
Climate change can lead to dramatic variations in hydrologic regime, affecting both surface water and groundwater supply. This effect is most significant in populated semi-arid regions where water availability are highly sensitive to climate-induced outcomes. However, predicting water availability at regional scales, while resolving some of the key internal variability and structure in semi-arid regions is difficult due to the highly non-linearity relationship between rainfall and runoff. In this study, we describe the development of a modeling framework to evaluate future water availability that captures elements of the coupled response of the biophysical system to climate change and human systems. The framework is built under the Envision multi-agent simulation tool, characterizing the spatial patterns of water demand in the semi-arid Treasure Valley area of Southwest Idaho - a rapidly developing socio-ecological system where urban growth is displacing agricultural production. The semi-conceptual HBV model, a population growth and allocation model (Target), a vegetation state and transition model (SSTM), and a statistically based fire disturbance model (SpatialAllocator) are integrated to simulate hydrology, population and land use. Six alternative scenarios are composed by combining two climate change scenarios (RCP4.5 and RCP8.5) with three population growth and allocation scenarios (Status Quo, Managed Growth, and Unconstrained Growth). Five-year calibration and validation performances are assessed with Nash-Sutcliffe efficiency. Irrigation activities are simulated using local water rights. Results show that in all scenarios, annual mean stream flow decreases as the projected rainfall increases because the projected warmer climate also enhances water losses to evapotranspiration. Seasonal maximum stream flow tends to occur earlier than in current conditions due to the earlier peak of snow melting. The aridity index and water deficit generally increase in the irrigated area. The most sensitive area is along the Boise Foothill which is the transitioning zone from water deficit to water abundant. However, these trends vary significantly between scenarios in space and time. The outcome of the study will serve as a reference for local stakeholders to make decisions on future land use.
Nijhout, H Frederik; Cinderella, Margaret; Grunert, Laura W
2014-03-01
The wings of butterflies and moths develop from imaginal disks whose structure is always congruent with the final adult wing. It is therefore possible to map every point on the imaginal disk to a location on the adult wing throughout ontogeny. We studied the growth patterns of the wings of two distantly related species with very different adult wing shapes, Junonia coenia and Manduca sexta. The shape of the wing disks change throughout their growth phase in a species-specific pattern. We measured mitotic densities and mitotic orientation in successive stages of wing development approximately one cell division apart. Cell proliferation was spatially patterned, and the density of mitoses was highly correlated with local growth. Unlike other systems in which the direction of mitoses has been viewed as the primary determinant of directional growth, we found that in these two species the direction of growth was only weakly correlated with the orientation of mitoses. Directional growth appears to be imposed by a constantly changing spatial pattern of cell division coupled with a weak bias in the orientation of cell division. Because growth and cell division in imaginal disk require ecdysone and insulin signaling, the changing spatial pattern of cell division may due to a changing pattern of expression of receptors or downstream elements in the signaling pathways for one or both of these hormones. Evolution of wing shape comes about by changes in the progression of spatial patterns of cell division. © 2014 Wiley Periodicals, Inc.
Modelling foetal growth in a bi-ethnic sample: results from the Born in Bradford (BiB) birth cohort.
Norris, Tom; Tuffnell, Derek; Wright, John; Cameron, Noël
2014-01-01
Attempts to explain the increased risk for metabolic disorders observed in South Asians have focused on the "South Asian" phenotype at birth and subsequent post-natal growth, with little research on pre-natal growth. To identify whether divergent growth patterns exist for foetal weight, head (HC) and abdominal circumferences (AC) in a sample of Pakistani and White British foetuses. Models were based on 5553 (weight), 5154 (HC) and 5099 (AC) foetuses from the Born in Bradford birth cohort. Fractional polynomials and mixed effects models were employed to determine growth patterns from ~15 weeks of gestation-birth. Pakistani foetuses were significantly smaller and lighter as early as 20 weeks. However, there was no ethnic difference in the growth patterns of weight and HC. For AC, Pakistani foetuses displayed a trend for reduced growth in the final trimester. As the pattern of weight and HC growth was not significantly different during the period under investigation, the mechanism culminating in the reduced Pakistani size at birth may act earlier in gestation. Reduced AC growth in Pakistanis may represent reduced growth of the visceral organs, with consequences for post-natal liver metabolism and renal function.
Growth patterns and life-history strategies in Placodontia (Diapsida: Sauropterygia)
Klein, Nicole; Neenan, James M.; Scheyer, Torsten M.; Griebeler, Eva Maria
2015-01-01
Placodontia is a clade of durophagous, near shore marine reptiles from Triassic sediments of modern-day Europe, Middle East and China. Although much is known about their primary anatomy and palaeoecology, relatively little has been published regarding their life history, i.e. ageing, maturation and growth. Here, growth records derived from long bone histological data of placodont individuals are described and modelled to assess placodont growth and life-history strategies. Growth modelling methods are used to confirm traits documented in the growth record (age at onset of sexual maturity, age when asymptotic length was achieved, age at death, maximum longevity) and also to estimate undocumented traits. Based on these growth models, generalized estimates of these traits are established for each taxon. Overall differences in bone tissue types and resulting growth curves indicate different growth patterns and life-history strategies between different taxa of Placodontia. Psephoderma and Paraplacodus grew with lamellar-zonal bone tissue type and show growth patterns as seen in modern reptiles. Placodontia indet. aff. Cyamodus and some Placodontia indet. show a unique combination of fibrolamellar bone tissue regularly stratified by growth marks, a pattern absent in modern sauropsids. The bone tissue type of Placodontia indet. aff. Cyamodus and Placodontia indet. indicates a significantly increased basal metabolic rate when compared with modern reptiles. Double lines of arrested growth, non-annual rest lines in annuli, and subcycles that stratify zones suggest high dependence of placodont growth on endogenous and exogenous factors. Histological and modelled differences within taxa point to high individual developmental plasticity but sexual dimorphism in growth patterns and the presence of different taxa in the sample cannot be ruled out. PMID:26587259
The Power of the Rhythm of Tree Stems
NASA Astrophysics Data System (ADS)
Steppe, K.
2015-12-01
On annual and monthly scales, a remarkable close relationship has been shown between net ecosystem productivity (NEP) measured by eddy covariance and stem diameter variations (SDV) measured with automated point dendrometers in a Swiss subalpine Norway spruce forest (Zweifel et al. 2010). Causality for the close NEP-SDV relationship is poorly understood, but radial stem growth has been suggested to play a crucial role. Despite its huge ecological implications, and being 'hot' in anatomical, ecophysiologial, and ecological disciplines, radial stem growth in trees remains poorly understood (Steppe et al. 2015). While high-resolution SDV mirror a source of tree physiological information, unambiguous interpretation of dendrometer readings is more complicated than it appears at first sight, with a great potential still waiting to be discovered (De Swaef et al. 2015, Zweifel 2015). Also an integrative framework to assess impacts of climate on stem growth is still lacking, although such a theory is very much needed to predict annual tree growth patterns as well as future production and carbon sequestration potential of forests (Steppe et al. 2015). In this keynote lecture, I will present the major fluxes and pools of water and carbon inside a stem segment of a tree. I will examine diel dynamics in radial stem growth from underlying water and carbon mechanisms under wet and dry conditions, distinguishing between known patterns and processes, and more speculative ones. Discussions will be based on observations in the different research disciplines, but also result from mechanistic plant models aiming at integration. Based on this, I will show missing pieces that might be critical to build an integrative theory to understand causes and consequences of tree stem growth. Addressing these key-missing pieces of information may help improving quantification of terrestrial ecosystem carbon uptake and storage. ReferencesDe Swaef et al. (2015) Tree Physiology (in press). Steppe et al. (2015) Trends in Plant Science 20: 335-343. Zweifel et al. (2010) New Phytologist 187: 819-830. Zweifel (2015) Plant, Cell & Environment (in press).
Göritz, M; Müller, K; Krastel, D; Staudacher, G; Schmidt, P; Kühn, M; Nickel, R; Schoon, H-A
2013-07-01
Splenic haemangiosarcomas (HSAs) from 122 dogs were characterized and classified according to their patterns of growth, survival time post splenectomy, metastases and chemotherapy. The most common pattern of growth was a mixture of cavernous, capillary and solid tumour tissue. Survival time post splenectomy was independent of the growth pattern; however, it was influenced by chemotherapy and metastases. Immunohistochemical assessment of the expression of angiogenic factors (fetal liver kinase-1, angiopoietin-2, angiopoietin receptor-2 and vascular endothelial growth factor A) and conventional endothelial markers (CD31, factor VIII-related antigen) revealed variable expression, particularly in undifferentiated HSAs. Therefore, a combination of endothelial markers should be used to confirm the endothelial origin of splenic tumours. Copyright © 2012 Elsevier Ltd. All rights reserved.
A Multi-Level Approach to Modeling Rapidly Growing Mega-Regions as a Coupled Human-Natural System
NASA Astrophysics Data System (ADS)
Koch, J. A.; Tang, W.; Meentemeyer, R. K.
2013-12-01
The FUTure Urban-Regional Environment Simulation (FUTURES) integrates information on nonstationary drivers of land change (per capita land area demand, site suitability, and spatial structure of conversion events) into spatial-temporal projections of changes in landscape patterns (Meentemeyer et al., 2013). One striking feature of FUTURES is its patch-growth algorithm that includes feedback effects of former development events across several temporal and spatial scales: cell-level transition events are aggregated into patches of land change and their further growth is based on empirically derived parameters controlling its size, shape, and dispersion. Here, we augment the FUTURES modeling framework by expanding its multilevel structure and its representation of human decision making. The new modeling framework is hierarchically organized as nested subsystems including the latest theory on telecouplings in coupled human-natural systems (Liu et al., 2013). Each subsystem represents a specific level of spatial scale and embraces agents that have decision making authority at a particular level. The subsystems are characterized with regard to their spatial representation and are connected via flows of information (e.g. regulations and policies) or material (e.g. population migration). To provide a modeling framework that is applicable to a wide range of settings and geographical regions and to keep it computationally manageable, we implement a 'zooming factor' that allows to enable or disable subsystems (and hence the represented processes), based on the extent of the study region. The implementation of the FUTURES modeling framework for a specific case study follows the observational modeling approach described in Grimm et al. (2005), starting from the analysis of empirical data in order to capture the processes relevant for specific scales and to allow a rigorous calibration and validation of the model application. In this paper, we give an introduction to the basic concept of our modeling approach and describe its strengths and weaknesses. We furthermore use empirical data for the states of North and South Carolina to demonstrate how the modeling framework can be applied to a large, heterogeneous study system with diverse decision-making agents. Grimm et al. (2005) Pattern-Oriented Modeling of Agent-Based Complex Systems: Lessons from Ecology. Science 310, 987-991. Liu et al. (2013) Framing Sustainability in a Telecoupled World. Ecology and Society 18(2), 26. Meentemeyer et al. (2013) FUTURES: Multilevel Simulations of Merging Urban-Rural Landscape Structure Using a Stochastic Patch-Growing Algorithm. Annals of the Association of American Geographers 103(4), 785-807.
NASA Astrophysics Data System (ADS)
Lagzi, István; Ueyama, Daishin
2009-01-01
The pattern transition between periodic precipitation pattern formation (Liesegang phenomenon) and pure crystal growth regimes is investigated in silver nitrate and potassium dichromate system in mixed agarose-gelatin gel. Morphologically different patterns were found depending on the quality of the gel, and transition between these typical patterns can be controlled by the concentration of gelatin in mixed gel. Effect of temperature and hydrodynamic force on precipitation pattern structure was also investigated.
Turner Tomaszewicz, Calandra N.; Seminoff, Jeffrey A.; Peckham, S. Hoyt; Avens, Larisa; Kurle, Carolyn M.
2016-01-01
Summary Determining location and timing of ontogenetic shifts in the habitat use of highly migratory species, along with possible intrapopulation variation in these shifts, is essential for understanding mechanisms driving alternate life histories and assessing overall population trends. Measuring variations in multi-year habitat use patterns is especially difficult for remote oceanic species.To investigate the potential for differential habitat use among migratory marine vertebrates, we measured the naturally occurring stable nitrogen isotope (δ15N) patterns that differentiate distinct ocean regions to create a “regional isotope characterization”, analyzed the δ15N values from annual bone growth layer rings from dead-stranded animals, then combined the bone and regional isotope data to track individual animal movement patterns over multiple years.We used humeri from juvenile North Pacific loggerhead turtles (Caretta caretta), animals that undergo long migrations across the North Pacific Ocean (NPO), using multiple discrete regions as they develop to adulthood. Typical of many migratory marine species, ontogenetic changes in habitat use throughout their decades-long juvenile stage is poorly understood, but each potential habitat has unique foraging opportunities and spatially explicit natural and anthropogenic threats that could affect key life history parameters.We found a bimodal size/age distribution in the timing that juveniles underwent an ontogenetic habitat shift from the oceanic central North Pacific (CNP) to the neritic east Pacific region near the Baja California Peninsula (BCP) (42.7±7.2 vs. 68.3±3.4 cm carapace length, 7.5±2.7 vs. 15.6±1.7 years). Important to the survival of this population, these disparate habitats differ considerably in their food availability, energy requirements, and threats, and these differences can influence life history parameters such as growth, survival, and future fecundity. This is the first evidence of alternative ontogenetic shifts and habitat use patterns for juveniles foraging in the eastern NPO.We combine two techniques, skeletochronology and stable isotope analysis, to reconstruct multi-year habitat use patterns of a remote migratory species, linked to estimated ages and body sizes of individuals, to reveal variable ontogeny during the juvenile life stage that could drive alternate life histories and that has the potential to illuminate the migration patterns for other species with accretionary tissues. PMID:28075017
Amălinei, Cornelia; Aignătoaei, Anda Maria; Balan, Raluca Anca; Giuşcă, Simona Eliza; Lozneanu, Ludmila; Avădănei, Elena Roxana; Căruntu, Irina Draga
2018-01-01
Endometrioid endometrial carcinoma has an overall good prognosis. However, variable five-year survival rates (92%-42%) have been reported in FIGO stage I, suggesting the involvement of other factors related to tumor biological behavior. These may be related to the role played by epithelial-mesenchymal transition (EMT) and cancer stem cells in endometrial carcinogenesis. In this context, our review highlights the prognostic significance of several types of myoinvasion in low grade, low stage endometrioid endometrial carcinoma, as a reflection of these molecular changes at the invasive front. According to recently introduced myoinvasive patterns, the diffusely infiltrating and microcystic, elongated, and fragmented (MELF) patterns show loss of hormone receptors, along with EMT and high expression of cancer stem cell markers, being associated with a poor prognosis. Additionally, MELF pattern exhibits a high incidence of lymphovascular invasion and lymph node metastases. Conversely, the broad front pattern has a good prognosis and a low expression of EMT and stem cells markers. Similarly, the adenomyosis (AM)-like and adenoma malignum patterns of invasion are associated to a favorable prognosis, but nevertheless, they raise diagnostic challenges. AM-like pattern must be differentiated from carcinoma invasion of AM foci, while adenoma malignum pattern creates difficulties in appreciating the depth of myoinvasion and requires differential diagnosis with other conditions. Another pattern expecting its validation and prognostic significance value is the nodular fasciitis-like stroma and large cystic growth pattern. In practice, the knowledge of these patterns of myoinvasion may be valuable for the correct assessment of stage, may improve prognosis evaluation and may help identify molecules for future targeted therapies.
Phototropic growth control of nanoscale pattern formation in photoelectrodeposited Se–Te films
Sadtler, Bryce; Burgos, Stanley P.; Batara, Nicolas A.; Beardslee, Joseph A.; Atwater, Harry A.; Lewis, Nathan S.
2013-01-01
Photoresponsive materials that adapt their morphologies, growth directions, and growth rates dynamically in response to the local incident electromagnetic field would provide a remarkable route to the synthesis of complex 3D mesostructures via feedback between illumination and the structure that develops under optical excitation. We report the spontaneous development of ordered, nanoscale lamellar patterns in electrodeposited selenium–tellurium (Se–Te) alloy films grown under noncoherent, uniform illumination on unpatterned substrates in an isotropic electrolyte solution. These inorganic nanostructures exhibited phototropic growth in which lamellar stripes grew toward the incident light source, adopted an orientation parallel to the light polarization direction with a period controlled by the illumination wavelength, and showed an increased growth rate with increasing light intensity. Furthermore, the patterns responded dynamically to changes during growth in the polarization, wavelength, and angle of the incident light, enabling the template-free and pattern-free synthesis, on a variety of substrates, of woodpile, spiral, branched, or zigzag structures, along with dynamically directed growth toward a noncoherent, uniform intensity light source. Full-wave electromagnetic simulations in combination with Monte Carlo growth simulations were used to model light–matter interactions in the Se–Te films and produced a model for the morphological evolution of the lamellar structures under phototropic growth conditions. The experiments and simulations are consistent with a phototropic growth mechanism in which the optical near-field intensity profile selects and reinforces the dominant morphological mode in the emergent nanoscale patterns. PMID:24218617
Phototropic growth control of nanoscale pattern formation in photoelectrodeposited Se-Te films.
Sadtler, Bryce; Burgos, Stanley P; Batara, Nicolas A; Beardslee, Joseph A; Atwater, Harry A; Lewis, Nathan S
2013-12-03
Photoresponsive materials that adapt their morphologies, growth directions, and growth rates dynamically in response to the local incident electromagnetic field would provide a remarkable route to the synthesis of complex 3D mesostructures via feedback between illumination and the structure that develops under optical excitation. We report the spontaneous development of ordered, nanoscale lamellar patterns in electrodeposited selenium-tellurium (Se-Te) alloy films grown under noncoherent, uniform illumination on unpatterned substrates in an isotropic electrolyte solution. These inorganic nanostructures exhibited phototropic growth in which lamellar stripes grew toward the incident light source, adopted an orientation parallel to the light polarization direction with a period controlled by the illumination wavelength, and showed an increased growth rate with increasing light intensity. Furthermore, the patterns responded dynamically to changes during growth in the polarization, wavelength, and angle of the incident light, enabling the template-free and pattern-free synthesis, on a variety of substrates, of woodpile, spiral, branched, or zigzag structures, along with dynamically directed growth toward a noncoherent, uniform intensity light source. Full-wave electromagnetic simulations in combination with Monte Carlo growth simulations were used to model light-matter interactions in the Se-Te films and produced a model for the morphological evolution of the lamellar structures under phototropic growth conditions. The experiments and simulations are consistent with a phototropic growth mechanism in which the optical near-field intensity profile selects and reinforces the dominant morphological mode in the emergent nanoscale patterns.
Ripple/Carcinoid pattern sebaceoma with apocrine differentiation.
Misago, Noriyuki; Narisawa, Yutaka
2011-02-01
Sebaceoma is a benign sebaceous neoplasm, which has been reported to show characteristic growth patterns, such as, ripple, labyrinthine/sinusoidal, and carcinoid-like patterns. Another recent finding regarding in sebaceoma is the observation of apocrine differentiation within the sebaceoma lesion. This report describes a case of carcinoid (a partial ripple and labyrinthine) pattern sebaceoma with apocrine differentiation with a literature review and immunohistochemical studies. The various characteristic growth patterns in sebaceoma were suggested to simply be variations of the same growth pattern arranged in cords, namely, a unified term "ripple/carcinoid pattern." The primitive sebaceous germinative cells in sebaceoma may still have the ability to undergo apocrine differentiation. Most of the reports so far on sebaceoma with apocrine differentiation, including the present case, describe a ripple/carcinoid pattern, thus suggesting that ripple/carcinoid pattern sebaceoma is composed of more primitive sebaceous germinative cells than conventional sebaceoma.
Elsner, Joanna; Lipowczan, Marcin; Kwiatkowska, Dorota
2018-02-01
In numerous vascular plants, pavement cells of the leaf epidermis are shaped like a jigsaw-puzzle piece. Knowledge about the subcellular pattern of growth that accompanies morphogenesis of such a complex shape is crucial for studies of the role of the cytoskeleton, cell wall and phytohormones in plant cell development. Because the detailed growth pattern of the anticlinal and periclinal cell walls remains unknown, our aim was to measure pavement cell growth at a subcellular resolution. Using fluorescent microbeads applied to the surface of the adaxial leaf epidermis of Arabidopsis thaliana as landmarks for growth computation, we directly assessed the growth rates for the outer periclinal and anticlinal cell walls at a subcellular scale. We observed complementary tendencies in the growth pattern of the outer periclinal and anticlinal cell walls. Central portions of periclinal walls were characterized by relatively slow growth, while growth of the other wall portions was heterogeneous. Local growth of the periclinal walls accompanying lobe development after initiation was relatively fast and anisotropic, with maximal extension usually in the direction along the lobe axis. This growth pattern of the periclinal walls was complemented by the extension of the anticlinal walls, which was faster on the lobe sides than at the tips. Growth of the anticlinal and outer periclinal walls of leaf pavement cells is heterogeneous. The growth of the lobes resembles cell elongation via diffuse growth rather than tip growth. © 2018 Botanical Society of America.
Critical aspects of substrate nanopatterning for the ordered growth of GaN nanocolumns.
Barbagini, Francesca; Bengoechea-Encabo, Ana; Albert, Steven; Martinez, Javier; Sanchez García, Miguel Angel; Trampert, Achim; Calleja, Enrique
2011-12-14
Precise and reproducible surface nanopatterning is the key for a successful ordered growth of GaN nanocolumns. In this work, we point out the main technological issues related to the patterning process, mainly surface roughness and cleaning, and mask adhesion to the substrate. We found that each of these factors, process-related, has a dramatic impact on the subsequent selective growth of the columns inside the patterned holes. We compare the performance of e-beam lithography, colloidal lithography, and focused ion beam in the fabrication of hole-patterned masks for ordered columnar growth. These results are applicable to the ordered growth of nanocolumns of different materials.
Generation of shape complexity through tissue conflict resolution
Rebocho, Alexandra B; Southam, Paul; Kennaway, J Richard; Coen, Enrico
2017-01-01
Out-of-plane tissue deformations are key morphogenetic events during plant and animal development that generate 3D shapes, such as flowers or limbs. However, the mechanisms by which spatiotemporal patterns of gene expression modify cellular behaviours to generate such deformations remain to be established. We use the Snapdragon flower as a model system to address this problem. Combining cellular analysis with tissue-level modelling, we show that an orthogonal pattern of growth orientations plays a key role in generating out-of-plane deformations. This growth pattern is most likely oriented by a polarity field, highlighted by PIN1 protein localisation, and is modulated by dorsoventral gene activity. The orthogonal growth pattern interacts with other patterns of differential growth to create tissue conflicts that shape the flower. Similar shape changes can be generated by contraction as well as growth, suggesting tissue conflict resolution provides a flexible morphogenetic mechanism for generating shape diversity in plants and animals. DOI: http://dx.doi.org/10.7554/eLife.20156.001 PMID:28166865
Network patterns in exponentially growing two-dimensional biofilms
NASA Astrophysics Data System (ADS)
Zachreson, Cameron; Yap, Xinhui; Gloag, Erin S.; Shimoni, Raz; Whitchurch, Cynthia B.; Toth, Milos
2017-10-01
Anisotropic collective patterns occur frequently in the morphogenesis of two-dimensional biofilms. These patterns are often attributed to growth regulation mechanisms and differentiation based on gradients of diffusing nutrients and signaling molecules. Here, we employ a model of bacterial growth dynamics to show that even in the absence of growth regulation or differentiation, confinement by an enclosing medium such as agar can itself lead to stable pattern formation over time scales that are employed in experiments. The underlying mechanism relies on path formation through physical deformation of the enclosing environment.
The Isothermal Dendritic Growth Experiment Archive
NASA Astrophysics Data System (ADS)
Koss, Matthew
2009-03-01
The growth of dendrites is governed by the interplay between two simple and familiar processes---the irreversible diffusion of energy, and the reversible work done in the formation of new surface area. To advance our understanding of these processes, NASA sponsored a project that flew on the Space Shuttle Columbia is 1994, 1996, and 1997 to record and analyze benchmark data in an apparent-microgravity ``laboratory.'' In this laboratory, energy transfer by gravity driven convection was essentially eliminated and one could test independently, for the first time, both components of dendritic growth theory. The analysis of this data shows that although the diffusion of energy can be properly accounted for, the results from interfacial physics appear to be in disagreement and alternate models should receive increased attention. Unfortunately, currently and for the foreseeable future, there is no access or financial support to develop and conduct additional experiments of this type. However, the benchmark data of 35mm photonegatives, video, and all supporting instrument data are now available at the IDGE Archive at the College of the Holy Cross. This data may still have considerable relevance to researchers working specifically with dendritic growth, and more generally those working in the synthesis, growth & processing of materials, multiscale computational modeling, pattern formation, and systems far from equilibrium.
The relationship between population ageing and the economic growth in Asia
NASA Astrophysics Data System (ADS)
Brendan, Lo Rick; Sek, Siok Kun
2017-08-01
Asia has witnessed robust economic growth since the 1960s. Today, emerging markets in Asia have managed to maintain rapid growth even when the world's main economies suffer from debt and banking crises. However, declining total fertility rate, increasing life expectancy, continuous change of birth and death patterns, and increasing share of old age population in the age distribution in Asia exert significant pressure on its economies. This paper analyses the relationship between population ageing and economic growth using 2 different panels of countries; one Asian and another the from the oldest countries worldwide between 1970 and 2014. The analysis is based on the Auto Regression Distributed Lag models. The MG (Mean Group) and PMG (Pooled Mean Group) estimations are applied in this analysis. The Hausman Test is conducted to decide between the MG and PMG estimators. We find that ageing will negatively affect the economy in the long run. The growing number of youths will initially have a negative effect on the economy but would eventually lead to a positive growth in the future. The old age dependency ratio has yet to have affect the Asian economy but is expected eventually to impose a negative effect as seen in the oldest nations of the world.
Padilla-Gamiño, Jacqueline L.; Kelly, Morgan W.; Evans, Tyler G.; Hofmann, Gretchen E.
2013-01-01
Ocean warming and ocean acidification, both consequences of anthropogenic production of CO2, will combine to influence the physiological performance of many species in the marine environment. In this study, we used an integrative approach to forecast the impact of future ocean conditions on larval purple sea urchins (Strongylocentrotus purpuratus) from the northeast Pacific Ocean. In laboratory experiments that simulated ocean warming and ocean acidification, we examined larval development, skeletal growth, metabolism and patterns of gene expression using an orthogonal comparison of two temperature (13°C and 18°C) and pCO2 (400 and 1100 μatm) conditions. Simultaneous exposure to increased temperature and pCO2 significantly reduced larval metabolism and triggered a widespread downregulation of histone encoding genes. pCO2 but not temperature impaired skeletal growth and reduced the expression of a major spicule matrix protein, suggesting that skeletal growth will not be further inhibited by ocean warming. Importantly, shifts in skeletal growth were not associated with developmental delay. Collectively, our results indicate that global change variables will have additive effects that exceed thresholds for optimized physiological performance in this keystone marine species. PMID:23536595
Ultra-high aggregate bandwidth two-dimensional multiple-wavelength diode laser arrays
NASA Astrophysics Data System (ADS)
Chang-Hasnain, Connie
1993-12-01
Two-dimensional (2D) multi-wavelength vertical cavity surface emitting laser (VCSEL) arrays is promising for ultrahigh aggregate capacity optical networks. A 2D VCSEL array emitting 140 distinct wavelengths was reported by implementing a spatially graded layer in the VCSEL structure, which in turn creates a wavelength spread. Concentrtion was on epitaxial growth techniques to make reproducible and repeatable multi-wavelength VCSEL arrays. Our approach to fabricate the spatially graded layer involves creating a nonuniform substrate surface temperature across the wafer during the growth of the cavity spacer region using the fact that the molecular beam epitaxy growth of GaAs is highly sensitive to the substrate temperature. Growth is investigated with the use of a patterned spacer (either a Ga or Si substrate) placed in-between the substrate and its heater. The temperature distribution on such wafers is used to guide our experiments. A reflectivity measurement apparatus that is capable of mapping a 2 in. wafer with a 100 microns diameter resolution was built for diagnosing our wafers. In this first six-month report, our calculations, the various experimental results, and a discussion on future directions are presented.
Topography alters tree growth–climate relationships in a semi-arid forested catchment
Adams, Hallie R.; Barnard, Holly R.; Loomis, Alexander K.
2014-11-26
Topography and climate play an integral role in the spatial variability and annual dynamics of aboveground carbon sequestration. Despite knowledge of vegetation–climate–topography relationships on the landscape and hillslope scales, little is known about the influence of complex terrain coupled with hydrologic and topoclimatic variation on tree growth and physiology at the catchment scale. Climate change predictions for the semi-arid, western United States include increased temperatures, more frequent and extreme drought events, and decreases in snowpack, all of which put forests at risk of drought induced mortality and enhanced susceptibility to disturbance events. In this study, we determine how species-specific treemore » growth patterns and water use efficiency respond to interannual climate variability and how this response varies with topographic position. We found that Pinus contorta and Pinus ponderosa both show significant decreases in growth with water-limiting climate conditions, but complex terrain mediates this response by controlling moisture conditions in variable topoclimates. Foliar carbon isotope analyses show increased water use efficiency during drought for Pinus contorta, but indicate no significant difference in water use efficiency of Pinus ponderosa between a drought year and a non-drought year. The responses of the two pine species to climate indicate that semi-arid forests are especially susceptible to changes and risks posed by climate change and that topographic variability will likely play a significant role in determining the future vegetation patterns of semi-arid systems.« less
Tellier, Liane E; Miller, Tobias; McDevitt, Todd C; Temenoff, Johnna S
2015-10-28
Glycosaminoglycans (GAGs) such as heparin are promising materials for growth factor delivery due to their ability to efficiently bind positively charged growth factors including bone morphogenetic protein-2 (BMP-2) through their negatively charged sulfate groups. Therefore, the goal of this study was to examine BMP-2 release from heparin-based microparticles (MPs) after first, incorporating a hydrolytically degradable crosslinker and varying heparin content within MPs to alter MP degradation and second, altering the sulfation pattern of heparin within MPs to vary BMP-2 binding and release. Using varied MP formulations, it was found that the time course of MP degradation for 1 wt% heparin MPs was ~4 days slower than 10 wt% heparin MPs, indicating that MP degradation was dependent on heparin content. After incubating 100 ng BMP-2 with 0.1 mg MPs, most MP formulations loaded BMP-2 with ~50% efficiency and significantly more BMP-2 release (60% of loaded BMP-2) was observed from more sulfated heparin MPs (MPs with ~100% and 80% of native sulfation). Similarly, BMP-2 bioactivity in more sulfated heparin MP groups was at least four-fold higher than soluble BMP-2 and less sulfated heparin MP groups, as determined by an established C2C12 cell alkaline phosphatase (ALP) assay. Ultimately, the two most sulfated 10 wt% heparin MP formulations were able to efficiently load and release BMP-2 while enhancing BMP-2 bioactivity, making them promising candidates for future growth factor delivery applications.
Ontogeny of floral organs in flax (Linum usitatissimum; Linaceae).
Schewe, Lauren C; Sawhney, Vipen K; Davis, Arthur R
2011-07-01
Flax (Linum usitatissimum) is an important crop worldwide; however, a detailed study on flower development of this species is lacking. Here we describe the pattern of initiation and a program of key developmental events in flax flower ontogeny. This study provides important fundamental information for future research in various aspects of flax biology and biotechnology. Floral buds and organs were measured throughout development and examined using scanning electron microscopy. Floral organs were initiated in the following sequence: sepals, stamens and petals, gynoecium, and nectaries. The five sepals originated in a helical pattern, followed evidently by simultaneous initiation of five stamens and five petals, the former opposite of the sepals and the latter alternate to them. The gynoecium, with five carpels, was produced from the remaining, central region of the floral apex. Stamens at early stages were dominated by anther growth but filaments elongated rapidly shortly before anthesis. Early gynoecium development occurred predominantly in the ovary, and ovule initiation began prior to enclosure of carpels. A characteristic feature was the twisted growth of styles, accompanied by the differentiation of papillate stigmas. Petal growth lagged behind that of other floral organs, but petals eventually grew rapidly to enclose the inner whorls after style elongation. Flask-shaped nectaries bearing stomata developed on the external surface of the filament bases. This is the first detailed study on flax floral organ development and has established a key of 12 developmental stages, which should be useful to flax researchers.
SABRE is required for stabilization of root hair patterning in Arabidopsis thaliana.
Pietra, Stefano; Lang, Patricia; Grebe, Markus
2015-03-01
Patterned differentiation of distinct cell types is essential for the development of multicellular organisms. The root epidermis of Arabidopsis thaliana is composed of alternating files of root hair and non-hair cells and represents a model system for studying the control of cell-fate acquisition. Epidermal cell fate is regulated by a network of genes that translate positional information from the underlying cortical cell layer into a specific pattern of differentiated cells. While much is known about the genes of this network, new players continue to be discovered. Here we show that the SABRE (SAB) gene, known to mediate microtubule organization, anisotropic cell growth and planar polarity, has an effect on root epidermal hair cell patterning. Loss of SAB function results in ectopic root hair formation and destabilizes the expression of cell fate and differentiation markers in the root epidermis, including expression of the WEREWOLF (WER) and GLABRA2 (GL2) genes. Double mutant analysis reveal that wer and caprice (cpc) mutants, defective in core components of the epidermal patterning pathway, genetically interact with sab. This suggests that SAB may act on epidermal patterning upstream of WER and CPC. Hence, we provide evidence for a role of SAB in root epidermal patterning by affecting cell-fate stabilization. Our work opens the door for future studies addressing SAB-dependent functions of the cytoskeleton during root epidermal patterning. © 2014 The Authors. Physiologia Plantarum published by John Wiley & Sons Ltd on behalf of Scandinavian Plant Physiology Society.
Fry, Danny L; Stephens, Scott L; Collins, Brandon M; North, Malcolm P; Franco-Vizcaíno, Ernesto; Gill, Samantha J
2014-01-01
In Mediterranean environments in western North America, historic fire regimes in frequent-fire conifer forests are highly variable both temporally and spatially. This complexity influenced forest structure and spatial patterns, but some of this diversity has been lost due to anthropogenic disruption of ecosystem processes, including fire. Information from reference forest sites can help management efforts to restore forests conditions that may be more resilient to future changes in disturbance regimes and climate. In this study, we characterize tree spatial patterns using four-ha stem maps from four old-growth, Jeffrey pine-mixed conifer forests, two with active-fire regimes in northwestern Mexico and two that experienced fire exclusion in the southern Sierra Nevada. Most of the trees were in patches, averaging six to 11 trees per patch at 0.007 to 0.014 ha(-1), and occupied 27-46% of the study areas. Average canopy gap sizes (0.04 ha) covering 11-20% of the area were not significantly different among sites. The putative main effects of fire exclusion were higher densities of single trees in smaller size classes, larger proportion of trees (≥ 56%) in large patches (≥ 10 trees), and decreases in spatial complexity. While a homogenization of forest structure has been a typical result from fire exclusion, some similarities in patch, single tree, and gap attributes were maintained at these sites. These within-stand descriptions provide spatially relevant benchmarks from which to manage for structural heterogeneity in frequent-fire forest types.
Potential effects of elevated atmospheric carbon dioxide (CO2) on coastal wetlands
McKee, Karen
2006-01-01
Carbon dioxide (CO2) concentration in the atmosphere has steadily increased from 280 parts per million (ppm) in preindustrial times to 381 ppm today and is predicted by some models to double within the next century. Some of the important pathways whereby changes in atmospheric CO2 may impact coastal wetlands include changes in temperature, rainfall, and hurricane intensity (fig. 1). Increases in CO2 can contribute to global warming, which may (1) accelerate sea-level rise through melting of polar ice fields and steric expansion of oceans, (2) alter rainfall patterns and salinity regimes, and (3) change the intensity and frequency of tropical storms and hurricanes. Sea-level rise combined with changes in storm activity may affect erosion and sedimentation rates and patterns in coastal wetlands and maintenance of soil elevations.Feedback loops between plant growth and hydroedaphic conditions also contribute to maintenance of marsh elevations through accumulation of organic matter. Although increasing CO2 concentration may contribute to global warming and climate changes, it may also have a direct impact on plant growth and development by stimulating photosynthesis or improving water use efficiency. Scientists with the U.S. Geological Survey are examining responses of wetland plants to elevated CO2 concentration and other factors. This research will lead to a better understanding of future changes in marsh species composition, successional rates and patterns, ecological functioning, and vulnerability to sea-level rise and other global change factors.
Turan, Serap; Ozdemir, Nihal; Güran, Tülay; Akalın, Figen; Akçay, Teoman; Ayabakan, Canan; Yılmaz, Yüksel; Bereket, Abdullah
2008-01-01
We report two patients with velo-cardio-facial syndrome (VCFS) who were admitted to our pediatric endocrinology clinic because of short stature and followed longitudinally until attainment of final height. Both patients followed a growth pattern consistent with constitutional delay of puberty with normal and near normal final height. Case 2 also had partial growth hormone (GH) deficiency and severe short stature (height SDS -3.4 SDS), but showed spontaneous catch-up and ended up with a final height of -2 SDS. These cases suggest that short stature in children with VCFS is due to a pattern of growth similar to that observed in constitutional delay of growth and puberty.
Promising therapies for treating and/or preventing androgenic alopecia.
McElwee, K J; Shapiro, J S
2012-06-01
Androgenetic alopecia (AGA) may affect up to 70% of men and 40% of women at some point in their lifetime. While men typically present with a distinctive alopecia pattern involving hairline recession and vertex balding, women normally exhibit a diffuse hair thinning over the top of their scalps. The treatment standard in dermatology clinics continues to be minoxidil and finasteride with hair transplantation as a surgical option. Here we briefly review current therapeutic options and treatments under active investigation. Dutasteride and ketoconazole are also employed for AGA, while prostaglandin analogues latanoprost and bimatoprost are being investigated for their hair growth promoting potential. Laser treatment products available for home use and from cosmetic clinics are becoming popular. In the future, new cell mediated treatment approaches may be available for AGA. While there are a number of potential treatment options, good clinical trial data proving hair growth efficacy is limited.
Examples of Level Products Possible from Existing Assets
NASA Technical Reports Server (NTRS)
Quattrochi, Dale A.
2012-01-01
How do patterns of human environmental and infectious diseases respond to leading environmental changes, particularly to urban growth and change and the associated impacts of urbanization? We use HyspIRI high spatial resolution, multispectral, and multitemporal TIR data to track energy balance and energy flux characteristics for changing land covers/land uses through time to provide synoptic views of impacts on surface energy fluxes, emissivity and temperature and HyspIRI data in conjunction with spatial growth models to project land cover/land use changes in the future to assess impacts on natural and human ecosystems. We use multispectral thermal IR land cover maps at a high spatial resolution (60m) on a weekly basis for long-term validation of surface energy responses and changes in emissivity and integration of HyspIRI TIR data with spatial modeling to assess changes in land cover/land use through time and subsequent changes in thermal energy responses
Recent patterns of crop yield growth and stagnation.
Ray, Deepak K; Ramankutty, Navin; Mueller, Nathaniel D; West, Paul C; Foley, Jonathan A
2012-01-01
In the coming decades, continued population growth, rising meat and dairy consumption and expanding biofuel use will dramatically increase the pressure on global agriculture. Even as we face these future burdens, there have been scattered reports of yield stagnation in the world's major cereal crops, including maize, rice and wheat. Here we study data from ∼2.5 million census observations across the globe extending over the period 1961-2008. We examined the trends in crop yields for four key global crops: maize, rice, wheat and soybeans. Although yields continue to increase in many areas, we find that across 24-39% of maize-, rice-, wheat- and soybean-growing areas, yields either never improve, stagnate or collapse. This result underscores the challenge of meeting increasing global agricultural demands. New investments in underperforming regions, as well as strategies to continue increasing yields in the high-performing areas, are required.
Tumilowicz, Alison; Habicht, Jean-Pierre; Pelto, Gretel; Pelletier, David L
2015-11-01
Nearly one-half of Guatemalan children experience growth faltering, more so in indigenous than in nonindigenous children. On the basis of ethnographic interviews in Totonicapán, Guatemala, which revealed differences in maternal perceptions about food needs in infant girls and boys, we predicted a cumulative sex difference in favor of girls that occurred at ∼6 mo of age and diminished markedly thereafter. We examined whether the predicted differences in age-sex patterns were observed in the village, replicated the examination nationally for indigenous children, and examined whether the pattern in nonindigenous children was different. Ethnographic interviews (n = 24) in an indigenous village were conducted. Anthropometric measurements of the village children aged 0-35 mo (n = 119) were obtained. National-level growth patterns were analyzed for indigenous (n = 969) and nonindigenous (n = 1374) children aged 0-35 mo with the use of Demographic and Health Survey (DHS) data. Mothers reported that, compared with female infants, male infants were hungrier, were not as satisfied with breastfeeding alone, and required earlier complementary feeding. An anthropometric analysis confirmed the prediction of healthier growth in indigenous girls than in indigenous boys throughout the first year of life, which resulted in a 2.98-cm height-for-age difference (HAD) between sexes in the village and a 1.61-cm HAD (P < 0.001) in the DHS data between 6 and 17 mo of age in favor of girls. In both data sets, the growth sex differences diminished in the second year of life (P < 0.05). No such pattern was seen in nonindigenous children. We propose that the differences in the HAD that first favor girls and then favor boys in the indigenous growth patterns are due to feeding patterns on the basis of gendered cultural perceptions. Circumstances that result in differential sex growth patterns need to be elucidated, in particular the favorable growth in girls in the first year of life. © 2015 American Society for Nutrition.
Patankar, Rajit; Mortazavi, Behzad; Oberbauer, Steven F; Starr, Gregory
2013-02-01
Arctic tundra plant communities are subject to a short growing season that is the primary period in which carbon is sequestered for growth and survival. This period is often characterized by 24-h photoperiods for several months a year. To compensate for the short growing season tundra plants may extend their carbon uptake capacity on a diurnal basis, but whether this is true remains unknown. Here, we examined in situ diurnal patterns of physiological activity and foliar metabolites during the early, mid, and late growing season in seven arctic species under light-saturated conditions. We found clear diurnal patterns in photosynthesis and respiration, with midday peaks and midnight lulls indicative of circadian regulation. Diurnal patterns in foliar metabolite concentrations were less distinct between the species and across seasons, suggesting that metabolic pools are likely governed by proximate external factors. This understanding of diurnal physiology will also enhance the parameterization of process-based models, which will aid in better predicting future carbon dynamics for the tundra. This becomes even more critical considering the rapid changes that are occurring circumpolarly that are altering plant community structure, function, and ultimately regional and global carbon budgets.
Simulated climate effects of land degradation near Urumqi, China
NASA Astrophysics Data System (ADS)
Moore, N. J.; Qi, J.
2009-12-01
Western China's drylands, particularly around Urumqi city in Xinjiang Autonomous Region are changing due to increased grazing pressures, urban growth, and increasing population. These changes, driven by national policies of openness and economic development, are expected to continue for the foreseeable future. The continued degradation of rangelands surrounding Urumqi can impact not only socioeconomic characteristics but also regional climate patterns. Here we show results from high-resolution regional climate simulations of the Urumqi area using the RAMS regional climate model. Under differing levels of rangeland degradation, from no degradation in vegetative cover and leaf area index (LAI) to 75% reduction a variety of impacts are found in the region. We examined the impacts of these changes in land cover properties via current rangeland management practices, including influences on summertime rainfall (important for grassland production) and year-round wind patterns, which are two major natural factors related to the air pollution and water scarcity of the city.
Garavelli, Lysel; Colas, François; Verley, Philippe; Kaplan, David Michael; Yannicelli, Beatriz; Lett, Christophe
2016-01-01
In marine benthic ecosystems, larval connectivity is a major process influencing the maintenance and distribution of invertebrate populations. Larval connectivity is a complex process to study as it is determined by several interacting factors. Here we use an individual-based, biophysical model, to disentangle the effects of such factors, namely larval vertical migration, larval growth, larval mortality, adults fecundity, and habitat availability, for the marine gastropod Concholepas concholepas (loco) in Chile. Lower transport success and higher dispersal distances are observed including larval vertical migration in the model. We find an overall decrease in larval transport success to settlement areas from northern to southern Chile. This spatial gradient results from the combination of current direction and intensity, seawater temperature, and available habitat. From our simulated connectivity patterns we then identify subpopulations of loco along the Chilean coast, which could serve as a basis for spatial management of this resource in the future.
Influence of Biological Factors on Connectivity Patterns for Concholepas concholepas (loco) in Chile
Garavelli, Lysel; Colas, François; Verley, Philippe; Kaplan, David Michael; Yannicelli, Beatriz; Lett, Christophe
2016-01-01
In marine benthic ecosystems, larval connectivity is a major process influencing the maintenance and distribution of invertebrate populations. Larval connectivity is a complex process to study as it is determined by several interacting factors. Here we use an individual-based, biophysical model, to disentangle the effects of such factors, namely larval vertical migration, larval growth, larval mortality, adults fecundity, and habitat availability, for the marine gastropod Concholepas concholepas (loco) in Chile. Lower transport success and higher dispersal distances are observed including larval vertical migration in the model. We find an overall decrease in larval transport success to settlement areas from northern to southern Chile. This spatial gradient results from the combination of current direction and intensity, seawater temperature, and available habitat. From our simulated connectivity patterns we then identify subpopulations of loco along the Chilean coast, which could serve as a basis for spatial management of this resource in the future. PMID:26751574
Geraghty, Aisling A; Lindsay, Karen L; Alberdi, Goiuri; McAuliffe, Fionnuala M; Gibney, Eileen R
2015-01-01
Pregnancy is a vital time of growth and development during which maternal nutrition significantly influences the future health of both mother and baby. During pregnancy, the fetus experiences a critical period of plasticity. Epigenetics, specifically DNA methylation, plays an important role here. As nutrition is influential for DNA methylation, this review aims to determine if maternal nutrition during pregnancy can modify the offspring's epigenome at birth. Research focuses on micronutrients and methyl donors such as folate and B vitamins. Evidence suggests that maternal nutrition does not largely influence global methylation patterns, particularly in nutrient-replete populations; however, an important impact on gene-specific methylation is observed. A link is shown between maternal nutrition and the methylome of the offspring; however, there remains a paucity of research. With the potential to use DNA methylation patterns at birth to predict health of the child in later life, it is vital that further research be carried out.
Variation in marital quality in a national sample of divorced women.
James, Spencer L
2015-06-01
Previous work has compared marital quality between stably married and divorced individuals. Less work has examined the possibility of variation among divorcés in trajectories of marital quality as divorce approaches. This study addressed that hole by first examining whether distinct trajectories of marital quality can be discerned among women whose marriages ended in divorce and, second, the profile of women who experienced each trajectory. Latent class growth analyses with longitudinal data from a nationally representative sample were used to "look backward" from the time of divorce. Although demographic and socioeconomic variables from this national sample did not predict the trajectories well, nearly 66% of divorced women reported relatively high levels of both happiness and communication and either low or moderate levels of conflict. Future research including personality or interactional patterns may lead to theoretical insights about patterns of marital quality in the years leading to divorce. (c) 2015 APA, all rights reserved).
Growth patterns of an intertidal gastropod as revealed by oxygen isotope analysis
NASA Astrophysics Data System (ADS)
Bean, J. R.; Hill, T. M.; Guerra, C.
2007-12-01
The size and morphology of mollusk shells are affected by environmental conditions. As a result, it is difficult to assess growth rate, population age structure, shell morphologies associated with ontogenetic stages, and to compare life history patterns across various environments. Oxygen isotope analysis is a useful tool for estimating minimum ages and growth rates of calcium carbonate secreting organisms. Calcite shell material from members of two northern California populations of the intertidal muricid gastropod Acanthinucella spirata was sampled for isotopic analysis. Individual shells were sampled from apex to margin, thus providing a sequential record of juvenile and adult growth. A. spirata were collected from a sheltered habitat in Tomales Bay and from an exposed reef in Bolinas. Abiotic factors, such as temperature, wave exposure, and substrate consistency, and biotic composition differ significantly between these sites, possibly resulting in local adaptations and variation in life history and growth patterns. Shell morphology of A. spirata changes with age as internal shell margin thickenings of denticle rows associated with external growth bands are irregularly accreted. It is not known when, either seasonally and/or ontogentically, these thickenings and bands form or whether inter or intra-populational variation exists. Preliminary results demonstrate the seasonal oxygen isotopic variability present at the two coastal sites, indicating 5-6 degC changes from winter to summertime temperatures; these data are consistent with local intertidal temperature records. Analysis of the seasonal patterns indicate that: 1) differences in growth rate and seasonal growth patterns at different ontogenetic stages within populations, and 2) differences in growth patterns and possibly age structure between the two A. spirata populations. These findings indicate that isotopic analyses, in addition to field observations and morphological measurements, are necessary to assess life history strategies and compare population dynamics under varying environmental conditions.
Patterned solid state growth of barium titanate crystals
NASA Astrophysics Data System (ADS)
Ugorek, Michael Stephen
An understanding of microstructure evolution in ceramic materials, including single crystal development and abnormal/enhanced grain growth should enable more controlled final ceramic element structures. In this study, two different approaches were used to control single crystal development in a patterned array. These two methods are: (1) patterned solid state growth in BaTiO 3 ceramics, and (2) metal-mediated single crystal growth in BaTiO 3. With the patterned solid state growth technique, optical photolithography was used to pattern dopants as well as [001] and [110] BaTiO3 single crystal template arrays with a 1000 microm line pattern array with 1000 microm spacings. These patterns were subsequently used to control the matrix grain growth evolution and single crystal development in BaTiO3. It was shown that the growth kinetics can be controlled by a small initial grain size, atmosphere conditions, and the introduction of a dopant at selective areas/interfaces. By using a PO2 of 1x10-5 atm during high temperature heat treatment, the matrix coarsening has been limited (to roughly 2 times the initial grain size), while retaining single crystal boundary motion up to 0.5 mm during growth for dwell times up to 9 h at 1300°C. The longitudinal and lateral growth rates were optimized at 10--15 microm/h at 1300°C in a PO2 of 1x10 -5 atm for single crystal growth with limited matrix coarsening. Using these conditions, a patterned microstructure in BaTiO3 was obtained. With the metal-mediated single crystal growth technique, a novel approach for fabricating 2-2 single crystal/polymer composites with a kerf < 5 microns was demonstrated. Surface templated grain growth was used to propagate a single crystal interface into a polycrystalline BaTiO3 or Ba(Zr0.05 Ti0.95)O3 matrix with lamellar nickel layers. The grain growth evolution and texture development were studied using both [001] and [110] BaTiO3 single crystals templates. By using a PO 2 of 1x10-11 atm during high temperature heat treatment, matrix coarsening was limited while enabling single crystal boundary motion up to 0.35 mm during growth between 1250°C and 1300°C with growth rates ˜ 3--4 microm/h for both single crystal orientations. By removing the inner electrodes, 2-2 single crystal (or ceramic) composites were prepared. The piezoelectric and dielectric properties of the composites of the two compositions were measured. The d33 and d31 of the composites were similar to the polycrystalline ceramic of the same composition.
Growth pattern from birth to adulthood in African pygmies of known age.
Rozzi, Fernando V Ramirez; Koudou, Yves; Froment, Alain; Le Bouc, Yves; Botton, Jérémie
2015-07-28
The African pygmy phenotype stems from genetic foundations and is considered to be the product of a disturbance in the growth hormone-insulin-like growth factor (GH-IGF) axis. However, when and how the pygmy phenotype is acquired during growth remains unknown. Here we describe growth patterns in Baka pygmies based on two longitudinal studies of individuals of known age, from the time of birth to the age of 25 years. Body size at birth among the Baka is within standard limits, but their growth rate slows significantly during the first two years of life. It then more or less follows the standard pattern, with a growth spurt at adolescence. Their life history variables do not allow the Baka to be distinguished from other populations. Therefore, the pygmy phenotype in the Baka is the result of a change in growth that occurs during infancy, which differentiates them from East African pygmies revealing convergent evolution.
Revisiting the Estimation of Dinosaur Growth Rates
Myhrvold, Nathan P.
2013-01-01
Previous growth-rate studies covering 14 dinosaur taxa, as represented by 31 data sets, are critically examined and reanalyzed by using improved statistical techniques. The examination reveals that some previously reported results cannot be replicated by using the methods originally reported; results from new methods are in many cases different, in both the quantitative rates and the qualitative nature of the growth, from results in the prior literature. Asymptotic growth curves, which have been hypothesized to be ubiquitous, are shown to provide best fits for only four of the 14 taxa. Possible reasons for non-asymptotic growth patterns are discussed; they include systematic errors in the age-estimation process and, more likely, a bias toward younger ages among the specimens analyzed. Analysis of the data sets finds that only three taxa include specimens that could be considered skeletally mature (i.e., having attained 90% of maximum body size predicted by asymptotic curve fits), and eleven taxa are quite immature, with the largest specimen having attained less than 62% of predicted asymptotic size. The three taxa that include skeletally mature specimens are included in the four taxa that are best fit by asymptotic curves. The totality of results presented here suggests that previous estimates of both maximum dinosaur growth rates and maximum dinosaur sizes have little statistical support. Suggestions for future research are presented. PMID:24358133
Urban Growth Modeling Using AN Artificial Neural Network a Case Study of Sanandaj City, Iran
NASA Astrophysics Data System (ADS)
Mohammady, S.; Delavar, M. R.; Pahlavani, P.
2014-10-01
Land use activity is a major issue and challenge for town and country planners. Modelling and managing urban growth is a complex problem. Cities are now recognized as complex, non-linear and dynamic process systems. The design of a system that can handle these complexities is a challenging prospect. Local governments that implement urban growth models need to estimate the amount of urban land required in the future given anticipated growth of housing, business, recreation and other urban uses within the boundary. There are so many negative implications related with the type of inappropriate urban development such as increased traffic and demand for mobility, reduced landscape attractively, land use fragmentation, loss of biodiversity and alterations of the hydrological cycle. The aim of this study is to use the Artificial Neural Network (ANN) to make a powerful tool for simulating urban growth patterns. Our study area is Sanandaj city located in the west of Iran. Landsat imageries acquired at 2000 and 2006 are used. Dataset were used include distance to principle roads, distance to residential areas, elevation, slope, distance to green spaces and distance to region centers. In this study an appropriate methodology for urban growth modelling using satellite remotely sensed data is presented and evaluated. Percent Correct Match (PCM) and Figure of Merit were used to evaluate ANN results.
Kamilar, J M; Tecot, S R
2015-11-01
At the proximate level, hormones are known to play a critical role in influencing the life history of mammals, including humans. The pituitary gland is directly responsible for producing several hormones, including those related to growth and reproduction. Although we have a basic understanding of how hormones affect life history characteristics, we still have little knowledge of this relationship in an evolutionary context. We used data from 129 mammal species representing 14 orders to investigate the relationship between pituitary gland size and life history variation. Because pituitary gland size should be related to hormone production and action, we predicted that species with relatively large pituitaries should be associated with fast life histories, especially increased foetal and post-natal growth rates. Phylogenetic analyses revealed that total pituitary size and the size of the anterior lobe of the pituitary significantly predicted a life history axis that was correlated with several traits including body mass, and foetal and post-natal growth rates. Additional models directly examining the association between relative pituitary size and growth rates produced concordant results. We also found that relative pituitary size variation across mammals was best explained by an Ornstein-Uhlenbeck model of evolution, suggesting an important role of stabilizing selection. Our results support the idea that the size of the pituitary is linked to life history variation through evolutionary time. This pattern is likely due to mediating hormone levels but additional work is needed. We suggest that future investigations incorporating endocrine gland size may be critical for understanding life history evolution. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.
Matías, Luis; Jump, Alistair S
2015-02-01
Ongoing changes in global climate are altering ecological conditions for many species. The consequences of such changes are typically most evident at the edge of the geographical distribution of a species, where range expansions or contractions may occur. Current demographical status at geographical range limits can help us to predict population trends and their implications for the future distribution of the species. Thus, understanding the comparability of demographical patterns occurring along both altitudinal and latitudinal gradients would be highly informative. In this study, we analyse the differences in the demography of two woody species through altitudinal gradients at their southernmost distribution limit and the consistency of demographical patterns at the treeline across a latitudinal gradient covering the complete distribution range. We focus on Pinus sylvestris and Juniperus communis, assessing their demographical structure (density, age and mortality rate), growth, reproduction investment and damage from herbivory on 53 populations covering the upper, central and lower altitudes as well as the treeline at central latitude and northernmost and southernmost latitudinal distribution limits. For both species, populations at the lowermost altitude presented older age structure, higher mortality, decreased growth and lower reproduction when compared to the upper limit, indicating higher fitness at the treeline. This trend at the treeline was generally maintained through the latitudinal gradient, but with a decreased growth at the northern edge for both species and lower reproduction for P. sylvestris. However, altitudinal and latitudinal transects are not directly comparable as factors other than climate, including herbivore pressure or human management, must be taken into account if we are to understand how to infer latitudinal processes from altitudinal data. © 2014 John Wiley & Sons Ltd.
Dermatoscopic features of cutaneous non-facial non-acral lentiginous growth pattern melanomas
Keir, Jeff
2014-01-01
Background: The dermatoscopic features of facial lentigo maligna (LM), facial lentigo maligna melanoma (LMM) and acral lentiginous melanoma (ALM) have been well described. This is the first description of the dermatoscopic appearance of a clinical series of cutaneous non-facial non-acral lentiginous growth pattern melanomas. Objective: To describe the dermatoscopic features of a series of cutaneous non-facial non-acral lentiginous growth pattern melanomas in an Australian skin cancer practice. Method: Single observer retrospective analysis of dermatoscopic images of a one-year series of cutaneous non-facial, non-acral melanomas reported as having a lentiginous growth pattern detected in an open access primary care skin cancer clinic in Australia. Lesions were scored for presence of classical criteria for facial LM; modified pattern analysis (“Chaos and Clues”) criteria; and the presence of two novel criteria: a lentigo-like pigment pattern lacking a lentigo-like border, and large polygons. Results: 20 melanomas occurring in 14 female and 6 male patients were included. Average patient age was 64 years (range: 44–83). Lesion distribution was: trunk 35%; upper limb 40%; and lower limb 25%. The incidences of criteria identified were: asymmetry of color or pattern (100%); lentigo-like pigment pattern lacking a lentigo-like border (90%); asymmetrically pigmented follicular openings (APFO’s) (70%); grey blue structures (70%); large polygons (45%); eccentric structureless area (15%); bright white lines (5%). 20% of the lesions had only the novel criteria and/or APFO’s. Limitations: Single observer, single center retrospective study. Conclusions: Cutaneous non-facial non-acral melanomas with a lentiginous growth pattern may have none or very few traditional criteria for the diagnosis of melanoma. Criteria that are logically expected in lesions with a lentiginous growth pattern (lentigo-like pigment pattern lacking a lentigo-like border, APFO’s) and the novel criterion of large polygons may be useful in increasing sensitivity and specificity of diagnosis of these lesions. Further study is required to establish the significance of these observations. PMID:24520520
Dermatoscopic features of cutaneous non-facial non-acral lentiginous growth pattern melanomas.
Keir, Jeff
2014-01-01
The dermatoscopic features of facial lentigo maligna (LM), facial lentigo maligna melanoma (LMM) and acral lentiginous melanoma (ALM) have been well described. This is the first description of the dermatoscopic appearance of a clinical series of cutaneous non-facial non-acral lentiginous growth pattern melanomas. To describe the dermatoscopic features of a series of cutaneous non-facial non-acral lentiginous growth pattern melanomas in an Australian skin cancer practice. Single observer retrospective analysis of dermatoscopic images of a one-year series of cutaneous non-facial, non-acral melanomas reported as having a lentiginous growth pattern detected in an open access primary care skin cancer clinic in Australia. Lesions were scored for presence of classical criteria for facial LM; modified pattern analysis ("Chaos and Clues") criteria; and the presence of two novel criteria: a lentigo-like pigment pattern lacking a lentigo-like border, and large polygons. 20 melanomas occurring in 14 female and 6 male patients were included. Average patient age was 64 years (range: 44-83). Lesion distribution was: trunk 35%; upper limb 40%; and lower limb 25%. The incidences of criteria identified were: asymmetry of color or pattern (100%); lentigo-like pigment pattern lacking a lentigo-like border (90%); asymmetrically pigmented follicular openings (APFO's) (70%); grey blue structures (70%); large polygons (45%); eccentric structureless area (15%); bright white lines (5%). 20% of the lesions had only the novel criteria and/or APFO's. Single observer, single center retrospective study. Cutaneous non-facial non-acral melanomas with a lentiginous growth pattern may have none or very few traditional criteria for the diagnosis of melanoma. Criteria that are logically expected in lesions with a lentiginous growth pattern (lentigo-like pigment pattern lacking a lentigo-like border, APFO's) and the novel criterion of large polygons may be useful in increasing sensitivity and specificity of diagnosis of these lesions. Further study is required to establish the significance of these observations.
Sorted bed forms as self-organized patterns: 2. complex forcing scenarios
Coco, Giovanni; Murray, A. Brad; Green, Malcom O.; Thieler, E. Robert; Hume, T.M.
2007-01-01
We employ a numerical model to study the development of sorted bed forms under a variety of hydrodynamic and sedimentary conditions. Results indicate that increased variability in wave height decreases the growth rate of the features and can potentially give rise to complicated, a priori unpredictable, behavior. This happens because the system responds to a change in wave characteristics by attempting to self-organize into a patterned seabed of different geometry and spacing. The new wavelength might not have enough time to emerge before a new change in wave characteristics occurs, leading to less regular seabed configurations. The new seabed configuration is also highly dependent on the preexisting morphology, which further limits the possibility of predicting future behavior. For the same reasons, variability in the mean current magnitude and direction slows down the growth of features and causes patterns to develop that differ from classical sorted bed forms. Spatial variability in grain size distribution and different types of net sediment aggradation/degradation can also result in the development of sorted bed forms characterized by a less regular shape. Numerical simulations qualitatively agree with observed geometry (spacing and height) of sorted bed forms. Also in agreement with observations is that at shallower depths, sorted bed forms are more likely to be affected by changes in the forcing conditions, which might also explain why, in shallow waters, sorted bed forms are described as ephemeral features. Finally, simulations indicate that the different sorted bed form shapes and patterns observed in the field might not necessarily be related to diverse physical mechanisms. Instead, variations in sorted bed form characteristics may result from variations in local hydrodynamic and/or sedimentary conditions.
De Felice, Alessia; Scattoni, Maria Luisa; Ricceri, Laura; Calamandrei, Gemma
2015-01-01
Autism spectrum disorders are characterized by impaired social and communicative skills and repetitive behaviors. Emerging evidence supported the hypothesis that these neurodevelopmental disorders may result from a combination of genetic susceptibility and exposure to environmental toxins in early developmental phases. This study assessed the effects of prenatal exposure to chlorpyrifos (CPF), a widely diffused organophosphate insecticide endowed with developmental neurotoxicity at sub-toxic doses, in the BTBR T+tf/J mouse strain, a validated model of idiopathic autism that displays several behavioral traits relevant to the autism spectrum. To this aim, pregnant BTBR mice were administered from gestational day 14 to 17 with either vehicle or CPF at a dose of 6 mg/kg/bw by oral gavages. Offspring of both sexes underwent assessment of early developmental milestones, including somatic growth, motor behavior and ultrasound vocalization. To evaluate the potential long-term effects of CPF, two different social behavior patterns typically altered in the BTBR strain (free social interaction with a same-sex companion in females, or interaction with a sexually receptive female in males) were also examined in the two sexes at adulthood. Our findings indicate significant effects of CPF on somatic growth and neonatal motor patterns. CPF treated pups showed reduced weight gain, delayed motor maturation (i.e., persistency of immature patterns such as pivoting at the expenses of coordinated locomotion) and a trend to enhanced ultrasound vocalization. At adulthood, CPF associated alterations were found in males only: the altered pattern of investigation of a sexual partner, previously described in BTBR mice, was enhanced in CPF males, and associated to increased ultrasonic vocalization rate. These findings strengthen the need of future studies to evaluate the role of environmental chemicals in the etiology of neurodevelopment disorders.
Du, Lijuan; Zhou, Amy; Patel, Akshay; Rao, Mishal; Anderson, Kelsey; Roy, Sougata
2017-07-01
Fibroblast growth factors (FGF) are essential signaling proteins that regulate diverse cellular functions in developmental and metabolic processes. In Drosophila, the FGF homolog, branchless (bnl) is expressed in a dynamic and spatiotemporally restricted pattern to induce branching morphogenesis of the trachea, which expresses the Bnl-receptor, breathless (btl). Here we have developed a new strategy to determine bnl- expressing cells and study their interactions with the btl-expressing cells in the range of tissue patterning during Drosophila development. To enable targeted gene expression specifically in the bnl expressing cells, a new LexA based bnl enhancer trap line was generated using CRISPR/Cas9 based genome editing. Analyses of the spatiotemporal expression of the reporter in various embryonic stages, larval or adult tissues and in metabolic hypoxia, confirmed its target specificity and versatility. With this tool, new bnl expressing cells, their unique organization and functional interactions with the btl-expressing cells were uncovered in a larval tracheoblast niche in the leg imaginal discs, in larval photoreceptors of the developing retina, and in the embryonic central nervous system. The targeted expression system also facilitated live imaging of simultaneously labeled Bnl sources and tracheal cells, which revealed a unique morphogenetic movement of the embryonic bnl- source. Migration of bnl- expressing cells may create a dynamic spatiotemporal pattern of the signal source necessary for the directional growth of the tracheal branch. The genetic tool and the comprehensive profile of expression, organization, and activity of various types of bnl-expressing cells described in this study provided us with an important foundation for future research investigating the mechanisms underlying Bnl signaling in tissue morphogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.
Tansu, Nelson; Chan, Helen M; Vinci, Richard P; Ee, Yik-Khoon; Biser, Jeffrey
2013-09-24
The use of an abbreviated GaN growth mode on nano-patterned AGOG sapphire substrates, which utilizes a process of using 15 nm low temperature GaN buffer and bypassing etch-back and recovery processes during epitaxy, enables the growth of high-quality GaN template on nano-patterned AGOG sapphire. The GaN template grown on nano-patterned AGOG sapphire by employing abbreviated growth mode has two orders of magnitude lower threading dislocation density than that of conventional GaN template grown on planar sapphire. The use of abbreviated growth mode also leads to significant reduction in cost of the epitaxy. The growths and characteristics of InGaN quantum wells (QWs) light emitting diodes (LEDs) on both templates were compared. The InGaN QWs LEDs grown on the nano-patterned AGOG sapphire demonstrated at least a 24% enhancement of output power enhancement over that of LEDs grown on conventional GaN templates.
Gaucher, Catherine; Gougeon, Sébastien; Mauffette, Yves; Messier, Christian
2005-01-01
We investigated seasonal patterns of biomass and carbohydrate partitioning in relation to shoot growth phenology in two age classes of sugar maple (Acer saccharum Marsh.) and yellow birch (Betula alleghaniensis Britt.) seedlings growing in the understory of a partially harvested forest. The high root:shoot biomass ratio and carbohydrate concentration of sugar maple are characteristic of species with truncated growth patterns (i.e., cessation of aboveground shoot growth early in the growing season), a conservative growth strategy and high shade tolerance. The low root:shoot biomass ratio and carbohydrate concentration of yellow birch are characteristic of species with continuous growth patterns, an opportunistic growth strategy and low shade tolerance. In both species, starch represented up to 95% of total nonstructural carbohydrates and was mainly found in the roots. Contrary to our hypothesis, interspecific differences in shoot growth phenology (i.e., continuous versus truncated) did not result in differences in seasonal patterns of carbohydrate partitioning. Our results help explain the niche differentiation between sugar maple and yellow birch in temperate, deciduous understory forests.
Alignment of human cardiomyocytes on laser patterned biphasic core/shell nanowire assemblies
NASA Astrophysics Data System (ADS)
Kiefer, Karin; Lee, Juseok; Haidar, Ayman; Martinez Miró, Marina; Akkan, Cagri Kaan; Veith, Michael; Cenk Aktas, Oral; Abdul-Khaliq, Hashim
2014-12-01
The management of end stage heart failure patients is only possible by heart transplantation or by the implantation of artificial hearts as a bridge for later transplantation. However, these therapeutic strategies are limited by a lack of donor hearts and by the associated complications, such as coagulation and infection, due to the used artificial mechanical circulatory assist devices. Therefore, new strategies for myocardial regenerative approaches are under extensive research to produce contractile myocardial tissue in the future to replace non-contractile myocardial ischemic and scarred tissue. Different approaches, such as cell transplantation, have been studied intensively. Although successful approaches have been observed, there are still limitations to the application. It is envisaged that myocardial tissue engineering can be used to help replace infarcted non-contractile tissue. The developed tissue should later mimic the aligned fibrillar structure of the extracellular matrix and provide important guidance cues for the survival, function and the needed orientation of cardiomyocytes. Nanostructured surfaces have been tested to provide a guided direction that cells can follow. In the present study, the cellular adhesion/alignment of human cardiomyocytes and the biocompatibility have been investigated after cultivation on different laser-patterned nanowires compared with unmodified nanowires. As a result, the nanostructured surfaces possessed good biocompatibility before and after laser modification. The laser-induced scalability of the pattern enabled the growth and orientation of the adhered myocardial tissue. Such approaches may be used to modify the surface of potential scaffolds to develop myocardial contractile tissue in the future.
Wills, Andrew K; Strand, Bjørn Heine; Glavin, Kari; Silverwood, Richard J; Hovengen, Ragnhild
2016-04-08
Regression models are widely used to link serial measures of anthropometric size or changes in size to a later outcome. Different parameterisations of these models enable one to target different questions about the effect of growth, however, their interpretation can be challenging. Our objective was to formulate and classify several sets of parameterisations by their underlying growth pattern contrast, and to discuss their utility using an expository example. We describe and classify five sets of model parameterisations in accordance with their underlying growth pattern contrast (conditional growth; being bigger v being smaller; becoming bigger and staying bigger; growing faster v being bigger; becoming and staying bigger versus being bigger). The contrasts are estimated by including different sets of repeated measures of size and changes in size in a regression model. We illustrate these models in the setting of linking infant growth (measured on 6 occasions: birth, 6 weeks, 3, 6, 12 and 24 months) in weight-for-height-for-age z-scores to later childhood overweight at 8y using complete cases from the Norwegian Childhood Growth study (n = 900). In our expository example, conditional growth during all periods, becoming bigger in any interval and staying bigger through infancy, and being bigger from birth were all associated with higher odds of later overweight. The highest odds of later overweight occurred for individuals who experienced high conditional growth or became bigger in the 3 to 6 month period and stayed bigger, and those who were bigger from birth to 24 months. Comparisons between periods and between growth patterns require large sample sizes and need to consider how to scale associations to make comparisons fair; with respect to the latter, we show one approach. Studies interested in detrimental growth patterns may gain extra insight from reporting several sets of growth pattern contrasts, and hence an approach that incorporates several sets of model parameterisations. Co-efficients from these models require careful interpretation, taking account of the other variables that are conditioned on.
Critical aspects of substrate nanopatterning for the ordered growth of GaN nanocolumns
2011-01-01
Precise and reproducible surface nanopatterning is the key for a successful ordered growth of GaN nanocolumns. In this work, we point out the main technological issues related to the patterning process, mainly surface roughness and cleaning, and mask adhesion to the substrate. We found that each of these factors, process-related, has a dramatic impact on the subsequent selective growth of the columns inside the patterned holes. We compare the performance of e-beam lithography, colloidal lithography, and focused ion beam in the fabrication of hole-patterned masks for ordered columnar growth. These results are applicable to the ordered growth of nanocolumns of different materials. PMID:22168918
Growth-mediated autochemotactic pattern formation in self-propelling bacteria
NASA Astrophysics Data System (ADS)
Mukherjee, Mrinmoy; Ghosh, Pushpita
2018-01-01
Bacteria, while developing a multicellular colony or biofilm, can undergo pattern formation by diverse intricate mechanisms. One such route is directional movement or chemotaxis toward or away from self-secreted or externally employed chemicals. In some bacteria, the self-produced signaling chemicals or autoinducers themselves act as chemoattractants or chemorepellents and thereby regulate the directional movements of the cells in the colony. In addition, bacteria follow a certain growth kinetics which is integrated in the process of colony development. Here, we study the interplay of bacterial growth dynamics, cell motility, and autochemotactic motion with respect to the self-secreted diffusive signaling chemicals in spatial pattern formation. Using a continuum model of motile bacteria, we show growth can act as a crucial tuning parameter in determining the spatiotemporal dynamics of a colony. In action of growth dynamics, while chemoattraction toward autoinducers creates arrested phase separation, pattern transitions and suppression can occur for a fixed chemorepulsive strength.
Stochastic nonlinear dynamics pattern formation and growth models
Yaroslavsky, Leonid P
2007-01-01
Stochastic evolutionary growth and pattern formation models are treated in a unified way in terms of algorithmic models of nonlinear dynamic systems with feedback built of a standard set of signal processing units. A number of concrete models is described and illustrated by numerous examples of artificially generated patterns that closely imitate wide variety of patterns found in the nature. PMID:17908341
How much water do we need for irrigation under Climate Change in the Mediterranean?
NASA Astrophysics Data System (ADS)
Fader, Marianela; Alberte, Bondeau; Wolfgang, Cramer; Simon, Decock; Sinan, Shi
2014-05-01
Anthropogenic climate change will very likely alter the hydrological system of already water-limited agricultural landscapes around the Mediterranean. This includes the need for, as well as the availability of irrigation water. On top of that Mediterranean agroecosystems are very likely to be under strong pressure in the near future through changes in consumer demands and diets, increasing urbanization, demographic change, and new markets for agricultural exportation. As a first step to assess the water demand of the agricultural sector, we use an ecohydrological model (the Lund-Potsdam-Jena managed land model, LPJmL) to estimate current and future irrigation water requirements of this region, considering various climate and socio-economic scenarios. LPJmL is a process-based, agricultural and water balance model, where plant growth is ecophysiologically coupled with hydrological variables. For these simulations, the model was adapted to the Mediterranean region in terms of agrosystems as well as crop parameters, and a sensitivity analysis for the irrigation system efficiency was performed. Patterns of current irrigation water requirements differ strongly spatially within the Mediterranean region depending mainly on potential evapotranspiration, the combination of crops cultivated and the extension of irrigated areas. The simulations for the future indicate that the Mediterranean may need considerable additional amounts of irrigation water. However, the regional patterns differ strongly depending on changes in length of growing periods, changes in transpirational rate (temperature and precipitation change, CO2-fertilization), and the consideration of potential improvements in irrigation system efficiency.
NASA Astrophysics Data System (ADS)
Breshears, D. D.; Adams, H. D.; Eamus, D.; McDowell, N. G.; Law, D. J.; Will, R. E.; Williams, P.; Zou, C.
2013-12-01
Ecohydrology focuses on the interactions of water availability, ecosystem productivity, and biogeochemical cycles via ecological-hydrological connections. These connections can be particularly pronounced and socially relevant when there are large-scale rapid changes in vegetation. One such key change, vegetation mortality, can be triggered by drought and is projected to become more frequent and/or extensive in the future under changing climate. Recent research on drought-induced vegetation die-off has focused primarily on direct drought effects, such as soil moisture deficit, and, to a much lesser degree, the potential for warmer temperatures to exacerbate stress and accelerate mortality. However, temperature is tightly interrelated with atmospheric demand (vapor pressure deficit, VPD) but the latter has rarely been considered explicitly relative to die-off events. Here we highlight the importance of VPD in addition to soil moisture deficit and warmer temperature as an important driver of future die-off. Recent examples highlighting the importance of VPD include mortality patterns corresponding to VPD drivers, a strong dependence of forest growth on VPD, patterns of observed mortality along an environmental gradient, an experimentally-determined climate envelope for mortality, and a suite of modeling simulations segregating the drought effects of VPD from those of temperature. The vast bulk of evidence suggests that atmospheric demand needs to be considered in addition to temperature and soil moisture deficit in predicting risk of future vegetation die-off and associated ecohydrological transformations.
Early pregnancy assessment in multiple pregnancies.
D'Antonio, Francesco; Bhide, Amar
2014-02-01
Early ultrasound assessment and accurate determination of chorionicity is crucial so that appropriate care of multiple pregnancy can be provided. It is best achieved in the first trimester of pregnancy using the Lambda 'λ' and 'T' signs. Accurate labelling of the twins is needed to ensure that the same individual fetus is measured through the pregnancy so that the longitudinal growth pattern can be correctly assessed. Discrepancy in crown-rump length indicates a possibility for future development of selective intrauterine growth restriction. Careful early ultrasound assessment is needed to identify structural and chromosomal anomalies, as twin pregnancies are at increased risk. Twin-to-twin transfusion syndrome, selective intrauterine growth restriction and congenital abnormalities represent the major determinants of perinatal loss in monochorionic pregnancies, and diagnosis and prognosis are discussed in detail. Treatment of twin reverse arterial perfusion sequence is more effective in early pregnancy, so early identification is needed. Outcome of conjoined twins is guarded, and is dependent on the extent of fusion, degree of sharing of organs, associated anomalies, and presence of cardiac failure in utero. Copyright © 2013 Elsevier Ltd. All rights reserved.
Changing demographics: what to watch for.
Morrison, P A
1987-07-01
Four broad demographic transformations: 1) the population's reconfiguration into smaller household units, especially those comprised of persons living alone; 2) changing employment patterns, notably the shift of married women into paid employment and the resulting proliferation of dual-earner families; 3) transformations in the population's age composition; and 4) the geography of growth in terms of regions that will gain or lose population--can be expected to have a profound impact on opportunities and challenges facing the business sector. The number of future households is projected to increase from 88.6 million in 1986 to 101.5 million by 1996. The sharpest gains will be among households headed by persons ranging in age from the late 30s to the early 50s. The fastest growth through the year 2000 is expected to occur in the Mountain states of the US. Business economists should be alert to these demographic analyses both to spot emerging growth markets and to identify long-term strategic issues, especially as the labor market changes. It will be increasingly important to differentiate time-sensitive from price-sensitive consumers.
ABOVE- AND BELOWGROUND CONTROLS ON FOREST TREE GROWTH, MORTALITY AND SPATIAL PATTERN
We investigated the relative importance of above- and belowground competition in controlling growth, mortality and spatial patterns of trees in a nitrogen-limited, old-growth forest in western Oregon. To assess the effects of competition for light, we applied a spatially-explici...
Özdemir, Nihal; Güran, Tülay; Akalın, Figen; Akçay, Teoman; Ayabakan, Canan; Yılmaz, Yüksel; Bereket, Abdullah
2008-01-01
We report two patients with velo−cardio−facial syndrome (VCFS) who were admitted to our pediatric endocrinology clinic because of short stature and followed longitudinally until attainment of final height. Both patients followed a growth pattern consistent with constitutional delay of puberty with normal and near normal final height. Case 2 also had partial growth hormone (GH) deficiency and severe short stature (height SDS −3.4 SDS), but showed spontaneous catch−up and ended up with a final height of −2 SDS. These cases suggest that short stature in children with VCFS is due to a pattern of growth similar to that observed in constitutional delay of growth and puberty. Conflict of interest:None declared. PMID:21318064
Self-organization and positioning of bacterial protein clusters
NASA Astrophysics Data System (ADS)
Murray, Seán M.; Sourjik, Victor
2017-10-01
Many cellular processes require proteins to be precisely positioned within the cell. In some cases this can be attributed to passive mechanisms such as recruitment by other proteins in the cell or by exploiting the curvature of the membrane. However, in bacteria, active self-positioning is likely to play a role in multiple processes, including the positioning of the future site of cell division and cytoplasmic protein clusters. How can such dynamic clusters be formed and positioned? Here, we present a model for the self-organization and positioning of dynamic protein clusters into regularly repeating patterns based on a phase-locked Turing pattern. A single peak in the concentration is always positioned at the midpoint of the model cell, and two peaks are positioned at the midpoint of each half. Furthermore, domain growth results in peak splitting and pattern doubling. We argue that the model may explain the regular positioning of the highly conserved structural maintenance of chromosomes complexes on the bacterial nucleoid and that it provides an attractive mechanism for the self-positioning of dynamic protein clusters in other systems.
Holmgren, Anton; Niklasson, Aimon; Nierop, Andreas F M; Gelander, Lars; Aronson, A Stefan; Sjöberg, Agneta; Lissner, Lauren; Albertsson-Wikland, Kerstin
2018-05-23
Over the past 150 years, humans have become taller, and puberty has begun earlier. It is unclear if these changes are continuing in Sweden, and how longitudinal growth patterns are involved. We aimed to evaluate the underlying changes in growth patterns from birth to adulthood by QEPS estimates in two Swedish cohorts born in 1974 and 1990. Growth characteristics of the longitudinal 1974 and 1990-birth cohorts (n = 4181) were compared using the QEPS model together with adult heights. There was more rapid fetal/infancy growth in girls/boys born in 1990 compared to 1974, as shown by a faster Etimescale and they were heavier at birth. The laterborn were taller also in childhood as shown by a higher Q-function. Girls born in 1990 had earlier and more pronounced growth during puberty than girls born in 1974. Individuals in the 1990 cohort attained greater adult heights than those in the 1974 cohort; 6 mm taller for females and 10 mm for males. A positive change in adult height was attributed to more growth during childhood in both sexes and during puberty for girls. The QEPS model proved to be effective detecting small changes of growth patterns, between two longitudinal growth cohorts born only 16 years apart.
Dieleman, Joseph L; Schneider, Matthew T; Haakenstad, Annie; Singh, Lavanya; Sadat, Nafis; Birger, Maxwell; Reynolds, Alex; Templin, Tara; Hamavid, Hannah; Chapin, Abigail; Murray, Christopher J L
2016-06-18
Disbursements of development assistance for health (DAH) have risen substantially during the past several decades. More recently, the international community's attention has turned to other international challenges, introducing uncertainty about the future of disbursements for DAH. We collected audited budget statements, annual reports, and project-level records from the main international agencies that disbursed DAH from 1990 to the end of 2015. We standardised and combined records to provide a comprehensive set of annual disbursements. We tracked each dollar of DAH back to the source and forward to the recipient. We removed transfers between agencies to avoid double-counting and adjusted for inflation. We classified assistance into nine primary health focus areas: HIV/AIDS, tuberculosis, malaria, maternal health, newborn and child health, other infectious diseases, non-communicable diseases, Ebola, and sector-wide approaches and health system strengthening. For our statistical analysis, we grouped these health focus areas into two categories: MDG-related focus areas (HIV/AIDS, tuberculosis, malaria, child and newborn health, and maternal health) and non-MDG-related focus areas (other infectious diseases, non-communicable diseases, sector-wide approaches, and other). We used linear regression to test for structural shifts in disbursement patterns at the onset of the Millennium Development Goals (MDGs; ie, from 2000) and the global financial crisis (impact estimated to occur in 2010). We built on past trends and associations with an ensemble model to estimate DAH through the end of 2040. In 2015, US$36·4 billion of DAH was disbursed, marking the fifth consecutive year of little change in the amount of resources provided by global health development partners. Between 2000 and 2009, DAH increased at 11·3% per year, whereas between 2010 and 2015, annual growth was just 1·2%. In 2015, 29·7% of DAH was for HIV/AIDS, 17·9% was for child and newborn health, and 9·8% was for maternal health. Linear regression identifies three distinct periods of growth in DAH. Between 2000 and 2009, MDG-related DAH increased by $290·4 million (95% uncertainty interval [UI] 174·3 million to 406·5 million) per year. These increases were significantly greater than were increases in non-MDG DAH during the same period (p=0·009), and were also significantly greater than increases in the previous period (p<0·0001). Between 2000 and 2009, growth in DAH was highest for HIV/AIDS, malaria, and tuberculosis. Since 2010, DAH for maternal health and newborn and child health has continued to climb, although DAH for HIV/AIDS and most other health focus areas has remained flat or decreased. Our estimates of future DAH based on past trends and associations present a wide range of potential futures, although our mean estimate of $64·1 billion (95% UI $30·4 billion to $161·8 billion) shows an increase between now and 2040, although with a large uncertainty interval. Our results provide evidence of two substantial shifts in DAH growth during the past 26 years. DAH disbursements increased faster in the first decade of the 2000s than in the 1990s, but DAH associated with the MDGs increased the most out of all focus areas. Since 2010, limited growth has characterised DAH and we expect this pattern to persist. Despite the fact that DAH is still growing, albeit minimally, DAH is shifting among the major health focus areas, with relatively little growth for HIV/AIDS, malaria, and tuberculosis. These changes in the growth and focus of DAH will have critical effects on health services in some low-income countries. Coordination and collaboration between donors and domestic governments is more important than ever because they have a great opportunity and responsibility to ensure robust health systems and service provision for those most in need. Bill & Melinda Gates Foundation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wuellner, Melissa R.; Chipps, Steven R.; Willis, David W.; Adams, Wells E.
2010-01-01
Walleyes Sander vitreus are the most popular fish among South Dakota anglers, but smallmouth bass Micropterus dolomieu were introduced to provide new angling opportunities. Some walleye anglers have reported reductions in the quality of walleye fisheries since the introduction of smallmouth bass and attribute this to the consumption of young walleyes by smallmouth bass and competition for shared prey resources. We quantified the diets of walleyes and smallmouth bass in the lower reaches of Lake Sharpe (a Missouri River reservoir), calculated the diet overlap between the two predators, and determined whether they partitioned shared prey based on size. We also quantified walleye diets in the upper reach of the reservoir, which has a different prey base and allowed us to compare the growth rates of walleyes within Lake Sharpe. Age-0 gizzard shad Dorosoma cepedianum composed a substantial proportion of the diets of both predators, regardless of location, for most of the growing season; the patterns in shad vulnerability appeared to drive the observed patterns in diet overlap. Smallmouth bass appeared to consume a smaller size range of gizzard shad than did walleyes, which consumed a wide range. Smallmouth bass consumed Sander spp. in some months, but in very low quantities. Given that global climate change is expected to alter the population and community dynamics in Great Plains reservoirs, we also used a bioenergetics approach to predict the potential effects of limiting prey availability (specifically, the absence of gizzard shad and rainbow smelt Osmerus mordax) and increased water temperatures (as projected from global climate change models) on walleye and smallmouth bass growth. The models indicated that the absence of rainbow smelt from the diets of walleyes in upper Lake Sharpe would reduce growth but that the absence of gizzard shad would have a more marked negative effect on both predators at both locations. The models also indicated that higher water temperatures would have an even greater negative influence on walleye growth; however, smallmouth bass growth was predicted to increase with higher temperatures. Fisheries managers should consider strategies to enhance the prey base or mitigate the effects of increased water temperatures that may occur in the future as a result of global climate change. Such proactive actions may alleviate potential future competition between walleyes and smallmouth bass resulting from changes in the fish community.
Kao, Yu-Chun; Madenjian, Charles P.; Bunnell, David B.; Lofgren, Brent M.; Perroud, Marjorie
2015-01-01
We used a bioenergetics modeling approach to investigate potential effects of climate change on the growth of two economically important native fishes: yellow perch (Perca flavescens), a cool-water fish, and lake whitefish (Coregonus clupeaformis), a cold-water fish, in deep and oligotrophic Lakes Michigan and Huron. For assessing potential changes in fish growth, we contrasted simulated fish growth in the projected future climate regime during the period 2043-2070 under different prey availability scenarios with the simulated growth during the baseline (historical reference) period 1964-1993. Results showed that effects of climate change on the growth of these two fishes are jointly controlled by behavioral thermoregulation and prey availability. With the ability of behavioral thermoregulation, temperatures experienced by yellow perch in the projected future climate regime increased more than those experienced by lake whitefish. Thus simulated future growth decreased more for yellow perch than for lake whitefish under scenarios where prey availability remains constant into the future. Under high prey availability scenarios, simulated future growth of these two fishes both increased but yellow perch could not maintain the baseline efficiency of converting prey consumption into body weight. We contended that thermal guild should not be the only factor used to predict effects of climate change on the growth of a fish, and that ecosystem responses to climate change should be also taken into account.
Plant-mycorrhizal interactions mediate plant community coexistence by altering resource demand.
Jiang, Jiang; Moore, Jessica A M; Priyadarshi, Anupam; Classen, Aimée T
2017-01-01
As the diversity of plants increases in an ecosystem, so does resource competition for soil nutrients, a process that mycorrhizal fungi can mediate. The influence of mycorrhizal fungi on plant biodiversity likely depends on the strength of the symbiosis between the plant and fungi, the differential plant growth responses to mycorrhizal inoculation, and the transfer rate of nutrients from the fungus to plant. However, our current understanding of how nutrient-plant-mycorrhizal interactions influence plant coexistence is conceptual and thus lacks a unified quantitative framework. To quantify the conditions of plant coexistence mediated by mycorrhizal fungi, we developed a mechanistic resource competition model that explicitly included plant-mycorrhizal symbioses. We found that plant-mycorrhizal interactions shape plant coexistence patterns by creating a tradeoff in resource competition. Especially, a tradeoff in resource competition was caused by differential payback in the carbon resources that plants invested in the fungal symbiosis and/or by the stoichiometric constraints on plants that required additional, less-beneficial, resources to sustain growth. Our results suggested that resource availability and the variation in plant-mycorrhizal interactions act in concert to drive plant coexistence patterns. Applying our framework, future empirical studies should investigate plant-mycorrhizal interactions under multiple levels of resource availability. © 2016 by the Ecological Society of America.
Hess, Sybille; Wenger, Amelia S.; Ainsworth, Tracy D.; Rummer, Jodie L.
2015-01-01
Worldwide, increasing coastal development has played a major role in shaping coral reef species assemblages, but the mechanisms underpinning distribution patterns remain poorly understood. Recent research demonstrated delayed development in larval fishes exposed to suspended sediment, highlighting the need to further understand the interaction between suspended sediment as a stressor and energetically costly activities such as growth and development that are essential to support biological fitness. We examined the gill morphology and the gill microbiome in clownfish larvae (Amphiprion percula) exposed to suspended sediment concentrations (using Australian bentonite) commonly found on the inshore Great Barrier Reef. The gills of larvae exposed to 45 mg L−1 of suspended sediment had excessive mucous discharge and growth of protective cell layers, resulting in a 56% thicker gill epithelium compared to fish from the control group. Further, we found a shift from ‘healthy’ to pathogenic bacterial communities on the gills, which could increase the disease susceptibility of larvae. The impact of suspended sediments on larval gills may represent an underlying mechanism behind the distribution patterns of fish assemblages. Our findings underscore the necessity for future coastal development to consider adverse effects of suspended sediments on fish recruitment, and consequently fish populations and ecosystem health. PMID:26094624
Hess, Sybille; Wenger, Amelia S; Ainsworth, Tracy D; Rummer, Jodie L
2015-06-22
Worldwide, increasing coastal development has played a major role in shaping coral reef species assemblages, but the mechanisms underpinning distribution patterns remain poorly understood. Recent research demonstrated delayed development in larval fishes exposed to suspended sediment, highlighting the need to further understand the interaction between suspended sediment as a stressor and energetically costly activities such as growth and development that are essential to support biological fitness. We examined the gill morphology and the gill microbiome in clownfish larvae (Amphiprion percula) exposed to suspended sediment concentrations (using Australian bentonite) commonly found on the inshore Great Barrier Reef. The gills of larvae exposed to 45 mg L(-1) of suspended sediment had excessive mucous discharge and growth of protective cell layers, resulting in a 56% thicker gill epithelium compared to fish from the control group. Further, we found a shift from 'healthy' to pathogenic bacterial communities on the gills, which could increase the disease susceptibility of larvae. The impact of suspended sediments on larval gills may represent an underlying mechanism behind the distribution patterns of fish assemblages. Our findings underscore the necessity for future coastal development to consider adverse effects of suspended sediments on fish recruitment, and consequently fish populations and ecosystem health.
Orienteering: Growth Patterns in the United States.
ERIC Educational Resources Information Center
Jeffery, Charles F.
The history of orienteering in the United States includes both military and civilian interest, with the period of greatest growth between 1970 and 1980. To investigate growth patterns in orienteering, questionnaires were mailed to 42 civilian orienteering clubs and 286 universities supporting senior Reserve Office Training Corps (ROTC)…
Skolimowski, Maciej; Nielsen, Martin Weiss; Emnéus, Jenny; Molin, Søren; Taboryski, Rafael; Sternberg, Claus; Dufva, Martin; Geschke, Oliver
2010-08-21
A microfluidic chip for generation of gradients of dissolved oxygen was designed, fabricated and tested. The novel way of active oxygen depletion through a gas permeable membrane was applied. Numerical simulations for generation of O(2) gradients were correlated with measured oxygen concentrations. The developed microsystem was used to study growth patterns of the bacterium Pseudomonas aeruginosa in medium with different oxygen concentrations. The results showed that attachment of Pseudomonas aeruginosa to the substrate changed with oxygen concentration. This demonstrates that the device can be used for studies requiring controlled oxygen levels and for future studies of microaerobic and anaerobic conditions.
Recent Patterns of Population Change in America’s Urban Places,
1980-08-01
0 00w a 0 0 3c 0 ON * 00 * Qj C) m 0 C\\ 0 N 4 N .- C-4 ..- 9 AI bo 0 0 u a, f~00 0~ ~~~ 0\\ 0 0~ 0Y w~ 0 f4 0)J CNCD G)40 & 00CC hi -C 0 22 0 00c log...Left Behind: Population Trends and Policy for Rural America," Rural Sociology, 36, 4: 449-470. Fuguitt, Glen V. and Calvin L. Beale, 1978, "Population...Redistribution in Nonmetropolitan Areas," in Sarah Mills (ed.), Population Distribution and Policy , Commission on Population Growth and the American Future
Colonia development and land use change in Ambos Nogales, United States-Mexican border
Norman, Laura M.; Donelson, Angela; Pfeifer, Edwin; Lam, Alven H.
2006-01-01
This report outlines a planning approach taken by a Federal Government partnership that is meant to promote sustainable development in the future, integrating both sides of the United States-Mexican border. The twin-city area of Nogales, Ariz., and Nogales, Sonora, Mexico, known collectively as Ambos (both) Nogales, has a common borderland history of urban growth presumably based on changes in policy and economic incentives. We document changes over time in an attempt to identify colonia development and settlement patterns along the border, combining a community-participation approach with a remote-sensing analysis, to create an online mapping service.
NASA Astrophysics Data System (ADS)
Syphard, A. D.; Keeley, J. E.; Brennan, T. J.
2010-12-01
Wildfires are an important natural process in southern California, but they also present a major hazard for human life and property. The region leads the nation in fire-related losses, and since 2001, wildfires have damaged or destroyed more than 10,000 homes. As human ignitions have increased along with urban development and population growth, fire frequency has also surged, and most home losses occur in large fires when ignitions coincide with Santa Ana windstorms. As the region accommodates more growth in the future, the wildfire threat promises to continue. We will thus explore how a broader, more comprehensive approach to fire management could improve upon traditional approaches for reducing community vulnerability. The traditional approach to mitigating fire risk, in addition to fire suppression, has been to reduce fuel through construction of fuel breaks. Despite increasing expenditure on these treatments, there has been little empirical study of their role in controlling large fires. We will present the results of a study in which we constructed and analyzed a spatial database of fuel breaks in southern California national forests. Our objective was to better understand characteristics of fuel breaks that affect the behavior of large fires and to map where fires and fuel breaks most commonly intersect. We found that fires stopped at fuel breaks 22-47% of the time, depending on the forest, and the reason fires stopped was invariably related to firefighter access and management activities. Fire weather and fuel break condition were also important. The study illustrates the importance of strategic location of fuel breaks because they have been most effective where they provided access for firefighting activities. While fuel breaks have played a role in controlling wildfires at the Wildland Urban Interface, we are evaluating alternative approaches for reducing community vulnerability, including land use planning. Recent research shows that the amount and spatial arrangement of human infrastructure, such as roads and housing developments, strongly influences wildfire patterns. Therefore, we hypothesize that the spatial arrangement and location of housing development is likely to affect the susceptibility of lives and property to fire. In other words, potential for urban loss may be greatest at specific housing densities, spatial patterns of development, and locations of development. If these risk factors can be identified, mapped, and modeled, it is possible that vulnerability to wildfire could be substantially minimized through careful planning for future development - especially because future development will likely increase the region’s fire risk. To address these possibilities, we are evaluating past housing loss in relation to land use planning, in conjunction with other variables that influence fire patterns. We are also exploring alternative future scenarios to identify optimum land use planning strategies for minimizing fire risk.
NASA Astrophysics Data System (ADS)
Lu, C.; Tian, H.; Yang, J.; Zhang, B.; Xu, R.
2015-12-01
Nitrous oxide (N2O) is among the most important greenhouse gases only next to carbon dioxide (CO2) and methane (CH4) due to its long life time and high radiative forcing (with a global warming potential 265 times as much as CO2 at 100-year time horizon). The Atmospheric concentration of N2O has increased by 20% since pre-industrial era, and this increase plays a significant role in shaping anthropogenic climate change. However, compared to CO2- and CH4-related research, fewer studies have been performed in assessing and predicting the spatiotemporal patterns of N2O emission from natural and agricultural soils. Here we used a coupled biogeochemical model, DLEM, to quantify the historical and future changes in global terrestrial N2O emissions resulting from natural and anthropogenic perturbations including climate variability, atmospheric CO2 concentration, nitrogen deposition, land use and land cover changes, and agricultural land management practices (i.e., synthetic nitrogen fertilizer use, manure application, and irrigation etc.) over the period 1900-2099. We focused on inter-annual variation and long-term trend of terrestrial N2O emission driven by individual and combined environmental changes during historical and future periods. The sensitivity of N2O emission to climate, atmospheric composition, and human activities has been examined at biome-, latitudinal, continental and global scales. Future projections were conducted to identify the hot spots and hot time periods of global N2O emission under two emission scenarios (RCP2.6 and RCP8.5). It provides a modeling perspective for understanding human-induced N2O emission growth and developing potential management strategies to mitigate further atmospheric N2O increase and climate warming.
Simulation of growth of Adirondack conifers in relation to global climate change
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Y.; Raynal, D.J.
1993-06-01
Several conifer species grown in plantations in the southeastern Adirondack mountains of New York were chosen to model tree growth. In the models, annual xylem growth was decomposed into several components that reflect various intrinsic or extrinsic factors. Growth signals indicative of climatic effects were used to construct response functions using both multivariate analysis and Kalman filter methods. Two models were used to simulate tree growth response to future CO[sub 2]-induced climate change projected by GCMs. The comparable results of both models indicate that different conifer species have individualistic growth responses to future climatic change. The response behaviors of treesmore » are affected greatly by local stand conditions. The results suggest possible changes in future growth and distributions of naturally occurring conifers in this region.« less
NASA Astrophysics Data System (ADS)
Tamai, Isao; Hasegawa, Hideki
2007-04-01
As a combination of novel hardware architecture and novel system architecture for future ultrahigh-density III-V nanodevice LSIs, the authors' group has recently proposed a hexagonal binary decision diagram (BDD) quantum circuit approach where gate-controlled path switching BDD node devices for a single or few electrons are laid out on a hexagonal nanowire network to realize a logic function. In this paper, attempts are made to establish a method to grow highly dense hexagonal nanowire networks for future BDD circuits by selective molecular beam epitaxy (MBE) on (1 1 1)B substrates. The (1 1 1)B orientation is suitable for BDD architecture because of the basic three-fold symmetry of the BDD node device. The growth experiments showed complex evolution of the cross-sectional structures, and it was explained in terms of kinetics determining facet boundaries. Straight arrays of triangular nanowires with 60 nm base width as well as hexagonal arrays of trapezoidal nanowires with a node density of 7.5×10 6 cm -2 were successfully grown with the aid of computer simulation. The result shows feasibility of growing high-density hexagonal networks of GaAs nanowires with precise control of the shape and size.
... to improve memory in healthy adults. Male-pattern hair growth in women (hirsutism). Early research shows that drinking ... and other hormones in women with male-pattern hair growth. But it doesn't seem to greatly reduce ...
Jahanishakib, Fatemeh; Mirkarimi, Seyed Hamed; Salmanmahiny, Abdolrassoul; Poodat, Fatemeh
2018-05-08
Efficient land use management requires awareness of past changes, present actions, and plans for future developments. Part of these requirements is achieved using scenarios that describe a future situation and the course of changes. This research aims to link scenario results with spatially explicit and quantitative forecasting of land use development. To develop land use scenarios, SMIC PROB-EXPERT and MORPHOL methods were used. It revealed eight scenarios as the most probable. To apply the scenarios, we considered population growth rate and used a cellular automata-Markov chain (CA-MC) model to implement the quantified changes described by each scenario. For each scenario, a set of landscape metrics was used to assess the ecological integrity of land use classes in terms of fragmentation and structural connectivity. The approach enabled us to develop spatial scenarios of land use change and detect their differences for choosing the most integrated landscape pattern in terms of landscape metrics. Finally, the comparison between paired forecasted scenarios based on landscape metrics indicates that scenarios 1-1, 2-2, 3-2, and 4-1 have a more suitable integrity. The proposed methodology for developing spatial scenarios helps executive managers to create scenarios with many repetitions and customize spatial patterns in real world applications and policies.
2009-02-19
magnesium dopant concentration. A digital micromirror device is introduced to pattern incident UV radiation during InGaN growth, demonstrating that the...magnesium dopant concentration. A digital micromirror device is introduced to pattern incident UV radiation during InGaN growth, demonstrating that the...successful compositional patterning of InGaN using in situ digital micromirror device (DMD) patterning of ultraviolet (UV
Growth pattern from birth to adulthood in African pygmies of known age
Rozzi, Fernando V. Ramirez; Koudou, Yves; Froment, Alain; Le Bouc, Yves; Botton, Jérémie
2015-01-01
The African pygmy phenotype stems from genetic foundations and is considered to be the product of a disturbance in the growth hormone–insulin-like growth factor (GH–IGF) axis. However, when and how the pygmy phenotype is acquired during growth remains unknown. Here we describe growth patterns in Baka pygmies based on two longitudinal studies of individuals of known age, from the time of birth to the age of 25 years. Body size at birth among the Baka is within standard limits, but their growth rate slows significantly during the first two years of life. It then more or less follows the standard pattern, with a growth spurt at adolescence. Their life history variables do not allow the Baka to be distinguished from other populations. Therefore, the pygmy phenotype in the Baka is the result of a change in growth that occurs during infancy, which differentiates them from East African pygmies revealing convergent evolution. PMID:26218408
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karnosky, David F; Podila, G Krishna; Burton, Andrew J
2009-02-17
This project used gene expression patterns from two forest Free-Air CO2 Enrichment (FACE) experiments (Aspen FACE in northern Wisconsin and POPFACE in Italy) to examine ways to increase the aboveground carbon sequestration potential of poplars (Populus). The aim was to use patterns of global gene expression to identify candidate genes for increased carbon sequestration. Gene expression studies were linked to physiological measurements in order to elucidate bottlenecks in carbon acquisition in trees grown in elevated CO2 conditions. Delayed senescence allowing additional carbon uptake late in the growing season, was also examined, and expression of target genes was tested in elitemore » P. deltoides x P. trichocarpa hybrids. In Populus euramericana, gene expression was sensitive to elevated CO2, but the response depended on the developmental age of the leaves. Most differentially expressed genes were upregulated in elevated CO2 in young leaves, while most were downregulated in elevated CO2 in semi-mature leaves. In P. deltoides x P. trichocarpa hybrids, leaf development and leaf quality traits, including leaf area, leaf shape, epidermal cell area, stomatal number, specific leaf area, and canopy senescence were sensitive to elevated CO2. Significant increases under elevated CO2 occurred for both above- and belowground growth in the F-2 generation. Three areas of the genome played a role in determining aboveground growth response to elevated CO2, with three additional areas of the genome important in determining belowground growth responses to elevated CO2. In Populus tremuloides, CO2-responsive genes in leaves were found to differ between two aspen clones that showed different growth responses, despite similarity in many physiological parameters (photosynthesis, stomatal conductance, and leaf area index). The CO2-responsive clone shunted C into pathways associated with active defense/response to stress, carbohydrate/starch biosynthesis and subsequent growth. The CO2-unresponsive clone partitioned C into pathways associated with passive defense and cell wall thickening. These results indicate that there is significant variation in gene expression patterns between different tree genotypes. Consequently, future efforts to improve productivity or other advantageous traits for carbon sequestration should include an examination of genetic variability in CO2 responsiveness.« less
... raspberry ketone solution to the scalp might increase hair growth in people with hair loss. Male pattern baldness ( ... raspberry ketone solution to the scalp might increase hair growth in people with male pattern baldness Obesity. Early ...
Montoya, Sebastián Giraldo; Motoike, Sérgio Yoshimitsu; Kuki, Kacilda Naomi; Couto, Adriano Donato
2016-10-01
Main conclusion Macauba palm fruiting is supra-annual, and the fruit growth follows a double sigmoidal trend. The prevailing compound in the mesocarp differs as the fruit ages, oil being the major storage compound. Acrocomia aculeata, macauba palm, is a conspicuous species in the tropical Americas. Because the species is highly productive in oil-rich fruits, it is the subject of domestication as an alternative vegetable oil crop, especially as a bioenergy feedstock. This detailed study first presents the macauba fruit growth and development patterns, morphological changes and accumulation of organic compounds. Fruits were monitored weekly in a natural population. The fruiting was supra-annual, and the fruit growth curve followed a double sigmoidal trend with four stages (S): SI-slow growth and negligible differentiation of the fruit inner parts; SII-first growth spurt and visible, but not complete, differentiation of the inner parts; SIII-growth slowed down and all structures attained differentiation; and SIV-second growth spurt and fruit maturation. In SII, the exocarp and endocarp were the main contributors to fruit growth, whereas the mesocarp and endosperm were responsible for most of the weight gain during SIV. In comparison with starch and oil, soluble sugars did not accumulate in the mesocarp. However, starch was transitory and fueled the oil synthesis. The protective layers, the exocarp and endocarp, fulfilling their ecological roles, were the first to reach maturity, followed by the storage tissues, the mesocarp, and endosperm. The amount and nature of organic compounds in the mesocarp varied with the fruit development and growth stages, and oil was the main and final storage material. The description of macauba fruit's transformations and their temporal order may be of importance for future ecological and agronomical references.
Characteristics of proportionate growth observed in instability patterns of miscible fluids
NASA Astrophysics Data System (ADS)
Bischofberger, Irmgard; Ramachandran, Radha; Nagel, Sidney R.; Nagel lab Team
2014-11-01
As a baby mammal grows, different parts of its body develop at the nearly the same rate and thus to a good approximation in direct proportion to one another. This type of growth is called proportionate growth. As familiar as it appears to us, it is very rarely found in physical systems outside of the biological world. We here show an example of proportionate growth that occurs in the instability formed when a less viscous liquid, of viscosity ηin displaces a more viscous miscible one, of viscosity ηout. We investigate the growth of these patterns in a quasi-two-dimensional geometry. Within a range of viscosity ratios 0.1 <ηin /ηout <0.3, we observe the formation of small blunt structures that form at the edges of an inner circular region devoid of fingers. As the pattern grows, the size of these structures increases in proportion to the size of the inner circle, such that even small details in the shape of the pattern remain essentially unchanged during growth. These characteristics of proportionate growth are reflected in the shape of the interface in the third dimension as well.
Huang, Tousheng; Zhang, Huayong; Dai, Liming; Cong, Xuebing; Ma, Shengnan
2018-03-01
This research investigates the formation of banded vegetation patterns on hillslopes affected by interactions between sediment deposition and vegetation growth. The following two perspectives in the formation of these patterns are taken into consideration: (a) increased sediment deposition from plant interception, and (b) reduced plant biomass caused by sediment accumulation. A spatial model is proposed to describe how the interactions between sediment deposition and vegetation growth promote self-organization of banded vegetation patterns. Based on theoretical and numerical analyses of the proposed spatial model, vegetation bands can result from a Turing instability mechanism. The banded vegetation patterns obtained in this research resemble patterns reported in the literature. Moreover, measured by sediment dynamics, the variation of hillslope landform can be described. The model predicts how treads on hillslopes evolve with the banded patterns. Thus, we provide a quantitative interpretation for coevolution of vegetation patterns and landforms under effects of sediment redistribution. Copyright © 2018. Published by Elsevier Masson SAS.
Forecasting fluid milk and cheese demands for the next decade.
Schmit, T M; Kaiser, H M
2006-12-01
Predictions of future market demands and farm prices for dairy products are important determinants in developing marketing strategies and farm-production planning decisions. The objective of this report was to use current aggregate forecast data, combined with existing econometric models of demand and supply, to forecast retail demands for fluid milk and cheese and the supply and price of farm milk over the next decade. In doing so, we can investigate whether projections of population and consumer food-spending patterns will extend or alter current consumption trends and examine the implications of future generic advertising strategies for dairy products. To conduct the forecast simulations and appropriately allocate the farm milk supply to various uses, we used a partial equilibrium model of the US domestic dairy sector that segmented the industry into retail, wholesale, and farm markets. Model simulation results indicated that declines in retail per capita demand would persist but at a reduced rate from years past and that retail per capita demand for cheese would continue to grow and strengthen over the next decade. These predictions rely on expected changes in the size of populations of various ages, races, and ethnicities and on existing patterns of spending on food at home and away from home. The combined effect of these forecasted changes in demand levels was reflected in annualized growth in the total farm-milk supply that was similar to growth realized during the past few years. Although we expect nominal farm milk prices to increase over the next decade, we expect real prices (relative to assumed growth in feed costs) to remain relatively stable and show no increase until the end of the forecast period. Supplemental industry model simulations also suggested that net losses in producer revenues would result if only nominal levels of generic advertising spending were maintained in forthcoming years. In fact, if real generic advertising expenditures are increased relative to 2005 levels, returns to the investment in generic advertising can be improved. Specifically, each additional real dollar invested in generic advertising for fluid milk and cheese products over the forecast period would result in an additional 5.61 dollars in producer revenues.
Wrinkling pattern evolution of cylindrical biological tissues with differential growth.
Jia, Fei; Li, Bo; Cao, Yan-Ping; Xie, Wei-Hua; Feng, Xi-Qiao
2015-01-01
Three-dimensional surface wrinkling of soft cylindrical tissues induced by differential growth is explored. Differential volumetric growth can cause their morphological stability, leading to the formation of hexagonal and labyrinth wrinkles. During postbuckling, multiple bifurcations and morphological transitions may occur as a consequence of continuous growth in the surface layer. The physical mechanisms underpinning the morphological evolution are examined from the viewpoint of energy. Surface curvature is found to play a regulatory role in the pattern evolution. This study may not only help understand the morphogenesis of soft biological tissues, but also inspire novel routes for creating desired surface patterns of soft materials.
Control of Organ Growth by Patterning and Hippo Signaling in Drosophila
Irvine, Kenneth D.; Harvey, Kieran F.
2015-01-01
Control of organ size is of fundamental importance and is controlled by genetic, environmental, and mechanical factors. Studies in many species have pointed to the existence of both organ-extrinsic and -intrinsic size-control mechanisms, which ultimately must coordinate to regulate organ size. Here, we discuss organ size control by organ patterning and the Hippo pathway, which both act in an organ-intrinsic fashion. The influence of morphogens and other patterning molecules couples growth and patterning, whereas emerging evidence suggests that the Hippo pathway controls growth in response to mechanical stimuli and signals emanating from cell–cell interactions. Several points of cross talk have been reported between signaling pathways that control organ patterning and the Hippo pathway, both at the level of membrane receptors and transcriptional regulators. However, despite substantial progress in the past decade, key questions in the growth-control field remain, including precisely how and when organ patterning and the Hippo pathway communicate to control size, and whether these communication mechanisms are organ specific or general. In addition, elucidating mechanisms by which organ-intrinsic cues, such as patterning factors and the Hippo pathway, interface with extrinsic cues, such as hormones to control organ size, remain unresolved. PMID:26032720
Doratiotto, S; Marongiu, F; Faedda, S; Pani, P; Laconi, E
2009-01-01
Many human solid cancers arise from focal proliferative lesions that long precede the overt clinical appearance of the disease. The available evidence supports the notion that cancer precursor lesions are clonal in origin, and this notion forms the basis for most of the current theories on the pathogenesis of neoplastic disease. In contrast, far less attention has been devoted to the analysis of the phenotypic property that serves to define these focal lesions, i.e. their altered growth pattern. In fact, the latter is often considered a mere morphological by-product of clonal growth, with no specific relevance in the process. In the following study, evidence will be presented to support the concept that focal growth pattern is an inherent property of altered cells, independent of clonal growth; furthermore, it will be discussed how such a property, far from being merely descriptive, might indeed play a fundamental role in the sequence of events leading to the development of cancer. Within this paradigm, the earliest steps of neoplasia should be considered and analysed as defects in the mechanisms of tissue pattern formation.
Van Neste, D J J; Rushton, D H
2016-08-01
Hair loss is related to follicular density, programmed regrowth and hair productivity. The dissatisfaction with hair growth in patients experiencing hair loss might be due to slower linear hair growth rate (LHGR). LHGR and hair diameter was evaluated in Caucasian controls and patients with patterned hair loss employing the validated non-invasive, contrast-enhanced-phototrichogram with exogen collection. We evaluated 59,765 anagen hairs (controls 24,609, patients 35,156) and found thinner hairs grew slower than thicker hairs. LHGR in normal women was generally higher than in normal men. LHGR correlates with hair diameter (P < 0.006) and global thinning is associated with slower growth rates. Compared with hair of equal thickness in controls, subjects affected with patterned hair loss showed reduced hair growth rates, an observation found in both male and female patients. Males with pattern hair loss showed further reduction in growth rates as clinical severity worsened. However, sample size limitations prevented statistical evaluation of LHGR in severely affected females. Caucasian ethnicity. In pattern hair loss, LHGR significantly contributes to the apparent decrease in hair volume in affected areas. In early onset, LHRG might have a prognostic value in females but not in males. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Bettigole, Charles A.; Donovan, Therese; Manning, Robert; Austin, John; Long, Robert
2014-01-01
The conversion of natural lands to developed uses may pose the single greatest human threat to global terrestrial biodiversity. Continued human growth and development over the next century will further exacerbate these effects of habitat loss and fragmentation. Natural resource managers are tasked with managing wildlife as a public trust, yet often have little say in land use decisions. Generally speaking, decision makers could benefit from an understanding of what different regulations mean in terms of wildlife distribution. In a previous paper (Bettigole et al., 2013), we surveyed town residents throughout Vermont to measure how respondents feel about a range of development levels within their town boundaries. We estimated the “social carrying capacity for development” – orSKd – for 251 towns in Vermont. SKd provides an estimate of the level of developed land cover classes that town residents deem “acceptable” within their town boundaries. In this paper, we design a framework for linking the town-specific SKd estimates with the wildlife distribution patterns for three wide-ranging mammalian species: American black bear (Ursus americanus), fisher (Martes pennanti), and bobcat (Lynx rufus). We simulated landscape conditions at SKd for each town in Vermont, and then used existing occupancy models for the three target species to spatially map and compare occupancy rates in the baseline year 2000 with occupancy rates at SKd. With nearly 90% of Vermont towns willing to increase developed landcover classes within town boundaries compared to baseline levels, significant state-wide changes in occupancy rates were predicted for all three focal species. Average occupancy rates declined by −15.9% and −3.1% for black bear and bobcats, respectively. Average occupancy rates for fisher increased by 9.0%. This study provides a method for linking development standards within a town with wildlife occurrence. Across towns, the methodology spatially identifies areas that may be at risk of future development, as well as identifying areas where wildlife distribution patterns may face future change as a result of increased human population growth and development.
Spatial Patterning of Newly-Inserted Material during Bacterial Cell Growth
NASA Astrophysics Data System (ADS)
Ursell, Tristan
2012-02-01
In the life cycle of a bacterium, rudimentary microscopy demonstrates that cell growth and elongation are essential characteristics of cellular reproduction. The peptidoglycan cell wall is the main load-bearing structure that determines both cell shape and overall size. However, simple imaging of cellular growth gives no indication of the spatial patterning nor mechanism by which material is being incorporated into the pre-existing cell wall. We employ a combination of high-resolution pulse-chase fluorescence microscopy, 3D computational microscopy, and detailed mechanistic simulations to explore how spatial patterning results in uniform growth and maintenance of cell shape. We show that growth is happening in discrete bursts randomly distributed over the cell surface, with a well-defined mean size and average rate. We further use these techniques to explore the effects of division and cell wall disrupting antibiotics, like cephalexin and A22, respectively, on the patterning of cell wall growth in E. coli. Finally, we explore the spatial correlation between presence of the bacterial actin-like cytoskeletal protein, MreB, and local cell wall growth. Together these techniques form a powerful method for exploring the detailed dynamics and involvement of antibiotics and cell wall-associated proteins in bacterial cell growth.[4pt] In collaboration with Kerwyn Huang, Stanford University.
ERIC Educational Resources Information Center
Koss, Kalsea J.; George, Melissa R. W.; Davies, Patrick T.; Cicchetti, Dante; Cummings, E. Mark; Sturge-Apple, Melissa L.
2013-01-01
Examining children's physiological functioning is an important direction for understanding the links between interparental conflict and child adjustment. Utilizing growth mixture modeling, the present study examined children's cortisol reactivity patterns in response to a marital dispute. Analyses revealed three different patterns of cortisol…
Enamel formation and growth in non-mammalian cynodonts
Dirks, Wendy; Martinelli, Agustín G.
2018-01-01
The early evolution of mammals is associated with the linked evolutionary origin of diphyodont tooth replacement, rapid juvenile growth and determinate adult growth. However, specific relationships among these characters during non-mammalian cynodont evolution require further exploration. Here, polarized light microscopy revealed incremental lines, resembling daily laminations of extant mammals, in histological sections of enamel in eight non-mammalian cynodont species. In the more basal non-probainognathian group, enamel extends extremely rapidly from cusp to cervix. By contrast, the enamel of mammaliamorphs is gradually accreted, with slow rates of crown extension, more typical of the majority of non-hypsodont crown mammals. These results are consistent with the reduction in dental replacement rate across the non-mammalian cynodont lineage, with greater rates of crown extension required in most non-probainognathians, and slower crown extension rates permitted in mammaliamorphs, which have reduced patterns of dental replacement in comparison with many non-probainognathians. The evolution of mammal-like growth patterns, with faster juvenile growth and more abruptly terminating adult growth, is linked with this reduction in dental replacement rates and may provide an additional explanation for the observed pattern in enamel growth rates. It is possible that the reduction in enamel extension rates in mammaliamorphs reflects an underlying reduction in skeletal growth rates at the time of postcanine formation, due to a more abruptly terminating pattern of adult growth in these more mammal-like, crownward species. PMID:29892415
Secondary Growth and Carbohydrate Storage Patterns Differ between Sexes in Juniperus thurifera
DeSoto, Lucía; Olano, José M.; Rozas, Vicente
2016-01-01
Differences in reproductive costs between male and female plants have been shown to foster sex-related variability in growth and C-storage patterns. The extent to which differential secondary growth in dioecious trees is associated with changes in stem carbohydrate storage patterns, however, has not been fully assessed. We explored the long-term radial growth and the seasonal variation of non-structural carbohydrate (NSC) content in sapwood of 40 males and 40 females Juniperus thurifera trees at two sites. NSC content was analyzed bimonthly for 1 year, and tree-ring width was measured for the 1931–2010 period. Sex-related differences in secondary growth and carbohydrate storage were site-dependent. Under less restrictive environmental conditions females grew more and stored more non-soluble sugars than males. Our results reinforce that sex-related differences in growth and resource storage may be a consequence of local adaptation to environmental conditions. Seasonal variation in soluble sugars concentration was opposite to cambial activity, with minima seen during periods of maximal secondary growth, and did not differ between the sexes or sites. Trees with higher stem NSC levels at critical periods showed higher radial growth, suggesting a common mechanism irrespective of site or sex. Sex-related patterns of secondary growth were linked to differences in non-soluble sugars content indicating sex-specific strategies of long-term performance. PMID:27303418
Sugiura, D; Tateno, M
2013-08-01
We investigated the nitrogen and carbohydrate allocation patterns of trees under heterogeneous light environments using saplings of the devil maple tree (Acer diabolicum) with Y-shaped branches. Different branch groups were created: all branches of a sapling exposed to full light (L-branches), all branches exposed to full shade (S-branches), and half of the branches of a sapling exposed to light (HL-branches) and the other half exposed to shade (HS-branches). Throughout the growth period, nitrogen was preferentially allocated to HL-branches, whereas nitrogen allocation to HS-branches was suppressed compared to L- and S-branches. HL-branches with the highest leaf nitrogen content (N(area)) also had the highest rates of growth, and HS-branches with the lowest N(area) had the lowest observed growth rates. In addition, net nitrogen assimilation, estimated using a photosynthesis model, was strongly correlated with branch growth and whole-plant growth. In contrast, patterns of photosynthate allocation to branches and roots were not affected by the light conditions of the other branch. These observations suggest that tree canopies develop as a result of resource allocation patterns, where the growth of sun-lit branches is favoured over shaded branches, which leads to enhanced whole-plant growth in heterogeneous light environments. Our results indicate that whole-plant growth is enhanced by the resource allocation patterns created for saplings in heterogeneous light environments.
The effect of education on climate change risks
NASA Astrophysics Data System (ADS)
O'Neill, B. C.; KC, S.; Jiang, L.; Fuchs, R.; Pachauri, S.; Ren, X.; Zhang, T.; Laidlaw, E.
2017-12-01
Changes in the demographic and socio-economic compositions of populations are relevant to the climate change issue because these characteristics can be important determinants both of the capacity to adapt to climate change impacts as well as of energy use and greenhouse gas emissions, and therefore climate change. However, the incorporation of major trends such as aging, urbanization, and changes in household size into projections of future energy use and emissions is rare. Here we build on our previous work in this area by exploring the implications of future changes in educational attainment for the climate issue. Changes in the educational composition of the population may reduce the vulnerability of the population to climate change impacts, reducing risks. However they may also have effects on energy use and land use, and the resulting greenhouse gas emissions that drive climate change and increase risks. The direction of the effect of education on emissions is itself ambiguous. On the one hand, improvements in education can be expected to lead to faster fertility decline and slower population growth which, all else equal, would be expected to reduce emissions. On the other hand, education can also be expected to lead to faster economic growth, which would tend to increase emissions, and also to changes in consumption patterns. We employ iPETS, an integrated assessment model that includes a multi-region model of the world economy, driven with a new set of country-specific projections of future educational composition, to test the net effect of education on energy use and emissions on four world regions (China, India, Latin America, and Rest of Asia + Middle East) and therefore on climate. We also calculate the Human Development Index (HDI) for each region resulting from these scenarios, as an indicator of vulnerability to climate impacts. We find that the net effect of improved education is to increase emissions in the medium term driven primarily by increased labor productivity, but decrease emissions in the long term primarily as a result of slower population growth. At the same time, improved education positively affects all aspects of the HDI at all time horizons. Important caveats include the uncertainty in the effect of education on economic growth.
Presence of skeletal banding in a reef-building tropical crustose coralline alga
Lewis, Bonnie; Lough, Janice M.; Nash, Merinda C.; Diaz-Pulido, Guillermo
2017-01-01
The presence of banding in the skeleton of coralline algae has been reported in many species, primarily from temperate and polar regions. Similar to tree rings, skeletal banding can provide information on growth rate, age, and longevity; as well as records of past environmental conditions and the coralline alga’s growth responses to such changes. The aim of this study was to explore the presence and characterise the nature of banding in the tropical coralline alga Porolithon onkodes, an abundant and key reef-building species on the Great Barrier Reef (GBR) Australia, and the Indo-Pacific in general. To achieve this we employed various methods including X-ray diffraction (XRD) to determine seasonal mol% magnesium (Mg), mineralogy mapping to investigate changes in dominant mineral phases, scanning electron microscopy–electron dispersive spectroscopy (SEM-EDS), and micro-computed tomography (micro-CT) scanning to examine changes in cell size and density banding, and UV light to examine reproductive (conceptacle) banding. Seasonal variation in the Mg content of the skeleton did occur and followed previously recorded variations with the highest mol% MgCO3 in summer and lowest in winter, confirming the positive relationship between seawater temperature and mol% MgCO3. Rows of conceptacles viewed under UV light provided easily distinguishable bands that could be used to measure vertical growth rate (1.4 mm year-1) and age of the organism. Micro-CT scanning showed obvious banding patterns in relation to skeletal density, and mineralogical mapping revealed patterns of banding created by changes in Mg content. Thus, we present new evidence for seasonal banding patterns in the tropical coralline alga P. onkodes. This banding in the P. onkodes skeleton can provide valuable information into the present and past life history of this important reef-building species, and is essential to assess and predict the response of these organisms to future climate and environmental changes. PMID:28976988
U.S. Population Growth: Prospects and Policy.
ERIC Educational Resources Information Center
McFalls, Joseph A., Jr.; And Others
1984-01-01
The Commission on Population Growth and the American Future concluded that zero population growth (ZPG) is in the best interest of the United States. To achieve ZPG in the future, the United States must keep fertility and net immigration relatively low. Practical problems are discussed. (RM)
Groenendijk, Peter; van der Sleen, Peter; Vlam, Mart; Bunyavejchewin, Sarayudh; Bongers, Frans; Zuidema, Pieter A
2015-10-01
The important role of tropical forests in the global carbon cycle makes it imperative to assess changes in their carbon dynamics for accurate projections of future climate-vegetation feedbacks. Forest monitoring studies conducted over the past decades have found evidence for both increasing and decreasing growth rates of tropical forest trees. The limited duration of these studies restrained analyses to decadal scales, and it is still unclear whether growth changes occurred over longer time scales, as would be expected if CO2 -fertilization stimulated tree growth. Furthermore, studies have so far dealt with changes in biomass gain at forest-stand level, but insights into species-specific growth changes - that ultimately determine community-level responses - are lacking. Here, we analyse species-specific growth changes on a centennial scale, using growth data from tree-ring analysis for 13 tree species (~1300 trees), from three sites distributed across the tropics. We used an established (regional curve standardization) and a new (size-class isolation) growth-trend detection method and explicitly assessed the influence of biases on the trend detection. In addition, we assessed whether aggregated trends were present within and across study sites. We found evidence for decreasing growth rates over time for 8-10 species, whereas increases were noted for two species and one showed no trend. Additionally, we found evidence for weak aggregated growth decreases at the site in Thailand and when analysing all sites simultaneously. The observed growth reductions suggest deteriorating growth conditions, perhaps due to warming. However, other causes cannot be excluded, such as recovery from large-scale disturbances or changing forest dynamics. Our findings contrast growth patterns that would be expected if elevated CO2 would stimulate tree growth. These results suggest that commonly assumed growth increases of tropical forests may not occur, which could lead to erroneous predictions of carbon dynamics of tropical forest under climate change. © 2015 John Wiley & Sons Ltd.
The hydraulic limitation hypothesis revisited.
Ryan, Michael G; Phillips, Nathan; Bond, Barbara J
2006-03-01
We proposed the hydraulic limitation hypothesis (HLH) as a mechanism to explain universal patterns in tree height, and tree and stand biomass growth: height growth slows down as trees grow taller, maximum height is lower for trees of the same species on resource-poor sites and annual wood production declines after canopy closure for even-aged forests. Our review of 51 studies that measured one or more of the components necessary for testing the hypothesis showed that taller trees differ physiologically from shorter, younger trees. Stomatal conductance to water vapour (g(s)), photosynthesis (A) and leaf-specific hydraulic conductance (K L) are often, but not always, lower in taller trees. Additionally, leaf mass per area is often greater in taller trees, and leaf area:sapwood area ratio changes with tree height. We conclude that hydraulic limitation of gas exchange with increasing tree size is common, but not universal. Where hydraulic limitations to A do occur, no evidence supports the original expectation that hydraulic limitation of carbon assimilation is sufficient to explain observed declines in wood production. Any limit to height or height growth does not appear to be related to the so-called age-related decline in wood production of forests after canopy closure. Future work on this problem should explicitly link leaf or canopy gas exchange with tree and stand growth, and consider a more fundamental assumption: whether tree biomass growth is limited by carbon availability.
NASA Astrophysics Data System (ADS)
Venegas-González, Alejandro; Chagas, Matheus Peres; Anholetto Júnior, Claudio Roberto; Alvares, Clayton Alcarde; Roig, Fidel Alejandro; Tomazello Filho, Mario
2016-01-01
We explored the relationship between tree growth in two tropical species and local and large-scale climate variability in Southeastern Brazil. Tree ring width chronologies of Tectona grandis (teak) and Pinus caribaea (Caribbean pine) trees were compared with local (Water Requirement Satisfaction Index—WRSI, Standardized Precipitation Index—SPI, and Palmer Drought Severity Index—PDSI) and large-scale climate indices that analyze the equatorial pacific sea surface temperature (Trans-Niño Index-TNI and Niño-3.4-N3.4) and atmospheric circulation variations in the Southern Hemisphere (Antarctic Oscillation-AAO). Teak trees showed positive correlation with three indices in the current summer and fall. A significant correlation between WRSI index and Caribbean pine was observed in the dry season preceding tree ring formation. The influence of large-scale climate patterns was observed only for TNI and AAO, where there was a radial growth reduction in months preceding the growing season with positive values of the TNI in teak trees and radial growth increase (decrease) during December (March) to February (May) of the previous (current) growing season with positive phase of the AAO in teak (Caribbean pine) trees. The development of a new dendroclimatological study in Southeastern Brazil sheds light to local and large-scale climate influence on tree growth in recent decades, contributing in future climate change studies.
Hafez, Pezhman; Jose, Shinsmon; Chowdhury, Shiplu R; Ng, Min Hwei; Ruszymah, B H I; Abdul Rahman Mohd, Ramzisham
2016-01-01
The alarming rate of increase in myocardial infarction and marginal success in efforts to regenerate the damaged myocardium through conventional treatments creates an exceptional avenue for cell-based therapy. Adult bone marrow mesenchymal stem cells (MSCs) can be differentiated into cardiomyocytes, by treatment with 5-azacytidine, thus, have been anticipated as a therapeutic tool for myocardial infarction treatment. In this study, we investigated the ability of basic fibroblastic growth factor (bFGF) and hydrocortisone as a combined treatment to stimulate the differentiation of MSCs into cardiomyocytes. MSCs were isolated from sternal marrow of patients undergoing heart surgery (CABG). The isolated cells were initially monitored for the growth pattern, followed by characterization using ISCT recommendations. Cells were then differentiated using a combination of bFGF and hydrocortisone and evaluated for the expression of characteristic cardiac markers such as CTnI, CTnC, and Cnx43 at protein level using immunocytochemistry and flow cytometry, and CTnC and CTnT at mRNA level. The expression levels and pattern of the cardiac markers upon analysis with ICC and qRT-PCR were similar to that of 5-azacytidine induced cells and cultured primary human cardiomyocytes. However, flow cytometric evaluation revealed that induction with bFGF and hydrocortisone drives MSC differentiation to cardiomyocytes with a marginally higher efficiency. These results indicate that combination treatment of bFGF and hydrocortisone can be used as an alternative induction method for cardiomyogenic differentiation of MSCs for future clinical applications. © 2015 International Federation for Cell Biology.
Evans, Erin M.; Freund, Dana M.; Sondervan, Veronica M.; Cohen, Jerry D.; Hegeman, Adrian D.
2018-01-01
In this study we describe a [15N] stable isotopic labeling study of amino acids in Spirodela polyrhiza (common duckweed) grown under three different light and carbon input conditions which represent unique potential metabolic modes. Plants were grown with a light cycle, either with supplemental sucrose (mixotrophic) or without supplemental sucrose (photoautotrophic) and in the dark with supplemental sucrose (heterotrophic). Labeling patterns, pool sizes (both metabolically active and inactive), and kinetics/turnover rates were estimated for 17 of the proteinogenic amino acids. Estimation of these parameters followed several overall trends. First, most amino acids showed plateaus in labeling patterns of <100% [15N]-labeling, indicating the possibility of a large proportion of amino acids residing in metabolically inactive metabolite pools. Second, total pool sizes appear largest in the dark (heterotrophic) condition, whereas active pool sizes appeared to be largest in the light with sucrose (mixotrophic) growth condition. In contrast turnover measurements based on pool size were highest overall in the light with sucrose experiment, with the exception of leucine/isoleucine, lysine, and arginine, which all showed higher turnover in the dark. K-means clustering analysis also revealed more rapid turnover in the light treatments with many amino acids clustering in lower-turnover groups. Emerging insights from other research were also supported, such as the prevalence of alternate pathways for serine metabolism in non-photosynthetic cells. These data provide extensive novel information on amino acid pool size and kinetics in S. polyrhiza and can serve as groundwork for future metabolic studies. PMID:29904627
Evans, Erin M; Freund, Dana M; Sondervan, Veronica M; Cohen, Jerry D; Hegeman, Adrian D
2018-01-01
In this study we describe a [ 15 N] stable isotopic labeling study of amino acids in Spirodela polyrhiza (common duckweed) grown under three different light and carbon input conditions which represent unique potential metabolic modes. Plants were grown with a light cycle, either with supplemental sucrose (mixotrophic) or without supplemental sucrose (photoautotrophic) and in the dark with supplemental sucrose (heterotrophic). Labeling patterns, pool sizes (both metabolically active and inactive), and kinetics/turnover rates were estimated for 17 of the proteinogenic amino acids. Estimation of these parameters followed several overall trends. First, most amino acids showed plateaus in labeling patterns of <100% [ 15 N]-labeling, indicating the possibility of a large proportion of amino acids residing in metabolically inactive metabolite pools. Second, total pool sizes appear largest in the dark (heterotrophic) condition, whereas active pool sizes appeared to be largest in the light with sucrose (mixotrophic) growth condition. In contrast turnover measurements based on pool size were highest overall in the light with sucrose experiment, with the exception of leucine/isoleucine, lysine, and arginine, which all showed higher turnover in the dark. K-means clustering analysis also revealed more rapid turnover in the light treatments with many amino acids clustering in lower-turnover groups. Emerging insights from other research were also supported, such as the prevalence of alternate pathways for serine metabolism in non-photosynthetic cells. These data provide extensive novel information on amino acid pool size and kinetics in S. polyrhiza and can serve as groundwork for future metabolic studies.
NASA Astrophysics Data System (ADS)
Evans, Erin M.; Freund, Dana M.; Sondervan, Veronica M.; Cohen, Jerry D.; Hegeman, Adrian D.
2018-05-01
In this study we describe a [15N] stable isotopic labeling study of amino acids in Spirodela polyrhiza (common duckweed) grown under three different light and carbon input conditions which represent unique potential metabolic modes. Plants were grown with a light cycle, either with supplemental sucrose (mixotrophic) or without supplemental sucrose (photoautotrophic) and in the dark with supplemental sucrose (heterotrophic). Labeling patterns, pool sizes (both metabolically active and inactive), and kinetics/turnover rates were estimated for fifteen of the proteinogenic amino acids. Estimation of these parameters followed several overall trends. First, most amino acids showed plateaus in labeling patterns of less than 100% [15N]-labeling, indicating the possibility of a large proportion of amino acids residing in metabolically inactive metabolite pools. Second, total pool sizes appear largest in the dark (heterotrophic) condition, whereas active pool sizes appeared to be largest in the light with sucrose (mixotrophic) growth condition. In contrast turnover measurements based on pool size were highest overall in the light with sucrose experiment, with the exception of leucine/isoleucine, lysine, and arginine, which all showed higher turnover in the dark. K-means clustering analysis also revealed more rapid turnover in the light treatments with many amino acids clustering in lower-turnover groups. Emerging insights from other research were also supported, such as the prevalence of alternate pathways for serine metabolism in non-photosynthetic cells. These data provide extensive novel information on amino acid pool size and kinetics in S. polyrhiza and can serve as groundwork for future metabolic studies.
Zang, Christian; Hartl-Meier, Claudia; Dittmar, Christoph; Rothe, Andreas; Menzel, Annette
2014-12-01
The future performance of native tree species under climate change conditions is frequently discussed, since increasingly severe and more frequent drought events are expected to become a major risk for forest ecosystems. To improve our understanding of the drought tolerance of the three common European temperate forest tree species Norway spruce, silver fir and common beech, we tested the influence of climate and tree-specific traits on the inter and intrasite variability in drought responses of these species. Basal area increment data from a large tree-ring network in Southern Germany and Alpine Austria along a climatic cline from warm-dry to cool-wet conditions were used to calculate indices of tolerance to drought events and their variability at the level of individual trees and populations. General patterns of tolerance indicated a high vulnerability of Norway spruce in comparison to fir and beech and a strong influence of bioclimatic conditions on drought response for all species. On the level of individual trees, low-growth rates prior to drought events, high competitive status and low age favored resilience in growth response to drought. Consequently, drought events led to heterogeneous and variable response patterns in forests stands. These findings may support the idea of deliberately using spontaneous selection and adaption effects as a passive strategy of forest management under climate change conditions, especially a strong directional selection for more tolerant individuals when frequency and intensity of summer droughts will increase in the course of global climate change. © 2014 John Wiley & Sons Ltd.
Fry, Danny L.; Stephens, Scott L.; Collins, Brandon M.; North, Malcolm P.; Franco-Vizcaíno, Ernesto; Gill, Samantha J.
2014-01-01
In Mediterranean environments in western North America, historic fire regimes in frequent-fire conifer forests are highly variable both temporally and spatially. This complexity influenced forest structure and spatial patterns, but some of this diversity has been lost due to anthropogenic disruption of ecosystem processes, including fire. Information from reference forest sites can help management efforts to restore forests conditions that may be more resilient to future changes in disturbance regimes and climate. In this study, we characterize tree spatial patterns using four-ha stem maps from four old-growth, Jeffrey pine-mixed conifer forests, two with active-fire regimes in northwestern Mexico and two that experienced fire exclusion in the southern Sierra Nevada. Most of the trees were in patches, averaging six to 11 trees per patch at 0.007 to 0.014 ha−1, and occupied 27–46% of the study areas. Average canopy gap sizes (0.04 ha) covering 11–20% of the area were not significantly different among sites. The putative main effects of fire exclusion were higher densities of single trees in smaller size classes, larger proportion of trees (≥56%) in large patches (≥10 trees), and decreases in spatial complexity. While a homogenization of forest structure has been a typical result from fire exclusion, some similarities in patch, single tree, and gap attributes were maintained at these sites. These within-stand descriptions provide spatially relevant benchmarks from which to manage for structural heterogeneity in frequent-fire forest types. PMID:24586472
Turner Tomaszewicz, Calandra N; Seminoff, Jeffrey A; Peckham, S Hoyt; Avens, Larisa; Kurle, Carolyn M
2017-05-01
Determining location and timing of ontogenetic shifts in the habitat use of highly migratory species, along with possible intrapopulation variation in these shifts, is essential for understanding mechanisms driving alternate life histories and assessing overall population trends. Measuring variations in multi-year habitat-use patterns is especially difficult for remote oceanic species. To investigate the potential for differential habitat use among migratory marine vertebrates, we measured the naturally occurring stable nitrogen isotope (δ 15 N) patterns that differentiate distinct ocean regions to create a 'regional isotope characterization', analysed the δ 15 N values from annual bone growth layer rings from dead-stranded animals, and then combined the bone and regional isotope data to track individual animal movement patterns over multiple years. We used humeri from juvenile North Pacific loggerhead turtles (Caretta caretta), animals that undergo long migrations across the North Pacific Ocean (NPO), using multiple discrete regions as they develop to adulthood. Typical of many migratory marine species, ontogenetic changes in habitat use throughout their decades-long juvenile stage is poorly understood, but each potential habitat has unique foraging opportunities and spatially explicit natural and anthropogenic threats that could affect key life-history parameters. We found a bimodal size/age distribution in the timing that juveniles underwent an ontogenetic habitat shift from the oceanic central North Pacific (CNP) to the neritic east Pacific region near the Baja California Peninsula (BCP) (42·7 ± 7·2 vs. 68·3 ± 3·4 cm carapace length, 7·5 ± 2·7 vs. 15·6 ± 1·7 years). Important to the survival of this population, these disparate habitats differ considerably in their food availability, energy requirements and threats, and these differences can influence life-history parameters such as growth, survival and future fecundity. This is the first evidence of alternative ontogenetic shifts and habitat-use patterns for juveniles foraging in the eastern NPO. We combine two techniques, skeletochronology and stable isotope analysis, to reconstruct multi-year habitat-use patterns of a remote migratory species, linked to estimated ages and body sizes of individuals, to reveal variable ontogeny during the juvenile life stage that could drive alternate life histories and that has the potential to illuminate the migration patterns for other species with accretionary tissues. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.
NASA Astrophysics Data System (ADS)
Gu, Jian
This thesis explores how nanopatterns can be used to control the growth of single-crystal silicon on amorphous substrates at low temperature, with potential applications on flat panel liquid-crystal display and 3-dimensional (3D) integrated circuits. I first present excimer laser annealing of amorphous silicon (a-Si) nanostructures on thermally oxidized silicon wafer for controlled formation of single-crystal silicon islands. Preferential nucleation at pattern center is observed due to substrate enhanced edge heating. Single-grain silicon is obtained in a 50 nm x 100 nm rectangular pattern by super lateral growth (SLG). Narrow lines (such as 20-nm-wide) can serve as artificial heterogeneous nucleation sites during crystallization of large patterns, which could lead to the formation of single-crystal silicon islands in a controlled fashion. In addition to eximer laser annealing, NanoPAtterning and nickel-induced lateral C&barbelow;rystallization (NanoPAC) of a-Si lines is presented. Single-crystal silicon is achieved by NanoPAC. The line width of a-Si affects the grain structure of crystallized silicon lines significantly. Statistics show that single-crystal silicon is formed for all lines with width between 50 nm to 200 nm. Using in situ transmission electron microscopy (TEM), nickel-induced lateral crystallization (Ni-ILC) of a-Si inside a pattern is revealed; lithography-constrained single seeding (LISS) is proposed to explain the single-crystal formation. Intragrain line and two-dimensional defects are also studied. To test the electrical properties of NanoPAC silicon films, sub-100 nm thin-film transistors (TFTs) are fabricated using Patten-controlled crystallization of Ṯhin a-Si channel layer and H&barbelow;igh temperature (850°C) annealing, coined PaTH process. PaTH TFTs show excellent device performance over traditional solid phase crystallized (SPC) TFTs in terms of threshold voltage, threshold voltage roll-off, leakage current, subthreshold swing, on/off current ratio, device-to-device uniformity etc. Two-dimensional device simulations show that PaTH TFTs are comparable to silicon-on-insulator (SOI) devices, making it a promising candidate for the fabrication of future high performance, low-power 3D integrated circuits. Finally, an ultrafast nanolithography technique, laser-assisted direct imprint (LADI) is introduced. LADI shows the ability of patterning nanostructures directly in silicon in nanoseconds with sub-10 nm resolution. The process has potential applications in multiple disciplines, and could be extended to other materials and processes.
Amjadipour, Mojtaba; MacLeod, Jennifer; Lipton-Duffin, Josh; Iacopi, Francesca; Motta, Nunzio
2017-08-25
Epitaxial growth of graphene on SiC is a scalable procedure that does not require any further transfer step, making this an ideal platform for graphene nanostructure fabrication. Focused ion beam (FIB) is a very promising tool for exploring the reduction of the lateral dimension of graphene on SiC to the nanometre scale. However, exposure of graphene to the Ga + beam causes significant surface damage through amorphisation and contamination, preventing epitaxial graphene growth. In this paper we demonstrate that combining a protective silicon layer with FIB patterning implemented prior to graphene growth can significantly reduce the damage associated with FIB milling. Using this approach, we successfully achieved graphene growth over 3C-SiC/Si FIB patterned nanostructures.
Piekarska-Stachowiak, Anna; Nakielski, Jerzy
2013-12-01
In contrast to seed plants, the roots of most ferns have a single apical cell which is the ultimate source of all cells in the root. The apical cell has a tetrahedral shape and divides asymmetrically. The root cap derives from the distal division face, while merophytes derived from three proximal division faces contribute to the root proper. The merophytes are produced sequentially forming three sectors along a helix around the root axis. During development, they divide and differentiate in a predictable pattern. Such growth causes cell pattern of the root apex to be remarkably regular and self-perpetuating. The nature of this regularity remains unknown. This paper shows the 2D simulation model for growth of the root apex with the apical cell in application to Azolla pinnata. The field of growth rates of the organ, prescribed by the model, is of a tensor type (symplastic growth) and cells divide taking principal growth directions into account. The simulations show how the cell pattern in a longitudinal section of the apex develops in time. The virtual root apex grows realistically and its cell pattern is similar to that observed in anatomical sections. The simulations indicate that the cell pattern regularity results from cell divisions which are oriented with respect to principal growth directions. Such divisions are essential for maintenance of peri-anticlinal arrangement of cell walls and coordinated growth of merophytes during the development. The highly specific division program that takes place in merophytes prior to differentiation seems to be regulated at the cellular level.
Laurent, M; Clémancey-Marcille, G; Hollard, D
1980-03-01
Leukaemic human bone marrow and peripheral blood cells were cultured for 25 d in diffusion chambers implanted into cyclophosphamide treated mice. Normal bone marrow cells were cultured simultaneously. These cells were studied both morphologically and functionally (CFU-C). The leukaemic cells behaved heterogeneously, 2 groups being distinguishable in accordance with their initial in vitro growth pattern (1: no growth or microcluster growth. 2: macrocluster growth). Group I showed progressive cellular death with a diminution of granulocytic progenitors and the appearance of a predominantly macrophagic population. This behaviour resembled that of the control group. The initial microcluster growth pattern remained identical throughout the entire culture period. Group 2, after considerable cellular death up to d 5, showed an explosive proliferation of the granulocytic progenitors and incomplete differentiation (up to myelocyte). The initial macrocluster growth pattern remained identical.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanson, P.J.; Isebrands, J.G.; Dickson, R.E.
1988-03-01
Oak (Quercus) seedlings exhibit a pattern of shoot growth known to place demands on carbohydrate and nutrient reserves. This study was designed to determine ontogenetic patterns in CO{sub 2} exchanges properties of red oak leaves, and to determine if individual leaf CO{sub 2} exchange rates (CER) increase in response to the assimilate demand placed on a seedling during flushing. Northern red oak (Q. rubra L.) seedlings were grown in environments favorable for multiple flushes of shoot growth. Measurements of CER on single, attached, median leaves from each flush were made over a range of photosynthetic photon flux densities on plantsmore » at nine stages of seedling development through three flushes of growth. Carbon dioxide exchange rate of red oak leaves increased during leaf development up to and beyond full leaf expansion before decreasing an unusual pattern of photosynthesis during leaf ontogeny. Furthermore, first- and second-flush leaf CER initially decreased and then increased in conjunction with the third flush of shoot growth. These patterns indicate that red oak leaves have a capacity for CER adjustment in response to increase sink demand.« less
Paul, Nicholas A; Svensson, Carl Johan; de Nys, Rocky; Steinberg, Peter D
2014-01-01
All of the theory and most of the data on the ecology and evolution of chemical defences derive from terrestrial plants, which have considerable capacity for internal movement of resources. In contrast, most macroalgae--seaweeds--have no or very limited capacity for resource translocation, meaning that trade-offs between growth and defence, for example, should be localised rather than systemic. This may change the predictions of chemical defence theories for seaweeds. We developed a model that mimicked the simple growth pattern of the red seaweed Asparagopsis armata which is composed of repeating clusters of somatic cells and cells which contain deterrent secondary chemicals (gland cells). To do this we created a distinct growth curve for the somatic cells and another for the gland cells using empirical data. The somatic growth function was linked to the growth function for defence via differential equations modelling, which effectively generated a trade-off between growth and defence as these neighbouring cells develop. By treating growth and defence as separate functions we were also able to model a trade-off in growth of 2-3% under most circumstances. However, we found contrasting evidence for this trade-off in the empirical relationships between growth and defence, depending on the light level under which the alga was cultured. After developing a model that incorporated both branching and cell division rates, we formally demonstrated that positive correlations between growth and defence are predicted in many circumstances and also that allocation costs, if they exist, will be constrained by the intrinsic growth patterns of the seaweed. Growth patterns could therefore explain contrasting evidence for cost of constitutive chemical defence in many studies, highlighting the need to consider the fundamental biology and ontogeny of organisms when assessing the allocation theories for defence.
"Speaking Volumes": A Longitudinal Study of Lexical and Grammatical Growth between 17 and 42 Months
ERIC Educational Resources Information Center
Labrell, Florence; van Geert, Paul; Declercq, Christelle; Baltazart, Véronique; Caillies, Stéphanie; Olivier, Marie; Le Sourn-Bissaoui, Sandrine
2014-01-01
Dynamic analyses of language growth tell us how vocabulary and grammar develop and how the two might be intertwined. Analyses of growth curves between 17 and 42 months, based on longitudinal data for 34 children, revealed interesting patterns of vocabulary and grammatical developments. They showed that these patterns were nonlinear, but with…
Comparative study of cocoa black ants temporal population distribution utilizing geospatial analysis
NASA Astrophysics Data System (ADS)
Adnan, N. A.; Bakar, S.; Mazlan, A. H.; Yusoff, Z. Mohd; Rasam, A. R. Abdul
2018-02-01
Cocoa plantation also subjected to diseases and pests infestation. Some pests not only reduced the yield but also inhibit the growth of trees. Therefore, the Malaysia Cocoa Board (MCB) has explored Cocoa Black Ants (CBA) as one of their biological control mechanism to reduce the pest infestation of the Cocoa Pod Borer (CPB). CPB is capable to cause damage to cocoa beans, and later on will reduce the quality of dried cocoa beans. This study tries to integrate the use of geospatial analysis in understanding population distribution pattern of CBA to enhance its capability in controlling CPB infestation. Two objectives of the study are i) to generate temporal CBA distribution of cocoa plantation for two different blocks, and ii) to compare visually the CBA population distribution pattern with the aid of geospatial technique. This study managed to find the CBA population pattern which indicated spatially modest amount of low pattern distribution in February of 2007 until reaching the highest levels of ant populations in September 2007 and decreasing by the end of the year in 2009 for two different blocks (i.e 10B and 18A). Therefore, the usage of GIS is important to explain the CBA pattern population in the mature cocoa field. This finding might to be used as an indicator to examine the optimum distribution of CBA, which needed as a biological control agent against the CPB in the future.
The optimal atmospheric CO2 concentration for the growth of winter wheat (Triticum aestivum).
Xu, Ming
2015-07-20
This study examined the optimal atmospheric CO2 concentration of the CO2 fertilization effect on the growth of winter wheat with growth chambers where the CO2 concentration was controlled at 400, 600, 800, 1000, and 1200 ppm respectively. I found that initial increase in atmospheric CO2 concentration dramatically enhanced winter wheat growth through the CO2 fertilization effect. However, this CO2 fertilization effect was substantially compromised with further increase in CO2 concentration, demonstrating an optimal CO2 concentration of 889.6, 909.4, and 894.2 ppm for aboveground, belowground, and total biomass, respectively, and 967.8 ppm for leaf photosynthesis. Also, high CO2 concentrations exceeding the optima not only reduced leaf stomatal density, length and conductance, but also changed the spatial distribution pattern of stomata on leaves. In addition, high CO2 concentration also decreased the maximum carboxylation rate (Vc(max)) and the maximum electron transport rate (J(max)) of leaf photosynthesis. However, the high CO2 concentration had little effect on leaf length and plant height. The optimal CO2 fertilization effect found in this study can be used as an indicator in selecting and breeding new wheat strains in adapting to future high atmospheric CO2 concentrations and climate change. Copyright © 2015. Published by Elsevier GmbH.
Toucan hand feeding and nestling growth.
St Leger, Judy; Vince, Martin; Jennings, Jerry; McKerney, Erin; Nilson, Erika
2012-05-01
A retrospective analysis of hand-feeding records and growth data from 3 facilities was performed to determine the growth pattern for 8 toucan species raised in captivity. General philosophies of breeding and rearing were similar but approaches to hand-feeding varied. General hand-feeding and chick management records from hatch to fledging were reviewed for 2 of the 3 facilities. Effective hand-feeding formulas were commercially available and minimally modified. Growth curves were developed. Curves approximated typical expected patterns of nestling growth with no loss of weight at fledging. This study provides a basis for hand-feeding protocols and growth curves to assess development.
Population pressures in Latin America. [Updated reprint].
Merrick, T W
1991-04-01
This publication examines the main demographic changes in Latin America since World War II, and considers their social and economic impact on the region. The paper looks at the following demographic trends: population growth, fertility, death rate, internal migration, international migration, and age structure. It also examines other factors such as marriage and family structure, and employment and education. Furthermore, the publication provides a discussion of the relationship between population growth and economic development from both a neo-Malthusian and Structuralist view. Finally, the paper considers the region's current population policies and future population prospects. From 1950-65, annual population growth averaged 2.8%, which decreased moderately to 2.4% from 1965-85. The report identified 3 population growth patterns in the region: 1) countries which experienced early and gradual declines in birth and death rates and generally lower population growth rates (the group includes Argentina, Cuba, Uruguay, with Chile and Panama also closely fitting the description); 2) countries which underwent rapid declines in birth rate during the 1950s and which began experiencing declines in the birth rate after 1960 (Brazil, Colombia, Costa Rica, the Dominican Republic, Mexico, Paraguay, and Venezuela, with Ecuador and Peru as borderline cases); and 3) countries which didn't begin to experience declines in mortality rates until relatively late and which lag behind in fertility declines (Bolivia, Haiti, El Salvador, Guatemala, Honduras, and Nicaragua). Although population growth has slowed and will continue to fall, UN projections do not expect the population to stabilize until late in the 21st Century.
Frank, Aline; Sperisen, Christoph; Howe, Glenn Thomas; Brang, Peter; Walthert, Lorenz; St Clair, John Bradley; Heiri, Caroline
2017-01-01
Understanding the genecology of forest trees is critical for gene conservation, for predicting the effects of climate change and climate change adaptation, and for successful reforestation. Although common genecological patterns have emerged, species-specific details are also important. Which species are most vulnerable to climate change? Which are the most important adaptive traits and environmental drivers of natural selection? Even though species have been classified as adaptive specialists vs. adaptive generalists, large-scale studies comparing different species in the same experiment are rare. We studied the genecology of Norway spruce (Picea abies) and silver fir (Abies alba), two co-occurring but ecologically distinct European conifers in Central Europe. For each species, we collected seed from more than 90 populations across Switzerland, established a seedling common-garden test, and developed genecological models that associate population variation in seedling growth and phenology to climate, soil properties, and site water balance. Population differentiation and associations between seedling traits and environmental variables were much stronger for Norway spruce than for silver fir, and stronger for seedling height growth than for bud phenology. In Norway spruce, height growth and second flushing were strongly associated with temperature and elevation, with seedlings from the lowlands being taller and more prone to second flush than seedlings from the Alps. In silver fir, height growth was more weakly associated with temperature and elevation, but also associated with water availability. Soil characteristics explained little population variation in both species. We conclude that Norway spruce has become an adaptive specialist because trade-offs between rapid juvenile growth and frost avoidance have subjected it to strong diversifying natural selection based on temperature. In contrast, because silver fir has a more conservative growth habit, it has evolved to become an adaptive generalist. This study demonstrates that co-occurring tree species can develop very different adaptive strategies under identical environmental conditions, and suggests that Norway spruce might be more vulnerable to future maladaptation due to rapid climate change than silver fir. © 2016 by the Ecological Society of America.
Understanding tree growth responses after partial cuttings: A new approach
Rossi, Sergio; Lussier, Jean-Martin; Walsh, Denis; Morin, Hubert
2017-01-01
Forest ecosystem management heads towards the use of partial cuttings. However, the wide variation in growth response of residual trees remains unexplained, preventing a suitable prediction of forest productivity. The aim of the study was to assess individual growth and identify the driving factors involved in the responses of residual trees. Six study blocks in even-aged black spruce [Picea mariana (Mill.) B.S.P.] stands of the eastern Canadian boreal forest were submitted to experimental shelterwood and seed-tree treatments. Individual-tree models were applied to 1039 trees to analyze their patterns of radial growth during the 10 years after partial cutting by using the nonlinear Schnute function on tree-ring series. The trees exhibited different growth patterns. A sigmoid growth was detected in 32% of trees, mainly in control plots of older stands. Forty-seven percent of trees located in the interior of residual strips showed an S-shape, which was influenced by stand mortality, harvested intensity and dominant height. Individuals showing an exponential pattern produced the greatest radial growth after cutting and were edge trees of younger stands with higher dominant height. A steady growth decline was observed in 4% of trees, represented by the individuals suppressed and insensitive to the treatment. The analyses demonstrated that individual nonlinear models are able to assess the variability in growth within the stand and the factors involved in the occurrence of the different growth patterns, thus improving understanding of the tree responses to partial cutting. This new approach can sustain forest management strategies by defining the best conditions to optimize the growth yield of residual trees. PMID:28222200
Understanding tree growth responses after partial cuttings: A new approach.
Montoro Girona, Miguel; Rossi, Sergio; Lussier, Jean-Martin; Walsh, Denis; Morin, Hubert
2017-01-01
Forest ecosystem management heads towards the use of partial cuttings. However, the wide variation in growth response of residual trees remains unexplained, preventing a suitable prediction of forest productivity. The aim of the study was to assess individual growth and identify the driving factors involved in the responses of residual trees. Six study blocks in even-aged black spruce [Picea mariana (Mill.) B.S.P.] stands of the eastern Canadian boreal forest were submitted to experimental shelterwood and seed-tree treatments. Individual-tree models were applied to 1039 trees to analyze their patterns of radial growth during the 10 years after partial cutting by using the nonlinear Schnute function on tree-ring series. The trees exhibited different growth patterns. A sigmoid growth was detected in 32% of trees, mainly in control plots of older stands. Forty-seven percent of trees located in the interior of residual strips showed an S-shape, which was influenced by stand mortality, harvested intensity and dominant height. Individuals showing an exponential pattern produced the greatest radial growth after cutting and were edge trees of younger stands with higher dominant height. A steady growth decline was observed in 4% of trees, represented by the individuals suppressed and insensitive to the treatment. The analyses demonstrated that individual nonlinear models are able to assess the variability in growth within the stand and the factors involved in the occurrence of the different growth patterns, thus improving understanding of the tree responses to partial cutting. This new approach can sustain forest management strategies by defining the best conditions to optimize the growth yield of residual trees.
Lilgendahl, Jennifer Pals; McAdams, Dan P.
2010-01-01
Although growth has been a central focus in narrative research, few studies have examined growth comprehensively, as a story that emerges across the interpretation of many events. In this study, we examined how individual differences in autobiographical reasoning (AR) about self-growth relate to traits and well-being in midlife adults. Two patterns of growth-related AR were identified: 1) positive processing, defined as the average tendency to interpret events positively (vs. negatively), and 2) differentiated processing, defined as the extent to which past events are interpreted as causing a variety of forms of self-growth. Results showed that positive processing was negatively related to neuroticism and predicted well-being even after controlling for the average valence of past events. Additionally, differentiated processing of negative events but not positive events was positively related to openness and predictive of well-being. Finally, growth-related AR patterns independently predicted well-being beyond the effects of traits and demographic factors. PMID:21395593
Distinct ice patterns on solid surfaces with various wettabilities
Liu, Jie; Zhu, Chongqin; Liu, Kai; Jiang, Ying; Song, Yanlin; Francisco, Joseph S.; Zeng, Xiao Cheng; Wang, Jianjun
2017-01-01
No relationship has been established between surface wettability and ice growth patterns, although ice often forms on top of solid surfaces. Here, we report experimental observations obtained using a process specially designed to avoid the influence of nucleation and describe the wettability-dependent ice morphology on solid surfaces under atmospheric conditions and the discovery of two growth modes of ice crystals: along-surface and off-surface growth modes. Using atomistic molecular dynamics simulation analysis, we show that these distinct ice growth phenomena are attributable to the presence (or absence) of bilayer ice on solid surfaces with different wettability; that is, the formation of bilayer ice on hydrophilic surface can dictate the along-surface growth mode due to the structural match between the bilayer hexagonal ice and the basal face of hexagonal ice (ice Ih), thereby promoting rapid growth of nonbasal faces along the hydrophilic surface. The dramatically different growth patterns of ice on solid surfaces are of crucial relevance to ice repellency surfaces. PMID:29073045
Distinct ice patterns on solid surfaces with various wettabilities.
Liu, Jie; Zhu, Chongqin; Liu, Kai; Jiang, Ying; Song, Yanlin; Francisco, Joseph S; Zeng, Xiao Cheng; Wang, Jianjun
2017-10-24
No relationship has been established between surface wettability and ice growth patterns, although ice often forms on top of solid surfaces. Here, we report experimental observations obtained using a process specially designed to avoid the influence of nucleation and describe the wettability-dependent ice morphology on solid surfaces under atmospheric conditions and the discovery of two growth modes of ice crystals: along-surface and off-surface growth modes. Using atomistic molecular dynamics simulation analysis, we show that these distinct ice growth phenomena are attributable to the presence (or absence) of bilayer ice on solid surfaces with different wettability; that is, the formation of bilayer ice on hydrophilic surface can dictate the along-surface growth mode due to the structural match between the bilayer hexagonal ice and the basal face of hexagonal ice (ice I h ), thereby promoting rapid growth of nonbasal faces along the hydrophilic surface. The dramatically different growth patterns of ice on solid surfaces are of crucial relevance to ice repellency surfaces. Published under the PNAS license.
Uniform modeling of bacterial colony patterns with varying nutrient and substrate
NASA Astrophysics Data System (ADS)
Schwarcz, Deborah; Levine, Herbert; Ben-Jacob, Eshel; Ariel, Gil
2016-04-01
Bacteria develop complex patterns depending on growth condition. For example, Bacillus subtilis exhibit five different patterns depending on substrate hardness and nutrient concentration. We present a unified integro-differential model that reproduces the entire experimentally observed morphology diagram at varying nutrient concentrations and substrate hardness. The model allows a comprehensive and quantitative comparison between experimental and numerical variables and parameters, such as colony growth rate, nutrient concentration and diffusion constants. As a result, the role of the different physical mechanisms underlying and regulating the growth of the colony can be evaluated.
Potential direct and indirect effects of climate change on a shallow natural lake fish assemblage
Breeggemann, Jason J.; Kaemingk, Mark A.; DeBates, T.J.; Paukert, Craig P.; Krause, J.; Letvin, Alexander P.; Stevens, Tanner M.; Willis, David W.; Chipps, Steven R.
2015-01-01
Much uncertainty exists around how fish communities in shallow lakes will respond to climate change. In this study, we modelled the effects of increased water temperatures on consumption and growth rates of two piscivores (northern pike [Esox lucius] and largemouth bass [Micropterus salmoides]) and examined relative effects of consumption by these predators on two prey species (bluegill [Lepomis macrochirus] and yellow perch [Perca flavescens]). Bioenergetics models were used to simulate the effects of climate change on growth and food consumption using predicted 2040 and 2060 temperatures in a shallow Nebraska Sandhill lake, USA. The patterns and magnitude of daily and cumulative consumption during the growing season (April–October) were generally similar between the two predators. However, growth of northern pike was always reduced (−3 to −45% change) compared to largemouth bass that experienced subtle changes (4 to −6% change) in weight by the end of the growing season. Assuming similar population size structure and numbers of predators in 2040–2060, future consumption of bluegill and yellow perch by northern pike and largemouth bass will likely increase (range: 3–24%), necessitating greater prey biomass to meet future energy demands. The timing of increased predator consumption will likely shift towards spring and fall (compared to summer), when prey species may not be available in the quantities required. Our findings suggest that increased water temperatures may affect species at the edge of their native range (i.e. northern pike) and a potential mismatch between predator and prey could exist.
[Population changes and social welfare tasks].
Lee, H K
1985-07-01
Efforts to control population growth made during the last 20 years are expected to maintain a stable population in the future. We cannot limit our concern to the control of population growth but must consider the social welfare task in the aspect of population stability. It is not because population changes set limits to artificial control, but because the order of population changes presents a desirable sign for low fertility. Another important concern is to pay attention to how to make human beings already born and those to be born in the future enjoy their quality of life. Socioeconomic stability requires economic stabilization to meet basic essential needs. Changes in population structure, along with the quantitative growth of population, make changes in patterns of social welfare demands. When the pyramid type of population structure becomes changed to the bell or pot type of population structure, changes in education and employment as well as changes in problems of the aged and medical demands must be made. On the other hand, population changes accompany value changes in the process of modernization of society. These multiple social changes bring about a value of individualism and a nuclear family norm, and an enlargement of women's social participation which, in turn, can cause family problems. At the same time, social deviations and failures may be increased in the industrial society, and, thus, welfare countermeasures have to be taken. In this respect, the base of social welfare for meeting basic demands must be formed not in the past, narrow sense but in the long range and multisided aspects.
Ito, Tsuyoshi; Katoh, Yoshitaka; Shimada, Yuko; Ohnuma-Koyama, Aya; Takahashi, Naofumi; Kuwahara, Maki; Harada, Takanori
2015-01-01
Extraskeletal osteosarcoma is extremely rare in mice. This case report demonstrates a spontaneous murine extraskeletal osteosarcoma that exhibited various histological growth patterns in an ICR mouse. At necropsy, the tumor mass was located in the abdominal wall and was 45 × 30 × 25 mm in size. Histopathologically, the tumor showed the following four growth patterns: a solid pattern of polygonal cells embedded in an osteoid eosinophilic matrix with calcification, an irregular sheet pattern of short spindle cells accompanying some eosinophilic multinucleated cells, a fascicular pattern of spindle cells and a cystic pattern lined by short spindle cells. Immunohistochemically, most of the tumor cells were positive for vimentin, proliferating cell nuclear antigen and osterix. The multinucleated cells mentioned above were desmin positive and were regarded as regenerative striated muscles but not tumor cells. Since no clear continuity with normal bone tissues was observed, the tumor was diagnosed as an “extraskeletal osteosarcoma.” PMID:26989300
NASA Astrophysics Data System (ADS)
Sun, Cheng; Wu, Zhi-feng; Lv, Zhi-qiang; Yao, Na; Wei, Jian-bing
2013-04-01
There is a widespread concern about urban sprawl. It has negative impacts on natural resources, economic health, and community character. Without a universal definition of urban sprawl, its quantification and modeling is difficult. Traditionally, urban sprawl was described using qualitative terms, and landscape patterns. Quantitative methods are required to help local, regional and state land use planners to better identify, understand and address it. In this study, an integrated approach of remote sensing and GIS was used to identify three urban growth types of infilling growth, outlying growth and edge-expansion growth at the city of Guangzhou, China. Spatial metrics were used to characterize long-term trends and patterns of urban growth. Result shows that the proposed method can identify and visualize different urban growth types. Infilling growth is the dominant expansion type. Edge-expansion is concentrated at suburban areas. Outlying growth mainly occurs relatively far from the urban core. The analysis shows that initially the urban area expands mainly as outlying growth, causing increased fragmentation and dispersion of urban areas. Next, growth filled in vacant non-urban area inwards, resulting into a more compact and aggregated urban pattern. The study shows an improved understanding of urban growth, and helps to provide an effective way for urban planning.
2013-01-01
Inkjet printing of functional materials has drawn tremendous interest as an alternative to the conventional photolithography-based microelectronics fabrication process development. We introduce direct selective nanowire array growth by inkjet printing of Zn acetate precursor ink patterning and subsequent hydrothermal ZnO local growth without nozzle clogging problem which frequently happens in nanoparticle inkjet printing. The proposed process can directly grow ZnO nanowires in any arbitrary patterned shape, and it is basically very fast, low cost, environmentally benign, and low temperature. Therefore, Zn acetate precursor inkjet printing-based direct nanowire local growth is expected to give extremely high flexibility in nanomaterial patterning for high-performance electronics fabrication especially at the development stage. As a proof of concept of the proposed method, ZnO nanowire network-based field effect transistors and ultraviolet photo-detectors were demonstrated by direct patterned grown ZnO nanowires as active layer. PMID:24252130
Large-scale fabrication of vertically aligned ZnO nanowire arrays
Wang, Zhong L; Das, Suman; Xu, Sheng; Yuan, Dajun; Guo, Rui; Wei, Yaguang; Wu, Wenzhuo
2013-02-05
In a method for growing a nanowire array, a photoresist layer is placed onto a nanowire growth layer configured for growing nanowires therefrom. The photoresist layer is exposed to a coherent light interference pattern that includes periodically alternately spaced dark bands and light bands along a first orientation. The photoresist layer exposed to the coherent light interference pattern along a second orientation, transverse to the first orientation. The photoresist layer developed so as to remove photoresist from areas corresponding to areas of intersection of the dark bands of the interference pattern along the first orientation and the dark bands of the interference pattern along the second orientation, thereby leaving an ordered array of holes passing through the photoresist layer. The photoresist layer and the nanowire growth layer are placed into a nanowire growth environment, thereby growing nanowires from the nanowire growth layer through the array of holes.
Carrascosa, Antonio; Yeste, Diego; Moreno-Galdó, Antonio; Gussinyé, Miquel; Ferrández, Ángel; Clemente, María; Fernández-Cancio, Mónica
2018-02-20
Pubertal growth pattern differs according to age at pubertal growth spurt onset which occurs over a five years period (girls: 8-13 years, boys: 10-15 years). The need for more than one pubertal reference pattern has been proposed. We aimed to obtain five 1-year-age-interval pubertal patterns. Longitudinal (6 years of age-adult height) growth study of 1,453 healthy children to evaluate height-for-age, growth velocity-for-age and weight-for-age values. According to age at pubertal growth spurt onset girls were considered: very-early matures (8-9 years, n=119), early matures (9-10 years, n=157), intermediate matures (10-11 years, n=238), late matures (11-12 years, n=127) and very-late matures (12-13 years, n=102), and boys: very-early matures (10-11 years, n=110), early matures (11-12 years, n=139), intermediate matures (12-13 years, n=225), late matures (13-14 years, n=133) and very-late matures (14-15 years, n=103). Age at menarche and growth up to adult height were recorded. In both sexes, statistically-significant (P<.0001) and clinically-pertinent differences in pubertal growth pattern (mean height-for-age, mean growth velocity-for-age and mean pubertal height gain, values) were found among the five pubertal maturity groups and between each group and the whole population, despite similar adult height values. The same occurred for age at menarche and growth from menarche to adult height (P<.05). In both sexes, pubertal growth spurt onset is a critical milestone determining pubertal growth and sexual development. The contribution of our data to better clinical evaluation of growth according to the pubertal maturity tempo of each child will obviate the mistakes made when only one pubertal growth reference is used. Copyright © 2018. Publicado por Elsevier España, S.L.U.
Fraver, Shawn; D'Amato, Anthony W.; Bradford, John B.; Jonsson, Bengt Gunnar; Jönsson, Mari; Esseen, Per-Anders
2013-01-01
Question: What factors best characterize tree competitive environments in this structurally diverse old-growth forest, and do these factors vary spatially within and among stands? Location: Old-growth Picea abies forest of boreal Sweden. Methods: Using long-term, mapped permanent plot data augmented with dendrochronological analyses, we evaluated the effect of neighbourhood competition on focal tree growth by means of standard competition indices, each modified to include various metrics of trees size, neighbour mortality weighting (for neighbours that died during the inventory period), and within-neighbourhood tree clustering. Candidate models were evaluated using mixed-model linear regression analyses, with mean basal area increment as the response variable. We then analysed stand-level spatial patterns of competition indices and growth rates (via kriging) to determine if the relationship between these patterns could further elucidate factors influencing tree growth. Results: Inter-tree competition clearly affected growth rates, with crown volume being the size metric most strongly influencing the neighbourhood competitive environment. Including neighbour tree mortality weightings in models only slightly improved descriptions of competitive interactions. Although the within-neighbourhood clustering index did not improve model predictions, competition intensity was influenced by the underlying stand-level tree spatial arrangement: stand-level clustering locally intensified competition and reduced tree growth, whereas in the absence of such clustering, inter-tree competition played a lesser role in constraining tree growth. Conclusions: Our findings demonstrate that competition continues to influence forest processes and structures in an old-growth system that has not experienced major disturbances for at least two centuries. The finding that the underlying tree spatial pattern influenced the competitive environment suggests caution in interpreting traditional tree competition studies, in which tree spatial patterning is typically not taken into account. Our findings highlight the importance of forest structure – particularly the spatial arrangement of trees – in regulating inter-tree competition and growth in structurally diverse forests, and they provide insight into the causes and consequences of heterogeneity in this old-growth system.
Nong, Duong H; Lepczyk, Christopher A; Miura, Tomoaki; Fox, Jefferson M
2018-01-01
Urbanization has been driven by various social, economic, and political factors around the world for centuries. Because urbanization continues unabated in many places, it is crucial to understand patterns of urbanization and their potential ecological and environmental impacts. Given this need, the objectives of our study were to quantify urban growth rates, growth modes, and resultant changes in the landscape pattern of urbanization in Hanoi, Vietnam from 1993 to 2010 and to evaluate the extent to which the process of urban growth in Hanoi conformed to the diffusion-coalescence theory. We analyzed the spatiotemporal patterns and dynamics of the built-up land in Hanoi using landscape expansion modes, spatial metrics, and a gradient approach. Urbanization was most pronounced in the periods of 2001-2006 and 2006-2010 at a distance of 10 to 35 km around the urban center. Over the 17 year period urban expansion in Hanoi was dominated by infilling and edge expansion growth modes. Our findings support the diffusion-coalescence theory of urbanization. The shift of the urban growth areas over time and the dynamic nature of the spatial metrics revealed important information about our understanding of the urban growth process and cycle. Furthermore, our findings can be used to evaluate urban planning policies and aid in urbanization issues in rapidly urbanizing countries.
Response to growth hormone therapy in adolescents with familial panhypopituitarism.
Kulshreshtha, B; Eunice, M; Ammini, A C
2010-04-01
Familial combined pituitary hormone deficiency is a rare endocrine disorder. We describe growth patterns of four children (3 females and 1 male) from two families with combined pituitary hormone deficiency. These children received growth hormone at ages ranging from 14.5 years to 19 years. While all the female siblings reached their target height, the male sibling was much shorter than mid parental height. The reasons for sexual dimorphism in growth patterns in these children are unclear.
Goertler, Pascale A L; Scheuerell, Mark D; Simenstad, Charles A; Bottom, Daniel L
2016-01-01
Life history variation in Pacific salmon (Oncorhynchus spp.) supports species resilience to natural disturbances and fishery exploitation. Within salmon species, life-history variation often manifests during freshwater and estuarine rearing, as variation in growth. To date, however, characterizing variability in growth patterns within and among individuals has been difficult via conventional sampling methods because of the inability to obtain repeated size measurements. In this study we related otolith microstructures to growth rates of individual juvenile Chinook salmon (O. tshawytscha) from the Columbia River estuary over a two-year period (2010-2012). We used dynamic factor analysis to determine whether there were common patterns in growth rates within juveniles based on their natal region, capture location habitat type, and whether they were wild or of hatchery origin. We identified up to five large-scale trends in juvenile growth rates depending on month and year of capture. We also found that hatchery fish had a narrower range of trend loadings for some capture groups, suggesting that hatchery fish do not express the same breadth of growth variability as wild fish. However, we were unable to resolve a relationship between specific growth patterns and habitat transitions. Our study exemplifies how a relatively new statistical analysis can be applied to dating or aging techniques to summarize individual variation, and characterize aspects of life history diversity.
Scheuerell, Mark D.; Simenstad, Charles A.; Bottom, Daniel L.
2016-01-01
Life history variation in Pacific salmon (Oncorhynchus spp.) supports species resilience to natural disturbances and fishery exploitation. Within salmon species, life-history variation often manifests during freshwater and estuarine rearing, as variation in growth. To date, however, characterizing variability in growth patterns within and among individuals has been difficult via conventional sampling methods because of the inability to obtain repeated size measurements. In this study we related otolith microstructures to growth rates of individual juvenile Chinook salmon (O. tshawytscha) from the Columbia River estuary over a two-year period (2010–2012). We used dynamic factor analysis to determine whether there were common patterns in growth rates within juveniles based on their natal region, capture location habitat type, and whether they were wild or of hatchery origin. We identified up to five large-scale trends in juvenile growth rates depending on month and year of capture. We also found that hatchery fish had a narrower range of trend loadings for some capture groups, suggesting that hatchery fish do not express the same breadth of growth variability as wild fish. However, we were unable to resolve a relationship between specific growth patterns and habitat transitions. Our study exemplifies how a relatively new statistical analysis can be applied to dating or aging techniques to summarize individual variation, and characterize aspects of life history diversity. PMID:27695094
NASA Astrophysics Data System (ADS)
Cushman, K.; Muller-Landau, H. C.; Kellner, J. R.; Wright, S. J.; Condit, R.; Detto, M.; Tribble, C. M.
2015-12-01
Tropical forest carbon budgets play a major role in global carbon dynamics, but the responses of tropical forests to current and future inter-annual climatic variation remains highly uncertain. Better predictions of future tropical forest carbon fluxes require an improved understanding of how different species of tropical trees respond to changes in climate at seasonal and inter-annual temporal scales. We installed dendrometer bands on a size-stratified sample of 2000 trees in old growth forest on Barro Colorado Island, Panama, a moist lowland forest that experiences an annual dry season of approximately four months. Tree diameters were measured at the beginning and end of the rainy season since 2008. Additionally, we recorded the canopy illumination level, canopy intactness, and liana coverage of all trees during each census. We used linear mixed-effects models to evaluate how tree growth was related to seasonal and interannual variation in local climate, tree condition, and species identity, and how species identity effects related to tree functional traits. Climatic variables considered included precipitation, solar radiation, soil moisture, and climatological water deficit, and were all calculated from high-quality on-site measurements. Functional traits considered included wood density, maximum adult stature, deciduousness, and drought tolerance. We found that annual wood production was positively related to water availability, with higher growth in wetter years. Species varied in their response to seasonal water availability, with some species showing more pronounced reduction of growth during the dry season when water availability is limited. Interspecific variation in seasonal and interannual growth patterns was related to life-history strategies and species functional traits. The finding of higher growth in wetter years is consistent with previous tree ring studies conducted on a small subset of species with reliable annual rings. Together with previous findings that seed production at this site is higher in sunnier (and drier) years, this suggests strong climate-related shifts in allocation. This study highlights the importance of considering forest species composition and potential allocational shifts when predicting carbon fluxes in response to local climate variation.
Shortage of cardiothoracic surgeons is likely by 2020.
Grover, Atul; Gorman, Karyn; Dall, Timothy M; Jonas, Richard; Lytle, Bruce; Shemin, Richard; Wood, Douglas; Kron, Irving
2009-08-11
Even as the burden of cardiovascular disease in the United States is increasing as the population grows and ages, the number of active cardiothoracic surgeons has fallen for the first time in 20 years. Meanwhile, the treatment of patients with coronary artery disease continues to evolve amid uncertain changes in technology. This study evaluates current and future requirements for cardiothoracic surgeons in light of decreasing rates of coronary artery bypass grafting procedures. Projections of supply and demand for cardiothoracic surgeons are based on analysis of population, physician office, hospital, and physician data sets to estimate current patterns of healthcare use and delivery. Using a simulation model, we project the future supply of cardiothoracic surgeons under alternative assumptions about the number of new fellows trained each year. Future demand is modeled, taking into account patient demographics, under current and alternative use rates that include the elimination of open revascularization. By 2025, the demand for cardiothoracic surgeons could increase by 46% on the basis of population growth and aging if current healthcare use and service delivery patterns continue. Even with complete elimination of coronary artery bypass grafting, there is a projected shortfall of cardiothoracic surgeons because the active supply is projected to decrease 21% over the same time period as a result of retirement and declining entrants. The United States is facing a shortage of cardiothoracic surgeons within the next 10 years, which could diminish quality of care if non-board-certified physicians expand their role in cardiothoracic surgery or if patients must delay appropriate care because of a shortage of well-trained surgeons.
Mechanical Stress Induces Remodeling of Vascular Networks in Growing Leaves
Bar-Sinai, Yohai; Julien, Jean-Daniel; Sharon, Eran; Armon, Shahaf; Nakayama, Naomi; Adda-Bedia, Mokhtar; Boudaoud, Arezki
2016-01-01
Differentiation into well-defined patterns and tissue growth are recognized as key processes in organismal development. However, it is unclear whether patterns are passively, homogeneously dilated by growth or whether they remodel during tissue expansion. Leaf vascular networks are well-fitted to investigate this issue, since leaves are approximately two-dimensional and grow manyfold in size. Here we study experimentally and computationally how vein patterns affect growth. We first model the growing vasculature as a network of viscoelastic rods and consider its response to external mechanical stress. We use the so-called texture tensor to quantify the local network geometry and reveal that growth is heterogeneous, resembling non-affine deformations in composite materials. We then apply mechanical forces to growing leaves after veins have differentiated, which respond by anisotropic growth and reorientation of the network in the direction of external stress. External mechanical stress appears to make growth more homogeneous, in contrast with the model with viscoelastic rods. However, we reconcile the model with experimental data by incorporating randomness in rod thickness and a threshold in the rod growth law, making the rods viscoelastoplastic. Altogether, we show that the higher stiffness of veins leads to their reorientation along external forces, along with a reduction in growth heterogeneity. This process may lead to the reinforcement of leaves against mechanical stress. More generally, our work contributes to a framework whereby growth and patterns are coordinated through the differences in mechanical properties between cell types. PMID:27074136
Malcolm North; Jiquan Chen; Brian Oakley; Bo Song; Mark Rudnicki; Andrew Gray; Jim Innes
2004-01-01
With fire suppression, many western forests are expected to have fewer gaps and higher stem density of shade-tolerant species as light competition becomes a more significant influence on stand pattern and composition. We compared species composition, structure, spatial pattern, and environmental factors such as light and soil moisture between two old-growth forests:...
Main, Russell P
2007-01-01
Vertebrate long bone form, at both the gross and the microstructural level, is the result of many interrelated influences. One factor that is considered to have a significant effect on bone form is the mechanical environment experienced by the bone during growth. The work presented here examines the possible relationships between in vivo bone strains, bone geometry and histomorphology in the radii of three age/size groups of domestic goats. In vivo bone strain data were collected from the radii of galloping goats, and the regional cortical distribution of peak axial strain magnitudes, radial and circumferential strain gradients, and longitudinal strain rates related to regional patterns in cortical growth, porosity, remodelling and collagen fibre orientation. Although porosity and remodelling decreased and increased with age, respectively, these features showed no significant regional differences and did not correspond to regional patterns in the mechanical environment. Thicker regions of the radius's cortex were significantly related to high strain levels and higher rates of periosteal, but not endosteal, growth. However, cortical growth and strain environment were not significantly related. Collagen fibre orientation varied regionally, with a higher percentage of transverse fibres in the caudal region of the radius and primarily longitudinal fibres elsewhere, and, although consistent through growth, also did not generally correspond to regional strain patterns. Although strain magnitudes increased during ontogeny and regional strain patterns were variable over the course of a stride, mean regional strain patterns were generally consistent with growth, suggesting that regional growth patterns and histomorphology, in combination with external loads, may play some role in producing a relatively ‘predictable’ strain environment within the radius. It is further hypothesized that the absence of correlation between regional histomorphometric patterns and the measured strain environments is the result of the variable mechanical environment. However, the potential effects of other physiological and mechanical factors, such as skeletal metabolism and adjacent muscle insertions, that can influence the gross and microstructural morphology of the radius during ontogeny, cannot be ignored. PMID:17331177
Onoda, Mitsuyoshi
2014-10-01
Conductive polymers are a strong contender for making electronic circuits. The growth pattern in conductive polymer synthesis by the electrolysis polymerization method was examined. The growth pattern is deeply related to the coupling reaction of the radical cation and the deprotonation reaction following it and changes suddenly depending on the kind and concentration of the supporting electrolyte and the solvent used. That is, when the electrophilic substitution coupling reaction becomes predominant, the three-dimensional growth form is observed, and when the radical coupling reaction becomes predominant, the two-dimensional growth morphology is observed. In addition, the growth pattern can be comparatively easily controlled by changing the value of the polymerization constant current, and it is considered that the indicator and development for biocircuit research with neuron-type devices made of conjugated polymers was obtained.
Su, Wang; Zhang, Yan-Ping; Qu, Yang; Li, Cui; Miao, Jia-Yuan; Gao, Xiao-Li; Liu, Jian-Hua; Feng, Bai-Li
2014-11-01
The objective of this study was to explore the effects of mulching patterns on soil water, growth, photosynthetic characteristics, grain yield and water use efficiency (WUE) of broomcorn millet in the dryland of Loess Plateau in China. In a three-year field experiment from 2011 to 2013, we compared four different mulching patterns with traditional plat planting (no mulching) as the control (CK). The mulching patterns included W ridge covered with common plastic film + intredune covered with straw (SG), common ridge covered with common plastic film + intredune covered with straw (LM), double ridges covered with common plastic film + intredune covered with straw (QM), and the traditional plat planting covered with straw (JG). The results showed that the soil water storage in 0-100 cm layer was significantly higher in all mulching patterns than in CK, particularly in SG then followed by LM, QM and JG, and the differences among the mulching patterns reached a significant level at the different growth stages of broomcorn millet. Among all mulching patterns, SG had the greatest effect on the growth and photosynthesis of broomcorn millet, respectively increasing the yield and WUE by 55.9% and 64.9% over CK, and the differences among the mulching patterns also reached a significant level. Therefore, SG was recommended as an efficient planting pattern for broomcorn millet production in the dryland of Loess Plateau in China.
NASA Astrophysics Data System (ADS)
Macalady, Alison Kelly
Forests play an important role in the earth system, regulating climate, maintaining biodiversity, and provisioning human communities with water, food and fuel. Interactions between climate and forest dynamics are not well constrained, and high uncertainty characterizes projections of global warming impacts on forests and associated ecosystem services. Recently observed tree mortality and forest die-off forewarn an acceleration of forest change with rising temperature and increased drought. However, the processes leading to tree death during drought are poorly understood, limiting our ability to anticipate future forest dynamics. The objective of this dissertation was to improve understanding of drought-associated tree mortality through literature synthesis and tree-ring studies on trees that survived and died during droughts in the southwestern USA. Specifically, this dissertation 1) documented global tree mortality patterns and identified emerging trends and research gaps; 2) quantified relationships between growth, climate, competition and mortality of pinon pine during droughts in New Mexico; 3) investigated tree defense anatomy as a potentially key element in pinon avoidance of death; and, 4) characterized the climate sensitivity of pinon resin ducts in order to gain insight into potential trends in tree defenses with climate variability and change. There has been an increase in studies reporting tree mortality linked to drought, heat, and the associated activity of insects and pathogens. Cases span the forested continents and occurred in water, light and temperature-limited forests. We hypothesized that increased tree mortality may be an emerging global phenomenon related to rising temperatures and drought (Appendix A). Recent radial growth was 53% higher on average in pinon that survived versus died during two episodes of drought-associated mortality, and statistical models of mortality risk based on average growth, growth variability, and abrupt growth changes correctly classified the status of ˜70% of trees. Climate responses and competitive interactions partly explained growth differences between dying and surviving trees, with muted response to wet/cool conditions and enhanced sensitivity to competition from congeners linked to growth patterns associated with death. Discrimination and validation of models of mortality risk varied widely across sites and drought events, indicating shifting growth-mortality relationships and differences in mortality processes across space and time (Appendix B). Pre-formed defense anatomy is strongly associated with pinon survivorship over a range of sites and stand conditions. Models of mortality risk that account for both growth and resin duct attributes had ≈10 19 more support than models that contained only growth. The greatest improvement in classification was among trees from the 2000s drought, suggesting an enhanced role for tree defense allocation and/or bark beetle activity during recent warm versus historic cool drought. Accounting for defense characteristics and growth-defense allocation is likely to be important for improving representation of drought-associated mortality (Appendix C). Pinon resin duct chronologies contain climate responses that are coherent and distinct from those of radial growth. Growth responds positively and strongly to previous fall and current winter precipitation, and negatively to late spring and early summer temperature. A relatively equal positive resin duct response to winter precipitation and positive response to mid-to-late summer drought suggests that changes in climate will affect tree defense anatomy in complex ways, with the outcome determined by seasonal changes in precipitation and temperature (Appendix D).
Lipscomb, Shannon Tierney; Leve, Leslie D.; Harold, Gordon T.; Neiderhiser, Jenae M.; Shaw, Daniel S.; Ge, Xiaojia; Reiss, David
2011-01-01
The current longitudinal study examined trajectories of child negative emotionality, parenting efficacy, and overreactive parenting among 382 adoptive families during infancy and toddlerhood. Data were collected from adoptive parents when the children were 9, 18, and 27 months old. Latent growth curve modeling indicated age-related increases in child negative emotionality and overreactive parenting for adoptive fathers and adoptive mothers, and decreases in parent efficacy among adoptive mothers. Increases in child negative emotionality were also associated with increases in parent overreactivity and decreases in maternal efficacy. Mothers' and fathers' developmental patterns were linked within but not across parenting domains. Limitations and directions for future research are discussed. PMID:21883160
Nitrogen dynamics in managed boreal forests: Recent advances and future research directions.
Sponseller, Ryan A; Gundale, Michael J; Futter, Martyn; Ring, Eva; Nordin, Annika; Näsholm, Torgny; Laudon, Hjalmar
2016-02-01
Nitrogen (N) availability plays multiple roles in the boreal landscape, as a limiting nutrient to forest growth, determinant of terrestrial biodiversity, and agent of eutrophication in aquatic ecosystems. We review existing research on forest N dynamics in northern landscapes and address the effects of management and environmental change on internal cycling and export. Current research foci include resolving the nutritional importance of different N forms to trees and establishing how tree-mycorrhizal relationships influence N limitation. In addition, understanding how forest responses to external N inputs are mediated by above- and belowground ecosystem compartments remains an important challenge. Finally, forestry generates a mosaic of successional patches in managed forest landscapes, with differing levels of N input, biological demand, and hydrological loss. The balance among these processes influences the temporal patterns of stream water chemistry and the long-term viability of forest growth. Ultimately, managing forests to keep pace with increasing demands for biomass production, while minimizing environmental degradation, will require multi-scale and interdisciplinary perspectives on landscape N dynamics.
Cultural perspectives on aging and well-being: a comparison of Japan and the United States.
Karasawa, Mayumi; Curhan, Katherine B; Markus, Hazel Rose; Kitayama, Shinobu S; Love, Gayle Dienberg; Radler, Barry T; Ryff, Carol D
2011-01-01
This study investigated age differences in multiple aspects of psychological well-being among midlife and older adults in Japan (N = 482) and the United States (N = 3,032) to test the hypothesis that older Japanese adults would rate aspects of their well-being (personal growth, purpose in life, positive relations with others) more highly that older U.S. adults. Partial support was found: older adults in Japan showed higher scores on personal growth compared to midlife adults, whereas the opposite age pattern was found in the United States. However, purpose in life showed lower scores for older adults in both cultural contexts. Interpersonal well-being, as hypothesized, was rated significantly higher, relative to the overall well-being, among Japanese compared to U.S. respondents, but only among younger adults. Women in both cultures showed higher interpersonal well-being, but also greater negative affect compared with men. Suggestions for future inquiries to advance understanding of aging and well-being in distinct cultural contexts are detailed.
Assessments of urban growth in the Tampa Bay watershed using remote sensing data
Xian, G.; Crane, M.
2005-01-01
Urban development has expanded rapidly in the Tampa Bay area of west-central Florida over the past century. A major effect associated with this population trend is transformation of the landscape from natural cover types to increasingly impervious urban land. This research utilizes an innovative approach for mapping urban extent and its changes through determining impervious surfaces from Landsat satellite remote sensing data. By 2002, areas with subpixel impervious surface greater than 10% accounted for approximately 1800 km2, or 27 percent of the total watershed area. The impervious surface area increases approximately three-fold from 1991 to 2002. The resulting imperviousness data are used with a defined suite of geospatial data sets to simulate historical urban development and predict future urban and suburban extent, density, and growth patterns using SLEUTH model. Also examined is the increasingly important influence that urbanization and its associated imperviousness extent have on the individual drainage basins of the Tampa Bay watershed.
Cultural Perspectives on Aging and Well-Being: A Comparison of Japan and the U.S.
Karasawa, Mayumi; Curhan, Katherine B.; Markus, Hazel Rose; Kitayama, Shinobu S.; Love, Gayle Dienberg; Radler, Barry T.; Ryff, Carol D.
2011-01-01
This study investigated age differences in multiple aspects of psychological well-being among midlife and older adults in Japan (N = 482) and the U.S. (N = 3,032) to test the hypothesis that older Japanese adults would rate aspects of their well-being (personal growth, purpose in life, positive relations with others) more highly that older U.S. adults. Partial support was found: older adults in Japan showed higher scores on personal growth compared to midlife adults, whereas the opposite age pattern was found in the U.S. However, purpose in life showed lower scores for older adults in both cultural contexts. Interpersonal well-being, as hypothesized, was rated significantly higher, relative to the overall well-being, among Japanese compared to U.S. respondents, but only among younger adults. Women in both cultures showed higher interpersonal well-being, but also greater negative affect compared with men. Suggestions for future inquiries to advance understanding of aging and well-being in distinct cultural contexts are detailed. PMID:21922800
Long-term population cycles in human societies.
Turchin, Peter
2009-04-01
Human population dynamics are usually conceptualized as either boundless growth or growth to an equilibrium. The implicit assumption underlying these paradigms is that any feedback processes regulating population density, if they exist, operate on a fast-time-scale, and therefore we do not expect to observe population oscillations in human population numbers. This review asks, are population processes in historical and prehistorical human populations characterized by second-order feedback loops, that is, regulation involving lags? If yes, then the implications for forecasting future population change are obvious--what may appear as inexplicable, exogenously driven reverses in population trends may actually be a result of feedbacks operating with substantial time lags. This survey of a variety of historical and archeological data indicates that slow oscillations in population numbers, with periods of roughly two to three centuries, are observed in a number of world regions and historical periods. Next, a potential explanation for this pattern, the demographic-structural theory, is discussed. Finally, the implications of these results for global population forecasts is discussed.
Monolithic integration of InGaAs/InP multiple quantum wells on SOI substrates for photonic devices
NASA Astrophysics Data System (ADS)
Li, Zhibo; Wang, Mengqi; Fang, Xin; Li, Yajie; Zhou, Xuliang; Yu, Hongyan; Wang, Pengfei; Wang, Wei; Pan, Jiaoqing
2018-02-01
A direct epitaxy of III-V nanowires with InGaAs/InP multiple quantum wells on v-shaped trenches patterned silicon on insulator (SOI) substrates was realized by combining the standard semiconductor fabrication process with the aspect ratio trapping growth technique. Silicon thickness as well as the width and gap of each nanowire were carefully designed to accommodate essential optical properties and appropriate growth conditions. The III-V element ingredient, crystalline quality, and surface topography of the grown nanowires were characterized by X-ray diffraction spectroscopy, photoluminescence, and scanning electron microscope. Geometrical details and chemical information of multiple quantum wells were revealed by transmission electron microscopy and energy dispersive spectroscopy. Numerical simulations confirmed that the optical guided mode supported by one single nanowire was able to propagate 50 μm with ˜30% optical loss. This proposed integration scheme opens up an alternative pathway for future photonic integrations of III-V devices on the SOI platform at nanoscale.
Impact of future urban growth on regional climate changes in the Seoul Metropolitan Area, Korea.
Kim, Hyunsu; Kim, Yoo-Keun; Song, Sang-Keun; Lee, Hwa Woon
2016-11-15
The influence of changes in future urban growth (e.g., land use changes) on the future climate variability in the Seoul metropolitan area (SMA), Korea was evaluated using the WRF model and an urban growth model (SLEUTH). The land use changes in the study area were simulated using the SLEUTH model under three different urban growth scenarios: (1) current development trends scenario (SC 1), (2) managed development scenario (SC 2) and (3) ecological development scenario (SC 3). The maximum difference in the ratio of urban growth between SC 1 and SC 3 (SC 1 - SC 3) for 50years (2000-2050) was approximately 6.72%, leading to the largest differences (0.01°C and 0.03ms(-1), respectively) in the mean air temperature at 2m (T2) and wind speed at 10m (WS10). From WRF-SLEUTH modeling, the effects of future urban growth (or future land use changes) in the SMA are expected to result in increases in the spatial mean T2 and WS10 of up to 1.15°C and 0.03ms(-1), respectively, possibly due to thermal circulation caused by the thermal differences between urban and rural regions. Copyright © 2016 Elsevier B.V. All rights reserved.
Behjati, Sam; Tarpey, Patrick S.; Haase, Kerstin; ...
2017-06-23
Osteosarcoma is a primary malignancy of bone that affects children and adults. Here, we present the largest sequencing study of osteosarcoma to date, comprising 112 childhood and adult tumours encompassing all major histological subtypes. A key finding of our study is the identification of mutations in insulin-like growth factor (IGF) signalling genes in 8/112 (7%) of cases. We validate this observation using fluorescence in situ hybridization (FISH) in an additional 87 osteosarcomas, with IGF1 receptor (IGF1R) amplification observed in 14% of tumours. These findings may inform patient selection in future trials of IGF1R inhibitors in osteosarcoma. Analysing patterns of mutation,more » we identify distinct rearrangement profiles including a process characterized by chromothripsis and amplification. This process operates recurrently at discrete genomic regions and generates driver mutations. Lastly, it may represent an age-independent mutational mechanism that contributes to the development of osteosarcoma in children and adults alike.« less
Strain measurement in semiconductor heterostructures by scanning transmission electron microscopy.
Müller, Knut; Rosenauer, Andreas; Schowalter, Marco; Zweck, Josef; Fritz, Rafael; Volz, Kerstin
2012-10-01
This article deals with the measurement of strain in semiconductor heterostructures from convergent beam electron diffraction patterns. In particular, three different algorithms in the field of (circular) pattern recognition are presented that are able to detect diffracted disc positions accurately, from which the strain in growth direction is calculated. Although the three approaches are very different as one is based on edge detection, one on rotational averages, and one on cross correlation with masks, it is found that identical strain profiles result for an In x Ga1-x N y As1-y /GaAs heterostructure consisting of five compressively and tensile strained layers. We achieve a precision of strain measurements of 7-9·10-4 and a spatial resolution of 0.5-0.7 nm over the whole width of the layer stack which was 350 nm. Being already very applicable to strain measurements in contemporary nanostructures, we additionally suggest future hardware and software designs optimized for fast and direct acquisition of strain distributions, motivated by the present studies.
Alvarez, Nora L; Naughton-Treves, Lisa
2003-06-01
Amazonian deforestation rates vary regionally, and ebb and flow according to macroeconomic policy and local social factors. We used remote sensing and field interviews to investigate deforestation patterns and drivers at a Peruvian frontier during 1986-1991, when rural credit and guaranteed markets were available; and 1991-1997, when structural adjustment measures were imposed. The highest rate of clearing (1.5% gross) was observed along roads during 1986-1991. Roadside deforestation slowed in 1991-1997 (0.7% gross) and extensive regrowth yielded a net increase in forest cover (0.5%). Deforestation along rivers was relatively constant. Riverside farms today retain more land in both crops and forest than do roadside farms where pasture and successional growth predominate. Long-term residents maintain more forest on their farms than do recent colonists, but proximity to urban markets is the strongest predictor of forest cover. Future credit programs must reflect spatial patterns of development and ecological vulnerability, and support the recuperation of fallow lands and secondary forest.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Behjati, Sam; Tarpey, Patrick S.; Haase, Kerstin
Osteosarcoma is a primary malignancy of bone that affects children and adults. Here, we present the largest sequencing study of osteosarcoma to date, comprising 112 childhood and adult tumours encompassing all major histological subtypes. A key finding of our study is the identification of mutations in insulin-like growth factor (IGF) signalling genes in 8/112 (7%) of cases. We validate this observation using fluorescence in situ hybridization (FISH) in an additional 87 osteosarcomas, with IGF1 receptor (IGF1R) amplification observed in 14% of tumours. These findings may inform patient selection in future trials of IGF1R inhibitors in osteosarcoma. Analysing patterns of mutation,more » we identify distinct rearrangement profiles including a process characterized by chromothripsis and amplification. This process operates recurrently at discrete genomic regions and generates driver mutations. Lastly, it may represent an age-independent mutational mechanism that contributes to the development of osteosarcoma in children and adults alike.« less
Yang, Yan-Wen; Jiang, Yuan-Tong
2016-08-01
Study on 5 effective components and 6 soil enzyme activities of 2 different growth patterns, analyse the dates with the canonical correlation analysis, In order to reveal the relations between the effective components and soil enzyme activities. The result showed that they had a great relation between the effective components and soil enzyme activities, the activity of the same enzyme in humus soil was higher than that in farmland soil. Growth pattern of farmland soil, if the invertase and phosphatase activity were too high, which would inhibit the accumulation of total ginsenoside, water-miscible total proteins and total amino acid; Growth pattern of humus soil, if the invertase, urease and phosphatase activity were too high, which would inhibit the accumulation of total ginsenoside and the total essential oils. Integral soil enzyme activity can be used as a index of soil quality, which, together with other growth factors. The appropriate enzyme activity can accelerate the circulation and transformation of all kinds of material in the soil, improve effectively components accumulation. Copyright© by the Chinese Pharmaceutical Association.
Diel growth dynamics in tree stems: linking anatomy and ecophysiology.
Steppe, Kathy; Sterck, Frank; Deslauriers, Annie
2015-06-01
Impacts of climate on stem growth in trees are studied in anatomical, ecophysiological, and ecological disciplines, but an integrative framework to assess those impacts remains lacking. In this opinion article, we argue that three research efforts are required to provide that integration. First, we need to identify the missing links in diel patterns in stem diameter and stem growth and relate those patterns to the underlying mechanisms that control water and carbon balance. Second, we should focus on the understudied mechanisms responsible for seasonal impacts on such diel patterns. Third, information on stem anatomy and ecophysiology should be integrated in the same experiments and mechanistic plant growth models to capture both diel and seasonal scales. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Boettcher, Shannon
2010-03-01
Micron-scale Si wire arrays are three-dimensional photovoltaic absorbers that enable orthogonalization of light absorption and carrier collection and hence allow for the utilization of relatively impure Si in efficient solar cell designs. The wire arrays are grown by a vapor-liquid-solid-catalyzed process on a crystalline (111) Si wafer lithographically patterned with an array of metal catalyst particles. Following growth, such arrays can be embedded in polymethyldisiloxane (PDMS) and then peeled from the template growth substrate. The result is an unusual photovoltaic material: a flexible, bendable, wafer-thickness crystalline Si absorber. In this paper I will describe: 1. the growth of high-quality Si wires with controllable doping and the evaluation of their photovoltaic energy-conversion performance using a test electrolyte that forms a rectifying conformal semiconductor-liquid contact 2. the observation of enhanced absorption in wire arrays exceeding the conventional light trapping limits for planar Si cells of equivalent material thickness and 3. single-wire and large-area solid-state Si wire-array solar cell results obtained to date with directions for future cell designs based on optical and device physics. In collaboration with Michael Kelzenberg, Morgan Putnam, Joshua Spurgeon, Daniel Turner-Evans, Emily Warren, Nathan Lewis, and Harry Atwater, California Institute of Technology.
Crystallographic orientation inhomogeneity and crystal splitting in biogenic calcite
Checa, Antonio G.; Bonarski, Jan T.; Willinger, Marc G.; Faryna, Marek; Berent, Katarzyna; Kania, Bogusz; González-Segura, Alicia; Pina, Carlos M.; Pospiech, Jan; Morawiec, Adam
2013-01-01
The calcitic prismatic units forming the outer shell of the bivalve Pinctada margaritifera have been analysed using scanning electron microscopy–electron back-scatter diffraction, transmission electron microscopy and atomic force microscopy. In the initial stages of growth, the individual prismatic units are single crystals. Their crystalline orientation is not consistent but rather changes gradually during growth. The gradients in crystallographic orientation occur mainly in a direction parallel to the long axis of the prism, i.e. perpendicular to the shell surface and do not show preferential tilting along any of the calcite lattice axes. At a certain growth stage, gradients begin to spread and diverge, implying that the prismatic units split into several crystalline domains. In this way, a branched crystal, in which the ends of the branches are independent crystalline domains, is formed. At the nanometre scale, the material is composed of slightly misoriented domains, which are separated by planes approximately perpendicular to the c-axis. Orientational gradients and splitting processes are described in biocrystals for the first time and are undoubtedly related to the high content of intracrystalline organic molecules, although the way in which these act to induce the observed crystalline patterns is a matter of future research. PMID:23804442
Hart, Kristen M.; Sartain-Iverson, Autumn R.; Hillis-Starr, Zandy; Phillips, Brendalee; Mayor, Philippe A.; Roberson, Kimberly; Pemberton, Roy A.; Allen, Jason B.; Lundgren, Ian; Musick, Susanna
2013-01-01
Surveys of juvenile hawksbills around Buck Island Reef National Monument, US Virgin Islands from 1994 to 1999 revealed distributional patterns and resulted in a total of 75 individual hawksbill captures from all years; turtles ranged from 23.2 to 77.7 cm curved carapace length (CCL; mean 42.1 ± 12.3 cm SD). Juveniles concentrated where Zoanthid cover was highest. Length of time between recaptures, or presumed minimum site residency, ranged from 59 to 1,396 days (mean 620.8 ± 402.4 days SD). Growth rates for 23 juveniles ranged from 0.0 to 9.5 cm year−1 (mean 4.1 ± 2.4 cm year−1SD). Annual mean growth rates were non-monotonic, with the largest mean growth rate occurring in the 30–39 cm CCL size class. Gastric lavages indicated that Zoanthids were the primary food source for hawksbills. These results contribute to our understanding of juvenile hawksbill ecology and serve as a baseline for future studies or inventories of hawksbills in the Caribbean.
Natural hazards and climate change in Dhaka: future trends, social adaptation and informal dynamics
NASA Astrophysics Data System (ADS)
Thiele-Eich, I.; Aßheuer, T.; Simmer, C.; Braun, B.
2009-04-01
Similar to many megacities in the world, Dhaka is regularly threatened by natural hazards. Risks associated with floods and cyclones in particular are expected to increase in the years to come because of global climate change and rapid urbanization. Greater Dhaka is expected to grow from 13.5 million inhabitants in 2007 to 22 million inhabitants by 2025. The vast majority of this growth will take place in informal settlements. Due to the setting of Greater Dhaka in a deltaic plain, the sprawl of slums is primarily taking place in wetlands, swamps and other flood-prone areas. Slum dwellers and informal businesses are vulnerable, but have somehow learned to cope with seasonal floods and developed specific adaptation strategies. An increase of precipitation extremes and tropical cyclones, however, would put considerable stress on the adaptability of the social and economic system. DhakaHazard, a joint research project of the Department of Meteorology at the University of Bonn and the Department of Geography at the University of Cologne, takes up these issues in an interdisciplinary approach. The project, which begun in November 2008, aims to achieve two main objectives: To link analyses of informal social and economic adaptation strategies to models on future climate change and weather extremes. To estimate more accurately the future frequency and magnitude of weather extremes and floods which are crucial for the future adaptability of informal systems. To fulfill these objectives, scientists at the Meteorological Institute are studying the evolution of natural hazards in Bangladesh, while researchers at the Department of Geography are undertaking the task of assessing these hazards from a social point of view. More specifically, the meteorologists are identifying global and regional weather conditions resulting in flooding of the Greater Dhaka region, while possible variations in flood-inducing weather patterns are analyzed by evaluating their frequency and magnitude. Findings are then applied to future global climate scenario runs to obtain a first estimate of trends for the frequency and magnitude of weather extremes and their impact on spatial and temporal characteristics of floods in the Greater Dhaka region. From this estimate, a prediction method for the spatial patterns of flooding within the Dhaka area will be developed. The social part of the project analyzes the vulnerability and resilience of economic and social systems within high-risk areas by utilizing methods such as e.g. quantitative household surveys in Dhaka and qualitative expert interviews. Geographers are hoping to identify adaptation and recovery strategies of slum dwellers and informal businesses (e.g. brickfields, tanneries), analyze the role of social capital as well as formal and informal institutions for building up resilience, and analyze possibilities and limits of adaptation strategies under conditions of further urban growth and climate change. By paying attention to the important behavioral patterns of the informal sector, a meteorological early warning system can then be developed to make better use of weather predictions to mitigate weather-related risks for Greater Dhaka. If successful, this project poses as an exemplary intersection of social science and natural hazards research.
Van Neste, Dominique
2014-01-01
The words "hair growth" frequently encompass many aspects other than just growth. Report on a validation method for precise non-invasive measurement of thickness together with linear hair growth rates of individual hair fibres. To verify the possible correlation between thickness and linear growth rate of scalp hair in male pattern hair loss as compared with healthy male controls. To document the process of validation of hair growth measurement from in vivo image capturing and manual processing, followed by computer assisted image analysis. We analysed 179 paired images obtained with the contrast-enhanced-phototrichogram method with exogen collection (CE-PTG-EC) in 13 healthy male controls and in 87 men with male pattern hair loss (MPHL). There was a global positive correlation between thickness and growth rate (ANOVA; p<0.0001) and a statistically significantly (ANOVA; p<0.0005) slower growth rate in MPHL as compared with equally thick hairs from controls. Finally, the growth rate recorded in the more severe patterns was significantly (ANOVA; P ≤ 0.001) reduced compared with equally thick hair from less severely affected MPHL or controls subjects. Reduced growth rate, together with thinning and shortening of the anagen phase duration in MPHL might contribute together to the global impression of decreased hair volume on the top of the head. Amongst other structural and functional parameters characterizing hair follicle regression, linear hair growth rate warrants further investigation, as it may be relevant in terms of self-perception of hair coverage, quantitative diagnosis and prognostic factor of the therapeutic response.
Urlacher, Samuel S; Snodgrass, J Josh; Liebert, Melissa A; Cepon-Robins, Tara J; Gildner, Theresa E; Sugiyama, Lawrence S
2016-06-01
Knemometry, the precise measurement of lower leg (LL) length, suggests that childhood short-term (e.g., weekly) growth is a dynamic, nonlinear process. However, owing to the large size and complexity of the traditional knemometer device, previous study of short-term growth among children has been restricted predominantly to clinical settings in industrialized Western nations. The aim of the present study is to address this limitation and promote broader understandings of global variation in childhood development by: (1) describing a custom-built portable knemometer and assessing its performance in the field; and (2) demonstrating the potential application of such a device by characterizing childhood short-term LL growth among the indigenous Shuar of Amazonian Ecuador. Mixed-longitudinal LL length data were collected weekly from 336 Shuar children age 5-12 years old using the custom portable knemometer (n = 1,145 total observations). Device performance and Shuar short-term LL growth were explored using linear mixed effects models and descriptive statistics. The portable knemometer performed well across a range of participant characteristics and possesses a low technical error of measurement of 0.18 mm. Shuar childhood LL growth averages 0.47 mm/week (SD = 0.75 mm/week), but exhibits large between- and within-individual variation. Knemometry can be reliably performed in the field, providing a means for evaluating childhood short-term growth among genetically and ecologically diverse populations. Preliminary findings suggest that Shuar weekly LL growth is comparable in mean magnitude but likely more variable than reported for healthy Western children. Future work will further explore these patterns. Am J Phys Anthropol 160:353-357, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Smith, Vanessa; Riccieri, Valeria; Pizzorni, Carmen; Decuman, Saskia; Deschepper, Ellen; Bonroy, Carolien; Sulli, Alberto; Piette, Yves; De Keyser, Filip; Cutolo, Maurizio
2013-12-01
Assessment of associations of nailfold videocapillaroscopy (NVC) scleroderma (systemic sclerosis; SSc) ("early," "active," and "late") with novel future severe clinical involvement in 2 independent cohorts. Sixty-six consecutive Belgian and 82 Italian patients with SSc underwent NVC at baseline. Images were blindly assessed and classified into normal, early, active, or late NVC pattern. Clinical evaluation was performed for 9 organ systems (general, peripheral vascular, skin, joint, muscle, gastrointestinal tract, lung, heart, and kidney) according to the Medsger disease severity scale (DSS) at baseline and in the future (18-24 months of followup). Severe clinical involvement was defined as category 2 to 4 per organ of the DSS. Logistic regression analysis (continuous NVC predictor variable) was performed. The OR to develop novel future severe organ involvement was stronger according to more severe NVC patterns and similar in both cohorts. In simple logistic regression analysis the OR in the Belgian/Italian cohort was 2.16 (95% CI 1.19-4.47, p = 0.010)/2.33 (95% CI 1.36-4.22, p = 0.002) for the early NVC SSc pattern, 4.68/5.42 for the active pattern, and 10.14/12.63 for the late pattern versus the normal pattern. In multiple logistic regression analysis, adjusting for disease duration, subset, and vasoactive medication, the OR was 2.99 (95% CI 1.31-8.82, p = 0.007)/1.88 (95% CI 1.00-3.71, p = 0.050) for the early NVC SSc pattern, 8.93/3.54 for the active pattern, and 26.69/6.66 for the late pattern versus the normal pattern. Capillaroscopy may be predictive of novel future severe organ involvement in SSc, as attested by 2 independent cohorts.
Novel insight into the origin of the growth dynamics of sauropod dinosaurs.
Cerda, Ignacio Alejandro; Chinsamy, Anusuya; Pol, Diego; Apaldetti, Cecilia; Otero, Alejandro; Powell, Jaime Eduardo; Martínez, Ricardo Nestor
2017-01-01
Sauropod dinosaurs include the largest terrestrial animals and are considered to have uninterrupted rapid rates of growth, which differs from their more basal relatives, which have a slower cyclical growth. Here we examine the bone microstructure of several sauropodomorph dinosaurs, including basal taxa, as well as the more derived sauropods. Although our results agree that the plesiomorphic condition for Sauropodomorpha is cyclical growth dynamics, we found that the hypothesized dichotomy between the growth patterns of basal and more derived sauropodomorphs is not supported. Here, we show that sauropod-like growth dynamics of uninterrupted rapid growth also occurred in some basal sauropodomorphs, and that some basal sauropods retained the plesiomorphic cyclical growth patterns. Among the sauropodomorpha it appears that the basal taxa exploited different growth strategies, but the more derived Eusauropoda successfully utilized rapid, uninterrupted growth strategies.
Novel insight into the origin of the growth dynamics of sauropod dinosaurs
Cerda, Ignacio Alejandro; Chinsamy, Anusuya; Pol, Diego; Apaldetti, Cecilia; Otero, Alejandro; Martínez, Ricardo Nestor
2017-01-01
Sauropod dinosaurs include the largest terrestrial animals and are considered to have uninterrupted rapid rates of growth, which differs from their more basal relatives, which have a slower cyclical growth. Here we examine the bone microstructure of several sauropodomorph dinosaurs, including basal taxa, as well as the more derived sauropods. Although our results agree that the plesiomorphic condition for Sauropodomorpha is cyclical growth dynamics, we found that the hypothesized dichotomy between the growth patterns of basal and more derived sauropodomorphs is not supported. Here, we show that sauropod-like growth dynamics of uninterrupted rapid growth also occurred in some basal sauropodomorphs, and that some basal sauropods retained the plesiomorphic cyclical growth patterns. Among the sauropodomorpha it appears that the basal taxa exploited different growth strategies, but the more derived Eusauropoda successfully utilized rapid, uninterrupted growth strategies. PMID:28654696
Fetal malnutrition--the price of upright posture?
Briend, A
1979-01-01
The pattern of preterm fetal growth faltering, normally seen in man, differs from that observed in animals. This type of fetal growth cannot be considered as an adaptation to facilitate birth but is more likely to be due to rapid evolution and imperfect adaptation to the upright posture. The pattern of posture and physical activity during pregnancy may therefore be an important determinant of fetal growth. Differences in intrauterine nutrition existing between social groups, usually ascribed to variations of maternal diet and nutrition, may well result from different patterns of maternal activity in the weeks preceding birth. PMID:476446
ERIC Educational Resources Information Center
Sheaff, Katharine
The 2000 Census reveals four patterns of change in rural America. Rural areas in states such as Florida and Arizona are gaining population due to high retiree growth. These areas will experience growth in service sector jobs that have low pay and low educational requirements. Florida and Arizona trail the nation in high school and college…
Positive psychological outcomes of spaceflight: an empirical study.
Ihle, Eva C; Ritsher, Jennifer B; Kanas, Nick
2006-02-01
Anecdotes from astronauts and cosmonauts suggest that spaceflight can be an enriching experience with enduring positive effects. These positive mental health effects may help protect flight crews from the psychological stress inherent in such high-risk missions. The goal of this study was to identify areas of personal growth likely to result from traveling in space and explore how they were patterned. We developed a Positive Effects of Being in Space (PEBS) Questionnaire, which included a section adapted from the Post-Traumatic Growth Inventory (PTGI) as well as original items addressing experiences unique to spaceflight. We sent the anonymous questionnaire to 175 astronauts and cosmonauts who had flown on at least 1 mission; completed surveys were returned by 39 individuals. Every respondent had a positive reaction to being in space, the strongest of which related to the Earth's beauty and fragility. Respondents reported changes in both attitudes and behaviors. Respondents appeared to cluster into two groups based on the intensity of their reported changes. Response patterns did not vary by demographic group, number of missions flown, or total elapsed time in space. Overall, our findings support the idea that being in space is a meaningful experience that makes an enduring positive impression on astronauts and cosmonauts. An enhanced understanding of the salutogenic effects of space travel will contribute to the education, training, and support of future space crewmembers.
Zhou, Xuan; Castro, Nathan J.; Zhu, Wei; Cui, Haitao; Aliabouzar, Mitra; Sarkar, Kausik; Zhang, Lijie Grace
2016-01-01
3D printing and ultrasound techniques are showing great promise in the evolution of human musculoskeletal tissue repair and regeneration medicine. The uniqueness of the present study was to combine low intensity pulsed ultrasound (LIPUS) and advanced 3D printing techniques to synergistically improve growth and osteogenic differentiation of human mesenchymal stem cells (MSC). Specifically, polyethylene glycol diacrylate bioinks containing cell adhesive Arginine-Glycine-Aspartic acid-Serene (RGDS) peptide and/or nanocrystalline hydroxyapatite (nHA) were used to fabricate 3D scaffolds with different geometric patterns via novel table-top stereolithography 3D printer. The resultant scaffolds provide a highly porous and interconnected 3D environment to support cell proliferation. Scaffolds with small square pores were determined to be the optimal geometric pattern for MSC attachment and growth. The optimal LIPUS working parameters were determined to be 1.5 MHz, 20% duty cycle with 150 mW/cm2 intensity. Results demonstrated that RGDS peptide and nHA containing 3D printed scaffolds under LIPUS treatment can greatly promote MSC proliferation, alkaline phosphatase activity, calcium deposition and total protein content. These results illustrate the effectiveness of the combination of LIPUS and biomimetic 3D printing scaffolds as a valuable combinatorial tool for improved MSC function, thus make them promising for future clinical and various regenerative medicine application. PMID:27597635
Elaborating the History of Our Cementing Societies: An in-Use Stock Perspective.
Cao, Zhi; Shen, Lei; Løvik, Amund N; Müller, Daniel B; Liu, Gang
2017-10-03
Modern cities and societies are built fundamentally based on cement and concrete. The global cement production has risen sharply in the past decades due largely to urbanization and construction. Here we deployed a top-down dynamic material flow analysis (MFA) model to quantify the historical development of cement in-use stocks in residential, nonresidential, and civil engineering sectors of all world countries. We found that global cement production spreads unevenly among 184 countries, with China dominating the global production and consumption after the 1990s. Nearly all countries have shown an increasing trend of per capita cement in-use stock in the past century. The present per capita cement in-use stocks vary from 10 to 40 tonnes in major industrialized and transiting countries and are below 10 tonnes in developing countries. Evolutionary modes identified from historical patterns suggest that per capita in-use cement stock growth generally complies with an S-shape curve and relates closely to affluence and urbanization of a country, but more in-depth and bottom-up investigations are needed to better understand socioeconomic drivers behind stock growth. These identified in-use stock patterns can help us better estimate future demand of cement, explore strategies for emissions reduction in the cement industry, and inform CO 2 uptake potentials of cement based products and infrastructure in service.
NASA Astrophysics Data System (ADS)
LIU, X.; Xu, Z.; Peng, D.
2017-12-01
Vegetation growth plays a significant role on runoff variation at high altitude, and precipitation and temperature are both key factors affecting vegetation conditions. As one of the greatest international rivers in China, the Yarlung Zangbo River in the southern Qinghai-Tibetan Plateau was selected, and the spatio-temporal patterns of vegetation were analyzed by using NDVI (Normalized Difference Vegetation Index) during 1998 2014. The relationship between NDVI and precipitation as well as temperature was also investigated in this study. Results showed that the value of NDVI increases with the decrease of elevation and the largest value appears in the broadleaf forest cover. Almost all annual NDVI variations exhibit an increasing tendency, particularly for the broadleaf forest cover. On the viewpoint of statistics, only 29% pixels of NDVI with increasing tendency are of significance for the other cover, while for cultivated vegetation cover, around 82% pixels of NDVI were detected with significant increasing tendency. In addition, vegetation growth showed lagging response to precipitation, and the lag time is around one month. Moreover, in the region with elevation over 5000 m, negative relationship between NDVI and precipitation for alpine vegetation was found. Approximately 75% of NDVI variations are dominated by precipitation and temperature. These findings may provide a reference to investigate runoff variations and strengthen ecological protection for similar high-altitude areas in the future.
Developmental Pathways Are Blueprints for Designing Successful Crops
Trevaskis, Ben
2018-01-01
Genes controlling plant development have been studied in multiple plant systems. This has provided deep insights into conserved genetic pathways controlling core developmental processes including meristem identity, phase transitions, determinacy, stem elongation, and branching. These pathways control plant growth patterns and are fundamentally important to crop biology and agriculture. This review describes the conserved pathways that control plant development, using Arabidopsis as a model. Historical examples of how plant development has been altered through selection to improve crop performance are then presented. These examples, drawn from diverse crops, show how the genetic pathways controlling development have been modified to increase yield or tailor growth patterns to suit local growing environments or specialized crop management practices. Strategies to apply current progress in genomics and developmental biology to future crop improvement are then discussed within the broader context of emerging trends in plant breeding. The ways that knowledge of developmental processes and understanding of gene function can contribute to crop improvement, beyond what can be achieved by selection alone, are emphasized. These include using genome re-sequencing, mutagenesis, and gene editing to identify or generate novel variation in developmental genes. The expanding scope for comparative genomics, the possibility to engineer new developmental traits and new approaches to resolve gene–gene or gene–environment interactions are also discussed. Finally, opportunities to integrate fundamental research and crop breeding are highlighted. PMID:29922318
Panfil, C; Makowska, A; Ellrich, J
2006-02-01
Although myofascial tenderness is thought to play a key role in the pathophysiology of tension-type headache, very few studies have addressed neck muscle nociception. The neuronal activation pattern following local nerve growth factor (NGF) administration into semispinal neck muscles in anaesthetized mice was investigated using Fos protein immunohistochemistry. In order to differentiate between the effects of NGF administration on c-fos expression and the effects of surgical preparation, needle insertion and intramuscular injection, the experiments were conducted in three groups. In the sham group (n=7) cannula needles were only inserted without any injection. In the saline (n=7) and NGF groups (n=7) 0.9% physiological saline solution or 0.8 microm NGF solution were injected in both muscles, respectively. In comparison with sham and saline conditions, NGF administration induced significantly stronger Fos immunoreactivity in the mesencephalic periaqueductal grey (PAG), the medullary lateral reticular nucleus (LRN), and superficial layers I and II of cervical spinal dorsal horns C1, C2 and C3. This activation pattern corresponds very well to central nervous system processing of deep noxious input. A knowledge of the central anatomical representation of neck muscle pain is an essential prerequisite for the investigation of neck muscle nociception in order to develop a future model of tension-type headache.
Developmental Pathways Are Blueprints for Designing Successful Crops.
Trevaskis, Ben
2018-01-01
Genes controlling plant development have been studied in multiple plant systems. This has provided deep insights into conserved genetic pathways controlling core developmental processes including meristem identity, phase transitions, determinacy, stem elongation, and branching. These pathways control plant growth patterns and are fundamentally important to crop biology and agriculture. This review describes the conserved pathways that control plant development, using Arabidopsis as a model. Historical examples of how plant development has been altered through selection to improve crop performance are then presented. These examples, drawn from diverse crops, show how the genetic pathways controlling development have been modified to increase yield or tailor growth patterns to suit local growing environments or specialized crop management practices. Strategies to apply current progress in genomics and developmental biology to future crop improvement are then discussed within the broader context of emerging trends in plant breeding. The ways that knowledge of developmental processes and understanding of gene function can contribute to crop improvement, beyond what can be achieved by selection alone, are emphasized. These include using genome re-sequencing, mutagenesis, and gene editing to identify or generate novel variation in developmental genes. The expanding scope for comparative genomics, the possibility to engineer new developmental traits and new approaches to resolve gene-gene or gene-environment interactions are also discussed. Finally, opportunities to integrate fundamental research and crop breeding are highlighted.
Jekauc, Darko; Völkle, Manuel; Wagner, Matthias O.; Mess, Filip; Reiner, Miriam; Renner, Britta
2015-01-01
In the processes of physical activity (PA) maintenance specific predictors are effective, which differ from other stages of PA development. Recently, Physical Activity Maintenance Theory (PAMT) was specifically developed for prediction of PA maintenance. The aim of the present study was to evaluate the predictability of the future behavior by the PAMT and compare it with the Theory of Planned Behavior (TPB) and Social Cognitive Theory (SCT). Participation rate in a fitness center was observed for 101 college students (53 female) aged between 19 and 32 years (M = 23.6; SD = 2.9) over 20 weeks using a magnetic card. In order to predict the pattern of participation TPB, SCT and PAMT were used. A latent class zero-inflated Poisson growth curve analysis identified two participation patterns: regular attenders and intermittent exercisers. SCT showed the highest predictive power followed by PAMT and TPB. Impeding aspects as life stress and barriers were the strongest predictors suggesting that overcoming barriers might be an important aspect for working out on a regular basis. Self-efficacy, perceived behavioral control, and social support could also significantly differentiate between the participation patterns. PMID:25717313
Early Menarche and Gestational Diabetes Mellitus at First Live Birth.
Shen, Yun; Hu, Hui; D Taylor, Brandie; Kan, Haidong; Xu, Xiaohui
2017-03-01
To examine the association between early menarche and gestational diabetes mellitus (GDM). Data from the National Health and Nutrition Examination Survey 2007-2012 were used to investigate the association between age at menarche and the risk of GDM at first birth among 5914 women. A growth mixture model was used to detect distinctive menarche onset patterns based on self-reported age at menarche. Logistic regression models were then used to examine the associations between menarche initiation patterns and GDM after adjusting for sociodemographic factors, family history of diabetes mellitus, lifetime greatest Body Mass Index, smoking status, and physical activity level. Among the 5914 first-time mothers, 3.4 % had self-reported GDM. We detected three groups with heterogeneous menarche onset patterns, the Early, Normal, and Late Menarche Groups. The regression model shows that compared to the Normal Menarche Group, the Early Menarche Group had 1.75 (95 % CI 1.10, 2.79) times the odds of having GDM. No statistically significant difference was observed between the Normal and the Late Menarche Group. This study suggests that early menarche may be a risk factor of GDM. Future studies are warranted to examine and confirm this finding.
Stemwood production patterns in ponderosa pine: effects of stand dynamics and other factors
Michael J. Arbaugh; David L. Peterson
1993-01-01
Growth patterns of vertical stems in nine ponderosa pines from a stand in the southern Sierra Nevada were analyzed for recent changes due to stand dominance position, age, climate, and ozone exposure. Large positive correlations were found between increments in volume growth and basal area at d.b.h. The results indicated that patterns of wood distribution along the...
Direct growth of single-crystalline III–V semiconductors on amorphous substrates
Chen, Kevin; Kapadia, Rehan; Harker, Audrey; ...
2016-01-27
The III–V compound semiconductors exhibit superb electronic and optoelectronic properties. Traditionally, closely lattice-matched epitaxial substrates have been required for the growth of high-quality single-crystal III–V thin films and patterned microstructures. To remove this materials constraint, here we introduce a growth mode that enables direct writing of single-crystalline III–V’s on amorphous substrates, thus further expanding their utility for various applications. The process utilizes templated liquid-phase crystal growth that results in user-tunable, patterned micro and nanostructures of single-crystalline III–V’s of up to tens of micrometres in lateral dimensions. InP is chosen as a model material system owing to its technological importance. Themore » patterned InP single crystals are configured as high-performance transistors and photodetectors directly on amorphous SiO 2 growth substrates, with performance matching state-of-the-art epitaxially grown devices. In conclusion, the work presents an important advance towards universal integration of III–V’s on application-specific substrates by direct growth.« less
Direct growth of single-crystalline III–V semiconductors on amorphous substrates
Chen, Kevin; Kapadia, Rehan; Harker, Audrey; Desai, Sujay; Seuk Kang, Jeong; Chuang, Steven; Tosun, Mahmut; Sutter-Fella, Carolin M.; Tsang, Michael; Zeng, Yuping; Kiriya, Daisuke; Hazra, Jubin; Madhvapathy, Surabhi Rao; Hettick, Mark; Chen, Yu-Ze; Mastandrea, James; Amani, Matin; Cabrini, Stefano; Chueh, Yu-Lun; Ager III, Joel W.; Chrzan, Daryl C.; Javey, Ali
2016-01-01
The III–V compound semiconductors exhibit superb electronic and optoelectronic properties. Traditionally, closely lattice-matched epitaxial substrates have been required for the growth of high-quality single-crystal III–V thin films and patterned microstructures. To remove this materials constraint, here we introduce a growth mode that enables direct writing of single-crystalline III–V's on amorphous substrates, thus further expanding their utility for various applications. The process utilizes templated liquid-phase crystal growth that results in user-tunable, patterned micro and nanostructures of single-crystalline III–V's of up to tens of micrometres in lateral dimensions. InP is chosen as a model material system owing to its technological importance. The patterned InP single crystals are configured as high-performance transistors and photodetectors directly on amorphous SiO2 growth substrates, with performance matching state-of-the-art epitaxially grown devices. The work presents an important advance towards universal integration of III–V's on application-specific substrates by direct growth. PMID:26813257
DMT-TAFM: a data mining tool for technical analysis of futures market
NASA Astrophysics Data System (ADS)
Stepanov, Vladimir; Sathaye, Archana
2002-03-01
Technical analysis of financial markets describes many patterns of market behavior. For practical use, all these descriptions need to be adjusted for each particular trading session. In this paper, we develop a data mining tool for technical analysis of the futures markets (DMT-TAFM), which dynamically generates rules based on the notion of the price pattern similarity. The tool consists of three main components. The first component provides visualization of data series on a chart with different ranges, scales, and chart sizes and types. The second component constructs pattern descriptions using sets of polynomials. The third component specifies the training set for mining, defines the similarity notion, and searches for a set of similar patterns. DMT-TAFM is useful to prepare the data, and then reveal and systemize statistical information about similar patterns found in any type of historical price series. We performed experiments with our tool on three decades of trading data fro hundred types of futures. Our results for this data set shows that, we can prove or disprove many well-known patterns based on real data, as well as reveal new ones, and use the set of relatively consistent patterns found during data mining for developing better futures trading strategies.
Lin, Yu-Pin; Lin, Yun-Bin; Wang, Yen-Tan; Hong, Nien-Ming
2008-02-04
Monitoring and simulating urban sprawl and its effects on land-use patterns andhydrological processes in urbanized watersheds are essential in land-use and waterresourceplanning and management. This study applies a novel framework to the urbangrowth model Slope, Land use, Excluded land, Urban extent, Transportation, andHillshading (SLEUTH) and land-use change with the Conversion of Land use and itsEffects (CLUE-s) model using historical SPOT images to predict urban sprawl in thePaochiao watershed in Taipei County, Taiwan. The historical and predicted land-use datawas input into Patch Analyst to obtain landscape metrics. This data was also input to theGeneralized Watershed Loading Function (GWLF) model to analyze the effects of futureurban sprawl on the land-use patterns and watershed hydrology. The landscape metrics ofthe historical SPOT images show that land-use patterns changed between 1990-2000. TheSLEUTH model accurately simulated historical land-use patterns and urban sprawl in thePaochiao watershed, and simulated future clustered land-use patterns (2001-2025). TheCLUE-s model also simulated land-use patterns for the same period and yielded historical trends in the metrics of land-use patterns. The land-use patterns predicted by the SLEUTHand CLUE-s models show the significant impact urban sprawl will have on land-usepatterns in the Paochiao watershed. The historical and predicted land-use patterns in thewatershed tended to fragment, had regular shapes and interspersion patterns, but wererelatively less isolated in 2001-2025 and less interspersed from 2005-2025 compared withland-use pattern in 1990. During the study, the variability and magnitude of hydrologicalcomponents based on the historical and predicted land-use patterns were cumulativelyaffected by urban sprawl in the watershed; specifically, surface runoff increasedsignificantly by 22.0% and baseflow decreased by 18.0% during 1990-2025. The proposedapproach is an effective means of enhancing land-use monitoring and management ofurbanized watersheds.
Reserve growth of oil and gas fields—Investigations and applications
Cook, Troy A.
2013-01-01
The reserve growth of fields has been a topic for ongoing discussion for over half a century and will continue to be studied well into the future. This is due to the expected size of the volumetric contribution of reserve growth to the future supply of oil and natural gas. Understanding past methods of estimating future volumes based on the data assembly methods that have been used can lead to a better understanding of their applicability. The statistical nature of past methods and the (1) possible high level of dependency on a limited number of fields, (2) assumption of an age-based correlation with effective reserve growth, and (3) assumption of long-lived and more common than not reserve growth, may be improved by employing a more geologically based approach.
Shifts in growth strategies reflect tradeoffs in cellular economics
Molenaar, Douwe; van Berlo, Rogier; de Ridder, Dick; Teusink, Bas
2009-01-01
The growth rate-dependent regulation of cell size, ribosomal content, and metabolic efficiency follows a common pattern in unicellular organisms: with increasing growth rates, cell size and ribosomal content increase and a shift to energetically inefficient metabolism takes place. The latter two phenomena are also observed in fast growing tumour cells and cell lines. These patterns suggest a fundamental principle of design. In biology such designs can often be understood as the result of the optimization of fitness. Here we show that in basic models of self-replicating systems these patterns are the consequence of maximizing the growth rate. Whereas most models of cellular growth consider a part of physiology, for instance only metabolism, the approach presented here integrates several subsystems to a complete self-replicating system. Such models can yield fundamentally different optimal strategies. In particular, it is shown how the shift in metabolic efficiency originates from a tradeoff between investments in enzyme synthesis and metabolic yields for alternative catabolic pathways. The models elucidate how the optimization of growth by natural selection shapes growth strategies. PMID:19888218
Phillippi, Julie A; Miller, Eric; Weiss, Lee; Huard, Johnny; Waggoner, Alan; Campbell, Phil
2008-01-01
In vivo, growth factors exist both as soluble and as solid-phase molecules, immobilized to cell surfaces and within the extracellular matrix. We used this rationale to develop more biologically relevant approaches to study stem cell behaviors. We engineered stem cell microenvironments using inkjet bioprinting technology to create spatially defined patterns of immobilized growth factors. Using this approach, we engineered cell fate toward the osteogenic lineage in register to printed patterns of bone morphogenetic protein (BMP) 2 contained within a population of primary muscle-derived stem cells (MDSCs) isolated from adult mice. This patterning approach was conducive to patterning the MDSCs into subpopulations of osteogenic or myogenic cells simultaneously on the same chip. When cells were cultured under myogenic conditions on BMP-2 patterns, cells on pattern differentiated toward the osteogenic lineage, whereas cells off pattern differentiated toward the myogenic lineage. Time-lapse microscopy was used to visualize the formation of multinucleated myotubes, and immunocytochemistry was used to demonstrate expression of myosin heavy chain (fast) in cells off BMP-2 pattern. This work provides proof-of-concept for engineering spatially controlled multilineage differentiation of stem cells using patterns of immobilized growth factors. This approach may be useful for understanding cell behaviors to immobilized biological patterns and could have potential applications for regenerative medicine.
Ontogenetic and static allometry in the human face: contrasting Khoisan and Inuit.
Freidline, Sarah E; Gunz, Philipp; Hublin, Jean-Jacques
2015-09-01
Regional differences in modern human facial features are present at birth, and ontogenetic allometry contributes to variation in adults. However, details regarding differential rates of growth and timing among regional groups are lacking. We explore ontogenetic and static allometry in a cross-sectional sample spanning Africa, Europe and North America, and evaluate tempo and mode in two regional groups with very different adult facial morphology, the Khoisan and Inuit. Semilandmark geometric morphometric methods, multivariate statistics and growth simulations were used to quantify and compare patterns of facial growth and development. Regional-specific facial morphology develops early in ontogeny. The Inuit has the most distinct morphology and exhibits heterochronic differences in development compared to other regional groups. Allometric patterns differ during early postnatal development, when significant increases in size are coupled with large amounts of shape changes. All regional groups share a common adult static allometric trajectory, which can be attributed to sexual dimorphism, and the corresponding allometric shape changes resemble developmental patterns during later ontogeny. The amount and pattern of growth and development may not be shared between regional groups, indicating that a certain degree of flexibility is allowed for in order to achieve adult size. In early postnatal development the face is less constrained compared to other parts of the cranium allowing for greater evolvability. The early development of region-specific facial features combined with heterochronic differences in timing or rate of growth, reflected in differences in facial size, suggest different patterns of postnatal growth. © 2015 Wiley Periodicals, Inc.
Public Support for Public Schools: The Past, the Future, and the Federal Role.
ERIC Educational Resources Information Center
Piele, Philip K.
1983-01-01
Various indices of public support for the schools--school finance voting patterns, public opinion polls, and court litigation--are analyzed to document current trends. Two possible scenarios are forecast for the future, based on socioeconomic and demographic patterns. The need for future government support is stressed. (PP)
ERIC Educational Resources Information Center
Cheng, Katherine C.
2017-01-01
Built upon Control Value Theory, this dissertation consists of two studies that examine university students' future-oriented motivation, socio-emotional regulation, and diurnal cortisol patterns in understanding students' well-being in the academic-context. Study 1 examined the roles that Learning-related Hopelessness and Future Time Perspective…
ERIC Educational Resources Information Center
Cansler, Emily; Updegraff, Kimberly A.; Simpkins, Sandra D.
2012-01-01
We describe Mexican American seventh graders' expectations for future work and family roles and investigate links between patterns of future expectations and adolescents' cultural experiences and adjustment. Adolescents participated in home interviews and a series of seven nightly phone calls. Five unique patterns of adolescents' future…
Expected increase in staple crop imports in water-scarce countries in 2050
NASA Astrophysics Data System (ADS)
Chouchane, Hatem; Krol, Maarten; Hoekstra, Arjen
2017-04-01
Water scarcity is a major challenge in the coming decades. The increasing population and the changing pattern of water availability that results from global warming reduce the potential of sufficient food production in many countries over the world. Today, two thirds of the global population are already living under conditions of severe water scarcity at least one month of the year. This rises the importance of addressing the present and future relationship between water availability and food import in water-scarce countries. The net import of staple crops (barley, cassava, maize, millet and products, oats, potatoes, rice, rye, sorghum, soybeans, sweet potatoes, wheat and yams) is analysed in relation to water availability per capita for the period 1961-2010, considering five decadal averages. The relation found is used together with the low, medium and high population growth scenarios from the United Nations to project the staple crops import in water-scarce countries for the year 2050. Additionally, we investigate the uncertainties related to the three population scenarios. Results will help countries to better understand the impact of population growth and limited water resources on their future food trade. This study will provide a valuable supporting tool for policy makers towards more sustainable and water-efficient food production as targeted with the Sustainable Development Goals. Keywords: Water Availability, Food Import, Staple Crops, Water Scarcity, Water-Use Efficiency, Sustainable Development Goals.
Alternaria in Food: Ecophysiology, Mycotoxin Production and Toxicology
Patriarca, Andrea; Magan, Naresh
2015-01-01
Alternaria species are common saprophytes or pathogens of a wide range of plants pre- and post-harvest. This review considers the relative importance of Alternaria species, their ecology, competitiveness, production of mycotoxins and the prevalence of the predominant mycotoxins in different food products. The available toxicity data on these toxins and the potential future impacts of Alternaria species and their toxicity in food products pre- and post-harvest are discussed. The growth of Alternaria species is influenced by interacting abiotic factors, especially water activity (aw), temperature and pH. The boundary conditions which allow growth and toxin production have been identified in relation to different matrices including cereal grain, sorghum, cottonseed, tomato, and soya beans. The competitiveness of Alternaria species is related to their water stress tolerance, hydrolytic enzyme production and ability to produce mycotoxins. The relationship between A. tenuissima and other phyllosphere fungi has been examined and the relative competitiveness determined using both an Index of Dominance (ID) and the Niche Overlap Index (NOI) based on carbon-utilisation patterns. The toxicology of some of the Alternaria mycotoxins have been studied; however, some data are still lacking. The isolation of Alternaria toxins in different food products including processed products is reviewed. The future implications of Alternaria colonization/infection and the role of their mycotoxins in food production chains pre- and post-harvest are discussed. PMID:26190916
Temperature and tree growth [editorial
Michael G. Ryan
2010-01-01
Tree growth helps US forests take up 12% of the fossil fuels emitted in the USA (Woodbury et al. 2007), so predicting tree growth for future climates matters. Predicting future climates themselves is uncertain, but climate scientists probably have the most confidence in predictions for temperature. Temperatures are projected to rise by 0.2 °C in the next two decades,...
Lepczyk, Christopher A.; Miura, Tomoaki; Fox, Jefferson M.
2018-01-01
Urbanization has been driven by various social, economic, and political factors around the world for centuries. Because urbanization continues unabated in many places, it is crucial to understand patterns of urbanization and their potential ecological and environmental impacts. Given this need, the objectives of our study were to quantify urban growth rates, growth modes, and resultant changes in the landscape pattern of urbanization in Hanoi, Vietnam from 1993 to 2010 and to evaluate the extent to which the process of urban growth in Hanoi conformed to the diffusion-coalescence theory. We analyzed the spatiotemporal patterns and dynamics of the built-up land in Hanoi using landscape expansion modes, spatial metrics, and a gradient approach. Urbanization was most pronounced in the periods of 2001–2006 and 2006–2010 at a distance of 10 to 35 km around the urban center. Over the 17 year period urban expansion in Hanoi was dominated by infilling and edge expansion growth modes. Our findings support the diffusion-coalescence theory of urbanization. The shift of the urban growth areas over time and the dynamic nature of the spatial metrics revealed important information about our understanding of the urban growth process and cycle. Furthermore, our findings can be used to evaluate urban planning policies and aid in urbanization issues in rapidly urbanizing countries. PMID:29734346
Keeley, Brieze R; Islami, Farhad; Pourshams, Akram; Poustchi, Hossein; Pak, Jamie S; Brennan, Paul; Khademi, Hooman; Genden, Eric M; Abnet, Christian C; Dawsey, Sanford M; Boffetta, Paolo; Malekzadeh, Reza; Sikora, Andrew G
2014-01-01
This study tests the hypothesis that prediagnostic serum levels of 20 cancer-associated inflammatory biomarkers correlate directly with future development of head and neck, esophageal, and lung cancers in a high-risk prospective cohort. This is a nested case–control pilot study of subjects enrolled in the Golestan Cohort Study, an ongoing epidemiologic project assessing cancer trends in Golestan, Iran. We measured a panel of 20 21cytokines, chemokines, and inflammatory molecules using Luminex technology in serum samples collected 2 or more years before cancer diagnosis in 78 aerodigestive cancer cases and 81 controls. Data was analyzed using Wilcoxon rank sum test, odds ratios, receiver operating characteristic areas of discrimination, and multivariate analysis. Biomarkers were profoundly and globally elevated in future esophageal and lung cancer patients compared to controls. Odds ratios were significant for association between several biomarkers and future development of esophageal cancer, including interleukin-1Rα (IL-1Ra; 35.9), interferon α2 (IFN-a2; 34.0), fibroblast growth factor-2 (FGF-2; 17.4), and granulocyte/macrophage colony-stimulating factor (GM-CSF; 17.4). The same pattern was observed among future lung cancer cases for G-CSF (27.7), GM-CSF (13.3), and tumor necrosis factor-α (TNF-a; 8.6). By contrast, the majority of biomarkers studied showed no significant correlation with future head and neck cancer development. This study provides the first direct evidence that multiple inflammatory biomarkers are coordinately elevated in future lung and esophageal cancer patients 2 or more years before cancer diagnosis. PMID:25040886
Mining Productive-Associated Periodic-Frequent Patterns in Body Sensor Data for Smart Home Care
Ismail, Walaa N.; Hassan, Mohammad Mehedi
2017-01-01
The understanding of various health-oriented vital sign data generated from body sensor networks (BSNs) and discovery of the associations between the generated parameters is an important task that may assist and promote important decision making in healthcare. For example, in a smart home scenario where occupants’ health status is continuously monitored remotely, it is essential to provide the required assistance when an unusual or critical situation is detected in their vital sign data. In this paper, we present an efficient approach for mining the periodic patterns obtained from BSN data. In addition, we employ a correlation test on the generated patterns and introduce productive-associated periodic-frequent patterns as the set of correlated periodic-frequent items. The combination of these measures has the advantage of empowering healthcare providers and patients to raise the quality of diagnosis as well as improve treatment and smart care, especially for elderly people in smart homes. We develop an efficient algorithm named PPFP-growth (Productive Periodic-Frequent Pattern-growth) to discover all productive-associated periodic frequent patterns using these measures. PPFP-growth is efficient and the productiveness measure removes uncorrelated periodic items. An experimental evaluation on synthetic and real datasets shows the efficiency of the proposed PPFP-growth algorithm, which can filter a huge number of periodic patterns to reveal only the correlated ones. PMID:28445441
Mining Productive-Associated Periodic-Frequent Patterns in Body Sensor Data for Smart Home Care.
Ismail, Walaa N; Hassan, Mohammad Mehedi
2017-04-26
The understanding of various health-oriented vital sign data generated from body sensor networks (BSNs) and discovery of the associations between the generated parameters is an important task that may assist and promote important decision making in healthcare. For example, in a smart home scenario where occupants' health status is continuously monitored remotely, it is essential to provide the required assistance when an unusual or critical situation is detected in their vital sign data. In this paper, we present an efficient approach for mining the periodic patterns obtained from BSN data. In addition, we employ a correlation test on the generated patterns and introduce productive-associated periodic-frequent patterns as the set of correlated periodic-frequent items. The combination of these measures has the advantage of empowering healthcare providers and patients to raise the quality of diagnosis as well as improve treatment and smart care, especially for elderly people in smart homes. We develop an efficient algorithm named PPFP-growth (Productive Periodic-Frequent Pattern-growth) to discover all productive-associated periodic frequent patterns using these measures. PPFP-growth is efficient and the productiveness measure removes uncorrelated periodic items. An experimental evaluation on synthetic and real datasets shows the efficiency of the proposed PPFP-growth algorithm, which can filter a huge number of periodic patterns to reveal only the correlated ones.
Resource Demand Scenarios for the Major Metals.
Elshkaki, Ayman; Graedel, T E; Ciacci, Luca; Reck, Barbara K
2018-03-06
The growth in metal use in the past few decades raises concern that supplies may be insufficient to meet demands in the future. From the perspective of historical and current use data for seven major metals-iron, manganese, aluminum, copper, nickel, zinc, and lead-we have generated several scenarios of potential metal demand from 2010 to 2050 under alternative patterns of global development. We have also compared those demands with various assessments of potential supply to midcentury. Five conclusions emerge: (1) The calculated demand for each of the seven metals doubles or triples relative to 2010 levels by midcentury; (2) The largest demand increases relate to a scenario in which increasingly equitable values and institutions prevail throughout the world; (3) The metal recycling flows in the scenarios meet only a modest fraction of future metals demand for the next few decades; (4) In the case of copper, zinc, and perhaps lead, supply may be unlikely to meet demand by about midcentury under the current use patterns of the respective metals; (5) Increased rates of demand for metals imply substantial new energy provisioning, leading to increases in overall global energy demand of 21-37%. These results imply that extensive technological transformations and governmental initiatives could be needed over the next several decades in order that regional and global development and associated metal demand are not to be constrained by limited metal supply.
Ricca, Mark A.; Van Vuren, Dirk H.; Weckerly, Floyd W.; Williams, Jeffrey C.; Miles, A. Keith
2014-01-01
Large mammalian herbivores introduced to islands without predators are predicted to undergo irruptive population and spatial dynamics, but only a few well-documented case studies support this paradigm. We used the Riney-Caughley model as a framework to test predictions of irruptive population growth and spatial expansion of caribou (Rangifer tarandus granti) introduced to Adak Island in the Aleutian archipelago of Alaska in 1958 and 1959. We utilized a time series of spatially explicit counts conducted on this population intermittently over a 54-year period. Population size increased from 23 released animals to approximately 2900 animals in 2012. Population dynamics were characterized by two distinct periods of irruptive growth separated by a long time period of relative stability, and the catalyst for the initial irruption was more likely related to annual variation in hunting pressure than weather conditions. An unexpected pattern resembling logistic population growth occurred between the peak of the second irruption in 2005 and the next survey conducted seven years later in 2012. Model simulations indicated that an increase in reported harvest alone could not explain the deceleration in population growth, yet high levels of unreported harvest combined with increasing density-dependent feedbacks on fecundity and survival were the most plausible explanation for the observed population trend. No studies of introduced island Rangifer have measured a time series of spatial use to the extent described in this study. Spatial use patterns during the post-calving season strongly supported Riney-Caughley model predictions, whereby high-density core areas expanded outwardly as population size increased. During the calving season, caribou displayed marked site fidelity across the full range of population densities despite availability of other suitable habitats for calving. Finally, dispersal and reproduction on neighboring Kagalaska Island represented a new dispersal front for irruptive dynamics and a new challenge for resource managers. The future demography of caribou on both islands is far from certain, yet sustained and significant hunting pressure should be a vital management tool.
Lynch, Anne M.; Wagner, Brandie D.; Mandava, Naresh; Palestine, Alan G.; Mourani, Peter M.; McCourt, Emily A.; Oliver, Scott C. N.; Abman, Steven H.
2016-01-01
Purpose Retinopathy of prematurity (ROP) is a vision-threatening disease associated with abnormal retinal vascular development. Proteins from the insulin-like growth factor pathway are related to ROP. However, there is a paucity of research on the role of other proteins in ROP. The aim of this study was to identify plasma proteins related to clinically significant ROP. Methods We measured 1121 plasma proteins in the early neonatal period in infants at risk for ROP using an aptamer-based proteomic technology. The primary aim of the study was to compare plasma protein concentrations in infants who did (n = 12) and did not (n = 23) subsequently develop clinically significant ROP using logistic regression. As a secondary aim, we examined patterns in the proteins across categories of clinically significant, low-grade, and no ROP groups. Results Lower levels of 16 proteins were associated with an increased risk of clinically significant ROP. In this group, superoxide dismutase (Mn), mitochondrial (MnSOD), and chordin-like protein 1 (CRDL1) were highly ranked. Other proteins in this group included: C-C motif chemokine 14 (HCC-1), prolactin, insulin-like growth factor-binding protein 7 (IGFBP-7), and eotaxin. Higher levels of 12 proteins were associated with a higher risk for ROP. Fibroblast growth factor 19 (FGF-19) was the top-ranked protein target followed by hepatocyte growth factor-like protein (MSP), luteinizing hormone (LH), cystatin M, plasminogen, and proprotein convertase subtilisin/kexin type 9 (PCSK9). We also noted different patterns in the trend of concentrations of proteins across the clinically significant, low-grade, and no ROP groups. Conclusions We discovered plasma proteins with novel associations with clinically significant ROP (MnSOD, CRDL1, PCSK9), proteins with links to established ROP signaling pathways (IGFBP-7), and proteins such as MnSOD that may be a target for future therapeutic interventions. PMID:27679852
Duration of shoot elongation in Scots pine varies within the crown and between years.
Schiestl-Aalto, Pauliina; Nikinmaa, Eero; Mäkelä, Annikki
2013-10-01
Shoot elongation in boreal and temperate trees typically follows a sigmoid pattern where the onset and cessation of growth are related to accumulated effective temperature (thermal time). Previous studies on leader shoots suggest that while the maximum daily growth rate depends on the availability of resources to the shoot, the duration of the growth period may be an adaptation to long-term temperature conditions. However, other results indicate that the growth period may be longer in faster growing lateral shoots with higher availability of resources. This study investigates the interactions between the rate of elongation and the duration of the growth period in units of thermal time in lateral shoots of Scots pine (Pinus sylvestris). Length development of 202 lateral shoots were measured approximately three times per week during seven growing seasons in 2-5 trees per year in a mature stand and in three trees during one growing season in a sapling stand. A dynamic shoot growth model was adapted for the analysis to determine (1) the maximum growth rate and (2) the thermal time reached at growth completion. The relationship between those two parameters and its variation between trees and years was analysed using linear mixed models. The shoots with higher maximum growth rate within a crown continued to grow for a longer period in any one year. Higher July-August temperature of the previous summer implied a higher requirement of thermal time for growth completion. The results provide evidence that the requirement of thermal time for completion of lateral shoot extension in Scots pine may interact with resource availability to the shoot both from year to year and among shoots in a crown each year. If growing season temperatures rise in the future, this will affect not only the rate of shoot growth but its duration also.
Guarini, J.-M.; Chauvaud, Laurent; Cloern, J.E.; Clavier, J.; Coston-Guarini, J.; Patry, Y.
2011-01-01
Generally, growth rates of living organisms are considered to be at steady state, varying only under environmental forcing factors. For example, these rates may be described as a function of light for plants or organic food resources for animals and these could be regulated (or not) by temperature or other conditions. But, what are the consequences for an individual's growth (and also for the population growth) if growth rate variations are themselves dynamic and not steady state? For organisms presenting phases of dormancy or long periods of stress, this is a crucial question. A dynamic perspective for quantifying short-term growth was explored using the daily growth record of the scallop Pecten maximus (L.). This species is a good biological model for ectotherm growth because the shell records growth striae daily. Independently, a generic mathematical function representing the dynamics of mean daily growth rate (MDGR) was implemented to simulate a diverse set of growth patterns. Once the function was calibrated with the striae patterns, the growth rate dynamics appeared as a forced damped oscillation during the growth period having a basic periodicity during two transitory phases (mean duration 43. days) and appearing at both growth start and growth end. This phase is most likely due to the internal dynamics of energy transfer within the organism rather than to external forcing factors. After growth restart, the transitory regime represents successive phases of over-growth and regulation. This pattern corresponds to a typical representation of compensatory growth, which from an evolutionary perspective can be interpreted as an adaptive strategy to coping with a fluctuating environment. ?? 2011 Elsevier B.V.
1987-12-01
assessment of data collection techniques *quantification of temporal and spatial patterns of variables *assessment of end point variability...nutrient variables are also being examined as covarlates. Development of a model to test for differences in growth patterns is continuing. At each of...condition. These variables are recorded at the end of each growing season. For evaluation of height growth patterns , a subsample of 100 seedlings per
Reed, S.C.; Vitousek, P.M.; Cleveland, C.C.
2011-01-01
Accurately predicting the effects of global change on net carbon (C) exchange between terrestrial ecosystems and the atmosphere requires a more complete understanding of how nutrient availability regulates both plant growth and heterotrophic soil respiration. Models of soil development suggest that the nature of nutrient limitation changes over the course of ecosystem development, transitioning from nitrogen (N) limitation in 'young' sites to phosphorus (P) limitation in 'old' sites. However, previous research has focused primarily on plant responses to added nutrients, and the applicability of nutrient limitation-soil development models to belowground processes has not been thoroughly investigated. Here, we assessed the effects of nutrients on soil C cycling in three different forests that occupy a 4 million year substrate age chronosequence where tree growth is N limited at the youngest site, co-limited by N and P at the intermediate-aged site, and P limited at the oldest site. Our goal was to use short-term laboratory soil C manipulations (using 14C-labeled substrates) and longer-term intact soil core incubations to compare belowground responses to fertilization with aboveground patterns. When nutrients were applied with labile C (sucrose), patterns of microbial nutrient limitation were similar to plant patterns: microbial activity was limited more by N than by P in the young site, and P was more limiting than N in the old site. However, in the absence of C additions, increased respiration of native soil organic matter only occurred with simultaneous additions of N and P. Taken together, these data suggest that altered nutrient inputs into ecosystems could have dissimilar effects on C cycling above- and belowground, that nutrients may differentially affect of the fate of different soil C pools, and that future changes to the net C balance of terrestrial ecosystems will be partially regulated by soil nutrient status. ?? 2010 US Government.
NASA Astrophysics Data System (ADS)
Wang, J.; Yin, H.; Chung, F.
2008-12-01
While the population growth, the future land use change, and the desire for better environmental preservation and protection are adding up pressure on water resources management in California, California is facing an extra challenge of addressing potential climate change impacts on water supple and demand in California. The concerns on water facilities planning and flood control caused by climate change include modified precipitation patterns, changes in snow levels and runoff patterns due to increased air temperatures. Although long-term climate projections are largely uncertain, there appears to be a strong consistency in predicting the warming trend of future surface temperature, and the resulting shift in the seasonal patterns of runoff. However, projected changes in precipitation (wetting or drying), which control annual runoff, are far less certain. This paper attempts to separate the effects of warming trend from the effects of precipitation trend on water planning especially in California where reservoir operations are more sensitive to seasonal patterns of runoff than to the total annual runoff. The water resources systems planning model, CALSIM2, is used to evaluate climate change impact on water resource management in California. Rather than directly ingesting estimated streamflows from climate model projections into CALSIM2, a three step perturbation ratio method is proposed to introduce climate change impact into the planning model. Firstly, monthly perturbation ratio of projected monthly inflow to simulated historical monthly inflow is applied to observed historical monthly inflow to generate climate change inflows to major dams and reservoirs. To isolate the effects of warming trend on water resources, a further annual inflow adjustment is applied to the inflows generated in step one to preserve the volume of the observed annual inflow. To re-introduce the effects of precipitation trend on water resources, an additional inflow trend adjustment is applied to the adjusted climate change inflow. Therefore, three CALSIM2 experiments will be implemented: (1) base run with the observed historic inflow (1921 to 2003); (2) sensitivity run with the adjusted climate change inflow through annual inflow adjustment; (3) sensitivity run with the adjusted climate change inflow through annual inflow adjustment and inflow trend adjustment. To account for the variability of various climate models in projecting future climates, the uncertainty in future emission scenarios, and the difference in different projection periods, estimated inflows from 6 climate models for 2 emission scenarios (A2 and B1) and two projection periods (2030-2059 and 2070-2099) are included in the CALSIM model experiments.
Yurek, Simeon; DeAngelis, Donald L.; Trexler, Joel C.; Jopp, Fred; Donalson, Douglas D.
2013-01-01
Movement strategies of small forage fish (<8 cm total length) between temporary and permanent wetland habitats affect their overall population growth and biomass concentrations, i.e., availability to predators. These fish are often the key energy link between primary producers and top predators, such as wading birds, which require high concentrations of stranded fish in accessible depths. Expansion and contraction of seasonal wetlands induce a sequential alternation between rapid biomass growth and concentration, creating the conditions for local stranding of small fish as they move in response to varying water levels. To better understand how landscape topography, hydrology, and fish behavior interact to create high densities of stranded fish, we first simulated population dynamics of small fish, within a dynamic food web, with different traits for movement strategy and growth rate, across an artificial, spatially explicit, heterogeneous, two-dimensional marsh slough landscape, using hydrologic variability as the driver for movement. Model output showed that fish with the highest tendency to invade newly flooded marsh areas built up the largest populations over long time periods with stable hydrologic patterns. A higher probability to become stranded had negative effects on long-term population size, and offset the contribution of that species to stranded biomass. The model was next applied to the topography of a 10 km × 10 km area of Everglades landscape. The details of the topography were highly important in channeling fish movements and creating spatiotemporal patterns of fish movement and stranding. This output provides data that can be compared in the future with observed locations of fish biomass concentrations, or such surrogates as phosphorus ‘hotspots’ in the marsh.
Schuckit, Marc A.; Smith, Tom L.; Shafir, Alexandra; Clausen, Peyton; Danko, George; Gonçalves, Priscila Dib; Anthenelli, Robert M.; Chan, Grace; Kuperman, Samuel; Hesselbrock, Michie; Hesselbrock, Victor; Kramer, John; Bucholz, Kathleen K.
2017-01-01
Objective: Alcohol-related blackouts (ARBs) are anterograde amnesias related to heavy alcohol intake seen in about 50% of drinkers. Although a major determinant of ARBs relates to blood alcohol concentrations, additional contributions come from genetic vulnerabilities and possible impacts of cannabis use disorders (CUDs). We evaluated relationships of genetics and cannabis use to latent class trajectories of ARBs in 829 subjects from the Collaborative Study of the Genetics of Alcoholism (COGA). Method: The number of ARBs experienced every 2 years from subjects with average ages of 18 to 25 were entered into a latent class growth analysis in Mplus, and resulting class membership was evaluated in light of baseline characteristics, including CUDs. Correlations of number of ARBs across assessments were also compared for sibling pairs versus unrelated subjects. Results: Latent class growth analysis identified ARB-based Classes 1 (consistent low = 42.5%), 2 (moderate low = 28.3%), 3 (moderate high = 22.9%), and 4 (consistent high = 6.3%). A multinomial logistic regression analysis within latent class growth analysis revealed that baseline CUDs related most closely to Classes 3 and 4. The number of ARBs across time correlated .23 for sibling pairs and -.10 for unrelated subjects. Conclusions: Baseline CUDs related to the most severe latent ARB course over time, even when considered along with other trajectory predictors, including baseline alcohol use disorders and maximum number of drinks. Data indicated significant roles for genetic factors for alcohol use disorder patterns over time. Future research is needed to improve understanding of how cannabis adds to the ARB risk and to find genes that contribute to risks for ARBs among drinkers. PMID:27936363
Multispectral InGaAs/GaAs/AlGaAs laser arrays by MBE growth on patterned substrates
NASA Astrophysics Data System (ADS)
Kamath, K.; Bhattacharya, P.; Singh, J.
1997-05-01
Multispectral semiconductor laser arrays on single chip is demonstrated by molecular beam epitaxial (MBE) growth of {In0.2Ga0.8As}/{GaAs} quantum well lasers on GaAs (1 0 0) substrates patterned by dry etching. No regrowth is needed for simple edge emitting lasers. It was observed that the laser characteristics are not degraded by the patterned growth. The shift in the emission wavelength obtained by this method can be controlled by varying the width of the pre-patterned ridges as well as by selecting the regions with different number of vertical sidewalls on both sides. We have also shown that multispectral vertical cavity surface emitting laser (VCSEL) arrays can be made by this technique with a single regrowth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plaut, Annette S.; Wurstbauer, Ulrich; Wang, Sheng
We demonstrate growth of single-layer graphene (SLG) on hexagonal boron nitride (h-BN) by molecular beam epitaxy (MBE), only limited in area by the finite size of the h-BN flakes. Using atomic force microscopy and micro-Raman spectroscopy, we show that for growth over a wide range of temperatures (500 °C – 1000 °C) the deposited carbon atoms spill off the edge of the h-BN flakes. We attribute this spillage to the very high mobility of the carbon atoms on the BN basal plane, consistent with van der Waals MBE. The h-BN flakes vary in size from 30 μm to 100 μm,more » thus demonstrating that the migration length of carbon atoms on h-BN is greater than 100 μm. When sufficient carbon is supplied to compensate for this loss, which is largely due to this fast migration of the carbon atoms to and off the edges of the h-BN flake, we find that the best growth temperature for MBE SLG on h-BN is ~950 °C. Self-limiting graphene growth appears to be facilitated by topographic h-BN surface features: We have thereby grown MBE self-limited SLG on an h-BN ridge. This opens up future avenues for precisely tailored fabrication of nano- and hetero-structures on pre-patterned h-BN surfaces for device applications.« less
Neal, Benjamin P; Lin, Tsung-Han; Winter, Rivah N; Treibitz, Tali; Beijbom, Oscar; Kriegman, David; Kline, David I; Greg Mitchell, B
2015-08-01
Size and growth rates for individual colonies are some of the most essential descriptive parameters for understanding coral communities, which are currently experiencing worldwide declines in health and extent. Accurately measuring coral colony size and changes over multiple years can reveal demographic, growth, or mortality patterns often not apparent from short-term observations and can expose environmental stress responses that may take years to manifest. Describing community size structure can reveal population dynamics patterns, such as periods of failed recruitment or patterns of colony fission, which have implications for the future sustainability of these ecosystems. However, rapidly and non-invasively measuring coral colony sizes in situ remains a difficult task, as three-dimensional underwater digital reconstruction methods are currently not practical for large numbers of colonies. Two-dimensional (2D) planar area measurements from projection of underwater photographs are a practical size proxy, although this method presents operational difficulties in obtaining well-controlled photographs in the highly rugose environment of the coral reef, and requires extensive time for image processing. Here, we present and test the measurement variance for a method of making rapid planar area estimates of small to medium-sized coral colonies using a lightweight monopod image-framing system and a custom semi-automated image segmentation analysis program. This method demonstrated a coefficient of variation of 2.26% for repeated measurements in realistic ocean conditions, a level of error appropriate for rapid, inexpensive field studies of coral size structure, inferring change in colony size over time, or measuring bleaching or disease extent of large numbers of individual colonies.
How Did Urban Land Expand in China between 1992 and 2015? A Multi-Scale Landscape Analysis.
Xu, Min; He, Chunyang; Liu, Zhifeng; Dou, Yinyin
2016-01-01
Effective and timely quantification of the spatiotemporal pattern of urban expansion in China is important for the assessment of its environmental effects. However, the dynamics of the most recent urban expansions in China since 2012 have not yet been adequately explained due to a lack of current information. In this paper, our objective was to quantify spatiotemporal patterns of urban expansion in China between 1992 and 2015. First, we extracted information on urban expansion in China between 1992 and 2015 by integrating nighttime light data, vegetation index data, and land surface temperature data. Then we analyzed the spatiotemporal patterns of urban expansion at the national and regional scales, as well as at that of urban agglomerations. We found that China experienced a rapid and large-scale process of urban expansion between 1992 and 2015, with urban land increasing from 1.22 × 104 km2 to 7.29 × 104 km2, increasing in size nearly fivefold and with an average annual growth rate of 8.10%, almost 2.5 times as rapid as the global average. We also found that urban land in China expanded mainly by occupying 3.31 × 104 km2 of cropland, which comprised 54.67% of the total area of expanded urban land. Among the three modes of growth-infilling, edge expansion, and leapfrog-edge expansion was the main cause of cropland loss. Cropland loss resulting from edge expansion of urban land totalled 2.51 × 104 km2, accounting for over 75% of total cropland loss. We suggest that effective future management with respect to edge expansion of urban land is needed to protect cropland in China.
Atchison, Elizabeth A; Garrity, James A; Castillo, Francisco; Engman, Steven J; Couch, Steven M; Salomão, Diva R
2016-01-01
Vascular lesions of the orbit, although not malignant, can cause morbidity because of their location near critical structures in the orbit. For the same reason, they can be challenging to remove surgically. Anti-vascular endothelial growth factor (VEGF) drugs are increasingly being used to treat diseases with prominent angiogenesis. Our study aimed to determine to what extent VEGF receptors and their subtypes are expressed on selected vascular lesions of the orbit. Retrospective case series of all orbital vascular lesions removed by one of the authors (JAG) at the Mayo Clinic. A total of 52 patients who underwent removal of vascular orbital lesions. The pathology specimens from the patients were retrieved, their pathologic diagnosis was confirmed, demographic and clinical information were gathered, and sections from vascular tumors were stained with vascular endothelial growth factor receptor (VEGFR), vascular endothelial growth factor receptor type 1 (VEGFR1), vascular endothelial growth factor receptor type 2 (VEGFR2), and vascular endothelial growth factor receptor type 3 (VEGFR3). The existence and pattern of staining with VEGF and its subtypes on these lesions. There were 28 specimens of venous malformations, 4 capillary hemangiomas, 7 lymphatic malformations, and 6 lymphaticovenous malformations. All samples stained with VEGF, 55% stained with VEGFR1, 98% stained with VEGFR2, and 96% stained with VEGFR3. Most (94%) of the VEGFR2 staining was diffuse. Most orbital vascular lesions express VEGF receptors, which may suggest a future target for nonsurgical treatment. Copyright © 2016 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
Reef, Ruth; Winter, Klaus; Morales, Jorge; Adame, Maria Fernanda; Reef, Dana L; Lovelock, Catherine E
2015-07-01
By increasing water use efficiency and carbon assimilation, increasing atmospheric CO2 concentrations could potentially improve plant productivity and growth at high salinities. To assess the effect of elevated CO2 on the salinity response of a woody halophyte, we grew seedlings of the mangrove Avicennia germinans under a combination of five salinity treatments [from 5 to 65 parts per thousand (ppt)] and three CO2 concentrations (280, 400 and 800 ppm). We measured survivorship, growth rate, photosynthetic gas exchange, root architecture and foliar nutrient and ion concentrations. The salinity optima for growth shifted higher with increasing concentrations of CO2 , from 0 ppt at 280 ppm to 35 ppt at 800 ppm. At optimal salinity conditions, carbon assimilation rates were significantly higher under elevated CO2 concentrations. However, at salinities above the salinity optima, salinity had an expected negative effect on mangrove growth and carbon assimilation, which was not alleviated by elevated CO2 , despite a significant improvement in photosynthetic water use efficiency. This is likely due to non-stomatal limitations to growth at high salinities, as indicated by our measurements of foliar ion concentrations that show a displacement of K(+) by Na(+) at elevated salinities that is not affected by CO2 . The observed shift in the optimal salinity for growth with increasing CO2 concentrations changes the fundamental niche of this species and could have significant effects on future mangrove distribution patterns and interspecific interactions. © 2014 Scandinavian Plant Physiology Society.
Modeling global yield growth of major crops under multiple socioeconomic pathways
NASA Astrophysics Data System (ADS)
Iizumi, T.; Kim, W.; Zhihong, S.; Nishimori, M.
2016-12-01
Global gridded crop models (GGCMs) are a key tool in deriving global food security scenarios under climate change. However, it is difficult for GGCMs to reproduce the reported yield growth patterns—rapid growth, yield stagnation and yield collapse. Here, we propose a set of parameterizations for GGCMs to capture the contributions to yield from technological improvements at the national and multi-decadal scales. These include country annual per capita gross domestic product (GDP)-based parameterizations for the nitrogen application rate and crop tolerance to stresses associated with high temperature, low temperature, water deficit and water excess. Using a GGCM combined with the parameterizations, we present global 140-year (1961-2100) yield growth simulations for maize, soybean, rice and wheat under multiple shared socioeconomic pathways (SSPs) and no climate change. The model reproduces the major characteristics of reported global and country yield growth patterns over the 1961-2013 period. Under the most rapid developmental pathway SSP5, the simulated global yields for 2091-2100, relative to 2001-2010, are the highest (1.21-1.82 times as high, with variations across the crops), followed by SSP1 (1.14-1.56 times as high), SSP2 (1.12-1.49 times as high), SSP4 (1.08-1.38 times as high) and SSP3 (1.08-1.36 times as high). Future country yield growth varies substantially by income level as well as by crop and by SSP. These yield pathways offer a new baseline for addressing the interdisciplinary questions related to global agricultural development, food security and climate change.
NASA Astrophysics Data System (ADS)
Takeuchi, Wakana; Washizu, Tomoya; Ike, Shinichi; Nakatsuka, Osamu; Zaima, Shigeaki
2018-01-01
We have investigated the selective growth of a Ge1- x Sn x epitaxial layer on a line/space-patterned SiO2/Si substrate by metal-organic chemical vapor deposition. We examined the behavior of a Sn precursor of tributyl(vinyl)tin (TBVSn) during the growth on Si and SiO2 substrates and investigated the effect of the Sn precursor on the selective growth. The selective growth of the Ge1- x Sn x epitaxial layer was performed under various total pressures and growth temperatures of 300 and 350 °C. The selective growth of the Ge1- x Sn x epitaxial layer on the patterned Si region is achieved at a low total pressure without Ge1- x Sn x growth on the SiO2 region. In addition, we found that the Sn content in the Ge1- x Sn x epitaxial layer increases with width of the SiO2 region for a fixed Si width even with low total pressure. To control the Sn content in the selective growth of the Ge1- x Sn x epitaxial layer, it is important to suppress the decomposition and migration of Sn and Ge precursors.
Polsen, Erik S; Stevens, Adam G; Hart, A John
2013-05-01
Commercialization of materials utilizing patterned carbon nanotube (CNT) forests, such as hierarchical composite structures, dry adhesives, and contact probe arrays, will require catalyst patterning techniques that do not rely on cleanroom photolithography. We demonstrate the large scale patterning of CNT growth catalyst via adaptation of a laser-based electrostatic printing process that uses magnetic ink character recognition (MICR) toner. The MICR toner contains iron oxide nanoparticles that serve as the catalyst for CNT growth, which are printed onto a flexible polymer (polyimide) and then transferred to a rigid substrate (silicon or alumina) under heat and mechanical pressure. Then, the substrate is processed for CNT growth under an atmospheric pressure chemical vapor deposition (CVD) recipe. This process enables digital control of patterned CNT growth via the laser intensity, which controls the CNT density; and via the grayscale level, which controls the pixelation of the image into arrays of micropillars. Moreover, virtually any pattern can be designed using standard software (e.g., MS Word, AutoCAD, etc.) and printed on demand. Using a standard office printer, we realize isolated CNT microstructures as small as 140 μm and isolated catalyst ″pixels″ as small as 70 μm (one grayscale dot) and determine that individual toner microparticles result in features of approximately 5-10 μm . We demonstrate that grayscale CNT patterns can function as dry adhesives and that large-area catalyst patterns can be printed directly onto metal foils or transferred to ceramic plates. Laser printing therefore shows promise to enable high-speed micropatterning of nanoparticle-containing thin films under ambient conditions, possibly for a wide variety of nanostructures by engineering of toners containing nanoparticles of desired composition, size, and shape.
NASA Astrophysics Data System (ADS)
Zieschang, H. E.; Sievers, A.
1994-08-01
With the mathematical basis for the precise analysis of developmental processes in plants, the patterns of growth in phototropic and gravitropic responses have become better understood. A detailed temporal and spatial quantification of a growth process is an important tool for evaluating hypotheses about the underlying physiological mechanisms. Studies of growth rates and curvature show that the original Cholodny-Went hypothesis cannot explain the complex growth patterns during tropic responses of shoots and roots. In addition, regulating factors other than the lateral redistribution of hormones must be taken into account. Electrophysiological studies on roots led to a modification of the Cholodny-Went hypothesis in that redistributions of bioelectrical activities are observed.
Mating system and early viability resistance to habitat fragmentation in a bird-pollinated eucalypt
Breed, M F; Ottewell, K M; Gardner, M G; Marklund, M H K; Stead, M G; Harris, J B C; Lowe, A J
2015-01-01
Habitat fragmentation has been shown to disrupt ecosystem processes such as plant-pollinator mutualisms. Consequently, mating patterns in remnant tree populations are expected to shift towards increased inbreeding and reduced pollen diversity, with fitness consequences for future generations. However, mating patterns and phenotypic assessments of open-pollinated progeny have rarely been combined in a single study. Here, we collected seeds from 37 Eucalyptus incrassata trees from contrasting stand densities following recent clearance in a single South Australian population (intact woodland=12.6 trees ha−1; isolated pasture=1.7 trees ha−1; population area=10 km2). 649 progeny from these trees were genotyped at eight microsatellite loci. We estimated genetic diversity, spatial genetic structure, indirect contemporary pollen flow and mating patterns for adults older than the clearance events and open-pollinated progeny sired post-clearance. A proxy of early stage progeny viability was assessed in a common garden experiment. Density had no impact on mating patterns, adult and progeny genetic diversity or progeny growth, but was associated with increased mean pollen dispersal. Weak spatial genetic structure among adults suggests high historical gene flow. We observed preliminary evidence for inbreeding depression related to stress caused by fungal infection, but which was not associated with density. Higher observed heterozygosities in adults compared with progeny may relate to weak selection on progeny and lifetime-accumulated mortality of inbred adults. E. incrassata appears to be resistant to the negative mating pattern and fitness changes expected within fragmented landscapes. This pattern is likely explained by strong outcrossing and regular long-distance pollen flow. PMID:23188172
Urban Cultural Heritage Endangerment: Degradation of historico-cultural landscapes
NASA Astrophysics Data System (ADS)
Vaz, Eric; Cabral, Pedro; Caetano, Mário; Painho, Marco; Nijkamp, Peter
2010-05-01
Sustainable development has become one of the great debates of policy-making of the XXI century. The world, is facing unprecedented change following the anthropocentrism of socio-economic growth. However, the commitment of man to ‘transmit to future generations at least the same as had' (ref) seems to be a narrowing, given extensive urban growth, population increase and climate change. However, over the last twenty years, the usage of spatial information systems have brought a positive contribution for better acknowledging the problem of environmental change, and bringing more constructive approaches to planning. Prompted by much research interest in Europe, a broad specter of biodiversity loss models, pollution and environmental degradation algorithms as well as climate change models, have become important tools under the European umbrella. Recognizing the essence of sustainable development, historico-cultural and archaeological regions have a remarkable role in the transformation of landscapes and maintenance of cultural and regional identity. Furthermore, the socio-economic, political-geographic and cultural-scientific history of the dynamics of places and localities on our earth is reflected in their historico-cultural heritage. This patrimony comprises cultural assets, such as old churches, palaces, museums, urban parks, historical architecture of cities, or landscapes of historical interest. Historico-cultural heritage also includes archaeological sites, which sometimes not only have a local value but may have a worldwide significance (e.g. Pompeii). However, massive urban growth is affecting directly the existing historico-cultural resources throughout the European region, and little attention is given to this juxtaposing reality of peri-urban growth and cultural / archaeological heritage preservation. Also, the settling patterns within historico-cultural local clusters follow a similar pattern as current growth tendencies, given the physical conditions of land-use. This brings forth a dichotomy between areas to cope with population increase (and therefore highly probable of urbanization) and regions of valuable historico-cultural and archaeological legacy. To bridge this dichotomy, this paper attempts to provide a methodology for measuring cultural heritage endangerment brought by urban pressure. By using spatial modeling to prompt urban growth combined with archaeological predictive models, composing a secondary layer, a propensity map for areas with extremely high cultural value and where urban growth should be dealt with especial care become evident. Fundamentally, the joined model of Cultural Heritage Endangerment, tackles a recent and unprecedented problem at global level: Committing urban planning to allow the conservation of cultural and archaeological legacy for future generation. In an attempt to abridge the consequences of the decadence of historico-cultural landscapes, the historico-cultural endangerment (HCE) method will be applied to two entirely different regions in the world. On one side, the methodology will be applied on a regional emphasis in the Algarve region in Portugal, addressing the input of maintaining the integrity of archaeological landscapes, and on the other, a local micro-simulation of the Giza Pyramids in Egypt, shall allow to envision a segment of local consequences of urban pressure on irreplaceable monuments. The conclusions of both study-cases abridge the global nature of this problem as well as the importance of HCE implementation at different scales.
Deciphering Dynamical Patterns of Growth Processes
ERIC Educational Resources Information Center
Kolakowska, A.
2009-01-01
Large systems of statistical physics often display properties that are independent of particulars that characterize their microscopic components. Universal dynamical patterns are manifested by the presence of scaling laws, which provides a common insight into governing physics of processes as vastly diverse as, e.g., growth of geological…
Adenomyomatous Polyp with Inverted Growth Pattern and Serosal Pseudoinvasion
2016-09-25
muscle with thick -walled vessels. We present a novel case of a 48-year old female with an adenomyomatous polyp with an unusual inverted growth pattern...displaying full- thickness pseudoinvasion beyond the serosal surface. Prior to surgery, imaging showed an infiltrative lesion suggestive of endometrial
William G. Kepner; I. Shea Burns; David C Goodrich; D. Phillip Guertin; Gabriel S. Sidman; Lainie R. Levick; Wison W.S. Yee; Melissa M.A. Scianni; Clifton S. Meek; Jared B. Vollmer
2016-01-01
Long-term land-use and land cover change and their associated impacts pose critical challenges to sustaining vital hydrological ecosystem services for future generations. In this study, a methodology was developed to characterize potential hydrologic impacts from future urban growth through time. Future growth is represented by housing density maps generated in decadal...
Lirman, Diego; Fong, Peggy
2007-06-01
Localized declines in coral condition are commonly linked to land-based sources of stressors that influence gradients of water quality, and the distance to sources of stressors is commonly used as a proxy for predicting the vulnerability and future status of reef resources. In this study, we evaluated explicitly whether proximity to shore and connections to coastal bays, two measures of potential land-based sources of disturbance, influence coral community and population structure, and the abundance, distribution, and condition of corals within patch reefs of the Florida Reef Tract. In the Florida Keys, long-term monitoring has documented significant differences in water quality along a cross-shelf gradient. Inshore habitats exhibit higher levels of nutrients (DIN and TP), TOC, turbidity, and light attenuation, and these levels decrease with increasing distance from shore and connections to tidal bays. In clear contrast to these patterns of water quality, corals on inshore patch reefs exhibited significantly higher coral cover, higher growth rates, and lower partial mortality rates than those documented in similar offshore habitats. Coral recruitment rates did not differ between inshore and offshore habitats. Corals on patch reefs closest to shore had well-spread population structures numerically dominated by intermediate to large colonies, while offshore populations showed narrower size-distributions that become increasingly positively skewed. Differences in size-structure of coral populations were attributed to faster growth and lower rates of partial mortality at inshore habitats. While the underlying causes for the favorable condition of inshore coral communities are not yet known, we hypothesize that the ability of corals to shift their trophic mode under adverse environmental conditions may be partly responsible for the observed patterns, as shown in other reef systems. This study, based on data collected from a uniform reef habitat type and coral species with diverse life-history and stress-response patterns from a heavily exploited reef system, showed that proximity to potential sources of stressors may not always prove an adequate proxy for assigning potential risks to reef health, and that hypothesized patterns of coral cover, population size-structure, growth, and mortality are not always directly related to water quality gradients.
Rolland-Lagan, Anne-Gaëlle; Paquette, Mathieu; Tweedle, Valerie; Akimenko, Marie-Andrée
2012-03-01
The fact that some organisms are able to regenerate organs of the correct shape and size following amputation is particularly fascinating, but the mechanism by which this occurs remains poorly understood. The zebrafish (Danio rerio) caudal fin has emerged as a model system for the study of bone development and regeneration. The fin comprises 16 to 18 bony rays, each containing multiple joints along its proximodistal axis that give rise to segments. Experimental observations on fin ray growth, regeneration and joint formation have been described, but no unified theory has yet been put forward to explain how growth and joint patterns are controlled. We present a model for the control of fin ray growth during development and regeneration, integrated with a model for joint pattern formation, which is in agreement with published, as well as new, experimental data. We propose that fin ray growth and joint patterning are coordinated through the interaction of three morphogens. When the model is extended to incorporate multiple rays across the fin, it also accounts for how the caudal fin acquires its shape during development, and regains its correct size and shape following amputation.
Chondron curvature mapping in growth plate cartilage under compressive loading.
Vendra, Bhavya B; Roan, Esra; Williams, John L
2018-05-18
The physis, or growth plate, is a layer of cartilage responsible for long bone growth. It is organized into reserve, proliferative and hypertrophic zones. Unlike the reserve zone where chondrocytes are randomly arranged, either singly or in pairs, the proliferative and hypertrophic chondrocytes are arranged within tubular structures called chondrons. In previous studies, the strain patterns within the compressed growth plate have been reported to be nonuniform and inhomogeneous, with an apparent random pattern in compressive strains and a localized appearance of tensile strains. In this study we measured structural deformations along the entire lengths of chondrons when the physis was subjected to physiological (20%) and hyper-physiological (30% and 40%) levels of compression. This provided a means to interpret the apparent random strain patterns seen in texture correlation maps in terms of bending deformations of chondron structures and provided a physical explanation for the inhomogeneous and nonuniform strain patterns reported in previous studies. We observed relatively large bending deformations (kinking) of the chondron structures at the interface of the reserve and proliferative zones during compression. Bending in this region may induce dividing cells to align longitudinally to maintain column formation and drive longitudinal growth. Copyright © 2018 Elsevier Ltd. All rights reserved.
Buckling of a growing tissue and the emergence of two-dimensional patterns.
Nelson, M R; King, J R; Jensen, O E
2013-12-01
The process of biological growth and the associated generation of residual stress has previously been considered as a driving mechanism for tissue buckling and pattern selection in numerous areas of biology. Here, we develop a two-dimensional thin plate theory to simulate the growth of cultured intestinal epithelial cells on a deformable substrate, with the goal of elucidating how a tissue engineer might best recreate the regular array of invaginations (crypts of Lieberkühn) found in the wall of the mammalian intestine. We extend the standard von Kármán equations to incorporate inhomogeneity in the plate's mechanical properties and surface stresses applied to the substrate by cell proliferation. We determine numerically the configurations of a homogeneous plate under uniform cell growth, and show how tethering to an underlying elastic foundation can be used to promote higher-order buckled configurations. We then examine the independent effects of localised softening of the substrate and spatial patterning of cellular growth, demonstrating that (within a two-dimensional framework, and contrary to the predictions of one-dimensional models) growth patterning constitutes a more viable mechanism for control of crypt distribution than does material inhomogeneity. Copyright © 2013 Elsevier Inc. All rights reserved.
Incommensurate growth of Co thin film on close-packed Ag(111) surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barman, Sukanta, E-mail: sukanta.ac@gmail.com; Menon, Krishna Kumar S. R., E-mail: krishna.menon@saha.ac.in
2016-05-06
Growth of ultrathin Co layers on close-packed Ag(111)were investigated by means of Low Energy Electron Diffraction (LEED), X-ray Photoelectron Spectroscopy (XPS) and Angle-resolved Photoemission Spectroscopy(ARPES) techniques. The close-packed hexagonal face of Co(0001), exhibits a lattice misfit about 13% with Ag(111) surface which manipulates the growth to be incommensurate up to a certain thickness. The strain field causes aperiodic height undulation in the sub-angstrom regime of the film which was confirmed by p(1 × 1) LEED pattern along with a 6-fold moiré reconstruction pattern in the lower film thickness (up to ∼2ML). The evolution of the LEED pattern was studied withmore » increasing film coverage. Lattice strain was measured with respect to the relative positions of these double spots as a functionof film thickness. Almost a constant strain (∼13%) in the full range of film thickness explains the moiré pattern formation in order to stabilize the incommensurate growth. For higher film coverages, an epitaxial well-ordered commensurate growth was observed. Core level and valance band electronic structures of these films were studied by XPS and ARPES techniques.« less
Jiménez, Sergio; Li, Zhigang; Reighard, Gregory L; Bielenberg, Douglas G
2010-02-09
In many tree species the perception of short days (SD) can trigger growth cessation, dormancy entrance, and the establishment of a chilling requirement for bud break. The molecular mechanisms connecting photoperiod perception, growth cessation and dormancy entrance in perennials are not clearly understood. The peach [Prunus persica (L.) Batsch] evergrowing (evg) mutant fails to cease growth and therefore cannot enter dormancy under SD. We used the evg mutant to filter gene expression associated with growth cessation after exposure to SD. Wild-type and evg plants were grown under controlled conditions of long days (16 h/8 h) followed by transfer to SD (8 h/16 h) for eight weeks. Apical tissues were sampled at zero, one, two, four, and eight weeks of SD and suppression subtractive hybridization was performed between genotypes at the same time points. We identified 23 up-regulated genes in the wild-type with respect to the mutant during SD exposure. We used quantitative real-time PCR to verify the expression of the differentially expressed genes in wild-type tissues following the transition to SD treatment. Three general expression patterns were evident: one group of genes decreased at the time of growth cessation (after 2 weeks in SD), another that increased immediately after the SD exposure and then remained steady, and another that increased throughout SD exposure. The use of the dormancy-incapable mutant evg has allowed us to reduce the number of genes typically detected by differential display techniques for SD experiments. These genes are candidates for involvement in the signalling pathway leading from photoperiod perception to growth cessation and dormancy entrance and will be the target of future investigations.
Wilkinson, Sarah; Ogée, Jérôme; Domec, Jean-Christophe; Rayment, Mark; Wingate, Lisa
2015-03-01
Process-based models that link seasonally varying environmental signals to morphological features within tree rings are essential tools to predict tree growth response and commercially important wood quality traits under future climate scenarios. This study evaluated model portrayal of radial growth and wood anatomy observations within a mature maritime pine (Pinus pinaster (L.) Aït.) stand exposed to seasonal droughts. Intra-annual variations in tracheid anatomy and wood density were identified through image analysis and X-ray densitometry on stem cores covering the growth period 1999-2010. A cambial growth model was integrated with modelled plant water status and sugar availability from the soil-plant-atmosphere transfer model MuSICA to generate estimates of cell number, cell volume, cell mass and wood density on a weekly time step. The model successfully predicted inter-annual variations in cell number, ring width and maximum wood density. The model was also able to predict the occurrence of special anatomical features such as intra-annual density fluctuations (IADFs) in growth rings. Since cell wall thickness remained surprisingly constant within and between growth rings, variations in wood density were primarily the result of variations in lumen diameter, both in the model and anatomical data. In the model, changes in plant water status were identified as the main driver of the IADFs through a direct effect on cell volume. The anatomy data also revealed that a trade-off existed between hydraulic safety and hydraulic efficiency. Although a simplified description of cambial physiology is presented, this integrated modelling approach shows potential value for identifying universal patterns of tree-ring growth and anatomical features over a broad climatic gradient. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
D'Angelo, C.; Smith, E. G.; Oswald, F.; Burt, J.; Tchernov, D.; Wiedenmann, J.
2012-12-01
Homologs of the green fluorescent protein (GFP) are a prevalent group of host pigments responsible for the green, red and purple-blue colours of many reef-building corals. They have been suggested to contribute to the striking coloration changes of different corals species in response to wounding and infestation with epibionts/parasites. In order to elucidate the physiological processes underlying the potentially disease-related colour changes, we have analysed spatial and temporal expression patterns of GFP-like proteins and other biomarkers in corals from the Red Sea, the Arabian/Persian Gulf and Fiji both in their natural habitat and under specific laboratory conditions. The expression of distinct GFP-like proteins and the growth marker proliferating cell nuclear antigen was upregulated in growing branch tips and margins of healthy coral colonies as well as in disturbed colony parts. Furthermore, phenoloxidase activity increased in these proliferating tissues. It is thus demonstrated that locally accelerated growth is part of the innate immune response and repair mechanisms in reef-building corals and, moreover, these processes can be detected utilizing the excellent biomarker properties of GFP-like proteins. Finally, the results of this work suggest an additional vulnerability of corals in predicted future scenarios of increased ocean acidification, warming and eutrophication that are anticipated to reduce coral growth capacity.
NASA Astrophysics Data System (ADS)
Wiedenhoeft, Alex C.; Arévalo, Rafael; Ledbetter, Craig; Jakes, Joseph E.
2016-09-01
Nearly 400 million years of evolution and field-testing by the natural world has given humans thousands of wood types, each with unique structure-property relationships to study, exploit, and ideally, to manipulate, but the slow growth of trees makes them a recalcitrant experimental system. Variations in wood features of two genotypes of peach ( Prunus persica L.) trees, wild-type and crinkle-leaf, were examined to elucidate the nature of weak wood in crinkle-leaf trees. Crinkle-leaf is a naturally-occurring mutation in which wood strength is altered in conjunction with an easily observed `crinkling' of the leaves' surface. Trees from three vigor classes (low growth rate, average growth rate, and high growth rate) of each genotype were sampled. No meaningful tendency of dissimilarities among the different vigor classes was found, nor any pattern in features in a genotype-by-vigor analysis. Wild-type trees exhibited longer vessels and fibers, wider rays, and slightly higher specific gravity. Neither cell wall mechanical properties measured with nanoindentation nor cell wall histochemical properties were statistically or observably different between crinkle-leaf and wild-type wood. The crinkle-leaf mutant has the potential to be a useful model system for wood properties investigation and manipulation if it can serve as a field-observable vegetative marker for altered wood properties.
Differentiating drought legacy effects on vegetation growth over the temperate Northern Hemisphere.
Wu, Xiuchen; Liu, Hongyan; Li, Xiaoyan; Ciais, Philippe; Babst, Flurin; Guo, Weichao; Zhang, Cicheng; Magliulo, Vincenzo; Pavelka, Marian; Liu, Shaomin; Huang, Yongmei; Wang, Pei; Shi, Chunming; Ma, Yujun
2018-01-01
In view of future changes in climate, it is important to better understand how different plant functional groups (PFGs) respond to warmer and drier conditions, particularly in temperate regions where an increase in both the frequency and severity of drought is expected. The patterns and mechanisms of immediate and delayed impacts of extreme drought on vegetation growth remain poorly quantified. Using satellite measurements of vegetation greenness, in-situ tree-ring records, eddy-covariance CO 2 and water flux measurements, and meta-analyses of source water of plant use among PFGs, we show that drought legacy effects on vegetation growth differ markedly between forests, shrubs and grass across diverse bioclimatic conditions over the temperate Northern Hemisphere. Deep-rooted forests exhibit a drought legacy response with reduced growth during up to 4 years after an extreme drought, whereas shrubs and grass have drought legacy effects of approximately 2 years and 1 year, respectively. Statistical analyses partly attribute the differences in drought legacy effects among PFGs to plant eco-hydrological properties (related to traits), including plant water use and hydraulic responses. These results can be used to improve the representation of drought response of different PFGs in land surface models, and assess their biogeochemical and biophysical feedbacks in response to a warmer and drier climate. © 2017 John Wiley & Sons Ltd.
Some structural aspects of urbanization in Ethiopia.
Rafiq, M; Hailemariam, A
1987-07-01
This article studies the emerging patterns of urbanization in Ethiopia. Over the period from 1967-1984, a number of structural changes have occurred which are likely to play a dominant role in the future urban growth in Ethiopia. In spite of its long history of settled population, Ethiopia did not witness sustained growth of urban centers. Ethiopia is 1 of the least urbanized areas in the Third World. A 3rd aspect of urbanization in Ethiopia is the wide range of regional differentials in the level of urbanization. Most of the urban population is concentrated in 2 administrative regions--Shoa and Eritrea. A more balanced urban growth may, inter alia, involve a better spread in terms of higher education, industrialization, provision of health and social services, and the development of communication and commercial infrastructure. Another striking feature of urbanization in Ethiopia is that growth has not been disproportionately concentrated in the largest urban centers. The largest urban centers have not assumed an inordinately higher level of primacy. The basic form of the curve depicting the relationship between the size of a locality and its rank has remained unchanged over the period. The post-revolution land reforms and the new socioeconomic structure emerging from reorganization of the society appear to have a rural-urban migration inhibiting effect. Some of the country's regional differentials may be associated with environmental factors.
Sreeharsha, Rachapudi Venkata; Sekhar, Kalva Madhana; Reddy, Attipalli Ramachandra
2015-02-01
In the present study, we investigated the likely consequences of future atmospheric CO2 concentrations [CO2] on growth, physiology and reproductive phenology of Pigeonpea. A short duration Pigeonpea cultivar (ICPL 15011) was grown without N fertilizer from emergence to final harvest in CO2 enriched atmosphere (open top chambers; 550μmolmol(-1)) for two seasons. CO2 enrichment improved both net photosynthetic rates (Asat) and foliar carbohydrate content by 36 and 43%, respectively, which further reflected in dry biomass after harvest, showing an increment of 29% over the control plants. Greater carboxylation rates of Rubisco (Vcmax) and photosynthetic electron transport rates (Jmax) in elevated CO2 grown plants measured during different growth periods, clearly demonstrated lack of photosynthetic acclimation. Further, chlorophyll a fluorescence measurements as indicated by Fv/Fm and ΔF/Fm' ratios justified enhanced photosystem II efficiency. Mass and number of root nodules were significantly high in elevated CO2 grown plants showing 58% increase in nodule mass ratio (NMR) which directly correlated with Pn. Growth under high CO2 showed significant ontogenic changes including delayed flowering. In conclusion, our data demonstrate that the lack of photosynthetic acclimation and increased carbohydrate-nitrogen reserves modulate the vegetative and reproductive growth patterns in Pigeonpea grown under elevated CO2. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Fuchs, C.; Beyer, A.; Volz, K.; Stolz, W.
2017-04-01
The growth of high quality (GaIn)As/Ga(AsSb)/(GaIn)As "W"-quantum well heterostructures is discussed with respect to their application in 1300 nm laser devices. The structures are grown using metal organic vapor phase epitaxy and characterized using high-resolution X-ray diffraction, scanning transmission electron microscopy and photoluminescence measurements. The agreement between experimental high-resolution X-ray diffraction patterns and full dynamical simulations is verified for these structurally challenging heterostructures. Scanning transmission electron microscopy is used to demonstrate that the structure consists of well-defined quantum wells and forms the basis for future improvements of the optoelectronic quality of this materials system. By altering the group-V gas phase ratio, it is possible to cover a large spectral range between 1200 nm and 1470 nm using a growth temperature of 550 °C and a V/III ratio of 7.5. A comparison of a sample with a photoluminescence emission wavelength at 1360 nm with single quantum well material reference samples proves the type-II character of the emission. A further optimization of these structures for application in 1300 nm lasers by applying different V/III ratios yields a stable behavior of the photoluminescence intensity using a growth temperature of 550 °C.
NASA Astrophysics Data System (ADS)
Tempeler, J.; Danylyuk, S.; Brose, S.; Loosen, P.; Juschkin, L.
2018-07-01
In this study we analyze the impact of process and growth parameters on the structural properties of germanium (Ge) quantum dot (QD) arrays. The arrays were deposited by molecular-beam epitaxy on pre-patterned silicon (Si) substrates. Periodic arrays of pits with diameters between 120 and 20 nm and pitches ranging from 200 nm down to 40 nm were etched into the substrate prior to growth. The structural perfection of the two-dimensional QD arrays was evaluated based on SEM images. The impact of two processing steps on the directed self-assembly of Ge QD arrays is investigated. First, a thin Si buffer layer grown on a pre-patterned substrate reshapes the pre-pattern pits and determines the nucleation and initial shape of the QDs. Subsequently, the deposition parameters of the Ge define the overall shape and uniformity of the QDs. In particular, the growth temperature and the deposition rate are relevant and need to be optimized according to the design of the pre-pattern. Applying this knowledge, we are able to fabricate regular arrays of pyramid shaped QDs with dot densities up to 7.2 × 1010 cm‑2.
Tempeler, J; Danylyuk, S; Brose, S; Loosen, P; Juschkin, L
2018-07-06
In this study we analyze the impact of process and growth parameters on the structural properties of germanium (Ge) quantum dot (QD) arrays. The arrays were deposited by molecular-beam epitaxy on pre-patterned silicon (Si) substrates. Periodic arrays of pits with diameters between 120 and 20 nm and pitches ranging from 200 nm down to 40 nm were etched into the substrate prior to growth. The structural perfection of the two-dimensional QD arrays was evaluated based on SEM images. The impact of two processing steps on the directed self-assembly of Ge QD arrays is investigated. First, a thin Si buffer layer grown on a pre-patterned substrate reshapes the pre-pattern pits and determines the nucleation and initial shape of the QDs. Subsequently, the deposition parameters of the Ge define the overall shape and uniformity of the QDs. In particular, the growth temperature and the deposition rate are relevant and need to be optimized according to the design of the pre-pattern. Applying this knowledge, we are able to fabricate regular arrays of pyramid shaped QDs with dot densities up to 7.2 × 10 10 cm -2 .
Future climate stimulates population out-breaks by relaxing constraints on reproduction.
Heldt, Katherine A; Connell, Sean D; Anderson, Kathryn; Russell, Bayden D; Munguia, Pablo
2016-09-14
When conditions are stressful, reproduction and population growth are reduced, but when favourable, reproduction and population size can boom. Theory suggests climate change is an increasingly stressful environment, predicting extinctions or decreased abundances. However, if favourable conditions align, such as an increase in resources or release from competition and predation, future climate can fuel population growth. Tests of such population growth models and the mechanisms by which they are enabled are rare. We tested whether intergenerational increases in population size might be facilitated by adjustments in reproductive success to favourable environmental conditions in a large-scale mesocosm experiment. Herbivorous amphipod populations responded to future climate by increasing 20 fold, suggesting that future climate might relax environmental constraints on fecundity. We then assessed whether future climate reduces variation in mating success, boosting population fecundity and size. The proportion of gravid females doubled, and variance in phenotypic variation of male secondary sexual characters (i.e. gnathopods) was significantly reduced. While future climate can enhance individual growth and survival, it may also reduce constraints on mechanisms of reproduction such that enhanced intra-generational productivity and reproductive success transfers to subsequent generations. Where both intra and intergenerational production is enhanced, population sizes might boom.
Extended Eden model reproduces growth of an acellular slime mold.
Wagner, G; Halvorsrud, R; Meakin, P
1999-11-01
A stochastic growth model was used to simulate the growth of the acellular slime mold Physarum polycephalum on substrates where the nutrients were confined in separate drops. Growth of Physarum on such substrates was previously studied experimentally and found to produce a range of different growth patterns [Phys. Rev. E 57, 941 (1998)]. The model represented the aging of cluster sites and differed from the original Eden model in that the occupation probability of perimeter sites depended on the time of occupation of adjacent cluster sites. This feature led to a bias in the selection of growth directions. A moderate degree of persistence was found to be crucial to reproduce the biological growth patterns under various conditions. Persistence in growth combined quick propagation in heterogeneous environments with a high probability of locating sources of nutrients.
Extended Eden model reproduces growth of an acellular slime mold
NASA Astrophysics Data System (ADS)
Wagner, Geri; Halvorsrud, Ragnhild; Meakin, Paul
1999-11-01
A stochastic growth model was used to simulate the growth of the acellular slime mold Physarum polycephalum on substrates where the nutrients were confined in separate drops. Growth of Physarum on such substrates was previously studied experimentally and found to produce a range of different growth patterns [Phys. Rev. E 57, 941 (1998)]. The model represented the aging of cluster sites and differed from the original Eden model in that the occupation probability of perimeter sites depended on the time of occupation of adjacent cluster sites. This feature led to a bias in the selection of growth directions. A moderate degree of persistence was found to be crucial to reproduce the biological growth patterns under various conditions. Persistence in growth combined quick propagation in heterogeneous environments with a high probability of locating sources of nutrients.
Correia Martins, Luísa; Lourenço, Rita; Cordeiro, Susana; Carvalho, Nuno; Mendes, Inês; Loureiro, Marisa; Patrício, Miguel; Anjos, Rui
2016-04-01
Growth impairment in infants with unrestrictive ventricular septal defects (VSD) is common, and normalisation of growth has been reported after surgical correction. Literature is inconsistent about growth velocity after surgery in term and preterm infants. We aimed to establish the pattern of catch-up growth in term and preterm infants submitted to VSD surgical correction before 1 year of age. Fifty-two infants (41 term, 11 preterm) were studied. Anthropometric data at birth, surgery and 3, 6, 12 and 24 months after surgery were collected retrospectively. Statistic analyses were performed in SPSS® version 21. At the time of surgery, growth was severely impaired in term and preterm infants. Term infants underwent a period of fast growth within the first 6 months after surgery, achieving posteriorly a normal growth pattern, as both weight and height were not significantly different from the reference population at 24 months after surgery. Preterms caught-up later than term infants but with a significant weight gain within 3 months after surgery. Early surgical repair of VSD leads to a significant acceleration of growth within 3 to 6 months after surgery, for both groups. • Growth impairment in infants with unrestrictive ventricular septal defects is well documented in literature. • Surgical correction in the first months of life is the current option for most ventricular septal defects, leading to a more favourable growth pattern. • Rapid growth during infancy may be associated with the development of insulin resistance, metabolic syndrome, obesity and cardiovascular disease later in life. What is New: • Literature is inconsistent about catch-up growth velocities after ventricular correction for term infants. • Preterm infants have never been enrolled in previous studies that aimed to establish a pattern of growth after surgery. • This group of children, who underwent a rapid post-surgery catch-up growth that follows a period of failure to thrive, may be at a higher risk of insulin resistance, metabolic syndrome, obesity and cardiovascular disease.
Adaptive self-organization during growth of bacterial colonies
NASA Astrophysics Data System (ADS)
Ben-Jacob, Eshel; Shmueli, Haim; Shochet, Ofer; Tenenbaum, Adam
1992-09-01
We present a study of interfacial pattern formation during diffusion-limited growth of Bacillus subtilis. It is demonstrated that bacterial colonies can develop patterns similar to morphologies observed during diffusion-limited growth in non-living (azoic) systems such as solidification and electro-chemical deposition. The various growth morphologies, that is the global structure of the colony, are observed as we vary the growth conditions. These include fractal growth, dense-branching growth, compact growth, dendritic growth and chiral growth. The results demonstrate the action of a singular interplay between the micro-level (individual bacterium) and macro-level (the colony) in selecting the observed morphologies as is understood for non-living systems. Furthermore, the observed morphologies can be organized within a morphology diagram indicating the existence of a morphology selection principle similar to the one proposed for azoic systems. We propose a phase-field-like model (the phase being the bacterial concentration and the field being the nutrient concentration) to describe the growth. The bacteria-bacteria interaction is manifested as a phase dependent diffusion constant. Growth of a bacterial colony presents an inherent additional level of complexity compared to azoic systems, since the building blocks themselves are living systems. Thus, our studies also focus on the transition between morphologies. We have observed extended morphology transitions due to phenotypic changes of the bacteria, as well as bursts of new morphologies resulting from genotypic changes. In addition, we have observed extended and heritable transitions (mainly between dense branching growth and chiral growth) as well as phenotypic transitions that turn genotypic over time. We discuss the implications of our results in the context of the evolving picture of genome cybernetics. Diffusion limited growth of bacterial colonies combined with new understanding of pattern formation in azoic systems provide new tools for the study of adaptive self-organization and mutation in the presence of selective pressures. We include brief reviews of both the recent developments in the study of interfacial pattern formation in non-living systems and the current trends in the view of mutation dynamics.
Incorporating movement patterns to improve survival estimates for juvenile bull trout
Bowerman, Tracy; Budy, Phaedra
2012-01-01
Populations of many fish species are sensitive to changes in vital rates during early life stages, but our understanding of the factors affecting growth, survival, and movement patterns is often extremely limited for juvenile fish. These critical information gaps are particularly evident for bull trout Salvelinus confluentus, a threatened Pacific Northwest char. We combined several active and passive mark–recapture and resight techniques to assess migration rates and estimate survival for juvenile bull trout (70–170 mm total length). We evaluated the relative performance of multiple survival estimation techniques by comparing results from a common Cormack–Jolly–Seber (CJS) model, the less widely used Barker model, and a simple return rate (an index of survival). Juvenile bull trout of all sizes emigrated from their natal habitat throughout the year, and thereafter migrated up to 50 km downstream. With the CJS model, high emigration rates led to an extreme underestimate of apparent survival, a combined estimate of site fidelity and survival. In contrast, the Barker model, which allows survival and emigration to be modeled as separate parameters, produced estimates of survival that were much less biased than the return rate. Estimates of age-class-specific annual survival from the Barker model based on all available data were 0.218±0.028 (estimate±SE) for age-1 bull trout and 0.231±0.065 for age-2 bull trout. This research demonstrates the importance of incorporating movement patterns into survival analyses, and we provide one of the first field-based estimates of juvenile bull trout annual survival in relatively pristine rearing conditions. These estimates can provide a baseline for comparison with future studies in more impacted systems and will help managers develop reliable stage-structured population models to evaluate future recovery strategies.
Nanopillar Photonic Crystal Lasers for Tb/s Transceivers on Silicon
2015-07-09
dimensions of NWs can be adjusted by lithographically patterned nanoholes on dielectric mask. Some studies of SAE growth on Si using Ga droplets, i.e. Ga...inside the patterned nanoholes . In this study, the effects of seeding layer growth temperature on uniformity, vertical yield, and optical...thermal silicon dioxide (SiO2). Next, E-Beam resist ZEP520A was coated and nanoholes were patterned by E-Beam lithography (EBL). The designed diameter
NASA Astrophysics Data System (ADS)
Harada, Takayuki; Tsukazaki, Atsushi
2018-02-01
Oxides provide various fascinating physical properties that could find use in future device applications. However, the physical properties of oxides are often affected by formation of oxygen vacancies during device fabrication processes. In this study, to develop a damage-free patterning process for oxides, we focus on a lift-off process using a sacrificial template layer, by which we can pattern oxide thin films without severe chemical treatment or plasma bombardment. As oxides need high thin-film growth temperature, a sacrificial template needs to be made of thermally stable and easily etchable materials. To meet these requirements, we develop a sacrificial template with a carefully designed bilayer structure. Combining a thermally and chemically stable LaAlO3 and a water-soluble BaOx, we fabricated a LaAlO3/BaOx sacrificial bilayer. The patterned LaAlO3/BaOx sacrificial bilayers were prepared on oxide substrates by room-temperature pulsed laser deposition and standard photolithography process. The structure of the sacrificial bilayer can be maintained even in rather tough conditions needed for oxide thin film growth: several hundred degrees Celsius under high oxygen pressure. Indeed, the LaAlO3/BaOx bilayer is easily removable by sonication in water. We applied the lift-off method using the LaAlO3/BaOx sacrificial bilayer to a representative oxide conductor SrRuO3 and fabricated micron-scale Hall-bar devices. The SrRuO3 channels with the narrowest line width of 5 μm exhibit an almost identical transport property to that of the pristine film, evidencing that the developed process is beneficial for patterning oxides. We show that the LaAlO3/BaOx lift-off process is applicable to various oxide substrates: SrTiO3, MgO, and Al2O3. The new versatile patterning process will expand the range of application of oxide thin films in electronic and photonic devices.
URLACHER, SAMUEL S.; BLACKWELL, AARON D.; LIEBERT, MELISSA A.; MADIMENOS, FELICIA C.; CEPON-ROBINS, TARA J.; GILDNER, THERESA E.; SNODGRASS, J. JOSH; SUGIYAMA, LAWRENCE S.
2015-01-01
Objectives Information concerning physical growth among small-scale populations remains limited, yet such data are critical to local health efforts and to foster basic understandings of human life history and variation in childhood development. Using a large dataset and robust modeling methods, this study aims to describe growth from birth to adulthood among the indigenous Shuar of Amazonian Ecuador. Methods Mixed-longitudinal measures of height, weight, and BMI were collected from Shuar participants (n = 2,463; age 0–29 years). Centile growth curves and tables were created for each anthropometric variable of interest using GAMLSS. Pseudo-velocity and LMS curves were generated to further investigate Shuar patterns of growth and to facilitate comparison with U.S. CDC and multinational WHO growth references. Results The Shuar are small throughout life and exhibit complex patterns of growth that differ substantially from those of international references. Similar to other Amazonians, Shuar growth in weight compares more favorably to references than growth in height, resulting in BMI curves that approximate international medians. Several additional characteristics of Shuar development are noteworthy, including large observed variation in body size early in life, significant infant growth faltering, extended male growth into adulthood, and a markedly early female pubertal growth spurt in height. Phenotypic plasticity and genetic selection in response to local environmental factors may explain many of these patterns. Conclusions Providing a detailed reference of growth for the Shuar and other Amazonian populations, this study possesses direct clinical application and affords valuable insight into childhood health and the ecology of human growth. PMID:26126793
Ye, Kai; Kosters, Walter A; Ijzerman, Adriaan P
2007-03-15
Pattern discovery in protein sequences is often based on multiple sequence alignments (MSA). The procedure can be computationally intensive and often requires manual adjustment, which may be particularly difficult for a set of deviating sequences. In contrast, two algorithms, PRATT2 (http//www.ebi.ac.uk/pratt/) and TEIRESIAS (http://cbcsrv.watson.ibm.com/) are used to directly identify frequent patterns from unaligned biological sequences without an attempt to align them. Here we propose a new algorithm with more efficiency and more functionality than both PRATT2 and TEIRESIAS, and discuss some of its applications to G protein-coupled receptors, a protein family of important drug targets. In this study, we designed and implemented six algorithms to mine three different pattern types from either one or two datasets using a pattern growth approach. We compared our approach to PRATT2 and TEIRESIAS in efficiency, completeness and the diversity of pattern types. Compared to PRATT2, our approach is faster, capable of processing large datasets and able to identify the so-called type III patterns. Our approach is comparable to TEIRESIAS in the discovery of the so-called type I patterns but has additional functionality such as mining the so-called type II and type III patterns and finding discriminating patterns between two datasets. The source code for pattern growth algorithms and their pseudo-code are available at http://www.liacs.nl/home/kosters/pg/.
Phytoplasmal infection derails genetically preprogrammed meristem fate and alters plant architecture
Wei, Wei; Davis, Robert Edward; Nuss, Donald L.; Zhao, Yan
2013-01-01
In the life cycle of higher plants, it is the fate of meristem cells that determines the pattern of growth and development, and therefore plant morphotype and fertility. Floral transition, the turning point from vegetative growth to reproductive development, is achieved via genetically programmed sequential changes in meristem fate from vegetative to inflorescence, and to floral, leading to flower formation and eventual seed production. The transition is rarely reversible once initiated. In this communication, we report that a bacterial infection can derail the genetically programmed fate of meristem cells, thereby drastically altering the growth pattern of the host plant. We identified four characteristic symptoms in tomato plants infected with a cell wall-less bacterium, phytoplasma. The symptoms are a manifestation of the pathogen-induced alterations of growth pattern, whereas each symptom corresponds to a distinct phase in the derailment of shoot apical meristem fate. The phases include premature floral meristem termination, suppressed floral meristem initiation, delayed conversion of vegetative meristem to inflorescence meristem, and repetitive initiation and outgrowth of lateral vegetative meristems. We further found that the pathogen-induced alterations of growth pattern were correlated with transcriptional reprogramming of key meristem switching genes. Our findings open an avenue toward understanding pathological alterations in patterns of plant growth and development, thus aiding identification of molecular targets for disease control and symptom alleviation. The findings also provide insights for understanding stem cell pluripotency and raise a tantalizing possibility for using phytoplasma as a tool to dissect the course of normal plant development and to modify plant morphogenesis by manipulating meristem fate. PMID:24191032
Guzman, Nury; Ball, Alexander D; Cuif, Jean-Pierre; Dauphin, Yannicke; Denis, Alain; Ortlieb, Luc
2007-10-01
Fluorochrome marking of the gastropod Concholepas concholepas has shown that the prismatic units of the shell are built by superimposition of isochronic growth layers of about 2 mum. Fluorescent growth marks make it possible to establish the high periodicity of the cyclic biomineralization process at a standard growth rhythm of about 45 layers a day. Sulphated polysaccharides have been identified within the growth layers by using synchrotron radiation, whereas high resolution mapping enables the banding pattern of the mineral phase to be correlated with the layered distribution of polysaccharides. Atomic force microscopy has shown that the layers are made of nanograins densely packed in an organic component.
Neurite outgrowth at the interface of 2D and 3D growth environments
NASA Astrophysics Data System (ADS)
Kofron, Celinda M.; Fong, Vivian J.; Hoffman-Kim, Diane
2009-02-01
Growing neurons navigate complex environments, but in vitro systems for studying neuronal growth typically limit the cues to flat surfaces or a single type of cue, thereby limiting the resulting growth. Here we examined the growth of neurons presented with two-dimensional (2D) substrate-bound cues when these cues were presented in conjunction with a more complex three-dimensional (3D) architecture. Dorsal root ganglia (DRG) explants were cultured at the interface between a collagen I matrix and a glass coverslip. Laminin (LN) or chondroitin sulfate proteoglycans (CSPG) were uniformly coated on the surface of the glass coverslip or patterned in 50 µm tracks by microcontact printing. Quantitative analysis of neurite outgrowth with a novel grid system at multiple depths in the gel revealed several interesting trends. Most of the neurites extended at the surface of the gel when LN was presented whereas more neurites extended into the gel when CSPG was presented. Patterning of cues did not affect neurite density or depth of growth. However, neurite outgrowth near the surface of the gel aligned with LN patterns, and these extensions were significantly longer than neurites extended in other cultures. In interface cultures, DRG growth patterns varied with the type of cue where neurite density was higher in cultures presenting LN than in cultures presenting CSPG. These results represent an important step toward understanding how neurons integrate local structural and chemical cues to make net growth decisions.
Structure induced magnetic anisotropy behavior in Co/GaAs(001) films
NASA Astrophysics Data System (ADS)
Blundell, S. J.; Gester, M.; Bland, J. A. C.; Daboo, C.; Gu, E.; Baird, M. J.; Ives, A. J. R.
1993-05-01
Epitaxial Co has been grown on GaAs(001) and studied by both low-energy electron diffraction (LEED) and reflection high-energy electron diffraction (RHEED), and by the magneto-optic Kerr effect (MOKE) and polarized neutron reflection (PNR). Three samples were fabricated using different growth procedures: (1) ``interrupted'' growth (including an anneal); (2) and (3) continuous growth of similar thicknesses. For sample 1, RHEED patterns indicate an initial growth in the bcc phase followed by a relaxation into a distorted single phase at completion of growth, whereas samples 2 and 3 showed a multicrystalline structure after growth. LEED patterns were used to check the existence of the 2×4 reconstruction patterns before growth, but no LEED patterns could be obtained after more than 2 Å Co was deposited, in contrast to the RHEED patterns which remained visible throughout the growth. Structural analysis of the completed films indicates the formation of a ˜10 Å CoO layer on the Co/air interface, and gives thicknesses for magnetic material of (1) 30 Å and (2) 80 Å. Sample 1 showed a dominant fourfold magnetic anisotropy with the easy axis parallel to the (100) direction and with a strength 2K4/M of ˜0.5 kOe, smaller in magnitude than that reported for bcc films on GaAs(110) but along the same axis [G. A. Prinz et al., J. Appl. Phys. 57, 3672 (1985)]. However, samples 2 and 3 showed only a large uniaxial anisotropy along the (110) direction of strength 2K1/M of ˜1.5 kOe and ˜2.5 kOe, respectively, similar in magnitude to those previously observed [G. A. Prinz et al., J. Appl. Phys. 57, 3676 (1985)]. We attribute the origin of the contrasting magnetic anisotropy behavior observed to the differences in final structure.
Highly patterned growth of SnO2 nanowires using a sub-atmospheric vapor-liquid-solid deposition
NASA Astrophysics Data System (ADS)
Akbari, M.; Mohajerzadeh, S.
2017-08-01
We report the realization of tin-oxide nanowires on patterned structures using a vapor-liquid-solid (VLS) process. While gold acts as the catalyst for the growth of wires, a tin-oxide containing sol-gel solution is spin coated on silicon substrate to act as the source for SnO vapor. The growth of tin-oxide nano-structures occurs mostly at the vicinity of the pre-deposited solution. By patterning the gold as the catalyst material, one is able to observe the growth at desired places. The growth of nanowires is highly dense within 100 µm away from such in situ source and their length is of the order of 5 µm. By further distancing from the source, the growth becomes more limited and nanowires become shorter and more sparsely distributed. The growth of nanowires has been studied using scanning and transmission electron microscopy tools while their composition has been investigated using XRD and EDS analyses. As a novel application, we have employed the grown nanowires as electron detection elements to measure the emitted electrons from electron sources. This configuration can be further used as electron detectors for scanning electron microscopes.
Lewis, Maria E.; Belland, Robert J.; AbdelRahman, Yasser M.; Beatty, Wandy L.; Aiyar, Ashok A.; Zea, Arnold H.; Greene, Sheila J.; Marrero, Luis; Buckner, Lyndsey R.; Tate, David J.; McGowin, Chris L.; Kozlowski, Pamela A.; O'Brien, Michelle; Lillis, Rebecca A.; Martin, David H.; Quayle, Alison J.
2014-01-01
In vitro models of Chlamydia trachomatis growth have long been studied to predict growth in vivo. Alternative or persistent growth modes in vitro have been shown to occur under the influence of numerous stressors but have not been studied in vivo. Here, we report the development of methods for sampling human infections from the endocervix in a manner that permits a multifaceted analysis of the bacteria, host and the endocervical environment. Our approach permits evaluating total bacterial load, transcriptional patterns, morphology by immunofluorescence and electron microscopy, and levels of cytokines and nutrients in the infection microenvironment. By applying this approach to two pilot patients with disparate infections, we have determined that their contrasting growth patterns correlate with strikingly distinct transcriptional biomarkers, and are associated with differences in local levels of IFNγ. Our multifaceted approach will be useful to dissect infections in the human host and be useful in identifying patients at risk for chronic disease. Importantly, the molecular and morphological analyses described here indicate that persistent growth forms can be isolated from the human endocervix when the infection microenvironment resembles the in vitro model of IFNγ-induced persistence. PMID:24959423
Genome-wide transcriptome analysis of soybean primary root under varying water-deficit conditions.
Song, Li; Prince, Silvas; Valliyodan, Babu; Joshi, Trupti; Maldonado dos Santos, Joao V; Wang, Jiaojiao; Lin, Li; Wan, Jinrong; Wang, Yongqin; Xu, Dong; Nguyen, Henry T
2016-01-15
Soybean is a major crop that provides an important source of protein and oil to humans and animals, but its production can be dramatically decreased by the occurrence of drought stress. Soybeans can survive drought stress if there is a robust and deep root system at the early vegetative growth stage. However, little is known about the genome-wide molecular mechanisms contributing to soybean root system architecture. This study was performed to gain knowledge on transcriptome changes and related molecular mechanisms contributing to soybean root development under water limited conditions. The soybean Williams 82 genotype was subjected to very mild stress (VMS), mild stress (MS) and severe stress (SS) conditions, as well as recovery from the severe stress after re-watering (SR). In total, 6,609 genes in the roots showed differential expression patterns in response to different water-deficit stress levels. Genes involved in hormone (Auxin/Ethylene), carbohydrate, and cell wall-related metabolism (XTH/lipid/flavonoids/lignin) pathways were differentially regulated in the soybean root system. Several transcription factors (TFs) regulating root growth and responses under varying water-deficit conditions were identified and the expression patterns of six TFs were found to be common across the stress levels. Further analysis on the whole plant level led to the finding of tissue-specific or water-deficit levels specific regulation of transcription factors. Analysis of the over-represented motif of different gene groups revealed several new cis-elements associated with different levels of water deficit. The expression patterns of 18 genes were confirmed byquantitative reverse transcription polymerase chain reaction method and demonstrated the accuracy and effectiveness of RNA-Seq. The primary root specific transcriptome in soybean can enable a better understanding of the root response to water deficit conditions. The genes detected in root tissues that were associated with key hormones, carbohydrates, and cell wall-related metabolism could play a vital role in achieving drought tolerance and could be promising candidates for future functional characterization. TFs involved in the soybean root and at the whole plant level could be used for future network analysis between TFs and cis-elements. All of these findings will be helpful in elucidating the molecular mechanisms associated with water stress responses in soybean roots.
Growth in conventional fields in high-cost areas: a case study
Attanasi, E.D.
2000-01-01
Exploration managers commonly base future drilling decisions on past experience in an area. To do this well, they should consider both discovered and undiscovered resources to characterize total future potential. Discovery-size estimates should be adjusted to account for future field growth; otherwise, the relative efficiency of recent exploration will be undervalued. This study models and projects field growth for pre-1997 discoveries in the U.S. Federal Gulf of Mexico (GOM) Outer Continental Shelf (OCS). Projected additions to reserves for these fields from field growth through 2020 are 5.2 billion bbl of oil and 46 Tcfg. Projections include growth associated with sizable new oil discoveries in deepwater areas and initial reserve additions from new subsalt plays discovered through 1996. This article focuses on the U.S. GOM because it has produced longer than other worldwide offshore areas. Its field-growth profile may be prototypical of other offshore provinces such as the North Sea, Scotian Shelf and deepwater Angola, as well as high-cost onshore areas.
Patterning roadmap: 2017 prospects
NASA Astrophysics Data System (ADS)
Neisser, Mark
2017-06-01
Road mapping of semiconductor chips has been underway for over 20 years, first with the International Technology Roadmap for Semiconductors (ITRS) roadmap and now with the International Roadmap for Devices and Systems (IRDS) roadmap. The original roadmap was mostly driven bottom up and was developed to ensure that the large numbers of semiconductor producers and suppliers had good information to base their research and development on. The current roadmap is generated more top-down, where the customers of semiconductor chips anticipate what will be needed in the future and the roadmap projects what will be needed to fulfill that demand. The More Moore section of the roadmap projects that advanced logic will drive higher-resolution patterning, rather than memory chips. Potential solutions for patterning future logic nodes can be derived as extensions of `next-generation' patterning technologies currently under development. Advanced patterning has made great progress, and two `next-generation' patterning technologies, EUV and nanoimprint lithography, have potential to be in production as early as 2018. The potential adoption of two different next-generation patterning technologies suggests that patterning technology is becoming more specialized. This is good for the industry in that it lowers overall costs, but may lead to slower progress in extending any one patterning technology in the future.
How long bones grow children: Mechanistic paths to variation in human height growth.
Lampl, Michelle; Schoen, Meriah
2017-03-01
Eveleth and Tanner's descriptive documentation of worldwide variability in human growth provided evidence of the interaction between genetics and environment during development that has been foundational to the science of human growth. There remains a need, however, to describe the mechanistic foundations of variability in human height growth patterns. A review of research documenting cellular activities at the endochondral growth plate aims to show how the unique microenvironment and cell functions during the sequential phases of the chondrocyte lifecycle affect long bone elongation, a fundamental source of height growth. There are critical junctures within the chondrocytic differentiation cascade at which environmental influences are integrated and have the ability to influence progression to the hypertrophic chondrocyte phase, the primary driver of long bone elongation. Phenotypic differences in height growth patterns reflect variability in amplitude and frequency of discretely timed hypertrophic cellular expansion events, the cellular basis of saltation and stasis growth biology. Final height is a summary of the dynamic processes carried out by the growth plate cellular machinery. As these cell-level mechanisms unfold in an individual, time-specific manner, there are many critical points at which a genetic growth program can be enhanced or perturbed. Recognizing both the complexity and fluidity of this adaptive system questions the likelihood of a single, optimal growth pattern and instead identifies a larger bandwidth of saltatory frequencies for "normal" growth. Further inquiry into mechanistic sources of variability acting at critical organizational points of chondrogenesis can provide new opportunities for growth interventions. © 2017 Wiley Periodicals, Inc.
A metric for quantifying El Niño pattern diversity with implications for ENSO-mean state interaction
NASA Astrophysics Data System (ADS)
Lemmon, Danielle E.; Karnauskas, Kristopher B.
2018-04-01
Recent research on the El Niño-Southern Oscillation (ENSO) phenomenon increasingly reveals the highly complex and diverse nature of ENSO variability. A method of quantifying ENSO spatial pattern uniqueness and diversity is presented, which enables (1) formally distinguishing between unique and "canonical" El Niño events, (2) testing whether historical model simulations aptly capture ENSO diversity by comparing with instrumental observations, (3) projecting future ENSO diversity using future model simulations, (4) understanding the dynamics that give rise to ENSO diversity, and (5) analyzing the associated diversity of ENSO-related atmospheric teleconnection patterns. Here we develop a framework for measuring El Niño spatial SST pattern uniqueness and diversity for a given set of El Niño events using two indices, the El Niño Pattern Uniqueness (EPU) index and El Niño Pattern Diversity (EPD) index, respectively. By applying this framework to instrumental records, we independently confirm a recent regime shift in El Niño pattern diversity with an increase in unique El Niño event sea surface temperature patterns. However, the same regime shift is not observed in historical CMIP5 model simulations; moreover, a comparison between historical and future CMIP5 model scenarios shows no robust change in future ENSO diversity. Finally, we support recent work that asserts a link between the background cooling of the eastern tropical Pacific and changes in ENSO diversity. This robust link between an eastern Pacific cooling mode and ENSO diversity is observed not only in instrumental reconstructions and reanalysis, but also in historical and future CMIP5 model simulations.
Coen, Enrico; Rolland-Lagan, Anne-Gaëlle; Matthews, Mark; Bangham, J. Andrew; Prusinkiewicz, Przemyslaw
2004-01-01
Although much progress has been made in understanding how gene expression patterns are established during development, much less is known about how these patterns are related to the growth of biological shapes. Here we describe conceptual and experimental approaches to bridging this gap, with particular reference to plant development where lack of cell movement simplifies matters. Growth and shape change in plants can be fully described with four types of regional parameter: growth rate, anisotropy, direction, and rotation. A key requirement is to understand how these parameters both influence and respond to the action of genes. This can be addressed by using mechanistic models that capture interactions among three components: regional identities, regionalizing morphogens, and polarizing morphogens. By incorporating these interactions within a growing framework, it is possible to generate shape changes and associated gene expression patterns according to particular hypotheses. The results can be compared with experimental observations of growth of normal and mutant forms, allowing further hypotheses and experiments to be formulated. We illustrate these principles with a study of snapdragon petal growth. PMID:14960734
Sonic hedgehog controls growth of external genitalia by regulating cell cycle kinetics
Seifert, Ashley W.; Zheng, Zhengui; Ormerod, Brandi K.; Cohn, Martin J.
2010-01-01
During embryonic development, cells are instructed which position to occupy, they interpret these cues as differentiation programmes, and expand these patterns by growth. Sonic hedgehog (Shh) specifies positional identity in many organs; however, its role in growth is not well understood. In this study, we show that inactivation of Shh in external genitalia extends the cell cycle from 8.5 to 14.4 h, and genital growth is reduced by ∼75%. Transient Shh signalling establishes pattern in the genital tubercle; however, transcriptional levels of G1 cell cycle regulators are reduced. Consequently, G1 length is extended, leading to fewer progenitor cells entering S-phase. Cell cycle genes responded similarly to Shh inactivation in genitalia and limbs, suggesting that Shh may regulate growth by similar mechanisms in different organ systems. The finding that Shh regulates cell number by controlling the length of specific cell cycle phases identifies a novel mechanism by which Shh elaborates pattern during appendage development. PMID:20975695
Guria, Amit K.; Dey, Koushik; Sarkar, Suresh; Patra, Biplab K.; Giri, Saurav; Pradhan, Narayan
2014-01-01
Programming the reaction chemistry for superseding the formation of Sm2O3 in a competitive process of formation and dissolution, the crystal growth patterns are varied and two different nanostructures of Sm2O3 in 2D confinement regime are designed. Among these, the regular and self-assembled square platelets nanostructures exhibit paramagnetic behavior analogous to the bulk Sm2O3. But, the other one, 2D flower like shaped nanostructure, formed by irregular crystal growth, shows superparamagnetism at room temperature which is unusual for bulk paramagnet. It has been noted that the variation in the crystal growth pattern is due to the difference in the binding ability of two organic ligands, oleylamine and oleic acid, used for the synthesis and the magnetic behavior of the nanostructures is related to the defects incorporated during the crystal growth. Herein, we inspect the formation chemistry and plausible origin of contrasting magnetism of these nanostructures of Sm2O3. PMID:25269458
Ricketts, Thomas C; Adamson, William T; Fraher, Erin P; Knapton, Andy; Geiger, James D; Abdullah, Fizan; Klein, Michael D
2017-03-01
To describe the future supply and demand for pediatric surgeons using a physician supply model to determine what the future supply of pediatric surgeons will be over the next decade and a half and to compare that projected supply with potential indicators of demand and the growth of other subspecialties. Anticipating the supply of physicians and surgeons in the future has met with varying levels of success. However, there remains a need to anticipate supply given the rapid growth of specialty and subspecialty fellowships. This analysis is intended to support decision making on the size of future fellowships in pediatric surgery. The model used in the study is an adaptation of the FutureDocs physician supply and need tool developed to anticipate future supply and need for all physician specialties. Data from national inventories of physicians by specialty, age, sex, activity, and location are combined with data from residency and fellowship programs and accrediting bodies in an agent-based or microsimulation projection model that considers movement into and among specialties. Exits from practice and the geographic distribution of physician and the patient population are also included in the model. Three scenarios for the annual entry into pediatric surgery fellowships (28, 34, and 56) are modeled and their effects on supply through 2030 are presented. The FutureDocs model predicts a very rapid growth of the supply of surgeons who treat pediatric patients-including general pediatric surgeon and focused subspecialties. The supply of all pediatric surgeons will grow relatively rapidly through 2030 under current conditions. That growth is much faster than the rate of growth of the pediatric population. The volume of complex surgical cases will likely match this population growth rate meaning there will be many more surgeons trained for those procedures. The current entry rate into pediatric surgery fellowships (34 per year) will result in a slowing of growth after 2025, a rate of 56 will generate a continued growth through 2030 with a likely plateau after 2035. The rate of entry into pediatric surgery will continue to exceed population growth through 2030 under two likely scenarios. The very rapid anticipated growth in focused pediatric subspecialties will likely prove challenging to surgeons wishing to maintain their skills with complex cases as a larger and more diverse group of surgeons will also seek to care for many of the conditions and patients which the general pediatric surgeons and general surgeons now see. This means controlling the numbers of pediatric surgery fellowships in a way that recognizes problems with distribution, the volume of cases available to maintain proficiency, and the dynamics of retirement and shifts into other specialty practice.
Albert, David M; Schoen, John W
2013-08-01
The forests of southeastern Alaska remain largely intact and contain a substantial proportion of Earth's remaining old-growth temperate rainforest. Nonetheless, industrial-scale logging has occurred since the 1950s within a relatively narrow range of forest types that has never been quantified at a regional scale. We analyzed historical patterns of logging from 1954 through 2004 and compared the relative rates of change among forest types, landform associations, and biogeographic provinces. We found a consistent pattern of disproportionate logging at multiple scales, including large-tree stands and landscapes with contiguous productive old-growth forests. The highest rates of change were among landform associations and biogeographic provinces that originally contained the largest concentrations of productive old growth (i.e., timber volume >46.6 m³/ha). Although only 11.9% of productive old-growth forests have been logged region wide, large-tree stands have been reduced by at least 28.1%, karst forests by 37%, and landscapes with the highest volume of contiguous old growth by 66.5%. Within some island biogeographic provinces, loss of rare forest types may place local viability of species dependent on old growth at risk of extirpation. Examination of historical patterns of change among ecological forest types can facilitate planning for conservation of biodiversity and sustainable use of forest resources. © 2013 Society for Conservation Biology.
Range-wide patterns of greater sage-grouse persistence
Aldridge, Cameron L.; Nielsen, Scott E.; Beyer, Hawthorne L.; Boyce, Mark S.; Connelly, John W.; Knick, Steven T.; Schroeder, Michael A.
2008-01-01
Aim: Greater sage-grouse (Centrocercus urophasianus), a shrub-steppe obligate species of western North America, currently occupies only half its historical range. Here we examine how broad-scale, long-term trends in landscape condition have affected range contraction. Location: Sagebrush biome of the western USA. Methods: Logistic regression was used to assess persistence and extirpation of greater sage-grouse range based on landscape conditions measured by human population (density and population change), vegetation (percentage of sagebrush habitat), roads (density of and distance to roads), agriculture (cropland, farmland and cattle density), climate (number of severe and extreme droughts) and range periphery. Model predictions were used to identify areas where future extirpations can be expected, while also explaining possible causes of past extirpations. Results: Greater sage-grouse persistence and extirpation were significantly related to sagebrush habitat, cultivated cropland, human population density in 1950, prevalence of severe droughts and historical range periphery. Extirpation of sage-grouse was most likely in areas having at least four persons per square kilometre in 1950, 25% cultivated cropland in 2002 or the presence of three or more severe droughts per decade. In contrast, persistence of sage-grouse was expected when at least 30 km from historical range edge and in habitats containing at least 25% sagebrush cover within 30 km. Extirpation was most often explained (35%) by the combined effects of peripherality (within 30 km of range edge) and lack of sagebrush cover (less than 25% within 30 km). Based on patterns of prior extirpation and model predictions, we predict that 29% of remaining range may be at risk. Main Conclusions: Spatial patterns in greater sage-grouse range contraction can be explained by widely available landscape variables that describe patterns of remaining sagebrush habitat and loss due to cultivation, climatic trends, human population growth and peripherality of populations. However, future range loss may relate less to historical mechanisms and more to recent changes in land use and habitat condition, including energy developments and invasions by non-native species such as cheatgrass (Bromus tectorum) and West Nile virus. In conjunction with local measures of population performance, landscape-scale predictions of future range loss may be useful for prioritizing management and protection. Our results suggest that initial conservation efforts should focus on maintaining large expanses of sagebrush habitat, enhancing quality of existing habitats, and increasing habitat connectivity.
Liu, Zhihua; Wimberly, Michael C
2016-01-15
We asked two research questions: (1) What are the relative effects of climate change and climate-driven vegetation shifts on different components of future fire regimes? (2) How does incorporating climate-driven vegetation change into future fire regime projections alter the results compared to projections based only on direct climate effects? We used the western United States (US) as study area to answer these questions. Future (2071-2100) fire regimes were projected using statistical models to predict spatial patterns of occurrence, size and spread for large fires (>400 ha) and a simulation experiment was conducted to compare the direct climatic effects and the indirect effects of climate-driven vegetation change on fire regimes. Results showed that vegetation change amplified climate-driven increases in fire frequency and size and had a larger overall effect on future total burned area in the western US than direct climate effects. Vegetation shifts, which were highly sensitive to precipitation pattern changes, were also a strong determinant of the future spatial pattern of burn rates and had different effects on fire in currently forested and grass/shrub areas. Our results showed that climate-driven vegetation change can exert strong localized effects on fire occurrence and size, which in turn drive regional changes in fire regimes. The effects of vegetation change for projections of the geographic patterns of future fire regimes may be at least as important as the direct effects of climate change, emphasizing that accounting for changing vegetation patterns in models of future climate-fire relationships is necessary to provide accurate projections at continental to global scales. Copyright © 2015 Elsevier B.V. All rights reserved.
Seven ways of causing the less developed countries' population problem to disappear -- in theory.
Keyfitz, N
1992-01-01
7 ways in which excessive population growth does not harm development are critically examined. 1) Population growth rates are declining; ignore the absolute numbers. If objectivity is relevant, then rates are for cross-country comparisons and numbers are for impact. 2) Twice as many people has resulted in taking better care of trees and soils. The context is important where less populated countries may be more environmentally concerned, and one can ignore that twice as many people may mean twice as much food and fuel use. There is no convincing empirical evidence even with intermediate variables. 3) Land and materials no longer set limits; the more people, the more brains, the more ideas, and the more technology to circumvent environmental limits. Land has been superseded by productivity advances due to technology. Capital accounts for maybe 10% of economic progress. Technology has transformed but also produced the ozone layer, the greenhouse effect, and the extinction of species. Those in less developed countries want few people and more land and capital. 4) Ignoring nonlinearities and discontinuities, countries with controlled population and rapid population growth have experienced similar patterns of slow income growth. 16% of economic growth is accounted for by lower population growth. However, economic growth may be due to other factors, such as economic riches in oil. A critical point is reached where renewable resources eventually decline. 5) The market will produce an optimum of people, if parents get all the benefits and pay all the costs of having children. Fertility reduction leads to loss of utility. The impact of this decision to bear children without social limits on others must be considered. Net externalities may occur within the nuclear family where the husband plans family size and the wife raises the child; within the community where couples plan the child and the community educates the child; and between the present and future generations where present childbearing affects future welfare. 6) Eliminate the environment from a production model. 7) Fault bad economic policies when rapid population growth occurs. This diversion may focus on bad technology such as replacing fossil fuels with solar energy, wrong economic policies such as in the need to trust the market more. The social and political issues are difficult to resolve. People want to live in the wrong places. Dualism in formal and informal economies occurs. The population problem must not be sidestepped.
NASA Astrophysics Data System (ADS)
Barron-Gafford, G. A.; Minor, R. L.; Braun, Z.; Potts, D. L.
2012-12-01
Woody encroachment into grasslands alters ecosystem structure and function both above- and belowground. Aboveground, woody plant canopies increase leaf area index and alter patterns of interception, infiltration and runoff. Belowground, woody plants alter root distribution and increase maximum rooting depth with the effect of accessing deeper pools of soil moisture and shifting the timing and duration of evapotranspiration. In turn, these woody plants mediate hydrological changes that influence patterns of ecosystem CO2 exchange and productivity. Given projections of more variable precipitation and increased temperatures for many semiarid regions, differences in physiological performance are likely to drive changes in ecosystem-scale carbon and water flux depending on the degree of woody cover. Ultimately, as soil moisture declines with decreased precipitation, differential patterns of environmental sensitivity among growth-forms and their dependence on groundwater will only become more important in determining ecosystem resilience to future change. Here, we created a series of 1-meter deep mesocosms that housed either a woody mesquite shrub, a bunchgrass, or was left as bare soil. Five replicates of each were maintained under current ambient air temperatures, and five replicates were maintained under projected (+4oC) air temperatures. Each mesocosm was outfitted with an array of soil moisture, temperature, water potential, and CO2 exchange concentration sensors at the near-surface, 30, 55, and 80cm depths to quantify patterns of soil moisture and respiratory CO2 exchange efflux in response to rainfall events of varying magnitude and intervening dry periods of varying duration. In addition, we used minirhizotrons to quantify the response of roots to episodic rainfall. During the first year, bunchgrasses photosynthetically outperformed mesquite saplings across a wider range of temperatures under dry conditions, regardless of growth temperature (ambient or +4oC). Both growth forms were similarly responsive to episodic rainfall, regardless of event magnitude, though mesquite were able to maintain photosynthetic function for a longer period in response to each rain. However, in the second year of the experiment a new pattern of response to moisture and high temperature stress emerged. Under dry conditions, mesquite sustained high photosynthetic rates across a wider range of atmospheric temperatures and were less responsive to rainfall, regardless of event magnitude. In contrast, the limiting effect of high temperatures on bunchgrass photosynthesis was soil moisture dependent. In this case, the effects of high temperature limitation were exaggerated under dry conditions and relaxed when soil moisture was more abundant. Together, these trends yielded a significantly greater photosynthetic assimilation by deeper-rooted mesquite shrubs than shallow-rooted bunchgrasses under both temperature regimes. Combining these aboveground measurements of carbon uptake with belowground estimates of carbon efflux will allow us to make much more informed projections of net carbon balance within mixed vegetation shrublands across a range of global climate change projections.
BITNET: Past, Present, and Future.
ERIC Educational Resources Information Center
Oberst, Daniel J.; Smith, Sheldon B.
1986-01-01
Discusses history and development of the academic computer network BITNET, including BITNET Network Support Center's growth and services, and international expansion. Network users, reasons for growth, and future developments are reviewed. A BITNET applications sampler and listings of compatible computers and operating systems, sites, and…
A framework to analyze emissions implications of ...
Future year emissions depend highly on the evolution of the economy, technology and current and future regulatory drivers. A scenario framework was adopted to analyze various technology development pathways and societal change while considering existing regulations and future uncertainty in regulations and evaluate resulting emissions growth patterns. The framework integrates EPA’s energy systems model with an economic Input-Output (I/O) Life Cycle Assessment model. The EPAUS9r MARKAL database is assembled from a set of technologies to represent the U.S. energy system within MARKAL bottom-up technology rich energy modeling framework. The general state of the economy and consequent demands for goods and services from these sectors are taken exogenously in MARKAL. It is important to characterize exogenous inputs about the economy to appropriately represent the industrial sector outlook for each of the scenarios and case studies evaluated. An economic input-output (I/O) model of the US economy is constructed to link up with MARKAL. The I/O model enables user to change input requirements (e.g. energy intensity) for different sectors or the share of consumer income expended on a given good. This gives end-users a mechanism for modeling change in the two dimensions of technological progress and consumer preferences that define the future scenarios. The framework will then be extended to include environmental I/O framework to track life cycle emissions associated
Future Air Traffic Growth and Schedule Model, Supplement
NASA Technical Reports Server (NTRS)
Kimmel, William M. (Technical Monitor); Smith, Jeremy C.; Dollyhigh, Samuel M.
2004-01-01
The Future Air Traffic Growth and Schedule Model was developed as an implementation of the Fratar algorithm to project future traffic flow between airports in a system and of then scheduling the additional flights to reflect current passenger time-of-travel preferences. The methodology produces an unconstrained future schedule from a current (or baseline) schedule and the airport operations growth rates. As an example of the use of the model, future schedules are projected for 2010 and 2022 for all flights arriving at, departing from, or flying between all continental United States airports that had commercial scheduled service for May 17, 2002. Inter-continental US traffic and airports are included and the traffic is also grown with the Fratar methodology to account for their arrivals and departures to the continental US airports. Input data sets derived from the Official Airline Guide (OAG) data and FAA Terminal Area Forecast (TAF) are included in the examples of the computer code execution.
NASA Technical Reports Server (NTRS)
Fronzek, Stefan; Pirttioja, Nina; Carter, Timothy R.; Bindi, Marco; Hoffmann, Holger; Palosuo, Taru; Ruiz-Ramos, Margarita; Tao, Fulu; Trnka, Miroslav; Acutis, Marco;
2017-01-01
Crop growth simulation models can differ greatly in their treatment of key processes and hence in their response to environmental conditions. Here, we used an ensemble of 26 process-based wheat models applied at sites across a European transect to compare their sensitivity to changes in temperature (minus 2 to plus 9 degrees Centigrade) and precipitation (minus 50 to plus 50 percent). Model results were analysed by plotting them as impact response surfaces (IRSs), classifying the IRS patterns of individual model simulations, describing these classes and analysing factors that may explain the major differences in model responses. The model ensemble was used to simulate yields of winter and spring wheat at four sites in Finland, Germany and Spain. Results were plotted as IRSs that show changes in yields relative to the baseline with respect to temperature and precipitation. IRSs of 30-year means and selected extreme years were classified using two approaches describing their pattern. The expert diagnostic approach (EDA) combines two aspects of IRS patterns: location of the maximum yield (nine classes) and strength of the yield response with respect to climate (four classes), resulting in a total of 36 combined classes defined using criteria pre-specified by experts. The statistical diagnostic approach (SDA) groups IRSs by comparing their pattern and magnitude, without attempting to interpret these features. It applies a hierarchical clustering method, grouping response patterns using a distance metric that combines the spatial correlation and Euclidian distance between IRS pairs. The two approaches were used to investigate whether different patterns of yield response could be related to different properties of the crop models, specifically their genealogy, calibration and process description. Although no single model property across a large model ensemble was found to explain the integrated yield response to temperature and precipitation perturbations, the application of the EDA and SDA approaches revealed their capability to distinguish: (i) stronger yield responses to precipitation for winter wheat than spring wheat; (ii) differing strengths of response to climate changes for years with anomalous weather conditions compared to period-average conditions; (iii) the influence of site conditions on yield patterns; (iv) similarities in IRS patterns among models with related genealogy; (v) similarities in IRS patterns for models with simpler process descriptions of root growth and water uptake compared to those with more complex descriptions; and (vi) a closer correspondence of IRS patterns in models using partitioning schemes to represent yield formation than in those using a harvest index. Such results can inform future crop modelling studies that seek to exploit the diversity of multi-model ensembles, by distinguishing ensemble members that span a wide range of responses as well as those that display implausible behaviour or strong mutual similarities.
The impact of climate change on the BRICS economies: The case of insurance demand.
NASA Astrophysics Data System (ADS)
Ranger, N.; Surminski, S.
2012-04-01
Session ERE5.1 Climate change impact on economical and industrial activities The impact of climate change on the BRICS economies: The case of insurance demand. Over the past decade, growth in the BRICS (Brazil, Russia, India, China and South Africa) economies has been a key driver of global economic growth. Current forecasts suggest that these markets will continue to be areas of significant growth for a large number of industries. We consider how climate change may influence these trends in the period to 2030, a time horizon that is long in terms of strategic planning in industry, but relatively short for climate change analysis, where the impacts are predicted to be most significant beyond around 2050. Based on current evidence, we expect climate change to affect the BRICS economies in four main ways: 1. The impact of physical climatic changes on the productivity of climate-sensitive economic activity, the local environment, human health and wellbeing, and damages from extreme weather. 2. Changing patterns of investment in climate risk management and adaptation 3. Changing patterns of investments in areas affected by greenhouse gas (GHG) mitigation policy, 4. The impacts of the above globally, including on international trade, growth, investment, policy, migration and commodity prices, and their impacts on the BRICS. We review the evidence on the impacts of climate change in the BRICS and then apply this to one particular industry sector: non-life insurance. We propose five potential pathways through which climate change could influence insurance demand: economic growth; willingness to pay for insurance; public policy and regulation; the insurability of natural catastrophe risks; and new opportunities associated with adaptation and greenhouse gas mitigation. We conclude that, with the exception of public policy and regulation, the influence of climate change on insurance demand to 2030 is likely to be small when compared with the expected growth due to rising incomes. The scale of the impacts and their direction depend to some extent on (re)insurer responses to the challenges of climate change. We outline five actions that could pave the way for future opportunities in the industry. Authors of the paper: Ranger, Nicola (Centre for Climate Change Economics and Policy/ Grantham Research Institute, London School of Economics, London, UK) and Surminski, Swenja (Centre for Climate Change Economics and Policy/ Grantham Research Institute, London School of Economics, London, UK)
The Middle East population puzzle.
Omran, A R; Roudi, F
1993-07-01
An overview is provided of Middle Eastern countries on the following topics; population change, epidemiological transition theory and 4 patterns of transition in the middle East, transition in causes of death, infant mortality declines, war mortality, fertility, family planning, age and sex composition, ethnicity, educational status, urbanization, labor force, international labor migration, refugees, Jewish immigration, families, marriage patterns, and future growth. The Middle East is geographically defined as Bahrain, Egypt, Iraq, Jordan, Kuwait, Lebanon, Oman, Qatar, Saudi Arabia, Syria, United Arab Emirates, Yemen, Gaza and the West Bank, Iran, Turkey, and Israel. The Middle East's population grew very little until 1990 when the population was 43 million. Population was about doubled in the mid-1950s at 80 million. Rapid growth occurred after 1950 with declines in mortality due to widespread disease control and sanitation efforts. Countries are grouped in the following ways: persistent high fertility and declining mortality with low to medium socioeconomic conditions (Jordan, Oman, Syria, Yemen, and the West Bank and Gaza), declining fertility and mortality in intermediate socioeconomic development (Egypt, Lebanon, Turkey, and Iran), high fertility and declining mortality in high socioeconomic conditions (Bahrain, Iraq, Kuwait, Qatar, Saudi Arabia, and the United Arab Emirates), and low fertility and mortality in average socioeconomic conditions (Israel). As birth and death rates decline, there is an accompanying shift from communicable diseases to degenerative diseases and increases in life expectancy; this pattern is reflected in the available data from Egypt, Kuwait, and Israel. High infant and child mortality tends to remain a problem throughout the Middle East, with the exception of Israel and the Gulf States. War casualties are undetermined, yet have not impeded the fastest growing population growth rate in the world. The average fertility is 5 births/woman by the age of 45. Muslim countries tend to have larger families. Contraceptive use is low in the region, with the exception of Turkey and Egypt and among urban and educated populations. More than 40% of the population is under 15 years of age. The region is about 50% Arabic (140 million). Educational status has increased, particularly for men; the lowest literacy rates for women are in Yemen and Egypt. The largest countries are Iran, Turkey, and Egypt.
Charecterisation and Modelling Urbanisation Pattern in Sillicon Valley of India
NASA Astrophysics Data System (ADS)
Aithal, B. H.
2015-12-01
Urbanisation and Urban sprawl has led to environmental problems and large losses of arable land in India. In this study, we characterise pattern of urban growth and model urban sprawl by means of a combination of remote sensing, geographical information system, spatial metrics and CA based modelling. This analysis uses time-series data to explore and derive the potential political-socio-economic- land based driving forces behind urbanisation and urban sprawl, and spatial models in different scenarios to explore the spatio-temporal interactions and development. The study area applied is Greater Bangalore, for the period from 1973 to 2015. Further water bodies depletion, vegetation depletion, tree cover were also analysed to obtain specific region based results effecting global climate and regional balance. Agents were integrated successfully into modelling aspects to understand and foresee the landscape pattern change in urban morphology. The results reveal built-up paved surfaces has expanded towards the outskirts and have expanded into the buffer regions around the city. Population growth, economic, industrial developments in the city core and transportation development are still the main causes of urban sprawl in the region. Agent based model are considered to be to the traditional models. Agent Based modelling approach as seen in this paper clearly shown its effectiveness in capturing the micro dynamics and influence in its neighbourhood mapping. Greenhouse gas emission inventory has shown important aspects such as domestic sector to be one of the major impact categories in the region. Further tree cover reduced drastically and is evident from the statistics and determines that if city is in verge of creating a chaos in terms of human health and desertification. Study concludes that integration of remote sensing, GIS, and agent based modelling offers an excellent opportunity to explore the spatio-temporal variation and visulaisation of sprawling metropolitan region. This study give a complete overview of urbanisation and effects being caused due to urban sprawl in the region and help planners and city managers in understanding the future pockets and scenarios of urban growth.
A mathematical basis for plant patterning derived from physico-chemical phenomena.
Beleyur, Thejasvi; Abdul Kareem, Valiya Kadavu; Shaji, Anil; Prasad, Kalika
2013-04-01
The position of leaves and flowers along the stem axis generates a specific pattern, known as phyllotaxis. A growing body of evidence emerging from recent computational modeling and experimental studies suggests that regulators controlling phyllotaxis are chemical, e.g. the plant growth hormone auxin and its dynamic accumulation pattern by polar auxin transport, and physical, e.g. mechanical properties of the cell. Here we present comprehensive views on how chemical and physical properties of cells regulate the pattern of leaf initiation. We further compare different computational modeling studies to understand their scope in reproducing the observed patterns. Despite a plethora of experimental studies on phyllotaxis, understanding of molecular mechanisms of pattern initiation in plants remains fragmentary. Live imaging of growth dynamics and physicochemical properties at the shoot apex of mutants displaying stable changes from one pattern to another should provide mechanistic insights into organ initiation patterns. Copyright © 2013 WILEY Periodicals, Inc.
Koss, Kalsea J.; George, Melissa R. W.; Davies, Patrick T.; Cicchetti, Dante; Cummings, E. Mark; Sturge-Apple, Melissa L.
2013-01-01
Examining children’s physiological functioning is an important direction for understanding the links between interparental conflict and child adjustment. Utilizing growth mixture modeling, the present study examined children’s cortisol reactivity patterns in response to a marital dispute. Analyses revealed three different patterns of cortisol responses, consistent with both a sensitization and an attenuation hypothesis. Child-rearing disagreements and perceived threat were associated with children exhibiting a rising cortisol pattern whereas destructive conflict was related to children displaying a flat pattern. Physiologically rising patterns were also linked with emotional insecurity and internalizing and externalizing behaviors. Results supported a sensitization pattern of responses as maladaptive for children in response to marital conflict with evidence also linking an attenuation pattern with risk. The present study supports children’s adrenocortical functioning as one mechanism through which interparental conflict is related to children’s coping responses and psychological adjustment. PMID:22545835
The Growth and Decay of Equatorial Backscatter Plumes.
1980-02-01
spatially connected to bottomside backscatter, a feature noted in Jica- marca radar observations that led Woodman and La Hoz (1976) to speculate that...described in Section Ill-B, this pattern of plume growth resembles the "C-shaped" and "fishtail" patterns found in Jica- marca radar RTI displays of 50-MHz