Sample records for future jules horowitz

  1. Radiation Transport Calculation of the UGXR Collimators for the Jules Horowitz Reactor (JHR)

    NASA Astrophysics Data System (ADS)

    Chento, Yelko; Hueso, César; Zamora, Imanol; Fabbri, Marco; Fuente, Cristina De La; Larringan, Asier

    2017-09-01

    Jules Horowitz Reactor (JHR), a major infrastructure of European interest in the fission domain, will be built and operated in the framework of an international cooperation, including the development and qualification of materials and nuclear fuel used in nuclear industry. For this purpose UGXR Collimators, two multi slit gamma and X-ray collimation mechatronic systems, will be installed at the JHR pool and at the Irradiated Components Storage pool. Expected amounts of radiation produced by the spent fuel and X-ray accelerator implies diverse aspects need to be verified to ensure adequate radiological zoning and personnel radiation protection. A computational methodology was devised to validate the Collimators design by means of coupling different engineering codes. In summary, several assessments were performed by means of MCNP5v1.60 to fulfil all the radiological requirements in Nominal scenario (TEDE < 25µSv/h) and in Maintenance scenario (TEDE < 2mSv/h) among others, detailing the methodology, hypotheses and assumptions employed.

  2. Experimental validation of photon-heating calculation for the Jules Horowitz Reactor

    NASA Astrophysics Data System (ADS)

    Lemaire, M.; Vaglio-Gaudard, C.; Lyoussi, A.; Reynard-Carette, C.; Di Salvo, J.; Gruel, A.

    2015-04-01

    The Jules Horowitz Reactor (JHR) is the next Material-Testing Reactor (MTR) under construction at CEA Cadarache. High values of photon heating (up to 20 W/g) are expected in this MTR. As temperature is a key parameter for material behavior, the accuracy of photon-heating calculation in the different JHR structures is an important stake with regard to JHR safety and performances. In order to experimentally validate the calculation of photon heating in the JHR, an integral experiment called AMMON was carried out in the critical mock-up EOLE at CEA Cadarache to help ascertain the calculation bias and its associated uncertainty. Nuclear heating was measured in different JHR-representative AMMON core configurations using ThermoLuminescent Detectors (TLDs) and Optically Stimulated Luminescent Detectors (OSLDs). This article presents the interpretation methodology and the calculation/experiment (C/E) ratio for all the TLD and OSLD measurements conducted in AMMON. It then deals with representativeness elements of the AMMON experiment regarding the JHR and establishes the calculation biases (and its associated uncertainty) applicable to photon-heating calculation for the JHR.

  3. Neutron fluxes in test reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Youinou, Gilles Jean-Michel

    Communicate the fact that high-power water-cooled test reactors such as the Advanced Test Reactor (ATR), the High Flux Isotope Reactor (HFIR) or the Jules Horowitz Reactor (JHR) cannot provide fast flux levels as high as sodium-cooled fast test reactors. The memo first presents some basics physics considerations about neutron fluxes in test reactors and then uses ATR, HFIR and JHR as an illustration of the performance of modern high-power water-cooled test reactors.

  4. Calculation to experiment comparison of SPND signals in various nuclear reactor environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbot, Loic; Radulovic, Vladimir; Fourmentel, Damien

    2015-07-01

    In the perspective of irradiation experiments in the future Jules Horowitz Reactor (JHR), the Instrumentation Sensors and Dosimetry Laboratory of CEA Cadarache (France) is developing a numerical tool for SPND design, simulation and operation. In the frame of the SPND numerical tool qualification, dedicated experiments have been performed both in the Slovenian TRIGA Mark II reactor (JSI) and very recently in the French CEA Saclay OSIRIS reactor, as well as a test of two detectors in the core of the Polish MARIA reactor (NCBJ). A full description of experimental set-ups and neutron-gamma calculations schemes are provided in the first partmore » of the paper. Calculation to experiment comparison of the various SPNDs in the different reactors is thoroughly described and discussed in the second part. Presented comparisons show promising final results. (authors)« less

  5. Land-surface parameter optimisation using data assimilation techniques: the adJULES system V1.0

    NASA Astrophysics Data System (ADS)

    Raoult, Nina M.; Jupp, Tim E.; Cox, Peter M.; Luke, Catherine M.

    2016-08-01

    Land-surface models (LSMs) are crucial components of the Earth system models (ESMs) that are used to make coupled climate-carbon cycle projections for the 21st century. The Joint UK Land Environment Simulator (JULES) is the land-surface model used in the climate and weather forecast models of the UK Met Office. JULES is also extensively used offline as a land-surface impacts tool, forced with climatologies into the future. In this study, JULES is automatically differentiated with respect to JULES parameters using commercial software from FastOpt, resulting in an analytical gradient, or adjoint, of the model. Using this adjoint, the adJULES parameter estimation system has been developed to search for locally optimum parameters by calibrating against observations. This paper describes adJULES in a data assimilation framework and demonstrates its ability to improve the model-data fit using eddy-covariance measurements of gross primary production (GPP) and latent heat (LE) fluxes. adJULES also has the ability to calibrate over multiple sites simultaneously. This feature is used to define new optimised parameter values for the five plant functional types (PFTs) in JULES. The optimised PFT-specific parameters improve the performance of JULES at over 85 % of the sites used in the study, at both the calibration and evaluation stages. The new improved parameters for JULES are presented along with the associated uncertainties for each parameter.

  6. Land-surface parameter optimisation using data assimilation techniques: the adJULES system V1.0

    DOE PAGES

    Raoult, Nina M.; Jupp, Tim E.; Cox, Peter M.; ...

    2016-08-25

    Land-surface models (LSMs) are crucial components of the Earth system models (ESMs) that are used to make coupled climate–carbon cycle projections for the 21st century. The Joint UK Land Environment Simulator (JULES) is the land-surface model used in the climate and weather forecast models of the UK Met Office. JULES is also extensively used offline as a land-surface impacts tool, forced with climatologies into the future. In this study, JULES is automatically differentiated with respect to JULES parameters using commercial software from FastOpt, resulting in an analytical gradient, or adjoint, of the model. Using this adjoint, the adJULES parameter estimationmore » system has been developed to search for locally optimum parameters by calibrating against observations. This paper describes adJULES in a data assimilation framework and demonstrates its ability to improve the model–data fit using eddy-covariance measurements of gross primary production (GPP) and latent heat (LE) fluxes. adJULES also has the ability to calibrate over multiple sites simultaneously. This feature is used to define new optimised parameter values for the five plant functional types (PFTs) in JULES. The optimised PFT-specific parameters improve the performance of JULES at over 85 % of the sites used in the study, at both the calibration and evaluation stages. Furthermore, the new improved parameters for JULES are presented along with the associated uncertainties for each parameter.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raoult, Nina M.; Jupp, Tim E.; Cox, Peter M.

    Land-surface models (LSMs) are crucial components of the Earth system models (ESMs) that are used to make coupled climate–carbon cycle projections for the 21st century. The Joint UK Land Environment Simulator (JULES) is the land-surface model used in the climate and weather forecast models of the UK Met Office. JULES is also extensively used offline as a land-surface impacts tool, forced with climatologies into the future. In this study, JULES is automatically differentiated with respect to JULES parameters using commercial software from FastOpt, resulting in an analytical gradient, or adjoint, of the model. Using this adjoint, the adJULES parameter estimationmore » system has been developed to search for locally optimum parameters by calibrating against observations. This paper describes adJULES in a data assimilation framework and demonstrates its ability to improve the model–data fit using eddy-covariance measurements of gross primary production (GPP) and latent heat (LE) fluxes. adJULES also has the ability to calibrate over multiple sites simultaneously. This feature is used to define new optimised parameter values for the five plant functional types (PFTs) in JULES. The optimised PFT-specific parameters improve the performance of JULES at over 85 % of the sites used in the study, at both the calibration and evaluation stages. Furthermore, the new improved parameters for JULES are presented along with the associated uncertainties for each parameter.« less

  8. Status of the MeLoDIE experiment, an advanced device for the study of the irradiation creep of LWR cladding with full online capabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guimbal, P.; Huotilainen, S.; Taehtinen, S.

    2015-07-01

    As a prototype of future instrumented material experiments in the Jules Horowitz Reactor (JHR), the MELODIE project was launched in 2009 by the CEA in collaboration with VTT. Being designed as a biaxial creep experiment with online capability, MELODIE is able to apply an online-controlled biaxial loading on a LWR clad sample up to 120 MPa and to perform an online measurement of its biaxial deformation. An important experimental challenge was to perform reliably accurate measurements under the high nuclear heat load of in-core locations while keeping within their tight space. For that purpose, specific sensors were co-designed with andmore » built by IFE Halden. Manufacturing of the MELODIE components was completed one year ago. The complexity of its in-pile section and of the pressurization system requested a step-by-step tuning of the setup. The toughest part of this process dealt with the Diameter gauge which required a partial redesign to take into account unexpected and unwanted electromagnetic interactions with the hosting device. Final cold performance tests of the on-board instrumentation will be presented. The MELODIE device is now ready and irradiation should start in OSIRIS reactor this spring. (authors)« less

  9. Covariance generation and uncertainty propagation for thermal and fast neutron induced fission yields

    NASA Astrophysics Data System (ADS)

    Terranova, Nicholas; Serot, Olivier; Archier, Pascal; De Saint Jean, Cyrille; Sumini, Marco

    2017-09-01

    Fission product yields (FY) are fundamental nuclear data for several applications, including decay heat, shielding, dosimetry, burn-up calculations. To be safe and sustainable, modern and future nuclear systems require accurate knowledge on reactor parameters, with reduced margins of uncertainty. Present nuclear data libraries for FY do not provide consistent and complete uncertainty information which are limited, in many cases, to only variances. In the present work we propose a methodology to evaluate covariance matrices for thermal and fast neutron induced fission yields. The semi-empirical models adopted to evaluate the JEFF-3.1.1 FY library have been used in the Generalized Least Square Method available in CONRAD (COde for Nuclear Reaction Analysis and Data assimilation) to generate covariance matrices for several fissioning systems such as the thermal fission of U235, Pu239 and Pu241 and the fast fission of U238, Pu239 and Pu240. The impact of such covariances on nuclear applications has been estimated using deterministic and Monte Carlo uncertainty propagation techniques. We studied the effects on decay heat and reactivity loss uncertainty estimation for simplified test case geometries, such as PWR and SFR pin-cells. The impact on existing nuclear reactors, such as the Jules Horowitz Reactor under construction at CEA-Cadarache, has also been considered.

  10. STS-105 Crew Interview: Scott Horowitz

    NASA Technical Reports Server (NTRS)

    2001-01-01

    STS-105 Commander Scott Horowitz is seen during a prelaunch interview. He answers questions about his inspiration to become an astronaut, his career path, training for the mission, and his role in the mission's activities. He gives details on the mission's goals, which include the transfer of supplies from the Discovery Orbiter to the International Space Station (ISS) and the change-over of the Expedition 2 and Expedition 3 crews (the resident crews of ISS). Horowitz discusses the importance of the ISS in the future of human spaceflight.

  11. Neutronics qualification of the Jules Horowitz reactor fuel by interpretation of the VALMONT experimental program - Transposition of the uncertainties on the reactivity of JHR with JEF2.2 and JEFF3.1.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leray, O.; Hudelot, J. P.; Antony, M.

    2011-07-01

    The new European material testing Jules Horowitz Reactor (JHR), currently under construction in Cadarache center (CEA France), will use LEU (20% enrichment in {sup 235}U) fuels (U{sub 3}Si{sub 2} for the start up and UMoAl in the future) which are quite different from the industrial oxide fuel, for which an extensive neutronics qualification database has been established. The HORUS3D/N neutronics calculation scheme, used for the design and safety studies of the JHR, is being developed within the framework of a rigorous verification-validation-qualification methodology. In this framework, the experimental VALMONT (Validation of Aluminium Molybdenum uranium fuel for Neutronics) program has beenmore » performed in the MINERVE facility of CEA Cadarache (France), in order to qualify the capability of HORUS3D/N to accurately calculate the reactivity of the JHR reactor. The MINERVE facility using the oscillation technique provides accurate measurements of reactivity effect of samples. The VALMONT program includes oscillations of samples of UAl{sub x}/Al and UMo/Al with enrichments ranging from 0.2% to 20% and Uranium densities from 2.2 to 8 g/cm{sup 3}. The geometry of the samples and the pitch of the experimental lattice ensure maximum representativeness with the neutron spectrum expected for JHR. By comparing the effect of the sample with the one of a known fuel specimen, the reactivity effect can be measured in absolute terms and be compared to computational results. Special attention was paid to the rigorous determination and reduction of the experimental uncertainties. The calculational analysis of the VALMONT results was performed with the French deterministic code APOLLO2. A comparison of the impact of the different calculation methods, data libraries and energy meshes that were tested is presented. The interpretation of the VALMONT experimental program allowed the qualification of JHR fuel UMoAl8 (with an enrichment of 19.75% {sup 235}U) by the Minerve-dedicated interpretation tool: PIMS. The effect of energy meshes and evaluations put forward the JEFF3.1.1/SHEM scheme that leads to a better calculation of the reactivity effect of VALMONT samples. Then, in order to quantify the impact of the uncertainties linked to the basic nuclear data, their propagation from the cross section measurement to the final computational result was analysed in a rigorous way by using a nuclear data re-estimation method based on Gauss-Newton iterations. This study concludes that the prior uncertainties due to nuclear data (uranium, aluminium, beryllium and water) on the reactivity of the Begin Of Cycle (BOC) for the JHR core reach 1217 pcm at 2{sigma}. Now, the uppermost uncertainty on the JHR reactivity is due to aluminium. (authors)« less

  12. Board of Curators of the University of Missouri v. Horowitz: Student Due Process Rights and Judicial Deference to Academic Dismissals.

    ERIC Educational Resources Information Center

    Brock, Allan D.

    1979-01-01

    The Horowitz case is consistent with the general reluctance of courts to sustain constitutional challenges to decisions by educators in academic matters. Precedent is heavily weighted in favor of the academic community and should be overcome in future challenges. (Journal availability: Willamette University College of Law, Salem, OR 97301, $5.00…

  13. Land-use change may exacerbate climate change impacts on water resources in the Ganges basin

    NASA Astrophysics Data System (ADS)

    Tsarouchi, Gina; Buytaert, Wouter

    2018-02-01

    Quantifying how land-use change and climate change affect water resources is a challenge in hydrological science. This work aims to quantify how future projections of land-use and climate change might affect the hydrological response of the Upper Ganges river basin in northern India, which experiences monsoon flooding almost every year. Three different sets of modelling experiments were run using the Joint UK Land Environment Simulator (JULES) land surface model (LSM) and covering the period 2000-2035: in the first set, only climate change is taken into account, and JULES was driven by the CMIP5 (Coupled Model Intercomparison Project Phase 5) outputs of 21 models, under two representative concentration pathways (RCP4.5 and RCP8.5), whilst land use was held fixed at the year 2010. In the second set, only land-use change is taken into account, and JULES was driven by a time series of 15 future land-use pathways, based on Landsat satellite imagery and the Markov chain simulation, whilst the meteorological boundary conditions were held fixed at years 2000-2005. In the third set, both climate change and land-use change were taken into consideration, as the CMIP5 model outputs were used in conjunction with the 15 future land-use pathways to force JULES. Variations in hydrological variables (stream flow, evapotranspiration and soil moisture) are calculated during the simulation period. Significant changes in the near-future (years 2030-2035) hydrologic fluxes arise under future land-cover and climate change scenarios pointing towards a severe increase in high extremes of flow: the multi-model mean of the 95th percentile of streamflow (Q5) is projected to increase by 63 % under the combined land-use and climate change high emissions scenario (RCP8.5). The changes in all examined hydrological components are greater in the combined land-use and climate change experiment. Results are further presented in a water resources context, aiming to address potential implications of climate change and land-use change from a water demand perspective. We conclude that future water demands in the Upper Ganges region for winter months may not be met.

  14. JULES-crop: a parametrisation of crops in the Joint UK Land Environment Simulator

    NASA Astrophysics Data System (ADS)

    Osborne, T.; Gornall, J.; Hooker, J.; Williams, K.; Wiltshire, A.; Betts, R.; Wheeler, T.

    2014-10-01

    Studies of climate change impacts on the terrestrial biosphere have been completed without recognition of the integrated nature of the biosphere. Improved assessment of the impacts of climate change on food and water security requires the development and use of models not only representing each component but also their interactions. To meet this requirement the Joint UK Land Environment Simulator (JULES) land surface model has been modified to include a generic parametrisation of annual crops. The new model, JULES-crop, is described and evaluation at global and site levels for the four globally important crops; wheat, soy bean, maize and rice is presented. JULES-crop demonstrates skill in simulating the inter-annual variations of yield for maize and soy bean at the global level, and for wheat for major spring wheat producing countries. The impact of the new parametrisation, compared to the standard configuration, on the simulation of surface heat fluxes is largely an alteration of the partitioning between latent and sensible heat fluxes during the later part of the growing season. Further evaluation at the site level shows the model captures the seasonality of leaf area index and canopy height better than in standard JULES. However, this does not lead to an improvement in the simulation of sensible and latent heat fluxes. The performance of JULES-crop from both an earth system and crop yield model perspective is encouraging however, more effort is needed to develop the parameterisation of the model for specific applications. Key future model developments identified include the specification of the yield gap to enable better representation of the spatial variability in yield.

  15. Recruiting, Retention, and Future Levels of Military Personnel

    DTIC Science & Technology

    2006-10-01

    analysis. Nabeel Alsalam, David Moore, Matthew Schmit, and Roberton Williams provided comments. Stanley A. Horowitz of the Institute for Defense Analyses...afps04.htm. 8. See Congressional Budget Office, The Army’s Future Combat Sys - tem and Alternatives (August 2006), Table 2-1, p. 18. 9. See the Ronald W

  16. Exploration Update

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Delores Beasley, NASA Public Affairs, introduces the panel who consist of: Scott "Doc" Horowitz, Associate Administrator of Exploration Systems from NASA Headquarters; Jeff Henley, Constellation Program Manager from NASA Johnson Space Flight Center; and Steve Cook, Manager Exploration Launch Office at NASA Marshall Space Flight Center. Scott Horowitz presents a short video entitled, "Ares Launching the Future". He further explains how NASA personnel came up with the name of Ares and where the name Ares was derived. Jeff Henley, updates the Constellation program and Steve Cook presents two slide presentations detailing the Ares l crew launch vehicle and Ares 5 cargo launch vehicle. A short question and answer period from the news media follows.

  17. Performance assessment of imaging plates for the JHR transfer Neutron Imaging System

    NASA Astrophysics Data System (ADS)

    Simon, E.; Guimbal, P. AB(; )

    2018-01-01

    The underwater Neutron Imaging System to be installed in the Jules Horowitz Reactor (JHR-NIS) is based on a transfer method using a neutron activated beta-emitter like Dysprosium. The information stored in the converter is to be offline transferred on a specific imaging system, still to be defined. Solutions are currently under investigation for the JHR-NIS in order to anticipate the disappearance of radiographic films commonly used in these applications. We report here the performance assessment of Computed Radiography imagers (Imaging Plates) performed at LLB/Orphée (CEA Saclay). Several imaging plate types are studied, in one hand in the configuration involving an intimate contact with an activated dysprosium foil converter: Fuji BAS-TR, Fuji UR-1 and Carestream Flex XL Blue imaging plates, and in the other hand by using a prototypal imaging plate doped with dysprosium and thus not needing any contact with a separate converter foil. The results for these imaging plates are compared with those obtained with gadolinium doped imaging plate used in direct neutron imaging (Fuji BAS-ND). The detection performances of the different imagers are compared regarding resolution and noise. The many advantages of using imaging plates over radiographic films (high sensitivity, linear response, high dynamic range) could palliate its lower intrinsic resolution.

  18. Evaluation of modelled methane emissions over northern peatland sites

    NASA Astrophysics Data System (ADS)

    Gao, Yao; Burke, Eleanor; Chadburn, Sarah; Raivonen, Maarit; Susiluoto, Jouni; Vesala, Timo; Aurela, Mika; Lohila, Annalea; Aalto, Tuula

    2017-04-01

    Methane (CH4) is a powerful greenhouse gas, with approximately 34 times the global warming potential of carbon dioxide (CO2) over a century time horizon (IPCC, 2013). The strong sensitivity of methane emissions to environmental factors has led to concerns about potential positive feedbacks to climate change. Evaluation of the ability of the process-based land surface models of earth system models (ESMs) in simulating CH4 emission over peatland is needed for more precise future predictions. In this study, two peatland sites of poor and rich soil nutrient conditions, in southern and northern Finland respectively, are adopted. The measured CH4 fluxes at the two sites are used to evaluate the CH4 emissions simulated by the land surface model (JULES) of the UK Earth System model and by the Helsinki peatland methane emission model (HIMMELI), which is developed at Finnish Meteorological Institute and Helsinki University. In JULES, CH4 flux is simply related to soil temperature, wetland fraction and effective substrate availability. However, HIMMELI has detailed descriptions of microbial and transport processes for simulating CH4 flux. The seasonal dynamics of CH4 fluxes at the two sites are relatively well captured by both models, but model biases exist. Simulated CH4 flux is sensitive to water table depth (WTD) at both models. However, the simulated WTD is limited to be below ground in JULES. It is also important to have the annual cycle of LAI correct when coupling JULES with HIMMELI.

  19. Representation of dissolved organic carbon in the JULES land surface model (vn4.4_JULES-DOCM)

    NASA Astrophysics Data System (ADS)

    Nakhavali, Mahdi; Friedlingstein, Pierre; Lauerwald, Ronny; Tang, Jing; Chadburn, Sarah; Camino-Serrano, Marta; Guenet, Bertrand; Harper, Anna; Walmsley, David; Peichl, Matthias; Gielen, Bert

    2018-02-01

    Current global models of the carbon (C) cycle consider only vertical gas exchanges between terrestrial or oceanic reservoirs and the atmosphere, thus not considering the lateral transport of carbon from the continents to the oceans. Therefore, those models implicitly consider all of the C which is not respired to the atmosphere to be stored on land and hence overestimate the land C sink capability. A model that represents the whole continuum from atmosphere to land and into the ocean would provide a better understanding of the Earth's C cycle and hence more reliable historical or future projections. A first and critical step in that direction is to include processes representing the production and export of dissolved organic carbon in soils. Here we present an original representation of dissolved organic C (DOC) processes in the Joint UK Land Environment Simulator (JULES-DOCM) that integrates a representation of DOC production in terrestrial ecosystems based on the incomplete decomposition of organic matter, DOC decomposition within the soil column, and DOC export to the river network via leaching. The model performance is evaluated in five specific sites for which observations of soil DOC concentration are available. Results show that the model is able to reproduce the DOC concentration and controlling processes, including leaching to the riverine system, which is fundamental for integrating terrestrial and aquatic ecosystems. Future work should include the fate of exported DOC in the river system as well as DIC and POC export from soil.

  20. Improving the Fit of a Land-Surface Model to Data Using its Adjoint

    NASA Astrophysics Data System (ADS)

    Raoult, Nina; Jupp, Tim; Cox, Peter; Luke, Catherine

    2016-04-01

    Land-surface models (LSMs) are crucial components of the Earth System Models (ESMs) which are used to make coupled climate-carbon cycle projections for the 21st century. The Joint UK Land Environment Simulator (JULES) is the land-surface model used in the climate and weather forecast models of the UK Met Office. In this study, JULES is automatically differentiated using commercial software from FastOpt, resulting in an analytical gradient, or adjoint, of the model. Using this adjoint, the adJULES parameter estimation system has been developed, to search for locally optimum parameter sets by calibrating against observations. We present an introduction to the adJULES system and demonstrate its ability to improve the model-data fit using eddy covariance measurements of gross primary production (GPP) and latent heat (LE) fluxes. adJULES also has the ability to calibrate over multiple sites simultaneously. This feature is used to define new optimised parameter values for the 5 Plant Functional Types (PFTS) in JULES. The optimised PFT-specific parameters improve the performance of JULES over 90% of the FLUXNET sites used in the study. These reductions in error are shown and compared to reductions found due to site-specific optimisations. Finally, we show that calculation of the 2nd derivative of JULES allows us to produce posterior probability density functions of the parameters and how knowledge of parameter values is constrained by observations.

  1. Coupled carbon-nitrogen land surface modelling for UK agricultural landscapes using JULES and JULES-ECOSSE-FUN (JEF)

    NASA Astrophysics Data System (ADS)

    Comyn-Platt, Edward; Clark, Douglas; Blyth, Eleanor

    2016-04-01

    The UK is required to provide accurate estimates of the UK greenhouse gas (GHG; CO2, CH4 and N2O) emissions for the UNFCCC (United Nations Framework Convention on Climate Change). Process based land surface models (LSMs), such as the Joint UK Land Environment Simulator (JULES), attempt to provide such estimates based on environmental (e.g. land use and soil type) and meteorological conditions. The standard release of JULES focusses on the water and carbon cycles, however, it has long been suggested that a coupled carbon-nitrogen scheme could enhance simulations. This is of particular importance when estimating agricultural emission inventories where the carbon cycle is effectively managed via the human application of nitrogen based fertilizers. JULES-ECOSSE-FUN (JEF) links JULES with the Estimation of Carbon in Organic Soils - Sequestration and Emission (ECOSSE) model and the Fixation and Uptake of Nitrogen (FUN) model as a means of simulating C:N coupling. This work presents simulations from the standard release of JULES and the most recent incarnation of the JEF coupled system at the point and field scale. Various configurations of JULES and JEF were calibrated and fine-tuned based on comparisons with observations from three UK field campaigns (Crichton, Harwood Forest and Brattleby) specifically chosen to represent the managed vegetation types that cover the UK. The campaigns included flux tower and chamber measurements of CO2, CH4 and N2O amongst other meteorological parameters and records of land management such as application of fertilizer and harvest date at the agricultural sites. Based on the results of these comparisons, JULES and/or JEF will be used to provide simulations on the regional and national scales in order to provide improved estimates of the total UK emission inventory.

  2. Jules Stein, MD: Ophthalmologist, Entertainment Magnate, and Advocate for Vision.

    PubMed

    Straatsma, Bradley R; Weeks, David F

    2016-04-01

    To report the lifetime activities and accomplishments of Jules Stein, MD. Retrospective review. Assessment of published and unpublished biographical material. Jules Stein combined his love of music and medicine with organizational skills to achieve successive careers as a musician, an ophthalmologist, an entertainment magnate, and an advocate for vision. To preserve vision, he founded Research to Prevent Blindness, founded the Jules Stein Eye Institute at the University of California, Los Angeles, and led a multiyear campaign to establish the National Eye Institute. With successive careers and extraordinary achievements, Jules Stein created an enduring legacy of benefits to ophthalmology, vision research, and the prevention of blindness. Copyright © 2016 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  3. Improving the Fit of a Land-Surface Model to Data Using its Adjoint

    NASA Astrophysics Data System (ADS)

    Raoult, N.; Jupp, T. E.; Cox, P. M.; Luke, C.

    2015-12-01

    Land-surface models (LSMs) are of growing importance in the world of climate prediction. They are crucial components of larger Earth system models that are aimed at understanding the effects of land surface processes on the global carbon cycle. The Joint UK Land Environment Simulator (JULES) is the land-surface model used by the UK Met Office. It has been automatically differentiated using commercial software from FastOpt, resulting in an analytical gradient, or 'adjoint', of the model. Using this adjoint, the adJULES parameter estimation system has been developed, to search for locally optimum parameter sets by calibrating against observations. adJULES presents an opportunity to confront JULES with many different observations, and make improvements to the model parameterisation. In the newest version of adJULES, multiple sites can be used in the calibration, to giving a generic set of parameters that can be generalised over plant functional types. We present an introduction to the adJULES system and its applications to data from a variety of flux tower sites. We show that calculation of the 2nd derivative of JULES allows us to produce posterior probability density functions of the parameters and how knowledge of parameter values is constrained by observations.

  4. Seated at the pilots station, astronaut Scott J. Horowitz uses a mirror to monitor the vertical

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Seated at the pilots station, astronaut Scott J. Horowitz uses a mirror to monitor the vertical stabilizer and the aft cargo bay area during the entry phase of the flight. Horowitz, pilot, joined four other astronauts and an international payload specialist for 16 days of scientific research in Earth-orbit.

  5. Fund honors Jule G. Charney

    NASA Astrophysics Data System (ADS)

    The Department of Meteorology and Physical Oceanography at the Massachusetts Institute of Technology has established a fund in honor of the late Jule G. Charney. Charney died in Boston last month (Eos, July 7). Income from the fund will be awarded to meritorious students for graduate study in the department. The awards will be known as the Jule G. Charney Awards.

  6. Representation of Dissolved Organic Carbon in the JULES Dynamic Global Vegetation Model

    NASA Astrophysics Data System (ADS)

    Nakhavali, Mahdi; Friedlingstein, Pierre; Guenet, Bertrand; Ciais, Philip

    2017-04-01

    Current global models of the carbon cycle consider only vertical gas exchanges between terrestrial or oceanic reservoirs and the atmosphere, hence not considering lateral transport of carbon from the continent to the oceans. This also means that such models implicitly consider that all the CO2 which is not respired to the atmosphere is stored on land, hence overestimating the land sink of carbon. Moving toward a boundless carbon cycle that is integrating the whole continuum from land to ocean to atmosphere is needed in order to better understand Earth's carbon cycle and to make more reliable projection of its future. Here we present an original representation of Dissolved Organic Carbon (DOC) processes in the Joint UK Land Environment Simulator (JULES). The standard version of JULES represent energy, water and carbon cycles and exchanges with the atmosphere, but only account for water run-off, not including export of carbon from terrestrial ecosystems to the aquatic environments. The aim of the project is to include in JULES a representation of DOC production in terrestrial soils, due to incomplete decomposition of organic matter, its decomposition to the atmosphere, and its export to the river network by leaching. In new developed version of JULES (JULES-DOCM), DOC pools, based on their decomposition rate, are classified into labile and recalcitrant within 3 meters of soil. Based on turnover rate, DOC coming from plant material pools and microbial biomass is directed to labile pool, while DOC from humus is directed to recalcitrant pool. Both of these pools have free (dissolved) and locked (adsorbed) form where just the free pool is subjected to decomposition and leaching. DOC production and decomposition are controlled by rate modifiers (moisture, temperature, vegetation fraction and decomposition rate) at each soil layer. Decomposed DOC is released to the atmosphere following a fixed carbon use efficiency. Leaching accounts for both surface (runoff) and subsurface (groundwater) components and is parameterized as Top soil leaching (from top 20cm) and Bottom soil leaching (down to 3 meters) depending on DOC concentration and runoff leaving that layer. The model parameters are calibrated against specific sites (Brasschaat, Hainich and Carlow) for which observations of DOC concentration and leaching are available. Tuning is performed optimizing parameters such as DOC labile and recalcitrant resident time, DOC vertical distribution and CUE. Once this calibration has been performed at the site level, the model is used for global simulations with the major historical forcing (climate, atmospheric CO2 and land-use changes) in order to estimate the changes of DOC export and their attribution to anthropogenic activities.

  7. Invest in Children Today for a Work Force Tomorrow.

    ERIC Educational Resources Information Center

    Penning, Nick

    1989-01-01

    To confront the growing proportion of disadvantaged children amidst the shrinking pool of future workers, Jule Sugarman (Washington State Secretary of Social and Health Services) has proposed a Children's Trust to fund existing and new programs for children. The program would be funded by a .3 percent payroll tax for both employers and employees.…

  8. The Joint UK Land Environment Simulator (JULES), Model description - Part 2: Carbon fluxes and vegetation

    NASA Astrophysics Data System (ADS)

    Clark, D. B.; Mercado, L. M.; Sitch, S.; Jones, C. D.; Gedney, N.; Best, M. J.; Pryor, M.; Rooney, G. G.; Essery, R. L. H.; Blyth, E.; Boucher, O.; Harding, R. J.; Cox, P. M.

    2011-03-01

    The Joint UK Land Environment Simulator (JULES) is a process-based model that simulates the fluxes of carbon, water, energy and momentum between the land surface and the atmosphere. Past studies with JULES have demonstrated the important role of the land surface in the Earth System. Different versions of JULES have been employed to quantify the effects on the land carbon sink of separately changing atmospheric aerosols and tropospheric ozone, and the response of methane emissions from wetlands to climate change. There was a need to consolidate these and other advances into a single model code so as to be able to study interactions in a consistent manner. This paper describes the consolidation of these advances into the modelling of carbon fluxes and stores, in the vegetation and soil, in version 2.2 of JULES. Features include a multi-layer canopy scheme for light interception, including a sunfleck penetration scheme, a coupled scheme of leaf photosynthesis and stomatal conductance, representation of the effects of ozone on leaf physiology, and a description of methane emissions from wetlands. JULES represents the carbon allocation, growth and population dynamics of five plant functional types. The turnover of carbon from living plant tissues is fed into a 4-pool soil carbon model. The process-based descriptions of key ecological processes and trace gas fluxes in JULES mean that this community model is well-suited for use in carbon cycle, climate change and impacts studies, either in standalone mode or as the land component of a coupled Earth system model.

  9. Jule from the fish Xiphophorus is the first complete vertebrate Ty3/Gypsy retrotransposon from the Mag family.

    PubMed

    Volff, J N; Körting, C; Altschmied, J; Duschl, J; Sweeney, K; Wichert, K; Froschauer, A; Schartl, M

    2001-02-01

    Jule is the second complete long-terminal-repeat (LTR) Ty3/Gypsy retrotransposon identified to date in vertebrates. Jule, first isolated from the poeciliid fish Xiphophorus maculatus, is 4.8 kb in length, is flanked by two 202-bp LTRs, and encodes Gag (structural core protein) and Pol (protease, reverse transcriptase, RNase H, and integrase, in that order) but no envelope. There are three to four copies of Jule per haploid genome in X. maculatus. Two of them are located in a subtelomeric region of the sex chromosomes, where they are associated with the Xmrk receptor tyrosine kinase genes, of which oncogenic versions are responsible for the formation of hereditary melanoma in Xiphophorus. One almost intact copy of Jule was found in the first intron of the X-chromosomal allele of the Xmrk proto-oncogene, and a second, more corrupted copy is present only 56 nt downstream of the polyadenylation signal of the Xmrk oncogene. Jule-related elements were detected by Southern blot hybridization with less than 10 copies per haploid genome in numerous other poeciliids, as well as in more divergent fishes, including the medakafish Oryzias latipes and the tilapia Oreochromis niloticus. Database searches also identified Jule-related sequences in the zebrafish Danio rerio and in both genome project pufferfishes, Fugu rubripes and Tetraodon nigroviridis. Phylogenetic analysis revealed that Jule is the first member of the Mag family of Ty3/Gypsy retrotransposons described to date in vertebrates. This family includes the silkworm Mag and sea urchin SURL retrotransposons, as well as sequences from the nematode Caenorhabditis elegans. Additional related elements were identified in the genomes of the malaria mosquito Anopheles gambiae and the nematode Ascaris lumbricoides. Phylogeny of Mag-related elements suggested that the Mag family of retrotransposons is polyphyletic and is constituted of several ancient lineages that diverged before their host genomes more than 600 MYA.

  10. Modeling of Cavitating Flow through Waterjet Propulsors

    DTIC Science & Technology

    2015-02-18

    1-0197 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Jules W. Lindau 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING...RESPONSIBLE PERSON Jules W. Lindau 19b. TELEPONE NUMBER (Include area code) 814-865-8938 ^\\6^G%013 Standard Form 298 (Rev. 8-98) Prescribed by ANSI-Std...239-18 Modeling of Cavitating Flow through Waterjet Propulsors Jules W. Lindau The Pennsylvania State University, Applied Research Laboratory, State

  11. Quantifying the Impact of Tropospheric Ozone on Crops Productivity at regional scale using JULES-crop

    NASA Astrophysics Data System (ADS)

    Leung, F.

    2016-12-01

    Tropospheric ozone (O3) is the third most important anthropogenic greenhouse gas. It is causing significant crop production losses. Currently, O3 concentrations are projected to increase globally, which could have a significant impact on food security. The Joint UK Land Environment Simulator modified to include crops (JULES-crop) is used here to quantify the impacts of tropospheric O3 on crop production at the regional scale until 2100. We evaluate JULES-crop against the Soybean Free-Air-Concentration-Enrichment (SoyFACE) experiment in Illinois, USA. Experimental data from SoyFACE and various literature sources is used to calibrate the parameters for soybean and ozone damage parameters in soybean in JULES-crop. The calibrated model is then applied for a transient factorial set of JULES-crop simulations over 1960-2005. Simulated yield changes are attributed to individual environmental drivers, CO2, O3 and climate change, across regions and for different crops. A mixed scenario of RCP 2.6 and RCP 8.5 climatology and ozone are simulated to explore the implication of policy. The overall findings are that regions with high ozone concentration such as China and India suffer the most from ozone damage, soybean is more sensitive to O3 than other crops. JULES-crop predicts CO2 fertilisation would increase the productivity of vegetation. This effect, however, is masked by the negative impacts of tropospheric O3. Using data from FAO and JULES-crop estimated that ozone damage cost around 55.4 Billion USD per year on soybean. Irrigation improves the simulation of rice only, and it increases the relative ozone damage because drought can reduce the ozone from entering the plant stomata. RCP 8.5 scenario results in a high yield for all crops mainly due to the CO2 fertilisation effect. Mixed climate scenarios simulations suggest that RCP 8.5 CO2 concentration and RCP 2.6 O3 concentration result in the highest yield. Further works such as more crop FACE-O3 experiments and more Crop functional types in JULES are necessary. The model will thus contribute to a complete understanding of the impacts of climate change on food production. JULES will be later coupled with the Unified Model to quantify the impact of tropospheric O3 on crops productivity including feedbacks between the land-surface, atmospheric chemistry and climate change.

  12. Advancement and Application of Multi-Phase CFD Modeling to High Speed Supercavitating Flows

    DTIC Science & Technology

    2013-08-13

    5a. CONTRACT NUMBER 5b. GRANT NUMBER N00014-09-1-0042 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Jules W. Lindau and Michael P. Kinzel 5d. PROJECT...REPORT U b. ABSTRACT U c. THIS PAGE U 17. LIMITATION OF ABSTRACT U 18. NUMBER OF PAGES 29 19a. NAME OF RESPONSIBLE PERSON Jules W. Lindau...Application of Multi-Phase CFD Modeling to High Speed Supercavitating Flows Michael P. Kinzel Jules W. Lindau Penn State University Applied Research

  13. The Joint UK Land Environment Simulator (JULES), model description - Part 2: Carbon fluxes and vegetation dynamics

    NASA Astrophysics Data System (ADS)

    Clark, D. B.; Mercado, L. M.; Sitch, S.; Jones, C. D.; Gedney, N.; Best, M. J.; Pryor, M.; Rooney, G. G.; Essery, R. L. H.; Blyth, E.; Boucher, O.; Harding, R. J.; Huntingford, C.; Cox, P. M.

    2011-09-01

    The Joint UK Land Environment Simulator (JULES) is a process-based model that simulates the fluxes of carbon, water, energy and momentum between the land surface and the atmosphere. Many studies have demonstrated the important role of the land surface in the functioning of the Earth System. Different versions of JULES have been employed to quantify the effects on the land carbon sink of climate change, increasing atmospheric carbon dioxide concentrations, changing atmospheric aerosols and tropospheric ozone, and the response of methane emissions from wetlands to climate change. This paper describes the consolidation of these advances in the modelling of carbon fluxes and stores, in both the vegetation and soil, in version 2.2 of JULES. Features include a multi-layer canopy scheme for light interception, including a sunfleck penetration scheme, a coupled scheme of leaf photosynthesis and stomatal conductance, representation of the effects of ozone on leaf physiology, and a description of methane emissions from wetlands. JULES represents the carbon allocation, growth and population dynamics of five plant functional types. The turnover of carbon from living plant tissues is fed into a 4-pool soil carbon model. The process-based descriptions of key ecological processes and trace gas fluxes in JULES mean that this community model is well-suited for use in carbon cycle, climate change and impacts studies, either in standalone mode or as the land component of a coupled Earth system model.

  14. Warm-Season Flows on Slope in Horowitz Crater Nine-Image Sequence

    NASA Image and Video Library

    2011-08-04

    This image comes from observations of Horowitz crater by the HiRISE camera onboard NASA Mars Reconnaissance Orbiter. The features that extend down the slope during warm seasons are called recurring slope lineae.

  15. Horowitz checks flight notes at the commander's station

    NASA Image and Video Library

    2001-08-10

    STS105-E-5002 (10 August 2001) --- Astronaut Scott J. Horowitz, STS-105 commander, checks flight notes at the commander's station on the flight deck of the Earth-orbiting Space Shuttle Discovery. The image was recorded with a digital still camera.

  16. Horowitz checks flight notes at the commander's station

    NASA Image and Video Library

    2001-08-10

    STS105-E-5001 (10 August 2001) --- Astronaut Scott J. Horowitz, STS-105 commander, checks flight notes at the commander's station on the flight deck of the Earth-orbiting Space Shuttle Discovery. The image was recorded with a digital still camera.

  17. Innovations for In-Pile Measurements in the Framework of the CEA-SCK•CEN Joint Instrumentation Laboratory

    NASA Astrophysics Data System (ADS)

    Villard, Jean-Francois; Schyns, Marc

    2010-12-01

    Optimizing the life cycle of nuclear systems under safety constraints requires high-performance experimental programs to reduce uncertainties on margins and limits. In addition to improvement in modeling and simulation, innovation in instrumentation is crucial for analytical and integral experiments conducted in research reactors. The quality of nuclear research programs relies obviously on an excellent knowledge of their experimental environment which constantly calls for better online determination of neutron and gamma flux. But the combination of continuously increasing scientific requirements and new experimental domains -brought for example by Generation IV programsnecessitates also major innovations for in-pile measurements of temperature, dimensions, pressure or chemical analysis in innovative mediums. At the same time, the recent arising of a European platform around the building of the Jules Horowitz Reactor offers new opportunities for research institutes and organizations to pool their resources in order to face these technical challenges. In this situation, CEA (French Nuclear Energy Commission) and SCK'CEN (Belgian Nuclear Research Centre) have combined their efforts and now share common developments through a Joint Instrumentation Laboratory. Significant progresses have thus been obtained recently in the field of in-pile measurements, on one hand by improvement of existing measurement methods, and on the other hand by introduction in research reactors of original measurement techniques. This paper highlights the state-of-the-art and the main requirements regarding in-pile measurements, particularly for the needs of current and future irradiation programs performed in material testing reactors. Some of the main on-going developments performed in the framework of the Joint Instrumentation Laboratory are also described, such as: - a unique fast neutron flux measurement system using fission chambers with 242Pu deposit and a specific online data processing, - an optical system designed to perform in-pile dimensional measurements of material samples under irradiation, - an acoustical instrumentation allowing the online characterization of fission gas release in Pressurized Water Reactor fuel rods. For each example, the obtained results, expected impacts and development status are detailed.

  18. Issues in Big-Data Database Systems

    DTIC Science & Technology

    2014-06-01

    Post, 18 August 2013. Berman, Jules K. (2013). Principles of Big Data: Preparing, Sharing, and Analyzing Complex Information. New York: Elsevier... Jules K. (2013). Principles of Big Data: Preparing, Sharing, and Analyzing Complex Information. New York: Elsevier. 261pp. Characterization of

  19. "Board of Curators of the University of Missouri v. Horowitz": Student Due Process Rights and Judicial Deference to Academic Dismissals.

    ERIC Educational Resources Information Center

    Brock, Allan D.

    1979-01-01

    The "Horowitz" case is consistent with the general reluctance of courts to sustain constitutional challenges to decisions by educators in academic matters. Available from Willamette University College of Law, Salem, OR 97301. (Author)

  20. Thermodynamic aspects of information transfer in complex dynamical systems

    NASA Astrophysics Data System (ADS)

    Cafaro, Carlo; Ali, Sean Alan; Giffin, Adom

    2016-02-01

    From the Horowitz-Esposito stochastic thermodynamical description of information flows in dynamical systems [J. M. Horowitz and M. Esposito, Phys. Rev. X 4, 031015 (2014), 10.1103/PhysRevX.4.031015], it is known that while the second law of thermodynamics is satisfied by a joint system, the entropic balance for the subsystems is adjusted by a term related to the mutual information exchange rate between the two subsystems. In this article, we present a quantitative discussion of the conceptual link between the Horowitz-Esposito analysis and the Liang-Kleeman work on information transfer between dynamical system components [X. S. Liang and R. Kleeman, Phys. Rev. Lett. 95, 244101 (2005), 10.1103/PhysRevLett.95.244101]. In particular, the entropic balance arguments employed in the two approaches are compared. Notwithstanding all differences between the two formalisms, our work strengthens the Liang-Kleeman heuristic balance reasoning by showing its formal analogy with the recent Horowitz-Esposito thermodynamic balance arguments.

  1. Geophysicists: Jules Aarons (1921-2008)

    NASA Astrophysics Data System (ADS)

    Mendillo, Michael

    2009-03-01

    Jules Aarons, a pioneer in satellite radio beacon studies of the ionosphere, died peacefully at his home in Newton, Mass., on 21 November 2008 at age 87. When considering his college career, Jules was drawn toward the humanities, an interest subsequently redirected by his parents toward science as a more suitable way to earn a living, and then by the U.S. Army Air Corps toward radio technology as a more suitable way to win World War II. Both goals were readily accomplished, perhaps instilling in Jules the value of proper mentorship, that central aspect of his life that so dominates our recollections of him. After the war, and with a variety of options before him, Jules decided upon civilian government service at the U.S. Air Force's then new field station in Cambridge, Mass. This was the founding entity of the Air Force Cambridge Research Laboratory (AFCRL), and those five famous letters became identified with his professional career (1946-1981). With Russia's launch of Sputnik in 1957, the era of space-based radio communications began, and with it the need to understand the sporadic crackling and fading (``scintillations'') of radio transmissions from satellites to ground receiving stations. Wartime efforts also gave birth to radio astronomy. Jules fostered ways to fund the synergies he saw between the radio technologies of space science and those of ground-based radio astronomy in ways almost unimaginable today (and certainly not by former U.S. senator Mike Mansfield, whose 1973 amendment to the U.S. Congress's defense appropriations bill limited the financing of basic research by military agencies only to projects that have direct military consequences; the amendment resulted in a permanent restructuring of how U.S. Department of Defense (DOD) agencies fund university-based research).

  2. Kelsey A. W. Horowitz | NREL

    Science.gov Websites

    Technologies, processes, business approaches, and policies to drive clean energy technology cost reductions and Muhammad Alam. 2017. An analysis of the Cost and Performance of Photovoltaic Systems as a Function Wiley & Sons, Ltd. doi:10.1002/pip.2755 Horowitz, Kelsey A.W. and Michael Woodhouse. "Cost and

  3. Horowitz adheres a STS-105 mission logo to a Node 1 panel

    NASA Image and Video Library

    2001-08-01

    ISS003-E-6189 (August 2001) --- Astronaut Scott J. Horowitz, STS-105 mission commander, adds the STS-105 crew patch to the growing collection of those representing Shuttle crews who have worked on the International Space Station (ISS). This image was taken with a digital still camera.

  4. Horowitz and Barry inside Soyuz spacecraft with Sokol suits

    NASA Image and Video Library

    2001-08-20

    STS105-E-5389 (20 August 2001) --- Scott J. Horowitz (center), STS-105 commander, and Daniel T. Barry, mission specialist, pose among the stowage bags and Sokol suits in the Soyuz spacecraft which is docked to the International Space Station (ISS). This image was taken with a digital still camera.

  5. Horowitz at the aft flight deck during rendezvous ops

    NASA Image and Video Library

    2001-08-12

    STS105-E-5061 (12 August 2001) --- Astronaut Scott J. Horowitz, STS-105 mission commander, looks over a checklist on the aft flight deck of the Space Shuttle Discovery during rendezvous operations with the International Space Station (ISS). The image was recorded with a digital still camera.

  6. Incorporating JULES into NASA's Land Information System (LIS) and Investigations of Land-Atmosphere Coupling

    NASA Technical Reports Server (NTRS)

    Santanello, Joseph

    2011-01-01

    NASA's Land Information System (LIS; lis.gsfc.nasa.gov) is a flexible land surface modeling and data assimilation framework developed over the past decade with the goal of integrating satellite- and ground-based observational data products and advanced land surface modeling techniques to produce optimal fields of land surface states and fluxes. LIS features a high performance and flexible design, and operates on an ensemble of land surface models for extension over user-specified regional or global domains. The extensible interfaces of LIS allow the incorporation of new domains, land surface models (LSMs), land surface parameters, meteorological inputs, data assimilation and optimization algorithms. In addition, LIS has also been demonstrated for parameter estimation and uncertainty estimation, and has been coupled to the Weather Research and Forecasting (WRF) mesoscale model. A visiting fellowship is currently underway to implement JULES into LIS and to undertake some fundamental science on the feedbacks between the land surface and the atmosphere. An overview of the LIS system, features, and sample results will be presented in an effort to engage the community in the potential advantages of LIS-JULES for a range of applications. Ongoing efforts to develop a framework for diagnosing land-atmosphere coupling will also be presented using the suite of LSM and PBL schemes available in LIS and WRF along with observations from the U. S .. Southern Great Plains. This methodology provides a potential pathway to study factors controlling local land-atmosphere coupling (LoCo) using the LIS-WRF system, which will serve as a testbed for future experiments to evaluate coupling diagnostics within the community.

  7. Juling Crater

    NASA Image and Video Library

    2018-06-05

    This image of Juling and Kupalo Craters was obtained by NASA's Dawn spacecraft on May 25, 2018 from an altitude of about 855 miles (1380 kilometers). The center coordinates of this image are about 38 degrees south in latitude and 173 degrees east in longitude. https://photojournal.jpl.nasa.gov/catalog/PIA22470

  8. Lifting Off of the Digital Plateau with Military Decision Support Systems

    DTIC Science & Technology

    2013-05-23

    concerns were echoed in Germany, where Colonel (later General) Jules von Verdy stripped away the complex rules and tables, and relied on the military...Review (March-April 2001): 38-45. 55 Swift, Eben. Orders. Fort Leavenworth: Staff College Press, 1905. Verdy, Jules von. Free Kreigspiel. Edited by

  9. Juling Crater's Floor

    NASA Image and Video Library

    2018-03-14

    This view from NASA's Dawn mission shows the floor of Ceres' Juling Crater. The crater floor shows evidence of the flow of ice and rock, similar to rock glaciers in Earth's polar regions. Dawn acquired the picture with its framing camera on Aug. 30, 2016. https://photojournal.jpl.nasa.gov/catalog/PIA21920

  10. Finite Element Analysis and Experimentation of an Icosahedron Frame under Compression

    DTIC Science & Technology

    2015-09-17

    Century of Flight. Jules Henri Gi_ard (1825 - 1882), January 2014. URL [Online]. Available: http://www.century-of-flight.net/Aviation%20history/to...20reality/ Jules % 20Henri%20Gi_ard.htm. [4] Compression test. [Online]. Available: http://en.wikipedia.org/wiki/Compressive_strength [5

  11. Systems 2020

    DTIC Science & Technology

    2012-03-22

    USC Team Members: SERC Research Council Dr. Abhi Deshmukh , Purdue Dr. Michael Griffin. U. Alabama-Huntsville Dr. Barry Horowitz, U. Virginia Dr...Areas ................................................. 34 3.2.1 Affordability, Agility, and Resilience (Barry Boehm and Abhi Deshmukh , Leads...statement was reinterpreted to involve the SERC Research Council (Drs. Deshmukh , Griffin, Horowitz, Rouse, and Wade, with Dr. Boehm as chair) in defining

  12. Horowitz and Sturckow with the ISS logbook in Node 1

    NASA Image and Video Library

    2001-08-01

    ISS003-E-6185 (August 2001) --- Astronauts Frederick W. (Rick) Sturckow (left), STS-105 pilot, and Scott J. Horowitz, mission commander, add their names to the ship’s log of visitors in the Unity node on the International Space Station (ISS). This image was taken with a digital still camera.

  13. Forrester is presented with a medal by Voss and Horowitz in Node 1

    NASA Image and Video Library

    2001-08-01

    ISS003-E-6191 (August 2001) --- Astronauts James S. Voss (left), Expedition Two flight engineer, Patrick G. Forrester, STS-105 mission specialist, and Scott J. Horowitz, mission commander, are photographed in the Unity node on the International Space Station (ISS). This image was taken with a digital still camera.

  14. Forrester is presented with a medal by Voss and Horowitz in Node 1

    NASA Image and Video Library

    2001-08-01

    ISS003-E-6193 (August 2001) --- Astronauts James S. Voss (left), Expedition Two flight engineer, Patrick G. Forrester, STS-105 mission specialist, and Scott J. Horowitz, mission commander, exchange greetings in the Unity node on the International Space Station (ISS). This image was taken with a digital still camera.

  15. Would Jule Charney Have Cracked the Madden-Julian Oscillation?

    NASA Astrophysics Data System (ADS)

    Emanuel, K.

    2017-12-01

    Jule Charney's approach to science often involved looking at old problems in new ways. One example was his theory of baroclinic instability, which followed on the heels of long-standing efforts to explain well-observed cyclones and anticyclones. He mastered the art of boiling a physical phenomenon down to its essence, throwing away many things that others had considered important while expressing that which he retained in the simplest possible way. To help honor Charney's legacy, I will review the history of another well-observed phenomenon - the Madden Julian Oscillation (MJO) - together with the many largely unsuccessful efforts to explain it, culminating finally in a satisfying explanation that Jule would have loved.

  16. ComTrustO: Composite Trust-Based Ontology Framework for Information and Decision Fusion

    DTIC Science & Technology

    2015-07-06

    based definitions and models of trust have been studied in various domains [39]. Jules et al. [27] propose an intelligent and dynamic Service Level...Cognitive and affective trust in service relationships. Journal of Business Research, 58:500–507, 2005. [27] O. Jules , A. Hafid, and M.A. Serhani

  17. On the Verbal Art of a Modern Painter: The Work of Jules Kirschenbaum.

    ERIC Educational Resources Information Center

    Gandelman, Claude

    1989-01-01

    Notes that Jules Kirschenbaum, a modern American artist whose work integrates inscriptions and figurative painting, studied under the masters of abstract expressionism yet exhibited with protagonists of "magic realism." States that his later work took a wholly different turn--it became art about meaning and the "meaning of…

  18. Horowitz is hugged by Usachev in the ISS Service Module/Zvezda

    NASA Image and Video Library

    2001-08-12

    STS-105-E-5121 (12 August 2001) --- Yury V. Usachev of Rosaviakosmos, Expedition Two mission commander, and Scott J. Horowitz, STS-105 commander, embrace in the Zvezda Service Module with open arms during the initial ingress into the International Space Station (ISS) for the STS-105 mission. This image was taken with a digital still camera.

  19. STS-105 MS Barry and Commander Horowitz pose in the U.S. Laboratory

    NASA Image and Video Library

    2001-08-17

    ISS003-E-5185 (17 August 2001) --- Astronauts Daniel T. Barry (left), STS-105 mission specialist, and Scott J. Horowitz, commander, pause from their daily activities to pose for this photo in the Destiny laboratory while visiting the International Space Station (ISS). This image was taken with a digital still camera.

  20. Millions and Billions of Channels

    NASA Astrophysics Data System (ADS)

    Leigh, Darren; Horowitz, Paul

    The history of the Harvard SETI group is inextricably linked with the history of Paul Horowitz. Horowitz became enamored with SETI as a student at Harvard, reading Ed Purcell's paper "Radio Astronomy and Communication Through Space" (Purcell, 1960), discussing with his roommates a class that Carl Sagan was teaching there using a draft of Shklovskii and Sagan's "Intelligent Life in the Universe" (Shklovskii and Sagan, 1966) as a text, and finally attending a Loeb Lecture series at Harvard by Frank Drake (Drake, 1969). The series was officially about pulsars but Drake did manage to slip in one inspiring talk about SETI. Horowitz says that "It was this lecture that launched me into this field; it was a revelation that you could go beyond idle speculation - you could actually calculate stuff."

  1. JHR Project: a future Material Testing Reactor working as an International user Facility: The key-role of instrumentation in support to the development of modern experimental capacity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bignan, G.; Gonnier, C.; Lyoussi, A.

    2015-07-01

    Research and development on fuel and material behaviour under irradiation is a key issue for sustainable nuclear energy in order to meet specific needs by keeping the best level of safety. These needs mainly deal with a constant improvement of performances and safety in order to optimize the fuel cycle and hence to reach nuclear energy sustainable objectives. A sustainable nuclear energy requires a high level of performances in order to meet specific needs such as: - Pursuing improvement of the performances and safety of present and coming water cooled reactor technologies. This will require a continuous R and Dmore » support following a long-term trend driven by the plant life management, safety demonstration, flexibility and economics improvement. Experimental irradiations of structure materials are necessary to anticipate these material behaviours and will contribute to their optimisation. - Upgrading continuously nuclear fuel technology in present and future nuclear power plants to achieve better performances and to optimise the fuel cycle keeping the best level of safety. Fuel evolution for generation II, III and III+ is a key stake requiring developments, qualification tests and safety experiments to ensure the competitiveness and safety: experimental tests exploring the full range of fuel behaviour determine fuel stability limits and safety margins, as a major input for the fuel reliability analysis. To perform such accurate and innovative progress and developments, specific and ad hoc instrumentation, irradiation devices, measurement methods are necessary to be set up inside or beside the material testing reactor (MTR) core. These experiments require beforehand in situ and on line sophisticated measurements to accurately determine different key parameters such as thermal and fast neutron fluxes and nuclear heating in order to precisely monitor and control the conducted assays. The new Material Testing Reactor JHR (Jules Horowitz Reactor) currently under construction at CEA Cadarache research centre in the south of France will represent a major Research Infrastructure for scientific studies regarding material and fuel behavior under irradiation. It will also be devoted to medical isotopes production. Hence JHR will offer a real opportunity to perform R and D programs regarding needs above and hence will crucially contribute to the selection, optimization and qualification of these innovative materials and fuels. The JHR reactor objectives, principles and main characteristics associated to specific experimental devices associated to measurement techniques and methodology, their performances, their limitations and field of applications will be presented and discussed. (authors)« less

  2. Discover Paris with Jules Verne.

    ERIC Educational Resources Information Center

    Hudson, Anna E.

    1996-01-01

    An approach to teaching French literature that uses a Jules Verne novel published only in 1994 is described. The novel, "Paris in the 20th Century," is the basis for a series of written and oral exercises about the novel, its social and cultural context, the author, and the actual changes that have occurred in Paris in comparison with…

  3. Horowitz shows off the hand-crafted thermal insulation he made for the HST

    NASA Image and Video Library

    1997-02-18

    S82-E-5686 (17 Feb. 1997) --- Astronaut Scott J. Horowitz, STS-82 pilot, shows the hand-crafted thermal insulation blanket to support the goal of the final Extravehicular Activity (EVA) to cover tears in Hubble Space Telescope's (HST) insulation caused by changes in thermal conditions. This view was taken with an Electronic Still Camera (ESC).

  4. Audio App Brings a Better Nights Sleep

    NASA Technical Reports Server (NTRS)

    2015-01-01

    Neuroscientist Seth Horowitz was part of a NASA-funded team at State University of New York Stony Brook demonstrating that low-amplitude vestibular stimulation could induce sleep. After recognizing the same stimulation could be applied through sound, Horowitz founded Sleep Genius, located in Park City, Utah, and released a mobile app of the same name that helps people to get a more restful sleep.

  5. Constellation Program Update

    NASA Image and Video Library

    2006-06-04

    Scott J. Horowitz, NASA Associate Administrator for Exploration Systems, center, announces to NASA employees and members of the media the responsibilities of the NASA centers associated with the Constellation Program for robotic and human Moon and Mars exploration on Wednesday, June 5, 2006, at NASA Headquarters in Washington. Horowitz was joined by NASA Administrator Michael Griffin, left, and Jeff Hanley, Constellation Program Manager. Photo Credit: (NASA/Bill Ingalls)

  6. Juling Crater

    NASA Image and Video Library

    2018-03-14

    This view from NASA's Dawn mission shows where ice has been detected in the northern wall of Ceres' Juling Crater, which is in almost permanent shadow. Dawn acquired the picture with its framing camera on Aug. 30, 2016, and it was processed with the help of NASA Ames Stereo Pipeline (ASP), to estimate the slope of the cliff. https://photojournal.jpl.nasa.gov/catalog/PIA21918

  7. The Role of History in Teaching Science--A Case Study: The Popularization of Science in Nineteenth-Century France.

    ERIC Educational Resources Information Center

    Hendrick, Robert M.

    1992-01-01

    Examines one of the key methods used to stimulate bourgeois interest in science in France during the Second Empire and early Third Republic; the campaign to create a popularized science. Concentrates on the "science writings" of Jules Michelet and Jules Verne, both of whom were immensely successful in creating a favorable climate of…

  8. Pilot Scott Horowitz fashions cord loop fasteners for a contingency spacewalk

    NASA Image and Video Library

    1997-02-16

    S82-E-5597 (17 Feb. 1997) --- Astronaut Scott J. Horowitz at pilot's station works with a hand-fashioned loop fastener device to be used in support of the additional STS-82 Extravehicular Activity (EVA) to service Hubble Space Telescope (HST). Note sketches overhead which were sent by ground controllers to guide the pilot's engineering of the task. This view was taken with an Electronic Still Camera (ESC).

  9. Delayed Gamma Measurements in Different Nuclear Research Reactors Bringing Out the Importance of the Delayed Contribution in Gamma Flux Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fourmentel, D.; Radulovic, V.; Barbot, L.

    Neutron and gamma flux levels are key parameters in nuclear research reactors. In Material Testing Reactors, such as the future Jules Horowitz Reactor, under construction at the French Alternative Energies and Atomic Energy Commission (CEA Cadarache, France), the expected gamma flux levels are very high (nuclear heating is of the order of 20 W/g at 100 MWth). As gamma rays deposit their energy in the reactor structures and structural materials it is important to take them into account when designing irradiation devices. There are only a few sensors which allow measurements of the nuclear heating ; a recent development atmore » the CEA Cadarache allows measurements of the gamma flux using a miniature ionization chamber (MIC). The measured MIC response is often compared with calculation using modern Monte Carlo (MC) neutron and photon transport codes, such as TRIPOLI-4 and MCNP6. In these calculations only the production of prompt gamma rays in the reactor is usually modelled thus neglecting the delayed gamma rays. Hence calculations and measurements are usually in better accordance for the neutron flux than for the gamma flux. In this paper we study the contribution of delayed gamma rays to the total MIC signal in order to estimate the systematic error in gamma flux MC calculations. In order to experimentally determine the delayed gamma flux contributions to the MIC response, we performed gamma flux measurements with CEA developed MIC at three different research reactors: the OSIRIS reactor (MTR - 70 MWth at CEA Saclay, France), the TRIGA MARK II reactor (TRIGA - 250 kWth at the Jozef Stefan Institute, Slovenia) and the MARIA reactor (MTR - 30 MWth at the National Center for Nuclear Research, Poland). In order to experimentally assess the delayed gamma flux contribution to the total gamma flux, several reactor shut down (scram) experiments were performed specifically for the purpose of the measurements. Results show that on average about 30 % of the MIC signal is due to the delayed gamma rays. In this paper we describe experiments in each of the three reactors and how we estimate delayed gamma rays with MIC measurements. The results and perspectives are discussed. (authors)« less

  10. Constraining the JULES land-surface model for different land-use types using citizen-science generated hydrological data

    NASA Astrophysics Data System (ADS)

    Chou, H. K.; Ochoa-Tocachi, B. F.; Buytaert, W.

    2017-12-01

    Community land surface models such as JULES are increasingly used for hydrological assessment because of their state-of-the-art representation of land-surface processes. However, a major weakness of JULES and other land surface models is the limited number of land surface parameterizations that is available. Therefore, this study explores the use of data from a network of catchments under homogeneous land-use to generate parameter "libraries" to extent the land surface parameterizations of JULES. The network (called iMHEA) is part of a grassroots initiative to characterise the hydrological response of different Andean ecosystems, and collects data on streamflow, precipitation, and several weather variables at a high temporal resolution. The tropical Andes are a useful case study because of the complexity of meteorological and geographical conditions combined with extremely heterogeneous land-use that result in a wide range of hydrological responses. We then calibrated JULES for each land-use represented in the iMHEA dataset. For the individual land-use types, the results show improved simulations of streamflow when using the calibrated parameters with respect to default values. In particular, the partitioning between surface and subsurface flows can be improved. But also, on a regional scale, hydrological modelling was greatly benefitted from constraining parameters using such distributed citizen-science generated streamflow data. This study demonstrates the modelling and prediction on regional hydrology by integrating citizen science and land surface model. In the context of hydrological study, the limitation of data scarcity could be solved indeed by using this framework. Improved predictions of such impacts could be leveraged by catchment managers to guide watershed interventions, to evaluate their effectiveness, and to minimize risks.

  11. Culbertson and Horowitz prepare to open the ODS hatch into the ISS

    NASA Image and Video Library

    2001-08-12

    STS105-E-5089 (12 August 2001) --- Scott J. Horowitz (left), STS-105 commander, and Frank L. Culbertson, Jr., Expedition Three mission commander, prepare to open Space Shuttle Discovery's airlock hatch leading to the International Space Station (ISS). Culbertson and cosmonauts Mikhail Tyurin and Vladimir N. Dezhurov will be replacing the Expedition Two crew as residents aboard the ISS. This image was taken with a digital still camera.

  12. Horowitz and Culbertson prepare to open the ODS hatch into the ISS

    NASA Image and Video Library

    2001-08-12

    STS105-E-5092 (12 August 2001) --- Scott J. Horowitz (bottom), STS-105 commander, and Frank L. Culbertson, Jr., Expedition Three mission commander, prepare to open Space Shuttle Discovery's airlock hatch leading to the International Space Station (ISS). Culbertson and cosmonauts Mikhail Tyurin and Vladimir N. Dezhurov will be replacing the Expedition Two crew as residents aboard the ISS. This image was taken with a digital still camera.

  13. A Walk through Graduate Education: Selected Papers and Speeches of Jules B. LaPidus, President of the Council of Graduate Schools, 1984-2000.

    ERIC Educational Resources Information Center

    Hamblin, Jane A., Ed.

    This book was created to honor Jules B. LaPidus, retiring president of the Council of Graduate Education, and to preserve his writings and speeches. The papers and speeches of Part 1 show how the author addressed the topical issues of graduate education, moving from observation to direction on research, funding, and preparation of faculty. Part 2…

  14. Post-Traumatic Stress Disorder and the Casual Link to Crime: A Looming National Tragedy

    DTIC Science & Technology

    2008-04-01

    Edited by Mardi J. Horowitz. New York and London: New York University Press. 1999, 19. Sigmund Freud . Introduction to Psycho-Analysis and the...placed. Horowitz, Freud , and Smith all discuss the draconian measures used by nearly all parties to the conflict in returning cowards and malingerers...stop the torturous process- -even return to the fighting.40 Binneveld and Freud both note that this type of “punishment” oriented treatment fell into

  15. STS-82 Suit-up for Post Insertion Training in Crew Compartment Trainer 2

    NASA Image and Video Library

    1996-10-30

    S96-18553 (30 Oct. 1996) --- Astronaut Scott J. Horowitz, pilot, gets help with his launch and entry suit prior to a training session in JSC's systems integration facility. Wearing training versions of the partial pressure launch and entry escape suit, Horowitz and his crewmates went on to simulate an emergency ejection, using the escape pole system on the mid deck, as well as other phases of their scheduled February mission.

  16. Somalia Background Information for Operation Restore Hope 1992-93

    DTIC Science & Technology

    1992-12-01

    consolidation of Ethiopia under Emperor Menelik in the last decade of the 19th century also led to confrontations in the Ogaden. These external interventions...Horowitz, ibid., pp. 523-524. 𔃽 Horowitz, ibid., p. 552. - Ii - One of the most unfortunate aspects of Siad’s rule was the introduction of his family to...daughters of Lijj Iyasu, the chosen successor son to King Menelik , who was demonstrating interest in converting to Islam, causing alarm throughout the

  17. Quantifying uncertainties of permafrost carbon-climate feedbacks

    NASA Astrophysics Data System (ADS)

    Burke, Eleanor J.; Ekici, Altug; Huang, Ye; Chadburn, Sarah E.; Huntingford, Chris; Ciais, Philippe; Friedlingstein, Pierre; Peng, Shushi; Krinner, Gerhard

    2017-06-01

    The land surface models JULES (Joint UK Land Environment Simulator, two versions) and ORCHIDEE-MICT (Organizing Carbon and Hydrology in Dynamic Ecosystems), each with a revised representation of permafrost carbon, were coupled to the Integrated Model Of Global Effects of climatic aNomalies (IMOGEN) intermediate-complexity climate and ocean carbon uptake model. IMOGEN calculates atmospheric carbon dioxide (CO2) and local monthly surface climate for a given emission scenario with the land-atmosphere CO2 flux exchange from either JULES or ORCHIDEE-MICT. These simulations include feedbacks associated with permafrost carbon changes in a warming world. Both IMOGEN-JULES and IMOGEN-ORCHIDEE-MICT were forced by historical and three alternative future-CO2-emission scenarios. Those simulations were performed for different climate sensitivities and regional climate change patterns based on 22 different Earth system models (ESMs) used for CMIP3 (phase 3 of the Coupled Model Intercomparison Project), allowing us to explore climate uncertainties in the context of permafrost carbon-climate feedbacks. Three future emission scenarios consistent with three representative concentration pathways were used: RCP2.6, RCP4.5 and RCP8.5. Paired simulations with and without frozen carbon processes were required to quantify the impact of the permafrost carbon feedback on climate change. The additional warming from the permafrost carbon feedback is between 0.2 and 12 % of the change in the global mean temperature (ΔT) by the year 2100 and 0.5 and 17 % of ΔT by 2300, with these ranges reflecting differences in land surface models, climate models and emissions pathway. As a percentage of ΔT, the permafrost carbon feedback has a greater impact on the low-emissions scenario (RCP2.6) than on the higher-emissions scenarios, suggesting that permafrost carbon should be taken into account when evaluating scenarios of heavy mitigation and stabilization. Structural differences between the land surface models (particularly the representation of the soil carbon decomposition) are found to be a larger source of uncertainties than differences in the climate response. Inertia in the permafrost carbon system means that the permafrost carbon response depends on the temporal trajectory of warming as well as the absolute amount of warming. We propose a new policy-relevant metric - the frozen carbon residence time (FCRt) in years - that can be derived from these complex land surface models and used to quantify the permafrost carbon response given any pathway of global temperature change.

  18. Fermions tunneling from the Horowitz-Strominger Dilaton black hole

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Zeng, Xiaoxiong

    2009-06-01

    Based on the work of Kerner and Mann, fermions tunneling from the Horowitz-Strominger Dilaton black hole on the membrane is studied. Owing to the coupling among electromagnetic field, matter field and gravity field, the Dirac equation of charged particles is introduced, and according to that, the expected emission temperature is obtained. After the self-gravitational interaction is considered, it is found that the tunneling rate of fermions also satisfies the underlying Unitary theory as the case of scalar particles.

  19. Towards a simple representation of chalk hydrology in land surface modelling

    NASA Astrophysics Data System (ADS)

    Rahman, Mostaquimur; Rosolem, Rafael

    2017-01-01

    Modelling and monitoring of hydrological processes in the unsaturated zone of chalk, a porous medium with fractures, is important to optimize water resource assessment and management practices in the United Kingdom (UK). However, incorporating the processes governing water movement through a chalk unsaturated zone in a numerical model is complicated mainly due to the fractured nature of chalk that creates high-velocity preferential flow paths in the subsurface. In general, flow through a chalk unsaturated zone is simulated using the dual-porosity concept, which often involves calibration of a relatively large number of model parameters, potentially undermining applications to large regions. In this study, a simplified parameterization, namely the Bulk Conductivity (BC) model, is proposed for simulating hydrology in a chalk unsaturated zone. This new parameterization introduces only two additional parameters (namely the macroporosity factor and the soil wetness threshold parameter for fracture flow activation) and uses the saturated hydraulic conductivity from the chalk matrix. The BC model is implemented in the Joint UK Land Environment Simulator (JULES) and applied to a study area encompassing the Kennet catchment in the southern UK. This parameterization is further calibrated at the point scale using soil moisture profile observations. The performance of the calibrated BC model in JULES is assessed and compared against the performance of both the default JULES parameterization and the uncalibrated version of the BC model implemented in JULES. Finally, the model performance at the catchment scale is evaluated against independent data sets (e.g. runoff and latent heat flux). The results demonstrate that the inclusion of the BC model in JULES improves simulated land surface mass and energy fluxes over the chalk-dominated Kennet catchment. Therefore, the simple approach described in this study may be used to incorporate the flow processes through a chalk unsaturated zone in large-scale land surface modelling applications.

  20. Sharp and the Jules Verne Launcher

    NASA Astrophysics Data System (ADS)

    Hunter, John; Cartland, Harry

    1996-03-01

    Lawrence Livermore National Laboratory (LLNL) has built the worlds largest hydrogen gas gun called SHARP, (Super High Altitude Research Project). Originally designed to launch 5 kg to a 450 km altitude, SHARP is configured horizontally at Site 300 in Tracy, California. SHARP is successfully delivering 5 kg scramjets at Mach 9 in aerophysics tests. Some of the results of the scramjet tests are enlightening and are presented insofar as they are relevant to future launches into space. Using a light gas gun to launch payloads into orbit has been analyzed. We look at LEO (Low Earth Orbit), GEO (Geosynchronous Earth Orbit), and LO (Lunar Orbit). We present a conceptual design for a large light gas gun called the Jules Verne Launcher (JVL). The JVL can deliver 3.3 metric tons to a 500 km low earth orbit. We anticipate one launch per day. We present the history of light gas guns, the SHARP design and performance, and the JVL design. Another section is devoted to the vehicle environment and resultant design. Lastly, we present a cost analysis. Our results indicated that the JVL will be able to deliver 1000 metric tons of payload to LEO yearly. The cost will be 5% of the best US rocket delivery cost. This technology will enable the next phase of man's exploration of space.

  1. STS-101: Crew Activity Report CAR/Flight Day 04 Highlights

    NASA Technical Reports Server (NTRS)

    2000-01-01

    On this fourth day of the STS-101 Atlantis mission, the flight crew, Commander James D. Halsell Jr., Pilot Scott J. Horowitz, and Mission Specialists Mary Ellen Weber, Jeffrey N. Williams, James S. Voss, Susan J. Helms, and Yuri Vladimirovich Usachev are seen performing final preparations for the scheduled space walk. Horowitz, Williams and Voss are seen in the mid-deck before the space walk. Horowitz and Weber are also seen in the flight deck, powering-up the robot-arm. During the space walk Voss is seen checking the American Cargo Crane-Orbital Replacement Unit Transfer Device. Voss and Williams are shown securing the American-built crane that was installed on the station last year. They are seen as they install the final parts (boom extension) of a Russian-built crane on the station. Voss and Williams are also shown as they replace a faulty antenna for one of the station's communications systems on the Unity Module, and install several handrails and a camera cable on the station's exterior.

  2. Jule Gregory Charney

    NASA Astrophysics Data System (ADS)

    Smagorinsky, J.

    Twelve years ago, Jule Charney was honored by AGU when he was named the 38th William Bowie medalist for having epitomized the Bowie criteria of outstanding contribution to fundamental geophysics and for unselfish cooperation in research.Fifty years of Bowie awards were celebrated at a Special Session of the AGU Spring Meeting held in Baltimore, Md., in May. It is a very special distinction that AGU has selected Charney, among others, from a truly impressive field of superachievers, as one meriting extended recall of his contributions and his place in history.

  3. [Professor Jules Gavarret (1809-1890) and the application of mathematics and physics to medicine].

    PubMed

    Beyneix, A

    2001-01-01

    Professor Jules Gavarret has undertaken pretigious offices, has accumulated various titles and honours and has left an abundant bibliography about physics and chemistry of life phenomenon. To recount the career of one of the academics who were benefited the traditional medicine of the progress achieved in physical and mathematical sciences give us the opportunity of recalling one of the great Parisian personalities of 19th Century who had not been appreciated for too long.

  4. Raphaël Blanchard, parasitology, and the positioning of medical entomology in Paris.

    PubMed

    Osborne, M A

    2008-12-01

    The histories of medical entomology and parasitology are entwined. Raphaël Blanchard (1857-1919), Chair of Medical Natural History and Parasitology at the Faculty of Medicine in Paris, organized the teaching of medical entomology and civilian colonial medicine. He also founded and edited the journal Archives de Parasitologie and started the Institute de Médecine Coloniale where he mentored many foreign students and researchers. Additionally, Blanchard is important for his scientific internationalism and medical historical work on the cultural location of parasitology and for training the future professors of parasitology Jules Guiart, Emile Brumpt, and Charles Joyeux.

  5. STS-105 Commander Horowitz tries on gas mask at Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- At Launch Pad 39A, STS-105 Commander Scott Horowitz puts on a gas mask as part of Terminal Countdown Demonstration Test activities, which also include emergency egress, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch is scheduled no earlier than Aug. 9, 2001.

  6. Horowitz and Dezhurov float into Node 1/Unity from U.S. Laboratory/Destiny

    NASA Image and Video Library

    2001-08-12

    STS105-E-5109 (12 August 2001) --- Scott J. Horowitz (left), STS-105 commander, and cosmonaut Vladimir N. Dezhurov, Expedition Three flight engineer, move into Unity Node 1 during the initial ingress into the International Space Station (ISS) during the STS-105 mission. Dezhurov, accompanied by cosmonaut Mikhail Tyurin and astronaut Frank L. Culbertson, Jr., will be replacing astronauts Susan J. Helms and James S. Voss and cosmonaut Yury V. Usachev as the temporary residents of the ISS. This image was taken with a digital still camera.

  7. Performance of the JULES land surface model for UK Biogenic VOC emissions

    NASA Astrophysics Data System (ADS)

    Hayman, Garry; Comyn-Platt, Edward; Vieno, Massimo; Langford, Ben

    2017-04-01

    Emissions of biogenic non-methane volatile organic compounds (NMVOCs) are important for air quality and tropospheric composition. Through their contribution to the production of tropospheric ozone and secondary organic aerosol (SOA), biogenic VOCs indirectly contribute to climate forcing and climate feedbacks [1]. Biogenic VOCs encompass a wide range of compounds and are produced by plants for growth, development, reproduction, defence and communication [2]. There are both biological and physico-chemical controls on emissions [3]. Only a few of the many biogenic VOCs are of wider interest and only two or three (isoprene and the monoterpenes, α- and β-pinene) are represented in chemical transport models. We use the Joint UK Land Environment Simulator (JULES), the UK community land surface model, to estimate biogenic VOC emission fluxes. JULES is a process-based model that describes the water, energy and carbon balances and includes temperature, moisture and carbon stores [4, 5]. JULES currently provides emission fluxes of the 4 largest groups of biogenic VOCs: isoprene, terpenes, methanol and acetone. The JULES isoprene scheme uses gross primary productivity (GPP), leaf internal carbon and the leaf temperature as a proxy for the electron requirement for isoprene synthesis [6]. In this study, we compare JULES biogenic VOC emission estimates of isoprene and terepenes with (a) flux measurements made at selected sites in the UK and Europe and (b) gridded estimates for the UK from the EMEP/EMEP4UK atmospheric chemical transport model [7, 8], using site-specific or EMEP4UK driving meteorological data, respectively. We compare the UK-scale emission estimates with literature estimates. We generally find good agreement in the comparisons but the estimates are sensitive to the choice of the base or reference emission potentials. References (1) Unger, 2014: Geophys. Res. Lett., 41, 8563, doi:10.1002/2014GL061616; (2) Laothawornkitkul et al., 2009: New Phytol., 183, 27, doi:10.1111/j.1469-8137.2009.02859.x; (3) Grote and Niinemets, 2008: Plant Biol., 10, 8, doi:10.1055/s-2007-964975; (4) Best et al., 2011: Geosci. Model Dev., 4, 677, doi:10.5194/gmd-4-677-2011; (5) Clark et al., 2011: Geosci. Model Dev., 4, 701, doi:10.5194/gmd-4-701-2011; (6) Pacifico et al., 2011: Atmos. Chem. Phys., 11, 4371, doi:10.5194/acp-11-4371-2011; [7] Simpson et al., 2012: Atmos. Chem. Phys., 12, 7825, doi: 10.5194/acp-12-7825-2012; [8] Vieno et al., 2016: Atmos. Chem. Phys., 16, 265, doi: 10.5194/acp-16-265-2016.

  8. Improved representation of plant functional types and physiology in the Joint UK Land Environment Simulator (JULES v4.2) using plant trait information

    NASA Astrophysics Data System (ADS)

    Harper, Anna B.; Cox, Peter M.; Friedlingstein, Pierre; Wiltshire, Andy J.; Jones, Chris D.; Sitch, Stephen; Mercado, Lina M.; Groenendijk, Margriet; Robertson, Eddy; Kattge, Jens; Bönisch, Gerhard; Atkin, Owen K.; Bahn, Michael; Cornelissen, Johannes; Niinemets, Ülo; Onipchenko, Vladimir; Peñuelas, Josep; Poorter, Lourens; Reich, Peter B.; Soudzilovskaia, Nadjeda A.; van Bodegom, Peter

    2016-07-01

    Dynamic global vegetation models are used to predict the response of vegetation to climate change. They are essential for planning ecosystem management, understanding carbon cycle-climate feedbacks, and evaluating the potential impacts of climate change on global ecosystems. JULES (the Joint UK Land Environment Simulator) represents terrestrial processes in the UK Hadley Centre family of models and in the first generation UK Earth System Model. Previously, JULES represented five plant functional types (PFTs): broadleaf trees, needle-leaf trees, C3 and C4 grasses, and shrubs. This study addresses three developments in JULES. First, trees and shrubs were split into deciduous and evergreen PFTs to better represent the range of leaf life spans and metabolic capacities that exists in nature. Second, we distinguished between temperate and tropical broadleaf evergreen trees. These first two changes result in a new set of nine PFTs: tropical and temperate broadleaf evergreen trees, broadleaf deciduous trees, needle-leaf evergreen and deciduous trees, C3 and C4 grasses, and evergreen and deciduous shrubs. Third, using data from the TRY database, we updated the relationship between leaf nitrogen and the maximum rate of carboxylation of Rubisco (Vcmax), and updated the leaf turnover and growth rates to include a trade-off between leaf life span and leaf mass per unit area.Overall, the simulation of gross and net primary productivity (GPP and NPP, respectively) is improved with the nine PFTs when compared to FLUXNET sites, a global GPP data set based on FLUXNET, and MODIS NPP. Compared to the standard five PFTs, the new nine PFTs simulate a higher GPP and NPP, with the exception of C3 grasses in cold environments and C4 grasses that were previously over-productive. On a biome scale, GPP is improved for all eight biomes evaluated and NPP is improved for most biomes - the exceptions being the tropical forests, savannahs, and extratropical mixed forests where simulated NPP is too high. With the new PFTs, the global present-day GPP and NPP are 128 and 62 Pg C year-1, respectively. We conclude that the inclusion of trait-based data and the evergreen/deciduous distinction has substantially improved productivity fluxes in JULES, in particular the representation of GPP. These developments increase the realism of JULES, enabling higher confidence in simulations of vegetation dynamics and carbon storage.

  9. Needs of Accurate Prompt and Delayed γ-spectrum and Multiplicity for Nuclear Reactor Designs

    NASA Astrophysics Data System (ADS)

    Rimpault, G.; Bernard, D.; Blanchet, D.; Vaglio-Gaudard, C.; Ravaux, S.; Santamarina, A.

    The local energy photon deposit must be accounted accurately for Gen-IV fast reactors, advanced light-water nuclear reactors (Gen-III+) and the new experimental Jules Horowitz Reactor (JHR). The γ energy accounts for about 10% of the total energy released in the core of a thermal or fast reactor. The γ-energy release is much greater in the core of the reactor than in its structural sub-assemblies (such as reflector, control rod followers, dummy sub-assemblies). However, because of the propagation of γ from the core regions to the neighboring fuel-free assemblies, the contribution of γ energy to the total heating can be dominant. For reasons related to their performance, power reactors require a 7.5% (1σ) uncertainty for the energy deposition in non-fuelled zones. For the JHR material-testing reactor, a 5% (1 s) uncertainty is required in experimental positions. In order to verify the adequacy of the calculation of γ-heating, TLD and γ-fission chambers were used to derive the experimental heating values. Experimental programs were and are still conducted in different Cadarache facilities such as MASURCA (for SFR), MINERVE and EOLE (for JHR and Gen-III+ reactors). The comparison of calculated and measured γ-heating values shows an underestimation in all experimental programs indicating that for the most γ-production data from 239Pu in current nuclear-data libraries is highly suspicious.The first evaluation priority is for prompt γ-multiplicity for U and Pu fission but similar values for otheractinides such as Pu and U are also required. The nuclear data library JEFF3.1.1 contains most of the photon production data. However, there are some nuclei for which there are missing or erroneous data which need to be completed or modified. A review of the data available shows a lack of measurements for conducting serious evaluation efforts. New measurements are needed to guide new evaluation efforts which benefit from consolidated modeling techniques.

  10. KSC-06pd1409

    NASA Image and Video Library

    2006-06-30

    KENNEDY SPACE CENTER, FLA. - At a press conference at NASA's Kennedy Space Center, NASA officials announced the names of the next-generation of rockets for future space exploration. Seated (left to right) are Dolores Beasley, with NASA Public Affairs; Scott Horowitz, NASA associate administrator of the Exploration Systems Mission Directorate; Jeff Hanley, manager of the Constellation Program at Johnson Space Center; and Steve Cook, manager of the Exploration Launch Office at Marshall Space Flight Center. The crew launch vehicle will be called Ares I, and the cargo launch vehicle will be known as Ares V. The name Ares is a pseudonym for Mars and appropriate for NASA's exploration mission. Photo credit: NASA/George Shelton

  11. KSC-06pd1410

    NASA Image and Video Library

    2006-06-30

    KENNEDY SPACE CENTER, FLA. - At a press conference in at NASA's Kennedy Space Center, NASA officials announced the names of the next-generation of rockets for future space exploration. Seated at the dais are (left to right) Scott Horowitz, NASA associate administrator of the Exploration Systems Mission Directorate; Jeff Hanley, manager of the Constellation Program at Johnson Space Center; and Steve Cook, manager of the Exploration Launch Office at Marshall Space Flight Center. The crew launch vehicle will be called Ares I, and the cargo launch vehicle will be known as Ares V. The name Ares is a pseudonym for Mars and appropriate for NASA's exploration mission. Photo credit: NASA/George Shelton

  12. Revising Hydrology of a Land Surface Model

    NASA Astrophysics Data System (ADS)

    Le Vine, Nataliya; Butler, Adrian; McIntyre, Neil; Jackson, Christopher

    2015-04-01

    Land Surface Models (LSMs) are key elements in guiding adaptation to the changing water cycle and the starting points to develop a global hyper-resolution model of the terrestrial water, energy and biogeochemical cycles. However, before this potential is realised, there are some fundamental limitations of LSMs related to how meaningfully hydrological fluxes and stores are represented. An important limitation is the simplistic or non-existent representation of the deep subsurface in LSMs; and another is the lack of connection of LSM parameterisations to relevant hydrological information. In this context, the paper uses a case study of the JULES (Joint UK Land Environmental Simulator) LSM applied to the Kennet region in Southern England. The paper explores the assumptions behind JULES hydrology, adapts the model structure and optimises the coupling with the ZOOMQ3D regional groundwater model. The analysis illustrates how three types of information can be used to improve the model's hydrology: a) observations, b) regionalized information, and c) information from an independent physics-based model. It is found that: 1) coupling to the groundwater model allows realistic simulation of streamflows; 2) a simple dynamic lower boundary improves upon JULES' stationary unit gradient condition; 3) a 1D vertical flow in the unsaturated zone is sufficient; however there is benefit in introducing a simple dual soil moisture retention curve; 4) regionalized information can be used to describe soil spatial heterogeneity. It is concluded that relatively simple refinements to the hydrology of JULES and its parameterisation method can provide a substantial step forward in realising its potential as a high-resolution multi-purpose model.

  13. Volkov prepares for the undocking of the ESA Jules Verne ATV during Expedition 17

    NASA Image and Video Library

    2008-09-05

    ISS017-E-015230 (5 Sept. 2008) --- Russian Federal Space Agency cosmonaut Sergei Volkov, Expedition 17 commander, makes preparations in the International Space Station's Zvezda Service Module for the undocking of the European Space Agency's (ESA) "Jules Verne" Automated Transfer Vehicle (ATV). The ATV departed from the aft port of Zvezda at 4:29 p.m. (CDT) on Sept. 5, 2008 and was placed in a parking orbit for three weeks, scheduled to be deorbited on Sept. 29 when lighting conditions are correct for an ESA imagery experiment of reentry.

  14. Entanglement Entropy of the Six-Dimensional Horowitz-Strominger Black Hole

    NASA Astrophysics Data System (ADS)

    Li, Huai-Fan; Zhang, Sheng-Li; Wu, Yue-Qin; Ren, Zhao

    By using the entanglement entropy method, the statistical entropy of the Bose and Fermi fields in a thin film is calculated and the Bekenstein-Hawking entropy of six-dimensional Horowitz-Strominger black hole is obtained. Here, the Bose and Fermi fields are entangled with the quantum states in six-dimensional Horowitz-Strominger black hole and the fields are outside of the horizon. The divergence of brick-wall model is avoided without any cutoff by the new equation of state density obtained with the generalized uncertainty principle. The calculation implies that the high density quantum states near the event horizon are strongly correlated with the quantum states in black hole. The black hole entropy is a quantum effect. It is an intrinsic characteristic of space-time. The ultraviolet cutoff in the brick-wall model is unreasonable. The generalized uncertainty principle should be considered in the high energy quantum field near the event horizon. Using the quantum statistical method, we directly calculate the partition function of the Bose and Fermi fields under the background of the six-dimensional black hole. The difficulty in solving the wave equations of various particles is overcome.

  15. Volkov and Kononenko prepare for the undocking of the ESA Jules Verne ATV during Expedition 17

    NASA Image and Video Library

    2008-09-05

    ISS017-E-015234 (5 Sept. 2008) --- Russian Federal Space Agency cosmonauts Sergei Volkov (left) and Oleg Kononenko, Expedition 17 commander and flight engineer, respectively, make preparations in the International Space Station's Zvezda Service Module for the undocking of the European Space Agency's (ESA) "Jules Verne" Automated Transfer Vehicle (ATV). The ATV departed from the aft port of Zvezda at 4:29 p.m. (CDT) on Sept. 5, 2008 and was placed in a parking orbit for three weeks, scheduled to be deorbited on Sept. 29 when lighting conditions are correct for an ESA imagery experiment of reentry.

  16. Volkov and Kononenko prepare for the undocking of the ESA Jules Verne ATV during Expedition 17

    NASA Image and Video Library

    2008-09-05

    ISS017-E-015229 (5 Sept. 2008) --- Russian Federal Space Agency cosmonauts Sergei Volkov (left) and Oleg Kononenko, Expedition 17 commander and flight engineer, respectively, make preparations in the International Space Station's Zvezda Service Module for the undocking of the European Space Agency's (ESA) "Jules Verne" Automated Transfer Vehicle (ATV). The ATV departed from the aft port of Zvezda at 4:29 p.m. (CDT) on Sept. 5, 2008 and was placed in a parking orbit for three weeks, scheduled to be deorbited on Sept. 29 when lighting conditions are correct for an ESA imagery experiment of reentry.

  17. Juling and Kupalo Craters

    NASA Image and Video Library

    2017-08-17

    This region on Ceres, located in the vicinity of Toharu Crater, presents two small craters: Juling at top (12 miles, 20 kilometers in diameter) and Kupalo at bottom (16 miles, 26 kilometers in diameter). Both craters are relatively young, as indicated by their sharp rims. These features are located at about the same latitude (about 38 degrees south) as Tawals Crater and show similar crater shapes and rugged terrain. These features may reflect the presence of ice below the surface. Subtle bright features can be distinguished in places. These likely were excavated by small impacts and landslides along the slopes of the crater rims. This suggests that a different type of material, likely rich in salts, is present in the shallow subsurface. Juling is named after the Sakai/Orang Asli spirit of the crops from Malaysia, and Kupalo gets its name from the Russian god of vegetation and of the harvest. NASA's Dawn spacecraft acquired this picture on August 24, 2016. The image was taken during Dawn's extended mission, from its low altitude mapping orbit at about 240 miles (385 kilometers) above the surface. The center coordinates of this image are 38 degrees south latitude, 165 degrees east longitude. https://photojournal.jpl.nasa.gov/catalog/PIA21753

  18. Jules Cotard (1840-1889): his life and the unique syndrome which bears his name.

    PubMed

    Pearn, J; Gardner-Thorpe, C

    2002-05-14

    Dr. Jules Cotard (1840-1889) was a Parisian neurologist who first described the délire des négations. Cotard's syndrome or Cotard's delusion comprises any one of a series of delusions ranging from the fixed and unshakable belief that one has lost organs, blood, or body parts to believing that one has lost one's soul or is dead. In its most profound form, the delusion takes the form of a professed belief that one does not exist. Encountered primarily in psychoses such as schizophrenia and bipolar disorder, Cotard's syndrome has also been described in organic lesions of the nondominant temporoparietal cortex as well as in migraine. Cotard's delusion is the only self-certifiable syndrome of delusional psychosis. Jules Cotard, a Parisian neurologist and psychiatrist and former military surgeon, was one of the first to induce cerebral atrophy by the experimental embolization of cerebral arteries in animals and a pioneer in studies of the clinicopathologic correlates of cerebral atrophy secondary to perinatal and postnatal pathologic changes. He was the first to record that unilateral cerebral atrophy in infancy does not necessarily lead to aphasia and was also the pioneer of studies of altered conscious states in diabetic hyperglycemia.

  19. Expedition Three Commander Culbertson and STS-105 Commander Horowitz in the White Room

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- Expedition Three Commander Frank Culbertson (left) and STS-105 Commander Scott Horowitz (right), in the White Room at Launch Pad 39A, have placed the mission sign at the entrance into Space Shuttle Discovery. Both crews are at KSC to take part in Terminal Countdown Demonstration Test activities, which include emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001.

  20. Expedition Three Commander Culbertson and STS-105 Commander Horowitz in the White Room

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- Expedition Three Commander Frank Culbertson (left) and STS-105 Commander Scott Horowitz (right), in the White Room at Launch Pad 39A, hold the sign for their mission. Both crews are at KSC to take part in Terminal Countdown Demonstration Test activities, which include emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001.

  1. Empirical validation of the Horowitz Multiple Systemic Infectious Disease Syndrome Questionnaire for suspected Lyme disease.

    PubMed

    Citera, Maryalice; Freeman, Phyllis R; Horowitz, Richard I

    2017-01-01

    Lyme disease is spreading worldwide, with multiple Borrelia species causing a broad range of clinical symptoms that mimic other illnesses. A validated Lyme disease screening questionnaire would be clinically useful for both providers and patients. Three studies evaluated such a screening tool, namely the Horowitz Multiple Systemic Infectious Disease Syndrome (MSIDS) Questionnaire. The purpose was to see if the questionnaire could accurately distinguish between Lyme patients and healthy individuals. Study 1 examined the construct validity of the scale examining its factor structure and reliability of the questionnaire among 537 individuals being treated for Lyme disease. Study 2 involved an online sample of 999 participants, who self-identified as either healthy (N=217) or suffering from Lyme now (N=782) who completed the Horowitz MSIDS Questionnaire (HMQ) along with an outdoor activity survey. We examined convergent validity among components of the scale and evaluated discriminant validity with the Big Five personality characteristics. The third study compared a sample of 236 patients with confirmed Lyme disease with an online sample of 568 healthy individuals. Factor analysis results identified six underlying latent dimensions; four of these overlapped with critical symptoms identified by Horowitz - neuropathy, cognitive dysfunction, musculoskeletal pain, and fatigue. The HMQ showed acceptable levels of internal reliability using Cronbach's coefficient alpha and exhibited evidence of convergent and divergent validity. Components of the HMQ correlated more highly with each other than with unrelated traits. The results consistently demonstrated that the HMQ accurately differentiated those with Lyme disease from healthy individuals. Three migratory pain survey items (persistent muscular pain, arthritic pain, and nerve pain/paresthesias) robustly identified individuals with verified Lyme disease. The results support the use of the HMQ as a valid, efficient, and low-cost screening tool for medical practitioners to decide if additional testing is warranted to distinguish between Lyme disease and other illnesses.

  2. Empirical validation of the Horowitz Multiple Systemic Infectious Disease Syndrome Questionnaire for suspected Lyme disease

    PubMed Central

    Citera, Maryalice; Freeman, Phyllis R; Horowitz, Richard I

    2017-01-01

    Purpose Lyme disease is spreading worldwide, with multiple Borrelia species causing a broad range of clinical symptoms that mimic other illnesses. A validated Lyme disease screening questionnaire would be clinically useful for both providers and patients. Three studies evaluated such a screening tool, namely the Horowitz Multiple Systemic Infectious Disease Syndrome (MSIDS) Questionnaire. The purpose was to see if the questionnaire could accurately distinguish between Lyme patients and healthy individuals. Methods Study 1 examined the construct validity of the scale examining its factor structure and reliability of the questionnaire among 537 individuals being treated for Lyme disease. Study 2 involved an online sample of 999 participants, who self-identified as either healthy (N=217) or suffering from Lyme now (N=782) who completed the Horowitz MSIDS Questionnaire (HMQ) along with an outdoor activity survey. We examined convergent validity among components of the scale and evaluated discriminant validity with the Big Five personality characteristics. The third study compared a sample of 236 patients with confirmed Lyme disease with an online sample of 568 healthy individuals. Results Factor analysis results identified six underlying latent dimensions; four of these overlapped with critical symptoms identified by Horowitz – neuropathy, cognitive dysfunction, musculoskeletal pain, and fatigue. The HMQ showed acceptable levels of internal reliability using Cronbach’s coefficient alpha and exhibited evidence of convergent and divergent validity. Components of the HMQ correlated more highly with each other than with unrelated traits. Discussion The results consistently demonstrated that the HMQ accurately differentiated those with Lyme disease from healthy individuals. Three migratory pain survey items (persistent muscular pain, arthritic pain, and nerve pain/paresthesias) robustly identified individuals with verified Lyme disease. The results support the use of the HMQ as a valid, efficient, and low-cost screening tool for medical practitioners to decide if additional testing is warranted to distinguish between Lyme disease and other illnesses. PMID:28919803

  3. Coupled C, N and P Controls on Photosynthesis, Primary Production and Decomposition across a Land Use Intensification Gradient and Implications for Land Atmosphere C Exchange

    NASA Astrophysics Data System (ADS)

    Reinsch, S.; Emmett, B.; Cosby, J.; Mercado, L. M.; Smart, S.; Glanville, H.; Alberola, M. B.; Clark, D.; Robinson, E.; Jones, D.

    2015-12-01

    The coupling of C, N and P cycles has rarely been studied through the air- land-water continuum. This is essential if we are to enhance land-atmosphere models to account for N and P limitations. It is also important for developing integrated catchment management solutions to deliver improved water quality combined with a wide range of other ecosystem functions and services.We present results from a project which is part of the interdisciplinary pan-UK NERC Macronutrient Cycles Programme (macronutrient-cycles.ouce.ox.ac.uk/). Our aim is to quantify how coupled C, N & P cycles change across a land use intensification gradient from arable to grass, woodland and bog ecosystems and identify the implications for land-atmosphere C exchange. We focus on three key processes; photosynthesis, annual net primary productivity (ANPP) and decomposition and explore their consequences for biodiversity. Other aspects of the project track delivery to, and transformations within, the freshwater and coastal systems. When we explore relationships between C, N and P, results indicate all habitat types fall on a single land use intensification gradient. Stoichiometry suggests plant productivity is primarily N limited. P limitation occurs rarely but at all levels of intensification. Soil priming shows our soils are primarily C limited and, surprisingly, soil acidity provides one of the most powerful single predictors of processes and ecosystem services perhaps as it is a good integrator of many soil properties. Incorporating this knowledge into the UK land-atmosphere model JULES will be used to improve ANPP projections. These will then be used as inputs into a plant species model called MULTIMOVE to enable future scenarios of climate change, land use and air pollution on habitat suitability for > 1400 plant species to be explored. The enhanced Jules model will ensure both N and P limitations on C fluxes from above and below-ground are incorporated into future UK scenario applications.

  4. Coupled C, N and P controls on photosynthesis, primary production and decomposition across a land use intensification gradient and implications for land atmosphere C exchange

    NASA Astrophysics Data System (ADS)

    Reinsch, Sabine; Glanville, Helen; Smart, Simon; Jones, Davey; Mercado, Lina; Blanes-Alberola, Mamen; Cosby, Jack; Emmett, Bridget

    2016-04-01

    The coupling of C, N and P cycles has rarely been studied through the air- land-water continuum. This is essential if we are to enhance land-atmosphere models to account for N and P limitations. It is also important for developing integrated catchment management solutions to deliver improved water quality combined with a wide range of other ecosystem functions and services. We present results from a project which is part of the interdisciplinary pan-UK NERC Macronutrient Cycles Programme (macronutrient-cycles.ouce.ox.ac.uk/). Our aim is to quantify how coupled C, N & P cycles change across a land use intensification gradient from arable to grass, woodland and bog ecosystems and identify the implications for land-atmosphere C exchange. We focus on three key processes; photosynthesis, annual net primary productivity and decomposition and explore their consequences for biodiversity. Other aspects of the project track delivery to, and transformations within, the freshwater and coastal systems. When we explore relationships between C, N and P, results indicate all habitat types fall on a single land use intensification gradient. Stoichiometry suggests plant productivity is primarily N limited. P limitation occurs rarely but at all levels of intensification. Soil priming shows our soils are primarily C limited and, surprisingly, soil acidity provides one of the most powerful single predictors of processes and ecosystem services perhaps as it is a good integrator of many soil properties. Incorporating this knowledge into the UK land-atmosphere model JULES will improve aNPP projections. These are then being used as inputs into a plant species model called MULTIMOVE to enable future scenarios of climate change, land use and air pollution on habitat suitability for > 1400 plant species to be explored. The enhanced Jules model will ensure both N and P limitations on C fluxes from above and below-ground are incorporated into future UK scenario applications.

  5. Juling Crater

    NASA Image and Video Library

    2017-08-25

    This high-resolution image of Juling Crater on Ceres reveals, in exquisite detail, features on the rims and crater floor. The crater is about 1.6 miles (2.5 kilometers) deep and the small mountain, seen left of the center of the crater, is about 0.6 miles (1 kilometers) high. The many features indicative of the flow of material suggest the subsurface is rich in ice. The geological structure of this region also generally suggests that ice is involved. The origin of the small depression seen at the top of the mountain is not fully understood but might have formed as a consequence of a landslide, visible on the northeastern flank. Dawn took this image during its extended mission on August 25, 2016, from its low-altitude mapping orbit at a distance of about 240 miles (385 kilometers) above the surface. The center coordinates of this image are 36 degrees south latitude, 167 degrees east longitude. Juling is named after the Sakai/Orang Asli spirit of the crops from Malaysia. NASA's Dawn spacecraft acquired this picture on August 24, 2016. The image was taken during Dawn's extended mission, from its low altitude mapping orbit at about 240 miles (385 kilometers) above the surface. The center coordinates of this image are 38 degrees south latitude, 165 degrees east longitude. https://photojournal.jpl.nasa.gov/catalog/PIA21754

  6. STS-101 Pilot Horowitz arrives at KSC for 4th launch attempt

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-101 Pilot Scott J. Horowitz climbs out of a T-38 jet aircraft after arriving at KSC's Shuttle Landing Facility. He and the rest of the crew will begin preparing for the launch on May 18. The mission will take the crew of seven to the International Space Station, delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight for the Space Station. STS-101 is targeted for liftoff at 6:38 a.m. EDT from Launch Pad 39A.

  7. Jules Verne Voyager, Jr: An Interactive Map Tool for Teaching Plate Tectonics

    NASA Astrophysics Data System (ADS)

    Hamburger, M. W.; Meertens, C. M.

    2010-12-01

    We present an interactive, web-based map utility that can make new geological and geophysical results accessible to a large number and variety of users. The tool provides a user-friendly interface that allows users to access a variety of maps, satellite images, and geophysical data at a range of spatial scales. The map tool, dubbed 'Jules Verne Voyager, Jr.', allows users to interactively create maps of a variety of study areas around the world. The utility was developed in collaboration with the UNAVCO Consortium for study of global-scale tectonic processes. Users can choose from a variety of base maps (including "Face of the Earth" and "Earth at Night" satellite imagery mosaics, global topography, geoid, sea-floor age, strain rate and seismic hazard maps, and others), add a number of geographic and geophysical overlays (coastlines, political boundaries, rivers and lakes, earthquake and volcano locations, stress axes, etc.), and then superimpose both observed and model velocity vectors representing a compilation of 2933 GPS geodetic measurements from around the world. A remarkable characteristic of the geodetic compilation is that users can select from some 21 plates' frames of reference, allowing a visual representation of both 'absolute' plate motion (in a no-net rotation reference frame) and relative motion along all of the world's plate boundaries. The tool allows users to zoom among at least three map scales. The map tool can be viewed at http://jules.unavco.org/VoyagerJr/Earth. A more detailed version of the map utility, developed in conjunction with the EarthScope initiative, focuses on North America geodynamics, and provides more detailed geophysical and geographic information for the United States, Canada, and Mexico. The ‘EarthScope Voyager’ can be accessed at http://jules.unavco.org/VoyagerJr/EarthScope. Because the system uses pre-constructed gif images and overlays, the system can rapidly create and display maps to a large number of users simultaneously and does not require any special software installation on users' systems. In addition, a javascript-based educational interface, dubbed "Exploring our Dynamic Planet", incorporates the map tool, explanatory material, background scientific material, and curricular activities that encourage users to explore Earth processes using the Jules Verne Voyager, Jr. tool. Exploring our Dynamic Planet can be viewed at http://www.dpc.ucar.edu/VoyagerJr/. Because of its flexibility, the map utilities can be used for hands-on exercises exploring plate interaction in a range of academic settings, from high school science classes to entry-level undergraduate to graduate-level tectonics courses.

  8. On the relative role of fire and rainfall in determining vegetation patterns in tropical savannas: a simulation study

    NASA Astrophysics Data System (ADS)

    Spessa, Allan; Fisher, Rosie

    2010-05-01

    Tropical savannas cover 18% of the world's land surface and are amongst the most productive terrestrial systems in the world. They comprise 15% of the total terrestrial carbon stock, with an estimated mean net primary productivity (NPP) of 7.2 tCha-1yr-1 or two thirds of NPP in tropical forests. Tropical savannas are the most frequently burnt biome, with fire return intervals in highly productive areas being typically 1-2 years. Fires shape vegetation species composition, tree to grass ratios and nutrient redistribution, as well as the biosphere-atmosphere exchange of trace gases, momentum and radiative energy. Tropical savannas are a major source of emissions, contributing 38 % of total annual CO2 from biomass burning, 30% CO, 19 % CH4 and 59 % NOx. Climatically, they occur in regions subject to a strongly seasonal ‘wet-dry' regime, usually under monsoonal control from the movement of the inter-tropical convergence zone. In general, rainfall during the prior wet season(s) determines the amount of grass fuel available for burning while the length of the dry season influences fuel moisture content. Rainfall in tropical savannas exhibits high inter-annual variability, and under future climate change, is projected to change significantly in much of Africa, South America and northern Australia. Process-based simulation models of fire-vegetation dynamics and feedbacks are critical for determining the impacts of wildfires under projected future climate change on i) ecosystem structure and function, and ii) emissions of trace gases and aerosols from biomass burning. A new mechanistic global fire model SPITFIRE (SPread and InTensity of FIRE) has been designed to overcome many of the limitations in existing fire models set within Dynamic Global Vegetation Models (DGVMs). SPITFIRE has been applied in coupled mode globally and southern Africa, both as part of the LPJ DGVM. It has also been driven with MODIS burnt area data applied to sub-Saharan Africa, while coupled to the LPJ-GUESS vegetation model. Recently, SPIFTIRE has been coupled to the Ecosystem Demography (ED) model, which simulates global vegetation dynamics as part of the new land surface scheme JULES (Joint UK Environment Simulator) within the QUEST Earth System Model (http://www.quest-esm.ac.uk/). This study forms part of on-going work to further improve and test the ability of JULES to accurately simulate the terrestrial carbon cycle and land-atmosphere exchanges under different climates. Using the JULES (ED-SPITFIRE) model driven by observed climate (1901-2002), and focusing on large-scale rainfall gradients in the tropical savannas of west Africa, the Northern Territory (Australia) and central-southern Brazil, this study assesses: i) simulated versus observed vegetation dynamics and distributions, and ii) the relative importance of fire versus rainfall in determining vegetation patterns. A sensitivity analysis approach was used.

  9. Early Rockets

    NASA Image and Video Library

    2004-04-15

    Jules Verne published his first science fiction novel in 1865 called "From the Earth to the Moon." As shown here in an illustration, passengers in Verne's space ship enjoy their first taste of weightlessness.

  10. KSC-2015-1019

    NASA Image and Video Library

    2015-01-06

    CAPE CANAVERAL, Fla. -- NASA Administrator Charlie Bolden looked over the agency's Orion spacecraft this morning for the first time since it returned to Kennedy Space Center following the successful Orion flight test on Dec. 5. At right is Jules Schneider, Lockheed Martin manager. At left is Kennedy Space Center Associate Director Kelvin Manning. Bearing the marks of a spacecraft that has returned to Earth through a searing plunge into the atmosphere, Orion is perched on a pedestal inside the Launch Abort System Facility at Kennedy where it is going through post-mission processing. Although the spacecraft Bolden looked over did not fly with a crew aboard during the flight test, Orion is designed to carry astronauts into deep space in the future setting NASA and the nation firmly on the journey to Mars. Photo credit: NASA/Cory Huston

  11. KSC-2012-4598

    NASA Image and Video Library

    2012-08-23

    CAPE CANAVERAL, Fla. - In the Operations and Checkout Building at the Kennedy Space Center in Florida, NASA Administrator Charles Bolden, center, addresses news media in front of the Orion EFT-1 spacecraft. Also participating are Jules Schneider, senior manager of Project Engineering for the Lockheed Martin Orion Program at Kennedy, left, and Scott Wilson, NASA's manager of Production Operations for the Orion Program. Bolden took a few dozen members of the news media on a tour of the space agency's Kennedy Space Center and adjacent Cape Canaveral Air Force Station on Aug. 23, 2012 to show the progress being made for future government and commercial space endeavors that will begin from Florida's Space Coast. For more information, visit: http://www.nasa.gov/centers/kennedy/news/kennedy-bolden-tour.html Photo credit: NASA/Kim Shiflett

  12. ARC-1979-AC79-9114-70

    NASA Image and Video Library

    1979-08-02

    Jules Bergman, ABC Science Newscaster stands by a NASA Ames press room for the continuing information being returned by the Pioneer spacecraft during it's encounter with the planet Saturn and it's rings.

  13. Genetics Home Reference: Angelman syndrome

    MedlinePlus

    ... Gentile JK, Tan WH, Horowitz LT, Bacino CA, Skinner SA, Barbieri-Welge R, Bauer-Carlin A, Beaudet ... article on PubMed Central Tan WH, Bacino CA, Skinner SA, Anselm I, Barbieri-Welge R, Bauer-Carlin ...

  14. Vulva cancer

    MedlinePlus

    Jhingran A, Russell AH, Seiden MV, et al. Cancers of the cervix, vulva, and vagina. In: Niederhuber JE, Armitage JO, Doroshow ... Updated January 31, 2018. Accessed March 9, 2018. Russell AH, Horowitz NS. Cancers of the vulva and ...

  15. Testing the Joint UK Land Environment Simulator (JULES) for flood forecasting

    NASA Astrophysics Data System (ADS)

    Batelis, Stamatios-Christos; Rosolem, Rafael; Han, Dawei; Rahman, Mostaquimur

    2017-04-01

    Land Surface Models (LSM) are based on physics principles and simulate the exchanges of energy, water and biogeochemical cycles between the land surface and lower atmosphere. Such models are typically applied for climate studies or effects of land use changes but as the resolution of LSMs and supporting observations are continuously increasing, its representation of hydrological processes need to be addressed adequately. For example, changes in climate and land use can alter the hydrology of a region, for instance, by altering its flooding regime. LSMs can be a powerful tool because of their ability to spatially represent a region with much finer resolution. However, despite such advantages, its performance has not been extensively assessed for flood forecasting simply because its representation of typical hydrological processes, such as overland flow and river routing, are still either ignored or roughly represented. In this study, we initially test the Joint UK Land Environment Simulator (JULES) as a flood forecast tool focusing on its river routing scheme. In particular, JULES river routing parameterization is based on the Rapid Flow Model (RFM) which relies on six prescribed parameters (two surface and two subsurface wave celerities, and two return flow fractions). Although this routing scheme is simple, the prescription of its six default parameters is still too generalized. Our aim is to understand the importance of each RFM parameter in a series of JULES simulations at a number of catchments in the UK for the 2006-2015 period. This is carried out, for instance, by making a number of assumptions of parameter behaviour (e.g., spatially uniform versus varying and/or temporally constant or time-varying parameters within each catchment). Hourly rainfall radar in combination with the CHESS (Climate, Hydrological and Ecological research Support System) meteorological daily data both at 1 km2 resolution are used. The evaluation of the model is based on hourly runoff data provided by the National River Flood Archive using a number of model performance metrics. We use a calibrated conceptually-based lumped model, more typically applied in flood studies, as a benchmark for our analysis.

  16. Dawn LAMO Image 55

    NASA Image and Video Library

    2016-03-29

    This view from NASA Dawn spacecraft shows an area in mid-southern latitudes on Ceres. The crater named Juling 12 miles, 20 kilometers wide is seen at lower right. Bright material is visible along its upper walls.

  17. A novel representation of chalk hydrology in a land surface model

    NASA Astrophysics Data System (ADS)

    Rahman, Mostaquimur; Rosolem, Rafael

    2016-04-01

    Unconfined chalk aquifers contain a significant portion of water in the United Kingdom. In order to optimize the assessment and management practices of water resources in the region, modelling and monitoring of soil moisture in the unsaturated zone of the chalk aquifers are of utmost importance. However, efficient simulation of soil moisture in such aquifers is difficult mainly due to the fractured nature of chalk, which creates high-velocity preferential flow paths in the unsaturated zone. In this study, the Joint UK Land Environment Simulator (JULES) is applied on a study area encompassing the Kennet catchment in Southern England. The fluxes and states of the coupled water and energy cycles are simulated for 10 consecutive years (2001-2010). We hypothesize that explicit representation for the soil-chalk layers and the inclusion of preferential flow in the fractured chalk aquifers improves the reproduction of the hydrological processes in JULES. In order to test this hypothesis, we propose a new parametrization for preferential flow in JULES. This parametrization explicitly describes the flow of water in soil matrices and preferential flow paths using a simplified approach which can be beneficial for large-scale hydrometeorological applications. We also define the overlaying soil properties obtained from the Harmonized World Soil Database (HWSD) in the model. Our simulation results are compared across spatial scales with measured soil moisture and river discharge, indicating the importance of accounting for the physical properties of the medium while simulating hydrological processes in the chalk aquifers.

  18. Dawn LAMO Image 32

    NASA Image and Video Library

    2016-02-23

    This image of Ceres from NASA Dawn spacecraft was taken at an oblique viewing angle relative to the surface. The crater to the upper right is named Juling which displays prominent spurs of compacted material along its walls.

  19. Measurement-induced-nonlocality for Dirac particles in Garfinkle-Horowitz-Strominger dilation space-time

    NASA Astrophysics Data System (ADS)

    He, Juan; Xu, Shuai; Ye, Liu

    2016-05-01

    We investigate the quantum correlation via measurement-induced-nonlocality (MIN) for Dirac particles in Garfinkle-Horowitz-Strominger (GHS) dilation space-time. It is shown that the physical accessible quantum correlation decreases as the dilation parameter increases monotonically. Unlike the case of scalar fields, the physical accessible correlation is not zero when the Hawking temperature is infinite owing to the Pauli exclusion principle and the differences between Fermi-Dirac and Bose-Einstein statistics. Meanwhile, the boundary of MIN related to Bell-violation is derived, which indicates that MIN is more general than quantum nonlocality captured by the violation of Bell-inequality. As a by-product, a tenable quantitative relation about MIN redistribution is obtained whatever the dilation parameter is. In addition, it is worth emphasizing that the underlying reason why the physical accessible correlation and mutual information decrease is that they are redistributed to the physical inaccessible regions.

  20. In Jules Verne's Footsteps: Seismology in the source

    NASA Astrophysics Data System (ADS)

    Ellsworth, Bill; Ito, Hisao; Malin, Peter; Abercrombie, Rachel

    When Professor Otto Lidenbrock led his little band to the center of the Earth in Jules Verne's 1864 classic novel, the intrepid adventurers needed little more than practical 19th century clothes to provide them with comfort and protection. How different the science of earthquakes would be if conditions in the Earth were really so friendly to the would-be observer. Even the operation of seismic sensors at the relatively modest depth of 2-3 km, roughly the depth of the shallowest crustal earthquakes, requires careful precautions against the effects of unstable materials, temperature, pressure, and water for successful long-term observations to be made. Indeed, the handful of successful deep borehole experiments that have been conducted to date have depended on simple sensors with limited bandwidth and dynamic range, and have yielded data that were not ideally suited to investigating the details of the earthquake source.

  1. Exposure / Ritual Prevention Therapy Boosts Antidepressant Treatment of OCD

    MedlinePlus

    ... 24026506 Grants: MH045436 , MH45404 . Clinical Trial: 00389493 Share Contact(s) Jules Asher NIMH Press Office 301-443-4536 ... More Science News about Obsessive-Compulsive Disorder (OCD) Contact the Press Office 301-443-4536 NIMHpress@nih. ...

  2. 21. INTERIOR, DETAIL VIEW OF PARLOR, FIRST FLOOR, SOUTH ROOM, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. INTERIOR, DETAIL VIEW OF PARLOR, FIRST FLOOR, SOUTH ROOM, NORTHWEST CORNER SHOWING PANELED WALLS AND PAINTING OVER DOORWAY (PAINTED BY FORMER RESIDENT, JULES DIEUDONNE) - Bostwick Hall, 3901 Forty-eighth Street, Bladensburg, Prince George's County, MD

  3. Temperature and Oxidative Stress as Triggers for Virulence Gene Expression in Pathogenic Leptospira spp.

    PubMed Central

    Fraser, Tricia; Brown, Paul D.

    2017-01-01

    Leptospirosis is a zooanthroponosis aetiologically caused by pathogenic bacteria belonging to the genus, Leptospira. Environmental signals such as increases in temperatures or oxidative stress can trigger response regulatory modes of virulence genes during infection. This study sought to determine the effect of temperature and oxidative stress on virulence associated genes in highly passaged Leptospira borgpeterseneii Jules and L. interrogans Portlandvere. Bacteria were grown in EMJH at 30°C, 37°C, or at 30°C before being transferred to 37°C. A total of 14 virulence-associated genes (fliY, invA, lenA, ligB, lipL32, lipL36, lipL41, lipL45, loa22, lsa21, mce, ompL1, sph2, and tlyC) were assessed using endpoint PCR. Transcriptional analyses of lenA, lipL32, lipL41, loa22, sph2 were assessed by quantitative real-time RT-PCR at the temperature conditions. To assess oxidative stress, bacteria were exposed to H2O2 for 30 and 60 min with or without the temperature stress. All genes except ligB (for Portlandvere) and ligB and mce (for Jules) were detectable in the strains. Quantitatively, temperature stress resulted in significant changes in gene expression within species or between species. Temperature changes were more influential in gene expression for Jules, particularly at 30°C and upshift conditions; at 37°C, expression levels were higher for Portlandvere. However, compared to Jules, where temperature was influential in two of five genes, temperature was an essential element in four of five genes in Portlandvere exposed to oxidative stress. At both low and high oxidative stress levels, the interplay between genetic predisposition (larger genome size) and temperature was biased towards Portlandvere particularly at 30°C and upshift conditions. While it is clear that expression of many virulence genes in highly passaged strains of Leptospira are attenuated or lost, genetic predisposition, changes in growth temperature and/or oxidative intensity and/or duration were factors which acted in isolation or together with other regulatory cues to contribute to the variable gene expression observed in this study. Overall, differential gene expression in serovar Portlandvere was more responsive to temperature and oxidative stress. PMID:28536558

  4. The Deployment of Visual Attention

    DTIC Science & Technology

    2006-03-01

    targets: Evidence for memory-based control of attention. Psychonomic Bulletin & Review , 11(1), 71-76. Torralba, A. (2003). Modeling global scene...S., Fencsik, D. E., Tran, L., & Wolfe, J. M. (in press). How do we track invisible objects? Psychonomic Bulletin & Review . *Horowitz, T. S. (in press

  5. Monte Carlo Interpretation of the Photon Heating Measurements in the Integral AMMON/REF Experiment in the EOLE Facility

    NASA Astrophysics Data System (ADS)

    Vaglio-Gaudard, C.; Stoll, K.; Ravaux, S.; Lemaire, M.; Colombier, A. C.; Hudelot, J. P.; Bernard, D.; Amharrak, H.; Di Salvo, J.; Gruel, A.

    2014-02-01

    An experiment named AMMON is dedicated to the analysis of the neutron and photon physics of the Jules Horowitz Reactor (JHR). AMMON, performed in the EOLE zero-power experimental reactor at CEA Cadarache, is finished since April 2013. Photon heating measurements were performed with both Thermoluminescent Dosimeters (TLD-400s) and Optically-Stimulated Dosimeters (OSLDs) in three AMMON configurations. The objective is to provide data for the experimental validation of the JHR photon calculation tool. The first analysis of the photon heating measurements of the reference configuration (AMMON/REF) is presented in this paper. The reference configuration consists of an experimental zone of 7 JHR assemblies with U3Si2 - Al 27% 235U enriched fuel curved plates surrounded by a driver zone with 623 standard PWR UOx fuel pins. The photon heating has been measured in the aluminum follower of the central and peripheral assemblies, and in aluminum fillers in the rack between assemblies. The measurement analysis is based on Monte Carlo TRIPOLI-4 ® version 8.1 calculations modeling the core exact three-dimensional geometry. The JEFF nuclear data library is used for the calculation of the neutron transport and the photon emission in the AMMON/REF experiment. The photon transport is made on the basis of the EPDL97 photo-atomic library. The prompt and delayed doses deposited in dosimeters have been estimated separately. The transport of 4 (neutrons, photons, electrons and positrons) or 3 particles (photons, electrons and positrons) is simulated in the calculations for the AMMON/REF analysis, depending whether the prompt or delayed dose is calculated. The TRIPOLI-4.8.1 ® calculations makes it possible the modeling of the electromagnetic cascade shower with both electrons and positrons. The delayed dose represents about 25% of the total photon energy deposition in the dosimeters. The comparison between Calculation and Experiment brings into relief a slight systematic underestimation of the calculated global photon energy deposition: (C - E)/E = - 8% ±4.5% (1σ). A special care has been directed towards the determination of the uncertainty associated with the (C-E)/E values. The slight underestimation could be probably explained by an underestimation in the photon emission with the JEFF library.

  6. KSC-2015-1020

    NASA Image and Video Library

    2015-01-06

    CAPE CANAVERAL, Fla. -- NASA Administrator Charlie Bolden, third from right, looked over the agency's Orion spacecraft this morning for the first time since it returned to Kennedy Space Center following the successful Orion flight test on Dec. 5. At far right is Jules Schneider, Lockheed Martin manager. Standing near Bolden is Paul Cooper, a Lockheed Martin manager. At far left is Kennedy Space Center Associate Director Kelvin Manning. Bearing the marks of a spacecraft that has returned to Earth through a searing plunge into the atmosphere, Orion is perched on a pedestal inside the Launch Abort System Facility at Kennedy where it is going through post-mission processing. Although the spacecraft Bolden looked over did not fly with a crew aboard during the flight test, Orion is designed to carry astronauts into deep space in the future setting NASA and the nation firmly on the journey to Mars. Photo credit: NASA/Cory Huston

  7. Constellation Program Update

    NASA Image and Video Library

    2006-06-04

    Dean Acosta, NASA Deputy Assistant Administrator and Press Secretary, left, moderates a NASA Update with NASA Administrator Michael Griffin, Scott J. Horowitz, NASA Associate Administrator for Exploration Systems and Jeff Hanley, Constellation Program Manager, right, on Wednesday, June 5, 2006, at NASA Headquarters in Washington. Photo Credit: (NASA/Bill Ingalls)

  8. Scott Horowitz | NREL

    Science.gov Websites

    area, which includes work on whole building energy modeling, cost-based optimization, model accuracy optimization tool used to provide support for the Building America program's teams and energy efficiency goals Colorado graduate student exploring enhancements to building optimization in terms of robustness and speed

  9. Counselors as Caregivers: The Validation of the Counselor Caregiving Questionnaire (CCQ)

    ERIC Educational Resources Information Center

    Fitch, Jenelle C.

    2008-01-01

    This research is a validation study of the Counselor Caregiving Questionnaire (CCQ). Doctoral-level students (N = 188) in clinical and counseling psychology training programs completed the following questionnaires: (a) Counselor Caregiving Questionnaire (Fitch & Pistole, 2006), (b) Relationship Questionnaire (Bartholomew & Horowitz, 1991),…

  10. Stability of flat spacetime in quantum gravity

    NASA Astrophysics Data System (ADS)

    Jordan, R. D.

    1987-12-01

    In a previous paper, a modified effective-action formalism was developed which produces equations satisfied by the expectation value of the field, rather than the usual in-out average. Here this formalism is applied to a quantized scalar field in a background which is a small perturbation from Minkowski spacetime. The one-loop effective field equation describes the back reaction of created particles on the gravitational field, and is calculated in this paper to linear order in the perturbation. In this way we rederive an equation first found by Horowitz using completely different methods. This equation possesses exponentially growing solutions, so we confirm Horowitz's conclusion that flat spacetime is unstable in this approximation to the theory. The new derivation shows that the field equation is just as useful as the one-loop approximation to the in-out equation, contrary to earlier arguments. However, the instability suggests that the one-loop approximation cannot be trusted for gravity. These results are compared with the corresponding situation in QED and QCD.

  11. Mutation analysis of Australasian Gaucher disease patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, P.V.; Carey, W.F.; Morris, C.P.

    1995-09-25

    We have previously reported phenotype and genotype analyses in 28 Australasian Gaucher patients who were screened for several of the common Gaucher mutations: N370S, L444P, 84GG, and R463C. Horowitz and Zimran have reported that the complex alleles recNciI and recTL, which contain several point mutations including L444P, are relatively common, especially in non-Jewish Gaucher patients. Zimran and Horowitz have also stated that these recombinant alleles could easily be missed by laboratories testing only for the common Gaucher point mutations. Failure to correctly identify these mutations would influence any attempt to correlate genotype with phenotype. We have therefore retested our Gauchermore » patients for recNciI (L444P, A456P, and V46OV) and recTL (D409H, L444P, A456P, and V46OV) by PCR amplification, followed by hybridization with allele-specific oligonucleotides. 4 refs.« less

  12. Constellation Program Update

    NASA Image and Video Library

    2006-06-04

    Scott J. Horowitz, NASA Associate Administrator for Exploration Systems, announces to NASA employees and members of the media the responsibilities of the NASA centers associated with the Constellation Program for robotic and human Moon and Mars exploration on Wednesday, June 5, 2006, at NASA Headquarters in Washington. Photo Credit: (NASA/Bill Ingalls)

  13. STS-105 preflight water survival training in NBL pool in SCTF

    NASA Image and Video Library

    2000-12-11

    JSC2000-07459 (11 December 2000) --- Astronaut Scott J. Horowitz, STS-105 commander, simulates a parachute drop into water during emergency bailout training with his crew members. The exercise took place in the Neutral Buoyancy Laboratory (NBL) near the Johnson Space Center (JSC).

  14. 76 FR 1402 - Notice of allocation of Tariff Rate Quotas (TRQ) on the Import of Certain Worsted Wool Fabrics...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-10

    ... Receiving Allocation Adrian Jules LTD--Rochester, NY, HMX, LLC-- New York, NY, Hugo Boss Cleveland, Inc... York, NY, HMX, LLC--New York, NY, Hugo Boss Cleveland, Inc.--Brooklyn, OH, JA Apparel Corp.--New York...

  15. [The amazing career of a homeopath, philanthropist, Fourierist, Benoît-Jules Mure. (1809-1858)].

    PubMed

    Ségal, Alain; Trépardoux, Francis

    2005-01-01

    The authors evoke the difficulty of dealing with the life and work of Benoît-Jules Mure who was a homeopathic scientist and a keen specialist on propaganda. He was also an adept of Charles Fourier and he used almost his fortune to the spreading of homeopathy and at time, the improvement of social life. Thus he tried to settle humanitarian colonies in Brazil and later in Egypt, Nubian and Sudan in order to improve their fashion of life. He was hit by tuberculosis which led him discover homeopathy and by his strength of character lie led the idea of his mission in favour of his convictions. He was very angry with the official medical organisation and at last he never has been recognized as a médical doctor. The authors underline that his life and his work have probably left some definite marks in the South America let alone the birth of Socialism.

  16. Mitigation potential of horizontal ground coupled heat pumps for current and future climatic conditions: UK environmental modelling and monitoring studies

    NASA Astrophysics Data System (ADS)

    García González, Raquel; Verhoef, Anne; Vidale, Pier Luigi; Gan, Guohui; Wu, Yupeng; Hughes, Andrew; Mansour, Majdi; Blyth, Eleanor; Finch, Jon; Main, Bruce

    2010-05-01

    An increased uptake of alternative low or non-CO2 emitting energy sources is one of the key priorities for policy makers to mitigate the effects of environmental change. Relatively little work has been undertaken on the mitigation potential of Ground Coupled Heat Pumps (GCHPs) despite the fact that a GCHP could significantly reduce CO2 emissions from heating systems. It is predicted that under climate change the most probable scenario is for UK temperatures to increase and for winter rainfall to become more abundant; the latter is likely to cause a general rise in groundwater levels. Summer rainfall may reduce considerably, while vegetation type and density may change. Furthermore, recent studies underline the likelihood of an increase in the number of heat waves. Under such a scenario, GCHPs will increasingly be used for cooling as well as heating. These factors will affect long-term performance of horizontal GCHP systems and hence their economic viability and mitigation potential during their life span ( 50 years). The seasonal temperature differences encountered in soil are harnessed by GCHPs to provide heating in the winter and cooling in the summer. The performance of a GCHP system will depend on technical factors (heat exchanger (HE) type, length, depth, and spacing of pipes), but also it will be determined to a large extent by interactions between the below-ground parts of the system and the environment (atmospheric conditions, vegetation and soil characteristics). Depending on the balance between extraction and rejection of heat from and to the ground, the soil temperature in the neighbourhood of the HE may fall or rise. The GROMIT project (GROund coupled heat pumps MITigation potential), funded by the Natural Environment Research Council (UK), is a multi-disciplinary research project, in collaboration with EarthEnergy Ltd., which aims to quantify the CO2 mitigation potential of horizontal GCHPs. It considers changing environmental conditions and combines model predictions of soil moisture content and soil temperature with measurements at different GCHP locations over the UK. The combined effect of environment dynamics and horizontal GCHP technical properties on long-term GCHP performance will be assessed using a detailed land surface model (JULES: Joint UK Land Environment Simulator, Meteorological Office, UK) with additional equations embedded describing the interaction between GCHP heat exchangers and the surrounding soil. However, a number of key soil physical processes are currently not incorporated in JULES, such as groundwater flow, which, especially in lowland areas, can have an important effect on the heat flow between soil and HE. Furthermore, the interaction between HE and soil may also cause soil vapour and moisture fluxes. These will affect soil thermal conductivity and hence heat flow between the HE and the surrounding soil, which will in turn influence system performance. The project will address these issues. We propose to drive an improved version of JULES (with equations to simulate GCHP exchange embedded), with long-term gridded (1 km) atmospheric, soil and vegetation data (reflecting current and future environmental conditions) to reliably assess the mitigation potential of GCHPs over the entire domain of the UK, where uptake of GCHPs has been low traditionally. In this way we can identify areas that are most suitable for the installation of GCHPs. Only then recommendations can be made to local and regional governments, for example, on how to improve the mitigation potential in less suitable areas by adjusting GCHP configurations or design.

  17. Constellation Program Press Conference

    NASA Image and Video Library

    2006-06-04

    Scott Horowitz, NASA Associate Administrator for Exploration Systems, left, looks on as Jeff Hanley, Constellation Program Manager, speaks during a press conference outlining specific center responsibilities associated with the Constellation Program for robotic and human Moon and Mars exploration, Monday, June 5, 2006, at NASA Headquarters in Washington. Photo Credit (NASA/Bill Ingalls)

  18. Constellation Program Press Conference

    NASA Image and Video Library

    2006-06-04

    Scott Horowitz, NASA Associate Administrator for Exploration Systems, center, speaks as Jeff Hanley, Constellation Program Manager, right, looks on during a press conference outlining specific center responsibilities associated with the Constellation Program for robotic and human Moon and Mars exploration, Monday, June 5, 2006, at NASA Headquarters in Washington. Photo Credit (NASA/Bill Ingalls)

  19. Constellation Program Press Conference

    NASA Image and Video Library

    2006-06-04

    Scott Horowitz, NASA Associate Administrator for Exploration Systems, left, and Jeff Hanley, Constellation Program Manager, are seen during a press conference outlining specific center responsibilities associated with the Constellation Program for robotic and human Moon and Mars exploration, Monday, June 5, 2006, at NASA Headquarters in Washington. Photo Credit (NASA/Bill Ingalls)

  20. Impasse at the MLA

    ERIC Educational Resources Information Center

    McMillen, Liz

    2009-01-01

    At the annual gathering of the Modern Language Association (MLA), panel members seemed to talk past each other. Mark Bauerlein and David Horowitz each criticized the professoriate for not acknowledging real problems in the classroom or the ways identity politics can infringe on academic freedom. Norma V. Canti and Cary Nelson did not respond to…

  1. Constellation Program Update

    NASA Image and Video Library

    2006-06-04

    Dean Acosta, NASA Deputy Assistant Administrator and Press Secretary, left, moderates a NASA Update with NASA Administrator Michael Griffin, second from left, Scott J. Horowitz, NASA Associate Administrator for Exploration Systems and Jeff Hanley, Constellation Program Manager, right, on Wednesday, June 5, 2006, at NASA Headquarters in Washington. Photo Credit: (NASA/Bill Ingalls)

  2. Facilitating L2 Writers' Interpretation of Source Texts

    ERIC Educational Resources Information Center

    Doolan, Stephen M.; Fitzsimmons-Doolan, Shannon

    2016-01-01

    Student success in higher education often involves the effective integration of source texts into students' writing (Horowitz, 1986); therefore, advanced second language (L2) students are particularly well served by effective reading-to-write instruction. Teaching L2 students to write from sources is challenging because of several issues,…

  3. Volkov and Kononenko in the ATV during Expedition 17

    NASA Image and Video Library

    2008-05-12

    ISS017-E-006544 (12 May 2008) --- Russian Federal Space Agency cosmonauts Sergei Volkov (left), Expedition 17 commander, and Oleg Kononenko, flight engineer, take a moment for a photo in the Jules Verne Automated Transfer Vehicle (ATV) while it remains docked with the International Space Station.

  4. Volkov and Kononenko in the ATV during Expedition 17

    NASA Image and Video Library

    2008-05-12

    ISS017-E-006543 (12 May 2008) --- Russian Federal Space Agency cosmonauts Sergei Volkov (bottom), Expedition 17 commander, and Oleg Kononenko, flight engineer, take a moment for a photo in the Jules Verne Automated Transfer Vehicle (ATV) while it remains docked with the International Space Station.

  5. Why Our Nation Tolerates Risks to Children.

    ERIC Educational Resources Information Center

    Penning, Nick

    1991-01-01

    Contrasts children's well-being and family support services in the United States with superior programs in Germany and other industrialized countries. The American Association of School Administrators considers the Children's Investment Trust, authored by Head Start founding administrator Jule Sugarman, an absolute must for improving children's…

  6. New York area and worldwide: call-in radio program on HIV.

    PubMed

    1999-07-16

    Treatment activist Jules Levin, founder of the National AIDS Treatment Advocacy Group, has begun a weekly radio program called "Living Well with HIV". Listeners can call in with questions for experts featured on the show. Programs on hepatitis and AIDS have already been scheduled. Contact information is provided.

  7. Volkov and Kononenko with the stowage bags in the ATV during Expedition 17

    NASA Image and Video Library

    2008-05-12

    ISS017-E-006545 (12 May 2008) --- Russian Federal Space Agency cosmonauts Sergei Volkov (left), Expedition 17 commander, and Oleg Kononenko, flight engineer, work with stowage bags in the Jules Verne Automated Transfer Vehicle (ATV) while it remains docked with the International Space Station.

  8. Second order phase transition in thermodynamic geometry and holographic superconductivity in low-energy stringy black holes

    NASA Astrophysics Data System (ADS)

    Rizwan, C. L. Ahmed; Vaid, Deepak

    2018-05-01

    We study holographic superconductivity in low-energy stringy Garfinkle-Horowitz-Strominger (GHS) dilaton black hole background. We finds that superconducting properties are much similar to s-wave superconductors. We show that the second-order phase transition indicated from thermodynamic geometry is not different from superconducting phase transition.

  9. "Dissoi Logoi," Civic Friendship, and the Politics of Education

    ERIC Educational Resources Information Center

    Olbrys, Stephen Gencarella

    2006-01-01

    This essay examines the recent debate over the politics of American education, particularly the accusation of liberal bias by members of the Right such as David Horowitz and Students for Academic Freedom. It draws parallels between the contemporary movement for an "Academic Bill of Rights" and the historical context of the "Powell…

  10. The Efficacy of Interpersonal Psychotherapy-Adolescent Skill Training (IPT-AST) in Preventing Depression: A Mixed Methods Approach

    ERIC Educational Resources Information Center

    Kerner, Sarah Shankman

    2015-01-01

    Adolescent depression is a prevalent and debilitating disorder that is associated with social and academic impairment, suicidality, comorbid psychiatric disorders, and high-risk behaviors (Horowitz, Garber, Ciesla, Young, & Mufson, 2007). Yet many adolescents experiencing depressive symptoms do not receive adequate services, and those that do…

  11. THE MORPHOLOGICAL BASIS FOR OLFACTORY PERCEPTION OF STEROIDS DUING AGONISTIC BEHAVIOR IN LOBSTER: PRELIMINARY EXPERIMENTS

    EPA Science Inventory

    The morphological basis for olfactory perception of steroids during agonistic behavior in lobsters: preliminary experiments. Borsay Horowitz, DJ1, Kass-Simon, G2, Coglianese, D2, Martin, L2, Boseman, M2, Cromarty, S3, Randall, K3, Fini, A.3 1US EPA, NHEERL, ORD, Atlantic Ecology...

  12. Constellation Program Update

    NASA Image and Video Library

    2006-06-05

    Jeff Hanley, Constellation Program Manager, right, and Scott J. Horowitz, NASA Associate Administrator for Exploration Systems announce to NASA employees and members of the media the responsibilities of the NASA centers associated with the Constellation Program for robotic and human Moon and Mars exploration on Wednesday, June 5, 2006, at NASA Headquarters in Washington. Photo Credit: (NASA/Bill Ingalls)

  13. Constellation Program Press Conference

    NASA Image and Video Library

    2006-06-04

    NASA Administrator Michael Griffin, left, Scott Horowitz, NASA Associate Administrator for Exploration Systems and Jeff Hanley, Constellation Program Manager, right, are seen during a press conference outlining specific center responsibilities associated with the Constellation Program for robotic and human Moon and Mars exploration, Monday, June 5, 2006, at NASA Headquarters in Washington. Photo Credit (NASA/Bill Ingalls)

  14. Constellation Program Press Conference

    NASA Image and Video Library

    2006-06-04

    Members of the media listen during a press conference with NASA Administrator Michael Griffin, Scott Horowitz, NASA Associate Administrator for Exploration Systems and Jeff Hanley, Constellation Program Manager, outlining specific center responsibilities associated with the Constellation Program for robotic and human Moon and Mars exploration, Monday, June 5, 2006, at NASA Headquarters in Washington. Photo Credit (NASA/Bill Ingalls)

  15. Constellation Program Update

    NASA Image and Video Library

    2006-06-04

    Scott J. Horowitz, NASA Associate Administrator for Exploration Systems, left, and Jeff Hanley, Constellation Program Manager, announce to NASA employees and members of the media the responsibilities of the NASA centers associated with the Constellation Program for robotic and human Moon and Mars exploration on Wednesday, June 5, 2006, at NASA Headquarters in Washington. Photo Credit: (NASA/Bill Ingalls)

  16. Two Sides of the Same Coin: Politics in the Classroom

    ERIC Educational Resources Information Center

    Berg, Steven L.

    2005-01-01

    This paper presents interviews with David Horowitz, an author, professor, and President of the Center for the Study of Popular Culture headquartered in Los Angeles, California and Carol King, an adjunct professor of theology at Xavier University in Cincinnati, Ohio, and manager of the Cinergy Foundation, also in Cincinnati. The interviews present…

  17. Diversifying the Academy: How Conservative Academics Can Thrive in Liberal Academia

    ERIC Educational Resources Information Center

    Maranto, Robert; Woessner, Matthew

    2012-01-01

    Researchers have long recognized that higher education is dominated by professors whose politics are well to the left of the American political center. The cause and implications of this ideological imbalance have been intensely debated since the 1960s. Although critics of higher education, such as David Horowitz, argue that the political…

  18. Decomposition of Some Well-Known Variance Reduction Techniques. Revision.

    DTIC Science & Technology

    1985-05-01

    34use a family of transformatlom to convert given samples into samples conditioned on a given characteristic (p. 04)." Dub and Horowitz (1979), Granovsky ...34Antithetic Varlates Revisited," Commun. ACM 26, 11, 064-971. Granovsky , B.L. (1981), "Optimal Formulae of the Conditional Monte Carlo," SIAM J. Alg

  19. Attachment Styles, Social Skills, and Depression in College Women

    ERIC Educational Resources Information Center

    Cooley, Eileen L.; Van Buren, Amy; Cole, Steven P.

    2010-01-01

    Attachment styles, social skills, and depression were studied in 3 college women using the Relationship Questionnaire (K. Bartholomew & L. M. Horowitz, 1991), the Beck Depression Inventory-II (A. T. Beck, R. A. Steer, & G. K. Brown, 1996), and the Interpersonal Competence Questionnaire (D. Buhrmester, W. Furman, M. T. Wittenberg, & H.…

  20. The Contours of Inclusion: Frameworks and Tools for Evaluating Arts in Education

    ERIC Educational Resources Information Center

    Glass, Don; Palmer Wolf, Dennie; Molloy, Traci; Rodriguez, Aamir; Horowitz, Robert; Burnaford, Gail; Mertens, Donna M.

    2008-01-01

    This collection of essays explores various arts education-specific evaluation tools, as well as considers Universal Design for Learning (UDL) and the inclusion of people with disabilities in the design of evaluation instruments and strategies. Prominent evaluators Donna M. Mertens, Robert Horowitz, Dennie Palmer Wolf, and Gail Burnaford are…

  1. Campaign Targets Perceived Liberal Bias in Schools

    ERIC Educational Resources Information Center

    Cavanagh, Sean

    2006-01-01

    Having witnessed what they regard as the corruption of colleges by liberals and left-leaning academics, conservative activists say they are launching a venture to eliminate any such bias from the nation's public schools. "It's a campaign we're beginning today," said David Horowitz, who helped organize an April 7, 2006 conference to promote those…

  2. ATV during Demonstration Day 2 Rendezvous Test

    NASA Image and Video Library

    2008-03-31

    ISS016-E-034177 (31 March 2008) --- Backdropped by the blackness of space, the Jules Verne Automated Transfer Vehicle (ATV) approaches the International Space Station on Monday, March 31, 2008, for its "Demo Day 2" practice maneuvers. It moved to within 36 feet of the Zvezda Service Module in a rehearsal for docking on Thursday.

  3. KSC-2012-4243

    NASA Image and Video Library

    2012-08-03

    CAPE CANAVERAL, Fla. – Charles Bolden, NASA administrator, center, is shown the high bay at the Operations and Checkout Building at NASA's Kennedy Space Center in Florida by NASA's Scott Wilson, left, and Lockheed Martin's Jules Schneider, right. Lockheed Martin is processing an Orion spacecraft that will make an uncrewed flight test in 2014. Photo credit: NASA/Kim Shifflett

  4. KSC-2012-4244

    NASA Image and Video Library

    2012-08-03

    CAPE CANAVERAL, Fla. – Charles Bolden, NASA administrator, center, is shown the high bay at the Operations and Checkout Building at NASA's Kennedy Space Center in Florida by NASA's Scott Wilson, left, and Lockheed Martin's Jules Schneider, foreground. Lockheed Martin is processing an Orion spacecraft that will make an uncrewed flight test in 2014. Photo credit: NASA/Kim Shifflett

  5. A Review of Publications on Testing for Parents and the Public. National Consortium on Testing Staff Circular No. 5.

    ERIC Educational Resources Information Center

    Haney, Walt

    Three do-it-yourself intelligence test handbooks, five mini-textbooks, and five consumer protection guides are reviewed. Each type of publication reflects different social ideologies and communicates favorable, cautiously neutral, or critical messages, respectively, about testing. Psychologists Jules Leopold, Martin Lutterjohan, and Victor…

  6. ATV during Demonstration Day 2 Rendezvous Test

    NASA Image and Video Library

    2008-03-31

    ISS016-E-034176 (31 March 2008) --- Backdropped by the blackness of space, the Jules Verne Automated Transfer Vehicle (ATV) approaches the International Space Station on Monday, March 31, 2008, for its "Demo Day 2" practice maneuvers. It moved to within 36 feet of the Zvezda Service Module in a rehearsal for docking on Thursday.

  7. Diagnosing hydrological limitations of a Land Surface Model: application of JULES to a deep-groundwater chalk basin

    NASA Astrophysics Data System (ADS)

    Le Vine, N.; Butler, A.; McIntyre, N.; Jackson, C.

    2015-08-01

    Land Surface Models (LSMs) are prospective starting points to develop a global hyper-resolution model of the terrestrial water, energy and biogeochemical cycles. However, there are some fundamental limitations of LSMs related to how meaningfully hydrological fluxes and stores are represented. A diagnostic approach to model evaluation is taken here that exploits hydrological expert knowledge to detect LSM inadequacies through consideration of the major behavioural functions of a hydrological system: overall water balance, vertical water redistribution in the unsaturated zone, temporal water redistribution and spatial water redistribution over the catchment's groundwater and surface water systems. Three types of information are utilised to improve the model's hydrology: (a) observations, (b) information about expected response from regionalised data, and (c) information from an independent physics-based model. The study considers the JULES (Joint UK Land Environmental Simulator) LSM applied to a deep-groundwater chalk catchment in the UK. The diagnosed hydrological limitations and the proposed ways to address them are indicative of the challenges faced while transitioning to a global high resolution model of the water cycle.

  8. Diagnosing hydrological limitations of a land surface model: application of JULES to a deep-groundwater chalk basin

    NASA Astrophysics Data System (ADS)

    Le Vine, N.; Butler, A.; McIntyre, N.; Jackson, C.

    2016-01-01

    Land surface models (LSMs) are prospective starting points to develop a global hyper-resolution model of the terrestrial water, energy, and biogeochemical cycles. However, there are some fundamental limitations of LSMs related to how meaningfully hydrological fluxes and stores are represented. A diagnostic approach to model evaluation and improvement is taken here that exploits hydrological expert knowledge to detect LSM inadequacies through consideration of the major behavioural functions of a hydrological system: overall water balance, vertical water redistribution in the unsaturated zone, temporal water redistribution, and spatial water redistribution over the catchment's groundwater and surface-water systems. Three types of information are utilized to improve the model's hydrology: (a) observations, (b) information about expected response from regionalized data, and (c) information from an independent physics-based model. The study considers the JULES (Joint UK Land Environmental Simulator) LSM applied to a deep-groundwater chalk catchment in the UK. The diagnosed hydrological limitations and the proposed ways to address them are indicative of the challenges faced while transitioning to a global high resolution model of the water cycle.

  9. Workforce planning-going beyond the count.

    PubMed

    Sandy, Lewis G

    2017-10-11

    Every country struggles with how best to meet the demand for health care services with the available resources. This commentary offers a perspective on the Israeli physician workforce and the analyses of Horowitz et al., which found age and gender differences in physician productivity and career longevity, differences across specialties, and a sizeable fraction of licensed Israeli physicians living abroad. Workforce planning can be subject to data collection and statistical uncertainties, but even more important are the assumptions and forecasts related to demand for services and organizational arrangements for care delivery. Readers should be cautious in analyzing productivity just by counting hours or years worked, and comparisons across countries may not account for differences in the nature of physician work. The question of whether Israel has enough physicians for the future has to go "beyond the count" to looking at the roles of other health professionals, the use of new technologies and new team configurations, and the overall efficiency and effectiveness of health care delivery systems such as hospitals, ambulatory care clinics, and community-based care.

  10. Development of Forest Drought Index and Forest Water Use Prediction in Gyeonggi Province, Korea Using High-Resolution Weather Research and Forecast Data and Localized JULES Land Surface Model

    NASA Astrophysics Data System (ADS)

    Lee, H.; Park, J.; Cho, S.; Lee, S. J.; Kim, H. S.

    2017-12-01

    Forest determines the amount of water available to low land ecosystems, which use the rest of water after evapotranspiration by forests. Substantial increase of drought, especially for seasonal drought, has occurred in Korea due to climate change, recently. To cope with this increasing crisis, it is necessary to predict the water use of forest. In our study, forest water use in the Gyeonggi Province in Korea was estimated using high-resolution (spatial and temporal) meteorological forecast data and localized Joint UK Land Environment Simulator (JULES) which is one of the widely used land surface models. The modeled estimation was used for developing forest drought index. The localization of the model was conducted by 1) refining the existing two tree plant functional types (coniferous and deciduous trees) into five (Quercus spp., other deciduous tree spp., Pinus spp., Larix spp., and other coniferous spp.), 2) correcting moderate resolution imaging spectroradiometer (MODIS) leaf area index (LAI) through data assimilation with in situ measured LAI, and 3) optimizing the unmeasured plant physiological parameters (e.g. leaf nitrogen contents, nitrogen distribution within canopy, light use efficiency) based on sensitivity analysis of model output values. The high-resolution (hourly and 810 × 810 m) National Center for AgroMeteorology-Land-Atmosphere Modeling Package (NCAM-LAMP) data were employed as meteorological input data in JULES. The plant functional types and soil texture of each grid cell in the same resolution with that of NCAM-LAMP was also used. The performance of the localized model in estimating forest water use was verified by comparison with the multi-year sapflow measurements and Eddy covariance data of Taehwa Mountain site. Our result can be used as referential information to estimate the forest water use change by the climate change. Moreover, the drought index can be used to foresee the drought condition and prepare to it.

  11. Disabled-2 Mediation of Retinoic Acid Cell Growth Arrest Signal in Breast Cancer

    DTIC Science & Technology

    2002-08-01

    C. Cohen, L. E. Mendez , I. R. Horowitz, ylthiazol-2-yl)-2,5-diphenyltetrazolium bromide. A. I Godwin, and X X. Xu, submitted for publication. T...trans., 9-cis-retinoic acid) and P- caro - forming units of adenovirus were added to the cells in medium with low tene were purchased from Sigma

  12. Personal Writing and the ESL Student.

    ERIC Educational Resources Information Center

    Simmons, Mary Beth

    Personal writing is not only valid in such places as the academy, it is vital--even though Daniel Horowitz, in his essay "Process, Not Product: Less Than Meets the Eye," said that "teaching students to write intelligently on topics they do not care about seems to be a more useful goal than having them pick topics which interest them." But…

  13. Constellation Program Update

    NASA Image and Video Library

    2006-06-04

    NASA Administrator Michael Griffin, left, Scott J. Horowitz, NASA Associate Administrator for Exploration Systems and Jeff Hanley, Constellation Program Manager, right, announce to NASA employees and members of the media the responsibilities of the NASA centers associated with the Constellation Program for robotic and human Moon and Mars exploration on Wednesday, June 5, 2006, at NASA Headquarters in Washington. Photo Credit: (NASA/Bill Ingalls)

  14. Constellation Program Press Conference

    NASA Image and Video Library

    2006-06-04

    Dean Acosta, NASA Deputy Assistant Administrator and Press Secretary, moderates a press conference with NASA Administrator Michael Griffin Scott Horowitz, NASA Associate Administrator for Exploration Systems and Jeff Hanley, Constellation Program Manager, outlining specific center responsibilities associated with the Constellation Program for robotic and human Moon and Mars exploration, Monday, June 5, 2006, at NASA Headquarters in Washington. Photo Credit (NASA/Bill Ingalls)

  15. Creating a Data-Informed Culture in Community Colleges: A New Model for Educators

    ERIC Educational Resources Information Center

    Phillips, Brad C.; Horowitz, Jordan E.

    2017-01-01

    Brad C. Phillips and Jordan E. Horowitz offer a research-based model and actionable approach for using data strategically at community colleges to increase completion rates as well as other metrics linked to student success. They draw from the fields of psychology, neuroscience, and behavioral economics to show how leaders and administrators can…

  16. Trends in Freshman Attitudes and Use of Drugs. Research Report No. 4-74.

    ERIC Educational Resources Information Center

    Howard, Beverley R.; Sedlacek, William E.

    An anonymous questionnaire was administered to a representative sample of incoming freshmen at the University of Maryland, College Park (N=491; 53 percent male, 47 percent female). Data were compared with previous surveys at Maryland (Horowitz and Sedlacek, 1973; Fago and Sedlacek, 1974 a,b) and analyzed by percentages, chi-square, F and Friedman…

  17. Reach for the Stars: Visions for Literacy Coaching Programs

    ERIC Educational Resources Information Center

    DeFord, Diane

    2012-01-01

    This brief by the Literacy Coaching Clearinghouse is about reaching for the stars--stories of vision and commitment from educators in small and large schools. Everyone knows of people who are held up as "visionaries" throughout history: Leonardo Da Vinci, Mahatma Gandhi, Jules Verne, Thomas Edison, Susan Anthony, or John Dewey, to name a few. The…

  18. Jules Verne's "Around the World in Eighty Days": Helping Teach the National Geography Standards

    ERIC Educational Resources Information Center

    Donaldson, Daniel P.; Kuhlke, Olaf

    2009-01-01

    Consistent with developments in American education pedagogy, geography educators have made great strides exploring a wide range of high- and low-tech methods for teaching and learning geographic concepts. This article draws on a qualitative analysis of essays in which college students discuss tenets of the National Geography Standards in the…

  19. "Does Broca's Area Exist?:" Christofredo Jakob's 1906 Response to Pierre Marie's Holistic Stance

    ERIC Educational Resources Information Center

    Tsapkini, Kyrana; Vivas, Ana B.; Triarhou, Lazaros C.

    2008-01-01

    In 1906, Pierre Marie triggered a heated controversy and an exchange of articles with Jules Dejerine over the localization of language functions in the human brain. The debate spread internationally. One of the timeliest responses, that appeared in print 1 month after Marie's paper, came from Christofredo Jakob, a Bavarian-born neuropathologist…

  20. KSC-2012-4247

    NASA Image and Video Library

    2012-08-03

    CAPE CANAVERAL, Fla. – Lockheed Martin's Jules Schneider, right, shows details of the preparation hardware used for the Orion capsule to Charles Bolden, NASA administrator, center. The Orion capsule will make an uncrewed flight test in 2014. The spacecraft is in the high bay at the Operations and Checkout Building at NASA's Kennedy Space Center in Florida. Photo credit: NASA/Kim Shifflett

  1. Lessons from Abroad--Developing Countries. Viewpoints: A Series of Occasional Papers on Basic Education. Issue No. 9.

    ERIC Educational Resources Information Center

    Adult Literacy and Basic Skills Unit, London (England).

    This document, one of a series of British occasional papers on basic education, investigates adult literacy practices in Africa, Asia, Latin America, and the Caribbean. The texts and their authors are "Building a National Movement: The Caribbean Experience" (Didacus Jules); "Literacy and Empowerment: A Definition for Literacy"…

  2. SPACE TODAY ONLINE - Space Today Online covering Space from Earth to the

    Science.gov Websites

    Space Rockets 300 Flights Delta Proton Search for Meteorites American Weather Satellites Artist concept Rockets: Spaceports Plowshares 21st Century Experimental Europe's Vega Brazil's Difficulties U.S. Delta 4 , Atlas 5 America's 300th Delta Russia's 300th Proton Spaceflight Museum Space Station: Jules Verne Cargo

  3. The Film. The Bobbs-Merrill Series in Composition and Rhetoric.

    ERIC Educational Resources Information Center

    Sarris, Andrew, Ed.

    Prefaced by a brief discussion of early films and film criticism, 10 essays treat selected modern directors and their works. Essays on Stanley Kubrick's "Lolita," the early works of Elia Kazan, and the response of French critics to Jerry Lewis explore the American scene, while Francois Truffaut's "Jules and Jim," the early work of Robert Bressen,…

  4. Comparison of Calibration of Sensors Used for the Quantification of Nuclear Energy Rate Deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brun, J.; Reynard-Carette, C.; Tarchalski, M.

    This present work deals with a collaborative program called GAMMA-MAJOR 'Development and qualification of a deterministic scheme for the evaluation of GAMMA heating in MTR reactors with exploitation as example MARIA reactor and Jules Horowitz Reactor' between the National Centre for Nuclear Research of Poland, the French Atomic Energy and Alternative Energies Commission and Aix Marseille University. One of main objectives of this program is to optimize the nuclear heating quantification thanks to calculation validated from experimental measurements of radiation energy deposition carried out in irradiation reactors. The quantification of the nuclear heating is a key data especially for themore » thermal, mechanical design and sizing of irradiation experimental devices in specific irradiated conditions and locations. The determination of this data is usually performed by differential calorimeters and gamma thermometers such as used in the experimental multi-sensors device called CARMEN 'Calorimetric en Reacteur et Mesures des Emissions Nucleaires'. In the framework of the GAMMA-MAJOR program a new calorimeter was designed for the nuclear energy deposition quantification. It corresponds to a single-cell calorimeter and it is called KAROLINA. This calorimeter was recently tested during an irradiation campaign inside MARIA reactor in Poland. This new single-cell calorimeter differs from previous CALMOS or CARMEN type differential calorimeters according to three main points: its geometry, its preliminary out-of-pile calibration, and its in-pile measurement method. The differential calorimeter, which is made of two identical cells containing heaters, has a calibration method based on the use of steady thermal states reached by simulating the nuclear energy deposition into the calorimeter sample by Joule effect; whereas the single-cell calorimeter, which has no heater, is calibrated by using the transient thermal response of the sensor (heating and cooling steps). The paper will concern these two kinds of calorimetric sensors. It will focus in particular on studies on their out-of-pile calibrations. Firstly, the characteristics of the sensor designs will be detailed (such as geometry, dimension, material sample, assembly, instrumentation). Then the out-of-pile calibration methods will be described. Furthermore numerical results obtained thanks to 2D axisymmetrical thermal simulations (Finite Element Method, CAST3M) and experimental results will be presented for each sensor. A comparison of the two different thermal sensor behaviours will be realized. To conclude a discussion of the advantages and the drawbacks of each sensor will be performed especially regarding measurement methods. (authors)« less

  5. STS-105 Crew Training in VR Lab

    NASA Image and Video Library

    2001-03-15

    JSC2001-00751 (15 March 2001) --- Astronaut Scott J. Horowitz, STS-105 mission commander, uses the virtual reality lab at the Johnson Space Center (JSC) to train for his duties aboard the Space Shuttle Discovery. This type of computer interface paired with virtual reality training hardware and software helps to prepare the entire team for dealing with International Space Station (ISS) elements.

  6. Constellation Program Update

    NASA Image and Video Library

    2006-06-04

    Jeff Hanley, Constellation Program Manager, right, announces to NASA employees and members of the media the responsibilities of the NASA centers associated with the Constellation Program for robotic and human Moon and Mars exploration on Wednesday, June 5, 2006, at NASA Headquarters in Washington. Hanley is joined by Scott J. Horowitz, NASA Associate Administrator for Exploration Systems and NASA Administrator Michael Griffin, left. Photo Credit: (NASA/Bill Ingalls)

  7. Constellation Program Update

    NASA Image and Video Library

    2006-06-04

    NASA Administrator Michael Griffin, left, announces to NASA employees and members of the media the responsibilities of the NASA centers associated with the Constellation Program for robotic and human Moon and Mars exploration on Wednesday, June 5, 2006, at NASA Headquarters in Washington. He is joined by Scott J. Horowitz, NASA Associate Administrator for Exploration Systems and Jeff Hanley, Constellation Program Manager, right. Photo Credit: (NASA/Bill Ingalls)

  8. Statistical Entropy of the G-H-S Black Hole to All Orders in Planck Length

    NASA Astrophysics Data System (ADS)

    Sun, Hangbin; He, Feng; Huang, Hai

    2012-02-01

    Considering corrections to all orders in Planck length on the quantum state density from generalized uncertainty principle, we calculate the statistical entropy of the scalar field near the horizon of Garfinkle-Horowitz-Strominger (G-H-S) black hole without any artificial cutoff. It is shown that the entropy is proportional to the horizon area.

  9. Carbon dioxide and climate: a second assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    For over a century, concern has been expressed that increases in atmospheric carbon dioxide (CO/sub 2/) concentration could affect global climate by changing the heat balance of the atmosphere and Earth. Observations reveal steadily increasing concentrations of CO/sub 2/, and experiments with numerical climate models indicate that continued increase would eventually produce significant climatic change. Comprehensive assessment of the issue will require projection of future CO/sub 2/ emissions and study of the disposition of this excess carbon in the atmosphere, ocean, and biota; the effect on climate; and the implications for human welfare. This study focuses on one aspect, estimationmore » of the effect on climate of assumed future increases in atmospheric CO/sub 2/. Conclusions are drawn principally from present-day numerical models of the climate system. To address the significant role of the oceans, the study also makes use of observations of the distributions of anthropogenic tracers other than CO/sub 2/. The rapid scientific developments in these areas suggest that periodic reassessments will be warranted. The starting point for the study was a similar 1979 review by a Climate Research Board panel chaired by the late Jule G. Charney. The present study has not found any new results that necessitate substantial revision of the conclusions of the Charney report.« less

  10. The genesis of neurosurgery and the evolution of the neurosurgical operative environment: part II--concepts for future development, 2003 and beyond.

    PubMed

    Liu, Charles Y; Spicer, Mark; Apuzzo, Michael L J

    2003-01-01

    The future development of the neurosurgical operative environment is driven principally by concurrent development in science and technology. In the new millennium, these developments are taking on a Jules Verne quality, with the ability to construct and manipulate the human organism and its surroundings at the level of atoms and molecules seemingly at hand. Thus, an examination of currents in technology advancement from the neurosurgical perspective can provide insight into the evolution of the neurosurgical operative environment. In the future, the optimal design solution for the operative environment requirements of specialized neurosurgery may take the form of composites of venues that are currently mutually distinct. Advances in microfabrication technology and laser optical manipulators are expanding the scope and role of robotics, with novel opportunities for bionic integration. Assimilation of biosensor technology into the operative environment promises to provide neurosurgeons of the future with a vastly expanded set of physiological data, which will require concurrent simplification and optimization of analysis and presentation schemes to facilitate practical usefulness. Nanotechnology derivatives are shattering the maximum limits of resolution and magnification allowed by conventional microscopes. Furthermore, quantum computing and molecular electronics promise to greatly enhance computational power, allowing the emerging reality of simulation and virtual neurosurgery for rehearsal and training purposes. Progressive minimalism is evident throughout, leading ultimately to a paradigm shift as the nanoscale is approached. At the interface between the old and new technological paradigms, issues related to integration may dictate the ultimate emergence of the products of the new paradigm. Once initiated, however, history suggests that the process of change will proceed rapidly and dramatically, with the ultimate neurosurgical operative environment of the future being far more complex in functional capacity but strikingly simple in apparent form.

  11. KSC-2012-4248

    NASA Image and Video Library

    2012-08-03

    CAPE CANAVERAL, Fla. – Lockheed Martin's Jules Schneider, right, shows the upper portion of the Orion capsule to Charles Bolden, NASA administrator, center, as NASA's Scott Wilson looks on. The Orion capsule will make an uncrewed flight test in 2014. The spacecraft is in the high bay at the Operations and Checkout Building at NASA's Kennedy Space Center in Florida. Photo credit: NASA/Kim Shifflett

  12. KSC-2012-4246

    NASA Image and Video Library

    2012-08-03

    CAPE CANAVERAL, Fla. – Lockheed Martin's Jules Schneider, right, shows the upper portion of the Orion capsule to Charles Bolden, NASA administrator, center, as NASA's Scott Wilson looks on. The Orion capsule will make an uncrewed flight test in 2014. The spacecraft is in the high bay at the Operations and Checkout Building at NASA's Kennedy Space Center in Florida. Photo credit: NASA/Kim Shifflett

  13. ATV during Demonstration Day 2 Rendezvous Test

    NASA Image and Video Library

    2008-03-31

    ISS016-E-034191 (31 March 2008) --- Backdropped by the airglow of Earth's horizon and the blackness of space, the Jules Verne Automated Transfer Vehicle (ATV) approaches the International Space Station on Monday, March 31, 2008, for its "Demo Day 2" practice maneuvers. It moved to within 36 feet of the Zvezda Service Module in a rehearsal for docking on Thursday.

  14. Improving Reading Programs for Emotionally Handicapped Children. Proceedings Highlights of a Special Study Institute (Medina, New York, May 3-5, 1971).

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany. Div. for Handicapped Children.

    Six speeches given at an institute on reading programs for emotionally handicapped children are presented. Jules Abrams first examines the relationship of emotional and personality maladjustments to reading difficulty. Then Clifford Kolson advocates the promotion of informal reading and the proper diagnosis of a child's reading level. A discussion…

  15. Reading and the Emotionally Handicapped Child. Highlights of a Special Study Institute (Poughkeepsie, New York, October 5-7, 1970).

    ERIC Educational Resources Information Center

    Duchess County Board of Cooperative Educational Services, NY.

    The conference proceedings include seven papers dealing with reading problems of emotionally disturbed children. Emotional resistance to reading is discussed by Jules Abrams, a psychiatrist. The purposes of testing and the problem of labeling are touched upon by Clifford Kolson. Some practical suggestions of classroom techniques for combining a…

  16. What Is Steampunk, and Do I Want It in My Library?

    ERIC Educational Resources Information Center

    Rozmus, Emily

    2011-01-01

    What is steampunk? Most call it Victorian science fiction. Steampunk can claim such authors as H.G. Wells and Jules Verne as its earliest writers. These two Victorian/Edwardian era writers created steampunk settings in books such as "The Time Machine" and "Journey to the Center of the Earth". In the 1990s, writers such as William Gibson, Bruce…

  17. The role of history in teaching science — A case study

    NASA Astrophysics Data System (ADS)

    Hendrick, Robert M.

    1992-06-01

    One of the most interesting aspects of late-nineteenth-century France was the extraordinary interest the public expressed in science. Its adulation of Pasteur was only one of the many manifestations of this interest. It was also expressed in the widespread popularity of scientists as public figures and in the increasing public and private financial support of science. While popularity of science was created in the general public by fiction and by the various international ‘world fairs’ held in Paris, it was strongest and most important in the middle classes. This paper examines one of the key methods used to stimulate bourgeois interest in science in France during the Second Empire and early Third Republic (1852 1895): the campaign to create a science vulgarisée, a popularized science. While a number of different approaches used by these popularizers are examined, the article concentrates on the ‘science writings’ of Jules Michelet and Jules Verne, both of whom were immensely successful in creating a favorable climate of opinion for French science. The article concludes by suggesting how such an approach could be modernized and utilized in order to create greater scientific literacy and a similar acceptance by the public today.

  18. Jules Verne's Journey to the centre of the Earth: the secret of counterdepressive narratives.

    PubMed

    Sanchez-Cardenas, Michel

    2005-12-01

    The author interprets Jules Verne's Journey to the centre of the Earth with the help of Matte Blanco's theoretical framework, which describes the principle of symmetry and the principle of generalization. The first states that, from the moment an element or a proposition becomes conscious, it coexists in the unconscious with its symmetrically opposite form. The second refers to the confusion of elements once they have been apprehended by thought as containing a common point; they are put into larger and larger groups which merge into an indivisible whole. Verne's novel is built on paired elements which become symmetrized (e.g. distinct minerals vs molten lava; scientific rationality vs madness; the living vs the dead, etc.). These elements in turn become confused with one another, thanks largely to the novel's atmosphere of oral incorporation. This allows the fusion between subject and object, and, in particular, between the orphaned hero and his dead (Earth) mother. The novel's narrative evolution through three stages (separation, fusion and de-fusion, which are paralleled by rational, irrational and rational thought) can thus be understood as a mourning process. Similar processes can be found in other literary works.

  19. Love stories can be unpredictable: Jules et Jim in the vortex of life.

    PubMed

    Dercole, Fabio; Rinaldi, Sergio

    2014-06-01

    Love stories are dynamic processes that begin, develop, and often stay for a relatively long time in a stationary or fluctuating regime, before possibly fading. Although they are, undoubtedly, the most important dynamic process in our life, they have only recently been cast in the formal frame of dynamical systems theory. In particular, why it is so difficult to predict the evolution of sentimental relationships continues to be largely unexplained. A common reason for this is that love stories reflect the turbulence of the surrounding social environment. But we can also imagine that the interplay of the characters involved contributes to make the story unpredictable-that is, chaotic. In other words, we conjecture that sentimental chaos can have a relevant endogenous origin. To support this intriguing conjecture, we mimic a real and well-documented love story with a mathematical model in which the environment is kept constant, and show that the model is chaotic. The case we analyze is the triangle described in Jules et Jim, an autobiographic novel by Henri-Pierre Roché that became famous worldwide after the success of the homonymous film directed by François Truffaut.

  20. Jules and Augusta Dejerine, Pierre Marie, Joseph Babiński, Georges Guillain and their students during World War I.

    PubMed

    Walusinski, O

    2017-03-01

    World War I (1914-1918), however tragic, was nonetheless an "edifying school of nervous system experimental pathology" not only because of the various types of injuries, but also because their numbers were greater than any physician could have foreseen. The peripheral nervous system, the spine and the brain were all to benefit from the subsequent advances in clinical and anatomo-functional knowledge. Neurosurgeons took on nerve sutures, spinal injury exploration, and the localization and extraction of intracranial foreign bodies. Little by little, physical medicine and rehabilitation were established. A few of the most famous Parisian neurologists at the time-Jules and Augusta Dejerine, Pierre Marie, Joseph Babiński and Georges Guillain, who directed the military neurology centers-took up the physically and emotionally exhausting challenge of treating thousands of wounded soldiers. They not only cared for them, but also studied them scientifically, with the help of a small but devoted band of colleagues. The examples presented here reveal their courage and their efforts to make discoveries for which we remain grateful today. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. Implications of plant acclimation for future climate-carbon cycle feedbacks

    NASA Astrophysics Data System (ADS)

    Mercado, Lina; Kattge, Jens; Cox, Peter; Sitch, Stephen; Knorr, Wolfgang; Lloyd, Jon; Huntingford, Chris

    2010-05-01

    The response of land ecosystems to climate change and associated feedbacks are a key uncertainty in future climate prediction (Friedlingstein et al. 2006). However global models generally do not account for the acclimation of plant physiological processes to increased temperatures. Here we conduct a first global sensitivity study whereby we modify the Joint UK land Environment Simulator (JULES) to account for temperature acclimation of two main photosynthetic parameters, Vcmax and Jmax (Kattge and Knorr 2007) and plant respiration (Atkin and Tjoelker 2003). The model is then applied over the 21st Century within the IMOGEN framework (Huntingford et al. 2004). Model simulations will provide new and improved projections of biogeochemical cycling, forest resilience, and thus more accurate projections of climate-carbon cycle feedbacks and the future evolution of the Earth System. Friedlingstein P, Cox PM, Betts R et al. (2006) Climate-carbon cycle feedback analysis, results from the C4MIP model intercomparison. Journal of Climate, 19, 3337-3353. Kattge J and Knorr W (2007): Temperature acclimation in a biochemical model of photosynthesis: a reanalysis of data from 36 species. Plant, Cell and Environment 30, 1176-1190 Atkin O.K and Tjoelker, M. G. (2003): Thermal acclimation and the dynamic response of plant respiration to temperature. Trends in Plant Science 8 (7), 343-351 Huntingford C, et al. (2004) Using a GCM analogue model to investigate the potential for Amazonian forest dieback. Theoretical and Applied Climatology, 78, 177-185.

  2. Key Challenges and New Trends in Battery Research (2011 EFRC Forum)

    ScienceCinema

    Tarascon, Jean Marie

    2018-02-13

    Jean-Marie Tarascon, Professor at the University de Picardie Jules Verne, France, was the fourth speaker in the May 26, 2011 EFRC Forum session, "Global Perspectives on Frontiers in Energy Research." In his presentation, Professor Tarascon recounted European basic research activates in electrical energy storage. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss "Science for our Nation's Energy Future." In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several “grand challenges” and use-inspired “basic research needs” recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.

  3. Voss videotapes the STS-105 crewmembers in the U.S. Laboratory

    NASA Image and Video Library

    2001-08-17

    ISS003-E-5188 (17 August 2001) --- Astronaut James S. Voss, Expedition Two flight engineer, photographs astronauts Scott J. Horowitz (front left), STS-105 mission commander, Frederick W. (Rick) Sturckow, pilot, Daniel T. Barry (back left), and Patrick G. Forrester, both mission specialists, in the Destiny laboratory on the International Space Station (ISS). This image was taken with a digital still camera.

  4. Paleohydrologic controls on soft-sediment deformation in the Navajo Sandstone

    NASA Astrophysics Data System (ADS)

    Bryant, Gerald; Cushman, Robert; Nick, Kevin; Miall, Andrew

    2016-10-01

    Many workers have noted the presence of contorted cross-strata in the Navajo Sandstone and other ancient eolianites, and have recognized their significance as indicators of sediment saturation during the accumulation history. Horowitz (1982) proposed a general model for the production of such features in ancient ergs by episodic, seismically induced liquefaction of accumulated sand. A key feature of that popular model is the prevalence of a flat water table, characteristic of a hyper-arid climatic regime, during deformation. Under arid climatic conditions, the water table is established by regional flow and liquefaction is limited to the saturated regions below the level of interdune troughs. However, various paleohydrological indicators from Navajo Sandstone outcrops point toward a broader range of water table configurations during the deformation history of that eolianite. Some outcrops reveal extensive deformation complexes that do not appear to have extended to the contemporary depositional surface. These km-scale zones of deformation, affecting multiple sets of cross-strata, and grading upward into undeformed crossbeds may represent deep water table conditions, coupled with high intensity triggers, which produced exclusively intrastratal deformation. Such occurrences contrast with smaller-scale complexes formed within the zone of interaction between the products of soft-sediment deformation and surface processes of deposition and erosion. The Horowitz model targets the smaller-scale deformation morphologies produced in this near-surface environment. This study examines the implications of a wet climatic regime for the Horowitz deformation model. It demonstrates how a contoured water table, characteristic of humid climates, may have facilitated deformation within active bedforms, as well as in the accumulation. Intra-dune deformation would enable deflation of deformation features during the normal course of dune migration, more parsimoniously accounting for: the frequent occurrence of erosionally truncated deformation structures in the Navajo Sandstone; the production of such erosional truncations during bedform climb and aggradation of the accumulation; and the dramatic fluctuations in the water table required to deposit dry eolian sand, deform those deposits under saturated conditions, and then dry the deformed sand to enable deflation.

  5. ARC-2008-ACD08-0218-003

    NASA Image and Video Library

    2008-09-30

    European Space Agency's 'Jules Verne' Automated Transfer Vehicle ATV-1 re-entry in Earth's atmosphere over Pacific Ocean. The breakup ad fragmentation of the ESA's ATV-1 was captured in dramatic fashion by scientists aboard NASA's DC-8 airborne laboratory and a Gulfstream V aircraft as it re-entered the atmosphere early Monday morning over the South Pacific. Photo Credit: NASA Ames Research Center/ESA/Jesse Carpenter/Bill Moede

  6. Controlling Cancer: Choices for a Healthy Life. Hearing before the Select Committee on Aging. House of Representatives, Ninety-Ninth Congress, First Session (Cranston, RI).

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. House Select Committee on Aging.

    This paper contains testimony and prepared statements from the Congressional hearing called to examine ways of controlling cancer. Opening statements are included from Representatives Claudine Schneider, Jim Lightfoot, and Ben Blaz. Testimonies are given by Rosemarie Lindgren, a homemaker and former cancer patient, and by Jules Cardin, a patient…

  7. ARC-2008-ACD08-0218-008

    NASA Image and Video Library

    2008-09-30

    European Space Agency's 'Jules Verne' Automated Transfer Vehicle ATV-1 re-entry in Earth's atmosphere over Pacific Ocean. The breakup ad fragmentation of the ESA's ATV-1 was captured in dramatic fashion by scientists aboard NASA's DC-8 airborne laboratory and a Gulfstream V aircraft as it re-entered the atmosphere early Monday morning over the South Pacific. Photo Credit: NASA Ames Research Center/ESA/Jesse Carpenter/Bill Moede

  8. ARC-2008-ACD08-0218-009

    NASA Image and Video Library

    2008-09-30

    European Space Agency's 'Jules Verne' Automated Transfer Vehicle ATV-1 re-entry in Earth's atmosphere over Pacific Ocean. The breakup ad fragmentation of the ESA's ATV-1 was captured in dramatic fashion by scientists aboard NASA's DC-8 airborne laboratory and a Gulfstream V aircraft as it re-entered the atmosphere early Monday morning over the South Pacific. Photo Credit: NASA Ames Research Center/ESA/Jesse Carpenter/Bill Moede

  9. Installing the new PCE (Proximity Communications Equipment) hardware

    NASA Image and Video Library

    2005-06-29

    ISS011-E-09799 (27 June 2005) --- Cosmonaut Sergei K. Krikalev, Expedition 11 commander representing Russia's Federal Space Agency, works with the new Proximity Communications Equipment (PCE) hardware of the ASN-M satellite navigation system for the European Automated Transfer Vehicle (ATV) “Jules Verne” in the Zvezda Service Module of the International Space Station. The ATV is scheduled to arrive at the Station next year.

  10. ARC-2008-ACD08-0218-001

    NASA Image and Video Library

    2008-09-30

    European Space Agency's 'Jules Verne' Automated Transfer Vehicle ATV-1 re-entry in Earth's atmosphere over Pacific Ocean. The breakup ad fragmentation of the ESA's ATV-1 was captured in dramatic fashion by scientists aboard NASA's DC-8 airborne laboratory and a Gulfstream V aircraft as it re-entered the atmosphere early Monday morning over the South Pacific. Photo Credit: NASA Ames Research Center/ESA/Jesse Carpenter/Bill Moede

  11. ARC-2008-ACD08-0218-010

    NASA Image and Video Library

    2008-09-30

    European Space Agency's 'Jules Verne' Automated Transfer Vehicle ATV-1 re-entry in Earth's atmosphere over Pacific Ocean. The breakup ad fragmentation of the ESA's ATV-1 was captured in dramatic fashion by scientists aboard NASA's DC-8 airborne laboratory and a Gulfstream V aircraft as it re-entered the atmosphere early Monday morning over the South Pacific. Photo Credit: NASA Ames Research Center/ESA/Jesse Carpenter/Bill Moede

  12. Academic Achievement, Pupil Participation and Integration of Group Work Skills in Secondary School Classrooms in Trinidad and Barbados

    ERIC Educational Resources Information Center

    Layne, Anthony; Jules, Vena; Kutnick, Peter; Layne, Clarissa

    2008-01-01

    Studies have shown a positive relationship between a rise in schooling levels and economic production [World Bank, 2005. A Time to Choose: Caribbean Development in the 21st Century. World Bank, Washington, DC; Jules, V., Panneflek, A., 2000. EFA in the Caribbean: Assessment 2000, Sub-Regional Report, vol. 2, The State of Education in the Caribbean…

  13. A motor-driven syringe-type gradient maker for forming immobilized pH gradient gels.

    PubMed

    Fawcett, J S; Sullivan, J V; Chidakel, B E; Chrambach, A

    1988-05-01

    A motor driven gradient maker based on the commercial model (Jule Inc., Trumbull, CT) was designed for immobilized pH gradient gels to provide small volumes, rapid stirring and delivery, strict volume and temperature control and air exclusion. The device was constructed and by a convenient procedure yields highly reproducible gradients either in solution or on polyacrylamide gels.

  14. ARC-2008-ACD08-0218-005

    NASA Image and Video Library

    2008-09-30

    European Space Agency's 'Jules Verne' Automated Transfer Vehicle ATV-1 re-entry in Earth's atmosphere over Pacific Ocean. The breakup ad fragmentation of the ESA's ATV-1 was captured in dramatic fashion by scientists aboard NASA's DC-8 airborne laboratory and a Gulfstream V aircraft as it re-entered the atmosphere early Monday morning over the South Pacific. Photo Credit: NASA Ames Research Center/ESA/Jesse Carpenter/Bill Moede

  15. ARC-2008-ACD08-0218-012

    NASA Image and Video Library

    2008-09-30

    European Space Agency's 'Jules Verne' Automated Transfer Vehicle ATV-1 re-entry in Earth's atmosphere over Pacific Ocean. The breakup ad fragmentation of the ESA's ATV-1 was captured in dramatic fashion by scientists aboard NASA's DC-8 airborne laboratory and a Gulfstream V aircraft as it re-entered the atmosphere early Monday morning over the South Pacific. Photo Credit: NASA Ames Research Center/ESA/Jesse Carpenter/Bill Moede

  16. ARC-2008-ACD08-0218-006

    NASA Image and Video Library

    2008-09-30

    European Space Agency's 'Jules Verne' Automated Transfer Vehicle ATV-1 re-entry in Earth's atmosphere over Pacific Ocean. The breakup ad fragmentation of the ESA's ATV-1 was captured in dramatic fashion by scientists aboard NASA's DC-8 airborne laboratory and a Gulfstream V aircraft as it re-entered the atmosphere early Monday morning over the South Pacific. Photo Credit: NASA Ames Research Center/ESA/Jesse Carpenter/Bill Moede

  17. ARC-2008-ACD08-0218-007

    NASA Image and Video Library

    2008-09-30

    European Space Agency's 'Jules Verne' Automated Transfer Vehicle ATV-1 re-entry in Earth's atmosphere over Pacific Ocean. The breakup ad fragmentation of the ESA's ATV-1 was captured in dramatic fashion by scientists aboard NASA's DC-8 airborne laboratory and a Gulfstream V aircraft as it re-entered the atmosphere early Monday morning over the South Pacific. Photo Credit: NASA Ames Research Center/ESA/Jesse Carpenter/Bill Moede

  18. ARC-2008-ACD08-0218-004

    NASA Image and Video Library

    2008-09-30

    European Space Agency's 'Jules Verne' Automated Transfer Vehicle ATV-1 re-entry in Earth's atmosphere over Pacific Ocean. The breakup ad fragmentation of the ESA's ATV-1 was captured in dramatic fashion by scientists aboard NASA's DC-8 airborne laboratory and a Gulfstream V aircraft as it re-entered the atmosphere early Monday morning over the South Pacific. Photo Credit: NASA Ames Research Center/ESA/Jesse Carpenter/Bill Moede

  19. ARC-2008-ACD08-0218-011

    NASA Image and Video Library

    2008-09-30

    European Space Agency's 'Jules Verne' Automated Transfer Vehicle ATV-1 re-entry in Earth's atmosphere over Pacific Ocean. The breakup ad fragmentation of the ESA's ATV-1 was captured in dramatic fashion by scientists aboard NASA's DC-8 airborne laboratory and a Gulfstream V aircraft as it re-entered the atmosphere early Monday morning over the South Pacific. Photo Credit: NASA Ames Research Center/ESA/Jesse Carpenter/Bill Moede

  20. ARC-2008-ACD08-0218-002

    NASA Image and Video Library

    2008-09-30

    European Space Agency's 'Jules Verne' Automated Transfer Vehicle ATV-1 re-entry in Earth's atmosphere over Pacific Ocean. The breakup ad fragmentation of the ESA's ATV-1 was captured in dramatic fashion by scientists aboard NASA's DC-8 airborne laboratory and a Gulfstream V aircraft as it re-entered the atmosphere early Monday morning over the South Pacific. Photo Credit: NASA Ames Research Center/ESA/Jesse Carpenter/Bill Moede

  1. Further evaluation of wetland emission estimates from the JULES land surface model using SCIAMACHY and GOSAT atmospheric column methane measurements

    NASA Astrophysics Data System (ADS)

    Hayman, Garry; Comyn-Platt, Edward; McNorton, Joey; Chipperfield, Martyn; Gedney, Nicola

    2016-04-01

    The atmospheric concentration of methane began rising again in 2007 after a period of near-zero growth [1,2], with the largest increases observed over polar northern latitudes and the Southern Hemisphere in 2007 and in the tropics since then. The observed inter-annual variability in atmospheric methane concentrations and the associated changes in growth rates have variously been attributed to changes in different methane sources and sinks [2,3]. Wetlands are generally accepted as being the largest, but least well quantified, single natural source of CH4, with global emission estimates ranging from 142-284 Tg yr-1 [3]. The modelling of wetlands and their associated emissions of CH4 has become the subject of much current interest [4]. We have previously used the HadGEM2 chemistry-climate model to evaluate the wetland emission estimates derived using the UK community land surface model (JULES, the Joint UK Land Earth Simulator) against atmospheric observations of methane, including SCIAMACHY total methane columns [5] up to 2007. We have undertaken a series of new HadGEM2 runs using new JULES emission estimates extended in time to the end of 2012, thereby allowing comparison with both SCIAMACHY and GOSAT atmospheric column methane measurements. We will describe the results of these runs and the implications for methane wetland emissions. References [1] Rigby, M., et al.: Renewed growth of atmospheric methane. Geophys. Res. Lett., 35, L22805, 2008; [2] Nisbet, E.G., et al.: Methane on the Rise-Again, Science 343, 493, 2014; [3] Kirschke, S., et al.,: Three decades of global methane sources and sinks, Nature Geosciences, 6, 813-823, 2013; [4] Melton, J. R., et al.: Present state of global wetland extent and wetland methane modelling: conclusions from a model inter-comparison project (WETCHIMP), Biogeosciences, 10, 753-788, 2013; [5] Hayman, G.D., et al.: Comparison of the HadGEM2 climate-chemistry model against in situ and SCIAMACHY atmospheric methane data, Atmos. Chem. Phys., 14, 13257-13280, 2014.

  2. STS-101 Commander Halsell checks landing spot on runway

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-101 Commander James D. Halsell Jr. gives a thumbs up after looking at the perfect wheel stop that straddles the center line on Runway 15 of KSC's Shuttle Landing Facility. The other crew members standing at left are Mission Specialists Jeffrey N. Williams, Susan J. Helms, Mary Ellen Weber; Pilot Scott 'Doc' Horowitz; and Mission Specialists James S. Voss and Yury Usachev. The STS-101 crew returned from the third flight to the International Space Station, providing maintenance and carrying supplies for future missions. Main gear touchdown was at 2:20:17 a.m. EDT May 29 , landing on orbit 155 of the mission. Nose gear touchdown was at 2:20:30 a.m. EDT, and wheel stop at 2:21:19 a.m. EDT. This was the 98th flight in the Space Shuttle program and the 21st for Atlantis, also marking the 51st landing at KSC, the 22nd consecutive landing at KSC, the 14th nighttime landing in Shuttle history and the 29th in the last 30 Shuttle flights.

  3. Constellation Program Press Conference

    NASA Image and Video Library

    2006-06-04

    NASA Administrator Michael Griffin, seated left, Scott Horowitz, NASA Associate Administrator for Exploration Systems and Jeff Hanley, Constellation Program Manager, right, are seen during a press conference outlining specific center responsibilities associated with the Constellation Program for robotic and human moon and Mars exploration, Monday, June 5, 2006, at NASA Headquarters in Washington. Dean Acosta, NASA Deputy Assistant Administrator and Press Secretary, far left, moderates the program. Photo Credit (NASA/Bill Ingalls)

  4. STS-105 crewmembers pose for their group photo in the U.S. Laboratory

    NASA Image and Video Library

    2001-08-17

    ISS003-E-5190 (17 August 2001) --- The STS-105 crew members pause for this group photo in the Destiny laboratory on the International Space Station (ISS). Clockwise from bottom are, Scott J. Horowitz and Frederick W. (Rick) Sturckow, mission commander and pilot, respectively, Patrick G. Forrester and Daniel T. Barry, both mission specialists. This image was taken with a digital still camera.

  5. Levain et Levier: Le partenariat en educatoin, les nouvelles dynamiques educatives et societales (Leaven and Lever: The Partnership in Education, the New Educational and Societal Dynamics).

    ERIC Educational Resources Information Center

    Tschoumy, Jacques-Andre

    This document examines the trend of school partnership both inside and outside the educational system. The report asks three questions: what is motivating European partners?; is the phenomenon of partnership really European?; and is this the end of the school of Jules Ferry? School partnership history, strategy, and axiomatics or rules are…

  6. Testing the newly installed PCE (Proximity Communications Equipment) hardware

    NASA Image and Video Library

    2005-06-29

    ISS011-E-09816 (28 June 2005) --- Cosmonaut Sergei K. Krikalev, Expedition 11 commander representing Russia's Federal Space Agency, tests the newly installed Proximity Communications Equipment (PCE) hardware of the ASN-M satellite navigation system for the European Automated Transfer Vehicle (ATV) “Jules Verne” in the Zvezda Service Module of the International Space Station. The ATV is scheduled to arrive at the Station next year.

  7. Testing the newly installed PCE (Proximity Communications Equipment) hardware

    NASA Image and Video Library

    2005-06-28

    ISS011-E-09812 (28 June 2005) --- Cosmonaut Sergei K. Krikalev, Expedition 11 commander representing Russia's Federal Space Agency, tests the newly installed Proximity Communications Equipment (PCE) hardware of the ASN-M satellite navigation system for the European Automated Transfer Vehicle (ATV) “Jules Verne” in the Zvezda Service Module of the international space station. The ATV is scheduled to arrive at the station next year.

  8. Pioneers of high-speed photography and motion analysis

    NASA Astrophysics Data System (ADS)

    Haddleton, Graham P.

    2005-03-01

    In many ways this paper continues from the one presented at the 25th ICHSPP held in Beaune, France in 2002. That paper was on Etienne-Jules Marey, a true pioneer of high speed photographic techniques and cinematography, who was born in Beaune. Whilst researching for that paper the author became fascinated by the efforts and results of many pioneers in the field at the turn of the 19th century.

  9. The Met Office Unified Model Global Atmosphere 6.0/6.1 and JULES Global Land 6.0/6.1 configurations

    NASA Astrophysics Data System (ADS)

    Walters, David; Boutle, Ian; Brooks, Malcolm; Melvin, Thomas; Stratton, Rachel; Vosper, Simon; Wells, Helen; Williams, Keith; Wood, Nigel; Allen, Thomas; Bushell, Andrew; Copsey, Dan; Earnshaw, Paul; Edwards, John; Gross, Markus; Hardiman, Steven; Harris, Chris; Heming, Julian; Klingaman, Nicholas; Levine, Richard; Manners, James; Martin, Gill; Milton, Sean; Mittermaier, Marion; Morcrette, Cyril; Riddick, Thomas; Roberts, Malcolm; Sanchez, Claudio; Selwood, Paul; Stirling, Alison; Smith, Chris; Suri, Dan; Tennant, Warren; Vidale, Pier Luigi; Wilkinson, Jonathan; Willett, Martin; Woolnough, Steve; Xavier, Prince

    2017-04-01

    We describe Global Atmosphere 6.0 and Global Land 6.0 (GA6.0/GL6.0): the latest science configurations of the Met Office Unified Model and JULES (Joint UK Land Environment Simulator) land surface model developed for use across all timescales. Global Atmosphere 6.0 includes the ENDGame (Even Newer Dynamics for General atmospheric modelling of the environment) dynamical core, which significantly increases mid-latitude variability improving a known model bias. Alongside developments of the model's physical parametrisations, ENDGame also increases variability in the tropics, which leads to an improved representation of tropical cyclones and other tropical phenomena. Further developments of the atmospheric and land surface parametrisations improve other aspects of model performance, including the forecasting of surface weather phenomena. We also describe GA6.1/GL6.1, which includes a small number of long-standing differences from our main trunk configurations that we continue to require for operational global weather prediction. Since July 2014, GA6.1/GL6.1 has been used by the Met Office for operational global numerical weather prediction, whilst GA6.0/GL6.0 was implemented in its remaining global prediction systems over the following year.

  10. Modulation of TIP60 by Human Papilloma Virus in Breast Cancer

    DTIC Science & Technology

    2013-04-01

    infection caused by adenovirus make us hypothesize that adenovirus can also be a etiological agent or can augment the breast epithelial cells...cells. These cells were cultured in selective HAT medium to select for fused cells called Hybridoma cells. These hybridoma cells were cultured and...KJ, Horowitz JM, Friend SH, Raybuck M, Weinberg RA et al. Association between an oncogenes and an anti -oncogene: the adenovirus EIA protein binds to

  11. Intrusive Thought and Relativity Associated with Task Performance

    DTIC Science & Technology

    1995-01-23

    currently living with a partner; Ninety percent of participants were full-time students, 8 percent were employed full-time, and 2 percent were unemployed ...employed full-time 2% unemployed 83% Caucasian 8% Asian 7% African American 2% Hispanic 80% some college 8% high school 5% college degree 5...Research, 11, 213--21B. Horowitz, M.J. (1969). Psychic trauma: Return of images after a stress film. Archives of General Psychiatry, 20, 552- 559

  12. History of the Combat Zone Tax Exclusion

    DTIC Science & Technology

    2011-09-01

    and Accounting Service (DFAS), Military Pay Tables, 1943 and 1945. Note: Minimum and maximum pay values vary within grades due to a member’s years of...Horowitz, Task Leader Log: H 11-001279 Approved for public release; distribution is unlimited. The Institute for Defense Analyses is a non- profit ...instrumental to the functioning of a fair tax system for members of the armed services. Despite its historical ties to wartime finance, the income tax

  13. Development and experimental qualification of a calculation scheme for the evaluation of gamma heating in experimental reactors. Application to MARIA and Jules Horowitz (JHR) MTR Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarchalski, M.; Pytel, K.; Wroblewska, M.

    2015-07-01

    Precise computational determination of nuclear heating which consists predominantly of gamma heating (more than 80 %) is one of the challenges in material testing reactor exploitation. Due to sophisticated construction and conditions of experimental programs planned in JHR it became essential to use most accurate and precise gamma heating model. Before the JHR starts to operate, gamma heating evaluation methods need to be developed and qualified in other experimental reactor facilities. This is done inter alia using OSIRIS, MINERVE or EOLE research reactors in France. Furthermore, MARIA - Polish material testing reactor - has been chosen to contribute to themore » qualification of gamma heating calculation schemes/tools. This reactor has some characteristics close to those of JHR (beryllium usage, fuel element geometry). To evaluate gamma heating in JHR and MARIA reactors, both simulation tools and experimental program have been developed and performed. For gamma heating simulation, new calculation scheme and gamma heating model of MARIA have been carried out using TRIPOLI4 and APOLLO2 codes. Calculation outcome has been verified by comparison to experimental measurements in MARIA reactor. To have more precise calculation results, model of MARIA in TRIPOLI4 has been made using the whole geometry of the core. This has been done for the first time in the history of MARIA reactor and was complex due to cut cone shape of all its elements. Material composition of burnt fuel elements has been implemented from APOLLO2 calculations. An experiment for nuclear heating measurements and calculation verification has been done in September 2014. This involved neutron, photon and nuclear heating measurements at selected locations in MARIA reactor using in particular Rh SPND, Ag SPND, Ionization Chamber (all three from CEA), KAROLINA calorimeter (NCBJ) and Gamma Thermometer (CEA/SCK CEN). Measurements were done in forty points using four channels. Maximal nuclear heating evaluated from measurements is of the order of 2.5 W/g at half of the possible MARIA power - 15 MW. The approach and the detailed program for experimental verification of calculations will be presented. The following points will be discussed: - Development of a gamma heating model of MARIA reactor with TRIPOLI 4 (coupled neutron-photon mode) and APOLLO2 model taking into account the key parameters like: configuration of the core, experimental loading, control rod location, reactor power, fuel depletion); - Design of specific measurement tools for MARIA experiments including for instance a new single-cell calorimeter called KAROLINA calorimeter; - MARIA experimental program description and a preliminary analysis of results; - Comparison of calculations for JHR and MARIA cores with experimental verification analysis, calculation behavior and n-γ 'environments'. (authors)« less

  14. The Importance of Architecture in DoD Software

    DTIC Science & Technology

    1991-07-01

    01282 92 1 14 060 M91-35 The Importance of Architecture in DOD Software S ACCesion For- * DTIC "r,’L- .S Dr. Barry M. Horowitz July 1991 D;.t ibto...resource utilization: architecture determines how the system sustains , 06 operations when parts of the system fail. The architecture also determines...software maintainers to ensure that we deliver to them whatever is necessary for them Medium to sustain and use the architecture . Fault Rate 37% Getting

  15. STS-82 Suit-up for Post Insertion Training in Crew Compartment Trainer 2

    NASA Image and Video Library

    1996-10-30

    S96-18556 (30 Oct. 1996) --- Astronauts Scott J. Horowitz (standing) and Kenneth D. Bowersox wind up suit donning for a training session in JSC's systems integration facility. Wearing training versions of the partial pressure launch and entry escape suit, the STS-82 pilot and mission commander joined their crewmates in simulating an emergency ejection, using an escape pole on the mid deck, as well as other phases of their scheduled February mission.

  16. STS-82 Suit-up for Post Insertion Training in Crew Compartment Trainer 2

    NASA Image and Video Library

    1996-10-30

    S96-18552 (30 Oct. 1996) --- Astronaut Kenneth D. Bowersox (left), STS-82 mission commander, chats with astronaut Scott J. Horowitz prior to an emergency bailout training session in JSC's systems integration facility. Wearing training versions of the partial pressure launch and entry escape suit, Bowersox and his crew simulated an emergency ejection, using the escape pole system on the mid deck, as well as other phases of their scheduled February mission.

  17. Electrochemical and Photochemical Treatment of Aqueous Waste Streams

    DTIC Science & Technology

    1996-01-01

    TREATMENT OF AQUEOUS WASTE STREAMS Joseph C. Farmer, Richard W. Pekala, Francis T. Wang, David V. Fix, Alan M. Volpe, Daniel D. Dietrich, William H...STREAMS Joseph C. Farmer, Richard W. Pekala, Francis T. Wang, David V. Fix, Alan M. Volpe, Daniel D. Dietrich, William H. Siegel and James F. Carley...1992). Wilbourne , C. M. Wong, , W. S. Gillam, S. Johnson, R. H. Horowitz, "Electrosorb Process for Desalting Water," Res. Dev. Prog. Rept. No. 516, 16. J

  18. STS-75 Flight Day 10

    NASA Technical Reports Server (NTRS)

    1996-01-01

    On this tenth day of the STS-75 mission, the flight crew, Cmdr. Andrew Allen, Pilot Scott Horowitz, Payload Cmdr. Franklin Chang-Diaz, Payload Specialist Umberto Guidoni (Italy), and Missions Specialists Jeffrey Hoffman, Maurizio Cheli (ESA), and Claude Nicollier (ESA), are shown performing middeck and Microgravity lab experiments, including the Material pour l'Etude des Phenomenes Interessant la Solidification sur Terre et en Orbite (MEPHISTO) experiment, as well as some material burn tests. Earth views include cloud cover and horizon shots.

  19. Selected Tools and Techniques for Physical and Biological Monitoring of Aquatic Dredged Material Disposal Sites

    DTIC Science & Technology

    1990-09-01

    expanded in a specific direction if movement is indicated. Controlled dumping at precise coordinates or at marker buoys may reduce the required survey area...of the meters or theft of the marker buoys. Subsurface markers using acoustic releases prevent vandalism and loss of marker buoys, but they...data from field studies such as impact investigations ’Underwood 1981; Heck and Horowitz 1984; Hurlbert 1984; Millard and Lettenmaier 1986; Stewart

  20. Proceedings of the Second IDA-CIISS Workshop: Common Security Challenges and Defense Personnel Costs

    DTIC Science & Technology

    2008-01-01

    exchanges with about 100 relevant research institutions in more than 50 countries . CIISS believes the academic exchanges in the forms of exchanging...personnel costs. Session 4 focused on the personnel portion of total defense costs in both countries , with Stanley Horowitz discussing DoD personnel...was the system was intended to deal with rogue countries and the system was not capable of dealing with China. Secretary Gates called for more

  1. The Antiaircraft Journal. Volume 94, Number 2, March-April 1951

    DTIC Science & Technology

    1951-04-01

    are covered in detail. Included under a miscellaneous heading are such topics as the Geneva Conven- tion and extracts from the .United Na- tions Charter...serve as a review for many of the principles associated with guided missiles. They originally were presented in the May 1950 issue of Oil -Power...published by Socony-Vacuum Oil Company, Inc. Hats off to H. G. Wells and Jules Verne! As juvenile readers, most of us thrilled to their seemingly fantastic

  2. Julie Payette and Tamara Jernigan in FGB/Zarya module

    NASA Image and Video Library

    2017-04-20

    S96-E-5161 (2 June 1999) --- Astronauts Jule Payette (left) and Tamara E. Jernigan, mission specialists, participate in the final hours of tasks designed to prepare the International Space Station (ISS) for business. Here, on the Russian-built Zarya module, the two are seen with a small part of the supplies brought up by the Space Shuttle Discovery. The photo was taken with an electronic still camera (ESC) at 05:58:37 GMT, June 2, 1999.

  3. Reflections on the Conception, Birth, and Childhood of Numerical Weather Prediction

    NASA Astrophysics Data System (ADS)

    Lorenz, Edward N.

    2006-05-01

    In recognition of the contributions of Norman Phillips and Joseph Smagorinsky to the field of numerical weather prediction (NWP), a symposium was held in 2003; this account is an amplification of a talk presented there. Ideas anticipating the advent of NWP, the first technically successful numerical weather forcast, and the subsequent progression of NWP to a mature discipline are described, with special emphasis on the work of Phillips and Smagorinsky and their mentor Jule Charney.

  4. Numerical calculation of the entanglement entropy for scalar field in dilaton spacetimes

    NASA Astrophysics Data System (ADS)

    Huang, Shifeng; Fang, Xiongjun; Jing, Jiliang

    2018-06-01

    Using coupled harmonic oscillators model, we numerical analyze the entanglement entropy of massless scalar field in Gafinkle-Horowitz-Strominger (GHS) dilaton spacetime and Gibbons-Maeda (GM) dilaton spacetime. By numerical fitting, we find that the entanglement entropy of the dilaton black holes receive contribution from dilaton charge and is proportional to the area of the event horizon. It is interesting to note that the results of numerical fitting are coincide with ones obtained by using brick wall method and Euclidean path integral approach.

  5. Constellation Program Update

    NASA Image and Video Library

    2006-06-04

    NASA Administrator Michael Griffin is seen through a television camera at a NASA Update announcing to NASA employees and members of the media the responsibilities of the NASA centers associated with the Constellation Program for robotic and human Moon and Mars exploration on Wednesday, June 5, 2006, at NASA Headquarters in Washington. Griffin was joined by Scott J. Horowitz, NASA Associate Administrator for Exploration Systems and Jeff Hanley, Constellation Program Manager, right. Dean Acosta, NASA Deputy Assistant Administrator and Press Secretary, far left, moderates the program. Photo Credit: (NASA/Bill Ingalls)

  6. KSC-01pp1330

    NASA Image and Video Library

    2001-07-19

    KENNEDY SPACE CENTER, Fla. -- At Launch Pad 39A, STS-105 Commander Scott Horowitz puts on a gas mask as part of Terminal Countdown Demonstration Test activities, which also include emergency egress, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch is scheduled no earlier than Aug. 9, 2001

  7. KSC-97pc277

    NASA Image and Video Library

    1997-02-11

    Looking relaxed and ready to fly, the STS-82 crew departs from the Operations and Checkout Building en route to Launch Pad 39A, where the Space Shuttle Discovery awaits liftoff on a 10-day mission to service the Hubble Space Telescope (HST). Leading the way is Mission Commander Kenneth D. Bowersox. Following him, clockwise from left front, are Mission Specialist Steven L. Smith, Payload Commander Mark C. Lee, Mission Specialists Gregory J. Harbaugh, Steven A. Hawley and Joseph R. "Joe" Tanner and Pilot Scott J. "Doc" Horowitz

  8. In Defense of Freedom: Protection of Human Rights at Home and Abroad

    DTIC Science & Technology

    2010-10-01

    ed. The World of Child Labor: An Historical and Regional Survey. Armonk: M.E. Sharpe, 2009. (HD 6231 .W67 2009) Hollenbach, David, ed. Driven from...no. 2 (Summer 2007 ): 163-74 Horowitz, Andrew W. and Julie R. Trivitt. "Does Child Labor Reduce Youth Crime?" Kyklos 60, no. 4 (November 2007...Parreńas. "Screening Sexual Slavery? Southeast Asian Gonzo Porn and US Anti-Trafficking Law." Sexualities 13, no. 2 (April 2010 ): 161-70 Siraj, Mazhar

  9. Electrosorption of Chromium Ions on Carbon Aerogel Electrodes as a Means of Remediating Ground Water

    DTIC Science & Technology

    1996-01-01

    Aerogel Electrodes as a Means of Remediating Ground Water Joseph C. Farmer, Sally M. Bahowick, Jackson E. Harrar, David V. Fix, Roger E. Martinelli...Newman, R. G. Wilbourne , C. M. Wong,, W. S. Gillam, S. Johnson, R. H. Horowitz, "Electrosorb Process for Desalting Water," Office of Saline Water...Research and Development Progress Report No. 516, U.S. Dept. Interior Pub. 200 056, March 1970, 31 p. 15. A. M. Johnson, A. W. Venolia, R. G. Wilbourne , J

  10. Meal for Expedition Two, Three and STS-105 crews in the ISS Service Module/Zvezda

    NASA Image and Video Library

    2001-08-15

    STS105-E-5198 (15 August 2001) --- Ten astronauts and cosmonauts dine in the Zvezda Service Module. Clockwise from lower left corner are Scott J. Horowitz, Frederick W. (Rick) Sturckow, Vladimir N. Dezhurov, Mikhail Tyurin, Susan J. Helms, Frank L. Culbertson, Yury V. Usachev, James S. Voss and Patrick G. Forrester. Daniel T. Barry is out of frame at lower right. Dezhurov, Tyurin and Usachev represent Rosaviakosmos. The image was recorded with a digital still camera.

  11. Beyond equilibrium climate sensitivity

    NASA Astrophysics Data System (ADS)

    Knutti, Reto; Rugenstein, Maria A. A.; Hegerl, Gabriele C.

    2017-10-01

    Equilibrium climate sensitivity characterizes the Earth's long-term global temperature response to increased atmospheric CO2 concentration. It has reached almost iconic status as the single number that describes how severe climate change will be. The consensus on the 'likely' range for climate sensitivity of 1.5 °C to 4.5 °C today is the same as given by Jule Charney in 1979, but now it is based on quantitative evidence from across the climate system and throughout climate history. The quest to constrain climate sensitivity has revealed important insights into the timescales of the climate system response, natural variability and limitations in observations and climate models, but also concerns about the simple concepts underlying climate sensitivity and radiative forcing, which opens avenues to better understand and constrain the climate response to forcing. Estimates of the transient climate response are better constrained by observed warming and are more relevant for predicting warming over the next decades. Newer metrics relating global warming directly to the total emitted CO2 show that in order to keep warming to within 2 °C, future CO2 emissions have to remain strongly limited, irrespective of climate sensitivity being at the high or low end.

  12. The Cincinnati Observatory as a Research Instrument for Undergraduate Research

    NASA Astrophysics Data System (ADS)

    Abel, Nicholas; Regas, Dean; Flateau, Davin C.; Larrabee, Cliff

    2016-06-01

    The Cincinnati Observatory, founded in 1842, was the first public observatory in the Western Hemisphere. The history of Cincinnati is closely intertwined with the history of the Observatory, and with the history of science in the United States. Previous directors of the Observatory helped to create the National Weather Service, the Minor Planet Center, and the first astronomical journal in the U.S. The Cincinnati Observatory was internationally known in the late 19th century, with Jules Verne mentioning the Cincinnati Observatory in two of his books, and the Observatory now stands as a National Historic Landmark.No longer a research instrument, the Observatory is now a tool for promoting astronomy education to the general public. However, with the 11" and 16" refracting telescopes, the Observatory telescopes are very capable of collecting data to fuel undergraduate research projects. In this poster, we will discuss the history of the Observatory, types of student research projects capable with the Cincinnati Observatory, future plans, and preliminary results. The overall goal of this project is to produce a steady supply of undergraduate students collecting, analyzing, and interpreting data, and thereby introduce them to the techniques and methodology of an astronomer at an early stage of their academic career.

  13. Expedition 17 Automated Transfer Vehicle (ATV) Undocking

    NASA Image and Video Library

    2008-09-05

    ISS017-E-015468 (5 Sept. 2008) --- Backdropped by the blackness of space, European Space Agency's (ESA) "Jules Verne" Automated Transfer Vehicle (ATV) begins its relative separation from the International Space Station. The ATV undocked from the aft port of the Zvezda Service Module at 4:29 p.m. (CDT) on Sept. 5, 2008 and was placed in a parking orbit for three weeks, scheduled to be deorbited on Sept. 29 when lighting conditions are correct for an ESA imagery experiment of reentry.

  14. Expedition 17 Automated Transfer Vehicle (ATV) Undocking

    NASA Image and Video Library

    2008-09-05

    ISS017-E-015496 (5 Sept. 2008) --- Backdropped by a blanket of clouds, European Space Agency's (ESA) "Jules Verne" Automated Transfer Vehicle (ATV) continues its relative separation from the International Space Station. The ATV undocked from the aft port of the Zvezda Service Module at 4:29 p.m. (CDT) on Sept. 5, 2008 and was placed in a parking orbit for three weeks, scheduled to be deorbited on Sept. 29 when lighting conditions are correct for an ESA imagery experiment of reentry.

  15. Expedition 17 Automated Transfer Vehicle (ATV) Undocking

    NASA Image and Video Library

    2008-09-05

    ISS017-E-015451 (5 Sept. 2008) --- Backdropped by Earth's horizon and the blackness of space, European Space Agency's (ESA) "Jules Verne" Automated Transfer Vehicle (ATV) begins its relative separation from the International Space Station. The ATV undocked from the aft port of the Zvezda Service Module at 4:29 p.m. (CDT) on Sept. 5, 2008 and was placed in a parking orbit for three weeks, scheduled to be deorbited on Sept. 29 when lighting conditions are correct for an ESA imagery experiment of reentry.

  16. Expedition 17 Automated Transfer Vehicle (ATV) Undocking

    NASA Image and Video Library

    2008-09-05

    ISS017-E-015446 (5 Sept. 2008) --- Backdropped by the blackness of space, European Space Agency's (ESA) "Jules Verne" Automated Transfer Vehicle (ATV) begins its relative separation from the International Space Station. The ATV undocked from the aft port of the Zvezda Service Module at 4:29 p.m. (CDT) on Sept. 5, 2008 and was placed in a parking orbit for three weeks, scheduled to be deorbited on Sept. 29 when lighting conditions are correct for an ESA imagery experiment of reentry.

  17. Rubidium-strontium date of possibly 3 billion years for a granitic rock from antarctica.

    PubMed

    Halpern, M

    1970-09-04

    A single total rock sample of biotite granite from Jule Peaks, Antarctica, has been dated by the rubidium-strontium method at about 3 billion years. The juxtaposition of this sector of Antarctica with Africa in the Dietz and Sproll continental drift reconstruction results in a possible geochronologic fit of the Princess Martha Coast of Antarctica with a covered possible notheastern extension of the African Swaziland Shield, which contains granitic rocks that are also 3 billion years old.

  18. Orbital Debris Quarterly News. Volume 13; No. 1

    NASA Technical Reports Server (NTRS)

    Liou, J.-C. (Editor); Shoots, Debi (Editor)

    2009-01-01

    Topics discussed include: new debris from a decommissioned satellite with a nuclear power source; debris from the destruction of the Fengyun-1C meteorological satellite; quantitative analysis of the European Space Agency's Automated Transfer Vehicle 'Jules Verne' reentry event; microsatellite impact tests; solar cycle 24 predictions and other long-term projections and geosynchronus (GEO) environment for the Orbital Debris Engineering Model (ORDEM2008). Abstracts from the NASA Orbital Debris Program Office, examining satellite reentry risk assessments and statistical issues for uncontrolled reentry hazards, are also included.

  19. Estimating the CO2 mitigation potential of horizontal Ground Source Heat Pumps in the UK

    NASA Astrophysics Data System (ADS)

    Garcia-Gonzalez, R.; Verhoef, A.; Vidale, P. L.; Gan, G.; Chong, A.; Clark, D.

    2012-04-01

    By 2020, the UK will need to generate 15% of its energy from renewables to meet our contribution to the EU renewable energy target. Heating and cooling systems of buildings account for 30%-50% of the global energy consumption; thus, alternative low-carbon technologies such as horizontal Ground Couple Heat Pumps (GCHPs) can contribute to the reduction of anthropogenic CO2 emissions. Horizontal GCHPs currently represent a small fraction of the total energy generation in the UK. However, the fact that semi-detached and detached dwellings represent approximately 40% of the total housing stocks in the UK could make the widespread implementation of this technology particularly attractive in the UK and so could significantly increase its renewable energy generation potential. Using a simulation model, we analysed the dynamic interactions between the environment, the horizontal GCHP heat exchanger and typical UK dwellings, as well as their combined effect on heat pump performance and CO2 mitigation potential. For this purpose, a land surface model (JULES, Joint UK Land Environment Simulator), which calculates coupled soil heat and water fluxes, was combined with a heat extraction model. The analyses took into account the spatio-temporal variability of soil properties (thermal and hydraulic) and meteorological variables, as well as different horizontal GCHP configurations and a variety of building loads and heat demands. Sensitivity tests were performed for four sites in the UK with different climate and soil properties. Our results show that an installation depth of 1.0m would give us higher heat extractions rates, however it would be preferable to install the pipes slightly deeper to avoid the seasonal influence of variable meteorological conditions. A value of 1.5m for the spacing between coils (S) for a slinky configuration type is recommended to avoid thermal disturbances between neighbouring coils. We also found that for larger values of the spacing between the coils (S > 2), a slinky coil diameter (D) of 0.8m might be a better choice in terms of heat extraction rate. The fluid temperature of the pipe had a direct effect on the heat extraction rates of the system. The coefficient of performance of a heat pump did not remain constant and depended on the operating conditions and outdoor temperatures. The outcomes of this study will allow us to give recommendations to installers and relevant government bodies concerning the optimal configuration of future installations of horizontal GCHPs at UK developments. Finally, long-term simulations with the coupled JULES-GCHP model, using high resolution (1 km) meteorological (historical and projected data), soil physical and land cover data over the entire UK-domain, will allow us to explore the effect that global warming will have on future surface and soil temperatures, as well as soil moisture contents, and therefore its impact on the energy demand of the buildings and the CO2 mitigation potential of this type of renewable energy.

  20. Contribution of Jules Froment to the study of parkinsonian rigidity.

    PubMed

    Broussolle, Emmanuel; Krack, Paul; Thobois, Stéphane; Xie-Brustolin, Jing; Pollak, Pierre; Goetz, Christopher G

    2007-05-15

    Rigidity is commonly defined as a resistance to passive movement. In Parkinson's disease (PD), two types of rigidity are classically recognized which may coexist, "leadpipe " and "cogwheel". Charcot was the first to investigate parkinsonian rigidity during the second half of the nineteenth century, whereas Negro and Moyer described cogwheel rigidity at the beginning of the twentieth century. Jules Froment, a French neurologist from Lyon, contributed to the study of parkinsonian rigidity during the 1920s. He investigated rigidity of the wrist at rest in a sitting position as well as in stable and unstable standing postures, both clinically and with physiological recordings using a myograph. With Gardère, Froment described enhanced resistance to passive movements of a limb about a joint that can be detected specifically when there is a voluntary action of another contralateral body part. This has been designated in the literature as the "Froment's maneuver " and the activation or facilitation test. In addition, Froment showed that parkinsonian rigidity diminishes, vanishes, or enhances depending on the static posture of the body. He proposed that in PD "maintenance stabilization " of the body is impaired and that "reactive stabilization " becomes the operative mode of muscular tone control. He considered "rigidification " as compensatory against the forces of gravity. Froment also demonstrated that parkinsonian rigidity increases during the Romberg test, gaze deviation, and oriented attention. In their number, breadth, and originality, Froment's contributions to the study of parkinsonian rigidity remain currently relevant to clinical and neurophysiological issues of PD. (c) 2007 Movement Disorder Society.

  1. Astronaut Voss Works in the Destiny Laboratory

    NASA Technical Reports Server (NTRS)

    2001-01-01

    In this photograph, Astronaut James Voss, flight engineer of Expedition Two, performs a task at a work station in the International Space Station (ISS) Destiny Laboratory, or U.S. Laboratory, as Astronaut Scott Horowitz, STS-105 mission commander, floats through the hatchway leading to the Unity node. After spending five months aboard the orbital outpost, the ISS Expedition Two crew was replaced by Expedition Three and returned to Earth aboard the STS-105 Space Shuttle Discovery on August 22, 2001. The Orbiter Discovery was launched from the Kennedy Space Center on August 10, 2001.

  2. STS-101 Crew Portrait

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Six astronauts and a Russian cosmonaut comprised the STS-101 mission that launched aboard the Space Shuttle Atlantis on May 19, 2000 at 5:11 am (CDT). Seated in front are astronauts James D. Halsell (right), mission commander; and Scott J. Horowitz, pilot. Others, from the left, are Mary Ellen Weber, Jeffrey N. Williams, Yury V. Usachev, James S. Voss and Susan J. Helms, all mission specialists. Usachev represents the Russian Space Agency (RSA). The crew of the STS- 101 mission refurbished and replaced components in both the Zarya and Unity modules, with top priority being the Zarya module.

  3. KSC-97pc276

    NASA Image and Video Library

    1997-02-11

    STS-82 Mission Commander Kenneth D. Bowersox leads the way to the astronaut van as the crew departs from the Operations and Checkout Building en route to Launch Pad 39A, where the Space Shuttle Discovery awaits liftoff on a 10-day mission to service the Hubble Space Telescope (HST). Directly behind him is Pilot Scott J. "Doc" Horowitz. The other five crew members, clockwise from left, are Mission Specialist Steven L. Smith, Payload Commander Mark C. Lee, and Mission Specialists Steven A. Hawley, Gregory J. Harbaugh and Joseph R. "Joe" Tanner

  4. KSC-97pc187

    NASA Image and Video Library

    1997-01-21

    STS-82 Mission Commander, far left, takes a photograph of his fellow crew members Pilot Scott J. "Doc" Horowitz, at far right, and Mission Specialist Joseph R. "Joe" Tanner while they are training in the M-113 armored personnel carrier. George Hoggard, a training officer with KSC Fire Services, looks on. The STS-82 crew is at KSC to participate in the Terminal Countdown Demonstration Test (TCDT), a dress rehearsal for launch. The 10-day flight, which will be the second Hubble Space Telescope servicing mission, is targeted for a Feb. 11 liftoff

  5. Fiscal Year 2007 Budget Press Conference

    NASA Image and Video Library

    2006-02-06

    NASA Administrator Michael Griffin outlines the President's budget for fiscal year 2007 during a news conference, Monday, Feb. 6, 2006, at NASA Headquarters in Washington. Griffin was joined by the heads of NASA's four mission directorates to explain how the proposed $16.8 billion dollar budget supports the Vision for Space Exploration. Seated left to right: Scott Horowitz, NASA Associate Administrator for Exploration Systems, William Gerstenmaier, NASA Associate Administrator for Space Operations, Lisa Porter, NASA Associate Administrator for Aeronautics Research and Mary Cleave, NASA Associate Administrator for Science. Photo Credit: (NASA/Bill Ingalls)

  6. Aerodynamics of Vortical Type Flows in Three Dimensions: Conference Proceedings Held at Rotterdam, Netherlands on 25-28 April 1983.

    DTIC Science & Technology

    1983-07-01

    crEE impose une onde de choc situde dane is zone Evolutive CD oO elle peut occuper une position stable en raison de is divergence...ENTR.E UNE ONDE DE CHOC ET UNE STRUCTURE TOURBILLONNAIRE ENROU LEE par J.Delery et E.Horowitz 5 ON THE GENERATION AND SUBSEQUENT DEVELOPMENT OF SPIRAL...dont une dclotge. ont fitA analysdes plus finement au vdlocimktre loser. Pour un dclatement, is structure moyenne de l’dcoulement ,dr*dien inclut un

  7. The Design of Large Geothermally Powered Air-Conditioning Systems Using an Optimal Control Approach

    NASA Astrophysics Data System (ADS)

    Horowitz, F. G.; O'Bryan, L.

    2010-12-01

    The direct use of geothermal energy from Hot Sedimentary Aquifer (HSA) systems for large scale air-conditioning projects involves many tradeoffs. Aspects contributing towards making design decisions for such systems include: the inadequately known permeability and thermal distributions underground; the combinatorial complexity of selecting pumping and chiller systems to match the underground conditions to the air-conditioning requirements; the future price variations of the electricity market; any uncertainties in future Carbon pricing; and the applicable discount rate for evaluating the financial worth of the project. Expanding upon the previous work of Horowitz and Hornby (2007), we take an optimal control approach to the design of such systems. By building a model of the HSA system, the drilling process, the pumping process, and the chilling operations, along with a specified objective function, we can write a Hamiltonian for the system. Using the standard techniques of optimal control, we use gradients of the Hamiltonian to find the optimal design for any given set of permeabilities, thermal distributions, and the other engineering and financial parameters. By using this approach, optimal system designs could potentially evolve in response to the actual conditions encountered during drilling. Because the granularity of some current models is so coarse, we will be able to compare our optimal control approach to an exhaustive search of parameter space. We will present examples from the conditions appropriate for the Perth Basin of Western Australia, where the WA Geothermal Centre of Excellence is involved with two large air-conditioning projects using geothermal water from deep aquifers at 75 to 95 degrees C.

  8. Intentions of Women (18-25 Years Old) to Join the Military: Results of a National Survey.

    DTIC Science & Technology

    1978-09-01

    MILITARY : RESULTS OF A NATIONAL SURVEY __________________________ S . PERFORMING ORG. N~PQRT NUMUER 7. Au fllON(.) S CONTRACT OR GRANT NUNSER(.) Jules...I. Borack S . PERFORMING ORGANI ZAtION N AME~~~~D ADDRE SS ~~~~. PRO GRAM ELEMENT. PROJECT. TaS~- AREA & WÔRK UNIT NUMSERS Navy Personnel Research and...non— Be interested in hiking. traditional women ’ s activities a- Marital status Be married . Be single. Financial Have financial responsibility Have no

  9. National Service: A Responsibility, A Solution

    DTIC Science & Technology

    1991-04-12

    Il tws ~ 00" tic ethe audhoe pa~-~t c re a~ t (M i.W Of~’. NATOCNAL SERVICE: A RESPONSIBILITY , A’SOLUTION BY COLONE1L JULES W. h&’MP’ON United States...NUMBERS PROGRAM PROJECT I TASK WORK UNIT ELEMENT NO NO. NO. ACCESSION NO. 11. TITLE (Include Security Classification) NATIONAL SERVICE: A RESPONSIBILITY , A...0l DTIC USERS Unclassified 22a, NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 122c OFFICE SYMBOL D n~D F r 1473. JU 8 PreSv:;, e

  10. Information perception, wishes, and satisfaction in ambulatory cancer patients under active treatment: patient-reported outcomes with QLQ-INFO25

    PubMed Central

    Pinto, Ana Catarina; Ferreira-Santos, Fernando; Lago, Lissandra Dal; de Azambuja, Evandro; Pimentel, Francisco Luís; Piccart-Gebhart, Martine; Razavi, Darius

    2014-01-01

    Background Information is vital to cancer patients. Physician–patient communication in oncology presents specific challenges. The aim of this study was to evaluate self-reported information of cancer patients in ambulatory care at a comprehensive cancer centre and examine its possible association with patients’ demographic and clinical characteristics. Patients and methods This study included adult patients with solid tumours undergoing chemotherapy at the Institute Jules Bordet’s Day Hospital over a ten-day period. EORTC QLQ-C30 and QLQ-INFO25 questionnaires were administered. Demographic and clinical data were collected. Descriptive and inferential statistics were used. Results 101 (99%) fully completed the questionnaires. They were mostly Belgian (74.3%), female (78.2%), with a mean age of 56.9 ± 12.8 years. The most frequent tumour was breast cancer (58.4%). Patients were well-informed about the disease and treatments, but presented unmet information domains. The Jules Bordet patients desired more information on treatment side effects, long-term outcome, nutrition, and recurrence symptoms. Patients on clinical trials reported having received less information about their disease and less written information than patients outside clinical trials. Higher information levels were associated with higher quality of life (QoL) scores and higher patient satisfaction. Conclusion Patients were satisfied with the information they received and this correlated with higher QoL, but they still expressed unmet information wishes. Additional studies are required to investigate the quality of the information received by patients enrolled in clinical trials. PMID:24834120

  11. Jules Bernard Luys in Charcot's penumbra.

    PubMed

    Parent, Martin; Parent, André

    2011-01-01

    Jules Bernard Luys (1828-1897) is a relatively unknown figure in 19th century French neuropsychiatry. Although greatly influenced by Jean-Martin Charcot (1825-1893), Luys worked in the shadow of the 'master of La Salpêtrière' for about a quarter of a century. When he arrived at this institution in 1862, he used microscopy and photomicrography to identify pathological lesions underlying locomotor ataxia and progressive muscular atrophy. He later made substantial contributions to our knowledge of normal human brain anatomy, including the elucidation of thalamic organization and the discovery of the subthalamic nucleus. Luys's name has long been attached to the latter structure (corps de Luys), which is at the center of our current thinking about the functional organization of basal ganglia and the physiopathology of Parkinson's disease. As head of the Maison de santé d'Ivry, Luys developed a highly original view of the functional organization of the normal human brain, while improving our understanding of the neuropathological and clinical aspects of mental illnesses. In 1886, Luys left La Salpêtrière and became chief physician at La Charité hospital. Following Charcot, whom he considered as the father of scientific hypnotism, Luys devoted the last part of his career to hysteria and hypnosis. However, Luys ventured too deeply into the minefield of hysteria. He initiated experiments as unconventional as the distant action of medication, and became one of the most highly caricatured examples of the fascination that hysteria exerted upon neurologists as well as laypersons at the end of the 19th century. Copyright © 2011 S. Karger AG, Basel.

  12. Time dependent three-dimensional body frame quantal wave packet treatment of the H + H2 exchange reaction on the Liu-Siegbahn-Truhlar-Horowitz (LSTH) surface

    NASA Technical Reports Server (NTRS)

    Neuhauser, Daniel; Baer, Michael; Judson, Richard S.; Kouri, Donald J.

    1989-01-01

    The first successful application of the three-dimensional quantum body frame wave packet approach to reactive scattering is reported for the H + H2 exchange reaction on the LSTH potential surface. The method used is based on a procedure for calculating total reaction probabilities from wave packets. It is found that converged, vibrationally resolved reactive probabilities can be calculated with a grid that is not much larger than required for the pure inelastic calculation. Tabular results are presented for several energies.

  13. STS-105 Flight Control Team Photo

    NASA Image and Video Library

    2001-07-31

    JSC2001-02115 (31 July 2001) --- The flight controllers for the Ascent/Entry shift for the upcoming STS-105 mission pose with the assigned astronaut crew for a team portrait in the Shuttle Flight Control Room (WFCR) of Houston's Mission Control Center (MCC). Flight director John Shannon (left center) and STS-105 commander Scott J. Horowitz hold the mission logo. Also pictured on the front row are spacecraft communicator Kenneth D. Cockrell and STS-105 crew members Daniel T. Barry, Frederick W. (Rick) Sturckow and Patrick G. Forrester. The team had been participating in an integrated simulation for the scheduled August mission.

  14. KSC-01pp1441

    NASA Image and Video Library

    2001-08-09

    KENNEDY SPACE CENTER, Fla. -- STS-105 Commander Scott Horowitz suits up for launch on mission STS-105. On the mission, Discovery will be transporting the Expedition Three crew and several scientific experiments and payloads to the ISS, including the Early Ammonia Servicer (EAS) tank. The EAS, which will support the thermal control subsystems until a permanent system is activated, will be attached to the Station during two spacewalks. The three-member Expedition Two crew will be returning to Earth aboard Discovery after a five-month stay on the Station. Launch is scheduled for 5:38 p.m. EDT Aug. 9

  15. KSC-97pc183

    NASA Image and Video Library

    1997-01-21

    STS-82 crew members ride in and learn how to operate an M-113 armored personnel carrier during Terminal Countdown Demonstration Test (TCDT) activities prior to launch. The four crew members dressed in their blue flight suits and visible here are, from left, Pilot Scott J. "Doc" Horowitz, Mission Specialist Joseph R. "Joe" Tanner, Mission Commander Kenneth D. Bowersox and Payload Commander Mark C. Lee. George Hoggard, a training officer with KSC Fire Services, is visible in the background at left. The 10-day STS-82 flight, which will be the second Hubble Space Telescope servicing mission, is targeted for a Feb. 11 liftoff

  16. Culbertson leads the way from the U.S. Laboratory into Node 1

    NASA Image and Video Library

    2001-08-12

    STS105-E-5108 (12 August 2001) --- Frank L. Culbertson, Jr., Expedition Three mission commander, leads cosmonaut Vladimir N. Dezhurov (back top), Expedition Three flight engineer, and Scott J. Horowitz, STS-105 commander, into Unity Node 1 during the initial ingress into the International Space Station (ISS) during the STS-105 mission. Culbertson and Dezhurov, accompanied by cosmonaut Mikhail Tyurin, will be replacing astronauts Susan J. Helms and James S. Voss and cosmonaut Yury V. Usachev as the temporary residents of the ISS. This image was taken with a digital still camera.

  17. KSC-00pp0684

    NASA Image and Video Library

    2000-05-30

    Members of the STS-101 crew gather with families and friends at Patrick Air Force Base before departure for Houston. Pilot Scott “Doc” Horowitz is joined by his wife, Lisa, and daughter; Mission Specialist Susan J. Helms is at right. After landing at 2:20 a.m. EDT May 29, the crew and their families enjoyed the Memorial Day holiday in Florida. The crew returned from the third flight to the International Space Station where they made repairs, transferred cargo and completed a space walk to install and connect several pieces of equipment on the outside of the Space Station

  18. KSC00pp0684

    NASA Image and Video Library

    2000-05-30

    Members of the STS-101 crew gather with families and friends at Patrick Air Force Base before departure for Houston. Pilot Scott “Doc” Horowitz is joined by his wife, Lisa, and daughter; Mission Specialist Susan J. Helms is at right. After landing at 2:20 a.m. EDT May 29, the crew and their families enjoyed the Memorial Day holiday in Florida. The crew returned from the third flight to the International Space Station where they made repairs, transferred cargo and completed a space walk to install and connect several pieces of equipment on the outside of the Space Station

  19. [Delirium in delusions of negations of Cotard: syndrome versus disorder].

    PubMed

    Huertas, D; Molina, J D; Chamorro, L; Toral, J

    1997-01-01

    This article constitutes the first of a series directed to review fundamental disorders in clinical psychogeriatrics. This sort of publication is intended to retrieve clinical practice as the cornerstone for research and teaching in psychiatry. Besides, and particularly in geriatry, we try to expand the strategy of liaison work with primary physicians. In this case, a nosological review of the so called "delusion of negations" is presented. The Jules Cotard's original concept of subtype of delusional melancholia is contrasted to the view of numerous authors in this century who have described it as a form of non-specific delusional syndrome.

  20. ATV during Demonstration Day 1 Rendezvous Test

    NASA Image and Video Library

    2008-03-29

    ISS016-E-033720 (29 March 2008) --- Cosmonaut Yuri Malenchenko, Expedition 16 flight engineer, aboard the International Space Station used a digital still camera to record several images of the Jules Verne Automated Transfer Vehicle (ATV) during a rendezvous test March 29, 2008. Malenchenko fitted the camera with an 800mm lens typically employed for Shuttle RPM photography while the ATV sat 2.1 statute miles from the ISS during the first of two demonstration days in the lead up to a docking on April 3. On March 31, Demonstration Day 2 will see ATV approach to within 11 meters of the ISS.

  1. ORION Media Event at LASF

    NASA Image and Video Library

    2014-12-19

    Lockheed Martin Manager Jules Schneider speaks to members of the media during a viewing of NASA's Orion spacecraft at the Launch Abort System Facility at NASA's Kennedy Space Center in Florida. The spacecraft's cross-country return, a 2,700 mile road trip from Naval Base San Diego to Kennedy, sets the stage for in-depth analysis of data obtained during Orion's trip to space. It will provide engineers detailed information on how the spacecraft fared during its two-orbit, 4.5-hour flight test, completed on Dec. 5. The Ground Systems Development and Operations Program led the recovery, offload and transportation efforts.

  2. ORION Media Event at LASF

    NASA Image and Video Library

    2014-12-19

    Lockheed Martin Manager Jules Schneider speaks to members of the media during a viewing of NASA's Orion spacecraft at the Launch Abort System Facility at NASA's Kennedy Space Center in Florida. The spacecraft's cross-country return, a 2,700 mile road trip from Naval Base San Diego to Kennedy, sets the stage for in-depth analysis of data obtained during Orion's trip to space. It will provide engineers with detailed information on how the spacecraft fared during its two-orbit, 4.5-hour flight test, completed on Dec. 5. The Ground Systems Development and Operations Program led the recovery, offload and transportation efforts.

  3. Dawn XMO2 Image 3

    NASA Image and Video Library

    2016-11-09

    Relatively young craters, with sharp crater rims and streaks of bright material, are the focus of this view of Ceres from NASA's Dawn spacecraft. The large, ancient and quite degraded crater Fluusa is seen at top center. The younger craters are Kupalo, at lower right, and Juling, to its left. Dawn took this image on Oct. 17, 2016, from its second extended-mission science orbit (XMO2), at a distance of about 920 miles (1,480 kilometers) above the surface. The image resolution is about 460 feet (140 meters) per pxel. http://photojournal.jpl.nasa.gov/catalog/PIA21223

  4. Quantifying the impact of land use change on hydrological responses in the Upper Ganga Basin, India

    NASA Astrophysics Data System (ADS)

    Tsarouchi, Georgia-Marina; Mijic, Ana; Moulds, Simon; Chawla, Ila; Mujumdar, Pradeep; Buytaert, Wouter

    2013-04-01

    Quantifying how changes in land use affect the hydrological response at the river basin scale is a challenge in hydrological science and especially in the tropics where many regions are considered data sparse. Earlier work by the authors developed and used high-resolution, reconstructed land cover maps for northern India, based on satellite imagery and historic land-use maps for the years 1984, 1998 and 2010. Large-scale land use changes and their effects on landscape patterns can impact water supply in a watershed by altering hydrological processes such as evaporation, infiltration, surface runoff, groundwater discharge and stream flow. Three land use scenarios were tested to explore the sensitivity of the catchment's response to land use changes: (a) historic land use of 1984 with integrated evolution to 2010; (b) land use of 2010 remaining stable; and (c) hypothetical future projection of land use for 2030. The future scenario was produced with Markov chain analysis and generation of transition probability matrices, indicating transition potentials from one land use class to another. The study used socio-economic (population density), geographic (distances to roads and rivers, and location of protected areas) and biophysical drivers (suitability of soil for agricultural production, slope, aspect, and elevation). The distributed version of the land surface model JULES was integrated at a resolution of 0.01° for the years 1984 to 2030. Based on a sensitivity analysis, the most sensitive parameters were identified. Then, the model was calibrated against measured daily stream flow data. The impact of land use changes was investigated by calculating annual variations in hydrological components, differences in annual stream flow and surface runoff during the simulation period. The land use changes correspond to significant differences on the long-term hydrologic fluxes for each scenario. Once analysed from a future water resources perspective, the results will be beneficial in constructing decision support tools for regional land-use planning and management.

  5. Seasonal variations of soil erosion in UK under climate change: simulations with the use of high-resolution regional climatic models

    NASA Astrophysics Data System (ADS)

    Ciampalini, Rossano; Kendon, Elizabeth; Constantine, José Antonio; Schindewolf, Marcus; Hall, Ian

    2017-04-01

    Climate change is expected to have a significant impact on the hydrological cycle, twenty-first century climate change simulations for Great Britain forecast an increase of surface runoff and flooding frequency. Once quality and resolution of the simulated rainfall deeply influence the results, we adopted rainfall simulations issued of a high-resolution climate model recently carried out for extended periods (13 years for present-day and future periods 2100) at 1.5 km grid scale over the south of the United Kingdom (simulations, which for the future period use the Intergovernmental Panel on Climate Change RCP 8.5 scenario, Kendon et al., 2014). We simulated soil erosion with 3D soil erosion model Schmidt (1990) on two catchments of Great Britain: the Rother catchment (350 km2) in West Sussex, England, because it has reported some of the most erosive events observed during the last 50 years in the UK, and the Conwy catchment (628 Km2) in North Wales, which is extremely resilient to soil erosion because of the abundant natural vegetation. Estimation of changes in soil moisture, saturation deficit as well as vegetation cover at daily time step have been done with the Joint UK Land Environment Simulator (JULES) (Best et al, 2011). Our results confirm the Rother catchment is the most erosive, while the Conwy catchment is the more resilient to soil erosion. Sediment production is perceived increase in both cases for the end of the century (27% and 50%, respectively). Seasonal disaggregation of the results revels that, while the most part of soil erosion is produced in winter months (DJF), the higher soil erosion variability for future periods is observed in summer (JJA). This behaviour is supported by the rainfall simulation analyse which highlighted this dual behaviour in precipitations.

  6. Evolution of amino acid metabolism inferred through cladistic analysis.

    PubMed

    Cunchillos, Chomin; Lecointre, Guillaume

    2003-11-28

    Because free amino acids were most probably available in primitive abiotic environments, their metabolism is likely to have provided some of the very first metabolic pathways of life. What were the first enzymatic reactions to emerge? A cladistic analysis of metabolic pathways of the 16 aliphatic amino acids and 2 portions of the Krebs cycle was performed using four criteria of homology. The analysis is not based on sequence comparisons but, rather, on coding similarities in enzyme properties. The properties used are shared specific enzymatic activity, shared enzymatic function without substrate specificity, shared coenzymes, and shared functional family. The tree shows that the earliest pathways to emerge are not portions of the Krebs cycle but metabolisms of aspartate, asparagine, glutamate, and glutamine. The views of Horowitz (Horowitz, N. H. (1945) Proc. Natl. Acad. Sci. U. S. A. 31, 153-157) and Cordón (Cordón, F. (1990) Tratado Evolucionista de Biologia, Aguilar, Madrid, Spain), according to which the upstream reactions in the catabolic pathways and the downstream reactions in the anabolic pathways are the earliest in evolution, are globally corroborated; however, with some exceptions. These are due to later opportunistic connections of pathways (actually already suggested by these authors). Earliest enzymatic functions are mostly catabolic; they were deaminations, transaminations, and decarboxylations. From the consensus tree we extracted four time spans for amino acid metabolism development. For some amino acids catabolism and biosynthesis occurred at the same time (Asp, Glu, Lys, Leu, Ala, Val, Ile, Pro, Arg). For others ultimate reactions that use amino acids as a substrate or as a product are distinct in time, with catabolism preceding anabolism for Asn, Gln, and Cys and anabolism preceding catabolism for Ser, Met, and Thr. Cladistic analysis of the structure of biochemical pathways makes hypotheses in biochemical evolution explicit and parsimonious.

  7. Andreev reflections and the quantum physics of black holes

    NASA Astrophysics Data System (ADS)

    Manikandan, Sreenath K.; Jordan, Andrew N.

    2017-12-01

    We establish an analogy between superconductor-metal interfaces and the quantum physics of a black hole, using the proximity effect. We show that the metal-superconductor interface can be thought of as an event horizon and Andreev reflection from the interface is analogous to the Hawking radiation in black holes. We describe quantum information transfer in Andreev reflection with a final state projection model similar to the Horowitz-Maldacena model for black hole evaporation. We also propose the Andreev reflection analogue of Hayden and Preskill's description of a black hole final state, where the black hole is described as an information mirror. The analogy between crossed Andreev reflections and Einstein-Rosen bridges is discussed: our proposal gives a precise mechanism for the apparent loss of quantum information in a black hole by the process of nonlocal Andreev reflection, transferring the quantum information through a wormhole and into another universe. Given these established connections, we conjecture that the final quantum state of a black hole is exactly the same as the ground state wave function of the superconductor/superfluid in the Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity; in particular, the infalling matter and the infalling Hawking quanta, described in the Horowitz-Maldacena model, forms a Cooper pairlike singlet state inside the black hole. A black hole evaporating and shrinking in size can be thought of as the analogue of Andreev reflection by a hole where the superconductor loses a Cooper pair. Our model does not suffer from the black hole information problem since Andreev reflection is unitary. We also relate the thermodynamic properties of a black hole to that of a superconductor, and propose an experiment which can demonstrate the negative specific heat feature of black holes in a growing/evaporating condensate.

  8. SETI observational program in Argentina

    NASA Astrophysics Data System (ADS)

    Raúl Colomb, F.; Cristina Martín, M.; Lemarchand, Guillermo A.

    Due to the scarce SETI research in the Southern Hemisphere, we decided to begin an observation of a series of southern stars at 21 cm and 18 cm, using the facilities of the Instituto Argentino de Radioastronomía (IAR). One of the two 30 m radiotelescopes was used since October 1986, for a search of narrow frequency (2.2 kHz resolution) band signal in the direction of nearby stars. We have selected for this plan 78 stars between -40° and -90° of declination and distances less than 50 l.y. In this paper we present the first results of this program at HI and OH line. We describe a 320 h parasitic program at OH line using the data of Comet Halley observations. Following a suggestion of Dr I. Almár we began in November 1987, a series of observations around the SETI Ellipsoid originated in the SN1987A at 18 cm. We describe the observations around the stars HD21899 and HD100623, following a suggestion of Alexei Arkhipov. We have initiated contacts with The Planetary Society to expand our SETI activities. It is our hope that at the time of this Symposium we can announce the details of this agreement, which could include the construction of a 8.4 million channel ultranarrowband spectrum analyzer, designed by Professor Paul Horowitz of Harvard University. This agreement was announced on 8 October 1988 at The Planetary Society Toronto SETI Conference. The 8.4 million channel spectrum analyzer called META II, was built during 1989, at Harvard University by J. C. Olalde and E. Hurrell, under the supervision of Professor Paul Horowitz. META II was officially dedicated on 12 October 1990 and is in operation with the antenna 2 of the Instituto Argentino de Radioastronomía.

  9. Future Projections of ENSO and Drought (Invited)

    NASA Astrophysics Data System (ADS)

    Cane, M. A.

    2009-12-01

    Jule Charney, who was my advisor, worked very broadly - and profoundly - on climate dynamics. In this discussion of the present state of knowledge I will focus on two aspects of climate that I view as legacies of his work: our ability to project climate variability in the tropics and to project drought. (I have in mind his work with Shukla on predictability of monsoons, and Charney 1975, Dynamics of deserts and drought in the Sahel., Q. J. Roy. Meteor. Soc., 101, 193-202). First, I will consider the projections of ENSO (El Niño and Southern Oscillation) in a warming world. (My own interest in ENSO was piqued in discussions with Charney and others during the ENSO-influenced blocking events in the late 1970s; in good measure, the approach I took to understanding and modeling ENSO was based in my thesis work.) Current IPCC models differ markedly in their projections of the mean state of the equatorial Pacific, some favoring a more “El Niño- like”, some the opposite. Possible reasons for these disagreements will be considered in the light of our understanding of ENSO and tropical climate more generally. Observational data for the past century and a half will figure prominently. Droughts in the US Southwest have a strong ENSO signal, but IPCC models are fairly consistent in projecting enhanced drought there. The reasons for this will be discussed. Models are less consistent in their predictions of the future Sahel. I will discuss what is understood about causes of drought in the Sahel, which appear to point toward sea surface temperature as the controlling influence, in contrast to Charney’s albedo hypothesis.

  10. Methodology for Developing a Probabilistic Risk Assessment Model of Spacecraft Rendezvous and Dockings

    NASA Technical Reports Server (NTRS)

    Farnham, Steven J., II; Garza, Joel, Jr.; Castillo, Theresa M.; Lutomski, Michael

    2011-01-01

    In 2007 NASA was preparing to send two new visiting vehicles carrying logistics and propellant to the International Space Station (ISS). These new vehicles were the European Space Agency s (ESA) Automated Transfer Vehicle (ATV), the Jules Verne, and the Japanese Aerospace and Explorations Agency s (JAXA) H-II Transfer Vehicle (HTV). The ISS Program wanted to quantify the increased risk to the ISS from these visiting vehicles. At the time, only the Shuttle, the Soyuz, and the Progress vehicles rendezvoused and docked to the ISS. The increased risk to the ISS was from an increase in vehicle traffic, thereby, increasing the potential catastrophic collision during the rendezvous and the docking or berthing of the spacecraft to the ISS. A universal method of evaluating the risk of rendezvous and docking or berthing was created by the ISS s Risk Team to accommodate the increasing number of rendezvous and docking or berthing operations due to the increasing number of different spacecraft, as well as the future arrival of commercial spacecraft. Before the first docking attempt of ESA's ATV and JAXA's HTV to the ISS, a probabilistic risk model was developed to quantitatively calculate the risk of collision of each spacecraft with the ISS. The 5 rendezvous and docking risk models (Soyuz, Progress, Shuttle, ATV, and HTV) have been used to build and refine the modeling methodology for rendezvous and docking of spacecrafts. This risk modeling methodology will be NASA s basis for evaluating the addition of future ISS visiting spacecrafts hazards, including SpaceX s Dragon, Orbital Science s Cygnus, and NASA s own Orion spacecraft. This paper will describe the methodology used for developing a visiting vehicle risk model.

  11. Simulating carbon flows in Amazonian rainforests: how intensive C-cycle data can help to reduce vegetation model uncertainty

    NASA Astrophysics Data System (ADS)

    Galbraith, D.; Levine, N. M.; Christoffersen, B. O.; Imbuzeiro, H. A.; Powell, T.; Costa, M. H.; Saleska, S. R.; Moorcroft, P. R.; Malhi, Y.

    2014-12-01

    The mathematical codes embedded within different vegetation models ultimately represent alternative hypotheses of biosphere functioning. While formulations for some processes (e.g. leaf-level photosynthesis) are often shared across vegetation models, other processes (e.g. carbon allocation) are much more variable in their representation across models. This creates the opportunity for equifinality - models can simulate similar values of key metrics such as NPP or biomass through very different underlying causal pathways. Intensive carbon cycle measurements allow for quantification of a comprehensive suite of carbon fluxes such as the productivity and respiration of leaves, roots and wood, allowing for in-depth assessment of carbon flows within ecosystems. Thus, they provide important information on poorly-constrained C-cycle processes such as allocation. We conducted an in-depth evaluation of the ability of four commonly used dynamic global vegetation models (CLM, ED2, IBIS, JULES) to simulate carbon cycle processes at ten lowland Amazonian rainforest sites where individual C-cycle components have been measured. The rigorous model-data comparison procedure allowed identification of biases which were specific to different models, providing clear avenues for model improvement and allowing determination of internal C-cycling pathways that were better supported by data. Furthermore, the intensive C-cycle data allowed for explicit testing of the validity of a number of assumptions made by specific models in the simulation of carbon allocation and plant respiration. For example, the ED2 model assumes that maintenance respiration of stems is negligible while JULES assumes equivalent allocation of NPP to fine roots and leaves. We argue that field studies focusing on simultaneous measurement of a large number of component fluxes are fundamentally important for reducing uncertainty in vegetation model simulations.

  12. STS-82 Crew Members in M-113 armored personnel carrier during TCDT

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-82 crew members ride in and learn how to operate an M-113 armored personnel carrier during Terminal Countdown Demonstration Test (TCDT) activities prior to launch. The four crew members dressed in their blue flight suits and visible here are, from left, Pilot Scott J. 'Doc' Horowitz, Mission Specialist Joseph R. 'Joe' Tanner, Mission Commander Kenneth D. Bowersox and Payload Commander Mark C. Lee. George Hoggard, a training officer with KSC Fire Services, is visible in the background at left. The 10- day STS-82 flight, which will be the second Hubble Space Telescope servicing mission, is targeted for a Feb. 11 liftoff.

  13. STS-101: CAR / Flight Day 03 Highlights

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The primary mission objective for STS-101 was to deliver supplies to the International Space Station, perform a space walk, and reboost the station from 230 statute miles to 250 statute miles. The commander of this mission was, James D. Haslsell. The crew was Scott J. Horowitz, the pilot, and mission specialists Mary Ellen Weber, Jeffrey N. Williams, James S. Voss, Susan J. Helms, and Yuri Vladimirovich Usachev. This videotape shows the activities of the third day of the flight. On this day the shuttle rendezvoused and docked with the station. The videotape shows the rendezvous and the docking maneuver, and some of the crew activities in the shuttle.

  14. Thermal degradation and morphological studies on raw and reinforced polyacrylic rubbers

    NASA Astrophysics Data System (ADS)

    Sasikala, A.; Kala, A.

    2017-05-01

    Poly acrylate rubbers (ACM) of today are saturated copolymers of monomeric acrylic esters and reactive cure site monomers. ACM elastomer have also found use in vibration damping due to its excellent resilience. Other applications include textiles, adhesives, and coatings. Two state of Poly acrylic raw and reinforced Rubber are analyzed using FTIR spectroscopy, Optical Microscopy, DSC and TGA measurements. With the objective of determined the mechanical strength, Thermal analysis on TGA and DSC studies show that, the thermal degradation temperature Tg of the sample material is obtained and activation energy is also calaulated by Broido, Horowitz - Metzger, Piloyan-Novikova and Coats Redfern methods which are found.

  15. KSC-01pp1336

    NASA Image and Video Library

    2001-07-19

    KENNEDY SPACE CENTER, Fla. -- Expedition Three Commander Frank Culbertson (left) and STS-105 Commander Scott Horowitz (right), in the White Room at Launch Pad 39A, hold the sign for their mission. Both crews are at KSC to take part in Terminal Countdown Demonstration Test activities, which include emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001

  16. KSC-01pp1337

    NASA Image and Video Library

    2001-07-19

    KENNEDY SPACE CENTER, Fla. -- Expedition Three Commander Frank Culbertson (left) and STS-105 Commander Scott Horowitz (right), in the White Room at Launch Pad 39A, have placed the mission sign at the entrance into Space Shuttle Discovery. Both crews are at KSC to take part in Terminal Countdown Demonstration Test activities, which include emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001

  17. KSC-01pp1413

    NASA Image and Video Library

    2001-08-05

    KENNEDY SPACE CENTER, Fla. -- STS-105 Commander Scott Horowitz arrives at KSC aboard a T-38 jet to make final preparations for launch. On mission STS-105, Discovery will be transporting the Expedition Three crew and several payloads and scientific experiments to the International Space Station. The Early Ammonia Servicer (EAS) tank, which will support the thermal control subsystems until a permanent system is activated, will be attached to the Station during two spacewalks. The three-member Expedition Two crew will be returning to Earth aboard Discovery after a five-month stay on the Station. Launch of Discovery on mission STS-105 is scheduled for Aug. 9, 2001

  18. KSC-01pp1345

    NASA Image and Video Library

    2001-07-20

    KENNEDY SPACE CENTER, Fla. -- STS-105 Commander Scott Horowitz finishes with suit check before heading to Launch Pad 39A. The STS-105 and Expedition Three crews are at Kennedy Space Center participating in a Terminal Countdown Demonstration Test, a dress rehearsal for launch. The activities includes emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The Expedition Two crew members currently on the Station will return to Earth on Discovery. The mission is scheduled to launch no earlier than Aug. 9, 2001

  19. View of Southern Cross, Alpha and Beta Centauri

    NASA Image and Video Library

    1996-03-18

    STS075-351-022 (22 Feb.- 9 March 1996) --- The space shuttle Columbia's vertical stabilizer appears to point to the four stars of the Southern Cross. The scene was captured with a 35mm camera just prior to a sunrise. The seven member crew was launched aboard the space shuttle Columbia on Feb. 22, 1996, and landed on March 9, 1996. Crew members were Andrew M. Allen, mission commander; Scott J. Horowitz, pilot; Franklin R. Chang-Diaz, payload commander; and Maurizio Cheli, European Space Agency (ESA); Jeffrey A. Hoffman and Claude Nicollier, ESA, all mission specialists; along with payload specialist Umberto Guidoni of the Italian Space Agency (ASI).

  20. The "olfactory mirror" and other recent attempts to demonstrate self-recognition in non-primate species.

    PubMed

    Gallup, Gordon G; Anderson, James R

    2018-03-01

    The recent attempt by Horowitz (2017) to develop an "olfactory mirror" test of self-recognition in domestic dogs raises some important questions about the kinds of data that are required to provide definitive evidence for self-recognition in dogs and other species. We conclude that the "olfactory mirror" constitutes a compelling analog to the mark test for mirror self-recognition in primates, but despite claims to the contrary neither dogs, elephants, dolphins, magpies, horses, manta rays, squid, nor ants have shown compelling, reproducible evidence for self-recognition in any modality. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Tethered Satellite System (TSS)-1R survey photography

    NASA Image and Video Library

    1996-03-18

    STS075-325-014 (25 Feb. 1996) --- The frayed end of the tether portion of the Tethered Satellite System (TSS) is seen at the end of the supportive boom. On February 25, 1996, the crew deployed the TSS, which later broke free. The seven member crew was launched aboard the Space Shuttle Columbia on February 22, 1996, and landed on March 9, 1996. Crewmembers were Andrew M. Allen, mission commander; Scott J. Horowitz, pilot; Franklin R. Chang-Diaz, payload commander; and Maurizio Cheli, European Space Agency (ESA); Jeffrey A. Hoffman and Claude Nicollier (ESA), all mission specialists; along with payload specialist Umberto Guidoni of the Italian Space Agency (ASI).

  2. KSC-00pp0688

    NASA Image and Video Library

    2000-05-29

    The STS-101 crew pose one more time before departing for Houston from Patrick Air Force Base. From left are Commander James D. Halsell Jr., Mission Specialists James S. Voss, Mary Ellen Weber, Susan J. Helms, Jeffrey N. Williams, Yury Usachev of Russia, and Pilot Scott “Doc” Horowitz. After landing at 2:20 a.m. EDT May 29, the crew and their families enjoyed the Memorial Day holiday in Florida. The crew returned from the third flight to the International Space Station where they made repairs, transferred cargo and completed a space walk to install and connect several pieces of equipment on the outside of the Space Station

  3. KSC00pp0688

    NASA Image and Video Library

    2000-05-29

    The STS-101 crew pose one more time before departing for Houston from Patrick Air Force Base. From left are Commander James D. Halsell Jr., Mission Specialists James S. Voss, Mary Ellen Weber, Susan J. Helms, Jeffrey N. Williams, Yury Usachev of Russia, and Pilot Scott “Doc” Horowitz. After landing at 2:20 a.m. EDT May 29, the crew and their families enjoyed the Memorial Day holiday in Florida. The crew returned from the third flight to the International Space Station where they made repairs, transferred cargo and completed a space walk to install and connect several pieces of equipment on the outside of the Space Station

  4. When the Patient Believes That the Organs Are Destroyed: Manifestation of Cotard's Syndrome.

    PubMed

    Machado, Leonardo; Filho, Luiz Evandro de Lima; Machado, Liliane

    2016-01-01

    Cotard's Syndrome (CS) is a rare clinical event described for the first time in 1880 by the neurologist and psychiatrist Jules Cotard and characterized by negation delusions (or nihilists). Immortality and hypochondriac delusions are also typical. Nowadays, it is known that CS can be associated with many neuropsychiatric conditions. In this article, we describe the case of a patient that believed not having more organs and having the body deformed and whose CS was associated with a bigger depressive disorder. Although the electroconvulsive therapy is the most described treatment modality in the literature, the reported case had therapeutic success with association of imipramine and risperidone.

  5. Nuclear heating measurements by in-pile calorimetry: prospective works for a microsensor design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reynard-Carette, C.; Carette, M.; Aguir, K.

    Since 2009 works have been performed in the framework of joint research programs between CEA and Aix-Marseille University. The main aim of these programs is to design and develop in-pile instrumentations, advanced calibration procedure and accurate measurement methods in particular for the new Material Testing Reactor (MTR) under construction in the South of France: Jules Horowitz Reactor (JHR). One major sensor is a specific radiometric calorimeter, which was studied out-of-pile from a thermal point of view and in-pile during irradiation campaigns. This sensor type is dedicated to measurements of nuclear heating (energy deposition rate per mass unit induced by interactionsmore » between nuclear rays and matter) inside experimental channels of MTRs. This kind of in-pile calorimeter corresponds to heat flux calorimeter exchanging with the external cooling fluid. This thermal running mode allows the establishment of steady thermal conditions inside the sensor to carry out online continuous measurements inside the reactor (core or reflector). Two main types of calorimeters exist. The first type consists of a single cell calorimeter. It is divided into a sample of material to be tested and a jacket instrumented with two thermocouples or a single thermocouple (Gamma Thermometer). The second, called a differential calorimeter, is composed of two superposed twin cells (a measurement cell containing a sample of material, and a reference cell to remove the heating of the cell body) instrumented with four thermocouples and two electrical heaters. Contrary to a single-cell calorimeter, a differential calorimeter allows the compensation of the parasite nuclear heating of the sensor body or jacket. Moreover, it possesses interesting advantages: thanks to the heaters embedded in the cells, three different measurement methods can be applied during irradiations to quantify nuclear heating. The first one is based on the use of out-of-pile calibration curves obtained by generating a heat source by the Joule Effect inside each calorimetric cell. The second one is a zero method consisting in cancelling the difference in cell responses with an additional energy into the reference cell. The last measurement method is based on current additions in the two calorimetric cells. However, one drawback of the existing differential calorimeter is the size of the sensor: a great length equal to 220 mm and a diameter equal to 18 mm. This current size leads to measurement limitations. This paper will begin with a presentation of these measurement limitations from a bibliographic state. Each limitation will be detailed and in particular in the case of a high nuclear heating level expected, for instance, inside the JHR's core at its highest nominal power. The second part of the paper will develop the scientific skills of each partner in heat sciences, micro technology and nuclear physics necessary to design a new calorimetric micro-system: the advantages of studied microelements such as micro-thermocouples, micro- fluxmeters and micro-heaters will be presented. The last part will discuss preliminary designs. (authors)« less

  6. Advanced instrumentation and analysis methods for in-pile thermal and nuclear measurements: from out-of-pile studies to irradiation campaigns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reynard-Carette, C.; Lyoussi, A.

    Research and development on nuclear fuel behavior under irradiations and accelerated ageing of structure materials is a key issue for sustainable nuclear energy in order to meet specific needs by keeping the best level of safety. A new Material Testing Reactor (MTR), the Jules Horowitz Reactor (JHR) currently under construction in the South of France in the CEA Cadarache research centre will offer a real opportunity to perform R and D programs and hence will crucially contribute to the selection, optimization and qualification of innovative materials and fuels. To perform such programs advanced accurate and innovative experiments, irradiation devices thatmore » contain material and fuel samples are required to be set up inside or beside the reactor core. These experiments needs beforehand in situ and on line sophisticated measurements to accurately reach specific and determining parameters such as thermal and fast neutron fluxes, nuclear heating and temperature conditions to precisely monitor and control the conducted assays. Consequently, since 2009 CEA and Aix-Marseille University collaborate in order to design and develop a new multi-sensor device which will be dedicated to measuring profiles of such conditions inside the experimental channels of the JHR. These works are performed in the framework of two complementary joint research programs called MAHRI-BETHY and INCORE. These programs couple experimental studies carried out both out-of nuclear fluxes (in laboratory) and under irradiation conditions (in OSIRIS MTR reactor in France and MARIA MTR reactor in Poland) with numerical works realized by thermal simulations (CAST3M code) and Monte Carlo simulations (MCNP code). These programs deal with three main aims. The first one corresponds to the design and/or the test of new in-pile instrumentation. The second one concerns the development of advanced calibration procedures in particular in the case of one specific sensor: a differential calorimeter used to quantify nuclear heating. The last one consists in the development of accurate measurement and analysis methods. The paper will be dedicated to a complete review of the experimental and numerical works performed since 2009 thanks to two parts. The first part will detail a new thermal approach implemented to improve nuclear heating measurements by radiometric calorimeters. New experimental tools (calorimeter prototypes and set-ups such BETHY Bench) developed to perform preliminary out-of-pile studies under suitable conditions will be presented (temperature and velocity of the external cooling fluid, heat source localization and intensity inside the calorimetric cells). Then the response of two kinds of sensors, their calibrations curves and their thermal behaviors will be compared for various parameters. Finally validated numerical thermal and Monte Carlo works will be discussed to propose new improvements. The second parts of the paper will focus on works realized in order to design, develop and test the first prototype of the multi-sensor device called CARMEN [7-9]. The two mock-ups dedicated respectively to neutron measurements and photon measurements will be detailed. The results obtained during two irradiation campaigns inside the periphery of OSIRIS reactor will be shown. The new analysis method will be discussed. (authors)« less

  7. Modelling Soil Heat and Water Flow as a Coupled Process in Land Surface Models

    NASA Astrophysics Data System (ADS)

    García González, Raquel; Verhoef, Anne; Vidale, Pier Luigi; Braud, Isabelle

    2010-05-01

    To improve model estimates of soil water and heat flow by land surface models (LSMs), in particular in the first few centimetres of the near-surface soil profile, we have to consider in detail all the relevant physical processes involved (see e.g. Milly, 1982). Often, thermal and iso-thermal vapour fluxes in LSMs are neglected and the simplified Richard's equation is used as a result. Vapour transfer may affect the water fluxes and heat transfer in LSMs used for hydrometeorological and climate simulations. Processes occurring in the top 50 cm soil may be relevant for water and heat flux dynamics in the deeper layers, as well as for estimates of evapotranspiration and heterotrophic respiration, or even for climate and weather predictions. Water vapour transfer, which was not incorporated in previous versions of the MOSES/JULES model (Joint UK Land Environment Simulator; Cox et al., 1999), has now been implemented. Furthermore, we also assessed the effect of the soil vertical resolution on the simulated soil moisture and temperature profiles and the effect of the processes occurring at the upper boundary, mainly in terms of infiltration rates and evapotranspiration. SiSPAT (Simple Soil Plant Atmosphere Transfer Model; Braud et al., 1995) was initially used to quantify the changes that we expect to find when we introduce vapour transfer in JULES, involving parameters such as thermal vapour conductivity and diffusivity. Also, this approach allows us to compare JULES to a more complete and complex numerical model. Water vapour flux varied with soil texture, depth and soil moisture content, but overall our results suggested that water vapour fluxes change temperature gradients in the entire soil profile and introduce an overall surface cooling effect. Increasing the resolution smoothed and reduced temperature differences between liquid (L) and liquid/vapour (LV) simulations at all depths, and introduced a temperature increase over the entire soil profile. Thermal gradients rather than soil water potential gradients seem to cause temporal and spatial (vertical) soil temperature variability. We conclude that a multi-soil layer configuration may improve soil water dynamics, heat transfer and coupling of these processes, as well as evapotranspiration estimates and land surface-atmosphere coupling. However, a compromise should be reached between numerical and process-simulation aspects. References: Braud I., A.C. Dantas-Antonino, M. Vauclin, J.L. Thony and P. Ruelle, 1995b: A Simple Soil Plant Atmo- sphere Transfer model (SiSPAT), Development and field verification, J. Hydrol, 166: 213-250 Cox, P.M., R.A. Betts, C.B. Bunton, R.L.H. Essery, P.R. Rowntree, and J. Smith (1999), The impact of new land surface physics on the GCM simulation of climate and climate sensitivity. Clim. Dyn., 15, 183-203. Milly, P.C.D., 1982. Moisture and heat transport in hysteric inhomogeneous porous media: a matric head- based formulation and a numerical model, Water Resour. Res., 18:489-498

  8. The Space Shuttle Columbia clears the tower to begin the mission. The liftoff occurred on schedule

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-75 LAUNCH VIEW --- The Space Shuttle Columbia clears the tower to begin the mission. The liftoff occurred on schedule at 3:18:00 p.m. (EST), February 22, 1996. Visible at left is the White Room on the orbiter access arm through which the flight crew had entered the orbiter. Onboard Columbia for the scheduled two-week mission were astronauts Andrew M. Allen, commander; Scott J. Horowitz, pilot; Franklin R. Chang-Diaz, payload commander; and astronauts Maurizio Cheli, Jeffrey A. Hoffman and Claude Nicollier, along with payload specialist Umberto Guidioni. Cheli and Nicollier represent the European Space Agency (ESA), while Guidioni represents the Italian Space Agency (ASI).

  9. A remote camera at Launch Pad 39B, at the Kennedy Space Center (KSC), recorded this profile view of

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-75 LAUNCH VIEW --- A remote camera at Launch Pad 39B, at the Kennedy Space Center (KSC), recorded this profile view of the Space Shuttle Columbia as it cleared the tower to begin the mission. The liftoff occurred on schedule at 3:18:00 p.m. (EST), February 22, 1996. Onboard Columbia for the scheduled two-week mission were astronauts Andrew M. Allen, commander; Scott J. Horowitz, pilot; Franklin R. Chang-Diaz, payload commander; and astronauts Maurizio Cheli, Jeffrey A. Hoffman and Claude Nicollier, along with payload specialist Umberto Guidioni. Cheli and Nicollier represent the European Space Agency (ESA), while Guidioni represents the Italian Space Agency (ASI).

  10. Reactions to Stress During the Persian Gulf War: The Use of Structural Equations for Testing the Horowitz Model

    PubMed

    Koslowsky; Solomon; Bleich; Laor

    1994-06-01

    In one of the few models specific to victims' reactions to traumatic events, it has been proposed that consequences typically include alternating patterns of intrusive and avoidance symptoms. The present exploratory investigation examined the responses of 120 victims who had been evacuated to a hotel after a SCUD missile attack on their home. Analyses using structural equation modeling showed that both psychological states follow stressful stimuli and perceived threat. In addition, results were found to be consistent with a model that posits intrusion as antecedent to anxiety which, in turn, was found to precede a latent outcome measure consisting of psychological, physical, and work functioning.

  11. Solid-state reaction kinetics of neodymium doped magnesium hydrogen phosphate system

    NASA Astrophysics Data System (ADS)

    Gupta, Rashmi; Slathia, Goldy; Bamzai, K. K.

    2018-05-01

    Neodymium doped magnesium hydrogen phosphate (NdMHP) crystals were grown by using gel encapsulation technique. Structural characterization of the grown crystals has been carried out by single crystal X-ray diffraction (XRD) and it revealed that NdMHP crystals crystallize in orthorhombic crystal system with space group Pbca. Kinetics of the decomposition of the grown crystals has been studied by non-isothermal analysis. The estimation of decomposition temperatures and weight loss has been made from the thermogravimetric/differential thermo analytical (TG/DTA) in conjuncture with DSC studies. The various steps involved in the thermal decomposition of the material have been analysed using Horowitz-Metzger, Coats-Redfern and Piloyan-Novikova equations for evaluating various kinetic parameters.

  12. KSC-01pp1326

    NASA Image and Video Library

    2001-07-19

    KENNEDY SPACE CENTER, Fla. -- The STS-105 crew poses at Launch Pad 39A after training exercises. Pictured (left to right), Mission Specialists Patrick Forrester and Daniel Barry, Commander Scott Horowitz and Pilot Rick Sturckow. They are taking part in Terminal Countdown Demonstration Test activities, along with the Expedition Three crew. The training includes emergency egress, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery, which is seen in the background. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001

  13. STS-101: Crew Activity Report/Flight Day 10 Highlights

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This video presents a report from the Space Shuttle Atlantis Crew. The crew consists of James D. Halsell, Jr., Mission Commander; Scott Horowitz, Pilot; and Mission Specialists Mary Ellen Weber, Jeffrey N. Williams, James S. Voss, Susan J. Helms, and Yuri Vladimirovich Usachev. The crew made preparations for the Space Shuttle Atlantis return to Earth. Weber gave a general overview of refurbishments done to the International Space Station such as maintenance of the electrical system, one to three thousands of pounds of new hardware supplied to I.S.S. and a supply of personal hygiene products. Also live animation of the Spacehab Module is given where supplies bound for the Space Station are stored.

  14. STS-101 crew members enjoy a snack before getting ready for launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Operations and Checkout Building, the STS-101 crew gathers for a snack before suiting up for launch. From left are Mission Specialists Mary Ellen Weber and Yuri Usachev of Russia; Pilot Scott J. Horowitz; Commander James D. Halsell Jr.; and Mission Specialists Jeffrey N. Williams, Susan J. Helms and James S. Voss. The mission will take the crew to the International Space Station to deliver logistics and supplies and prepare the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk. This will be the third assembly flight to the Space Station.

  15. View of the TSS-1R after the tether broke

    NASA Image and Video Library

    1996-04-03

    STS075-360-021 (22 Feb.- 9 March 1996) --- The loose tether forms a faint diagonal line in this scene recorded on a later fly-by. On Feb. 25, 1996, the crew deployed the Tethered Satellite System (TSS), which later broke free. The seven member crew was launched aboard the space shuttle Columbia on Feb. 22, 1996, and landed on March 9, 1996. Crew members were Andrew M. Allen, mission commander; Scott J. Horowitz, pilot; Franklin R. Chang-Diaz, payload commander; and Maurizio Cheli, European Space Agency (ESA); Jeffrey A. Hoffman and Claude Nicollier, ESA, all mission specialists; along with payload specialist Umberto Guidoni of the Italian Space Agency (ASI).

  16. Quantum healing of spacetime singularities: A review

    NASA Astrophysics Data System (ADS)

    Konkowski, D. A.; Helliwell, T. M.

    2018-02-01

    Singularities are commonplace in general relativistic spacetimes. It is natural to hope that they might be “healed” (or resolved) by the inclusion of quantum mechanics, either in the theory itself (quantum gravity) or, more modestly, in the description of the spacetime geodesic paths used to define them. We focus here on the latter, mainly using a procedure proposed by Horowitz and Marolf to test whether singularities in broad classes of spacetimes can be resolved by replacing geodesic paths with quantum wave packets. We list the spacetime singularities that various authors have studied in this context, and distinguish those which are healed quantum mechanically (QM) from those which remain singular. Finally, we mention some alternative approaches to healing singularities.

  17. When the Patient Believes That the Organs Are Destroyed: Manifestation of Cotard's Syndrome

    PubMed Central

    Machado, Liliane

    2016-01-01

    Cotard's Syndrome (CS) is a rare clinical event described for the first time in 1880 by the neurologist and psychiatrist Jules Cotard and characterized by negation delusions (or nihilists). Immortality and hypochondriac delusions are also typical. Nowadays, it is known that CS can be associated with many neuropsychiatric conditions. In this article, we describe the case of a patient that believed not having more organs and having the body deformed and whose CS was associated with a bigger depressive disorder. Although the electroconvulsive therapy is the most described treatment modality in the literature, the reported case had therapeutic success with association of imipramine and risperidone. PMID:28003827

  18. KSC-2014-4870

    NASA Image and Video Library

    2014-12-19

    CAPE CANAVERAL, Fla. -- Lockheed Martin Manager Jules Schneider speaks to members of the media during a viewing of NASA's Orion spacecraft at the Launch Abort System Facility at NASA's Kennedy Space Center in Florida. The spacecraft's cross-country return, a 2,700 mile road trip from Naval Base San Diego to Kennedy, sets the stage for in-depth analysis of data obtained during Orion's trip to space. It will provide engineers with detailed information on how the spacecraft fared during its two-orbit, 4.5-hour flight test, completed on Dec. 5. The Ground Systems Development and Operations Program led the recovery, offload and transportation efforts. For more information, visit www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis

  19. Early Rockets

    NASA Image and Video Library

    2004-04-15

    Science fiction writers, like Jules Verne in France and Edward Everett Hale in America, had discovered one of the most vital elements in the formula for space travel-a fertile imagination. The first known proposal for a marned-satellite appears in a story by Hale entitled "The Brick Moon" published in 1899. The story involved a group of young Bostonians who planned to put an artificial satellite into polar orbit for sailors to use to determine longitude accurately and easily. They planned to send a brick satellite into orbit because the satellite would have to withstand fire very well. The Satellite's 37 inhabitants signaled the Earth in morse code by jumping up and down on the outside of the satellite.

  20. ORION Media Event at LASF

    NASA Image and Video Library

    2014-12-19

    NASA's Orion spacecraft is viewed by members of the media at the Launch Abort System Facility at NASA's Kennedy Space Center in Florida. Speaking to the media during the viewing opportunity is Jules Schneider, Lockheed Martin Manager. Behind him, from left, are Glenn Chin, Orion Production Operations manager and Phil Weber and Lou Garcia, with the Ground Systems Development and Operations Program, or GSDO. Orion made the 8-day, 2,700 mile overland trip back to Kennedy from Naval Base San Diego in California. Analysis of date obtained during its two-orbit, four-and-a-half hour mission Dec. 5 will provide engineers with detailed information on how the spacecraft fared. GSDO led the recovery, offload and transportation efforts.

  1. Development of noise emission measurement specifications for color printing multifunctional devices

    NASA Astrophysics Data System (ADS)

    Kimizuka, Ikuo

    2005-09-01

    Color printing (including copying) is becoming more popular application in home, as well as in offices. Existing de jule and/or industrial standards (such as ISO 7779, ECMA-74, ANSI S12.10 series, etc.), however, state only monochrome patterns, which are mainly intended for acoustic noise testing of mechanical impact type printers. This paper discusses the key issues and corresponding resolutions for development of color printing patterns for acoustic noise measurements. The results of these technical works will be published by JBMS-74 (new industry standard of JBMIA within 2005), and hopefully be the technical basis of updating other standards mentioned above. This paper also shows the development processes and key features of proposed patterns.

  2. KSC-2014-4871

    NASA Image and Video Library

    2014-12-19

    CAPE CANAVERAL, Fla. -- Lockheed Martin Manager Jules Schneider speaks to members of the media during a viewing of NASA's Orion spacecraft at the Launch Abort System Facility at NASA's Kennedy Space Center in Florida. The spacecraft's cross-country return, a 2,700 mile road trip from Naval Base San Diego to Kennedy, sets the stage for in-depth analysis of data obtained during Orion's trip to space. It will provide engineers with detailed information on how the spacecraft fared during its two-orbit, 4.5-hour flight test, completed on Dec. 5. The Ground Systems Development and Operations Program led the recovery, offload and transportation efforts. For more information, visit www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis

  3. ORION Media Event at LASF

    NASA Image and Video Library

    2014-12-19

    NASA's Orion spacecraft is viewed by members of the media at the Launch Abort System Facility at NASA's Kennedy Space Center in Florida. Speaking to the media during the viewing opportunity is Phil Weber, with the Ground Systems Development and Operations Program, or GSDO. At left is Jules Schneider, Lockheed Martin manager. At right is Glenn Chin, Orion Production Operations, and Lou Garcia, with GSDO. Orion made the 8-day, 2,700 mile overland trip back to Kennedy from Naval Base San Diego in California. Analysis of date obtained during its two-orbit, four-and-a-half hour mission Dec. 5 will provide engineers detailed information on how the spacecraft fared. GSDO led the recovery, offload and transportation efforts.

  4. KSC-2014-4869

    NASA Image and Video Library

    2014-12-19

    CAPE CANAVERAL, Fla. -- Lockheed Martin Manager Jules Schneider speaks to members of the media during a viewing of NASA's Orion spacecraft at the Launch Abort System Facility at NASA's Kennedy Space Center in Florida. The spacecraft's cross-country return, a 2,700 mile road trip from Naval Base San Diego to Kennedy, sets the stage for in-depth analysis of data obtained during Orion's trip to space. It will provide engineers with detailed information on how the spacecraft fared during its two-orbit, 4.5-hour flight test, completed on Dec. 5. The Ground Systems Development and Operations Program led the recovery, offload and transportation efforts. For more information, visit www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis

  5. The Brick Moon

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Science fiction writers, like Jules Verne in France and Edward Everett Hale in America, had discovered one of the most vital elements in the formula for space travel-a fertile imagination. The first known proposal for a marned-satellite appears in a story by Hale entitled 'The Brick Moon' published in 1899. The story involved a group of young Bostonians who planned to put an artificial satellite into polar orbit for sailors to use to determine longitude accurately and easily. They planned to send a brick satellite into orbit because the satellite would have to withstand fire very well. The Satellite's 37 inhabitants signaled the Earth in morse code by jumping up and down on the outside of the satellite.

  6. The body's tailored suit: Skin as a mechanical interface.

    PubMed

    Tissot, Floriane S; Boulter, Etienne; Estrach, Soline; Féral, Chloé C

    2016-11-01

    Skin, by nature, is very similar to the Rouquayrol-Denayrouze suit mentioned by Jules Verne in Twenty Thousand Leagues Under the Sea: it allows "to risk (…) new physiological conditions without suffering any organic disorder". Mechanical cues, to the same extent as other environmental parameters, are such "new physiological conditions". Indeed, skin's primary function is to form a protective barrier to shield inner tissues from the external environment. This requires unique mechanical properties as well as the ability to sense mechanical cues from the environment in order to prevent or repair mechanical damages as well as to function as the primary mechanosensory interface of the whole body. Copyright © 2016 Elsevier GmbH. All rights reserved.

  7. Serial vs. parallel models of attention in visual search: accounting for benchmark RT-distributions.

    PubMed

    Moran, Rani; Zehetleitner, Michael; Liesefeld, Heinrich René; Müller, Hermann J; Usher, Marius

    2016-10-01

    Visual search is central to the investigation of selective visual attention. Classical theories propose that items are identified by serially deploying focal attention to their locations. While this accounts for set-size effects over a continuum of task difficulties, it has been suggested that parallel models can account for such effects equally well. We compared the serial Competitive Guided Search model with a parallel model in their ability to account for RT distributions and error rates from a large visual search data-set featuring three classical search tasks: 1) a spatial configuration search (2 vs. 5); 2) a feature-conjunction search; and 3) a unique feature search (Wolfe, Palmer & Horowitz Vision Research, 50(14), 1304-1311, 2010). In the parallel model, each item is represented by a diffusion to two boundaries (target-present/absent); the search corresponds to a parallel race between these diffusors. The parallel model was highly flexible in that it allowed both for a parametric range of capacity-limitation and for set-size adjustments of identification boundaries. Furthermore, a quit unit allowed for a continuum of search-quitting policies when the target is not found, with "single-item inspection" and exhaustive searches comprising its extremes. The serial model was found to be superior to the parallel model, even before penalizing the parallel model for its increased complexity. We discuss the implications of the results and the need for future studies to resolve the debate.

  8. STS-105/Discovery/ISS 7A.1: Pre-Launch Activities, Launch, Orbit Activities and Landing

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The crew of Space Shuttle Discovery on STS-105 is introduced at their pre-launch meal and at suit-up. The crew members include Commander Scott Horowitz, Pilot Rick Sturckow, and Mission Specialists Patrick Forrester and Daniel Barry, together with the Expedition 3 crew of the International Space Station (ISS). The Expedition 3 crew includes Commander Frank Culbertson, Soyuz Commander Vladimir Dezhurov, and Flight Engineer Mikhail Tyurin. When the astronauts depart for the launch pad in the Astrovan, their convoy is shown from above. Upon reaching the launch pad, they conduct a walk around of the shuttle, display signs for family members while being inspected in the White Room, and are strapped into their seats onboard Disciovery. The video includes footage of Discovery in the Orbiter Processing Facility, and some of the pre-launch procedures at the Launch Control Center are shown. The angles of launch replays include: TV-1, Beach Tracker, VAB, Pad A, Tower 1, UCS-15, Grandstand, OTV-70, Onboard, IGOR, and UCS-23. The moment of docking between Discovery and the ISS is shown from inside Discovery's cabin. While in orbit, the crew conducted extravehicular activities (EVAs) to attach an experiments container, and install handrails on the Destiny module of the ISS. The video shows the docking and unloading of the Leonardo Multipurpose Logistics Module (MPLM) onto the ISS. The deployment of a satellite from Discovery with the coast of the Gulf of Mexico in the background is shown. Cape Canaveral is also shown from space. Landing replays include VAB, Tower 1, mid-field, South End SLF, North End SLF, Tower 2, Playalinda DOAMS, UCS-23, and Pilot Point of View (PPOV). NASA Administrator Dan Goldin meets the crew upon landing and participates in their walk around of Discovery. The video concludes with a short speech by commander Horowitz.

  9. Imaging lidar technology: development of a 3D-lidar elegant breadboard for rendezvous and docking, test results, and prospect to future sensor application

    NASA Astrophysics Data System (ADS)

    Moebius, B.; Pfennigbauer, M.; Pereira do Carmo, J.

    2017-11-01

    During the previous 15 years, Rendezvous and Docking Sensors (RVS) were developed, manufactured and qualified. In the mean time they were successfully applied in some space missions: For automatic docking of the European ATV "Jules Verne" on the International Space Station in 2008; for automatic berthing of the first Japanese HTV in 2009, and even the precursor model ARP-RVS for measurements during Shuttle Atlantis flights STS-84 and STS-86 to the MIR station. Up to now, about twenty RVS Flight Models for application on ATV, HTV and the American Cygnus Spacecraft were manufactured and delivered to the respective customers. RVS is designed for tracking of customer specific, cooperative targets (i.e. retro reflectors that are arranged in specific geometries). Once RVS has acquired the target, the sensor measures the distance to the target by timeof- flight determination of a pulsed laser beam. Any echo return provokes an interrupt signal and thus the readout of the according encoder positions of the two scan mirrors that represent Azimuth and Elevation measurement direction to the target. [2], [3]. The capability of the RVS for 3D mapping of the scene makes the fully space qualified RVS to be real 3D Lidar sensors; thus they are a sound technical base for the compact 3D Lidar breadboard that was developed in the course of the Imaging Lidar Technology (ILT) project.

  10. Interactive Geophysical Mapping on the Web

    NASA Astrophysics Data System (ADS)

    Meertens, C.; Hamburger, M.; Estey, L.; Weingroff, M.; Deardorff, R.; Holt, W.

    2002-12-01

    We have developed a set of interactive, web-based map utilities that make geophysical results accessible to a large number and variety of users. These tools provide access to pre-determined map regions via a simple Html/JavaScript interface or to user-selectable areas using a Java interface to a Generic Mapping Tools (GMT) engine. Users can access a variety of maps, satellite images, and geophysical data at a range of spatial scales for the earth and other planets of the solar system. Developed initially by UNAVCO for study of global-scale geodynamic processes, users can choose from a variety of base maps (satellite mosaics, global topography, geoid, sea-floor age, strain rate and seismic hazard maps, and others) and can then add a number of geographic and geophysical overlays for example coastlines, political boundaries, rivers and lakes, NEIC earthquake and volcano locations, stress axes, and observed and model plate motion and deformation velocity vectors representing a compilation of 2933 geodetic measurements from around the world. The software design is flexible allowing for construction of special editions for different target audiences. Custom maps been implemented for UNAVCO as the "Jules Verne Voyager" and "Voyager Junior", for the International Lithosphere Project's "Global Strain Rate Map", and for EarthScope Education and Outreach as "EarthScope Voyager Jr.". For the later, a number of EarthScope-specific features have been added, including locations of proposed USArray (seismic), Plate Boundary Observatory (geodetic), and San Andreas Fault Observatory at Depth sites plus detailed maps and geographically referenced examples of EarthScope-related scientific investigations. In addition, we are developing a website that incorporates background materials and curricular activities that encourage users to explore Earth processes. A cluster of map processing computers and nearly a terabyte of disk storage has been assembled to power the generation of interactive maps and provide space for a very large collection of map data. A portal to these map tools can be found at: http://jules.unavco.ucar.edu.

  11. STS-105 crew poses for photo at Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- The STS-105 crew poses at Launch Pad 39A after training exercises. Pictured (left to right), Mission Specialists Patrick Forrester and Daniel Barry, Commander Scott Horowitz and Pilot Rick Sturckow. They are taking part in Terminal Countdown Demonstration Test activities, along with the Expedition Three crew. The training includes emergency egress, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery, which is seen in the background. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001.

  12. STS-82 Flight Day 01 Highlights

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The first day of the STS-82 mission begins with the crew, Commander Kenneth D. Bowersox, Pilot Scott J. Horowitz, Payload Commander Mark C. Lee, and Mission Specialists Gregory J. Harbaugh, Steven L. Smith, Joseph R. Tanner, and Steven A. Hawley performing pre-launch activities such as eating the traditional breakfast, being suited up, and riding out to the launch pad. Also, included are various panoramic views of the shuttle on the pad. The crew is readied in the 'white room' for their mission. After the closing of the hatch, and arm retraction, launch activities are shown including the countdown, engine ignition, launch, shuttle roll maneuver, and then the separation of the Solid Rocket Boosters (SRB) from the shuttle. Once in orbit the cargo bay doors are seen opening.

  13. Unified theory of effective interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takayanagi, Kazuo, E-mail: k-takaya@sophia.ac.jp

    2016-09-15

    We present a unified description of effective interaction theories in both algebraic and graphic representations. In our previous work, we have presented the Rayleigh–Schrödinger and Bloch perturbation theories in a unified fashion by introducing the main frame expansion of the effective interaction. In this work, we start also from the main frame expansion, and present various nonperturbative theories in a coherent manner, which include generalizations of the Brandow, Brillouin–Wigner, and Bloch–Horowitz theories on the formal side, and the extended Krenciglowa–Kuo and the extended Lee–Suzuki methods on the practical side. We thus establish a coherent and comprehensive description of both perturbativemore » and nonperturbative theories on the basis of the main frame expansion.« less

  14. STS-101 crew members meet family and friends

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A light-hearted moment during a meeting of the STS-101 crew with family and friends at Launch Pad 39A. From left, Commander James D. Halsell Jr., Mission Specialist Mary Ellen Weber and Pilot Scott J. Horowitz. Mission STS-101 will take the crew to the International Space Station to deliver logistics and supplies, plus prepare the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. The crew will conduct one space walk to perform maintenance on the Space Station as well. This will be the third assembly flight for the Space Station. Launch is targeted for April 24 at about 4:15 p.m. EDT from Launch Pad 39A.

  15. Large-D gravity and low-D strings.

    PubMed

    Emparan, Roberto; Grumiller, Daniel; Tanabe, Kentaro

    2013-06-21

    We show that in the limit of a large number of dimensions a wide class of nonextremal neutral black holes has a universal near-horizon limit. The limiting geometry is the two-dimensional black hole of string theory with a two-dimensional target space. Its conformal symmetry explains the properties of massless scalars found recently in the large-D limit. For black branes with string charges, the near-horizon geometry is that of the three-dimensional black strings of Horne and Horowitz. The analogies between the α' expansion in string theory and the large-D expansion in gravity suggest a possible effective string description of the large-D limit of black holes. We comment on applications to several subjects, in particular to the problem of critical collapse.

  16. KSC-01pp1317

    NASA Image and Video Library

    2001-07-18

    KENNEDY SPACE CENTER, Fla. -- Expedition Three Commander Frank Culbertson happily sits through suit fit check as part of Terminal Countdown Demonstration Test activities. He and fellow crew members Vladimir Nikolaevich Dezhurov and Mikhail Tyurin, both with the Russian Aviation and Space Agency, are taking part in the TCDT along with the STS-105 crew: Commander Scott Horowitz, Pilot Rick Sturckow, and Mission Specialists Daniel Barry and Patrick Forrester. The TCDT also includes emergency egress training and a simulated launch countdown. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001

  17. KSC-01pp1417

    NASA Image and Video Library

    2001-08-05

    KENNEDY SPACE CENTER, Fla. -- After their arrival at Kennedy Space Center’s Shuttle Landing Facility, the STS-105 crew greet the media. At the microphone is Commander Scott Horowitz. Behind him are the Expedition Three crew, Commander Frank Culbertson and cosmonauts Mikhail Tyurin and Vladimir Dezhurov. On mission STS-105, Discovery will be transporting the Expedition Three crew and several payloads and scientific experiments to the International Space Station. The Early Ammonia Servicer (EAS) tank, which will support the thermal control subsystems until a permanent system is activated, will be attached to the Station during two spacewalks. The three-member Expedition Two crew will be returning to Earth aboard Discovery after a five-month stay on the Station. Launch of Discovery on mission STS-105 is scheduled for Aug. 9

  18. KSC-01pp1420

    NASA Image and Video Library

    2001-08-06

    KENNEDY SPACE CENTER, Fla. -- STS-105 Commander Scott Horowitz prepares to climb into the cockpit of a T-38 jet for a training flight from the Kennedy Space Center Shuttle Landing Facility. He and the rest of the crew are at Kennedy to make final preparations for launch. On mission STS-105, Discovery will be transporting the Expedition Three crew and several payloads and scientific experiments to the International Space Station. The Early Ammonia Servicer (EAS) tank, which will support the thermal control subsystems until a permanent system is activated, will be attached to the Station during two spacewalks. The three-member Expedition Two crew will be returning to Earth aboard Discovery after a five-month stay on the Station. Launch is scheduled for Aug. 9, 2001

  19. KSC-01pp1318

    NASA Image and Video Library

    2001-07-18

    KENNEDY SPACE CENTER, Fla. -- STS-105 Mission Specialist Patrick Forrester waits to don his helmet during suit fit check as part of Terminal Countdown Demonstration Test activities. He and other crew members Commander Scott Horowitz, Pilot Rick Sturckow and Mission Specialist Daniel Barry are also taking part in the TCDT, which includes emergency egress training and a simulated launch countdown. Mission STS-105 will be transporting the Expedition Three crew - Commander Frank Culbertson and Vladimir Nikolaevich Dezhurov and Mikhail Tyurin, both with the Russian Aviation and Space Agency - several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001

  20. Further Evidence on the Effect of Acquisition Policy and Process on Cost Growth

    DTIC Science & Technology

    2016-04-30

    bust periods. A complete summary also would need to take into account parallel analyses for the boom periods and the comparisons of cost growth in...qÜáêíÉÉåíÜ=^ååì~ä= ^Åèìáëáíáçå=oÉëÉ~êÅÜ= póãéçëáìã= tÉÇåÉëÇ~ó=pÉëëáçåë= sçäìãÉ=f= = Further Evidence on the Effect of Acquisition Policy and Process on Cost ...Goeller, Defense Acquisition Analyst, Institute for Defense Analyses Stanley Horowitz, Assistant Director, Cost Analysis and Research Division

  1. STS-105, Expeditions Two and Three crew portrait in the ISS U.S. Laboratory/Destiny

    NASA Image and Video Library

    2001-08-17

    STS105-E-5326 (17 August 2001) --- The Expedition Three (white shirts), STS-105 (striped shirts), and Expedition Two (red shirts) crews assemble for a press conference in the U.S. Laboratory. The Expedition Three crew members are, from front to back, Frank L. Culbertson, mission commander; and cosmonauts Vladimir N. Dezhurov and Mikhail Tyurin, flight engineers; STS-105 crewmembers are, front row, Patrick G. Forrester and Daniel T. Barry, mission specialists, and back row, Scott J. Horowitz, commander, and Frederick W. (Rick) Sturckow, pilot; Expedition Two crewmembers are, from front to back, cosmonaut Yury V. Usachev, mission commander, and James S. Voss and Susan J. Helms, flight engineers. This image was taken with a digital still camera.

  2. Cotard's Syndrome in a Patient with Schizophrenia: Case Report and Review of the Literature

    PubMed Central

    Ledesma-Gastañadui, Mario

    2016-01-01

    Jules Cotard described, in 1880, the case of a patient characterized by delusions of negation, immortality, and guilt as well as melancholic anxiety among other clinical features. Later this constellation of symptoms was given the eponym Cotard's syndrome, going through a series of theoretical vicissitudes, considering itself currently as just the presence of nihilistic delusions. The presentation of the complete clinical features described by Cotard is a rare occurrence, especially in the context of schizophrenia. Here we present the case of a 50-year-old male patient with schizophrenia who developed Cotard's syndrome. The patient was treated with aripiprazole, showing improvement after two weeks of treatment. A review of the literature is performed about this case. PMID:28053798

  3. Cotard's Syndrome in a Patient with Schizophrenia: Case Report and Review of the Literature.

    PubMed

    Huarcaya-Victoria, Jeff; Ledesma-Gastañadui, Mario; Huete-Cordova, Maria

    2016-01-01

    Jules Cotard described, in 1880, the case of a patient characterized by delusions of negation, immortality, and guilt as well as melancholic anxiety among other clinical features. Later this constellation of symptoms was given the eponym Cotard's syndrome, going through a series of theoretical vicissitudes, considering itself currently as just the presence of nihilistic delusions. The presentation of the complete clinical features described by Cotard is a rare occurrence, especially in the context of schizophrenia. Here we present the case of a 50-year-old male patient with schizophrenia who developed Cotard's syndrome. The patient was treated with aripiprazole, showing improvement after two weeks of treatment. A review of the literature is performed about this case.

  4. Study of the influence of heat sources on the out-of-pile calibration curve of calorimetric cells used for nuclear energy deposition quantification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Vita, C.; Brun, J.; Reynard-Carette, C.

    2015-07-01

    At present the Jules Horowitz Reactor is under construction in Cadarache research center of CEA 'French Alternative Energies and Atomic Energy Commission' center located in the south-east of France. This new Material Testing Reactor (MTR) will be operational in late 2019 and will allow the generation of a new experimental potential (up to 20 irradiation devices simultaneously) and new harsh conditions such as higher neutron fluxes (5.10{sup 14} n.cm{sup -2}.s{sup -1} for E≥1 MeV), faster material ageing and higher nuclear heating (up to 20 W/g for nominal capacity of 100 MW). In nuclear research field, the control and the measurementmore » of the nuclear heating (energy deposition rate per mass unit induced by the interactions of radiations with matter) is crucial to carry out accurate studies on ageing of materials and on the behavior of nuclear fuels under irradiation. Several experiments need to know precisely this key parameter in order to establish dedicated thermal conditions. The measurement of the nuclear heating inside MTRs is realized by three kinds of sensors: single-cell calorimeter, differential calorimeter and gamma thermometer. One scientific objective of the IN-CORE program, between CEA and Aix-Marseille University in 2009, is to improve the nuclear heating measurement. In this context a new multi-sensor device, called CARMEN, was made. This device contains in particular a differential calorimeter which was designed to measure the nuclear heating in the periphery of OSIRIS reactor (a MTR located at Saclay, France) up to 2 W/g and tested during two irradiation campaigns. Results obtained during these campaigns showed that temperatures reached inside the calorimeter are higher than ones obtained during the preliminary out-of-pile calibration experiments. For instance for 1.74 W/g, the in-pile temperature of the calorimeter rod is equal to 305 deg. C against 225 deg. C in laboratory conditions by simulating the nuclear heating by Joule Effect inside the calorimeter cell head. This discrepancy is higher than in previous experiments because the calorimeter owns a high sensitivity. Consequently, a new prototype was created and instrumented by other heat sources in order to impose an energy deposition on the calorimetric cell structure (in particular in the base) and to improve the calibration step in out-of-pile conditions. In this paper, on the first part a detailed description of the new calorimetric sensor will be given. On the second part, the experimental response of the sensor obtained for several internal heating conditions will be shown. The influence of these conditions on the calibration curve will be discussed. Then the response of this prototype will be also presented for different external cooling fluid conditions (in particular flow temperature). In this part, the comparison between the in-pile and out-of-pile experimental results will be performed. On the last part, these out-of-pile experiments will be completed by 2D axisymmetrical thermal simulations with the CEA code CAST3M using Finite Elements Method. After a comparison between experimental and numerical works, improvements of the sensor prototype will be studied (new heat sources). (authors)« less

  5. Methodology comparison for gamma-heating calculations in material-testing reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemaire, M.; Vaglio-Gaudard, C.; Lyoussi, A.

    2015-07-01

    The Jules Horowitz Reactor (JHR) is a Material-Testing Reactor (MTR) under construction in the south of France at CEA Cadarache (French Alternative Energies and Atomic Energy Commission). It will typically host about 20 simultaneous irradiation experiments in the core and in the beryllium reflector. These experiments will help us better understand the complex phenomena occurring during the accelerated ageing of materials and the irradiation of nuclear fuels. Gamma heating, i.e. photon energy deposition, is mainly responsible for temperature rise in non-fuelled zones of nuclear reactors, including JHR internal structures and irradiation devices. As temperature is a key parameter for physicalmore » models describing the behavior of material, accurate control of temperature, and hence gamma heating, is required in irradiation devices and samples in order to perform an advanced suitable analysis of future experimental results. From a broader point of view, JHR global attractiveness as a MTR depends on its ability to monitor experimental parameters with high accuracy, including gamma heating. Strict control of temperature levels is also necessary in terms of safety. As JHR structures are warmed up by gamma heating, they must be appropriately cooled down to prevent creep deformation or melting. Cooling-power sizing is based on calculated levels of gamma heating in the JHR. Due to these safety concerns, accurate calculation of gamma heating with well-controlled bias and associated uncertainty as low as possible is all the more important. There are two main kinds of calculation bias: bias coming from nuclear data on the one hand and bias coming from physical approximations assumed by computer codes and by general calculation route on the other hand. The former must be determined by comparison between calculation and experimental data; the latter by calculation comparisons between codes and between methodologies. In this presentation, we focus on this latter kind of bias. Nuclear heating is represented by the physical quantity called absorbed dose (energy deposition induced by particle-matter interactions, divided by mass). Its calculation with Monte Carlo codes is possible but computationally expensive as it requires transport simulation of charged particles, along with neutrons and photons. For that reason, the calculation of another physical quantity, called KERMA, is often preferred, as KERMA calculation with Monte Carlo codes only requires transport of neutral particles. However, KERMA is only an estimator of the absorbed dose and many conditions must be fulfilled for KERMA to be equal to absorbed dose, including so-called condition of electronic equilibrium. Also, Monte Carlo computations of absorbed dose still present some physical approximations, even though there is only a limited number of them. Some of these approximations are linked to the way how Monte Carlo codes apprehend the transport simulation of charged particles and the productive and destructive interactions between photons, electrons and positrons. There exists a huge variety of electromagnetic shower models which tackle this topic. Differences in the implementation of these models can lead to discrepancies in calculated values of absorbed dose between different Monte Carlo codes. The magnitude of order of such potential discrepancies should be quantified for JHR gamma-heating calculations. We consequently present a two-pronged plan. In a first phase, we intend to perform compared absorbed dose / KERMA Monte Carlo calculations in the JHR. This way, we will study the presence or absence of electronic equilibrium in the different JHR structures and experimental devices and we will give recommendations for the choice of KERMA or absorbed dose when calculating gamma heating in the JHR. In a second phase, we intend to perform compared TRIPOLI4 / MCNP absorbed dose calculations in a simplified JHR-representative geometry. For this comparison, we will use the same nuclear data library for both codes (the European library JEFF3.1.1 and photon library EPDL97) so as to isolate the effects from electromagnetic shower models on absorbed dose calculation. This way, we hope to get insightful feedback on these models and their implementation in Monte Carlo codes. (authors)« less

  6. KSC-01pp1481

    NASA Image and Video Library

    2001-08-10

    KENNEDY SPACE CENTER, Fla. - Expedition Three crew member Vladimir Dezhurov (left) is ready for his first space flight, under the guidance of STS-105 Commander Scott Horowitz (center). Helping with flight equipment before launch is (right) USA Mechanical Technician Al Schmidt. The payload on the STS-105 mission to the International Space Station includes the third flight of the Italian-built Multi-Purpose Logistics Module Leonardo, delivering additional scientific racks, equipment and supplies for the Space Station, and the Early Ammonia Servicer (EAS) tank. The EAS, which will be attached to the Station during two spacewalks, contains spare ammonia for the Station’s cooling system. Also, the Expedition Three crew is aboard to replace the Expedition Two crew on the International Space Station, who will be returning to Earth aboard Discovery after a five-month stay on the Station

  7. STS-105 crew poses for photo on Fixed Service Structure

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- The STS-105 crew poses on the Fixed Service Structure at Launch Pad 39A. From left are Mission Specialist Patrick Forrester, Commander Scott Horowitz, Pilot Rick Sturckow and Mission Specialist Dan Barry. The STS-105 and Expedition Three crews are at Kennedy Space Center participating in a Terminal Countdown Demonstration Test, a dress rehearsal for launch. The activities include emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The Expedition Two crew members currently on the Station will return to Earth on Discovery. The mission is scheduled to launch no earlier than Aug. 9, 2001.

  8. STS-105 and Expedition Three crews pose together for photo on Fixed Service Structure

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- The STS-105 crew poses on the Fixed Service Structure at Launch Pad 39A. From left are Mission Specialist Patrick Forrester, Commander Scott Horowitz, Pilot Rick Sturckow and Mission Specialist Dan Barry. The STS-105 and Expedition Three crews are at Kennedy Space Center participating in a Terminal Countdown Demonstration Test, a dress rehearsal for launch. The activities include emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The Expedition Two crew members currently on the Station will return to Earth on Discovery. The mission is scheduled to launch no earlier than Aug. 9, 2001.

  9. A-3 Groundbreaking Ceremony

    NASA Image and Video Library

    2007-08-23

    NASA officials and government leaders participated in a groundbreaking event for a new rocket engine test stand at NASA's Stennis Space Center, Miss. Pictured (left to right) are Deputy Associate Administrator for Exploration Systems Doug Cooke, Pratt & Whitney Rocketdyne President Jim Maser, Stennis Space Center Director Richard Gilbrech, NASA Associate Administrator for Exploration Systems Scott Horowitz, NASA Deputy Administrator Shana Dale, Mississippi Gov. Haley Barbour, Sen. Thad Cochran, Sen. Trent Lott, Rep. Gene Taylor, SSC's Deputy Director Gene Goldman, and SSC's A-3 Project Manager Lonnie Dutreix. Stennis' A-3 Test Stand will provide altitude testing for NASA's developing J-2X engine. That engine will power the upper stages of NASA's Ares I and Ares V rockets. A-3 is the first large test stand to be built at SSC since the site's inception in the 1960s.

  10. STS-82 Post Flight Presentation

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The STS-82 crew, Commander Kenneth D. Bowersox, Pilot Scott J. Horowitz, Payload Commander Mark C. Lee, and Mission Specialists Gregory J. Harbaugh, Steven L. Smith, Joseph R. Tanner, and Steven A. Hawley present a video and still picture overview of their mission. Included in the presentation are the following: the pre-launch activities such as eating the traditional breakfast, being suited up, and riding out to the launch pad, various panoramic views of the shuttle on the pad, the countdown, engine ignition, launch, shuttle roll maneuver, separation of the Solid Rocket Boosters (SRB) from the shuttle, survey of the payload bay with the Shuttle's 50-foot remote manipulator system (RMS), the successful retrieve of the Hubble Space Telescope (HST), EVAs to repair HST, release of HST, and the shuttle's landing.

  11. Asymptotic behavior of exact exchange potential of slabs

    NASA Astrophysics Data System (ADS)

    Engel, E.

    2014-06-01

    In this contribution the exact exchange potential vx of density functional theory is examined for slabs such as graphene, for which one has a Bravais lattice in the x-y directions, while the electrons are confined to the finite region -L≤z≤L in the z direction. It is demonstrated analytically that the exact vx behaves as -e2/z for z ≫L. This result extends the corresponding statement of Horowitz, Proetto, and Rigamonti [Phys. Rev. Lett. 97, 026802 (2006), 10.1103/PhysRevLett.97.026802] for jellium slabs to slabs with arbitrary periodic density distributions. Application of the exact exchange to a Si(111) slab (within the Krieger-Li-Iafrate approximation) indicates that the corrugation of the exact vx is more pronounced than that of the local density approximation for vx.

  12. KSC-01pp1321

    NASA Image and Video Library

    2001-07-18

    KENNEDY SPACE CENTER, Fla. -- Expedition Three crew member Mikhail Tyurin undergoes suit fit check as part of Terminal Countdown Demonstration Test activities. He and fellow crew members Commander Frank Culbertson and Vladimir Nikolaevich Dezhurov are taking part in the TCDT along with the STS-105 crew: Commander Scott Horowitz, Pilot Rick Sturckow, and Mission Specialists Daniel Barry and Patrick Forrester. Dezhurov and Tyurin are both with the Russian Aviation and Space Agency. The TCDT also includes emergency egress training and a simulated launch countdown. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001

  13. KSC-01pp1302

    NASA Image and Video Library

    2001-07-18

    KENNEDY SPACE CENTER, Fla. -- Expedition Three crew member Vladimir Nikolaevich Dezhurov gets ready to drive the M-113 armored personnel carrier that is part of emergency egress training at the pad. The training is part of Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown and familiarization with the payload. Other crew members taking part are the STS-105 crew, Commander Scott Horowitz, Pilot Rick Sturckow, Mission Specialists Daniel Barry and Patrick Forrester; and the rest of Expedition Three, Commander Frank Culbertson and Mikhail Tyurin. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001

  14. KSC-01pp1309

    NASA Image and Video Library

    2001-07-18

    KENNEDY SPACE CENTER, Fla. -- The STS-105 and Expedition Three crews pose in front of the M-113 armored personnel carrier that is part of emergency egress training at the pad. From left to right, they are STS-105 Commander Scott Horowitz, Mission Specialist Daniel Barry, Pilot Rick Sturckow, and Mission Specialist Patrick Forrester; Expedition Three Commander Frank Culbertson and cosmonauts Mikhail Tyurin and Vladimir Nikolaevich Dezhurov. The training is part of Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001

  15. KSC-01pp1306

    NASA Image and Video Library

    2001-07-18

    KENNEDY SPACE CENTER, Fla. -- Expedition Three crew Commander Frank Culbertson is behind the wheel of the M-113 armored personnel carrier that is part of emergency egress training at the pad. The training is part of Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown and familiarization with the payload. The STS-105 crew members taking part are Commander Scott Horowitz, Pilot Rick Sturckow, and Mission Specialists Daniel Barry and Patrick Forrester; and the other Expedition Three crew members: cosmonauts Vladimir Nikolaevich Dezhurov and Mikhail Tyurin. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001

  16. KSC-01pp1320

    NASA Image and Video Library

    2001-07-18

    KENNEDY SPACE CENTER, Fla. -- Expedition Three crew member Vladimir Nikolaevich Dezhurov undergoes suit fit check as part of Terminal Countdown Demonstration Test activities. He and fellow crew members Commander Frank Culbertson and Mikhail Tyurin are taking part in the TCDT along with the STS-105 crew: Commander Scott Horowitz, Pilot Rick Sturckow, and Mission Specialists Daniel Barry and Patrick Forrester. Dezhurov and Tyurin are both with the Russian Aviation and Space Agency. The TCDT also includes emergency egress training and a simulated launch countdown. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001

  17. KSC-01pp1310

    NASA Image and Video Library

    2001-07-18

    KENNEDY SPACE CENTER, Fla. -- STS-105 Commander Scott Horowitz is ready to take the wheel of the M-113 armored personnel carrier that is part of emergency egress training at the pad. The training is part of Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown and familiarization with the payload. Other STS-105 crew members taking part are Pilot Rick Sturckow and Mission Specialists Daniel Barry and Patrick Forrester; and the Expedition Three crew, Commander Frank Culbertson, and cosmonauts Vladimir Nikolaevich Dezhurov and Mikhail Tyurin. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001

  18. STS-101 crew have a snack before getting ready for launch again

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Operations and Checkout Building, the STS-101 crew gathers for a snack before suiting up for launch for the second time. The previous day's launch attempt was scrubbed due to high cross winds at the Shuttle Landing Facility. From left are Mission Specialists Mary Ellen Weber and Yuri Usachev of Russia; Pilot Scott J. Horowitz; Commander James D. Halsell Jr.; and Mission Specialists Jeffrey N. Williams, Susan J. Helms and James S. Voss. The mission will take the crew to the International Space Station to deliver logistics and supplies and prepare the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk. This will be the third assembly flight to the Space Station.

  19. Operational tools and applications of EO satellite data to retrieve surface fluxes in semi-arid countries

    NASA Astrophysics Data System (ADS)

    Tanguy, Maliko

    The objective of the thesis is to develop and evaluate useful tools and applications of Earth Observation (EO) satellite data to estimate surface fluxes in semi-arid countries. In a first part (Chapter 4), we assess the performance of a new parameterisation scheme of ground heat flux (G) to be used in remote sensing (RS) evapotranspiration (ET) estimation methods. The G-parameterisation optimized with AMMA flux data performs well and improves the sensible heat flux (H) and ET retrieved by means of the triangle method (Jiang & Islam, 2001). In a second part (Chapter 5), the triangle method is compared with ET estimated by means of a land surface model (JULES). An attempt is made to calibrate JULES using the triangle method through Monte Carlo simulations, but the two methods supply rather different results, indicating that further intercomparison tasks should be carried out to assess the performance of RS-based algorithms and land surface models in estimating the components of the land surface energy balance. Chapter 6 presents a set of operational examples for retrieving surface fluxes using RS data. The first example is the study of temporal evolution of ET-maps in Western Africa under monsoonal influence. In a second example, we apply the new scheme proposed in Chapter 4 to retrieve and analyse the long term evolution (2000-2009) of the surface energy balance components, G, H and ET at several sites of the Segura Basin (S-E Spain) using MODIS-Terra data (land surface temperature and NDVI). Temporal and spatial distribution of evapotranspiration reveals different controls on ET. (Chapter 6). In the last example, MODIS-Aqua Sea Surface Temperature (SST) is used to validate a mathematical model to retrieve surface fluxes in a Mediterranean coastal lagoon (Mar Menor, S-E Spain). El objetivo de esta tesis es de desarrollar y evaluar herramientas y aplicaciones de la teledetección para estimar flujos de superficie en zonas semiáridas. En una primera parte (Capítulo 4), se evalúa la fiabilidad de una nueva parametrización para estimar el flujo de calor en el suelo (G) con el fin de ser utilizado en métodos de estimación de la evapotranspiración (ET) usando datos de teledetección. La parametrización de G se optimiza usando datos de flujo de energía obtenido durante las campañas del proyecto AMMA, y muestra buenos resultados y una mejora de las estimaciones del flujo de calor sensible (H) y de ET cuando se utiliza conjuntamente con el método del triángulo (Jiang & Islam, 2001). En una segunda parte (Capítulo 5), el método del triángulo se compara con valores de ET estimado por un modelo de superficie terrestre (JULES). Se intenta calibrar JULES usando el método del triángulo mediante simulaciones de Monte Carlo, pero los dos métodos muestran resultados muy diferentes, indicando que se necesita tareas de comparación profundizadas para poder evaluar la eficacia de estos modelos (de superficie terrestre y basados en la teledetección) para estimar los flujos de energía a la superficie. El capítulo 6 presenta un conjunto de ejemplos de aplicaciones operacionales para estimar los flujos de superficie usando datos de teledetección. El primer ejemplo consiste en el estudio de la evolución temporal de mapas de ET en África occidental bajo la influencia del monzón africano. En el segundo ejemplo, se aplica la nueva parametrización de G descrita en el capítulo 4 para calcular y analizar la evolución a largo plazo (2000-2009) de los componentes del balance de energía a la superficie, G, H y ET, en diferentes puntos de la cuenca del río Segura (Sureste español) utilizando datos del sensor MODIS-Terra (temperatura superficial y NDVI). La distribución temporal y espacial de ET revela diferentes controles sobre ET. En el último ejemplo, datos de temperatura superficial del mar del sensor MODIS-Aqua se utilizaron para validar un modelo matemático para calcular los flujos superficiales de una laguna costera del Mediterráneo (Mar Menor en el Sureste español).

  20. The UKC2 regional coupled prediction system

    NASA Astrophysics Data System (ADS)

    Castillo, Juan; Lewis, Huw; Graham, Jennifer; Saulter, Andrew; Arnold, Alex; Fallmann, Joachim; Martinez de la Torre, Alberto; Blyth, Eleanor; Bricheno, Lucy

    2017-04-01

    It is hypothesized that more accurate prediction and warning of natural hazards, such as of the impacts of severe weather through the environment, requires a more integrated approach to forecasting. This approach also delivers research benefits through providing tools with which to explore the known interactions and feedbacks between different physical and biogeochemical components of the environment across sky, sea and land. This hypothesis is being tested in a UK regional context at km-scale through the UK Environmental Prediction Project. This presentation will provide an introduction to the UKC2 UK Environmental Prediction research system. This incorporates models of the atmosphere (Met Office Unified Model), land surface (JULES), shelf-sea ocean (NEMO) and ocean waves (WAVEWATCH III). These components are coupled (via OASIS3-MCT libraries) at unprecedentedly high resolution across the UK and the wider north-west European regional domain. A research framework has been established to explore the representation of feedback processes in coupled and uncoupled modes, providing a unique new research tool for UK environmental science. The presentation will highlight work undertaken to review and improve the computational cost of running these systems for efficient research application. Research will be presented highlighting case study evaluation on the sensitivity of the ocean and surface waves to the representation of feedbacks to the atmosphere, and on the sensitivity of weather systems and boundary layer cloud development to the exchange of heat and momentum at the ocean surface modified through sea surface temperature and wave-induced roughness. The presentation will discuss plans for future development through UKC3 and beyond.

  1. [Theophile-Jules Pelouze (1807-1867) was one of the French pharmacists who has the most contributed to the evolution of the organic chemisty in the first half of the 19th century].

    PubMed

    Arnaud, Pascal

    2015-03-01

    Through some examples of his works, realized between 1833 and 1845 (studies on the tannin, the reaction of etherification, and on the nature of the chemical function of the glycerin), this article tries to bring to light his scientific approach. This one is not only based on the immediate analysis and the elementary analysis, but also on the study of characteristic chemical reactions, which are going to give him information onto the chemical nature and the constitution of the molecules which he studies. This approach will lead him finally to use these reactions not only in an analytical purpose but also in a purpose of synthesis.

  2. Nitrogen deposition, land cover conversion, climate, and contemporary carbon balance of Europe (Invited)

    NASA Astrophysics Data System (ADS)

    Churkina, G.; Zahle, S.; Hughes, J.; Viovy, N.; Chen, Y.; Jung, M.; Ramankutty, N.; Roedenbeck, C.; Heimann, M.; Jones, C.

    2009-12-01

    In Europe, atmospheric nitrogen deposition has more than doubled, air temperature was rising, forest cover was steadily increasing, while agricultural area was declining over the last 50 years. What effect have these changes had on the European carbon balance? In this study we estimate responses of the European land ecosystems to nitrogen deposition, rising CO2, land cover conversion and climate change. We use results from three ecosystem process models such as BIOME-BGC, JULES, and ORCHIDEE (-CN) to address this question. We discuss to which degree carbon balance of Europe has been altered by nitrogen deposition in comparison to other drivers and identify areas which carbon balance has been affected by anthropogenic changes the most. We also analyze ecosystems carbon pools which were affected by the abovementioned environmental changes.

  3. KSC-2014-4873

    NASA Image and Video Library

    2014-12-19

    CAPE CANAVERAL, Fla. -- NASA's Orion spacecraft is viewed by members of the media at the Launch Abort System Facility at NASA's Kennedy Space Center in Florida. Speaking to the media during the viewing opportunity is Jules Schneider, Lockheed Martin Manager. Behind him, from left, are Glenn Chin, Orion Production Operations manager and Phil Weber and Lou Garcia, with the Ground Systems Development and Operations Program, or GSDO. Orion made the 8-day, 2,700 mile overland trip back to Kennedy from Naval Base San Diego in California. Analysis of date obtained during its two-orbit, four-and-a-half hour mission Dec. 5 will provide engineers with detailed information on how the spacecraft fared. GSDO led the recovery, offload and transportation efforts. For more information, visit www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis

  4. Charney's Influence on Modern Oceanography

    NASA Astrophysics Data System (ADS)

    Cane, M. A.

    2017-12-01

    In this talk I will review some of Jule Charney's impacts on current oceanographic research. He was of course a major seminal figure in geophysical fluid dynamics, an approach to understanding the atmosphere and oceans that has been thoroughly absorbed in contemporary thinking. In oceanography, his publications make vorticity dynamics the centerpiece of his analysis. Here I pursue two other aspects of his work. The first is to note that his 1955 paper "The Gulf Stream as an inertial boundary layer" appears to be the earliest numerical model in oceanography. The second is that his work on the equatorial undercurrent leads to a simplification of equatorial ocean structure that was exploited by Zebiak and Cane in their model for ENSO, and thus structures later views of how equatorial ocean dynamics influence sea surface temperature.

  5. KSC-2014-4874

    NASA Image and Video Library

    2014-12-19

    CAPE CANAVERAL, Fla. -- NASA's Orion spacecraft is viewed by members of the media at the Launch Abort System Facility at NASA's Kennedy Space Center in Florida. Speaking to the media during the viewing opportunity is Phil Weber, with the Ground Systems Development and Operations Program, or GSDO. At left is Jules Schneider, Lockheed Martin manager. At right is Glenn Chin, Orion Production Operations, and Lou Garcia, with GSDO. Orion made the 8-day, 2,700 mile overland trip back to Kennedy from Naval Base San Diego in California. Analysis of date obtained during its two-orbit, four-and-a-half hour mission Dec. 5 will provide engineers detailed information on how the spacecraft fared. GSDO led the recovery, offload and transportation efforts. For more information, visit www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis

  6. Augusta Déjerine-Klumpke: the first female neuroanatomist.

    PubMed

    Shoja, Mohammadali M; Tubbs, R Shane

    2007-08-01

    Augusta Déjerine-Klumpke, the wife of Joseph Jules Dejerine, an eminent French neurologist, was an American and the first woman to intern in a Parisian hospital. She is known for Klumpke's radicular palsy, which is a neuropathy involving the lower nerve roots of the brachial plexus. The neuroanatomical treatise that she wrote together with her husband is considered a masterpiece. Klumpke won several awards in medical science, the first of which was in the field of anatomy when she was a student. She was a pioneer of rehabilitation therapy after spinal cord injuries and contributed much to our current knowledge of spinal cord diseases. We review the current English and French literature regarding this neuroanatomist who was the first woman to directly contribute to the writing of a neuroanatomy textbook.

  7. The Klumpke family--memories by Doctor Déjerine, born Augusta Klumpke.

    PubMed

    Bogousslavsky, Julien

    2005-01-01

    In this paper, we present a translation of an unpublished autobiographical document by Augusta Déjerine-Klumpke, reporting her early years before she came to Paris to study medicine, when she was able to become one of the first women in France to hold a hospital position, as an extern and an intern. This American-born girl later married Jules Déjerine, who was to become the second successor to Charcot at La Salpétrière 23 years later. The present document gives a vivid account on the preceding years, and emphasizes the extraordinary dynamism and enthusiasm of a young woman, whose efforts and contributions influenced neurology at the turn of the 20th century, and dramatically changed the role of women in medical careers.

  8. Distributed hydrological models to quantify ecosystem services and inform land use decisions in Europe

    NASA Astrophysics Data System (ADS)

    Wilebore, Beccy; Willis, Kathy

    2016-04-01

    Landcover conversion is one of the largest anthropogenic threats to ecological services globally; in the EU around 1500 ha of biodiverse land are lost every day to changes in infrastructure and urbanisation. This land conversion directly affects key ecosystem services that support natural infrastructure, including water flow regulation and the mitigation of flood risks. We assess the sensitivity of runoff production to landcover in the UK at a high spatial resolution, using a distributed hydrologic model in the regional land-surface model JULES (Joint UK Land Environment Simulator). This work, as part of the wider initiative 'NaturEtrade', will create a novel suite of easy-to-use tools and mechanisms to allow EU landowners to quickly map and assess the value of their land in providing key ecosystem services.

  9. Wetland methane modelling over the Scandinavian Arctic: Performance of current land-surface models

    NASA Astrophysics Data System (ADS)

    Hayman, Garry; Quiquet, Aurélien; Gedney, Nicola; Clark, Douglas; Friend, Andrew; George, Charles; Prigent, Catherine

    2014-05-01

    Wetlands are generally accepted as being the largest, but least well quantified, single natural source of CH4, with global emission estimates ranging from 100-231 Tg yr-1 [1] and for which the Boreal and Arctic regions make a significant contribution [2, 3]. The recent review by Melton et al. [4] has provided a summary of the current state of knowledge on the modelling of wetlands and the outcome of the WETCHIMP model intercomparison exercise. Melton et al. found a large variation in the wetland areas and associated methane emissions from the participating models and varying responses to climate change. In this paper, we report results from offline runs of two land surface models over Scandinavia (JULES, the Joint UK Land Environment Simulator [5, 6] and HYBRID8 [7]), using the same driving meteorological dataset (CRU-NCEP) for the period from January 1980 to December 2010. Although the two land surface models are very different, both models have used a TOPMODEL approach to derive the wetland area and have similar parameterisations of the methane wetland emissions. We find that both models give broadly similar results. They underestimate the wetland areas over Northern Scandinavia, compared to remote sensing and map-based datasets of wetlands [8]. This leads to lower predicted methane emissions compared to those observed on the ground and from aircraft [9]. We will present these findings and identify possible reasons for the underprediction. We will show the sensitivity to using the observed wetland areas to improve the methane emission estimates. References [1] Denman, K., et al.,: Couplings Between Changes in the Climate System and Biogeochemistry, In Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, United Kingdom, 2007; [2] Smith, L. C., et al.: Siberian peatlands a net carbon sink and global methane source since the early Holocene, Science, 303, 353-356, doi:10.1126/science.1090553, 2004; [3] Zhuang, Q., et al.: CO2 and CH4 exchanges between land ecosystems and the atmosphere in northern high latitudes over the 21st century, Geophysical Research Letters, 33, doi:10.1029/2006gl026972, 2006; [4] Melton, J.R., et al.: Present state of global wetland extent and wetland methane modelling: conclusions from a model inter-comparison project (WETCHIMP), Biogeosciences, 10, 753-788, doi:10.5194/bg-10-753-2013, 2013; [5] Best, M. J., et al.: The Joint UK Land Environment Simulator (JULES), model description - Part 1: Energy and water fluxes, Geoscientific Model Development, 4, 677-699, doi:10.5194/gmd-4-677-2011, 2011; [6] Clark, D.B., et al.: The Joint UK Land Environment Simulator (JULES), Model description - Part 2: Carbon fluxes and vegetation. Geoscientific Model Development, 4, 701-722, doi:10.5194/gmd-4-701-2011, 2011; [7] Friend, A.D., and N.Y. Kiang: Land surface model development for the GISS GCM: Effects of improved canopy physiology on simulated climate. J. Climate, 18, 2883-2902, doi:10.1175/JCLI3425.1, 2005; [8] Prigent, C., et al.: Changes in land surface water dynamics since the 1990s and relation to population pressure, Geophys. Res. Lett., 39, L08403, doi:10.1029/2012GL051276, 2012; [9] O'Shea, S., et al.: Methane and carbon dioxide fluxes from the European Arctic wetlands during the MAMM project, paper in preparation.

  10. Obituary: Edward W. Burke, Jr. (1924-2011)

    NASA Astrophysics Data System (ADS)

    Bloomer, Raymond, Jr.

    2011-12-01

    Dr. Edward W. Burke Jr. passed away on June 15, 2011, after suffering a heart attack. Dr. Burke devoted his professional life to the research and teaching of physics and astronomy at King College in Bristol, Tennessee. Edward W. Burke, Jr., was born in Macon, Georgia, on September 16, 1924. He was a Navy veteran, having been commissioned as an ensign in 1944. He served in the Pacific near the end of World War II. He proceeded to complete his undergraduate degree in mathematics from Presbyterian College in 1947 and pursued the M.S. and Ph.D. in physics (1949 and 1954, respectively) at the University of Wisconsin. Under the direction of Professor Julian Mack, his thesis was titled "Isotope Shift in the Spectra of Boron." Although he did research in atomic spectra in the early part of his career, his interest in astronomy and variable stars in particular were his primary interests during his long academic career. Dr. Burke began his illustrious career at King College in 1949. He initiated the astronomy program there in 1950, included constructing a 12.5 inch Newtonian telescope, homemade as was most everything in those days. Many of his students learned about photometry at the Burke Observatory on the college campus. Burke was known for his trips to the Kitt Peak and Lowell observatories accompanied by undergraduate students on his trips, all of which were made by automobile which he preferred over flying. His initial interest in Ap stars later broadened into variable and especially eclipsing binary stars. His motivation was maintained by his desire to have his students experience basic research and to spark their interest in advanced degrees. Numerous students achieved advanced science and medical degrees because of Burke's encouragement and mentoring. In 1959, Dr. Burke was awarded a Fulbright professorship and traveled to Chile where he taught physics for a year in the Engineering School at the University of Chile in Santiago. He worked to establish a physics program there and upon a return visit in 2003 he found that the university physics program was thriving. In the 52 years of his association with King College, Dr. Burke served in many capacities. Over the years he was the tennis coach, Vice President for Academic Affairs, and Chairman of the Division of Natural Sciences and Mathematics for 31 years until his retirement in 1991. He continued to be involved on campus as a Professor Emeritus until his death. Throughout his career he engaged the public in the wonder of astronomy. He organized the Bristol Astronomy Club for the amateur astronomers in the region. In 1957 he spearheaded the King College Moonwatch program, an international man-made satellite observing program organized by the Smithsonian Astronomical Observatory. He initiated Science Open House at King College, a program which hosted hundreds of talented high school junior and senior students from the Appalachian region, to enjoy tours and demonstrations in the science departments. Throughout his career he opened the Burke Observatory for thousands of interested viewers. Burke was a southern gentleman, true to his roots in Macon, Georgia. At the same time he was also a man who never took "no" for an answer. He always found a way to recommend a way to solve a problem, to get a grant to do research, or to plan another observing trip. He was an eternal optimist who seemed to envision the possibilities rather than the limitations. In addition to his duties at King College, he was a long-time member of the Lions Club where he spent considerable time helping disadvantaged people obtain suitable eyeglasses. He also taught Sunday School at State Street United Methodist Church for many years. He was an avid birdwatcher with the Bristol Bird Club. In his later years he competed in badminton at the Senior Olympics and served as a line judge at the 1996 National Senior Olympics in Atlanta. He was married to Julee Struby Burke for 64 years. Julee was a participant in several research trips out west and served as a constant source of encouragement throughout his long career. Dr. Burke is survived by his wife, Julee, a son, Edward W. Burke, III, a daughter, Julia Burke Torbert (Edgar) and one grandson, Samuel Burke Torbert. An endowed chair has been established in his name at King College: The Edward W. Burke, Jr., Endowed Chair in Natural Science. His legacy to education in the natural sciences in the Appalachian region will continue to inspire future generations.

  11. Altered auditory function in rats exposed to hypergravic fields

    NASA Technical Reports Server (NTRS)

    Jones, T. A.; Hoffman, L.; Horowitz, J. M.

    1982-01-01

    The effect of an orthodynamic hypergravic field of 6 G on the brainstem auditory projections was studied in rats. The brain temperature and EEG activity were recorded in the rats during 6 G orthodynamic acceleration and auditory brainstem responses were used to monitor auditory function. Results show that all animals exhibited auditory brainstem responses which indicated impaired conduction and transmission of brainstem auditory signals during the exposure to the 6 G acceleration field. Significant increases in central conduction time were observed for peaks 3N, 4P, 4N, and 5P (N = negative, P = positive), while the absolute latency values for these same peaks were also significantly increased. It is concluded that these results, along with those for fields below 4 G (Jones and Horowitz, 1981), indicate that impaired function proceeds in a rostro-caudal progression as field strength is increased.

  12. KSC-01pp1475

    NASA Image and Video Library

    2001-08-10

    KENNEDY SPACE CENTER, Fla. -- STS-105 Commander Scott Horowitz sends a message home while preparing to enter Space Shuttle Discovery for launch. Assisting with flight equipment are (left) Orbiter Vehicle Closeout Chief Chris Meinert, (right) USA Mechanical Technician Al Schmidt and (behind) NASA Quality Assurance Specialist Ken Strite. The payload on the STS-105 mission to the International Space Station includes the third flight of the Italian-built Multi-Purpose Logistics Module Leonardo, delivering additional scientific racks, equipment and supplies for the Space Station, and the Early Ammonia Servicer (EAS) tank. The EAS, which will be attached to the Station during two spacewalks, contains spare ammonia for the Station's cooling system. Also, the Expedition Three crew is aboard to replace the Expedition Two crew on the Space Station, who will be returning to Earth aboard Discovery after a five-month stay on the Station

  13. STS-82 Flight Day 09 Highlights

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The ninth day of the STS-82 mission begins with the crew, Commander Kenneth D. Bowersox, Pilot Scott J. Horowitz, Payload Commander Mark C. Lee, and Mission Specialists Gregory J. Harbaugh, Steven L. Smith, Joseph R. Tanner, and Steven A. Hawley placing the Hubble Space Telescope back into its own orbit to continue its investigation of the far reaches of the universe. At the time of deployment, the Shuttle was at an altitude of 334 nautical miles over the southwest coast of Africa. Hubble is now operating at the highest altitude it has ever flown, a 335 by 321 nautical mile orbit. A few hours after Hubble's deployment, the crew receives a congratulatory phone call from NASA Administrator Daniel Goldin. The four spacewalking crewmembers also answered questions from several news networks regarding their work over the past week to upgrade the telescope.

  14. KSC-01pp1308

    NASA Image and Video Library

    2001-07-18

    KENNEDY SPACE CENTER, Fla. -- STS-105 Mission Specialist Daniel T. Barry is ready to take the wheel of the M-113 armored personnel carrier that is part of emergency egress training at the pad. The training is part of Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown and familiarization with the payload. Other STS-105 crew members taking part are Commander Scott Horowitz, Pilot Rick Sturckow, and Mission Specialist Patrick Forrester; and the Expedition Three crew, Commander Frank Culbertson, and cosmonauts Vladimir Nikolaevich Dezhurov and Mikhail Tyurin. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001

  15. KSC-01pp1333

    NASA Image and Video Library

    2001-07-19

    KENNEDY SPACE CENTER, Fla. -- The STS-105 and Expedition Three crews pose in the White Room on Launch Pad 39A. Standing are (left to right) Pilot Rick Sturckow, Mission Specialist Patrick Forrester, Commander Scott Horowitz and Mission Specialist Daniel Barry. Kneeling are cosmonaut Mikhail Tyurin, Commander Frank Culbertson and cosmonaut Vladimir Nikolaevich Dezhurov. Tyurin and Dezhurov are with the Russian Aviation and Space Agency. Both crews are at KSC to take part in Terminal Countdown Demonstration Test activities, which include emergency egress, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001

  16. KSC-01pp1312

    NASA Image and Video Library

    2001-07-18

    KENNEDY SPACE CENTER, Fla. -- Expedition Three crew Commander Frank Culbertson gives a thumbs up before taking the wheel of the M-113 armored personnel carrier that is part of emergency egress training at the pad. The training is part of Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown and familiarization with the payload. The STS-105 crew members taking part are Commander Scott Horowitz, Pilot Rick Sturckow, and Mission Specialists Daniel Barry and Patrick Forrester; and the other Expedition Three crew members: cosmonauts Vladimir Nikolaevich Dezhurov and Mikhail Tyurin. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001

  17. KSC-01pp1305

    NASA Image and Video Library

    2001-07-18

    KENNEDY SPACE CENTER, Fla. -- Expedition Three crew member Mikhail Tyurin is ready to take the wheel of the M-113 armored personnel carrier that is part of emergency egress training at the pad. The training is part of Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown and familiarization with the payload. The STS-105 crew members taking part are Commander Scott Horowitz, Pilot Rick Sturckow, and Mission Specialists Daniel Barry and Patrick Forrester; and the other Expedition Three crew members: Commander Frank Culbertson and cosmonaut Vladimir Nikolaevich Dezhurov . Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001

  18. KSC-01pp1418

    NASA Image and Video Library

    2001-08-05

    KENNEDY SPACE CENTER, Fla. -- After their arrival at Kennedy Space Center’s Shuttle Landing Facility, the STS-105 and Expedition Three crews greet the media. At the microphone is Commander Scott Horowitz. Behind him are (left to right) Pilot Rick Sturckow, Mission Specialists Daniel Barry and Patrick Forrester, and the Expedition Three Commander Frank Culbertson and cosmonauts Mikhail Tyurin and Vladimir Dezhurov. On mission STS-105, Discovery will be transporting the Expedition Three crew and several payloads and scientific experiments to the International Space Station. The Early Ammonia Servicer (EAS) tank, which will support the thermal control subsystems until a permanent system is activated, will be attached to the Station during two spacewalks. The three-member Expedition Two crew will be returning to Earth aboard Discovery after a five-month stay on the Station. Launch of Discovery on mission STS-105 is scheduled for Aug. 9

  19. Expedition Three, Expedition Two and STS-105 crews pose in the U.S. Laboratory

    NASA Image and Video Library

    2001-08-17

    ISS003-E-5169 (17 August 2001) --- The Expedition Three (white shirts), STS-105 (striped shirts), and Expedition Two (red shirts) crews assemble for a group photo in the Destiny laboratory on the International Space Station (ISS). The Expedition Three crew members are, from front to back, Frank L. Culbertson, Jr., mission commander; and cosmonauts Vladimir N. Dezhurov and Mikhail Tyurin, flight engineers; STS-105 crew members are, front row, Patrick G. Forrester and Daniel T. Barry, mission specialists, and back row, Scott J. Horowitz, commander, and Frederick W. (Rick) Sturckow, pilot; Expedition Two crew members are, from front to back, cosmonaut Yury V. Usachev, mission commander, James S. Voss and Susan J. Helms, flight engineers. Dezhurov, Tyurin and Usachev represent Rosaviakosmos. This image was taken with a digital still camera.

  20. Expedition Three, Expedition Two and STS-105 crews pose in the U.S. Laboratory

    NASA Image and Video Library

    2001-08-17

    ISS003-E-5168 (17 August 2001) --- The Expedition Three (white shirts), STS-105 (striped shirts), and Expedition Two (red shirts) crews assemble for a group photo in the Destiny laboratory on the International Space Station (ISS). The Expedition Three crew members are, from front to back, Frank L. Culbertson, Jr., mission commander; and cosmonauts Vladimir N. Dezhurov and Mikhail Tyurin, flight engineers; STS-105 crew members are, front row, Patrick G. Forrester and Daniel T. Barry, mission specialists, and back row, Scott J. Horowitz, commander, and Frederick W. (Rick) Sturckow, pilot; Expedition Two crew members are, from front to back, cosmonaut Yury V. Usachev, mission commander, James S. Voss and Susan J. Helms, flight engineers. Dezhurov, Tyurin and Usachev represent Rosaviakosmos. This image was taken with a digital still camera.

  1. Expeditions Two, Three and STS-105 crewmembers in group portrait in U.S. Laboratory

    NASA Image and Video Library

    2001-08-17

    STS105-717-032 (17 August 2001) --- The Expedition Three (white shirts), STS-105 (striped shirts), and Expedition Two (red shirts) crews assemble for this in-flight group portrait in the Destiny laboratory on the International Space Station (ISS). The Expedition Three crew members are, from bottom to top, astronaut Frank L. Culbertson, Jr., mission commander; and cosmonauts Vladimir N. Dezhurov and Mikhail Tyurin, flight engineers; STS-105 crew members are, from top left, Scott J. Horowitz, commander, Daniel T. Barry and Patrick G. Forrester (bottom left), both mission specialists, along with Frederick W. (Rick) Sturckow, pilot; Expedition Two crew members are, from bottom to top, are cosmonaut Yury V. Usachev, mission commander, and astronauts James S. Voss and Susan J. Helms, flight engineers. Dezhurov, Tyurin, and Usachev represent Rosaviakosmos.

  2. Expedition Three, Expedition Two and STS-105 crews pose in the U.S. Laboratory

    NASA Image and Video Library

    2001-08-17

    ISS003-E-5171 (17 August 2001) --- The Expedition Three (white shirts), STS-105 (striped shirts), and Expedition Two (red shirts) crews assemble for a group photo in the Destiny laboratory on the International Space Station (ISS). The Expedition Three crew members are, from bottom to top, cosmonauts Mikhail Tyurin and Vladimir N. Dezhurov, both flight engineers, and Frank L. Culbertson, Jr., mission commander; STS-105 crew members are, front row, Daniel T. Barry, mission specialist, and Scott J. Horowitz, commander, back row, Frederick W. (Rick) Sturckow, pilot, and Patrick G. Forrester, mission specialist; Expedition Two crew members are, from top to bottom, cosmonaut Yury V. Usachev, mission commander, James S. Voss and Susan J. Helms, flight engineers. Dezhurov, Tyurin and Usachev represent Rosaviakosmos. This image was taken with a digital still camera.

  3. Restoration of an old telescope: a pedagogic opportunity

    NASA Astrophysics Data System (ADS)

    Le Gall, Christophe

    2016-04-01

    The "Lycée Jules Haag" High School is a former clockwork learning school. It has a telescope, built in the 1930's, which was used to calibrate time for watches. Nowadays, this telescope is no longer of any practical use, and has been classified for its historical interest. Thanks to the financial help of local companies, a new pedagogic project has started inside our school. This astronomical device is going to be repaired, and many teachers and classes will be involved. This will create opportunities during and after the restoration. Our High School will have practical classes that may work around the motorisation of the telescope and creating a new eyepiece. When the telescope is operational, we can use this device for physics and optics classes, and organise an astronomical club to do some day and night observations.

  4. KSC-2014-3634

    NASA Image and Video Library

    2014-08-22

    CAPE CANAVERAL, Fla. – NASA astronauts tour the Neil Armstrong Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida, and view the Orion forward bay cover for Exploration Flight Test-1. From left, are Jack Fischer, Mark Vande Hei, Katie Rubins and Scott Tingle. At far right is Jules Schneider, Lockheed Martin senior manager. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a United Launch Alliance Delta IV rocket and in 2018 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Dimitri Gerondidakis

  5. A novel representation of groundwater dynamics in large-scale land surface modelling

    NASA Astrophysics Data System (ADS)

    Rahman, Mostaquimur; Rosolem, Rafael; Kollet, Stefan

    2017-04-01

    Land surface processes are connected to groundwater dynamics via shallow soil moisture. For example, groundwater affects evapotranspiration (by influencing the variability of soil moisture) and runoff generation mechanisms. However, contemporary Land Surface Models (LSM) generally consider isolated soil columns and free drainage lower boundary condition for simulating hydrology. This is mainly due to the fact that incorporating detailed groundwater dynamics in LSMs usually requires considerable computing resources, especially for large-scale applications (e.g., continental to global). Yet, these simplifications undermine the potential effect of groundwater dynamics on land surface mass and energy fluxes. In this study, we present a novel approach of representing high-resolution groundwater dynamics in LSMs that is computationally efficient for large-scale applications. This new parameterization is incorporated in the Joint UK Land Environment Simulator (JULES) and tested at the continental-scale.

  6. Assessment of Atmospheric Water Vapor Abundance Above RSL Locations on Mars

    NASA Astrophysics Data System (ADS)

    Berdis, Jodi R.; Murphy, Jim; Wilson, Robert John

    2016-10-01

    The possible signatures of atmospheric water vapor arising from Martian Recurring Slope Lineae (RSLs)1 are investigated. These RSLs appear during local spring and summer on downward slopes, and have been linked to liquid water which leaves behind streaks of briny material. Viking Orbiter Mars Atmospheric Water Detector (MAWD)2 and Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES)3-5 derived water vapor abundance values are interrogated to determine whether four RSL locations at southern mid-latitudes (Palikir Crater, Hale Crater, Horowitz Crater, and Coprates Chasma) exhibit episodic enhanced local water vapor abundance during southern summer solstice (Ls = 270°) and autumnal equinox (Ls = 360°) when RSLs are observed to develop6,7. Any detected atmospheric water vapor signal would expand upon current knowledge of RSLs, while non-detection would provide upper limits on RSL water content. Viking Orbiter Infrared Thermal Mapper (IRTM) and MGS TES derived temperature values are also investigated due to the appearance of active RSLs after the surface temperature of the slopes exceeds 250 K1.A high spatial resolution Martian atmospheric numerical model will be employed to assess the magnitude and temporal duration of water vapor content that might be anticipated in response to inferred RSL surface water release. The ability of past and future orbiter-based instruments to detect such water vapor quantities will be assessed.References1. McEwen, A. et al. 2011, Sci., 333, 7402. Jakosky, B. & Farmer, C. 1982, JGR, 87, 29993. Christensen, P. et al. 1992, JGR, 97, 77194. Christensen, P. et al. 2001, JGR, 106, 238235. Smith, M. 2002, JGR, 107, 51156. Ojha, L. et al. 2015, Nature Geosci., 8, 8297. Stillman, D. et al. 2014, Icarus, 233, 328

  7. Constraining the Surficial Liquid Water and Resulting Atmospheric Water Vapor Abundance at Recurring Slope Lineae (RSL) Locations on Mars

    NASA Astrophysics Data System (ADS)

    Berdis, Jodi; Murphy, Jim; Wilson, Robert John

    2017-10-01

    Possible signatures of atmospheric water vapor arising from Martian Recurring Slope Lineae (RSLs) are investigated in this study. RSLs appear during local spring and summer on downward, equator-facing slopes at southern mid-latitudes (~31-52°S Stillman et al. 2014), and have been linked to liquid water which leaves behind streaks of briny material (McEwen et al. 2011, McEwen et al. 2014). Viking Orbiter Mars Atmospheric Water Detector (VO MAWD) and Mars Global Surveyor Thermal Emission Spectrometer (MGS TES) derived atmospheric water vapor abundance values are interrogated to determine whether four RSL locations at southern mid-latitudes (Palikir Crater, Hale Crater, Horowitz Crater, Coprates Chasma) exhibit episodic, enhanced local atmospheric water vapor abundance during southern spring and summer (Ls = 180-360°) when RSLs are observed to develop (Stillman et al. 2014, Ojha et al. 2015). Significant water vapor signals at these locations might reveal RSLs as the source of the enhanced water vapor. Detected atmospheric water vapor signals would expand upon current knowledge of RSLs, whereas non-detection could provide upper limits on RSL water source content. In order to assess how much surficial RSL water would be required to produce a detectable signal, we utilize the high spatial resolution Geophysical Fluid Dynamics Laboratory Mars Climate General Circulation Model to simulate the evaporation of RSL-producing surface water and quantify the magnitude and temporal duration of water vapor content that might be anticipated in response to inferred RSL surface water release. Finally, we will assess the ability of past and future orbiter-based instruments to detect such water vapor quantities.

  8. Client Attachment Status and Changes in Therapeutic Alliance Early in Treatment.

    PubMed

    Siefert, Caleb J; Hilsenroth, Mark J

    2015-01-01

    Several studies have examined associations between client attachment status and therapeutic alliance. Most, however, measure alliance at a single time point only. This study is among the first to examine how client attachment relates to changes in the therapeutic alliance early in treatment. Forty-six outpatients from a university-based community clinic participated. Attachment status was assessed with the Relationship Questionnaire (Bartholomew & Horowitz, 1991) prior to beginning treatment. Participants rated therapeutic alliance after an evaluation feedback session and again early in psychotherapy. Fearful insecurity was associated with declines in therapeutic alliance, while attachment security was associated with increasing client-therapist bonds. Although unrelated to global alliance, preoccupied insecurity was associated with greater confident collaboration at both time points and declines in idealized relationship from the evaluation to the early therapy time point. Results are discussed in light of prior theoretical formulations and previous research. Limitations of the study are reviewed, implications for clinical practice are noted, and suggestions for future research are made. Assessing client attachment status can provide clinicians with information that helps them identify clients at risk for difficulties establishing a therapeutic alliance. Clients high in attachment security are more likely to develop strong bonds with therapists during the early portion of treatment. Clients high in fearful insecurity are at risk for developing weaker alliances early in treatment. Such clients appear more likely to experience declines in client-therapist bond, goal-task agreement and overall alliance early in the treatment process. Clients high in preoccupied insecurity may enter therapy with great confidence in the therapist and willing to engage in therapy but report more conflicts with therapists in the early phase of treatment. Copyright © 2014 John Wiley & Sons, Ltd.

  9. United States Human Access to Space, Exploration of the Moon and Preparation for Mars Exploration

    NASA Technical Reports Server (NTRS)

    Rhatigan, Jennifer L.

    2009-01-01

    In the past, men like Leonardo da Vinci and Jules Verne imagined the future and envisioned fantastic inventions such as winged flying machines, submarines, and parachutes, and posited human adventures like transoceanic flight and journeys to the Moon. Today, many of their ideas are reality and form the basis for our modern world. While individual visionaries like da Vinci and Verne are remembered for the accuracy of their predictions, today entire nations are involved in the process of envisioning and defining the future development of mankind, both on and beyond the Earth itself. Recently, Russian, European, and Chinese teams have all announced plans for developing their own next generation human space vehicles. The Chinese have announced their intention to conduct human lunar exploration, and have flown three crewed space missions since 2003, including a flight with three crew members to test their extravehicular (spacewalking) capabilities in September 2008. Very soon, the prestige, economic development, scientific discovery, and strategic security advantage historically associated with leadership in space exploration and exploitation may no longer be the undisputed province of the United States. Much like the sponsors of the seafaring explorers of da Vinci's age, we are motivated by the opportunity to obtain new knowledge and new resources for the growth and development of our own civilization. NASA's new Constellation Program, established in 2005, is tasked with maintaining the United States leadership in space, exploring the Moon, creating a sustained human lunar presence, and eventually extending human operations to Mars and beyond. Through 2008, the Constellation Program developed a full set of detailed program requirements and is now completing the preliminary design phase for the new Orion Crew Exploration Vehicle (CEV), the Ares I Crew Launch Vehicle, and the associated infrastructure necessary for humans to explore the Moon. Component testing is well underway, and integrated flight testing will begin in 2009. This white paper summarizes 3 years of Constellation Program progress and accomplishments, and it describes the foundation set for human lunar return in 2020.

  10. STS-105 and Expedition Three crews talk to media at Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- At the slidewire landing site, Launch Pad 39A, STS-105 Mission Specialist Daniel Barry responds to a question during a media interview. With him are (left to right) Mission Specialist Patrick Forrester, Pilot Rick Sturckow and Commander Scott Horowitz; with the Expedition Three crew Commander Frank Culbertson and cosmonauts Vladimir Nikolaevich Dezhurov and Mikhail Tyurin, who are with the Russian Aviation and Space Agency. Both crews are at KSC to take part in Terminal Countdown Demonstration Test activities, which include emergency egress, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001.

  11. Evaluating the interpersonal content of the MMPI-2-RF Interpersonal Scales.

    PubMed

    Ayearst, Lindsay E; Sellbom, Martin; Trobst, Krista K; Bagby, R Michael

    2013-01-01

    Convergence between the MMPI-2 Restructured Form (MMPI-2-RF; Ben-Porath & Tellegen, 2008) interpersonal scales and 2 interpersonal circumplex (IPC) measures was examined. University students (N = 405) completed the MMPI-2 and 2 IPC measures, the Interpersonal Adjectives Scales Revised Big Five Version (IASR-B5; Trapnell & Wiggins, 1990) and the Inventory of Interpersonal Problems Circumplex (IIP-C; Horowitz, Alden, Wiggins, & Pincus, 2000). Internal consistency was adequate for 3 of the 6 scales investigated. The majority of scales were located in their hypothesized locations, although magnitude of correlations was somewhat weaker than anticipated, partly owing to restricted range from using a healthy sample. The expected pattern of correlations that defines a circular matrix was demonstrated, lending support for the convergent and discriminant validity of the MMPI-2-RF interpersonal scales with respect to the assessment of interpersonal traits and problems.

  12. STS-105 and Expedition Three crews pose for photo at Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- The STS-105 and Expedition Three crews pose at Launch Pad 39A after training exercises. Pictured (left to right) are STS-105 Mission Specialists Patrick Forrester and Daniel Barry and Commander Scott Horowitz; Expedition Three Commander Frank Culbertson and cosmonauts Mikhail Tyurin and Vladimir Nikolaevich Dezhurov; and STS-105 Pilot Rick Sturckow. Both crews are at KSC to take part in Terminal Countdown Demonstration Test activities. The training includes emergency egress, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery, which is seen in the background. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001.

  13. [Developing the Japanese version of the Adult Attachment Style Scale (ECR)].

    PubMed

    Nakao, Tatsuma; Kato, Kazuo

    2004-06-01

    This study attempted to adapt into Japanese the Adult Attachment Style Scale (ECR: Experiences in Close Relationships inventory) that was constructed by Brennan, Clark, and Shaver (1998), based on 14 existing scales. Of 387 respondents, 231 who reported having been or are currently involved in romantic relationships were employed for final analysis. We examined validities of the Japanese version of ECR in the two ways: (1) Examining the correlations between "Anxiety" and Self-esteem scale by Rosenberg (1965) which were theoretically related to Self-view, and the correlations between "Avoidance" and Other-view scale by Kato (1999b) which were theoretically related to Other-view; (2) whether or not ECR represents the features of four attachment styles as classified by Relationship Questionnaire (RQ; Bartholomew & Horowitz, 1991). The results supported our expectations. This Japanese version of ECR was demonstrated to have adequate psychometric properties in validity and reliability.

  14. STS-101 crew members meet family and friends

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The STS-101 crew gather during a meeting with family and friends at Launch Pad 39A. From left, Mission Specialist Susan J. Helms, Commander James D. Halsell Jr., Mission Specialist Mary Ellen Weber, Pilot Scott J. Horowitz and Mission Specialists Yuri Vladimirovich Usachev, Jeffery N. Williams and James S. Voss. In the background is the Space Shuttle Atlantis on the pad. Mission STS-101 will take the crew to the International Space Station to deliver logistics and supplies, plus prepare the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. The crew will conduct one space walk to perform maintenance on the Space Station as well. This will be the third assembly flight for the Space Station. Launch is targeted for April 24 at about 4:15 p.m. EDT from Launch Pad 39A.

  15. KSC-01pp1304

    NASA Image and Video Library

    2001-07-18

    KENNEDY SPACE CENTER, Fla. -- STS-105 Mission Specialist Patrick Forrester is ready to take the wheel of the M-113 armored personnel carrier that is part of emergency egress training at the pad. Behind him on the left is George Hoggard, of the KSC/CCAS Fire Department, who supervises the driving. The training is part of Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown and familiarization with the payload. Other STS-105 crew members taking part are Commander Scott Horowitz, Pilot Rick Sturckow, and Mission Specialist Daniel Barry; and the Expedition Three crew, Commander Frank Culbertson, and cosmonauts Vladimir Nikolaevich Dezhurov and Mikhail Tyurin. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001

  16. STS-105 and Expedition Three crews in White Room at Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- The STS-105 and Expedition Three crews pose in the White Room on Launch Pad 39A. Standing are (left to right) Pilot Rick Sturckow, Mission Specialist Patrick Forrester, Commander Scott Horowitz and Mission Specialist Daniel Barry. Kneeling are cosmonaut Mikhail Tyurin, Commander Frank Culbertson and cosmonaut Vladimir Nikolaevich Dezhurov. Tyurin and Dezhurov are with the Russian Aviation and Space Agency. Both crews are at KSC to take part in Terminal Countdown Demonstration Test activities, which include emergency egress, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001.

  17. KSC-01pp1334

    NASA Image and Video Library

    2001-07-19

    KENNEDY SPACE CENTER, Fla. -- On the 195-foot level of the Fixed Service Structure, Launch Pad 39A, the STS-105 and Expedition Three crews listen to instructions about use of the slidewire basket, part of emergency egress training at the pad. From left are Expedition Three Commander Frank Culbertson, STS-105 Pilot Rick Sturckow; cosmonauts Mikhail Tyurin and Vladimir Nikolaevich Dezhurov; Mission Specialist Patrick Forrester, Commander Scott Horowitz and Mission Specialist Daniel Barry. Both crews are at KSC to take part in Terminal Countdown Demonstration Test activities, which include the emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001

  18. KSC-01pp1415

    NASA Image and Video Library

    2001-08-05

    KENNEDY SPACE CENTER, Fla. -- Two members of the Expedition Three crew arrive at Kennedy Space Center’s Shuttle Landing Facility to make final preparations before launch of STS-105. At left is Commander Frank Culbertson, who piloted the T-38 in the background with his passenger cosmonaut Mikhail Tyurin (right). The Shuttle crew comprises commander Scott Horowitz, Pilot Rick Sturckow and Mission Specialists Daniel Barry and Patrick Forrester. On mission STS-105, Discovery will be transporting the Expedition Three crew and several payloads and scientific experiments to the International Space Station. The Early Ammonia Servicer (EAS) tank, which will support the thermal control subsystems until a permanent system is activated, will be attached to the Station during two spacewalks. The three-member Expedition Two crew will be returning to Earth aboard Discovery after a five-month stay on the Station. Launch of Discovery on mission STS-105 is scheduled for Aug. 9, 2001

  19. KSC00pp0565

    NASA Image and Video Library

    2000-04-24

    The STS-101 crew returns to the Operations and Checkout Building after the launch was scrubbed due to cross winds at the KSC Shuttle Landing Facility gusting above 20 knots. Flight rules require cross winds at the SLF to be no greater than 15 knots in case of a contingency Shuttle landing. Shown leaving the Astrovan are (left to right) Mission Specialists James S. Voss and Yury Usachev of Russia; Pilot Scott J. Horowitz; and Commander James D. Halsell Jr. in the doorway. Weather conditions will be reevaluated for another launch try on April 25. The mission will take the crew to the International Space Station to deliver logistics and supplies and to prepare the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk. This will be the third assembly flight to the Space Station. The mission is expected to last about 10 days

  20. KSC-00pp0565

    NASA Image and Video Library

    2000-04-24

    The STS-101 crew returns to the Operations and Checkout Building after the launch was scrubbed due to cross winds at the KSC Shuttle Landing Facility gusting above 20 knots. Flight rules require cross winds at the SLF to be no greater than 15 knots in case of a contingency Shuttle landing. Shown leaving the Astrovan are (left to right) Mission Specialists James S. Voss and Yury Usachev of Russia; Pilot Scott J. Horowitz; and Commander James D. Halsell Jr. in the doorway. Weather conditions will be reevaluated for another launch try on April 25. The mission will take the crew to the International Space Station to deliver logistics and supplies and to prepare the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk. This will be the third assembly flight to the Space Station. The mission is expected to last about 10 days

  1. Meal for Expedition Two, Three and STS-105 crews in the ISS Service Module/Zvezda

    NASA Image and Video Library

    2001-08-15

    STS105-E-5201 (15 August 2001) --- Part of the "dessert" course for one of the first meals shared by the STS-105 and Expedition Two crews was the issuance of mission shirts for the departing station occupants. Holding new jerseys in the Zvezda Service Module on the right side of the frame are astronauts Susan J. Helms and James S. Voss, departing flight engineers, and cosmonaut Yury V. Usachev, Expedition Two commander. Clockwise from the lower left corner are astronaut Frederick W. (Rick) Sturckow, cosmonauts Vladimir Dezhurov and Mikhail Tyurin, Helms, astronaut Frank L. Culbertson, Jr., Usachev, Voss and astronaut Patrick G. Forrester. Astronauts Daniel T. Barry and Scott J. Horowitz are out of frame. Usachev, Dezhurov and Tyurin all represent Rosaviakosmos. PLEASE NOTE: This event occurred on August 14, according to Central Daylight Time (CDT) but it was already the following day in Greenwich Mean Time (GMT).

  2. Inhibition of return in static but not necessarily in dynamic search.

    PubMed

    Wang, Zhiguo; Zhang, Kan; Klein, Raymond M

    2010-01-01

    If and when search involves the serial inspection of items by covert or overt attention, its efficiency would be enhanced by a mechanism that would discourage re-inspections of items or regions of the display that had already been examined. Klein (1988, 2000; Klein & Dukewich, 2006) proposed that inhibition of return (IOR) might be such a mechanism. The present experiments explored this proposal by combining a dynamic search task (Horowitz & Wolfe, 1998, 2003) with a probe-detection task. IOR was observed when search was most efficient (static and slower dynamic search). IOR was not observed when search performance was less efficient (fast dynamic search).These findings are consistent with the "foraging facilitator" proposal of IOR and are unpredicted by theories of search that assume parallel accumulation of information across the array (plus noise) as a general explanation for the effect of set size upon search performance.

  3. Solid-state reaction kinetics and optical studies of cadmium doped magnesium hydrogen phosphate crystals

    NASA Astrophysics Data System (ADS)

    Verma, Madhu; Gupta, Rashmi; Singh, Harjinder; Bamzai, K. K.

    2018-04-01

    The growth of cadmium doped magnesium hydrogen phosphate was successfully carried out by using room temperature solution technique i.e., gel encapsulation technique. Grown crystals were confirmed by single crystal X-ray diffraction (XRD). The structure of the grown crystal belongs to orthorhombic crystal system and crystallizes in centrosymmetric space group. Kinetics of the decomposition of the grown crystals were studied by non-isothermal analysis. Thermo gravimetric / differential thermo analytical (TG/DTA) studies revealed that the grown crystal is stable upto 119 °C. The various steps involved in the thermal decomposition of the material have been analysed using Horowitz-Metzger, Coats-Redfern and Piloyan-Novikova equations for evaluating various kinetic parameters. The optical studies shows that the grown crystals possess wide transmittance in the visible region and significant optical band gap of 5.5ev with cut off wavelength of 260 nm.

  4. STS-101 crew waves to media after arriving at KSC for 4th launch attempt

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Members of the STS-101 crew wave at media and photographers at KSC's Shuttle Landing Facility after their landing the night of May 14. Standing left to right are Mission Specialists Yuri Usachev, James Voss, Mary Ellen Weber and Jeff Williams; Commander James Halsell; and Pilot Scott Horowitz. Not present is Mission Specialist Susan Helms, who arrived later. The crew will be preparing for the launch on May 18. The mission will take the crew of seven to the International Space Station, delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight for the Space Station. STS-101 is targeted for liftoff at 6:38 a.m. EDT from Launch Pad 39A.

  5. Validity of the Inventory of Interpersonal Problems (IIP-64) for predicting assertiveness in role-play situations.

    PubMed

    Leising, Daniel; Rehbein, Diana; Sporberg, Doreen

    2007-10-01

    The Inventory of Interpersonal Problems (IIP-64; Horowitz, Alden, Wiggins, & Pincus, 2000) is a self-report measure of maladaptive relationship behavior. Ninety-five adult female participants completed the IIP-64 and then interacted with a same-sex confederate in three diagnostic role plays, designed to evoke assertive responses. After each role play, both the participant and the confederate judged how assertive the participant had been, using two subscales from the Interpersonal Adjective Scales (IAS; Wiggins, 1995). The participants' general self-images, assessed with the IIP-64, were quite congruent with how they judged their own assertiveness in the role plays. But when role-play assertiveness was judged by the confederate, the match with the participants' general self-images was considerably lower. Our results indicate that self-reported interpersonal problems do not converge well with external judgments of interpersonal behavior.

  6. STS-101 crew sits for a snack before the third attempt at launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Operations and Checkout Building, the STS-101 crew gathers for a snack before suiting up for launch for the third time. The previous two launch attempts were scrubbed due to high cross winds at the Shuttle Landing Facility. From left are Mission Specialists James S. Voss, Susan J. Helms and Jeffrey N. Williams; Commander James D. Halsell Jr.; Pilot Scott J. Horowitz; and Mission Specialists Mary Ellen Weber and Yuri Usachev of Russia. The mission will take the crew to the International Space Station to deliver logistics and supplies and prepare the Station for the arrival of the Zvezda Service Module. Also, the crew will conduct one space walk. This is the third assembly flight to the Space Station. After the 10-day mission, Atlantis is expected to land at KSC May 6 at about 12:03 p.m. EDT.

  7. Electron binding energy of uranium-ligand and uranyl-ligand anions

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Horowitz, Steven; Marston, Brad

    2012-02-01

    Electron binding energies of the early actinide element uranium in gas-phase anion complexes are calculated by relativistic density functional theory (DFT) with two different exchange-correlation functions (RPBE and B3LYP) and also in the Hartree-Fock (HF) approximationootnotetextADF2010.02, SCM.com. Scalar and spin-orbit calculations are performed, and the calculated energies are compared to available experimental measurements and shown to disagree by energies of order 1 eV. Strong correlations that are poorly treated in DFT and HF can be included by a hybrid approach in which a generalized Anderson impurity model is numerically diagonalized. Reduction-oxidation (redox) potentials of aqueous actinide ions show improved agreement with measured values in the hybrid approachootnotetextS. E. Horowitz and J. B. Marston, J. Chem. Phys 134 064510 (2011).. We test whether or not similar improvements are found in the gas-phase.

  8. STS-105 and Expedition Three crews get slidewire training at Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- On the 195-foot level of the Fixed Service Structure, Launch Pad 39A, the STS-105 and Expedition Three crews listen to instructions about use of the slidewire basket, part of emergency egress training at the pad. From left are Expedition Three Commander Frank Culbertson, STS-105 Pilot Rick Sturckow; cosmonauts Mikhail Tyurin and Vladimir Nikolaevich Dezhurov; Mission Specialist Patrick Forrester, Commander Scott Horowitz and Mission Specialist Daniel Barry. Both crews are at KSC to take part in Terminal Countdown Demonstration Test activities, which include the emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001.

  9. Influence of Chemical Treatment on Thermal Decomposition and Crystallite Size of Coir Fiber

    NASA Astrophysics Data System (ADS)

    Manjula, R.; Raju, N. V.; Chakradhar, R. P. S.; Kalkornsurapranee, Ekwipoo; Johns, Jobish

    2018-01-01

    Coir fibers were treated with sodium hydroxide (NaOH) and glutaraldehyde (GA). The influence of alkali and aldehyde treatment on thermal degradation and crystallinity of coir fiber was studied in detail. Thermogravimetric analysis and X-ray diffraction techniques were mainly used to characterize the coir samples. Activation energy of degradation was calculated from Broido and Horowitz-Metzger equations. NaOH-treated samples showed an increase in thermal stability. Removal of impurities such as waxy and fatty acid residues from the coir fiber by reacting with strong base solution improved the stability of fiber. Crosslinking of cellulose with GA in the fiber enhanced the stability of the material. Scanning electron microscopy was employed to analyze the change in surface morphology upon chemical treatment. Improvement in the properties suggests that NaOH and GA can be effectively used to modify coir fiber with excellent stability.

  10. Cotard's Syndrome after breast surgery successfully treated with aripiprazole augmentation of escitalopram: a case report.

    PubMed

    De Berardis, Domenico; Brucchi, Maurizio; Serroni, Nicola; Rapini, Gabriella; Campanella, Daniela; Vellante, Federica; Valchera, Alessandro; Fornaro, Michele; Iasevoli, Felice; Mazza, Monica; Lucidi, Giuliana; Martinotti, Giovanni; di Giannantonio, Massimo

    2015-01-01

    In 1880 the French neurologist Jules Cotard described a condition characterized by delusion of negation (nihilistic delusion) in a melancholia context. Recently, there has been a resurgence of interest in Cotard's syndrome (CS), but the nosographical figure of CS remains unclear. It isn't determined if it pertains to the delusional themes area or if it is related to the sense of immanent ruin in some depressive episodes. For these reasons CS has recently been supposed to be an intermediate form. Furthermore, since even less is known about secondary CS in subjects who had never suffered of psychiatric disorders, in the present case we report the development of a secondary CS in a female patient who underwent a lumpectomy for the removal of a benign fibroadenoma. The patient responded well to aripiprazole augmentation of escitalopram and totally remitted.

  11. KSC-2013-2882

    NASA Image and Video Library

    2013-06-20

    CAPE CANAVERAL, Fla. – Representatives from the European Space Agency, or ESA, toured the Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida. Pointing at thermal protection system tiles is Jules Schneider, Lockheed Martin senior manager. At right, in the blue suit, is Bernardo Patti, ESA manager of International Space Station Operations. Standing next to Patti is Nico Dettman, ESA Space Transportation Department director. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Jim Grossmann

  12. The first international leprosy conference, Berlin, 1897: the politics of segregation.

    PubMed

    Pandya, S S

    2004-01-01

    The present paper examines the first attempts to internationalise the problem of leprosy, a subject hitherto overlooked by historians of imperialism and disease. The last decade of the nineteenth century saw many in the civilised countries of the imperialist West gripped by a paranoia about an invasion of leprosy via germ-laden immigrants and returning expatriates who had acquired the infection in leprosy endemic colonial possessions. Such alarmists clamoured for the adoption of vigorous leper segregation policies in such colonies. But the contagiousness of leprosy did not go unquestioned by other westerners. The convocation in Berlin of the first international meeting on leprosy revealed the interplay of differing and sometimes incompatible views about the containment of leprosy by segregation. The roles of officials from several countries, as well as the roles of five protagonists (Albert Ashmead, Jules Goldschmidt, Edvard Ehlers. Armauer Hansen, and Phineas Abraham) in the shaping of the Berlin Conference are here examined.

  13. The first international leprosy conference, Berlin, 1897: the politics of segregation.

    PubMed

    Pandya, Shubhada S

    2003-01-01

    The present paper examines the first attempts to internationalize the problem of leprosy, a subject hitherto overlooked by historians of imperialism and disease. The last decade of the nineteenth century saw many in the 'civilized countries' of the imperialist West gripped by a paranoia about an invasion of leprosy via germ-laden immigrants and returning expatriates who had acquired the infection in leprosy-endemic colonial possessions. Such alarmists clamoured for the adoption of vigorous leper segregation policies in such colonies. But the contagiousness of leprosy did not go unquestioned by other westerners. The convocation in Berlin of the first international meeting on leprosy revealed the interplay of differing and sometimes incompatible views about the containment of leprosy by segregation. The roles of officials from several countries, as well as the roles of five protagonists (Albert Ashmead, Jules Goldschmidt, Edvard Ehlers, Armauer Hansen, and Phineas Abraham) in the shaping of the Berlin Conference are here examined.

  14. Vision and the Nobel Prize.

    PubMed

    Morais, Fábio Barreto

    2018-04-01

    The Nobel Prize is the world's foremost honor for scientific advances in medicine and other areas. Founded by Alfred Nobel, the prizes have been awarded annually since 1901. We reviewed the literature on persons who have won or competed for this prize in subjects related to vision and ophthalmology. The topics were divided into vision physiology, diagnostic and therapeutic methods, disease mechanism, and miscellaneous categories. Allvar Gullstrand is the only ophthalmologist to win a Nobel Prize; he is also the only one to receive it for work in ophthalmology. Other ophthalmologists that have been nominated were Hjalmar Schiötz (tonometer), Karl Koller (topical anesthesia), and Jules Gonin (retinal detachment). Other scientists have won the prize for eye-related research: Ragnar Granit, Haldan Hartline and George Wald (chemistry and physiology of vision), and David Hubel and Torsten Wiesel (processing in the visual system). Peter Medawar is the only person born in Brazil to have won the Nobel Prize.

  15. Health support for the Raid of the Seven Stones : in the footsteps of Navy physician Jules Crevaux in French Guiana.

    PubMed

    Barthes, N; Boudsocq, J-P

    2017-06-01

    In the summer of 2015, soldiers of the 3rd Foreign Infantry Regiment and civilian scientists mounted a joint expedition on foot to reconnoiter and better define the southern frontier of French Guiana with Brazil. Three doctor-nurse pairs worked in relay to provide medical support for this unprecedented 42-day, 320-km journey through a hostile and isolated environment, a mission whose success was made possible by large-scale logistic and technical prowess. The army health department, using knowledge gained from previous large-scale missions and expeditions and from its staff's local experience, provided its technical support for personnel selection, organization of the health logistics, and field support. This article describes the difficulties encountered from a medical perspective, the diseases encountered, and the final assessments of the personnel who completed this expedition.

  16. On multi-level thinking and scientific understanding

    NASA Astrophysics Data System (ADS)

    McIntyre, Michael Edgeworth

    2017-10-01

    Professor Duzheng YE's name has been familiar to me ever since my postdoctoral years at MIT with Professors Jule CHARNEY and Norman PHILLIPS, back in the late 1960s. I had the enormous pleasure of meeting Professor YE personally in 1992 in Beijing. His concern to promote the very best science and to use it well, and his thinking on multi-level orderly human activities, reminds me not only of the communication skills we need as scientists but also of the multi-level nature of science itself. Here I want to say something (a) about what science is; (b) about why multi-level thinking—and taking more than one viewpoint—is so important for scientific as well as for other forms of understanding; and (c) about what is meant, at a deep level, by "scientific understanding" and trying to communicate it, not only with lay persons but also across professional disciplines. I hope that Professor YE would approve.

  17. A multiple scales approach to maximal superintegrability

    NASA Astrophysics Data System (ADS)

    Gubbiotti, G.; Latini, D.

    2018-07-01

    In this paper we present a simple, algorithmic test to establish if a Hamiltonian system is maximally superintegrable or not. This test is based on a very simple corollary of a theorem due to Nekhoroshev and on a perturbative technique called the multiple scales method. If the outcome is positive, this test can be used to suggest maximal superintegrability, whereas when the outcome is negative it can be used to disprove it. This method can be regarded as a finite dimensional analog of the multiple scales method as a way to produce soliton equations. We use this technique to show that the real counterpart of a mechanical system found by Jules Drach in 1935 is, in general, not maximally superintegrable. We give some hints on how this approach could be applied to classify maximally superintegrable systems by presenting a direct proof of the well-known Bertrand’s theorem.

  18. The Future of Theoretical Physics and Cosmology

    NASA Astrophysics Data System (ADS)

    Gibbons, G. W.; Shellard, E. P. S.; Rankin, S. J.

    2009-08-01

    Preface; List of contributors; 1. Introduction; Part I. Popular Symposium: 2. Our complex cosmos and its future Martin J. Rees; 3. Theories of everything and Hawking's wave function of the Universe James B. Hartle; 4. The problem of space-time singularities: implications for quantum gravity? Roger Penrose; 5. Warping spacetime Kip Thorne; 6. 60 years in a nutshell Stephen W. Hawking; Part II. Spacetime Singularities: 7. Cosmological perturbations and singularities George F. R. Ellis; 8. The quantum physics of chronology protection Matt Visser; 9. Energy dominance and the Hawking-Ellis vacuum conservation theorem Brandon Carter; 10. On the instability of extra space dimensions Roger Penrose; Part III. Black Holes: 11. Black hole uniqueness and the inner horizon stability problem Werner Israel; 12. Black holes in the real universe and their prospects as probes of relativistic gravity Martin J. Rees; 13. Primordial black holes Bernard Carr; 14. Black hole pair creation Simon F. Ross; 15. Black holes as accelerators Steven Giddings; Part IV. Hawking Radiation: 16. Black holes and string theory Malcolm Perry; 17. M theory and black hole quantum mechanics Joe Polchinski; 18. Playing with black strings Gary Horowitz; 19. Twenty years of debate with Stephen Leonard Susskind; Part V. Quantum Gravity: 20. Euclidean quantum gravity: the view from 2002 Gary Gibbons; 21. Zeta functions, anomalies and stable branes Ian Moss; 22. Some reflections on the status of conventional quantum theory when applied to quantum gravity Chris Isham; 23. Quantum geometry and its ramifications Abhay Ashtekar; 24. Topology change in quantum gravity Fay Dowker; Part VI. M Theory and Beyond: 25. The past and future of string theory Edward Witten; 26. String theory David Gross; 27. A brief description of string theory Michael Green; 28. The story of M Paul Townsend; 29. Gauged supergravity and holographic field theory Nick Warner; 30. 57 varieties in a NUTshell Chris Pope; Part VII. de Sitter Space: 31. Adventures in de Sitter space Raphael Bousso; 32. de Sitter space in non-critical string theory Andrew Strominger; 33. Supergravity, M theory and cosmology Renata Kallosh; Part VIII. Quantum Cosmology: 34. The state of the universe James B. Hartle; 35. Quantum cosmology Don Page; 36. Quantum cosmology and eternal inflation A. Vilenkin; 37. Probability in the deterministic theory known as quantum mechanics Bryce de Witt; 38. The interpretation of quantum cosmology and the problem of time J. Halliwell; 39. What local supersymmetry can do for quantum cosmology Peter D'Eath; Part IX. Cosmology: 40. Inflation and cosmological perturbations Alan Guth; 41. The future of cosmology: observational and computational prospects Paul Shellard; 42. The ekpyrotic universe and its cyclic extension Neil Turok; 43. Inflationary theory versus the ekpyrotic/cyclic scenario Andrei Linde; 44. Brane (new) worlds Pierre Binetruy; 45. Publications of Stephen Hawking; Index.

  19. Monte-Carlo Simulations of the Nuclear Energy Deposition Inside the CARMEN-1P Differential Calorimeter Irradiated into OSIRIS Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amharrak, H.; Reynard-Carette, C.; Carette, M.

    The nuclear heating measurements in Material Testing Reactors (MTRs) are crucial for the study of nuclear materials and fuels under irradiation. The reference measurements of this nuclear heating are especially performed by a differential calorimeter including a graphite sample material. These measurements are then used for other experimental conditions in order to predict the nuclear heating and thermal conditions induced in the irradiation devices. Nuclear heating is a great deal of interest at the moment as the measurement of such heating is an important issue for MTRs reactors. This need is especially generated by the new Jules Horowitz Reactor (JHR),more » under construction at CEA/Cadarache 'French Alternative Energies and Atomic Energy Commission'. This new reactor, that will be operational in late 2019, is a new facility for the nuclear research on materials and fuels. Indeed the expected nuclear heating rate is about 20 W/g for nominal capacity of 100 MW. The present Monte Carlo calculation works belong to the IN-CORE (Instrumentation for Nuclear radiation and Calorimetry On line in Reactor): a joint research program between the CEA and Aix- Marseille University in 2009. One scientific aim of this program is to design and develop a multi-sensors device, called CARMEN, dedicated to the measurements of main physical parameters simultaneously encountered inside JHR's experimental channels (core and reflector) such as neutron fluxes, photon fluxes, temperature, and nuclear heating. A first prototype was already developed. This prototype includes two mock-ups dedicated respectively to neutronic measurements (CARMEN-1N) and to photonic measurements (CARMEN-1P) with in particular a specific differential calorimeter. Two irradiation campaigns were performed successfully in the periphery of OSIRIS reactor (a MTR located at Saclay, France) in 2012 for nuclear heating levels up to 2 W/g. First Monte Carlo calculations reduced to the graphite sample of the calorimeter were carried out. A preliminary analysis shows that the numerical results overestimate the measurements by about 20 %. A new approach has been developed in order to estimate the nuclear heating by two methods (energy deposition or KERMA) by considering the whole complete geometry of the sensor. This new approach will contribute to the interpretation of the irradiation campaign and will be useful to improve the out-of-pile calibration procedure of the sensor and its thermal response during irradiations. The aim of this paper is to present simulations made by using MCNP5 Monte-Carlo transport code (using ENDF/B-VI nuclear data library) for the nuclear heating inside the different parts of the calorimeter (head, rod and base). Calculations into two steps will be realized. We will use as an input source in the model new spectra (neutrons, prompt-photons and delayed-photons) calculated with the Monte Carlo code TRIPOLI-4{sup R} inside different experimental channels (water) located into the OSIRIS periphery and used during the CARMEN-1P irradiation campaign. We will consider Neutrons- Photons-Electrons and Photons-Electrons modes. We will begin by a brief description of the differential-calorimeter device geometry. Then the MCNP5 model used for the calculations of nuclear heating inside the calorimeter elements will be introduced. The energy deposition due to the prompt-gamma, delayed-gamma and neutrons, the neutron-activation of the device will be considered. The different components of the nuclear heating inside the different parts of the calorimeter will be detailed. Moreover, a comparison between KERMA and nuclear energy deposition estimations will be given. Finally, a comparison between this total nuclear heating Calculation and Experiment in graphite sample will be determined. (authors)« less

  20. PREFACE: International Workshop on Discovery Physics at the LHC (Kruger2014)

    NASA Astrophysics Data System (ADS)

    Cleymans, Jean

    2015-06-01

    The third biannual conference on 'Discovery Physics at the LHC' was held on December 1-6 2014 at the Kruger Gate Hotel in South Africa. Over 100 participants attended from Austria, Australia, Belgium, Brazil, Canada, China, the Czech Republic, France, Germany, Italy, the Netherlands, Norway, Poland, South Africa, Switzerland, the UK and the USA. The latest results from the Large Hadron Collider as well the latest theoretical insights were presented. With the majestic Kruger National Park in the background this led to a very stimulating conference with many exchanges taking place. The proceedings reflect the high level of the conference. The financial contributions from the SA-CERN programme, the UCT-CERN Research Centre, the University of Johannesburg, the University of the Witwatersrand and iThemba L.A.B.S. are gratefully acknowledged. Local Organizing Committee: Z. Buthelezi J. Cleymans (chair) S. H. Connell A. S. Cornell T. Dietel S. Förtsch N. Haasbroek A. Hamilton W. A. Horowitz B. Mellado Z. Z. Vilakazi S. Yacoob

  1. Reallocating attention during multiple object tracking.

    PubMed

    Ericson, Justin M; Christensen, James C

    2012-07-01

    Wolfe, Place, and Horowitz (Psychonomic Bulletin & Review 14:344-349, 2007) found that participants were relatively unaffected by selecting and deselecting targets while performing a multiple object tracking task, such that maintaining tracking was possible for longer durations than the few seconds typically studied. Though this result was generally consistent with other findings on tracking duration (Franconeri, Jonathon, & Scimeca Psychological Science 21:920-925, 2010), it was inconsistent with research involving cuing paradigms, specifically precues (Pylyshyn & Annan Spatial Vision 19:485-504, 2006). In the present research, we broke down the addition and removal of targets into separate conditions and incorporated a simple performance model to evaluate the costs associated with the selection and deselection of moving targets. Across three experiments, we demonstrated evidence against a cost being associated with any shift in attention, but rather that varying the type of cue used for target deselection produces no additional cost to performance and that hysteresis effects are not induced by a reduction in tracking load.

  2. STS-101 Commander Halsell and crew after arriving for TCDT

    NASA Technical Reports Server (NTRS)

    2000-01-01

    At the Shuttle Landing Facility, STS-101 Commander James Halsell waves to the media as he and other crew members cross the tarmac to a waiting bus. At right is a film crew; in the foreground at left is Delores Green, flight crew support specialist lead for the astronaut crew quarters. Other crew members in the background are Mission Specialist Jeffrey Williams, Pilot Scott Horowitz, and Mission Specialists Mary Ellen Weber and Yuri Usachev. Not visible in the photo is Mission Specialist Susan Helms. During their mission to the International Space Station, the STS-101 crew will be delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight for the Space Station. STS-101 is scheduled to launch April 24 at 4:15 p.m. from Launch Pad 39A.

  3. KSC00pp0448

    NASA Image and Video Library

    2000-04-05

    KENNEDY SPACE CENTER, FLA. -- At the Shuttle Landing Facility, STS-101 Commander James Halsell waves to the media as he and other crew members cross the tarmac to a waiting bus. At right is a film crew; in the foreground at left is Delores Green, flight crew support specialist lead for the astronaut crew quarters. Other crew members in the background are Mission Specialist Jeffrey Williams, Pilot Scott Horowitz, and Mission Specialists Mary Ellen Weber and Yury Usachev. Not visible in the photo is Mission Specialist Susan Helms. During their mission to the International Space Station, the STS-101 crew will be delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight for the Space Station. STS-101 is scheduled to launch April 24 at 4:15 p.m. from Launch Pad 39A

  4. KSC-00pp0448

    NASA Image and Video Library

    2000-04-05

    KENNEDY SPACE CENTER, FLA. -- At the Shuttle Landing Facility, STS-101 Commander James Halsell waves to the media as he and other crew members cross the tarmac to a waiting bus. At right is a film crew; in the foreground at left is Delores Green, flight crew support specialist lead for the astronaut crew quarters. Other crew members in the background are Mission Specialist Jeffrey Williams, Pilot Scott Horowitz, and Mission Specialists Mary Ellen Weber and Yury Usachev. Not visible in the photo is Mission Specialist Susan Helms. During their mission to the International Space Station, the STS-101 crew will be delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight for the Space Station. STS-101 is scheduled to launch April 24 at 4:15 p.m. from Launch Pad 39A

  5. STS-101 Mission Specialist Williams takes his seat in Atlantis during TCDT

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-101 Mission Specialist Jeffrey N. Williams takes his seat inside Space Shuttle Atlantis before taking part in a simulated launch countdown. The countdown is part of Terminal Countdown Demonstration Test (TCDT) activities that also include emergency egress training and familiarization with the payload. Other crew members taking part are Commander James D. Halsell Jr., Pilot Scott J. 'Doc' Horowitz and Mission Specialists Mary Ellen Weber, James Voss, Susan Helms, and Yuri Usachev of Russia. During their mission to the International Space Station, the STS-101 crew will be delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight for the Space Station. STS-101 is scheduled to launch April 24 at 4:15 p.m. from Launch Pad 39A.

  6. STS-101 Mission Specialist J.Williams arrives at KSC for TCDT

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-101 Mission Specialist Jeffrey Williams arrives at KSC's Shuttle Landing Facility aboard a T-38 jet aircraft flown by STS- 101 Pilot Scott Horowitz. They and the rest of the crew are at KSC to take part in Terminal Countdown Demonstration Test (TCDT) activities that include emergency egress training and a dress rehearsal for launch. The other crew members are Commander James Halsell and Mission Specialists Mary Ellen Weber, James Voss, Susan Helms and Yuri Usachev. During their mission to the International Space Station, the STS-101 crew will be delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight for the Space Station. STS-101 is scheduled to launch April 24 at 4:15 p.m. from Launch Pad 39A.

  7. STS-101 crew members Weber and Williams take their seats in Atlantis during TCDT

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-101 Mission Specialists Mary Ellen Weber (left) and Jeffrey N. Williams (right) happily settle into their seats inside Space Shuttle Atlantis for a simulated launch countdown. The countdown is part of Terminal Countdown Demonstration Test (TCDT) activities that also include emergency egress training and familiarization with the payload. Other crew members taking part are Commander James D. Halsell Jr., Pilot Scott J. 'Doc' Horowitz and Mission Specialists James Voss, Susan Helms and Yuri Usachev of Russia. During their mission to the International Space Station, the STS-101 crew will be delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight for the Space Station. STS-101 is scheduled to launch April 24 at 4:15 p.m. from Launch Pad 39A.

  8. STS-75 liftoff - left side close up

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Space Shuttle Columbia hurtles skyward from Launch Pad 39B. Columbia lifted off right on time at 3:18:00 p.m. EST, Feb. 22, following a smooth countdown. NASA's second Shuttle mission of 1996 and the 75th overall in Shuttle program history will be highlighted by the re-flight of the Tethered Satellite System (TSS-1R) designed to investigate new sources of spacecraft power and ways to study Earth's atmosphere. Mission STS-75 also will see Columbia's seven-person crew work with the U.S. Microgravity Payload (USMP-3), which continues research efforts into development of new materials and processes that could lead to a new generation of computers, electronics and metals. The STS-75 crew includes: Mission Commander Andrew M. Allen; Pilot Scott J. 'Doc' Horowitz; Payload Commander Franklin R. Chang-Diaz; Mission Specialists Jeffrey A. Hoffman, Claude Nicollier and Maurizio Cheli; and Payload Specialist Umberto Guidoni. Nicollier and Cheli represent the European Space Agency (ESA) while Guidoni represents the Italian Space Agency (ASI).

  9. STS-75 liftoff - left side view - closeup

    NASA Technical Reports Server (NTRS)

    1996-01-01

    A smooth countdown culminates in an on-time liftoff as the Space Shuttle Columbia climbs skyward atop a column of flame. The launch from Pad 39B occurred at 3:18:00 P.M. EST, February 22, 1996. Aboard for Mission STS-75 is an international crew headed by Mission Commander Andrew M. Allen; Scott J. 'Doc' Horowitz is pilot; Franklin R. Chang-Diaz is payload commander. Serving as mission specialists are Jeffrey A. Hoffman, Maurizio Cheli and Claude Nicollier. Cheli, from Italy, and Nicollier, from Switzerland, both represent the European Space Agency (ESA). Assigned as payload specialist is Italian Umberto Guidoni, who represents the Italian Space Agency (ASI). During a mission scheduled to last nearly 14 days the flightg crew will be working with two primary parylods: the U.S./Italian Tethered Satellite System (TSS-1R), which is being re-flown, and the U.S. Microgravity Payload (USMP-3), making its third spaceflight. Mission STS-75 marks the second Shuttle flight of 1996 and the 75th Shuttle launch overall.

  10. STS-75 liftoff - left side view from across marsh

    NASA Technical Reports Server (NTRS)

    1996-01-01

    A smooth countdown culminates in an on-time liftoff as the Space Shuttle Columbia climbs skyward atop a column of flame. The launch from Pad 39B occurred at 3:18:00 P.M. EST, February 22, 1996. Aboard for Mission STS-75 is an international crew headed by Mission Commander Andrew M. Allen; Scott J. 'Doc' Horowitz is pilot; Franklin R. Chang-Diaz is payload commander. Serving as mission specialists are Jeffrey A. Hoffman, Maurizio Cheli and Claude Nicollier. Cheli, from Italy, and Nicollier, from Switzerland, both represent the European Space Agency (ESA). Assigned as payload specialist is Italian Umberto Guidoni, who represents the Italian Space Agency (ASI). During a mission scheduled to last nearly 14 days the flightg crew will be working with two primary parylods: the U.S./Italian Tethered Satellite System (TSS-1R), which is being re-flown, and the U.S. Microgravity Payload (USMP-3), making its third spaceflight. Mission STS-75 marks the second Shuttle flight of 1996 and the 75th Shuttle launch overall.

  11. Phenomenological study of the ionisation density-dependence of TLD-100 peak 5a.

    PubMed

    Brandan, Maria-Ester; Angeles, Oscar; Mercado-Uribe, Hilda

    2006-01-01

    Horowitz and collaborators have reported evidence on the structure of TLD-100 peak 5. A satellite peak, called 5a, has been singled out as arising from localised electron-hole recombination in a trap/luminescent centre, its emission mechanism would be geminate recombination and, therefore, its population would depend on incident radiation ionisation density. We report a phenomenological study of peak 4, 5a and 5 strengths for glow curves previously measured at UNAM for gammas, electrons and low-energy ions. The deconvolution procedure has followed strict rules to assure that the glow curve, where the presence of peak 5a is not visually noticeable, is decomposed in a consistent fashion, maintaining fixed widths and relative temperature difference between all the peaks. We find no improvement in the quality of the fit after inclusion of peak 5a. The relative contribution of peak 5a with respect to peak 5 does not seem to correlate with the radiation linear energy transfer.

  12. [Bereavement and complicated grief: towards a definition of Prolonged Grief Disorder for DSM-5].

    PubMed

    Lombardo, Luigi; Lai, Carlo; Luciani, Massimiliano; Morelli, Emanuela; Buttinelli, Elena; Aceto, Paola; Lai, Silvia; D'Onofrio, Marianna; Galli, Federico; Bellizzi, Fernando; Penco, Italo

    2014-01-01

    Mourning is a natural response to a loss and a condition which most people experience several times during their lives. Most individuals adjust adequately to the loss of a relative, neverthless, a small but noteworthy proportion of bereaved individuals experience a syndrome of prolonged psychological distress in relation to bereavement. Prolonged distress and disability in connection with bereavement has been termed Complicated Grief (CG) or Prolonged Grief Disorder (PGD). The purpose of this paper is to analyze the literature on loss and mourning making a review of the main studies published between 1993 and 2013, identified through a search conducted on Medline/PubMed, in order to describe the epidemiological and clinical aspects of "normal" grief and "complicated" grief, pointing out the path of the clinical definition of PGD and proposed diagnostic criteria for inclusion in the next edition of the Diagnostic and Statistic Manual of Mental Disorders, Fifth edition (DSM-5). The two main diagnostic systems proposed by Horowitz and Prigerson are also compared.

  13. Traumatic Stress, Perceived Global Stress, and Life Events: Prospectively Predicting Quality of Life in Breast Cancer Patients

    PubMed Central

    Golden-Kreutz, Deanna M.; Thornton, Lisa M.; Gregorio, Sharla Wells-Di; Frierson, Georita M.; Jim, Heather S.; Carpenter, Kristen M.; Shelby, Rebecca A.; Andersen, Barbara L.

    2007-01-01

    The authors investigated the relationship between stress at initial cancer diagnosis and treatment and subsequent quality of life (QoL). Women (n = 112) randomized to the assessment-only arm of a clinical trial were initially assessed after breast cancer diagnosis and surgery and then reassessed at 4 months (during adjuvant treatment) and 12 months (postadjuvant treatment). There were 3 types of stress measured: number of stressful life events (K. A. Matthews et al., 1997), cancer-related traumatic stress symptoms (M. J. Horowitz, N. Wilner, & W. Alvarez, 1979), and perceived global stress (S. Cohen, T. Kamarck, & R. Mermelstein, 1983). Using hierarchical multiple regressions, the authors found that stress predicted both psychological and physical QoL (J. E. Ware, K. K. Snow, & M. Kosinski, 2000) at the follow-ups (all ps < .03). These findings substantiate the relationship between initial stress and later QoL and underscore the need for timely psychological intervention. PMID:15898865

  14. Metal complexes of the fourth generation quinolone antimicrobial drug gatifloxacin: Synthesis, structure and biological evaluation

    NASA Astrophysics Data System (ADS)

    Sadeek, Sadeek A.; El-Shwiniy, Walaa H.

    2010-08-01

    Three metal complexes of the fourth generation quinolone antimicrobial agent gatifloxacin (GFLX) with Y(ΙΙΙ), Zr(ΙV) and U(VΙ) have been prepared and characterized with physicochemical and spectroscopic techniques. In these complexes, gatifloxacin acts as a bidentate deprotonated ligand bound to the metal through the ketone oxygen and a carboxylato oxygen. The complexes are six-coordinated with distorted octahedral geometry. The kinetic parameters for gatifloxacin and the three prepared complexes have been evaluated from TGA curves by using Coats-Redfern (CR) and Horowitz-Metzeger (HM) methods. The calculated bond length and force constant, F(U dbnd O), for the UO 2 bond in uranyl complex are 1.7522 Å and 639.46 N m -1. The antimicrobial activity of the complexes has been tested against microorganisms, three bacterial species, such as Staphylococcus aureus ( S. aureus), Escherichia coli ( E. coli) and Pseudomonas aeruginosa ( P. aeruginosa) and two fungi species, penicillium ( P. rotatum) and trichoderma ( T. sp.), showing that they exhibit higher activity than free ligand.

  15. KSC01padig263

    NASA Image and Video Library

    2001-08-09

    KENNEDY SPACE CENTER, Fla. -- The STS-105 crew exits the Operations and Checkout Building, followed by the Expedition Three (E3) crew. Leading the way are (left to right) Pilot Rick Sturckow and Commander Scott Horowitz; in the second row, Mission Specialists Patrick Forrester and Daniel Barry; in the third row, E3 cosmonaut Mikhail Tyurin, Commander Frank Culbertson, and cosmonaut Vladimir Dezhurov. Forrester and Tyurin are both making their first space flights. On the mission, Discovery will be transporting the Expedition Three crew and several payloads and scientific experiments to the ISS, including the Early Ammonia Servicer (EAS) tank. The EAS, which will support the thermal control subsystems until a permanent system is activated, will be attached to the Station during two spacewalks. The three-member Expedition Two crew will be returning to Earth aboard Discovery after a five-month stay on the Station. Launch is scheduled for 5:38 p.m. EDT Aug. 9. [Photo by Scott Andrews; Nikon D1 camera

  16. KSC-01pp1447

    NASA Image and Video Library

    2001-08-09

    KENNEDY SPACE CENTER, Fla. -- The STS-105 crew exits the Operations and Checkout Building, followed by the Expedition Three (E3) crew, to head for Launch Pad 39A and liftoff. Leading the way are (left to right) Pilot Rick Sturckow and Commander Scott Horowitz; in the second row, Mission Specialists Patrick Forrester and Daniel Barry; in the third row, E3 cosmonaut Mikhail Tyurin, Commander Frank Culbertson, and cosmonaut Vladimir Dezhurov. Forrester and Tyurin are both making their first space flights. On the mission, Discovery will be transporting the Expedition Three crew and several payloads and scientific experiments to the ISS, including the Early Ammonia Servicer (EAS) tank. The EAS, which will support the thermal control subsystems until a permanent system is activated, will be attached to the Station during two spacewalks. The three-member Expedition Two crew will be returning to Earth aboard Discovery after a five-month stay on the Station. Launch is scheduled for 5:38 p.m. EDT Aug. 9

  17. STS-101: Crew Activity Report / Flight Day 5

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The primary mission objective for STS-101 was to deliver supplies to the International Space Station, perform a space walk, and reboost the station from 230 statute miles to 250 statute miles. The commander of this mission was, James D. Haslsell. The crew was Scott J. Horowitz, the pilot, and mission specialists Mary Ellen Weber, Jeffrey N. Williams, James S. Voss, Susan J. Helms, and Yuri Vladimirovich Usachev. This videotape shows the activities of the fifth day of the mission. The day's activities started with the opening of the hatch to the space station. Helms and Usachev then opened the hatch to the station's Unity Connecting Module. The crew also placed ducting throughout the Zarya Control Module to improve air circulation and prevent problems with stale air. Helms and Usachev are shown replacing two of six batteries to be replaced in this mission in the Zarya module. The crew began moving supplies into the space station. There are several shots of the interior of the space station.

  18. Independent component analysis for onset detection in piano trills

    NASA Astrophysics Data System (ADS)

    Brown, Judith C.; Todd, Jeremy G.; Smaragdis, Paris

    2002-05-01

    The detection of onsets in piano music is difficult due to the presence of many notes simultaneously and their long decay times from pedaling. This is even more difficult for trills where the rapid note changes make it difficult to observe a decrease in amplitude for individual notes in either the temporal wave form or the time dependent Fourier components. Occasionally one note of the trill has a much lower amplitude than the other making an unambiguous determination of its onset virtually impossible. We have analyzed a number of trills from CD's of performances by Horowitz, Ashkenazy, and Goode, choosing the same trill and different performances where possible. The Fourier transform was calculated as a function of time, and the magnitude coefficients served as input for a calculation using the method of independent component analysis. In most cases this gave a more definitive determination of the onset times, as can be demonstrated graphically. For comparison identical calculations have been carried out on recordings of midi generated performances on a Yamaha Disclavier piano.

  19. Usefulness of charge-transfer complexation for the assessment of sympathomimetic drugs: Spectroscopic properties of drug ephedrine hydrochloride complexed with some π-acceptors

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; Ibrahim, Omar B.; Saad, Hosam A.; Adam, Abdel Majid A.

    2014-05-01

    Recently, ephedrine (Eph) assessment in food products, pharmaceutical formulations, human fluids of athletes and detection of drug toxicity and abuse, has gained a growing interest. To provide basic data that can be used to assessment of Eph quantitatively based on charge-transfer (CT) complexation, the CT complexes of Eph with 7‧,8,8‧-tetracyanoquinodimethane (TCNQ), dichlorodicyanobenzoquinone (DDQ), 1,3-dinitrobenzene (DNB) or tetrabromothiophene (TBT) were synthesized and spectroscopically investigated. The newly synthesized complexes have been characterized via elemental analysis, IR, Raman, 1H NMR, and UV-visible spectroscopy. The formation constant (KCT), molar extinction coefficient (εCT) and other spectroscopic data have been determined using the Benesi-Hildebrand method and its modifications. The sharp, well-defined Bragg reflections at specific 2θ angles have been identified from the powder X-ray diffraction patterns. Thermal decomposition behavior of these complexes was also studied, and their kinetic thermodynamic parameters were calculated with Coats-Redfern and Horowitz-Metzger equations.

  20. Performance bounds for modal analysis using sparse linear arrays

    NASA Astrophysics Data System (ADS)

    Li, Yuanxin; Pezeshki, Ali; Scharf, Louis L.; Chi, Yuejie

    2017-05-01

    We study the performance of modal analysis using sparse linear arrays (SLAs) such as nested and co-prime arrays, in both first-order and second-order measurement models. We treat SLAs as constructed from a subset of sensors in a dense uniform linear array (ULA), and characterize the performance loss of SLAs with respect to the ULA due to using much fewer sensors. In particular, we claim that, provided the same aperture, in order to achieve comparable performance in terms of Cramér-Rao bound (CRB) for modal analysis, SLAs require more snapshots, of which the number is about the number of snapshots used by ULA times the compression ratio in the number of sensors. This is shown analytically for the case with one undamped mode, as well as empirically via extensive numerical experiments for more complex scenarios. Moreover, the misspecified CRB proposed by Richmond and Horowitz is also studied, where SLAs suffer more performance loss than their ULA counterpart.

  1. STS-101 crew returns from Launch Pad 39A after launch was scrubbed

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The STS-101 crew returns to the Operations and Checkout Building after the launch was scrubbed due to cross winds at the KSC Shuttle Landing Facility gusting above 20 knots. Flight rules require cross winds at the SLF to be no greater than 15 knots in case of a contingency Shuttle landing. Shown leaving the Astrovan are (left to right) Mission Specialists James S. Voss and Yuri Usachev of Russia; Pilot Scott J. Horowitz; and Commander James D. Halsell Jr. in the doorway. Weather conditions will be reevaluated for another launch try on April 25. The mission will take the crew to the International Space Station to deliver logistics and supplies and to prepare the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk. This will be the third assembly flight to the Space Station. The mission is expected to last about 10 days.

  2. STS-101 crew gather for snack before launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Operations and Checkout Building, the STS-101 crew gathers for a snack before suiting up for launch. From left are Mission Specialists Yury Usachev of Russia , Mary Ellen Weber and Jeffrey N. Williams; Commander James D. Halsell Jr.; Pilot Scott J. Horowitz; and Mission Specialists James S. Voss and Susan J. Helms. The mission will take the crew to the International Space Station to deliver logistics and supplies and prepare the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk and will reboost the space station from 230 statute miles to 250 statute miles. This will be the third assembly flight to the Space Station. Liftoff of Space Shuttle Atlantis for the 10-day mission is scheduled for about 6:12 a.m. EDT from Launch Pad 39A. Landing is targeted for May 29 at 2:19 a.m. EDT.

  3. STS-101: Crew Activity Report / Flight Day 6

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The primary mission objective for STS-101 was to deliver supplies to the International Space Station, perform a space walk, and reboost the station from 230 statute miles to 250 statute miles. The commander of this mission was, James D. Halsell. The crew was Scott J. Horowitz, the pilot, and mission specialists Mary Ellen Weber, Jeffrey N. Williams, James S. Voss, Susan J. Helms, and Yuri Vladimirovich Usachev. This videotape shows the activities of the sixth day of the flight. The videotape begins with a shot of the Space Station. The narrator remarks that the transfer of supplies and equipment is continuing and the videotape shows the replacing of fans and smoke detectors. There is a group picture on board the station, after which a few questions were asked. The quality of the air inside the station is remarked on as being good. The quality of the air being a concern and one of the reasons for the mission. One of the new batteries was shown being installed in the Zarya Control Module.

  4. Simulating forest productivity along a neotropical elevational transect: temperature variation and carbon use efficiency

    NASA Astrophysics Data System (ADS)

    Marthews, T.; Malhi, Y.; Girardin, C.; Silva-Espejo, J.; Aragão, L.; Metcalfe, D.; Rapp, J.; Mercado, L.; Fisher, R.; Galbraith, D.; Fisher, J.; Salinas-Revilla, N.; Friend, A.; Restrepo-Coupe, N.; Williams, R.

    2012-04-01

    A better understanding of the mechanisms controlling the magnitude and sign of carbon components in tropical forest ecosystems is important for reliable estimation of this important regional component of the global carbon cycle. We used the JULES vegetation model to simulate all components of the carbon balance at six sites along an Andes-Amazon transect across Peru and Brazil and compared the results to published field measurements. In the upper montane zone the model predicted a vegetation dieback, indicating a need for better parameterisation of cloud forest vegetation. In the lower montane and lowland zones simulated ecosystem productivity and respiration were predicted with reasonable accuracy, although not always within the error bounds of the observations. Model-predicted carbon use efficiency in this transect surprisingly did not increase with elevation, but remained close to the 'temperate' value 0.5. This may be explained by elevational changes in the balance between growth and maintenance respiration within the forest canopy, as controlled by both temperature- and pressure-mediated processes.

  5. Fundus autofluorescence imaging in dry AMD: 2014 Jules Gonin lecture of the Retina Research Foundation.

    PubMed

    Holz, Frank G; Steinberg, Julia S; Göbel, Arno; Fleckenstein, Monika; Schmitz-Valckenberg, Steffen

    2015-01-01

    Fundus autofluorescence (FAF) imaging allows for topographic mapping of intrisnic fluorophores in the retinal pigment epithelial cell monolayer, as well as mapping of other fluorophores that may occur with disease in the outer retina and the sub-neurosensory space. FAF imaging provides information not obtainable with other imaging modalities. Near-infrared fundus autofluorescence images can also be obtained in vivo, and may be largely melanin-derived. FAF imaging has been shown to be useful in a wide spectrum of macular and retinal diseases. The scope of applications now includes identification of diseased RPE in macular/retinal diseases, elucidating pathophysiological mechanisms, identification of early disease stages, refined phenotyping, identification of prognostic markers for disease progression, monitoring disease progression in the context of both natural history and interventional therapeutic studies, and objective assessment of luteal pigment distribution and density as well as RPE melanin distribution. Here, we review the use of FAF imaging in various phenotypic manifestations of dry AMD.

  6. Humidity influence on atomic force microscopy electrostatic nanolithography

    NASA Astrophysics Data System (ADS)

    Lyuksyutov, Sergei; Juhl, Shane; Vaia, Richard

    2006-03-01

    The formation and sustainability of water menisci and bridges between solid dielectric surface and nano-asperity under external electrostatic potential is a mystery, which must be adequately explained. The goal of our study is twofold: (i) To address the influence of an ambient humidity through the water meniscus formation on the nanostructure formation in soften polymeric surfaces; (ii) Estimate an electric charge generation and transport inside the water meniscus in vicinity of nanoscale asperity taking into consideration an induced water ionization in strong non-uniform electric field of magnitude up to 10^10 Vm-1. It is suspected that strong electric field inside a polymer matrix activates the hoping mechanism of conductivity. The electrons are supplied by tunneling of conductive tip, and also through water ionization. Electric current associated with these free carriers produces Jule heating of a small volume of polymer film heating it above the glass transition temperature. Nanostructures are created by mass transport of visco-elastic polymer melt enabling high structure densities on polymer film.

  7. Electrostatic nanolithography in polymer materials: an alternative technique for nanostructures formation

    NASA Astrophysics Data System (ADS)

    Lyuksyutov, Sergei F.; Paramonov, Pavel B.; Sigalov, Grigori; Vaia, Richard A.; Juhl, Shane; Sancaktar, Erol

    2003-10-01

    The combination of localized softening attolitres (10^2 -10^4) of polymer film by Jule heating, extremely non-uniform electric field gradients to polarize and manipulate the soften polymer, and single step technique using conventional atomic force microscopy (AFM), establishes a new paradigm for nanolithography in a broad class of polymer materials allowing rapid (order of milliseconds) creation of raised and depressed nanostructures without external heating of a polymer film of AFM tip-film contact [1]. In this work we present recent studies of AFM-assisted electrostatic nanolithography (AFMEN) such as amplitude-modulated AFMEN, and the humidity influence on nanostructures formation during contact mode AFMEN. It has been shown that the aspect ratio of nanostructures grows on the order of magnitude (0.2), while the lateral dimensions of nanodots decreases down to 10-15 nm. [1] S.F. Lyuksyutov, R.A. Vaia, P.B. Paramonov, S. Juhl, L. Waterhouse, R.M. Ralich, G. Sigalov, and E. Sancaktar, "Electrostatic nanolithography in polymers using atomic force microscopy," Nature Materials 2, 468-472 (2003)

  8. Contested Waterlines: The Wave-Line Theory and Shipbuilding in the Nineteenth Century.

    PubMed

    Ferreiro, Larrie D; Pollara, Alexander

    2016-04-01

    Ship hydrodynamics in the nineteenth century was dominated by John Scott Russell's wave-line theory. Russell, a prominent British shipbuilder and scientist, argued that wavemaking was the primary source of resistance for ships, and that by designing ships according to trigonometric curves and proportions (the wave line) this resistance could effectively be eliminated. From the 1840s to the 1880s, shipbuilders such as John Willis Griffiths, Donald McKay and George Steers designed their clipper ships (like Sea Witch and Flying Cloud) and yachts (America) with wave-line hulls, while authors like Jules Verne referenced Russell's theory. The wave line slowly faded after William Froude developed his laws of ship resistance. The article examines how Russell's theory became accepted by technical experts and the wider public to become the most widely known ship hydrodynamic theory of the 1800s-a reminder of how a persuasive idea can take hold of an entire profession, and even the public, for a long time.

  9. Publications on Peripheral Nerve Injuries during World War I: A Dramatic Increase in Knowledge.

    PubMed

    Koehler, Peter J

    2016-01-01

    Publications from French (Jules Tinel and Chiriachitza Athanassio-Bénisty), English (James Purves-Stewart, Arthur Henry Evans and Hartley Sidney Carter), German (Otfrid Foerster and Hermann Oppenheim) and American (Charles Harrison Frazier and Byron Stookey) physicians from both sides of the front during World War I (WWI) contributed to a dramatic increase in knowledge about peripheral nerve injuries. Silas Weir Mitchell's original experience with respect to these injuries, and particularly causalgia, during the American Civil War was further expanded in Europe during WWI. Following the translation of one of his books, he was referred to mainly by French physicians. During WWI, several French books were in turn translated into English, which influenced American physicians, as was observed in the case of Byron Stookey. The establishment of neurological centres played an important role in the concentration of experience and knowledge. Several eponyms originated during this period (including the Hoffmann-Tinel sign and the Froment sign). Electrodiagnostic tools were increasingly used. © 2016 S. Karger AG, Basel.

  10. Site-level model intercomparison of high latitude and high altitude soil thermal dynamics in tundra and barren landscapes

    NASA Astrophysics Data System (ADS)

    Ekici, A.; Chadburn, S.; Chaudhary, N.; Hajdu, L. H.; Marmy, A.; Peng, S.; Boike, J.; Burke, E.; Friend, A. D.; Hauck, C.; Krinner, G.; Langer, M.; Miller, P. A.; Beer, C.

    2015-07-01

    Modeling soil thermal dynamics at high latitudes and altitudes requires representations of physical processes such as snow insulation, soil freezing and thawing and subsurface conditions like soil water/ice content and soil texture. We have compared six different land models: JSBACH, ORCHIDEE, JULES, COUP, HYBRID8 and LPJ-GUESS, at four different sites with distinct cold region landscape types, to identify the importance of physical processes in capturing observed temperature dynamics in soils. The sites include alpine, high Arctic, wet polygonal tundra and non-permafrost Arctic, thus showing how a range of models can represent distinct soil temperature regimes. For all sites, snow insulation is of major importance for estimating topsoil conditions. However, soil physics is essential for the subsoil temperature dynamics and thus the active layer thicknesses. This analysis shows that land models need more realistic surface processes, such as detailed snow dynamics and moss cover with changing thickness and wetness, along with better representations of subsoil thermal dynamics.

  11. Large uncertainty in carbon uptake potential of land-based climate-change mitigation efforts.

    PubMed

    Krause, Andreas; Pugh, Thomas A M; Bayer, Anita D; Li, Wei; Leung, Felix; Bondeau, Alberte; Doelman, Jonathan C; Humpenöder, Florian; Anthoni, Peter; Bodirsky, Benjamin L; Ciais, Philippe; Müller, Christoph; Murray-Tortarolo, Guillermo; Olin, Stefan; Popp, Alexander; Sitch, Stephen; Stehfest, Elke; Arneth, Almut

    2018-07-01

    Most climate mitigation scenarios involve negative emissions, especially those that aim to limit global temperature increase to 2°C or less. However, the carbon uptake potential in land-based climate change mitigation efforts is highly uncertain. Here, we address this uncertainty by using two land-based mitigation scenarios from two land-use models (IMAGE and MAgPIE) as input to four dynamic global vegetation models (DGVMs; LPJ-GUESS, ORCHIDEE, JULES, LPJmL). Each of the four combinations of land-use models and mitigation scenarios aimed for a cumulative carbon uptake of ~130 GtC by the end of the century, achieved either via the cultivation of bioenergy crops combined with carbon capture and storage (BECCS) or avoided deforestation and afforestation (ADAFF). Results suggest large uncertainty in simulated future land demand and carbon uptake rates, depending on the assumptions related to land use and land management in the models. Total cumulative carbon uptake in the DGVMs is highly variable across mitigation scenarios, ranging between 19 and 130 GtC by year 2099. Only one out of the 16 combinations of mitigation scenarios and DGVMs achieves an equivalent or higher carbon uptake than achieved in the land-use models. The large differences in carbon uptake between the DGVMs and their discrepancy against the carbon uptake in IMAGE and MAgPIE are mainly due to different model assumptions regarding bioenergy crop yields and due to the simulation of soil carbon response to land-use change. Differences between land-use models and DGVMs regarding forest biomass and the rate of forest regrowth also have an impact, albeit smaller, on the results. Given the low confidence in simulated carbon uptake for a given land-based mitigation scenario, and that negative emissions simulated by the DGVMs are typically lower than assumed in scenarios consistent with the 2°C target, relying on negative emissions to mitigate climate change is a highly uncertain strategy. © 2018 John Wiley & Sons Ltd.

  12. The Fate of Amazonian Ecosystems over the Coming Century Arising from Changes in Climate, Atmospheric CO2 and Land-use

    NASA Astrophysics Data System (ADS)

    Moorcroft, P. R.; Zhang, K.; Castanho, A. D. D. A.; Galbraith, D.; Moghim, S.; Levine, N. M.; Bras, R. L.; Coe, M. T.; Costa, M. H.; Malhi, Y.; Longo, M.; Knox, R. G.; McKnight, S. L.; Wang, J.

    2014-12-01

    There is considerable interest and uncertainty regarding the expected fate of the Amazon over the coming century in face of the combined impacts of climate change, rising atmospheric CO2 levels, and on-going land transformation in the region. In this analysis, we explore the fate of Amazonian ecosystems under projected climate, CO2 and land-use change in the 21st century using three state-of-the-art terrestrial biosphere models (ED2, IBIS, and JULES) driven by three representative, bias-corrected GCM climate projections (PCM1, CCSM3, and HadCM3) under the SRES A2 scenario, coupled with two land-use change scenarios. We assess the relative roles of climate change, CO2 fertilization, land-use change, and fire in driving the projected changes in Amazonian biomass and forest extent. Our results indicate that the impacts of climate change depend strongly on the direction and severity of projected changes in precipitation regimes within the region: under the driest climate projection, climate change alone is predicted to reduce Amazonian forest cover by an average of 14%; however, the models predict that CO2 fertilization will enhance vegetation productivity and alleviate climate-induced increases in plant water stress, and as a result sustain high biomass forests, even under the driest climate scenario. Land-use change and changes in fire frequency are predicted cause additional aboveground live biomass loss and changes in forest extent. The relative impact of land-use and fire dynamics versus the impacts of climate and CO2 on the Amazon varies considerably, depending on both the climate and land-use scenarios used and on the terrestrial biosphere model, highlighting the importance of improved understanding of all four factors -- future climate, CO2 fertilization effects, fire and land-use -- to the fate of the Amazon over the coming century.

  13. Diagnostic and model dependent uncertainty of simulated Tibetan permafrost area

    USGS Publications Warehouse

    Wang, A.; Moore, J.C.; Cui, Xingquan; Ji, D.; Li, Q.; Zhang, N.; Wang, C.; Zhang, S.; Lawrence, D.M.; McGuire, A.D.; Zhang, W.; Delire, C.; Koven, C.; Saito, K.; MacDougall, A.; Burke, E.; Decharme, B.

    2016-01-01

     We perform a land-surface model intercomparison to investigate how the simulation of permafrost area on the Tibetan Plateau (TP) varies among six modern stand-alone land-surface models (CLM4.5, CoLM, ISBA, JULES, LPJ-GUESS, UVic). We also examine the variability in simulated permafrost area and distribution introduced by five different methods of diagnosing permafrost (from modeled monthly ground temperature, mean annual ground and air temperatures, air and surface frost indexes). There is good agreement (99 to 135  ×  104 km2) between the two diagnostic methods based on air temperature which are also consistent with the observation-based estimate of actual permafrost area (101  × 104 km2). However the uncertainty (1 to 128  ×  104 km2) using the three methods that require simulation of ground temperature is much greater. Moreover simulated permafrost distribution on the TP is generally only fair to poor for these three methods (diagnosis of permafrost from monthly, and mean annual ground temperature, and surface frost index), while permafrost distribution using air-temperature-based methods is generally good. Model evaluation at field sites highlights specific problems in process simulations likely related to soil texture specification, vegetation types and snow cover. Models are particularly poor at simulating permafrost distribution using the definition that soil temperature remains at or below 0 °C for 24 consecutive months, which requires reliable simulation of both mean annual ground temperatures and seasonal cycle, and hence is relatively demanding. Although models can produce better permafrost maps using mean annual ground temperature and surface frost index, analysis of simulated soil temperature profiles reveals substantial biases. The current generation of land-surface models need to reduce biases in simulated soil temperature profiles before reliable contemporary permafrost maps and predictions of changes in future permafrost distribution can be made for the Tibetan Plateau.

  14. Diagnostic and model dependent uncertainty of simulated Tibetan permafrost area

    NASA Astrophysics Data System (ADS)

    Wang, W.; Rinke, A.; Moore, J. C.; Cui, X.; Ji, D.; Li, Q.; Zhang, N.; Wang, C.; Zhang, S.; Lawrence, D. M.; McGuire, A. D.; Zhang, W.; Delire, C.; Koven, C.; Saito, K.; MacDougall, A.; Burke, E.; Decharme, B.

    2016-02-01

    We perform a land-surface model intercomparison to investigate how the simulation of permafrost area on the Tibetan Plateau (TP) varies among six modern stand-alone land-surface models (CLM4.5, CoLM, ISBA, JULES, LPJ-GUESS, UVic). We also examine the variability in simulated permafrost area and distribution introduced by five different methods of diagnosing permafrost (from modeled monthly ground temperature, mean annual ground and air temperatures, air and surface frost indexes). There is good agreement (99 to 135 × 104 km2) between the two diagnostic methods based on air temperature which are also consistent with the observation-based estimate of actual permafrost area (101 × 104 km2). However the uncertainty (1 to 128 × 104 km2) using the three methods that require simulation of ground temperature is much greater. Moreover simulated permafrost distribution on the TP is generally only fair to poor for these three methods (diagnosis of permafrost from monthly, and mean annual ground temperature, and surface frost index), while permafrost distribution using air-temperature-based methods is generally good. Model evaluation at field sites highlights specific problems in process simulations likely related to soil texture specification, vegetation types and snow cover. Models are particularly poor at simulating permafrost distribution using the definition that soil temperature remains at or below 0 °C for 24 consecutive months, which requires reliable simulation of both mean annual ground temperatures and seasonal cycle, and hence is relatively demanding. Although models can produce better permafrost maps using mean annual ground temperature and surface frost index, analysis of simulated soil temperature profiles reveals substantial biases. The current generation of land-surface models need to reduce biases in simulated soil temperature profiles before reliable contemporary permafrost maps and predictions of changes in future permafrost distribution can be made for the Tibetan Plateau.

  15. Ecology of Alpine Macrofungi - Combining Historical with Recent Data

    PubMed Central

    Brunner, Ivano; Frey, Beat; Hartmann, Martin; Zimmermann, Stephan; Graf, Frank; Suz, Laura M.; Niskanen, Tuula; Bidartondo, Martin I.; Senn-Irlet, Beatrice

    2017-01-01

    Historical datasets of living communities are important because they can be used to document creeping shifts in species compositions. Such a historical data set exists for alpine fungi. From 1941 to 1953, the Swiss geologist Jules Favre visited yearly the region of the Swiss National Park and recorded the occurring fruiting bodies of fungi >1 mm (so-called “macrofungi”) in the alpine zone. Favre can be regarded as one of the pioneers of alpine fungal ecology not least because he noted location, elevation, geology, and associated plants during his numerous excursions. However, some relevant information is only available in his unpublished field-book. Overall, Favre listed 204 fungal species in 26 sampling sites, with 46 species being previously unknown. The analysis of his data revealed that the macrofungi recorded belong to two major ecological groups, either they are symbiotrophs and live in ectomycorrhizal associations with alpine plant hosts, or they are saprotrophs and decompose plant litter and soil organic matter. The most frequent fungi were members of Inocybe and Cortinarius, which form ectomycorrhizas with Dryas octopetala or the dwarf alpine Salix species. The scope of the present study was to combine Favre's historical dataset with more recent data, either with the “SwissFungi” database or with data from major studies of the French and German Alps, and with the data from novel high-throughput DNA sequencing techniques of soils from the Swiss Alps. Results of the latter application revealed, that problems associated with these new techniques are manifold and species determination remains often unclear. At this point, the fungal taxa collected by Favre and deposited as exsiccata at the “Conservatoire et Jardin Botaniques de la Ville de Genève” could be used as a reference sequence dataset for alpine fungal studies. In conclusion, it can be postulated that new improved databases are urgently necessary for the near future, particularly, with regard to investigating fungal communities from alpine regions using new techniques. PMID:29123508

  16. Plant Nitrogen Uptake in Terrestrial Biogeochemical Models

    NASA Astrophysics Data System (ADS)

    Marti, Alejandro; Cox, Peter; Sitch, Stephen; Jones, Chris; Liddicoat, spencer

    2013-04-01

    Most terrestrial biogeochemical models featured in the last Intergovernmental Panel on Climate Change (IPPC) Assessment Report highlight the importance of the terrestrial Carbon sequestration and feedbacks between the terrestrial Carbon cycle and the climate system. However, these models have been criticized for overestimating predicted Carbon sequestration and its potential climate feedback when calculating the rate of future climate change because they do not account for the Carbon sequestration constraints caused by nutrient limitation, particularly Nitrogen (N). This is particularly relevant considering the existence of a substantial deficit of Nitrogen for plants in most areas of the world. To date, most climate models assume that plants have access to as much Nitrogen as needed, but ignore the nutrient requirements for new vegetation growth. Determining the natural demand and acquisition for Nitrogen and its associated resource optimization is key when accounting for the Carbon sequestration constrains caused by nutrient limitation. The few climate models that include C-N dynamics have illustrated that the stimulation of plant growth over the coming century may be two to three times smaller than previously predicted. This reduction in growth is partially offset by an increase in the availability of nutrients resulting from an accelerated rate of decomposition of dead plants and other organic matter that occurring with a rise in temperature. However, this offset does not counterbalance the reduced level of plant growth calculated by natural nutrient limitations. Additionally, Nitrogen limitation is also expected to become more pronounced in some ecosystems as atmospheric CO2 concentration increases; resulting in less new growth and higher atmospheric CO2 concentrations than originally expected. This study compares alternative models of plant N uptake as found in different terrestrial biogeochemical models against field measurements, and introduces a new N-uptake model to the Joint UK Land Environment Simulator (JULES).. Acknowledgements This work has been funded by the European Commission FP7-PEOPLE-ITN-2008 Marie Curie Action: "Greencycles II: FP7-PEOPLE-ITN-2008 Marie Curie Action: "Networks for Initial Training"

  17. Ecology of Alpine Macrofungi - Combining Historical with Recent Data.

    PubMed

    Brunner, Ivano; Frey, Beat; Hartmann, Martin; Zimmermann, Stephan; Graf, Frank; Suz, Laura M; Niskanen, Tuula; Bidartondo, Martin I; Senn-Irlet, Beatrice

    2017-01-01

    Historical datasets of living communities are important because they can be used to document creeping shifts in species compositions. Such a historical data set exists for alpine fungi. From 1941 to 1953, the Swiss geologist Jules Favre visited yearly the region of the Swiss National Park and recorded the occurring fruiting bodies of fungi >1 mm (so-called "macrofungi") in the alpine zone. Favre can be regarded as one of the pioneers of alpine fungal ecology not least because he noted location, elevation, geology, and associated plants during his numerous excursions. However, some relevant information is only available in his unpublished field-book. Overall, Favre listed 204 fungal species in 26 sampling sites, with 46 species being previously unknown. The analysis of his data revealed that the macrofungi recorded belong to two major ecological groups, either they are symbiotrophs and live in ectomycorrhizal associations with alpine plant hosts, or they are saprotrophs and decompose plant litter and soil organic matter. The most frequent fungi were members of Inocybe and Cortinarius , which form ectomycorrhizas with Dryas octopetala or the dwarf alpine Salix species. The scope of the present study was to combine Favre's historical dataset with more recent data, either with the "SwissFungi" database or with data from major studies of the French and German Alps, and with the data from novel high-throughput DNA sequencing techniques of soils from the Swiss Alps. Results of the latter application revealed, that problems associated with these new techniques are manifold and species determination remains often unclear. At this point, the fungal taxa collected by Favre and deposited as exsiccata at the "Conservatoire et Jardin Botaniques de la Ville de Genève" could be used as a reference sequence dataset for alpine fungal studies. In conclusion, it can be postulated that new improved databases are urgently necessary for the near future, particularly, with regard to investigating fungal communities from alpine regions using new techniques.

  18. The UKC2 regional coupled environmental prediction system

    NASA Astrophysics Data System (ADS)

    Lewis, Huw W.; Castillo Sanchez, Juan Manuel; Graham, Jennifer; Saulter, Andrew; Bornemann, Jorge; Arnold, Alex; Fallmann, Joachim; Harris, Chris; Pearson, David; Ramsdale, Steven; Martínez-de la Torre, Alberto; Bricheno, Lucy; Blyth, Eleanor; Bell, Victoria A.; Davies, Helen; Marthews, Toby R.; O'Neill, Clare; Rumbold, Heather; O'Dea, Enda; Brereton, Ashley; Guihou, Karen; Hines, Adrian; Butenschon, Momme; Dadson, Simon J.; Palmer, Tamzin; Holt, Jason; Reynard, Nick; Best, Martin; Edwards, John; Siddorn, John

    2018-01-01

    It is hypothesized that more accurate prediction and warning of natural hazards, such as of the impacts of severe weather mediated through various components of the environment, require a more integrated Earth System approach to forecasting. This hypothesis can be explored using regional coupled prediction systems, in which the known interactions and feedbacks between different physical and biogeochemical components of the environment across sky, sea and land can be simulated. Such systems are becoming increasingly common research tools. This paper describes the development of the UKC2 regional coupled research system, which has been delivered under the UK Environmental Prediction Prototype project. This provides the first implementation of an atmosphere-land-ocean-wave modelling system focussed on the United Kingdom and surrounding seas at km-scale resolution. The UKC2 coupled system incorporates models of the atmosphere (Met Office Unified Model), land surface with river routing (JULES), shelf-sea ocean (NEMO) and ocean waves (WAVEWATCH III). These components are coupled, via OASIS3-MCT libraries, at unprecedentedly high resolution across the UK within a north-western European regional domain. A research framework has been established to explore the representation of feedback processes in coupled and uncoupled modes, providing a new research tool for UK environmental science. This paper documents the technical design and implementation of UKC2, along with the associated evaluation framework. An analysis of new results comparing the output of the coupled UKC2 system with relevant forced control simulations for six contrasting case studies of 5-day duration is presented. Results demonstrate that performance can be achieved with the UKC2 system that is at least comparable to its component control simulations. For some cases, improvements in air temperature, sea surface temperature, wind speed, significant wave height and mean wave period highlight the potential benefits of coupling between environmental model components. Results also illustrate that the coupling itself is not sufficient to address all known model issues. Priorities for future development of the UK Environmental Prediction framework and component systems are discussed.

  19. Response to droughts and heat waves of the productivity of natural and agricultural ecosystems in Europe within ISI-MIP2 historical simulations

    NASA Astrophysics Data System (ADS)

    François, Louis; Henrot, Alexandra-Jane; Dury, Marie; Jacquemin, Ingrid; Munhoven, Guy; Friend, Andrew; Rademacher, Tim T.; Hacket Pain, Andrew J.; Hickler, Thomas; Tian, Hanqin; Morfopoulos, Catherine; Ostberg, Sebastian; Chang, Jinfeng; Rafique, Rashid; Nishina, Kazuya

    2016-04-01

    According to the projections of climate models, extreme events such as droughts and heat waves are expected to become more frequent and more severe in the future. Such events are known to severely impact the productivity of both natural and agricultural ecosystems, and hence to affect ecosystem services such as crop yield and ecosystem carbon sequestration potential. Dynamic vegetation models are conventional tools to evaluate the productivity and carbon sequestration of ecosystems and their response to climate change. However, how far are these models able to correctly represent the sensitivity of ecosystems to droughts and heat waves? How do the responses of natural and agricultural ecosystems compare to each other, in terms of drought-induced changes in productivity and carbon sequestration? In this contribution, we use ISI-MIP2 model historical simulations from the biome sector to tentatively answer these questions. Nine dynamic vegetation models have participated in the biome sector intercomparison of ISI-MIP2: CARAIB, DLEM, HYBRID, JULES, LPJ-GUESS, LPJml, ORCHIDEE, VEGAS and VISIT. We focus the analysis on well-marked droughts or heat waves that occured in Europe after 1970, such as the 1976, 2003 and 2010 events. For most recent studied events, the model results are compared to the response observed at several eddy covariance sites in Europe, and, at a larger scale, to the changes in crop productivities reported in national statistics or to the drought impacts on gross primary productivity derived from satellite data (Terra MODIS instrument). The sensitivity of the models to the climatological dataset used in the simulations, as well as to the inclusion or not of anthropogenic land use, is also analysed within the studied events. Indeed, the ISI-MIP simulations have been run with four different historical climatic forcings, as well as for several land use/land cover configurations (natural vegetation, fixed land use and variable land use).

  20. Simulation of infiltration and redistribution of intense rainfall using Land Surface Models

    NASA Astrophysics Data System (ADS)

    Mueller, Anna; Verhoef, Anne; Cloke, Hannah

    2016-04-01

    Flooding from intense rainfall (FFIR) can cause widespread damage and disruption. Numerical Weather Prediction (NWP) models provide distributed information about atmospheric conditions, such as precipitation, that can lead to a flooding event. Short duration, high intensity rainfall events are generally poorly predicted by NWP models, because of the high spatiotemporal resolution required and because of the way the convective rainfall is described in the model. The resolution of NWP models is ever increasing. Better understanding of complex hydrological processes and the effect of scale is important in order to improve the prediction of magnitude and duration of such events, in the context of disaster management. Working as part of the NERC SINATRA project, we evaluated how the Land Surface Model (LSM) components of NWP models cope with high intensity rainfall input and subsequent infiltration problems. Both in terms of the amount of water infiltrated in the soil store, as well as the timing and the amount of surface and subsurface runoff generated. The models investigated are SWAP (Soil Water Air Plant, Alterra, the Netherlands, van Dam 1997), JULES (Joint UK Land Environment Simulator a component of Unified Model in UK Met Office, Best et al. 2011) and CHTESSEL (Carbon and Hydrology- Tiled ECMWF Scheme for Surface Exchanges over Land, Balsamo et al. 2009) We analysed the numerical aspects arising from discontinuities (or sharp gradients) in forcing and/or the model solution. These types of infiltration configurations were tested in the laboratory (Vachaud 1971), for some there are semi-analytical solutions (Philip 1957, Parlange 1972, Vanderborght 2005) or reference numerical solutions (Haverkamp 1977, van Dam 2000, Vanderborght 2005). The maximum infiltration by the surface, Imax, is in general dependent on atmospheric conditions, surface type, soil type, soil moisture content θ, and surface orographic factor σ. The models used differ in their approach to describe and deal with this top boundary condition definition. All three LSMs discretise the spatial derivative in the Richards equation (∂/∂z) using central finite differences, which is a 2nd order method, that according to Godunov's theorem is non-monotone. It is prone to producing non-physical oscillations in the solution. We performed a mesh and timestep dependence study for hypothetical soil columns and showed the presence of the oscillations in Jules and SWAP solutions. We also investigated the rainfall/runoff partition and redistribution in case of intense rainfall using these three models.

  1. Towards an improved and more flexible representation of water stress in coupled photosynthesis-stomatal conductance models; implications for simulated land surface fluxes and variables at various spatiotemporal scales

    NASA Astrophysics Data System (ADS)

    Egea, G.; Verhoef, A.; Vidale, P. L.; Black, E.; Van den Hoof, C.

    2012-04-01

    Coupled photosynthesis-stomatal conductance (A-gs) models are commonly used in ecosystem models to represent the exchange rate of CO2 and H2O between vegetation and the atmosphere. The ways these models account for water stress differ greatly among modelling schemes. This study provides insight into the impact of contrasting model configurations of water stress on the simulated leaf-level values of net photosynthesis (A), stomatal conductance (gs), the functional relationship among them and their ratio, the intrinsic water use efficiency (A/gs), as soil dries. A simple, yet versatile, normalized soil moisture dependent function was used to account for the effects of water stress on gs, on mesophyll conductance (gm ) and on the biochemical capacity (Egea et al., 2011). Model output was compared to leaf-level values obtained from the literature. The sensitivity analyses emphasized the necessity to combine both stomatal and non-stomatal limitations of A in coupled A-gs models to accurately capture the observed functional relationships A vs. gs and A/gs vs. gs in response to drought. Accounting for water stress in coupled A-gs models by imposing either stomatal or biochemical limitations of A, as commonly practiced in most ecosystem models, failed to reproduce the observed functional relationship between key leaf gas exchange attributes. A quantitative limitation analysis revealed that the general pattern of C3 photosynthetic response to water stress can be represented in coupled A-gs models by imposing the highest limitation strength to mesophyll conductance, then to stomatal conductance and finally to the biochemical capacity. This more realistic representation of soil water stress on the simulated leaf-level values of A and gs was embedded in the JULES (Joint UK Land Environment Simulator; Best et al., 2011), model and tested for a number of vegetation types, for which driving and flux verification data were available. These simulations provide an insight into the effect that the revised parameterization will have on GCM simulations of climate variability and change. Best, M. J. et al. (2011). The Joint UK Land Environment Simulator (JULES), model description - Part 1: Energy and water fluxes. Geosci. Model Dev., 4, 677-699. Egea, G., Verhoef, A., Vidale, P.L. (2011) Towards an improved and more flexible representation of water stress in coupled photosynthesis-stomatal conductance models. Agricultural and Forest Meteorology, 151 (10), 1370-1384.

  2. KSC00pp0279

    NASA Image and Video Library

    2000-02-25

    KENNEDY SPACE CENTER, FLA. -- Members of the STS-101 crew take part in Crew Equipment Interface Test (CEIT) activities at SPACEHAB, in Cape Canaveral, Fla., where they are learning about some of the equipment they will be working with on their mission to the International Space Station. Mission Specialist Susan Helms holds one component while Commander James Halsell and Mission Specialist Yuri Usachev look on, and Mission Specialists Mary Ellen Weber and Jeffrey Williams discuss another. Also taking part in the CEIT are Pilot Scott Horowitz and Mission Specialist James Voss. The green component on the table is an air duct to be installed in the Russian module Zarya to improve ventilation. The STS-101 crew will be responsible for preparing the Space Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station and deliver logistics and supplies. This will be the third assembly flight for the Space Station. STS-101 is scheduled to launch no earlier than April 13 from Launch Pad 39A

  3. The STS-101 crew takes part in CEIT activities at SPACEHAB.

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Members of the STS-101 crew take part in Crew Equipment Interface Test (CEIT) activities at SPACEHAB, in Cape Canaveral, Fla., where they are learning about some of the equipment they will be working with on their mission to the International Space Station. Mission Specialist Susan Helms holds one component while Commander James Halsell and Mission Specialist Yuri Usachev look on, and Mission Specialists Mary Ellen Weber and Jeffrey Williams discuss another. Also taking part in the CEIT are Pilot Scott Horowitz and Mission Specialist James Voss. The green component on the table is an air duct to be installed in the Russian module Zarya to improve ventilation. The STS-101 crew will be responsible for preparing the Space Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station and deliver logistics and supplies. This will be the third assembly flight for the Space Station. STS-101 is scheduled to launch no earlier than April 13 from Launch Pad 39A.

  4. KSC-00pp0279

    NASA Image and Video Library

    2000-02-25

    KENNEDY SPACE CENTER, FLA. -- Members of the STS-101 crew take part in Crew Equipment Interface Test (CEIT) activities at SPACEHAB, in Cape Canaveral, Fla., where they are learning about some of the equipment they will be working with on their mission to the International Space Station. Mission Specialist Susan Helms holds one component while Commander James Halsell and Mission Specialist Yuri Usachev look on, and Mission Specialists Mary Ellen Weber and Jeffrey Williams discuss another. Also taking part in the CEIT are Pilot Scott Horowitz and Mission Specialist James Voss. The green component on the table is an air duct to be installed in the Russian module Zarya to improve ventilation. The STS-101 crew will be responsible for preparing the Space Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station and deliver logistics and supplies. This will be the third assembly flight for the Space Station. STS-101 is scheduled to launch no earlier than April 13 from Launch Pad 39A

  5. STS-101 Mission Specialist Williams practices driving an M-113 during TCDT

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Seated on top of an M-113 personnel carrier, Capt. George Hoggard of the KSC/CCAFS Fire Department gives instruction to STS-101 Mission Specialist Yuri Usachev (right), who is in the driver seat. In the rear are Mission Specialists James Voss (holding a camera), Jeffrey N. Williams, Pilot Scott J. 'Doc' Horowitz and Mary Ellen Weber. Other crew members taking part are Commander James D. Halsell Jr. and Mission Specialist Susan J. Helms. The training is part of Terminal Countdown Demonstration Test (TCDT) activities that include emergency egress training and a simulated launch countdown. During their mission to the International Space Station, the STS-101 crew will be delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight for the Space Station. STS-101 is scheduled to launch April 24 at 4:15 p.m. from Launch Pad 39A.

  6. STS-101: Flight Day Highlights / CAR

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The primary mission objective for STS-101 was to deliver supplies to the International Space Station, perform a space walk, and reboost the station from 230 statute miles to 250 statute miles. The commander of this mission was, James D. Halsell. The crew was Scott J. Horowitz, the pilot, and mission specialists Mary Ellen Weber, Jeffrey N. Williams, James S. Voss, Susan J. Helms, and Yuri Vladimirovich Usachev. This videotape shows the launch of STS-101, beginning with the pre-flight breakfast and the crew's introduction. The videotape next shows a pre-dawn view of the orbiter waiting the crew's arrival. The crew is shown getting into their space suits and then climbing onboard the shuttle. In this videotape we are shown a few of the crew getting into their places onboard the shuttle. We are also shown the newly designed "glass cockpit", which gives the pilot and the commander better views and are told that this is the first flight of the shuttle with the new design. After the hatch is closed, we see the shuttle launch into the night, followed by the Solid Rocket Boosters (SRB) separation.

  7. The STS-101 crew takes part in CEIT activities at SPACEHAB.

    NASA Technical Reports Server (NTRS)

    2000-01-01

    At SPACEHAB, in Cape Canaveral, Fla., STS-101 Mission Specialists Susan Helms and Yuri Usachev, with Commander James Halsell, handle an air duct to be installed during their mission to the International Space Station. The air duct is for the Russian module Zarya to improve ventilation. At right are Mission Specialists Jeffrey Williams and Mary Ellen Weber. In the background at left is Pilot Scott Horowitz. Not shown is Mission Specialist James Voss. The crew is taking part in Crew Equipment Interface Test (CEIT) activities to learn about some of the equipment they will be working with on their mission to the Space Station. The STS-101 crew will be responsible for preparing the Space Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station and deliver logistics and supplies. This will be the third assembly flight for the Space Station. STS-101 is scheduled to launch no earlier than April 13 from Launch Pad 39A.

  8. Structural comparative studies on new Mn(II), Cr(III) and Ru(III) complexes derived from 2,4,6-tri-(2-pyridyl)-1,3,5-triazine (TPTZ).

    PubMed

    Al-Assy, Waleed H; El-Askalany, Abdel Moneum H; Mostafa, Mohsen M

    2013-12-01

    The structure of a new Mn(II) complex, [Mn(TPTZ)Cl2(H2O)]⋅H2O, was established by a single crystal X-ray diffraction. Crystal data are as follow: monoclinic, P21/c,a = 8.7202 (3)Å, b = 11.5712 (4)Å, c = 20.8675 (9)Å, β=11 (18) × 1010, V = 2029.27 (13)Å(3), Z = 4. The HOMO, LUMO and other DFT parameters on the atoms have been calculated to confirm the geometry of the ligand and its complexes using material studio program. The complexes were characterized by elemental analyses, spectral, magnetic, thermal and cyclic voltammetry measurements. Electronic spectra and magnetic moments of the complexes suggest distorted-octahedral structures around the metal ions (Mn(II), Cr(III) and Ru(III)). The redox properties were investigated by cyclic voltammetry. Kinetic parameters were determined using Coats-Redfern and Horowitz-Metzger methods. The results of DNA studies of the metal complexes promised to be effective in tumour treatment. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. PREFACE: International Workshop on Discovery Physics at the LHC (Kruger2012)

    NASA Astrophysics Data System (ADS)

    Cleymans, Jean

    2013-08-01

    The second conference on 'Discovery Physics at the LHC' was held on 3-7 December 2012 at the Kruger Gate Hotel in South Africa. In total there were 110 participants from Armenia, Belgium, Brazil, Canada, Czech Republic, France, Germany, Greece, Israel, Italy, Norway, Poland, USA, Russia, Slovakia, Spain, Sweden, United Kingdom, Switzerland and South Africa. The latest results from the Large Hadron Collider, Brookhaven National Laboratory, Jefferson Laboratory and BABAR experiments, as well as the latest theoretical insights were presented. Set against the backdrop of the majestic Kruger National Park a very stimulating conference with many exchanges took place. The proceedings reflect the high standard of the conference. The financial contributions from the National Institute for Theoretical Physics (NITHeP), the SA-CERN programme, the UCT-CERN Research Centre, the University of Johannesburg, the University of the Witwatersrand and iThemba Labs—Laboratory for Accelerator Based Science are gratefully acknowledged. Jean Cleymans Chair of the Local Organizing Committee Local Organizing Committee Oana Boeriu Jean Cleymans Simon H Connell Alan S Cornell William A Horowitz Andre Peshier Trevor Vickey Zeblon Z Vilakazi Group picture

  10. Working memory capacity and the top-down control of visual search: Exploring the boundaries of "executive attention".

    PubMed

    Kane, Michael J; Poole, Bradley J; Tuholski, Stephen W; Engle, Randall W

    2006-07-01

    The executive attention theory of working memory capacity (WMC) proposes that measures of WMC broadly predict higher order cognitive abilities because they tap important and general attention capabilities (R. W. Engle & M. J. Kane, 2004). Previous research demonstrated WMC-related differences in attention tasks that required restraint of habitual responses or constraint of conscious focus. To further specify the executive attention construct, the present experiments sought boundary conditions of the WMC-attention relation. Three experiments correlated individual differences in WMC, as measured by complex span tasks, and executive control of visual search. In feature-absence search, conjunction search, and spatial configuration search, WMC was unrelated to search slopes, although they were large and reliably measured. Even in a search task designed to require the volitional movement of attention (J. M. Wolfe, G. A. Alvarez, & T. S. Horowitz, 2000), WMC was irrelevant to performance. Thus, WMC is not associated with all demanding or controlled attention processes, which poses problems for some general theories of WMC. Copyright 2006 APA, all rights reserved.

  11. Structural comparative studies on new MnII, CrIII and RuIII complexes derived from 2,4,6-tri-(2-pyridyl)-1,3,5-triazine (TPTZ)

    NASA Astrophysics Data System (ADS)

    Al-Assy, Waleed H.; El-Askalany, Abdel Moneum H.; Mostafa, Mohsen M.

    2013-12-01

    The structure of a new MnII complex, [Mn(TPTZ)Cl2(H2O)]ṡH2O, was established by a single crystal X-ray diffraction. Crystal data are as follow: monoclinic, P21/c, a = 8.7202 (3) Å, b = 11.5712 (4) Å, c = 20.8675 (9) Å, β = 11 (18) × 1010, V = 2029.27 (13) Å3, Z = 4. The HOMO, LUMO and other DFT parameters on the atoms have been calculated to confirm the geometry of the ligand and its complexes using material studio program. The complexes were characterized by elemental analyses, spectral, magnetic, thermal and cyclic voltammetry measurements. Electronic spectra and magnetic moments of the complexes suggest distorted-octahedral structures around the metal ions (MnII, CrIII and RuIII). The redox properties were investigated by cyclic voltammetry. Kinetic parameters were determined using Coats-Redfern and Horowitz-Metzger methods. The results of DNA studies of the metal complexes promised to be effective in tumour treatment.

  12. STS-101 crew talks with the media after TCDT activities at the pad

    NASA Technical Reports Server (NTRS)

    2000-01-01

    After Terminal Countdown Demonstration Test (TCDT) activities at Launch Pad 39A, the STS-101 crew talk to the media. At the far left is George Diller, with NASA Public Affairs, who is moderating the event. At the microphone Commander James D. Halsell Jr. answers a question. Next to him, standing left to right, are Pilot Scott J. 'Doc' Horowitz and Mission Specialists Mary Ellen Weber, Jeffrey N. Williams, James Voss, Susan J. Helms and Yuri Usachev of Russia. The TCDT includes emergency egress training and a simulated launch countdown. During their mission to the International Space Station, the STS-101 crew will be delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight for the Space Station. STS-101 is scheduled to launch April 24 at 4:15 p.m. from Launch Pad 39A.

  13. Clinical utility of the impact of event scale: psychometrics in the general population.

    PubMed

    Briere, J; Elliott, D M

    1998-06-01

    The Impact of Event Scale (IES; Horowitz, Wilner, & Alvarez, 1979), Trauma Symptom Inventory (TSI; Briere, 1995), Los Angeles Symptom Checklist (LASC; Foy, Sipprelle, Rueger, & Carroll, 1984), and Traumatic Events Survey (TES; Elliott, 1992) were administered to a sample of 505 participants from the general population. In this application of the IES, participants reported on "an upsetting event," as opposed to a specific stressor. The IES was found to be reliable and to have concurrent validity with respect to the TSI and LASC. IES scores varied as a function of race, but this relationship disappeared once race differences in exposure to potentially traumatic events (PTEs) were taken into account. Although the IES was predictive of PTEs, the traumatic stress scales of the TSI had more predictive and incremental validity than the IES. The current data suggest that an "upsetting event" version of the IES may be useful as a brief screen for nonarousal-related posttraumatic stress, but that its potential limitations should be taken into account. Normative data on this version of the IES are presented.

  14. A 4-(o-chlorophenyl)-2-aminothiazole: Microwave assisted synthesis, spectral, thermal, XRD and biological studies

    NASA Astrophysics Data System (ADS)

    Rajmane, S. V.; Ubale, V. P.; Lawand, A. S.; Nalawade, A. M.; Karale, N. N.; More, P. G.

    2013-11-01

    A 4-(o-chlorophenyl)-2-aminothiazole (CPAT) has been synthesized by reacting o-chloroacetophenone, iodine and thiourea under microwave irradiation as a green chemistry approach. The reactions proceed selectively and within a couple of minutes giving high yields of the products. The compound was characterized by elemental, spectral (UV-visible, IR, NMR and GC-MS), XRD and thermal analyses. The TG curve of the compound was analyzed to calculate various kinetic parameters (n, E, Z, ΔS and ΔG) by using Coats-Redfern (C.R.), MacCallum-Tanner (M.T.) and Horowitz-Metzger (H.M.) method. The compound was tested for the evaluation of antibacterial activity against B. subtilis and E. coli and antifungal activity against A. niger and C. albicans. The compound was evaluated for their in vitro nematicidal activity on plant parasitic nematode Meloidogyne javanica and molluscicidal activity on fresh water helminthiasis vector snail Lymnea auricularia. The compound is biologically active in very low concentration. X-ray diffraction study suggests a triclinic crystal system for the compound.

  15. STS-101 crew enroute to Launch Pad 39A for a second launch attempt

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Waving to onlookers, the STS-101 crew eagerly walk to the waiting Astrovan that will take them to Launch Pad 39A and the second attempt at liftoff of Space Shuttle Atlantis. In their orange launch and entry suits, they are (left to right) Mission Specialists Susan J. Helms, Yuri Usachev, James S. Voss, Mary Ellen Weber and Jeffrey N. Williams; Pilot Scott J. Horowitz; and Commander James D. Halsell Jr. The first launch attempt on April 24 was scrubbed due to unfavorable weather conditions. The mission will take the crew to the International Space Station to deliver logistics and supplies and to prepare the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk. This will be the third assembly flight to the Space Station. Liftoff is targeted for 3:52 p.m. EDT. The mission is expected to last about 10 days, with Atlantis landing at KSC Saturday, May 6, about 11:53 a.m. EDT.

  16. Object relations and interpersonal problems in sexually abused female patients: an empirical study with the SCORS and the IIP.

    PubMed

    Kernhof, Karin; Kaufhold, Johannes; Grabhorn, Ralph

    2008-01-01

    In this study, we examined how retrospective reports of experiencing traumatic sexual abuse in childhood relates to both the development of self-representations and object representations and the occurrence of interpersonal problems. A total of 30 psychosomatic female patients who reported sexual abuse in childhood were compared with a corresponding number of eating-disordered patients and a nonclinical control group. The object relations technique (ORT; Phillipson, 1955), evaluated using the Social Cognition and Object Relations Scale (SCORS; Westen, 1985, 1991b), and the Inventory of Interpersonal Problems (Horowitz, Rosenberg, Baer, & Ureno, 1988) were used to measure the groups. The patients reporting sexual abuse achieved significantly lower scores in the cognitive scales of the SCORS; in the affective scales, they differed from the control group but not from the patients with an eating disorder. Concerning interpersonal problems, the patients reporting childhood sexual abuse reported interpersonal conflicts more frequently. The results of the study support the influence of traumatic sexual abuse on the formation of self-representations and object representations and on the occurrence of interpersonal conflicts.

  17. Railway suicide: the psychological effects on drivers.

    PubMed

    Farmer, R; Tranah, T; O'Donnell, I; Catalan, J

    1992-05-01

    People have jumped (or fallen) in front of trains on the London Underground system in increasing numbers throughout the twentieth century. During the past decade there have been about 100 such incidents each year, of which around 90 would involve the train driver witnessing his train strike the person on the track. Most are suicides or attempts at suicide. They represent major unexpected and violent events in the lives of the train drivers and it might be expected that some of them would respond by developing a post-traumatic stress reaction of the type identified by Horowitz (1976) or other adverse psychological reactions or both. The research reported in this paper was designed to characterize the range of responses of drivers to the experiences of killing or injuring members of the public during the course of their daily work. It was found that 16.3% of the drivers involved in incidents did develop post-traumatic stress disorder and that other diagnoses, e.g. depression and phobic states, were present in 39.5% of drivers when interviewed one month after the incident.

  18. Use of the HadGEM2 climate-chemistry model to investigate interannual variability in methane sources

    NASA Astrophysics Data System (ADS)

    Hayman, Garry; O'Connor, Fiona; Clark, Douglas; Huntingford, Chris; Gedney, Nicola

    2013-04-01

    The global mean atmospheric concentration of methane (CH4) has more than doubled during the industrial era [1] and now constitutes ? 20% of the anthropogenic climate forcing by greenhouse gases [2]. The globally-averaged CH4 growth rate, derived from surface measurements, has fallen significantly from a high of 16 ppb yr-1 in the late 1970s/early 1980s and was close to zero between 1999 and 2006 [1]. This overall period of declining or low growth was however interspersed with years of positive growth-rate anomalies (e.g., in 1991-1992, 1998-1999 and 2002-2003). Since 2007, renewed growth has been evident [1, 3], with the largest increases observed over polar northern latitudes and the Southern Hemisphere in 2007 and in the tropics in 2008. The observed inter-annual variability in atmospheric methane concentrations and the associated changes in growth rates have variously been attributed to changes in different methane sources and sinks [1, 4]. In this paper, we report results from runs of the HadGEM2 climate-chemistry model [5] using year- and month-specific emission datasets. The HadGEM2 model includes the comprehensive atmospheric chemistry and aerosol package, the UK Chemistry Aerosol community model (UKCA, http://www.ukca.ac.uk/wiki/index.php). The Standard Tropospheric Chemistry scheme was selected for this work. This chemistry scheme simulates the Ox, HOx and NOx chemical cycles and the oxidation of CO, methane, ethane and propane. Year- and month-specific emission datasets were generated for the period from 1997 to 2009 for the emitted species in the chemistry scheme (CH4, CO, NOx, HCHO, C2H6, C3H8, CH3CHO, CH3CHOCH3). The approach adopted varied depending on the source sector: Anthropogenic: The emissions from anthropogenic sources were based on decadal-averaged emission inventories compiled by [6] for the Coupled Carbon Cycle Climate Model Intercomparison Project (C4MIP). These were then used to derive year-specific emission datasets by scaling the emission totals for the different years and source sectors using sector and species-specific scaling factors based on the annual trends given in various EDGAR time series: (a) version 4.2 for all species (except NMVOCs) and version 4.1 for NMVOCs; (b) v3.2. This approach was also applied to the emissions from aviation (only for oxides of nitrogen) and international shipping. Biomass burning: Month-specific emission inventories are available from the Global Fire Emissions Database (GFED, v3.1) for the years 1997 to 2009 [7]. The emissions were rescaled to give the same decadal mean as used in the Hadley Centre's earlier HadGEM2 runs (25 Tg CH4 per annum). Other: Sources such as termites and hydrates for methane were taken from the GEIA website and the dataset of Fung et al. [8]. The datasets contain a single annual cycle, which was assumed to apply for all years. For CH4, there are also emissions from wetlands. These were either based on the dataset of Fung et al. [8] or derived from the JULES (Joint UK Land Earth Simulator) land surface model [9, 10]. The standard version of JULES uses a simple methane wetland emission parameterization, developed and tested by [11] for use at large spatial scales. The surface concentrations from the different model runs have been compared to surface atmospheric CH4 measurements. In addition, growth rates have been derived. These comparisons will be reported and used to assess the contribution of different methane sources to the interannual variations in the methane growth rate. References [1] Dlugokencky, E.J., et al.: Global atmospheric methane: budget, changes and dangers. Philosophical Transactions of the Royal Society A, 369, 2058-2072; doi: 10.1098/rsta.2010.0341, 2011. [2] Forster, P., et al.: Changes in Atmospheric Constituents and in Radiative Forcing. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2007. [3] Rigby, M., et al.: Renewed growth of atmospheric methane. Geophysical Research Letters, 35, L22805, doi:10.1029/2008GL036037, 2008. [4] Bousquet, P., et al.: Contribution of anthropogenic and natural sources to atmospheric methane variability, Nature, 443, 439-443, doi:10.1038/nature05132, 2006. [5] Collins, W. J., et al.: Development and evaluation of an Earth-System model - HadGEM2, Geoscientific Model Development, 4, 1051-1075, doi:10.5194/gmd-4-1051-2011, 2011. [6] Lamarque, J.-F., et al.: Historical (1850-2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application, Atmospheric Chemistry and Physics, 10, 7017-7039, doi:10.5194/acp-10-7017-2010, 2010. [7] van der Werf, G. R., et al.: Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009), Atmospheric Chemistry and Physics, 10, 11707-11735, doi:10.5194/acp-10-11707-2010, 2010. [8] Fung, I., et al.: Three-dimensional model synthesis of the Global Methane Cycle. Journal of Geophysical Research, 96, 13,033-13,065, 1991. [9] Best, M. J., et al.: The Joint UK Land Environment Simulator (JULES), model description - Part 1: Energy and water fluxes, Geoscientific Model Development, 4, 677-699, doi:10.5194/gmd-4-677-2011, 2011. [10] Clark, D.B., et al.: The Joint UK Land Environment Simulator (JULES), Model description - Part 2: Carbon fluxes and vegetation. Geoscientific Model Development, 4, 701-722, doi:10.5194/gmd-4-701-2011, 2011. [11] Gedney, N., et al.: Climate feedback from wetland methane emissions. Geophysical Research Letters, 31, L20503, 2004.

  19. [A quarantine of plague at the lazaret of Frioul in 1901].

    PubMed

    Chevallier, Jacques

    2015-01-01

    In September 1901, a cruise for work and pleasure is organized in Mediterranean including VIP all firstclass (politicals, scientists, clergymen...) These were 174 passengers on the ship Senegal. After a departure from Marseille, the ship must quickly turn and go back on account of a sailor in the crew might be sicked with plague. A quarantine was organised in the lazaret of Frioul's island. This man died but an another actually ill will be cured. All the conference participents landed in the Frioul lazaret stayed only seven days on place and remained uninjured. This misadventure will be studied by scientific people and given to authorities. So, Pr Jules Buckoy' communication to the french Academy of medicine. Adrien Proust gave a report. In this doctoral thesis in 1902 Joseph Pellissier reported all the cases of plague cured in the Frioul lazaret. The physician Charles Leroux made an epidemiologic study about effects and troubles with plague serums. A lot of orig- inal and beautiful photographs, notably those by the famous passenger, Léon Gaumont, are joined in our presentation.

  20. ECG-cryptography and authentication in body area networks.

    PubMed

    Zhang, Zhaoyang; Wang, Honggang; Vasilakos, Athanasios V; Fang, Hua

    2012-11-01

    Wireless body area networks (BANs) have drawn much attention from research community and industry in recent years. Multimedia healthcare services provided by BANs can be available to anyone, anywhere, and anytime seamlessly. A critical issue in BANs is how to preserve the integrity and privacy of a person's medical data over wireless environments in a resource efficient manner. This paper presents a novel key agreement scheme that allows neighboring nodes in BANs to share a common key generated by electrocardiogram (ECG) signals. The improved Jules Sudan (IJS) algorithm is proposed to set up the key agreement for the message authentication. The proposed ECG-IJS key agreement can secure data communications over BANs in a plug-n-play manner without any key distribution overheads. Both the simulation and experimental results are presented, which demonstrate that the proposed ECG-IJS scheme can achieve better security performance in terms of serval performance metrics such as false acceptance rate (FAR) and false rejection rate (FRR) than other existing approaches. In addition, the power consumption analysis also shows that the proposed ECG-IJS scheme can achieve energy efficiency for BANs.

  1. Early Astronomical Sequential Photography, 1873-1923

    NASA Astrophysics Data System (ADS)

    Bonifácio, Vitor

    2011-11-01

    In 1873 Jules Janssen conceived the first automatic sequential photographic apparatus to observe the eagerly anticipated 1874 transit of Venus. This device, the 'photographic revolver', is commonly considered today as the earliest cinema precursor. In the following years, in order to study the variability or the motion of celestial objects, several instruments, either manually or automatically actuated, were devised to obtain as many photographs as possible of astronomical events in a short time interval. In this paper we strive to identify from the available documents the attempts made between 1873 and 1923, and discuss the motivations behind them and the results obtained. During the time period studied astronomical sequential photography was employed to determine the time of the instants of contact in transits and occultations, and to study total solar eclipses. The technique was seldom used but apparently the modern film camera invention played no role on this situation. Astronomical sequential photographs were obtained both before and after 1895. We conclude that the development of astronomical sequential photography was constrained by the reduced number of subjects to which the technique could be applied.

  2. A doctoral thesis about Carol Davila written in Paris in 1936.

    PubMed

    Rogozea, Liliana; Dumitrascu, Dinu I; Triff, Dorin; Leasu, Florin; Dumitraşcu, Dan L

    2014-01-01

    Carol Davila, the father of the Romanian modern medicine, made decisive contributions to the development of health sciences in the Romanian Principalities in the last decades of the nineteenth century. The merit of his scientific work was recognized beyond the borders of his country. His life (not devoid of anecdotic instances and unknown episodes) and especially his work have aroused considerable interest among numerous medical historians. This paper presents a historical study elaborated in France, but until recently ignored, dedicated to the biography of Carol Davila. It concerns the medical doctoral thesis (State Diploma) elaborated by Joseph Adler (born 1910 in Botoşani, Romania) under the supervision of professor Maxime Laignel-Lavastine, whose interest in Romania is well-known. Professor Laignel-Lavastine held the office of Secretary General of the International Society of History of Medicine (ISHM), founded in 1921, (replaced in this position by another French professor with links to Romania: Jules Guiart). The thesis comprises 48 pages and an exhaustive bibliography. It represents a token of the appreciation given to Davila's achievements by Europe's medical community.

  3. A doctoral thesis about Carol Davila written in Paris in 1936

    PubMed Central

    ROGOZEA, LILIANA; DUMITRASCU, DINU I.; TRIFF, DORIN; LEASU, FLORIN; DUMITRAŞCU, DAN L.

    2014-01-01

    Carol Davila, the father of the Romanian modern medicine, made decisive contributions to the development of health sciences in the Romanian Principalities in the last decades of the nineteenth century. The merit of his scientific work was recognized beyond the borders of his country. His life (not devoid of anecdotic instances and unknown episodes) and especially his work have aroused considerable interest among numerous medical historians. This paper presents a historical study elaborated in France, but until recently ignored, dedicated to the biography of Carol Davila. It concerns the medical doctoral thesis (State Diploma) elaborated by Joseph Adler (born 1910 in Botoşani, Romania) under the supervision of professor Maxime Laignel-Lavastine, whose interest in Romania is well-known. Professor Laignel-Lavastine held the office of Secretary General of the International Society of History of Medicine (ISHM), founded in 1921, (replaced in this position by another French professor with links to Romania: Jules Guiart). The thesis comprises 48 pages and an exhaustive bibliography. It represents a token of the appreciation given to Davila’s achievements by Europe’s medical community. PMID:26527997

  4. Figures and institutions of the neurological sciences in Paris from 1800 to 1950. Introduction and Part I: Neuroanatomy.

    PubMed

    Clarac, F; Barbara, J-G; Broussolle, E; Poirier, J

    2012-01-01

    We present a short historical review on the major institutions and figures that contributed to make Paris a renowned centre of physiology and neurology during the xixth and the first half of the xxth centuries. We purposely chose to focus on the period 1800-1950, as 1800 corresponds to the development of brain science and 1950 marks the true beginning of neuroscience. Our presentation is divided into four chapters, matching the main disciplines which have progressed and contributed the most to the knowledge we have of the brain sciences: anatomy, physiology, neurology, and psychiatry-psychology. The present article is the first of four parts of this review, which includes an introduction followed by the chapter on neuroanatomy and on anatomo-pathology, which includes biographical sketches of Félix Vicq d'Azyr, François-Xavier Bichat, Franz Joseph Gall, Jean Cruveilhier, Jules Bernard Luys, Paul Broca, Louis Ranvier, André-Victor Cornil, Albert Gombault, Jean Nageotte and René Couteaux. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  5. KSC-2014-3784

    NASA Image and Video Library

    2014-09-10

    CAPE CANAVERAL, Fla. – During a ceremony inside the Neil Armstrong Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida, Jules Schneider, Lockheed Martin Orion Production Operations manager, holds the key to symbolically turn over the Orion spacecraft for Exploration Flight Test-1 to Ground Operations. Waiting to accept the key is Blake Hale, Lockheed Martin Ground Operations manager. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch atop a United Launch Alliance Delta IV Heavy rocket from Cape Canaveral Air Force Station in Florida in December to an altitude of 3,600 miles above the Earth's surface. The two-orbit, four-hour flight test will help engineers evaluate the systems critical to crew safety including the heat shield, parachute system and launch abort system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper

  6. KSC-2014-3785

    NASA Image and Video Library

    2014-09-10

    CAPE CANAVERAL, Fla. – During a ceremony inside the Neil Armstrong Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida, Jules Schneider, at right, Lockheed Martin Orion Production Operations manager, presents the key to symbolically turn over the Orion spacecraft for Exploration Flight Test-1 to Ground Operations. Accepting the key is Blake Hale, Lockheed Martin Ground Operations manager. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch atop a United Launch Alliance Delta IV Heavy rocket from Cape Canaveral Air Force Station in Florida in December to an altitude of 3,600 miles above the Earth's surface. The two-orbit, four-hour flight test will help engineers evaluate the systems critical to crew safety including the heat shield, parachute system and launch abort system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper

  7. Convective Aggregation, Climate Sensitivity, and the Importance of Radiation Physics in Weather and Climate

    NASA Astrophysics Data System (ADS)

    Emanuel, K.

    2015-12-01

    Since the revolutionary work of Vilhelm Bjerknes, Jule Charney, and Eric Eady, geophysical fluid dynamics has dominated weather research and continues to play an important in climate dynamics. Although the physics of radiative transfer is central to understanding climate, it has played a far smaller role in weather research and is given only rudimentary attention in most educational programs in meteorology. Yet key contemporary problems in atmospheric science, such as the Madden-Julian Oscillation and the self-aggregation of moist convection, do not appear to have been solved by approaches based strictly on fluid dynamics and moist adiabatic thermodynamics. Here I will argue that many outstanding problems in meteorology and climate science involve a nontrivial coupling of circulation and radiation physics. In particular, the phenomenon of self-aggregation of moist convection depends on the interaction of radiation with time-varying water vapor and clouds, with strong implications for such diverse problems as the Madden-Julian Oscillation, tropical cyclones, and the relative insensitivity of tropical climate to radiative forcing. This argues for an augmentation of radiative transfer physics in graduate curricula in atmospheric sciences.

  8. KSC-2014-3783

    NASA Image and Video Library

    2014-09-10

    CAPE CANAVERAL, Fla. – Inside the Neil Armstrong Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida, Jules Schneider, at right, Lockheed Martin Orion Production Operations manager, speaks to NASA and Lockheed Martin workers during a ceremony to turn over the Orion spacecraft for Exploration Flight Test-1 to Ground Operations. At left is Blake Hale, Lockheed Martin Ground Operations manager. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch atop a United Launch Alliance Delta IV Heavy rocket from Cape Canaveral Air Force Station in Florida in December to an altitude of 3,600 miles above the Earth's surface. The two-orbit, four-hour flight test will help engineers evaluate the systems critical to crew safety including the heat shield, parachute system and launch abort system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper

  9. KSC-2013-2917

    NASA Image and Video Library

    2013-06-27

    CAPE CANAVERAL, Fla. – Inside the Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, members of the media receive an on activities in NASA’s Ground Systems Development and Operations, or GSDO, Program, Space Launch System and Orion crew module for Exploration Test Flight 1. Speaking to the media, from left are Scott Wilson, manager of Orion Production Operations at Kennedy Larry Price, Lockheed Martin deputy program manager for Orion Tom Erdman, from Marshall Space Flight Center’s Kennedy resident office Jules Schneider, Lockheed Martin manager of Orion Production Operations and Jeremy Parsons, chief of the GSDO Operations Integration Office at Kennedy. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Jim Grossmann

  10. KSC-2014-3786

    NASA Image and Video Library

    2014-09-10

    CAPE CANAVERAL, Fla. – Inside the Neil Armstrong Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida, Jules Schneider, at right, Lockheed Martin Orion Production Operations manager, shakes hands with Blake Hale, Lockheed Martin Ground Operations manager, during a ceremony to officially turn over the Orion spacecraft for Exploration Flight Test-1 to Lockheed Martin Ground Operations. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch atop a United Launch Alliance Delta IV Heavy rocket from Cape Canaveral Air Force Station in Florida in December to an altitude of 3,600 miles above the Earth's surface. The two-orbit, four-hour flight test will help engineers evaluate the systems critical to crew safety including the heat shield, parachute system and launch abort system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper

  11. A review of our understanding of the role played in the climate system by land surface processes (Invited)

    NASA Astrophysics Data System (ADS)

    Nicholson, S. E.

    2013-12-01

    The paper provides an historical review of research on the impact of the land surface on climate. It commences will the seminal work of Jule Charney on albedo as a potential cause of drought and follows the trail of follow-up studies on the question of desertification and its role in climate. With the exception of a very early paper by Namias, early work was limited mainly to modeling efforts. At the same time, several observational studies provided evidence that land surface feedbacks could enhance and prolong drought, especially in the African Sahel. Later work emphasized the role of soil moisture rather than albedo. Several important field studies also examined the role of the land surface. Examples include FIFE, HAPEX-Sahel and BOREAS. In recent years some major changes in the concept have occurred. There is now substantial observational evidence of an impact at the mesoscale. The role of land surface feedback on climate has become mainstream. Finally, a new subdiscipline has emerged that emphasizes feedbacks between the water cycle, vegetation and climate, namely ecohydrology.

  12. Desired machines: cinema and the world in its own image.

    PubMed

    Canales, Jimena

    2011-09-01

    In 1895 when the Lumière brothers unveiled their cinematographic camera, many scientists were elated. Scientists hoped that the machine would fulfill a desire that had driven research for nearly half a century: that of capturing the world in its own image. But their elation was surprisingly short-lived, and many researchers quickly distanced themselves from the new medium. The cinematographic camera was soon split into two machines, one for recording and one for projecting, enabling it to further escape from the laboratory. The philosopher Henri Bergson joined scientists, such as Etienne-Jules Marey, who found problems with the new cinematographic order. Those who had worked to make the dream come true found that their efforts had been subverted. This essay focuses on the desire to build a cinematographic camera, with the purpose of elucidating how dreams and reality mix in the development of science and technology. It is about desired machines and their often unexpected results. The interplay between what "is" (the technical), what "ought" (the ethical), and what "could" be (the fantastical) drives scientific research.

  13. A Selenological History of Lunar Poetics

    NASA Astrophysics Data System (ADS)

    von Chamier-Waite, C. T.

    2016-01-01

    The Moon. Centuries of human inquiry have engaged this mysterious object. The Moon embodies history, philosophy, cosmology, and passions; the nature of love, persecution, and our capacity for the sublime. This review considers a body of research on lunar poetics done for a series of artworks by the author. It will look at a few select writings that have profoundly influenced our epistemological, ontological, and poetic knowledge of the universe with the Moon as a central theme. Centered in the early seventeenth century at the time of Kepler and Galileo, this query follows the tendrils of lunar influences in both the sciences and literature that emanate from these two figures, forwards and backwards in time. Science, politics, theology, and the arts intertwine in this investigation. The works reviewed link the philosophy of Aristotle and the poetry of Lucian of Samosata to findings by Leonardo Da Vinci, Copernicus, Jules Verne, and others. The chosen philosophers have been selected because of their significant contributions to selenology and lunar poetics, and each of the figures reviewed have the honor of a namesake crater upon the Moon.

  14. Amazon Deforestation Fires Increase Plant Productivity through Changes in Diffuse Radiation

    NASA Astrophysics Data System (ADS)

    Rap, A.; Reddington, C.; Spracklen, D. V.; Mercado, L.; Haywood, J. M.; Bonal, D.; Butt, N.; Phillips, O.

    2013-12-01

    Over the past few decades a large increase in carbon storage has been observed in undisturbed forests across Amazonia. The reason for such a sink is unclear, although many possible mechanisms have been suggested, including changes in temperature, carbon dioxide, precipitation, clouds, and solar radiation. In this work we focus on one such mechanism, namely the increase in plant photosynthesis due to changes in diffuse radiation caused by atmospheric aerosols from large-scale deforestation fires that now occur throughout the Amazon region. We estimate that this mechanism has increased dry season (August-September) net primary productivity (NPP) by up to 30% across wide regions of the Amazon. We conclude that aerosol from deforestation fires may be responsible for a substantial fraction of the Amazon carbon sink that has been observed. Our approach is based on the combined use of three models: (i) the Global Model of Aerosol Processes (GLOMAP), (ii) the Edwards-Slingo radiation model, and (iii) the UK Met Office JULES land-surface scheme, constrained against in-situ aerosol and radiation observation datasets from several Amazonian sites. A 10 year (1999-2008) GLOMAP simulation using GFED3 biomass burning emissions is first evaluated against aerosol observations, indicating that the model is able to capture the Amazon aerosol seasonality, with enhanced concentrations during the dry season driven by biomass burning. The radiation scheme is then shown to be in good agreement with total and diffuse radiation in-situ observations, the model being able to capture the high total and low diffuse radiation flux in the dry season, as well as the low total and high diffuse radiation flux in the wet season. We then use our modelling framework to quantify the contribution of deforestation fires to diffuse/direct radiation fraction and forest productivity. We calculate that deforestation fires increase dry season diffuse radiation by up to 60% or 30 Wm-2. Finally, we use the JULES model to show that this increase in diffuse radiation is responsible for a substantial growth in gross primary productivity (GPP), enhancing Amazon-wide dry-season GPP by 5% with local increases of up to 15%. Most of this GPP response results in an increase in NPP, estimated in the dry season at 10% across the Amazon with local increases as large as 30%. This substantial NPP enhancement spatially matches observed increases in forest biomass storage across the Amazon. We thus suggest that deforestation fires have an important impact on the Amazon carbon budget and attempt to estimate the fraction of the observed forest carbon sink that can be attributed to this mechanism. Change [%] in diffuse radiation due to deforestation

  15. Neutron dosimetric measurements in shuttle and MIR.

    PubMed

    Reitz, G

    2001-06-01

    Detector packages consisting of thermoluminescence detectors (TLD), nuclear emulsions and plastic track detectors were exposed at identical positions inside MIR space station and on shuttle flights inside Spacelab and Spacehab during different phases of the solar cycle. The objectives of the investigations are to provide data on charge and energy spectra of heavy ions, and the contribution of events with low-energy deposit (protons, electrons, gamma, etc.) to the dose, as well as the contribution of secondaries, such as nuclear disintegration stars and neutrons. For neutron dosimetry 6LiF (TLD600) and 7LiF (TLD700) chips were used both of which have almost the same response to gamma rays but different response to neutrons. Neutrons in space are produced mainly in evaporation and knock-on processes with energies mainly of 1-10 MeV and up to several 100 MeV, respectively. The energy spectrum undergoes continuous changes toward greater depth in the attenuating material until an equilibrium is reached. In equilibrium, the spectrum is a wide continuum extending down to thermal energies to which the 6LiF is sensitive. Based on the difference of absorbed doses in the 6LiF and 7LiF chips, thermal neutron fluxes from 1 to 2.3 cm-2 s-1 are calculated using the assumption that the maximum induced dose in TLD600 for 1 neutron cm-2 is 1.6 x 10(-10) Gy (Horowitz and Freeman, Nucl. Instr. and Meth. 157 (1978) 393). It is assumed that the flux of high-energy neutrons is at least of that quantity. Tissue doses were calculated taking as a mean ambient absorbed dose per neutron 6 x10(-12) Gy cm2 (for a10 MeV neutron). The neutron equivalent doses for the above-mentioned fluxes are 52 micro Gy d-1 and 120 micro Gy d-1. In recent experiments, a personal neutron dosimeter was integrated into the dosimeter packages. First results of this dosimeter which is based on nuclear track detectors with converter foils are reported. For future measurements, a scintillator counter with anticoincidence logic is under development. c2001 Elsevier Science Ltd. All rights reserved.

  16. [Salvage cryotherapy of prostate cancer after failed external radiotherapy and brachytherapy: Morbidity and mid-term oncological results].

    PubMed

    Gevorgyan, A; Hétet, J-F; Robert, M; Duchattelle-Dussaule, V; Corno, L; Boulay, I; Baumert, H

    2018-04-01

    To study the oncologic and functional results of salvage cryotherapy after failure of external radiotherapy and brachytherapy. Patients treated by total salvage cryotherapy (3rd generation) in 2 centers (Groupe Hospitalier Saint-Joseph in Paris and Clinique Jule-Verne Nantes) in between January 2008 and April 2016 were included. The biochemical recurrence-free survival (BRFS) was calculated using the Phoenix criteria (PSA>nadir+2ng/mL). The functional results were assessed clinically. Ninety-seven patients with an average follow up of 39.4months were evaluated retrospectively. The 5-year biochemical recurrence-free survival (5y-BRFS) among all patients was 58.1% (IC à 95% [45.9-68.5]). Low and intermediate risk patients (d'Amico classification) were less prone to biochemical recurrence than high risk (81.05% (IC à 95% [64.1-90.5]) 5y-BRFS as opposed to 35.09% (IC à 95% [20.1-50.4]) respectively) (P<0.0001). As were patients with a Gleason score≤7 75.35% (IC à 95% [59.7-85.6]) compared to 32.31% (IC à 95% [16.5-49.2]) for higher Gleason (>7 scores [P=0.0002]). A Gleason score>7 (OR=6.9; P=0.002), PSA nadir>1ng/mL (OR=25.8; P=0.0026) and peri-urethral invasion (OR=35.8; P<0.001) were major risk factors for local recurrence in univariate analysis. In multivariate analysis, only PSA nadir>1ng/mL (OR=12.9; P=0.042) and peri-urethral invasion (OR=21.6; P=0.0003) remain major risk factors for recurrence. About 13 (16.46%) patients were incontinent of which 3 (3.79%) required placement of an artificial urinary sphincter. Erectile dysfunction was present in 66 (83.5%) patients. Recto-urethral fistula was uncommon in 1 patient (1.27%). Salvage cryotherapy after failure of external radiotherapy and brachytherapy is a reliable and reproducible technique with promising oncological and functional results. Study of prognostic factors will help better select eligible patients in the future. 4. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Simulating fire-induced ecological succession with the dynamically coupled fire-vegetation model, ED-SPIFTIRE

    NASA Astrophysics Data System (ADS)

    Spessa, A.; Fisher, R.

    2009-04-01

    The simulation of fire-vegetation feedbacks is crucial for determining fire-induced changes to ecosystem structure and function, and emissions of trace gases and aerosols under future climate change. A new global fire model SPITFIRE (SPread and InTensity of FIRE) has been designed to overcome many of the limitations in existing fire models set within DGVM frameworks (Thonicke et al. 2008). SPITFIRE has been applied in coupled mode globally (Thonicke et al. 2008) and northern Australia (Spessa et al. unpubl.) as part of the LPJ DGVM. It has also been driven with MODIS burnt area data applied to sub-Saharan Africa (Lehsten et al. 2008) as part of the LPJ-GUESS vegetation model (Smith et al. 2001). Recently, Spessa & Fisher (unpubl.) completed the coupling of SPIFTIRE to the Ecosystem Demography (ED) model (Moorecroft et al. 2001), which has been globalised by Dr R. Fisher as part of the development of the new land surface scheme JULES (Joint UK Environment Simulator) within the QUEST Earth System Model (http://www.quest-esm.ac.uk/). In contrast to the LPJ DGVM, ED is a ‘size and age structured' approximation of an individual based gap model. The major innovation of the ED-SPITFIRE model compared with LPJ-SPITFIRE is the categorisation of each climatic grid cell into a series of non-spatially contiguous patches which are defined by a common ‘age since last disturbance'. In theory, the age-class structure of ED facilitates ecologically realistic processes of succession and re-growth to be represented. By contrast, LPJ DGVM adopts an ‘area-based approach' that implicitly averages individual and patch differences across a wider area and across ‘populations' of PFTs. This presentation provides an overview of SPITFIRE, and provides preliminary results from ED-SPITFIRE applied to northern Australian savanna ecosystems which, due to spatio-temporal variation in fire disturbance, comprise a patchwork of grasses and trees at different stages of post-fire succession. Comparisons with similar simulations undertaken with LPJ-SPITFIRE are also presented.

  18. Do dynamic global vegetation models capture the seasonality of carbon fluxes in the Amazon basin? A data-model intercomparison

    DOE PAGES

    Restrepo-Coupe, Natalia; Levine, Naomi M.; Christoffersen, Bradley O.; ...

    2016-08-29

    To predict forest response to long-term climate change with high confidence requires that dynamic global vegetation models (DGVMs) be successfully tested against ecosystem response to short-term variations in environmental drivers, including regular seasonal patterns. Here, we used an integrated dataset from four forests in the Brasil flux network, spanning a range of dry-season intensities and lengths, to determine how well four state-of-the-art models (IBIS, ED2, JULES, and CLM3.5) simulated the seasonality of carbon exchanges in Amazonian tropical forests. We found that most DGVMs poorly represented the annual cycle of gross primary productivity (GPP), of photosynthetic capacity (Pc), and of othermore » fluxes and pools. Models simulated consistent dry-season declines in GPP in the equatorial Amazon (Manaus K34, Santarem K67, and Caxiuanã CAX); a contrast to observed GPP increases. Model simulated dry-season GPP reductions were driven by an external environmental factor, ‘soil water stress’ and consequently by a constant or decreasing photosynthetic infrastructure (Pc), while observed dry-season GPP resulted from a combination of internal biological (leaf-flush and abscission and increased Pc) and environmental (incoming radiation) causes. Moreover, we found models generally overestimated observed seasonal net ecosystem exchange (NEE) and respiration (Re) at equatorial locations. In contrast, a southern Amazon forest (Jarú RJA) exhibited dry-season declines in GPP and Re consistent with most DGVMs simulations. While water limitation was represented in models and the primary driver of seasonal photosynthesis in southern Amazonia, changes in internal biophysical processes, light-harvesting adaptations (e.g., variations in leaf area index (LAI) and increasing leaf-level assimilation rate related to leaf demography), and allocation lags between leaf and wood, dominated equatorial Amazon carbon flux dynamics and were deficient or absent from current model formulations. In conclusion, correctly simulating flux seasonality at tropical forests requires a greater understanding and the incorporation of internal biophysical mechanisms in future model developments.« less

  19. Do dynamic global vegetation models capture the seasonality of carbon fluxes in the Amazon basin? A data-model intercomparison

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Restrepo-Coupe, Natalia; Levine, Naomi M.; Christoffersen, Bradley O.

    To predict forest response to long-term climate change with high confidence requires that dynamic global vegetation models (DGVMs) be successfully tested against ecosystem response to short-term variations in environmental drivers, including regular seasonal patterns. Here, we used an integrated dataset from four forests in the Brasil flux network, spanning a range of dry-season intensities and lengths, to determine how well four state-of-the-art models (IBIS, ED2, JULES, and CLM3.5) simulated the seasonality of carbon exchanges in Amazonian tropical forests. We found that most DGVMs poorly represented the annual cycle of gross primary productivity (GPP), of photosynthetic capacity (Pc), and of othermore » fluxes and pools. Models simulated consistent dry-season declines in GPP in the equatorial Amazon (Manaus K34, Santarem K67, and Caxiuanã CAX); a contrast to observed GPP increases. Model simulated dry-season GPP reductions were driven by an external environmental factor, ‘soil water stress’ and consequently by a constant or decreasing photosynthetic infrastructure (Pc), while observed dry-season GPP resulted from a combination of internal biological (leaf-flush and abscission and increased Pc) and environmental (incoming radiation) causes. Moreover, we found models generally overestimated observed seasonal net ecosystem exchange (NEE) and respiration (Re) at equatorial locations. In contrast, a southern Amazon forest (Jarú RJA) exhibited dry-season declines in GPP and Re consistent with most DGVMs simulations. While water limitation was represented in models and the primary driver of seasonal photosynthesis in southern Amazonia, changes in internal biophysical processes, light-harvesting adaptations (e.g., variations in leaf area index (LAI) and increasing leaf-level assimilation rate related to leaf demography), and allocation lags between leaf and wood, dominated equatorial Amazon carbon flux dynamics and were deficient or absent from current model formulations. In conclusion, correctly simulating flux seasonality at tropical forests requires a greater understanding and the incorporation of internal biophysical mechanisms in future model developments.« less

  20. Revisiting the PLUMBER Experiments from a Process-Diagnostics Perspective

    NASA Astrophysics Data System (ADS)

    Nearing, G. S.; Ruddell, B. L.; Clark, M. P.; Nijssen, B.; Peters-Lidard, C. D.

    2017-12-01

    The PLUMBER benchmarking experiments [1] showed that some of the most sophisticated land models (CABLE, CH-TESSEL, COLA-SSiB, ISBA-SURFEX, JULES, Mosaic, Noah, ORCHIDEE) were outperformed - in simulations of half-hourly surface energy fluxes - by instantaneous, out-of-sample, and globally-stationary regressions with no state memory. One criticism of PLUMBER is that the benchmarking methodology was not derived formally, so that applying a similar methodology with different performance metrics can result in qualitatively different results. Another common criticism of model intercomparison projects in general is that they offer little insight into process-level deficiencies in the models, and therefore are of marginal value for helping to improve the models. We address both of these issues by proposing a formal benchmarking methodology that also yields a formal and quantitative method for process-level diagnostics. We apply this to the PLUMBER experiments to show that (1) the PLUMBER conclusions were generally correct - the models use only a fraction of the information available to them from met forcing data (<50% by our analysis), and (2) all of the land models investigated by PLUMBER have similar process-level error structures, and therefore together do not represent a meaningful sample of structural or epistemic uncertainty. We conclude by suggesting two ways to improve the experimental design of model intercomparison and/or model benchmarking studies like PLUMBER. First, PLUMBER did not report model parameter values, and it is necessary to know these values to separate parameter uncertainty from structural uncertainty. This is a first order requirement if we want to use intercomparison studies to provide feedback to model development. Second, technical documentation of land models is inadequate. Future model intercomparison projects should begin with a collaborative effort by model developers to document specific differences between model structures. This could be done in a reproducible way using a unified, process-flexible system like SUMMA [2]. [1] Best, M.J. et al. (2015) 'The plumbing of land surface models: benchmarking model performance', J. Hydrometeor. [2] Clark, M.P. et al. (2015) 'A unified approach for process-based hydrologic modeling: 1. Modeling concept', Water Resour. Res.

Top