The Emergence of Episodic Future Thinking in Humans
ERIC Educational Resources Information Center
Atance, C.M.; O'Neill, D.K.
2005-01-01
In this paper, we discuss the construct of episodic future thinking. We have previously defined episodic future thinking as the ability to project oneself into the future to pre-experience an event (Atance & O'Neill, 2001). We distinguish this type of thinking about the future from that which is largely based on a script of how an event routinely…
Climate change impacts on extreme events in the United States: an uncertainty analysis
Extreme weather and climate events, such as heat waves, droughts and severe precipitation events, have substantial impacts on ecosystems and the economy. However, future climate simulations display large uncertainty in mean changes. As a result, the uncertainty in future changes ...
NASA Astrophysics Data System (ADS)
van der Wiel, K.; Kapnick, S. B.; Vecchi, G.; Smith, J. A.
2017-12-01
The Mississippi-Missouri river catchment houses millions of people and much of the U.S. national agricultural production. Severe flooding events can therefore have large negative societal, natural and economic impacts. GFDL FLOR, a global coupled climate model (atmosphere, ocean, land, sea ice with integrated river routing module) is used to investigate the characteristics of great Mississippi floods with an average return period of 100 years. Model experiments under pre-industrial greenhouse gas forcing were conducted for 3400 years, such that the most extreme flooding events were explicitly modeled and the land and/or atmospheric causes could be investigated. It is shown that melt of snow pack and frozen sub-surface water in the Missouri and Upper Mississippi basins prime the river system, subsequently sensitizing it to above average precipitation in the Ohio and Tennessee basins. The months preceding the greatest flooding events are above average wet, leading to moist sub-surface conditions. Anomalous melt depends on the availability of frozen water in the catchment, therefore anomalous amounts of sub-surface frozen water and anomalous large snow pack in winter (Nov-Feb) make the river system susceptible for these great flooding events in spring (Feb-Apr). An additional experiment of 1200 years under transient greenhouse gas forcing (RCP4.5, 5 members) was done to investigate potential future change in flood risk. Based on a peak-over-threshold method, it is found that the number of great flooding events decreases in a warmer future. This decrease coincides with decreasing occurrence of large melt events, but is despite increasing numbers of large precipitation events. Though the model results indicate a decreasing risk for the greatest flooding events, the predictability of events might decrease in a warmer future given the changing characters of melt and precipitation.
NASA Astrophysics Data System (ADS)
Guillod, B. P.; Massey, N.; Otto, F. E. L.; Allen, M. R.; Jones, R.; Hall, J. W.
2016-12-01
Extreme events being rare by definition, accurately quantifying the probabilities associated with a given event is difficult. This is particularly true for droughts, for which only few events are available in the observational record owing to their long-lasting characteristics. The MaRIUS project (Managing the Risks, Impacts and Uncertainties of drought and water Scarcity) aims at quantifying present and future risks associated with droughts in the UK. To do so, a large number of modelled weather time series for "synthetic" drought events are being fed into hydrological and impact models to assess their impacts on various sectors (social sciences, economy, industry, agriculture, and ecosystems). Here, we present and analyse the hydro-meteorological drought event sets that have been produced with a new version of weather@home [1] for MaRIUS. Using idle processor time on volunteers' computers around the world, we have run a very large number (10'000s) of Global Climate Model simulations, downscaled at 25km over Europe by a nested Regional Climate Model. Simulations include the past 100 years as well as two future time slices (2030s and 2080s), and provide a large number of sequences of spatio-temporally coherent weather, which are consistent with the boundary forcing such as the ocean, greenhouse gases and solar forcing. Beside presenting the methodology and validation of the event sets, we provide insights into drought risk in the UK and the drivers of drought. In particular, we examine their sensitivity to sea surface temperature and sea ice patterns, both in the recent past and for future projections. How drought risk in the UK can be expected to change in the future will also be discussed. Finally, we assess the applicability of this methodology to other regions. Reference: [1] Massey, N. et al., 2014, Q. J. R. Meteorol. Soc.
Ottsen, Christina Lundsgaard; Berntsen, Dorthe
2015-12-01
Mental time travel is the ability to remember past events and imagine future events. Here, 124 Middle Easterners and 128 Scandinavians generated important past and future events. These different societies present a unique opportunity to examine effects of culture. Findings indicate stronger influence of normative schemas and greater use of mental time travel to teach, inform and direct behaviour in the Middle East compared with Scandinavia. The Middle Easterners generated more events that corresponded to their cultural life script and that contained religious words, whereas the Scandinavians reported events with a more positive mood impact. Effects of gender were mainly found in the Middle East. Main effects of time orientation largely replicated recent findings showing that simulation of future and past events are not necessarily parallel processes. In accordance with the notion that future simulations rely on schema-based construction, important future events showed a higher overlap with life script events than past events in both cultures. In general, cross-cultural discrepancies were larger in future compared with past events. Notably, the high focus in the Middle East on sharing future events to give cultural guidance is consistent with the increased adherence to normative scripts found in this culture. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Guillod, Benoit P.; Massey, Neil; Otto, Friederike E. L.; Allen, Myles R.; Jones, Richard; Hall, Jim W.
2016-04-01
Droughts and related water scarcity can have large impacts on societies and consist of interactions between a number of natural and human factors. Meteorological conditions are usually the first natural trigger of droughts, and climate change is expected to impact these and thereby the frequency and intensity of the events. However, extreme events such as droughts are, by definition, rare, and accurately quantifying the risk related to such events is therefore difficult. The MaRIUS project (Managing the Risks, Impacts and Uncertainties of drought and water Scarcity) aims at quantifying the risks associated with droughts in the UK under present and future conditions. To do so, a large number of drought events, from climate model simulations downscaled at 25km over Europe, are being fed into hydrological models of various complexity and used for the estimation of drought risk associated with human and natural systems, including impacts on the economy, industry, agriculture, terrestrial and aquatic ecosystems, and socio-cultural aspects. Here, we present the hydro-meteorological drought event set that has been produced by weather@home [1] for MaRIUS. Using idle processor time on volunteers' computers around the world, we have run a very large number (10'000s) of Global Climate Model (GCM) simulations, downscaled at 25km over Europe by a nested Regional Climate Model (RCM). Simulations include the past 100 years as well as two future horizons (2030s and 2080s), and provide a large number of sequences of spatio-temporally consistent weather, which are consistent with the boundary forcing such as the ocean, greenhouse gases and solar forcing. The drought event set for use in impact studies is constructed by extracting sequences of dry conditions from these model runs, leading to several thousand drought events. In addition to describing methodological and validation aspects of the synthetic drought event sets, we provide insights into drought risk in the UK, its meteorological drivers, and how it can be expected to change in the future. Finally, we assess the applicability of this methodology to other regions. [1] Massey, N. et al., 2014, Q. J. R. Meteorol. Soc.
Focusing Events and Constrains on Policy Addressing Long-Term Climate Change Risks
NASA Astrophysics Data System (ADS)
O'Donovan, K.
2014-12-01
When policy makers are aware of immediate and long-term risks to communities, what do they do to plan for and mitigate the effects of climate change? This paper addresses that question in two ways. First, as an organizing framework it presents an overview of the empirical evidence on focusing events. Focusing events are defined as sudden, rare events that reveal harm or the potential for future harm that the general public and policy makers become aware of simultaneously. These large-scale events are typically natural and disasters, crisis, or technological accidents. This paper considers the empirical evidence of the relationship between focusing events, the harm revealed by the event and policy change aimed at reducing future risk of harm. Second, this paper reviews the case of flood mitigation policy in the United States from 1968 to 2008. It considers the ways in which policy makers have and have not integrated future flood risks into mitigation policy and planning, particularly after large-scale floods. It analyzes the political, intergovernmental, demographic and geographic factors that have promoted and constrained long-term flood mitigation policy. This paper concludes with a discussion of the meaning and implications of potential focusing events and constrains on policy for long-term climate change concerns.
Projecting future impacts of hurricanes on the carbon balance of eastern U.S. forests
NASA Astrophysics Data System (ADS)
Fisk, J. P.; Hurtt, G. C.; Chambers, J. Q.; Zeng, H.; Dolan, K.; Flanagan, S.; Rourke, O.; Negron Juarez, R. I.
2011-12-01
In U.S. Atlantic coastal areas, hurricanes are a principal agent of catastrophic wind damage, with dramatic impacts on the structure and functioning of forests. Substantial recent progress has been made to estimate the biomass loss and resulting carbon emissions caused by hurricanes impacting the U.S. Additionally, efforts to evaluate the net effects of hurricanes on the regional carbon balance have demonstrated the importance of viewing large disturbance events in the broader context of recovery from a mosaic of past events. Viewed over sufficiently long time scales and large spatial scales, regrowth from previous storms may largely offset new emissions; however, changes in number, strength or spatial distribution of extreme disturbance events will result in changes to the equilibrium state of the ecosystem and have the potential to result in a lasting carbon source or sink. Many recent studies have linked climate change to changes in the frequency and intensity of hurricanes. In this study, we use a mechanistic ecosystem model, the Ecosystem Demography (ED) model, driven by scenarios of future hurricane activity based on historic activity and future climate projections, to evaluate how changes in hurricane frequency, intensity and spatial distribution could affect regional carbon storage and flux over the coming century. We find a non-linear response where increased storm activity reduces standing biomass stocks reducing the impacts of future events. This effect is highly dependent on the spatial pattern and repeat interval of future hurricane activity. Developing this kind of predictive modeling capability that tracks disturbance events and recovery is key to our understanding and ability to predict the carbon balance of forests.
Wire-Cell Tomographic Event Reconstruction for large LArTPCs
NASA Astrophysics Data System (ADS)
Qian, Xin; Viren, Brett; Zhang, Chao; Wire-Cell Team
2016-03-01
Event reconstruction is one of the most challenging tasks in analyzing the data from current and future large liquid argon time projection chambers (LArTPCs). The performance of the event reconstruction holds the key to many potential future discoveries with the LArTPC technology including i) searching for new CP violation in the leptonic sector, ii) determining the neutrino mass hierarchy, and iii) searching for additional light (sterile) neutrino species. In this talk, we introduce a new reconstruction method: Wire-Cell. The principle of Wire-Cell strictly follows the principle of LArTPC, that is, the same amount of ionization electrons are observed by all the wire-planes. Using both time and charge information, 3D image of the event topologies are firstly obtained. Further reconstruction steps including the clustering, tracking, and particle identifications (PID) are then directly applied to the 3D image. The principle, current status, and future development plan of Wire-Cell will be described. The results of Wire-Cell event reconstruction will be shown with an innovative web-based ``BEE'' 3D event display. This work is supported by U.S. Department of Energy, Office of Science, Office of High Energy Physics and Early Career Research program under Contract Number DE-SC0012704.
Changes in extreme events and the potential impacts on human health.
Bell, Jesse E; Brown, Claudia Langford; Conlon, Kathryn; Herring, Stephanie; Kunkel, Kenneth E; Lawrimore, Jay; Luber, George; Schreck, Carl; Smith, Adam; Uejio, Christopher
2018-04-01
Extreme weather and climate-related events affect human health by causing death, injury, and illness, as well as having large socioeconomic impacts. Climate change has caused changes in extreme event frequency, intensity, and geographic distribution, and will continue to be a driver for change in the future. Some of these events include heat waves, droughts, wildfires, dust storms, flooding rains, coastal flooding, storm surges, and hurricanes. The pathways connecting extreme events to health outcomes and economic losses can be diverse and complex. The difficulty in predicting these relationships comes from the local societal and environmental factors that affect disease burden. More information is needed about the impacts of climate change on public health and economies to effectively plan for and adapt to climate change. This paper describes some of the ways extreme events are changing and provides examples of the potential impacts on human health and infrastructure. It also identifies key research gaps to be addressed to improve the resilience of public health to extreme events in the future. Extreme weather and climate events affect human health by causing death, injury, and illness, as well as having large socioeconomic impacts. Climate change has caused changes in extreme event frequency, intensity, and geographic distribution, and will continue to be a driver for change in the future. Some of these events include heat waves, droughts, wildfires, flooding rains, coastal flooding, surges, and hurricanes. The pathways connecting extreme events to health outcomes and economic losses can be diverse and complex. The difficulty in predicting these relationships comes from the local societal and environmental factors that affect disease burden.
Characterization of extreme precipitation within atmospheric river events over California
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeon, S.; Prabhat,; Byna, S.
Atmospheric rivers (ARs) are large, spatially coherent weather systems with high concentrations of elevated water vapor. These systems often cause severe downpours and flooding over the western coastal United States – and with the availability of more atmospheric moisture in the future under global warming we expect ARs to play an important role as potential causes of extreme precipitation changes. Therefore, we aim to investigate changes in extreme precipitation properties correlated with AR events in a warmer climate, which are large-scale meteorological patterns affecting the weather and climate of California. We have recently developed the TECA (Toolkit for Extreme Climatemore » Analysis) software for automatically identifying and tracking features in climate data sets. Specifically, we can now identify ARs that make landfall on the western coast of North America. Based on this detection procedure, we can investigate the impact of ARs by exploring the spatial extent of AR precipitation using climate model (CMIP5) simulations and characterize spatial patterns of dependence for future projections between AR precipitation extremes under climate change within the statistical framework. Our results show that AR events in the future RCP (Representative Concentration Pathway)8.5 scenario (2076–2100) tend to produce heavier rainfall with higher frequency and longer days than events from the historical run (1981–2005). We also find that the dependence between extreme precipitation events has a shorter spatial range, within localized areas in California, under the high future emissions scenario than under the historical run.« less
Characterization of extreme precipitation within atmospheric river events over California
Jeon, S.; Prabhat,; Byna, S.; ...
2015-11-17
Atmospheric rivers (ARs) are large, spatially coherent weather systems with high concentrations of elevated water vapor. These systems often cause severe downpours and flooding over the western coastal United States – and with the availability of more atmospheric moisture in the future under global warming we expect ARs to play an important role as potential causes of extreme precipitation changes. Therefore, we aim to investigate changes in extreme precipitation properties correlated with AR events in a warmer climate, which are large-scale meteorological patterns affecting the weather and climate of California. We have recently developed the TECA (Toolkit for Extreme Climatemore » Analysis) software for automatically identifying and tracking features in climate data sets. Specifically, we can now identify ARs that make landfall on the western coast of North America. Based on this detection procedure, we can investigate the impact of ARs by exploring the spatial extent of AR precipitation using climate model (CMIP5) simulations and characterize spatial patterns of dependence for future projections between AR precipitation extremes under climate change within the statistical framework. Our results show that AR events in the future RCP (Representative Concentration Pathway)8.5 scenario (2076–2100) tend to produce heavier rainfall with higher frequency and longer days than events from the historical run (1981–2005). We also find that the dependence between extreme precipitation events has a shorter spatial range, within localized areas in California, under the high future emissions scenario than under the historical run.« less
Extreme weather: Subtropical floods and tropical cyclones
NASA Astrophysics Data System (ADS)
Shaevitz, Daniel A.
Extreme weather events have a large effect on society. As such, it is important to understand these events and to project how they may change in a future, warmer climate. The aim of this thesis is to develop a deeper understanding of two types of extreme weather events: subtropical floods and tropical cyclones (TCs). In the subtropics, the latitude is high enough that quasi-geostrophic dynamics are at least qualitatively relevant, while low enough that moisture may be abundant and convection strong. Extratropical extreme precipitation events are usually associated with large-scale flow disturbances, strong ascent, and large latent heat release. In the first part of this thesis, I examine the possible triggering of convection by the large-scale dynamics and investigate the coupling between the two. Specifically two examples of extreme precipitation events in the subtropics are analyzed, the 2010 and 2014 floods of India and Pakistan and the 2015 flood of Texas and Oklahoma. I invert the quasi-geostrophic omega equation to decompose the large-scale vertical motion profile to components due to synoptic forcing and diabatic heating. Additionally, I present model results from within the Column Quasi-Geostrophic framework. A single column model and cloud-revolving model are forced with the large-scale forcings (other than large-scale vertical motion) computed from the quasi-geostrophic omega equation with input data from a reanalysis data set, and the large-scale vertical motion is diagnosed interactively with the simulated convection. It is found that convection was triggered primarily by mechanically forced orographic ascent over the Himalayas during the India/Pakistan flood and by upper-level Potential Vorticity disturbances during the Texas/Oklahoma flood. Furthermore, a climate attribution analysis was conducted for the Texas/Oklahoma flood and it is found that anthropogenic climate change was responsible for a small amount of rainfall during the event but the intensity of this event may be greatly increased if it occurs in a future climate. In the second part of this thesis, I examine the ability of high-resolution global atmospheric models to simulate TCs. Specifically, I present an intercomparison of several models' ability to simulate the global characteristics of TCs in the current climate. This is a necessary first step before using these models to project future changes in TCs. Overall, the models were able to reproduce the geographic distribution of TCs reasonably well, with some of the models performing remarkably well. The intensity of TCs varied widely between the models, with some of this difference being due to model resolution.
Areas prone to slow slip events impede earthquake rupture propagation and promote afterslip.
Rolandone, Frederique; Nocquet, Jean-Mathieu; Mothes, Patricia A; Jarrin, Paul; Vallée, Martin; Cubas, Nadaya; Hernandez, Stephen; Plain, Morgan; Vaca, Sandro; Font, Yvonne
2018-01-01
At subduction zones, transient aseismic slip occurs either as afterslip following a large earthquake or as episodic slow slip events during the interseismic period. Afterslip and slow slip events are usually considered as distinct processes occurring on separate fault areas governed by different frictional properties. Continuous GPS (Global Positioning System) measurements following the 2016 M w (moment magnitude) 7.8 Ecuador earthquake reveal that large and rapid afterslip developed at discrete areas of the megathrust that had previously hosted slow slip events. Regardless of whether they were locked or not before the earthquake, these areas appear to persistently release stress by aseismic slip throughout the earthquake cycle and outline the seismic rupture, an observation potentially leading to a better anticipation of future large earthquakes.
Areas prone to slow slip events impede earthquake rupture propagation and promote afterslip
Rolandone, Frederique; Nocquet, Jean-Mathieu; Mothes, Patricia A.; Jarrin, Paul; Vallée, Martin; Cubas, Nadaya; Hernandez, Stephen; Plain, Morgan; Vaca, Sandro; Font, Yvonne
2018-01-01
At subduction zones, transient aseismic slip occurs either as afterslip following a large earthquake or as episodic slow slip events during the interseismic period. Afterslip and slow slip events are usually considered as distinct processes occurring on separate fault areas governed by different frictional properties. Continuous GPS (Global Positioning System) measurements following the 2016 Mw (moment magnitude) 7.8 Ecuador earthquake reveal that large and rapid afterslip developed at discrete areas of the megathrust that had previously hosted slow slip events. Regardless of whether they were locked or not before the earthquake, these areas appear to persistently release stress by aseismic slip throughout the earthquake cycle and outline the seismic rupture, an observation potentially leading to a better anticipation of future large earthquakes. PMID:29404404
Periodic, chaotic, and doubled earthquake recurrence intervals on the deep San Andreas Fault
Shelly, David R.
2010-01-01
Earthquake recurrence histories may provide clues to the timing of future events, but long intervals between large events obscure full recurrence variability. In contrast, small earthquakes occur frequently, and recurrence intervals are quantifiable on a much shorter time scale. In this work, I examine an 8.5-year sequence of more than 900 recurring low-frequency earthquake bursts composing tremor beneath the San Andreas fault near Parkfield, California. These events exhibit tightly clustered recurrence intervals that, at times, oscillate between ~3 and ~6 days, but the patterns sometimes change abruptly. Although the environments of large and low-frequency earthquakes are different, these observations suggest that similar complexity might underlie sequences of large earthquakes.
Integrating legacy data to understand agroecosystem regional dynamics to catastrophic events
USDA-ARS?s Scientific Manuscript database
Multi-year extreme drought events are part of the history of the Earth system. Legacy data on the climate drivers, geomorphic features, and agroecosystem responses across a dynamically changing landscape throughout a region can provide important insights to a future where large-scale catastrophic ev...
A large set of potential past, present and future hydro-meteorological time series for the UK
NASA Astrophysics Data System (ADS)
Guillod, Benoit P.; Jones, Richard G.; Dadson, Simon J.; Coxon, Gemma; Bussi, Gianbattista; Freer, James; Kay, Alison L.; Massey, Neil R.; Sparrow, Sarah N.; Wallom, David C. H.; Allen, Myles R.; Hall, Jim W.
2018-01-01
Hydro-meteorological extremes such as drought and heavy precipitation can have large impacts on society and the economy. With potentially increasing risks associated with such events due to climate change, properly assessing the associated impacts and uncertainties is critical for adequate adaptation. However, the application of risk-based approaches often requires large sets of extreme events, which are not commonly available. Here, we present such a large set of hydro-meteorological time series for recent past and future conditions for the United Kingdom based on weather@home 2, a modelling framework consisting of a global climate model (GCM) driven by observed or projected sea surface temperature (SST) and sea ice which is downscaled to 25 km over the European domain by a regional climate model (RCM). Sets of 100 time series are generated for each of (i) a historical baseline (1900-2006), (ii) five near-future scenarios (2020-2049) and (iii) five far-future scenarios (2070-2099). The five scenarios in each future time slice all follow the Representative Concentration Pathway 8.5 (RCP8.5) and sample the range of sea surface temperature and sea ice changes from CMIP5 (Coupled Model Intercomparison Project Phase 5) models. Validation of the historical baseline highlights good performance for temperature and potential evaporation, but substantial seasonal biases in mean precipitation, which are corrected using a linear approach. For extremes in low precipitation over a long accumulation period ( > 3 months) and shorter-duration high precipitation (1-30 days), the time series generally represents past statistics well. Future projections show small precipitation increases in winter but large decreases in summer on average, leading to an overall drying, consistently with the most recent UK Climate Projections (UKCP09) but larger in magnitude than the latter. Both drought and high-precipitation events are projected to increase in frequency and intensity in most regions, highlighting the need for appropriate adaptation measures. Overall, the presented dataset is a useful tool for assessing the risk associated with drought and more generally with hydro-meteorological extremes in the UK.
Uncertainty estimation of water levels for the Mitch flood event in Tegucigalpa
NASA Astrophysics Data System (ADS)
Fuentes Andino, D. C.; Halldin, S.; Lundin, L.; Xu, C.
2012-12-01
Hurricane Mitch in 1998 left a devastating flood in Tegucigalpa, the capital city of Honduras. Simulation of elevated water surfaces provides a good way to understand the hydraulic mechanism of large flood events. In this study the one-dimensional HEC-RAS model for steady flow conditions together with the two-dimensional Lisflood-fp model were used to estimate the water level for the Mitch event in the river reaches at Tegucigalpa. Parameters uncertainty of the model was investigated using the generalized likelihood uncertainty estimation (GLUE) framework. Because of the extremely large magnitude of the Mitch flood, no hydrometric measurements were taken during the event. However, post-event indirect measurements of discharge and observed water levels were obtained in previous works by JICA and USGS. To overcome the problem of lacking direct hydrometric measurement data, uncertainty in the discharge was estimated. Both models could well define the value for channel roughness, though more dispersion resulted from the floodplain value. Analysis of the data interaction showed that there was a tradeoff between discharge at the outlet and floodplain roughness for the 1D model. The estimated discharge range at the outlet of the study area encompassed the value indirectly estimated by JICA, however the indirect method used by the USGS overestimated the value. If behavioral parameter sets can well reproduce water surface levels for past events such as Mitch, more reliable predictions for future events can be expected. The results acquired in this research will provide guidelines to deal with the problem of modeling past floods when no direct data was measured during the event, and to predict future large events taking uncertainty into account. The obtained range of the uncertain flood extension will be an outcome useful for decision makers.
Evolution of precipitation extremes in two large ensembles of climate simulations
NASA Astrophysics Data System (ADS)
Martel, Jean-Luc; Mailhot, Alain; Talbot, Guillaume; Brissette, François; Ludwig, Ralf; Frigon, Anne; Leduc, Martin; Turcotte, Richard
2017-04-01
Recent studies project significant changes in the future distribution of precipitation extremes due to global warming. It is likely that extreme precipitation intensity will increase in a future climate and that extreme events will be more frequent. In this work, annual maxima daily precipitation series from the Canadian Earth System Model (CanESM2) 50-member large ensemble (spatial resolution of 2.8°x2.8°) and the Community Earth System Model (CESM1) 40-member large ensemble (spatial resolution of 1°x1°) are used to investigate extreme precipitation over the historical (1980-2010) and future (2070-2100) periods. The use of these ensembles results in respectively 1 500 (30 years x 50 members) and 1200 (30 years x 40 members) simulated years over both the historical and future periods. These large datasets allow the computation of empirical daily extreme precipitation quantiles for large return periods. Using the CanESM2 and CESM1 large ensembles, extreme daily precipitation with return periods ranging from 2 to 100 years are computed in historical and future periods to assess the impact of climate change. Results indicate that daily precipitation extremes generally increase in the future over most land grid points and that these increases will also impact the 100-year extreme daily precipitation. Considering that many public infrastructures have lifespans exceeding 75 years, the increase in extremes has important implications on service levels of water infrastructures and public safety. Estimated increases in precipitation associated to very extreme precipitation events (e.g. 100 years) will drastically change the likelihood of flooding and their extent in future climate. These results, although interesting, need to be extended to sub-daily durations, relevant for urban flooding protection and urban infrastructure design (e.g. sewer networks, culverts). Models and simulations at finer spatial and temporal resolution are therefore needed.
Future Gamma-Ray Imaging of Solar Eruptive Events
NASA Technical Reports Server (NTRS)
Shih, Albert
2012-01-01
Solar eruptive events, the combination of large solar flares and coronal mass ejections (CMEs), accelerate ions to tens of Gev and electrons to hundreds of MeV. The energy in accelerated particles can be a significant fraction (up to tens of percent) of the released energy and is roughly equipartitioned between ions and electrons. Observations of the gamma-ray signatures produced by these particles interacting with the ambient solar atmosphere probes the distribution and composition of the accelerated population, as well as the atmospheric parameters and abundances of the atmosphere, ultimately revealing information about the underlying physics. Gamma-ray imaging provided by RHESSI showed that the interacting approx.20 MeV/nucleon ions are confined to flare magnetic loops rather than precipitating from a large CME-associated shock. Furthermore, RHESSI images show a surprising, significant spatial separation between the locations where accelerated ions and electrons are interacting, thus indicating a difference in acceleration or transport processes for the two types of particles. Future gamma-ray imaging observations, with higher sensitivity and greater angular resolution, can investigate more deeply the nature of ion acceleration. The technologies being proven on the Gamma-Ray Imager/Polarimeter for Solar flares (GRIPS), a NASA balloon instrument, are possible approaches for future instrumentation. We discuss the GRIPS instrument and the future of studying this aspect of solar eruptive events.
Extreme Events in China under Climate Change: Uncertainty and related impacts (CSSP-FOREX)
NASA Astrophysics Data System (ADS)
Leckebusch, Gregor C.; Befort, Daniel J.; Hodges, Kevin I.
2016-04-01
Suitable adaptation strategies or the timely initiation of related mitigation efforts in East Asia will strongly depend on robust and comprehensive information about future near-term as well as long-term potential changes in the climate system. Therefore, understanding the driving mechanisms associated with the East Asian climate is of major importance. The FOREX project (Fostering Regional Decision Making by the Assessment of Uncertainties of Future Regional Extremes and their Linkage to Global Climate System Variability for China and East Asia) focuses on the investigation of extreme wind and rainfall related events over Eastern Asia and their possible future changes. Here, analyses focus on the link between local extreme events and their driving weather systems. This includes the coupling between local rainfall extremes and tropical cyclones, the Meiyu frontal system, extra-tropical teleconnections and monsoonal activity. Furthermore, the relation between these driving weather systems and large-scale variability modes, e.g. NAO, PDO, ENSO is analysed. Thus, beside analysing future changes of local extreme events, the temporal variability of their driving weather systems and related large-scale variability modes will be assessed in current CMIP5 global model simulations to obtain more robust results. Beyond an overview of FOREX itself, first results regarding the link between local extremes and their steering weather systems based on observational and reanalysis data are shown. Special focus is laid on the contribution of monsoonal activity, tropical cyclones and the Meiyu frontal system on the inter-annual variability of the East Asian summer rainfall.
NASA Astrophysics Data System (ADS)
Chen, C.; Chang, W.; Kong, W.; Wang, J.; Kotamarthi, V. R.; Stein, M.; Moyer, E. J.
2017-12-01
Change in precipitation characteristics is an especially concerning potential impact of climate change, and both model and observational studies suggest that increases in precipitation intensity are likely. However, studies to date have focused on mean accumulated precipitation rather than on the characteristics of individual events. We report here on a study using a novel rainstorm identification tracking algorithm (Chang et al. 2016) that allows evaluating changes in spatio-temporal characteristics of events. We analyze high-resolution precipitation from dynamically downscaled regional climate simulations over the continental U.S. (WRF driven by CCSM4) of present and future climate conditions. We show that precipitation events show distinct characteristic changes for natural seasonal and interannual variations and for anthropogenic greenhouse-gas forcing. In all cases, wetter seasons/years/future climate states are associated with increased precipitation intensity, but other precipitation characteristics respond differently to the different drivers. For example, under anthropogenic forcing, future wetter climate states involve smaller individual event sizes (partially offsetting their increased intensity). Under natural variability, however, wetter years involve larger mean event sizes. Event identification and tracking algorithms thus allow distinguishing drivers of different types of precipitation changes, and in relating those changes to large-scale processes.
A large silent earthquake and the future rupture of the Guerrero seismic
NASA Astrophysics Data System (ADS)
Kostoglodov, V.; Lowry, A.; Singh, S.; Larson, K.; Santiago, J.; Franco, S.; Bilham, R.
2003-04-01
The largest global earthquakes typically occur at subduction zones, at the seismogenic boundary between two colliding tectonic plates. These earthquakes release elastic strains accumulated over many decades of plate motion. Forecasts of these events have large errors resulting from poor knowledge of the seismic cycle. The discovery of slow slip events or "silent earthquakes" in Japan, Alaska, Cascadia and Mexico provides a new glimmer of hope. In these subduction zones, the seismogenic part of the plate interface is loading not steadily as hitherto believed, but incrementally, partitioning the stress buildup with the slow slip events. If slow aseismic slip is limited to the region downdip of the future rupture zone, slip events may increase the stress at the base of the seismogenic region, incrementing it closer to failure. However if some aseismic slip occurs on the future rupture zone, the partitioning may significantly reduce the stress buildup rate (SBR) and delay a future large earthquake. Here we report characteristics of the largest slow earthquake observed to date (Mw 7.5), and its implications for future failure of the Guerrero seismic gap, Mexico. The silent earthquake began in October 2001 and lasted for 6-7 months. Slow slip produced measurable displacements over an area of 550x250 km2. Average slip on the interface was about 10 cm and the equivalent magnitude, Mw, was 7.5. A shallow subhorizontal configuration of the plate interface in Guererro is a controlling factor for the physical conditions favorable for such extensive slow slip. The total coupled zone in Guerrero is 120-170 km wide while the seismogenic, shallowest portion is only 50 km. This future rupture zone may slip contemporaneously with the deeper aseismic sleep, thereby reducing SBR. The slip partitioning between seismogenic and transition coupled zones may diminish SBR up to 50%. These two factors are probably responsible for a long (at least since 1911) quiet on the Guerrero seismic gap in Mexico. The discovery of silent earthquakes in Guerrero in 1972, 1979, 1998, and 2001-2002 calls for a reassessment of the seismic potential and careful seismotectonic monitoring of the seismic gaps in Mexico.
Burch, Heather; Kitley, Charles A; Naeem, Mohammed
2010-07-01
Following the events of the September 11th attack, there has been an increasing concern about the possibility of a future attack on our homeland. In response, the United States Department of Homeland Defense has planned for a future attack by formulating multiple scenarios which may occur in the event of such a disaster. Radiology will play a key role in each of these scenarios, assisting with triage, diagnosis, and therapy of the large populations which potentially could be involved. This article describes some of these scenarios as well the response which will be expected of the radiology community in the event of such a disaster.
Random variability explains apparent global clustering of large earthquakes
Michael, A.J.
2011-01-01
The occurrence of 5 Mw ≥ 8.5 earthquakes since 2004 has created a debate over whether or not we are in a global cluster of large earthquakes, temporarily raising risks above long-term levels. I use three classes of statistical tests to determine if the record of M ≥ 7 earthquakes since 1900 can reject a null hypothesis of independent random events with a constant rate plus localized aftershock sequences. The data cannot reject this null hypothesis. Thus, the temporal distribution of large global earthquakes is well-described by a random process, plus localized aftershocks, and apparent clustering is due to random variability. Therefore the risk of future events has not increased, except within ongoing aftershock sequences, and should be estimated from the longest possible record of events.
Persistent cold air outbreaks over North America in a warming climate
Gao, Yang; Leung, L. Ruby; Lu, Jian; ...
2015-03-30
This study examines future changes of cold air outbreaks (CAO) using a multi-model ensemble of global climate simulations from the Coupled Model Intercomparison Project Phase 5 as well as regional high resolution climate simulations. In the future, while robust decrease of CAO duration dominates in most regions, the magnitude of decrease over northwestern U.S. is much smaller than the surrounding regions. We identified statistically significant increases in sea level pressure during CAO events centering over Yukon, Alaska, and Gulf of Alaska that advects continental cold air to northwestern U.S., leading to blocking and CAO events. Changes in large scale circulationmore » contribute to about 50% of the enhanced sea level pressure anomaly conducive to CAO in northwestern U.S. in the future. High resolution regional simulations revealed potential contributions of increased existing snowpack to increased CAO in the near future over the Rocky Mountain, southwestern U.S., and Great Lakes areas through surface albedo effects, despite winter mean snow water equivalent decreases in the future. Overall, the multi-model projections emphasize that cold extremes do not completely disappear in a warming climate. Concomitant with the relatively smaller reduction in CAO events in northwestern U.S., the top 5 most extreme CAO events may still occur in the future, and wind chill warning will continue to have societal impacts in that region.« less
Quantification of temperature persistence over the Northern Hemisphere land-area
NASA Astrophysics Data System (ADS)
Pfleiderer, Peter; Coumou, Dim
2017-10-01
Extreme weather events such as heat waves and floods are damaging to society and their contribution to future climate impacts is expected to be large. Such extremes are often related to persistent local weather conditions. Weather persistence is linked to sea surface temperatures, soil-moisture (especially in summer) and large-scale circulation patterns and these factors can alter under past and future climate change. Though persistence is a key characteristic for extreme weather events, to date the climatology and potential changes in persistence have only been poorly documented. Here, we present a systematic analysis of temperature persistence for the northern hemisphere land area. We define persistence as the length of consecutive warm or cold days and use spatial clustering techniques to create regional persistence distributions. We find that persistence is longest in the Arctic and shortest in the mid-latitudes. Parameterizations of the regional persistence distributions show that they are characterized by an exponential decay with a drop in the decay rate for very persistent events, implying that feedback mechanisms are important in prolonging these events. For the mid-latitudes, we find that persistence in summer has increased over the past 60 years. The changes are particularly pronounced for prolonged events suggesting a lengthening in the duration of heat waves.
Optimizing integrated luminosity of future hadron colliders
NASA Astrophysics Data System (ADS)
Benedikt, Michael; Schulte, Daniel; Zimmermann, Frank
2015-10-01
The integrated luminosity, a key figure of merit for any particle-physics collider, is closely linked to the peak luminosity and to the beam lifetime. The instantaneous peak luminosity of a collider is constrained by a number of boundary conditions, such as the available beam current, the maximum beam-beam tune shift with acceptable beam stability and reasonable luminosity lifetime (i.e., the empirical "beam-beam limit"), or the event pileup in the physics detectors. The beam lifetime at high-luminosity hadron colliders is largely determined by particle burn off in the collisions. In future highest-energy circular colliders synchrotron radiation provides a natural damping mechanism, which can be exploited for maximizing the integrated luminosity. In this article, we derive analytical expressions describing the optimized integrated luminosity, the corresponding optimum store length, and the time evolution of relevant beam parameters, without or with radiation damping, while respecting a fixed maximum value for the total beam-beam tune shift or for the event pileup in the detector. Our results are illustrated by examples for the proton-proton luminosity of the existing Large Hadron Collider (LHC) at its design parameters, of the High-Luminosity Large Hadron Collider (HL-LHC), and of the Future Circular Collider (FCC-hh).
A Case Study on Using Prediction Markets as a Rich Environment for Active Learning
ERIC Educational Resources Information Center
Buckley, Patrick; Garvey, John; McGrath, Fergal
2011-01-01
In this paper, prediction markets are presented as an innovative pedagogical tool which can be used to create a Rich Environment for Active Learning (REAL). Prediction markets are designed to make forecasts about specific future events by using a market mechanism to aggregate the information held by a large group of traders about that event into a…
NASA Astrophysics Data System (ADS)
Dhakal, N.; Jain, S.
2013-12-01
Rare and unusually large events (such as hurricanes and floods) can create unusual and interesting trends in statistics. Generalized Extreme Value (GEV) distribution is usually used to statistically describe extreme rainfall events. A number of the recent studies have shown that the frequency of extreme rainfall events has increased over the last century and as a result, there has been change in parameters of GEV distribution with the time (non-stationary). But what impact does a single unusually large rainfall event (e.g., hurricane Irene) have on the GEV parameters and consequently on the level of risks or the return periods used in designing the civil infrastructures? In other words, if such a large event occurs today, how will it influence the level of risks (estimated based on past rainfall records) for the civil infrastructures? To answer these questions, we performed sensitivity analysis of the distribution parameters of GEV as well as the return periods to unusually large outlier events. The long-term precipitation records over the period of 1981-2010 from 12 USHCN stations across the state of Maine were used for analysis. For most of the stations, addition of each outlier event caused an increase in the shape parameter with a huge decrease on the corresponding return period. This is a key consideration for time-varying engineering design. These isolated extreme weather events should simultaneously be considered with traditional statistical methodology related to extreme events while designing civil infrastructures (such as dams, bridges, and culverts). Such analysis is also useful in understanding the statistical uncertainty of projecting extreme events into future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dodge, D. A.; Harris, D. B.
Correlation detectors are of considerable interest to the seismic monitoring communities because they offer reduced detection thresholds and combine detection, location and identification functions into a single operation. They appear to be ideal for applications requiring screening of frequent repeating events. However, questions remain about how broadly empirical correlation methods are applicable. We describe the effectiveness of banks of correlation detectors in a system that combines traditional power detectors with correlation detectors in terms of efficiency, which we define to be the fraction of events detected by the correlators. This paper elaborates and extends the concept of a dynamic correlationmore » detection framework – a system which autonomously creates correlation detectors from event waveforms detected by power detectors; and reports observed performance on a network of arrays in terms of efficiency. We performed a large scale test of dynamic correlation processors on an 11 terabyte global dataset using 25 arrays in the single frequency band 1-3 Hz. The system found over 3.2 million unique signals and produced 459,747 screened detections. A very satisfying result is that, on average, efficiency grows with time and, after nearly 16 years of operation, exceeds 47% for events observed over all distance ranges and approaches 70% for near regional and 90% for local events. This observation suggests that future pipeline architectures should make extensive use of correlation detectors, principally for decluttering observations of local and near-regional events. Our results also suggest that future operations based on correlation detection will require commodity large-scale computing infrastructure, since the numbers of correlators in an autonomous system can grow into the hundreds of thousands.« less
Dodge, D. A.; Harris, D. B.
2016-03-15
Correlation detectors are of considerable interest to the seismic monitoring communities because they offer reduced detection thresholds and combine detection, location and identification functions into a single operation. They appear to be ideal for applications requiring screening of frequent repeating events. However, questions remain about how broadly empirical correlation methods are applicable. We describe the effectiveness of banks of correlation detectors in a system that combines traditional power detectors with correlation detectors in terms of efficiency, which we define to be the fraction of events detected by the correlators. This paper elaborates and extends the concept of a dynamic correlationmore » detection framework – a system which autonomously creates correlation detectors from event waveforms detected by power detectors; and reports observed performance on a network of arrays in terms of efficiency. We performed a large scale test of dynamic correlation processors on an 11 terabyte global dataset using 25 arrays in the single frequency band 1-3 Hz. The system found over 3.2 million unique signals and produced 459,747 screened detections. A very satisfying result is that, on average, efficiency grows with time and, after nearly 16 years of operation, exceeds 47% for events observed over all distance ranges and approaches 70% for near regional and 90% for local events. This observation suggests that future pipeline architectures should make extensive use of correlation detectors, principally for decluttering observations of local and near-regional events. Our results also suggest that future operations based on correlation detection will require commodity large-scale computing infrastructure, since the numbers of correlators in an autonomous system can grow into the hundreds of thousands.« less
Recent and future warm extreme events and high-mountain slope stability.
Huggel, C; Salzmann, N; Allen, S; Caplan-Auerbach, J; Fischer, L; Haeberli, W; Larsen, C; Schneider, D; Wessels, R
2010-05-28
The number of large slope failures in some high-mountain regions such as the European Alps has increased during the past two to three decades. There is concern that recent climate change is driving this increase in slope failures, thus possibly further exacerbating the hazard in the future. Although the effects of a gradual temperature rise on glaciers and permafrost have been extensively studied, the impacts of short-term, unusually warm temperature increases on slope stability in high mountains remain largely unexplored. We describe several large slope failures in rock and ice in recent years in Alaska, New Zealand and the European Alps, and analyse weather patterns in the days and weeks before the failures. Although we did not find one general temperature pattern, all the failures were preceded by unusually warm periods; some happened immediately after temperatures suddenly dropped to freezing. We assessed the frequency of warm extremes in the future by analysing eight regional climate models from the recently completed European Union programme ENSEMBLES for the central Swiss Alps. The models show an increase in the higher frequency of high-temperature events for the period 2001-2050 compared with a 1951-2000 reference period. Warm events lasting 5, 10 and 30 days are projected to increase by about 1.5-4 times by 2050 and in some models by up to 10 times. Warm extremes can trigger large landslides in temperature-sensitive high mountains by enhancing the production of water by melt of snow and ice, and by rapid thaw. Although these processes reduce slope strength, they must be considered within the local geological, glaciological and topographic context of a slope.
A follow-up study of hygiene in catering premises at large-scale events in the United Kingdom.
Willis, C; Elviss, N; McLauchlin, J
2015-01-01
To investigate food hygiene practices at large events by assessing the microbiological quality of ready-to-eat food, drinking water, food preparation surfaces, cleaning cloths and wristbands worn by food handlers for event security purposes. Over a 7-month period, 1662 samples were collected at 153 events and examined for microbiological contamination. Eight per cent of food samples were of an unsatisfactory quality. A further one per cent contained potentially hazardous levels of human pathogenic bacteria. 27% of water samples, 32% of swabs and 56% of cloths were also unsatisfactory. These results represented an improvement in hygiene compared to a previous study carried out 12 months previously. A fifth of food handler wristbands were contaminated with Enterobacteriaceae, Escherichia coli and/or coagulase-positive staphylococci, with those bands made from fabric being more frequently contaminated than those made from plastic or other materials. This study provides evidence that the food hygiene at large-scale events may have improved. However, there is still a need for continued efforts to maintain an ongoing improvement in cleaning regimes and food hygiene management. This study was part of an ongoing focus on large events in the lead-up to the London 2012 Olympics. Lessons learnt here will be important in the planning of future large events. © 2014 Crown copyright. © 2014 Society for Applied Microbiology This article is Published with the permission of the Controller of HMSO and Queen's Printer for Scotland.
Breeden, Prescott; Dere, Dorothea; Zlomuzica, Armin; Dere, Ekrem
2016-06-01
Mental time travel (MTT) is the ability to remember past events and to anticipate or imagine events in the future. MTT globally serves to optimize decision-making processes, improve problem-solving capabilities and prepare for future needs. MTT is also essential in providing our concept of self, which includes knowledge of our personality, our strengths and weaknesses, as well as our preferences and aversions. We will give an overview in which ways the capacity of animals to perform MTT is different from humans. Based on the existing literature, we conclude that MTT might represent a quantitative rather than qualitative entity with a continuum of MTT capacities in both humans and nonhuman animals. Given its high complexity, MTT requires a large processing capacity in order to integrate multimodal stimuli during the reconstruction of past and/or future events. We suggest that these operations depend on a highly specialized working memory subsystem, 'the MTT platform', which might represent a necessary additional component in the multi-component working memory model by Alan Baddeley.
Earthquakes induced by fluid injection: Implications for secure CO2 storage
NASA Astrophysics Data System (ADS)
Verdon, J.; Kendall, J. M.
2013-12-01
It is well understood that the injection of fluids into the subsurface can trigger seismic activity. Recently, the US unconventional gas boom has lead to an increase in the volumes of produced water being disposed in geological formations and a concomitant increase in triggered seismic events. This issue is especially pertinent for geologic carbon sequestration, where the injection volumes necessary to store the CO2 emissions from a typical coal-fired power station far exceed the volumes known to have triggered seismic activity. Moreover, unlike water disposal operations, where there is no strong buoyancy drive to return injected fluids to the surface, CO2 sequestration requires a sealing caprock to prevent upward CO2 migration. Induced seismic events may create or reactivate faults and fracture networks, compromising the hydraulic integrity of the caprock. Therefore, induced seismic activity at future CCS sites is of doubly significant, given both the direct seismic hazard and the risk to secure CO2 storage. With this in mind, we re-examine case histories of seismic activity induced by waste water disposal into sedimentary formations with the intention of learning lessons that can be applied to future CCS sites. In particular, we examine the spatial and temporal distributions of events to determine whether there are any rules-of-thumb that might be usefully applied when appraising and monitoring operations. We find that in all cases, at least some seismicity occurs at the depth of the injection interval, but the majority (~80% of events) occur at least 500m below the injection depth. Less than 2% of events occur more than 500m above the shallowest injection interval. This observation must be considered encouraging from a CCS perspective, where seismicity in sealing caprocks will be of greatest concern. However, without a phenomenological explanation for the relative lack of seismicity above injection depths, it cannot be guaranteed that such observations would be repeated at CCS sites. We also examine the lateral distance between induced events and injection wells. The maximum distance between wells and events will define a minimum radius of influence, a distance over which geomechanical appraisal and fault characterization studies must be carried out at future CCS sites. We find that 62% of events occur within 5km, and that 99% of events occur within 19km of injection wells. These case examples highlight the importance of seismic monitoring at future CCS sites. Of the two large-scale CCS sites to deploy microseismic arrays, both have detected induced seismic events. During 6 years of monitoring at Weyburn, ~100 events with magnitudes between -3.0 and -1.0 have been detected, while at In Salah more than 1000 events, with magnitudes as large as 1.0, have been detected during 6 months of monitoring. Combined the case examples from water disposal operations, these operations demonstrate the need for dedicated local seismic monitoring networks to be installed at future CO2 injection sites.
Future equivalent of 2010 Russian heatwave intensified by weakening soil moisture constraints
NASA Astrophysics Data System (ADS)
Rasmijn, L. M.; van der Schrier, G.; Bintanja, R.; Barkmeijer, J.; Sterl, A.; Hazeleger, W.
2018-05-01
The 2010 heatwave in eastern Europe and Russia ranks among the hottest events ever recorded in the region1,2. The excessive summer warmth was related to an anomalously widespread and intense quasi-stationary anticyclonic circulation anomaly over western Russia, reinforced by depletion of spring soil moisture1,3-5. At present, high soil moisture levels and strong surface evaporation generally tend to cap maximum summer temperatures6-8, but these constraints may weaken under future warming9,10. Here, we use a data assimilation technique in which future climate model simulations are nudged to realistically represent the persistence and strength of the 2010 blocked atmospheric flow. In the future, synoptically driven extreme warming under favourable large-scale atmospheric conditions will no longer be suppressed by abundant soil moisture, leading to a disproportional intensification of future heatwaves. This implies that future mid-latitude heatwaves analogous to the 2010 event will become even more extreme than previously thought, with temperature extremes increasing by 8.4 °C over western Russia. Thus, the socioeconomic impacts of future heatwaves will probably be amplified beyond current estimates.
NASA Technical Reports Server (NTRS)
Stone, David A.; Godard, Joel; Godard, Joel; Corretti, mary C.; Kittner, Steven J.; Sample, Cindy; Price, Thomas R.; Plotnick, Gary D.
1996-01-01
This study investigated whether there is an association between the degree of interatrial shunting across a patent foramen ovale, as determined by saline contrast transesophageal echocardiography, and the risk of subsequent systemic embolic events, including stroke. Thirty-four patients found to have patent foramen ovale during transesophageal echocardiography were divided into two groups on the basis of the maximum number of microbubbles in the left heart in any single frame after intravenous saline contrast injection: group 1 (n = 16) with a "large" degree of shunt (220 microbubbles) and group 2 (n = 18) with a "small" degree of shunt (23 but <20 microbubbles). Patients were followed up over a mean period of 21 months for subsequent systemic embolic events, including transient ischemic attack and stroke. Five (31%) of the patients with large shunts had subsequent ischemic neurologic events, whereas none of the patients with small shunts had embolic events (p= 0.03). These events occurred in spite of antiplatelet or anticoagulant therapy. We conclude that patients with a large degree of shunt across a patent foramen ovale, as determined by contrast transesophageal echocardiography, are at a significantly higher risk for subsequent adverse neurologic events compared with patients with a small degree of shunt.
Outreach at Washington State University: a case study in costs and attendance
NASA Astrophysics Data System (ADS)
Bernhardt, Elizabeth A.; Bollen, Viktor; Bersano, Thomas M.; Mossman, Sean M.
2016-09-01
Making effective and efficient use of outreach resources can be difficult for student groups in smaller rural communities. Washington State University's OSA/SPIE student chapter desires well attended yet cost-effective ways to educate and inform the public. We designed outreach activities focused on three different funding levels: low upfront cost, moderate continuing costs, and high upfront cost with low continuing costs. By featuring our activities at well attended events, such as a pre-football game event, or by advertising a headlining activity, such as a laser maze, we take advantage of large crowds to create a relaxed learning atmosphere. Moreover, participants enjoy casual learning while waiting for a main event. Choosing a particular funding level and associating with well-attended events makes outreach easier. While there are still many challenges to outreach, such as motivating volunteers or designing outreach programs, we hope overcoming two large obstacles will lead to future outreach success.
NASA Astrophysics Data System (ADS)
von Trentini, F.; Schmid, F. J.; Braun, M.; Brisette, F.; Frigon, A.; Leduc, M.; Martel, J. L.; Willkofer, F.; Wood, R. R.; Ludwig, R.
2017-12-01
Meteorological extreme events seem to become more frequent in the present and future, and a seperation of natural climate variability and a clear climate change effect on these extreme events gains more and more interest. Since there is only one realisation of historical events, natural variability in terms of very long timeseries for a robust statistical analysis is not possible with observation data. A new single model large ensemble (SMLE), developed for the ClimEx project (Climate change and hydrological extreme events - risks and perspectives for water management in Bavaria and Québec) is supposed to overcome this lack of data by downscaling 50 members of the CanESM2 (RCP 8.5) with the Canadian CRCM5 regional model (using the EURO-CORDEX grid specifications) for timeseries of 1950-2099 each, resulting in 7500 years of simulated climate. This allows for a better probabilistic analysis of rare and extreme events than any preceding dataset. Besides seasonal sums, several extreme indicators like R95pTOT, RX5day and others are calculated for the ClimEx ensemble and several EURO-CORDEX runs. This enables us to investigate the interaction between natural variability (as it appears in the CanESM2-CRCM5 members) and a climate change signal of those members for past, present and future conditions. Adding the EURO-CORDEX results to this, we can also assess the role of internal model variability (or natural variability) in climate change simulations. A first comparison shows similar magnitudes of variability of climate change signals between the ClimEx large ensemble and the CORDEX runs for some indicators, while for most indicators the spread of the SMLE is smaller than the spread of different CORDEX models.
Blecha, Kevin A.; Alldredge, Mat W.
2015-01-01
Animal space use studies using GPS collar technology are increasingly incorporating behavior based analysis of spatio-temporal data in order to expand inferences of resource use. GPS location cluster analysis is one such technique applied to large carnivores to identify the timing and location of feeding events. For logistical and financial reasons, researchers often implement predictive models for identifying these events. We present two separate improvements for predictive models that future practitioners can implement. Thus far, feeding prediction models have incorporated a small range of covariates, usually limited to spatio-temporal characteristics of the GPS data. Using GPS collared cougar (Puma concolor) we include activity sensor data as an additional covariate to increase prediction performance of feeding presence/absence. Integral to the predictive modeling of feeding events is a ground-truthing component, in which GPS location clusters are visited by human observers to confirm the presence or absence of feeding remains. Failing to account for sources of ground-truthing false-absences can bias the number of predicted feeding events to be low. Thus we account for some ground-truthing error sources directly in the model with covariates and when applying model predictions. Accounting for these errors resulted in a 10% increase in the number of clusters predicted to be feeding events. Using a double-observer design, we show that the ground-truthing false-absence rate is relatively low (4%) using a search delay of 2–60 days. Overall, we provide two separate improvements to the GPS cluster analysis techniques that can be expanded upon and implemented in future studies interested in identifying feeding behaviors of large carnivores. PMID:26398546
Evaluation of a seismic quiescence pattern in southeastern sicily
NASA Astrophysics Data System (ADS)
Mulargia, F.; Broccio, F.; Achilli, V.; Baldi, P.
1985-07-01
Southeastern Sicily experienced a very peculiar seismic activity in historic times, with a long series of ruinous earthquakes. A last large event, with magnitude probably in excess of 7.5, occurred on Jan., 11, 1693, totally destroying the city of Catania and killing 60,000 people. Only a few moderate events were reported since then, and a seismic gap issue has been proposed on this basis. A close scrutiny of the available data further shows that all significant seismic activity ceased after year 1850, suggesting one of the largest quiescence patterns ever encountered. This is examined together with the complex tectonic setting of the region, characterized by a wrenching mechanism with most significant seismicity located in its northern graben structure. An attempt to ascertain the imminence and the size of a future earthquake through commonly accepted empirical relations based on size and duration of the quiescence pattern did not provide any feasible result. A precision levelling survey which we recently completed yielded a relative subsidence of ~ 3 mm/yr, consistent with an aseismic slip on the northern graben structure at a rate of ~ 15 mm/yr. Comparing these results with sedimentological and tidal data suggests that the area is undergoing an accelerated deformation process; this issue is further supported by Rikitake's ultimate strain statistics. If the imminence of a damaging ( M = 5.4) event is strongly favoured by Weibull statistics applied to the time series of occurrence of large events, the accumulated strain does not appear sufficient for a large earthquake ( M ⪸ 7.0). Within the limits of reliability of present semi-empirical approaches we conclude that the available evidence is consistent with the occurrence of a moderate-to-large ( M ≅ 6.0) event in the near future. Several questions regarding the application of simple models to real (and complex) tectonic settings remain nevertheless unanswered.
The cost of conservative synchronization in parallel discrete event simulations
NASA Technical Reports Server (NTRS)
Nicol, David M.
1990-01-01
The performance of a synchronous conservative parallel discrete-event simulation protocol is analyzed. The class of simulation models considered is oriented around a physical domain and possesses a limited ability to predict future behavior. A stochastic model is used to show that as the volume of simulation activity in the model increases relative to a fixed architecture, the complexity of the average per-event overhead due to synchronization, event list manipulation, lookahead calculations, and processor idle time approach the complexity of the average per-event overhead of a serial simulation. The method is therefore within a constant factor of optimal. The analysis demonstrates that on large problems--those for which parallel processing is ideally suited--there is often enough parallel workload so that processors are not usually idle. The viability of the method is also demonstrated empirically, showing how good performance is achieved on large problems using a thirty-two node Intel iPSC/2 distributed memory multiprocessor.
2003-02-02
KENNEDY SPACE CENTER, FLA. -- At the Sally Ride Science Festival, held at the University of Central Florida, Orlando, Fla., former astronaut Sally Ride talks to young women about their future. The event promotes science, math and technology as future career paths for girls. Breakout sessions afforded closer interaction between Ride and festival attendees. Since it followed the tragic loss of the Columbia astronauts, a large poster was presented which attendees could sign as tribute.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. -- At the Sally Ride Science Festival, held at the University of Central Florida, Orlando, Fla., former astronaut Sally Ride talks to young women about their future. The event promotes science, math and technology as future career paths for girls. Breakout sessions afforded closer interaction between Ride and festival attendees. Since it followed the tragic loss of the Columbia astronauts, a large poster was presented which attendees could sign as tribute.
Generating extreme weather event sets from very large ensembles of regional climate models
NASA Astrophysics Data System (ADS)
Massey, Neil; Guillod, Benoit; Otto, Friederike; Allen, Myles; Jones, Richard; Hall, Jim
2015-04-01
Generating extreme weather event sets from very large ensembles of regional climate models Neil Massey, Benoit P. Guillod, Friederike E. L. Otto, Myles R. Allen, Richard Jones, Jim W. Hall Environmental Change Institute, University of Oxford, Oxford, UK Extreme events can have large impacts on societies and are therefore being increasingly studied. In particular, climate change is expected to impact the frequency and intensity of these events. However, a major limitation when investigating extreme weather events is that, by definition, only few events are present in observations. A way to overcome this issue it to use large ensembles of model simulations. Using the volunteer distributed computing (VDC) infrastructure of weather@home [1], we run a very large number (10'000s) of RCM simulations over the European domain at a resolution of 25km, with an improved land-surface scheme, nested within a free-running GCM. Using VDC allows many thousands of climate model runs to be computed. Using observations for the GCM boundary forcings we can run historical "hindcast" simulations over the past 100 to 150 years. This allows us, due to the chaotic variability of the atmosphere, to ascertain how likely an extreme event was, given the boundary forcings, and to derive synthetic event sets. The events in these sets did not actually occur in the observed record but could have occurred given the boundary forcings, with an associated probability. The event sets contain time-series of fields of meteorological variables that allow impact modellers to assess the loss the event would incur. Projections of events into the future are achieved by modelling projections of the sea-surface temperature (SST) and sea-ice boundary forcings, by combining the variability of the SST in the observed record with a range of warming signals derived from the varying responses of SSTs in the CMIP5 ensemble to elevated greenhouse gas (GHG) emissions in three RCP scenarios. Simulating the future with a range of SST responses, as well as a range of RCP scenarios, allows us to assess the uncertainty in the response to elevated GHG emissions that occurs in the CMIP5 ensemble. Numerous extreme weather events can be studied. Firstly, we analyse droughts in Europe with a focus on the UK in the context of the project MaRIUS (Managing the Risks, Impacts and Uncertainties of droughts and water Scarcity). We analyse the characteristics of the simulated droughts, the underlying physical mechanisms, and assess droughts observed in the recent past. Secondly, we analyse windstorms by applying an objective storm-identification and tracking algorithm to the ensemble output, isolating those storms that cause high loss and building a probabilistic storm catalogue, which can be used by impact modellers, insurance loss modellers, etc. Finally, we combine the model output with a heat-stress index to determine the detrimental effect on health of heat waves in Europe. [1] Massey, N. et al., 2014, Q. J. R. Meteorol. Soc.
Large-scale Meteorological Patterns Associated with Extreme Precipitation Events over Portland, OR
NASA Astrophysics Data System (ADS)
Aragon, C.; Loikith, P. C.; Lintner, B. R.; Pike, M.
2017-12-01
Extreme precipitation events can have profound impacts on human life and infrastructure, with broad implications across a range of stakeholders. Changes to extreme precipitation events are a projected outcome of climate change that warrants further study, especially at regional- to local-scales. While global climate models are generally capable of simulating mean climate at global-to-regional scales with reasonable skill, resiliency and adaptation decisions are made at local-scales where most state-of-the-art climate models are limited by coarse resolution. Characterization of large-scale meteorological patterns associated with extreme precipitation events at local-scales can provide climatic information without this scale limitation, thus facilitating stakeholder decision-making. This research will use synoptic climatology as a tool by which to characterize the key large-scale meteorological patterns associated with extreme precipitation events in the Portland, Oregon metro region. Composite analysis of meteorological patterns associated with extreme precipitation days, and associated watershed-specific flooding, is employed to enhance understanding of the climatic drivers behind such events. The self-organizing maps approach is then used to characterize the within-composite variability of the large-scale meteorological patterns associated with extreme precipitation events, allowing us to better understand the different types of meteorological conditions that lead to high-impact precipitation events and associated hydrologic impacts. A more comprehensive understanding of the meteorological drivers of extremes will aid in evaluation of the ability of climate models to capture key patterns associated with extreme precipitation over Portland and to better interpret projections of future climate at impact-relevant scales.
NASA Astrophysics Data System (ADS)
Yin, Jianjun; Overpeck, Jonathan; Peyser, Cheryl; Stouffer, Ronald
2018-01-01
A 0.24°C jump of record warm global mean surface temperature (GMST) over the past three consecutive record-breaking years (2014-2016) was highly unusual and largely a consequence of an El Niño that released unusually large amounts of ocean heat from the subsurface layer of the northwestern tropical Pacific. This heat had built up since the 1990s mainly due to greenhouse-gas (GHG) forcing and possible remote oceanic effects. Model simulations and projections suggest that the fundamental cause, and robust predictor of large record-breaking events of GMST in the 21st century, is GHG forcing rather than internal climate variability alone. Such events will increase in frequency, magnitude, and duration, as well as impact, in the future unless GHG forcing is reduced.
Dynamic interactions of atmospheric and hydrological processes result in large spatiotemporal changes of precipitation and wind speed in coastal storm events under both current and future climates. This variability can impact the design and sustainability of water infrastructure ...
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee; Hayat, Matthew J.; Feiveson, alan H.; Cucinotta, Francis A.
2008-01-01
For future space missions with longer duration, exposure to large solar particle events (SPEs) with high energy levels is the major concern during extra-vehicular activities (EVAs) on the lunar and Mars surface. The expected SPE propensity for large proton fluence was estimated from a non-homogeneous Poisson model using the historical database for measurements of protons with energy > 30 MeV, Phi(sub 30). The database includes a continuous data set for the past 5 solar cycles. The resultant SPE risk analysis for a specific mission period was made including the 95% confidence level. In addition to total particle intensity of SPE, the detailed energy spectra of protons especially at high energy levels were recognized as extremely important parameter for the risk assessment, since there remains a significant cancer risks from those energetic particles for large events. Using all the recorded proton fluence of SPEs for energies >60 and >100 MeV, Phi(sub 60) and Phi(sub 100), respectively, the expected propensities of SPEs abundant with high energy protons were estimated from the same non-homogeneous Poisson model and the representative cancer risk was analyzed. The dependencies of risk with different energy spectra, for e.g. between soft and hard SPEs, were evaluated. Finally, we describe approaches to improve radiation protection of astronauts and optimize mission planning for future space missions.
Decoding the future from past experience: learning shapes predictions in early visual cortex.
Luft, Caroline D B; Meeson, Alan; Welchman, Andrew E; Kourtzi, Zoe
2015-05-01
Learning the structure of the environment is critical for interpreting the current scene and predicting upcoming events. However, the brain mechanisms that support our ability to translate knowledge about scene statistics to sensory predictions remain largely unknown. Here we provide evidence that learning of temporal regularities shapes representations in early visual cortex that relate to our ability to predict sensory events. We tested the participants' ability to predict the orientation of a test stimulus after exposure to sequences of leftward- or rightward-oriented gratings. Using fMRI decoding, we identified brain patterns related to the observers' visual predictions rather than stimulus-driven activity. Decoding of predicted orientations following structured sequences was enhanced after training, while decoding of cued orientations following exposure to random sequences did not change. These predictive representations appear to be driven by the same large-scale neural populations that encode actual stimulus orientation and to be specific to the learned sequence structure. Thus our findings provide evidence that learning temporal structures supports our ability to predict future events by reactivating selective sensory representations as early as in primary visual cortex. Copyright © 2015 the American Physiological Society.
NASA Astrophysics Data System (ADS)
Yu, Huai-zhong; Shen, Zheng-kang; Wan, Yong-ge; Zhu, Qing-yong; Yin, Xiang-chu
2006-12-01
The Load/Unload Response Ratio (LURR) method is proposed for short-to-intermediate-term earthquake prediction [Yin, X.C., Chen, X.Z., Song, Z.P., Yin, C., 1995. A New Approach to Earthquake Prediction — The Load/Unload Response Ratio (LURR) Theory, Pure Appl. Geophys., 145, 701-715]. This method is based on measuring the ratio between Benioff strains released during the time periods of loading and unloading, corresponding to the Coulomb Failure Stress change induced by Earth tides on optimally oriented faults. According to the method, the LURR time series usually climb to an anomalously high peak prior to occurrence of a large earthquake. Previous studies have indicated that the size of critical seismogenic region selected for LURR measurements has great influence on the evaluation of LURR. In this study, we replace the circular region usually adopted in LURR practice with an area within which the tectonic stress change would mostly affect the Coulomb stress on a potential seismogenic fault of a future event. The Coulomb stress change before a hypothetical earthquake is calculated based on a simple back-slip dislocation model of the event. This new algorithm, by combining the LURR method with our choice of identified area with increased Coulomb stress, is devised to improve the sensitivity of LURR to measure criticality of stress accumulation before a large earthquake. Retrospective tests of this algorithm on four large earthquakes occurred in California over the last two decades show remarkable enhancement of the LURR precursory anomalies. For some strong events of lesser magnitudes occurred in the same neighborhoods and during the same time periods, significant anomalies are found if circular areas are used, and are not found if increased Coulomb stress areas are used for LURR data selection. The unique feature of this algorithm may provide stronger constraints on forecasts of the size and location of future large events.
Grotjahn, Richard; Black, Robert; Leung, Ruby; ...
2015-05-22
This paper reviews research approaches and open questions regarding data, statistical analyses, dynamics, modeling efforts, and trends in relation to temperature extremes. Our specific focus is upon extreme events of short duration (roughly less than 5 days) that affect parts of North America. These events are associated with large scale meteorological patterns (LSMPs). Methods used to define extreme events statistics and to identify and connect LSMPs to extreme temperatures are presented. Recent advances in statistical techniques can connect LSMPs to extreme temperatures through appropriately defined covariates that supplements more straightforward analyses. A wide array of LSMPs, ranging from synoptic tomore » planetary scale phenomena, have been implicated as contributors to extreme temperature events. Current knowledge about the physical nature of these contributions and the dynamical mechanisms leading to the implicated LSMPs is incomplete. There is a pressing need for (a) systematic study of the physics of LSMPs life cycles and (b) comprehensive model assessment of LSMP-extreme temperature event linkages and LSMP behavior. Generally, climate models capture the observed heat waves and cold air outbreaks with some fidelity. However they overestimate warm wave frequency and underestimate cold air outbreaks frequency, and underestimate the collective influence of low-frequency modes on temperature extremes. Climate models have been used to investigate past changes and project future trends in extreme temperatures. Overall, modeling studies have identified important mechanisms such as the effects of large-scale circulation anomalies and land-atmosphere interactions on changes in extreme temperatures. However, few studies have examined changes in LSMPs more specifically to understand the role of LSMPs on past and future extreme temperature changes. Even though LSMPs are resolvable by global and regional climate models, they are not necessarily well simulated so more research is needed to understand the limitations of climate models and improve model skill in simulating extreme temperatures and their associated LSMPs. Furthermore, the paper concludes with unresolved issues and research questions.« less
Future Nuisance Flooding at Boston Caused by Astronomical Tides Alone
NASA Technical Reports Server (NTRS)
Ray, Richard D.; Foster, Grant
2016-01-01
Sea level rise necessarily triggers more occurrences of minor, or nuisance, flooding events along coastlines, a fact well documented in recent studies. At some locations nuisance flooding can be brought about merely by high spring tides, independent of storms, winds, or other atmospheric conditions. Analysis of observed water levels at Boston indicates that tidal flooding began to occur there in 2011 and will become more frequent in subsequent years. A compilation of all predicted nuisance-flooding events, induced by astronomical tides alone, is presented through year 2050. The accuracy of the tide prediction is improved when several unusual properties of Gulf of Maine tides, including secular changes, are properly accounted for. Future mean sea-level rise at Boston cannot be predicted with comparable confidence, so two very different climate scenarios are adopted; both predict a large increase in the frequency and the magnitude of tidal flooding events.
When remembering the past suppresses memory for future actions.
Utsumi, Kenta; Saito, Satoru
2016-01-01
Remembering planned actions at the correct time in the future is an integral component of prospective cognition. Recent studies on future remembering have led to suggestions that prospective cognition might be based on past experience. To test this hypothesis, we focused on retrieval-induced forgetting (RIF), which usually indicates that remembering past events suppresses memory for related but different past events. The current study assessed RIF in two kinds of event-based prospective memory (PM) tasks using either focal or non-focal cues for ongoing tasks. Participants studied six members from each of eight taxonomic categories and then practiced recalling three of the six members from four of the eight categories using category-stem cues. This retrieval practice suppressed the detection of non-practiced members of the practiced categories during the PM task with non-focal cues (Experiment 1) but not with focal cues (Experiment 2). The results suggest that recall of certain items inhibits the function of the others as PM cues, but only if the PM task does not largely share its processing with the ongoing task.
A lifespan perspective on terrorism: age differences in trajectories of response to 9/11.
Scott, Stacey B; Poulin, Michael J; Silver, Roxane Cohen
2013-05-01
A terrorist attack is an adverse event characterized by both an event-specific stressor and concern about future threats. Little is known about age differences in responses to terrorism. This longitudinal study examined generalized distress, posttraumatic stress responses, and fear of future attacks following the September 11, 2001 (9/11) terrorist attacks among a large U.S. national sample of adults (N = 2,240) aged 18-101 years. Individuals completed Web-based surveys up to 6 times over 3 years post 9/11. Multilevel models revealed different age-related patterns for distress, posttraumatic stress, and ongoing fear of future attacks. Specifically, older age was associated with lower overall levels of general distress, a steeper decline in posttraumatic stress over time, and less change in fear of future terrorist attacks over the 3 years. Understanding age differences in response to the stress of terrorism adds to the growing body of work on age differences in reactions to adversity.
Natural disasters: forecasting economic and life losses
Nishenko, Stuart P.; Barton, Christopher C.
1997-01-01
Events such as hurricanes, earthquakes, floods, tsunamis, volcanic eruptions, and tornadoes are natural disasters because they negatively impact society, and so they must be measured and understood in human-related terms. At the U.S. Geological Survey, we have developed a new method to examine fatality and dollar-loss data, and to make probabilistic estimates of the frequency and magnitude of future events. This information is vital to large sectors of society including disaster relief agencies and insurance companies.
NASA Astrophysics Data System (ADS)
Odaka, Shigeru; Kurihara, Yoshimasa
2016-05-01
We have developed an event generator for direct-photon production in hadron collisions, including associated 2-jet production in the framework of the GR@PPA event generator. The event generator consistently combines γ + 2-jet production processes with the lowest-order γ + jet and photon-radiation (fragmentation) processes from quantum chromodynamics (QCD) 2-jet production using a subtraction method. The generated events can be fed to general-purpose event generators to facilitate the addition of hadronization and decay simulations. Using the obtained event information, we can simulate photon isolation and hadron-jet reconstruction at the particle (hadron) level. The simulation reasonably reproduces measurement data obtained at the large hadron collider (LHC) concerning not only the inclusive photon spectrum, but also the correlation between the photon and jet. The simulation implies that the contribution of the γ + 2-jet is very large, especially in low photon-pT ( ≲ 50 GeV) regions. Discrepancies observed at low pT, although marginal, may indicate the necessity for the consideration of further higher-order processes. Unambiguous particle-level definition of the photon-isolation condition for the signal events is desired to be given explicitly in future measurements.
Ecological selectivity of the emerging mass extinction in the oceans.
Payne, Jonathan L; Bush, Andrew M; Heim, Noel A; Knope, Matthew L; McCauley, Douglas J
2016-09-16
To better predict the ecological and evolutionary effects of the emerging biodiversity crisis in the modern oceans, we compared the association between extinction threat and ecological traits in modern marine animals to associations observed during past extinction events using a database of 2497 marine vertebrate and mollusc genera. We find that extinction threat in the modern oceans is strongly associated with large body size, whereas past extinction events were either nonselective or preferentially removed smaller-bodied taxa. Pelagic animals were victimized more than benthic animals during previous mass extinctions but are not preferentially threatened in the modern ocean. The differential importance of large-bodied animals to ecosystem function portends greater future ecological disruption than that caused by similar levels of taxonomic loss in past mass extinction events. Copyright © 2016, American Association for the Advancement of Science.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neufeld, W.P.
Recently, the Trend Analysis Program (TAP) of the American Council of Life Insurance commissioned the Futures Group of Glastonbury, Connecticut, to examine the potential for large-scale catastrophic events in the near future. TAP was specifically concerned with five potential crises: the warming of the earth's atmosphere, the water shortage, the collapse of the physical infrastructure, the global financial crisis, and the threat of nuclear war. We are often unprepared to take action; in these cases, we lose an advantage we might have otherwise had. This is the whole idea behind forecasting: to foresee possibilities and to project how we canmore » respond. If we are able to create forecasts against which we can test policy options and choices, we may have the luxury of adopting policies ahead of events. Rather than simply fighting fires, we have the option of creating a future more to our choosing. Short descriptions of these five potential crises and, in some cases, possible solutions are presented.« less
Christodoulou Memory of GW150914 - Prospects of Detection in LIGO and Future Detectors
NASA Astrophysics Data System (ADS)
Johnson, Aaron; Kapadia, Shasvath; Kennefick, Daniel
2017-01-01
The event GW150914 produced strains of the order 10-21 in the two instruments comprising the Laser Interferometric Gravitational Wave Observatory (LIGO). The event has been interpreted as originating in a coalescing black hole binary, with individual components of about 30 solar masses each. A striking aspect of the coalescence deduced from the signal is the emission of 3 solar masses of energy in the oscillating gravitational wave. Theory predicts a DC component of the gravitational signal associated with the emission of such large amounts of gravitational wave energy known as the Christodoulou memory. The memory, as a non-linear component of the signal, is expected to be an order of magnitude smaller than the amplitude of the primary AC component of the gravitational waves. We discuss the prospects of detecting the Christodoulou memory in similar future signals, both with LIGO and with other detectors, including future space-based instruments.
Episodic and semantic content of memory and imagination: A multilevel analysis.
Devitt, Aleea L; Addis, Donna Rose; Schacter, Daniel L
2017-10-01
Autobiographical memories of past events and imaginations of future scenarios comprise both episodic and semantic content. Correlating the amount of "internal" (episodic) and "external" (semantic) details generated when describing autobiographical events can illuminate the relationship between the processes supporting these constructs. Yet previous studies performing such correlations were limited by aggregating data across all events generated by an individual, potentially obscuring the underlying relationship within the events themselves. In the current article, we reanalyzed datasets from eight studies using a multilevel approach, allowing us to explore the relationship between internal and external details within events. We also examined whether this relationship changes with healthy aging. Our reanalyses demonstrated a largely negative relationship between the internal and external details produced when describing autobiographical memories and future imaginations. This negative relationship was stronger and more consistent for older adults and was evident both in direct and indirect measures of semantic content. Moreover, this relationship appears to be specific to episodic tasks, as no relationship was observed for a nonepisodic picture description task. This negative association suggests that people do not generate semantic information indiscriminately, but do so in a compensatory manner, to embellish episodically impoverished events. Our reanalysis further lends support for dissociable processes underpinning episodic and semantic information generation when remembering and imagining autobiographical events.
NASA Astrophysics Data System (ADS)
Hibino, K.; Takayabu, I.; Wakazuki, Y.; Ogata, T.
2016-12-01
An extreme precipitation event happened at Hiroshima in 2014. Over 250 mm total rainfall was observed at the night of 19th August, which caused a flood and several land slides. The precipitation event is thought to be a rare event happening once in approximately 30 years i.e., 30 years return level. We investigate the mechanism of this event and examine its future change by using a 27-members ensemble experiment with Japan Meteorological Research Institute nonhydrostatic regional climate model (MRI-NHRCM). Because the heavy rainfall was provided by local convection system (about 100 km), high resolution model of 500 m horizontal grid is used to reproduce the system in the model. Future climate experiments are performed by pseudoglobal warming method, in which future changes of sea surface temperature (ΔSST) and vertical profile of temperature (ΔT) are added to the present environmental conditions with relative humidity not being changed. The ΔSST and ΔT are obtained from d4PDF dataset, in which greenhouse gas concentration is fixed so that the surface air temperature averaged globally is 4K warmer than that in the preindustrial time. The ensemble experiment shows that the total amount of rainfall around Hiroshima plain in the future experiments is approximately identical to or slightly decreased from that in the present experiments in spite of the increase of water vapor due to the atmosphere warming. The hypothesis to understand this non-intuitive result is that the future change of temperature profile, of which lower atmosphere is approximately +4K and upper atmosphere near tropopause is approximately +7.5K, increases the convective stability of atmosphere. In order to verify the hypothesis, 5 additional future experiments are performed, in which the future change of temperature profile is constant throughout the troposphere. The experiments yield a large increase of precipitation, and we infer that the increase of water vapor and stabilization effect of the temperature profile change cancel each other with regard to the precipitation output.
Doré, Bruce P; Meksin, Robert; Mather, Mara; Hirst, William; Ochsner, Kevin N
2016-06-01
In the aftermath of a national tragedy, important decisions are predicated on judgments of the emotional significance of the tragedy in the present and future. Research in affective forecasting has largely focused on ways in which people fail to make accurate predictions about the nature and duration of feelings experienced in the aftermath of an event. Here we ask a related but understudied question: can people forecast how they will feel in the future about a tragic event that has already occurred? We found that people were strikingly accurate when predicting how they would feel about the September 11 attacks over 1-, 2-, and 7-year prediction intervals. Although people slightly under- or overestimated their future feelings at times, they nonetheless showed high accuracy in forecasting (a) the overall intensity of their future negative emotion, and (b) the relative degree of different types of negative emotion (i.e., sadness, fear, or anger). Using a path model, we found that the relationship between forecasted and actual future emotion was partially mediated by current emotion and remembered emotion. These results extend theories of affective forecasting by showing that emotional responses to an event of ongoing national significance can be predicted with high accuracy, and by identifying current and remembered feelings as independent sources of this accuracy. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Doré, B.P.; Meksin, R.; Mather, M.; Hirst, W.; Ochsner, K.N
2016-01-01
In the aftermath of a national tragedy, important decisions are predicated on judgments of the emotional significance of the tragedy in the present and future. Research in affective forecasting has largely focused on ways in which people fail to make accurate predictions about the nature and duration of feelings experienced in the aftermath of an event. Here we ask a related but understudied question: can people forecast how they will feel in the future about a tragic event that has already occurred? We found that people were strikingly accurate when predicting how they would feel about the September 11 attacks over 1-, 2-, and 7-year prediction intervals. Although people slightly under- or overestimated their future feelings at times, they nonetheless showed high accuracy in forecasting 1) the overall intensity of their future negative emotion, and 2) the relative degree of different types of negative emotion (i.e., sadness, fear, or anger). Using a path model, we found that the relationship between forecasted and actual future emotion was partially mediated by current emotion and remembered emotion. These results extend theories of affective forecasting by showing that emotional responses to an event of ongoing national significance can be predicted with high accuracy, and by identifying current and remembered feelings as independent sources of this accuracy. PMID:27100309
Imagining the Future in Children with Severe Traumatic Brain Injury.
Lah, Suncica; Gott, Chloe; Epps, Adrienne; Parry, Louise
2018-06-12
Imagining future events is thought to rely on recombination and integration of past episodic memory traces into future events. Future and past events contain episodic and nonepisodic details. Children with severe traumatic brain injury (TBI) were found to have impaired recall of past episodic (but not semantic) event details. Here, we examined whether severe TBI impairs construction of future events. Children with severe TBI (n = 15) and healthy controls (NC; n = 33) 1) completed tests of anterograde (narrative and relational) memory and executive skills, 2) recalled past events and generated future events, and 3) rated events' phenomenological qualities. Events were scored for episodic (internal) and semantic (external) details. The groups did not differ in generating details of future events, although children with TBI recalled significantly fewer past internal (but not external) events' details relative to NCs. Moreover, the number of past internal details relative to future internal details was significantly higher in the NC group, but not in the TBI groups. Significant correlations between past and future were found for 1) internal details in both groups and 2) external details in the NC group. The TBI group rated their events as being less significant than did the NC group. The groups did not differ on ratings of visual intensity and rehearsal. Our study has shown that children who have sustained severe TBI had impoverished recall of past, but not generation of future, events. This unexpected dissociation between past and future event construction requires further research.
Australia's economic transition, unemployment, suicide and mental health needs.
Myles, Nicholas; Large, Matthew; Myles, Hannah; Adams, Robert; Liu, Dennis; Galletly, Cherrie
2017-02-01
There have been substantial changes in workforce and employment patterns in Australia over the past 50 years as a result of economic globalisation. This has resulted in substantial reduction in employment in the manufacturing industry often with large-scale job losses in concentrated sectors and communities. Large-scale job loss events receive significant community attention. To what extent these mass unemployment events contribute to increased psychological distress, mental illness and suicide in affected individuals warrants further consideration. Here we undertake a narrative review of published job loss literature. We discuss the impact that large-scale job loss events in the manufacturing sector may have on population mental health, with particular reference to contemporary trends in the Australian economy. We also provide a commentary on the expected outcomes of future job loss events in this context and the implications for Australian public mental health care services. Job loss due to plant closure results in a doubling of psychological distress that peaks 9 months following the unemployment event. The link between job loss and increased rates of mental illness and suicide is less clear. The threat of impending job loss and the social context in which job loss occurs has a significant bearing on psychological outcomes. The implications for Australian public mental health services are discussed.
Three-dimensional Imaging for Large LArTPCs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chao, C.; Qian, X.; Viren, B.
2017-12-14
High-performance event reconstruction is critical for current and future massive liquid argon time projection chambers (LArTPCs) to realize their full scientic potential. LArTPCs with readout using wire planes provides a limited number of 2D projections. In general, without a pixel-type readout it is challenging to achieve unambiguous 3D event reconstruction. As a remedy, we present a novel 3D imaging method, Wire-Cell, which incorporates the charge and sparsity information in addition to the time and geometry through simple and robust mathematics.
Pollitz, F.F.; Banerjee, P.; Burgmann, R.; Hashimoto, M.; Choosakul, N.
2006-01-01
The 26 December 2004 Mw = 9.2 and 28 March 2005 Mw = 8.7 earthquakes on the Sumatra megathrust altered the state of stress over a large region surrounding the earthquakes. We evaluate the stress changes associated with coseismic and postseismic deformation following these two large events, focusing on postseismic deformation that is driven by viscoelastic relaxation of a low-viscosity asthenosphere. Under Coulomb failure stress (CFS) theory, the December 2004 event increased CFS on the future hypocentral zone of the March 2005 event by about 0.25 bar, with little or no contribution from viscous relaxation. Coseismic stresses around the rupture zones of the 1797 and 1833 Sunda trench events are negligible, but postseismic stress perturbations since December 2004 are predicted to result in CFS increases of 0.1 to 0.2 bar around these rupture zones between 2 and 8 years after the December 2004 event. These are considerable stress perturbations given that the 1797 and 1833 rupture zones are likely approaching the end of a complete seismic cycle. Copyright 2006 by the American Geophysical Union.
Projected increase in El Niño-driven tropical cyclone frequency in the Pacific
NASA Astrophysics Data System (ADS)
Chand, Savin S.; Tory, Kevin J.; Ye, Hua; Walsh, Kevin J. E.
2017-02-01
The El Niño/Southern Oscillation (ENSO) drives substantial variability in tropical cyclone (TC) activity around the world. However, it remains uncertain how the projected future changes in ENSO under greenhouse warming will affect TC activity, apart from an expectation that the overall frequency of TCs is likely to decrease for most ocean basins. Here we show robust changes in ENSO-driven variability in TC occurrence by the late twenty-first century. In particular, we show that TCs become more frequent (~20-40%) during future-climate El Niño events compared with present-climate El Niño events--and less frequent during future-climate La Niña events--around a group of small island nations (for example, Fiji, Vanuatu, Marshall Islands and Hawaii) in the Pacific. We examine TCs across 20 models from the Coupled Model Intercomparison Project phase 5 database, forced under historical and greenhouse warming conditions. The 12 most realistic models identified show a strong consensus on El Niño-driven changes in future-climate large-scale environmental conditions that modulate development of TCs over the off-equatorial western Pacific and the central North Pacific regions. These results have important implications for climate change and adaptation pathways for the vulnerable Pacific island nations.
Locally adaptive, spatially explicit projection of US population for 2030 and 2050.
McKee, Jacob J; Rose, Amy N; Bright, Edward A; Huynh, Timmy; Bhaduri, Budhendra L
2015-02-03
Localized adverse events, including natural hazards, epidemiological events, and human conflict, underscore the criticality of quantifying and mapping current population. Building on the spatial interpolation technique previously developed for high-resolution population distribution data (LandScan Global and LandScan USA), we have constructed an empirically informed spatial distribution of projected population of the contiguous United States for 2030 and 2050, depicting one of many possible population futures. Whereas most current large-scale, spatially explicit population projections typically rely on a population gravity model to determine areas of future growth, our projection model departs from these by accounting for multiple components that affect population distribution. Modeled variables, which included land cover, slope, distances to larger cities, and a moving average of current population, were locally adaptive and geographically varying. The resulting weighted surface was used to determine which areas had the greatest likelihood for future population change. Population projections of county level numbers were developed using a modified version of the US Census's projection methodology, with the US Census's official projection as the benchmark. Applications of our model include incorporating multiple various scenario-driven events to produce a range of spatially explicit population futures for suitability modeling, service area planning for governmental agencies, consequence assessment, mitigation planning and implementation, and assessment of spatially vulnerable populations.
Probalistic Assessment of Radiation Risk for Solar Particle Events
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee Y.; Cucinotta, Francis A.
2008-01-01
For long duration missions outside of the protection of the Earth's magnetic field, exposure to solar particle events (SPEs) is a major safety concern for crew members during extra-vehicular activities (EVAs) on the lunar surface or Earth-to-moon or Earth-to-Mars transit. The large majority (90%) of SPEs have small or no health consequences because the doses are low and the particles do not penetrate to organ depths. However, there is an operational challenge to respond to events of unknown size and duration. We have developed a probabilistic approach to SPE risk assessment in support of mission design and operational planning. Using the historical database of proton measurements during the past 5 solar cycles, the functional form of hazard function of SPE occurrence per cycle was found for nonhomogeneous Poisson model. A typical hazard function was defined as a function of time within a non-specific future solar cycle of 4000 days duration. Distributions of particle fluences for a specified mission period were simulated ranging from its 5th to 95th percentile. Organ doses from large SPEs were assessed using NASA's Baryon transport model, BRYNTRN. The SPE risk was analyzed with the organ dose distribution for the given particle fluences during a mission period. In addition to the total particle fluences of SPEs, the detailed energy spectra of protons, especially at high energy levels, were recognized as extremely important for assessing the cancer risk associated with energetic particles for large events. The probability of exceeding the NASA 30-day limit of blood forming organ (BFO) dose inside a typical spacecraft was calculated for various SPE sizes. This probabilistic approach to SPE protection will be combined with a probabilistic approach to the radiobiological factors that contribute to the uncertainties in projecting cancer risks in future work.
Flood events across the North Atlantic region - past development and future perspectives
NASA Astrophysics Data System (ADS)
Matti, Bettina; Dieppois, Bastien; Lawler, Damian; Dahlke, Helen E.; Lyon, Steve W.
2016-04-01
Flood events have a large impact on humans, both socially and economically. An increase in winter and spring flooding across much of northern Europe in recent years opened up the question of changing underlying hydro-climatic drivers of flood events. Predicting the manifestation of such changes is difficult due to the natural variability and fluctuations in northern hydrological systems caused by large-scale atmospheric circulations, especially under altered climate conditions. Improving knowledge on the complexity of these hydrological systems and their interactions with climate is essential to be able to determine drivers of flood events and to predict changes in these drivers under altered climate conditions. This is particularly true for the North Atlantic region where both physical catchment properties and large-scale atmospheric circulations have a profound influence on floods. This study explores changes in streamflow across North Atlantic region catchments. An emphasis is placed on high-flow events, namely the timing and magnitude of past flood events, and selected flood percentiles were tested for stationarity by applying a flood frequency analysis. The issue of non-stationarity of flood return periods is important when linking streamflow to large-scale atmospheric circulations. Natural fluctuations in these circulations are found to have a strong influence on the outcome causing natural variability in streamflow records. Long time series and a multi-temporal approach allows for determining drivers of floods and linking streamflow to large-scale atmospheric circulations. Exploring changes in selected hydrological signatures consistency was found across much of the North Atlantic region suggesting a shift in flow regime. The lack of an overall regional pattern suggests that how catchments respond to changes in climatic drivers is strongly influenced by their physical characteristics. A better understanding of hydrological response to climate drivers is essential for example for forecasting purposes.
What differentiates episodic future thinking from complex scene imagery?
de Vito, Stefania; Gamboz, Nadia; Brandimonte, Maria A
2012-06-01
We investigated the contributions of familiarity of setting, self-relevance and self-projection in time to episodic future thinking. The role of familiarity of setting was assessed, in Experiment 1, by comparing episodic future thoughts to autobiographical future events supposed to occur in unfamiliar settings. The role of self-relevance was assessed, in Experiment 2, by comparing episodic future thoughts to future events involving familiar others. The role of self-projection in time was assessed, in both Experiments, by comparing episodic future thoughts to autobiographical events that were not temporal in nature. Results indicated that episodic future thoughts were more clearly represented than autobiographical future events occurring in unfamiliar setting and future events involving familiar others. Our results also revealed that episodic future thoughts were indistinguishable from autobiographical atemporal events with respect to both subjective and objective detail ratings. These results suggest that future and atemporal events are mentally represented in a similar way. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, C.; Rundle, J. B.; Holliday, J. R.; Nanjo, K.; Turcotte, D. L.; Li, S.; Tiampo, K. F.
2005-12-01
Forecast verification procedures for statistical events with binary outcomes typically rely on the use of contingency tables and Relative Operating Characteristic (ROC) diagrams. Originally developed for the statistical evaluation of tornado forecasts on a county-by-county basis, these methods can be adapted to the evaluation of competing earthquake forecasts. Here we apply these methods retrospectively to two forecasts for the m = 7.3 1999 Chi-Chi, Taiwan, earthquake. These forecasts are based on a method, Pattern Informatics (PI), that locates likely sites for future large earthquakes based on large change in activity of the smallest earthquakes. A competing null hypothesis, Relative Intensity (RI), is based on the idea that future large earthquake locations are correlated with sites having the greatest frequency of small earthquakes. We show that for Taiwan, the PI forecast method is superior to the RI forecast null hypothesis. Inspection of the two maps indicates that their forecast locations are indeed quite different. Our results confirm an earlier result suggesting that the earthquake preparation process for events such as the Chi-Chi earthquake involves anomalous changes in activation or quiescence, and that signatures of these processes can be detected in precursory seismicity data. Furthermore, we find that our methods can accurately forecast the locations of aftershocks from precursory seismicity changes alone, implying that the main shock together with its aftershocks represent a single manifestation of the formation of a high-stress region nucleating prior to the main shock.
Stenner, Karen; Iacovou, Nicci
2006-01-01
WHAT IS ALREADY KNOWN IN THIS AREA • Research indicates that Protected Learning Time (PLT) events in primary care enable professionals to network and share ideas. • A variety of educational techniques have been shown to improve performance of: individual practitioners in other settings. • Beyond one-off examples, there is little published evidence that PLT helps to improve practice. WHAT THIS WORK ADDS • It describes a range of ways in which PLT has impacted on practice at the level of the individual, the team and the wider organisation. • It highlights the main benefits of large event PLT according to participants at a Berkshire initiative. The benefits include increased awareness of services, increased understanding of illnesses and improved treatment. SUGGESTIONS FOR FUTURE RESEARCH • Do large PLT events have different outcomes from practice-based PLT? • How does PLT impact on the development of a learning culture? • How can large; learning events best meet the needs of different groups of professionals? • What impact, if any, does the closure of surgeries for PLT have on use of out-of-hours services or subsequent workload?
Wan, Zhaofei; Liu, Xiaojun; Wang, Xinhong; Liu, Fuqiang; Liu, Weimin; Wu, Yue; Pei, Leilei; Yuan, Zuyi
2014-04-01
Arterial elasticity has been shown to predict cardiovascular disease (CVD) in apparently healthy populations. The present study aimed to explore whether arterial elasticity could predict CVD events in Chinese patients with angiographic coronary artery disease (CAD). Arterial elasticity of 365 patients with angiographic CAD was measured. During follow-up (48 months; range 6-65), 140 CVD events occurred (including 34 deaths). Univariate Cox analysis demonstrated that both large arterial elasticity and small arterial elasticity were significant predictors of CVD events. Multivariate Cox analysis indicated that small arterial elasticity remained significant. Kaplan-Meier analysis showed that the probability of having a CVD event/CVD death increased with a decrease of small arterial elasticity (P < .001, respectively). Decreased small arterial elasticity independently predicts the risk of CVD events in Chinese patients with angiographic CAD.
NASA Astrophysics Data System (ADS)
DeAngelis, Anthony M.
Changes in the characteristics of daily precipitation in response to global warming may have serious impacts on human life and property. An analysis of precipitation in climate models is performed to evaluate how well the models simulate the present climate and how precipitation may change in the future. Models participating in phase 3 and 5 of the Coupled Model Intercomparison Project (CMIP3 and CMIP5) have substantial biases in their simulation of heavy precipitation intensity over parts of North America during the 20th century. Despite these biases, the large-scale atmospheric circulation accompanying heavy precipitation is either simulated realistically or the strength of the circulation is overestimated. The biases are not related to the large-scale flow in a simple way, pointing toward the importance of other model deficiencies, such as coarse horizontal resolution and convective parameterizations, for the accurate simulation of intense precipitation. Although the models may not sufficiently simulate the intensity of precipitation, their realistic portrayal of the large-scale circulation suggests that projections of future precipitation may be reliable. In the CMIP5 ensemble, the distribution of daily precipitation is projected to undergo substantial changes in response to future atmospheric warming. The regional distribution of these changes was investigated, revealing that dry days and days with heavy-extreme precipitation are projected to increase at the expense of light-moderate precipitation over much of the middle and low latitudes. Such projections have serious implications for future impacts from flood and drought events. In other places, changes in the daily precipitation distribution are characterized by a shift toward either wetter or drier conditions in the future, with heavy-extreme precipitation projected to increase in all but the driest subtropical subsidence regions. Further analysis shows that increases in heavy precipitation in midlatitudes are largely explained by thermodynamics, including increases in atmospheric water vapor. However, in low latitudes and northern high latitudes, changes in vertical velocity accompanying heavy precipitation are also important. The strength of the large-scale atmospheric circulation is projected to change in accordance with vertical velocity in many places, though the circulation patterns, and therefore physical mechanisms that generate heavy precipitation, may remain the same.
Increasing precipitation volatility in twenty-first-century California
NASA Astrophysics Data System (ADS)
Swain, Daniel L.; Langenbrunner, Baird; Neelin, J. David; Hall, Alex
2018-05-01
Mediterranean climate regimes are particularly susceptible to rapid shifts between drought and flood—of which, California's rapid transition from record multi-year dryness between 2012 and 2016 to extreme wetness during the 2016-2017 winter provides a dramatic example. Projected future changes in such dry-to-wet events, however, remain inadequately quantified, which we investigate here using the Community Earth System Model Large Ensemble of climate model simulations. Anthropogenic forcing is found to yield large twenty-first-century increases in the frequency of wet extremes, including a more than threefold increase in sub-seasonal events comparable to California's `Great Flood of 1862'. Smaller but statistically robust increases in dry extremes are also apparent. As a consequence, a 25% to 100% increase in extreme dry-to-wet precipitation events is projected, despite only modest changes in mean precipitation. Such hydrological cycle intensification would seriously challenge California's existing water storage, conveyance and flood control infrastructure.
Early warning of climate tipping points
NASA Astrophysics Data System (ADS)
Lenton, Timothy M.
2011-07-01
A climate 'tipping point' occurs when a small change in forcing triggers a strongly nonlinear response in the internal dynamics of part of the climate system, qualitatively changing its future state. Human-induced climate change could push several large-scale 'tipping elements' past a tipping point. Candidates include irreversible melt of the Greenland ice sheet, dieback of the Amazon rainforest and shift of the West African monsoon. Recent assessments give an increased probability of future tipping events, and the corresponding impacts are estimated to be large, making them significant risks. Recent work shows that early warning of an approaching climate tipping point is possible in principle, and could have considerable value in reducing the risk that they pose.
NASA Astrophysics Data System (ADS)
von Trentini, F.; Schmid, F. J.; Braun, M.; Frigon, A.; Leduc, M.; Martel, J. L.; Willkofer, F.; Wood, R. R.; Ludwig, R.
2017-12-01
Meteorological extreme events seem to become more frequent in the present and future, and a seperation of natural climate variability and a clear climate change effect on these extreme events gains more and more interest. Since there is only one realisation of historical events, natural variability in terms of very long timeseries for a robust statistical analysis is not possible with observation data. A new single model large ensemble (SMLE), developed for the ClimEx project (Climate change and hydrological extreme events - risks and perspectives for water management in Bavaria and Québec) is supposed to overcome this lack of data by downscaling 50 members of the CanESM2 (RCP 8.5) with the Canadian CRCM5 regional model (using the EURO-CORDEX grid specifications) for timeseries of 1950-2099 each, resulting in 7500 years of simulated climate. This allows for a better probabilistic analysis of rare and extreme events than any preceding dataset. Besides seasonal sums, several indicators concerning heatwave frequency, duration and mean temperature a well as number and maximum length of dry periods (cons. days <1mm) are calculated for the ClimEx ensemble and several EURO-CORDEX runs. This enables us to investigate the interaction between natural variability (as it appears in the CanESM2-CRCM5 members) and a climate change signal of those members for past, present and future conditions. Adding the EURO-CORDEX results to this, we can also assess the role of internal model variability (or natural variability) in climate change simulations. A first comparison shows similar magnitudes of variability of climate change signals between the ClimEx large ensemble and the CORDEX runs for some indicators, while for most indicators the spread of the SMLE is smaller than the spread of different CORDEX models.
Rubin, David C.
2013-01-01
Research on future episodic thought has produced compelling theories and results in cognitive psychology, cognitive neuroscience, and clinical psychology. To integrate these using basic concepts and methods from autobiographical memory research, 76 undergraduates remembered past and imagined future positive and negative events that had or would have a major impact on them. Correlations of the online ratings of visual and auditory imagery, emotion, and other measures demonstrated that individuals used the same processes to the same extent to remember past and construct future events. These measures predicted the theoretically important metacognitive judgment of past reliving and future ‘preliving’ in similar ways. Future negative events had much higher scores than past negative events on standardized tests of reactions to traumatic events, scores in the range that would qualify for a diagnosis of posttraumatic stress disorder (PTSD), which was replicated (n = 52) to check for order effects. Consistent with earlier work, future events had less sensory vividness. Thus, the imagined symptoms of future events were unlikely to be caused by sensory vividness. To confirm this, 63 undergraduates produced numerous added details between two constructions of the same negative future events, removing deficits in rated vividness with no increase in the standardized tests of reactions to traumatic events. Neuroticism predicted individuals’ reactions to negative past events but did not predict imagined reactions to future events. This set of novel methods and findings are interpreted in the contexts of the literatures of episodic future thought, autobiographical memory, PTSD, and classic schema theory. PMID:23607632
Beck, A; Bayeff-Filloff, M; Bischoff, M; Schneider, B M
2002-11-01
The growing number of mass casualty events during the early 1990s led, in January 1996, to the foundation of an honorary group of specially trained emergency physicians for dealing primarily with the management of large-scale emergency events and mass casualties. The incidence and quantity of these casualties was analysed in order to be better prepared for such events in the future. All calls prospectively registered by the Augsburg Rescue Co-ordination Centre (ARCC) in the 5 years from July 1997 to June 2002 were analysed, distinguishing between the different types of damage, number of patients involved, and time of occurrence (time of day/season). The area served by the ARCC includes the city of Augsburg with its surrounding counties. An estimated 850,000 inhabitants live in this area of 4,100 square kilometers (1,600 square miles). Since 1998, more than 145,000 calls a year have been dealt with of which 28,000 were covered by emergency physicians. In the 5 year period discussed here, 75 large-scale-calls were registered, giving an average incidence of 1.25 calls/month. Most of the calls were fire alarms, followed by car accidents. In total, we were able to serve more than 800 patients. The lowest number per event was two people during an emergency landing of a sport aircraft; the largest number was about 150 patients during a large open-air event in the city. While there was no difference in the time of day at which the event happened, most occurred in November and December. Taking these results into account, the authors, supported by the members of the emergency physician team of the German Trauma Society, developed an algorithm describing the optimal procedure for mass casualty events. This is presented here. In mass casualty or large-scale emergency events, an experienced emergency physician is necessary to co-ordinate the rescue brigades on site.
Mass gathering medicine: a predictive model for patient presentation and transport rates.
Arbon, P; Bridgewater, F H; Smith, C
2001-01-01
This paper reports on research into the influence of environmental factors (including crowd size, temperature, humidity, and venue type) on the number of patients and the patient problems presenting to first-aid services at large, public events in Australia. Regression models were developed to predict rates of patient presentation and of transportation-to-a-hospital for future mass gatherings. To develop a data set and predictive model that can be applied across venues and types of mass gathering events that is not venue or event specific. Data collected will allow informed event planning for future mass gatherings for which health care services are required. Mass gatherings were defined as public events attended by in excess of 25,000 people. Over a period of 12 months, 201 mass gatherings attended by a combined audience in excess of 12 million people were surveyed throughout Australia. The survey was undertaken by St. John Ambulance Australia personnel. The researchers collected data on the incidence and type of patients presenting for treatment and on the environmental factors that may influence these presentations. A standard reporting format and definition of event geography was employed to overcome the event-specific nature of many previous surveys. There are 11,956 patients in the sample. The patient presentation rate across all event types was 0.992/1,000 attendees, and the transportation-to-hospital rate was 0.027/1,000 persons in attendance. The rates of patient presentations declined slightly as crowd sizes increased. The weather (particularly the relative humidity) was related positively to an increase in the rates of presentations. Other factors that influenced the number and type of patients presenting were the mobility of the crowd, the availability of alcohol, the event being enclosed by a boundary, and the number of patient-care personnel on duty. Three regression models were developed to predict presentation rates at future events. Several features of the event environment influence patient presentation rates, and that the prediction of patient load at these events is complex and multifactorial. The use of regression modeling and close attention to existing historical data for an event can improve planning and the provision of health care services at mass gatherings.
Celebrating the International Year of Light in Michigan
NASA Astrophysics Data System (ADS)
Sala, Anca L.; Dreyer, Elizabeth F. C.; Aku-Leh, Cynthia; Jones, Timothy; Nees, John A.; Smith, Arlene
2016-09-01
The 2015 International Year of Light created a wonderful opportunity to bring light and optics events and activities to people of all ages and occupations in Michigan. A large spectrum of events took place; from events held in schools, colleges, and universities targeting various groups of students, to events associated with festivals attended by large crowds. The latter included the Ann Arbor Summer Festival held in June and the Flint Back-to-the-Bricks Festival in August. All events included interactive activities where participants learned hands-on about optics and photonics phenomena and applications. Original demonstrations and kits were developed by the Ann Arbor OSA Local Section and the Optics Society at the University of Michigan, the joint OSA/SPIE student chapter, for use during the events. The activities were funded through the student chapter's SPIE grant for IYL outreach events and corporate sponsorships. Under the name Michigan Light Project, these groups along with local technology enthusiasts and science clubs delivered several events across Michigan. Other events took place throughout the year in Mid-Michigan through the efforts of faculty and students in the Photonics and Laser Technology program at Baker College of Flint. The outreach events targeted students in K-12. Teachers, counselors, and parents also learned about the importance of optics and photonics in society. The activities developed will continue this year and in the future. The paper will provide details on the completed events and activities along with tips for implementing similar activities and outreach partnerships in other areas.
Future changes of precipitation characteristics in China
NASA Astrophysics Data System (ADS)
Wu, S.; Wu, Y.; Wen, J.
2017-12-01
Global warming has the potential to alter the hydrological cycle, with significant impacts on the human society, the environment and ecosystems. This study provides a detailed assessment of potential changes in precipitation characteristics in China using a suite of 12 high-resolution CMIP5 climate models under a medium and a high Representative Concentration Pathways: RCP4.5 and RCP8.5. We examine future changes over the entire distribution of precipitation, and identify any shift in the shape and/or scale of the distribution. In addition, we use extreme-value theory to evaluate the change in probability and magnitude for extreme precipitation events. Overall, China is going to experience an increase in total precipitation (by 8% under RCP4.5 and 12% under RCP8.5). This increase is uneven spatially, with more increase in the west and less increase in the east. Precipitation frequency is projected to increase in the west and decrease in the east. Under RCP4.5, the overall precipitation frequency for the entire China remains largely unchanged (0.08%). However, RCP8.5 projects a more significant decrease in frequency for large part of China, resulting in an overall decrease of 2.08%. Precipitation intensity is likely increase more uniformly, with an overall increase of 11% for RCP4.5 and 19% for RCP8.5. Precipitation increases for all parts of the distribution, but the increase is more for higher quantiles, i.e. strong events. The relative contribution of small quantiles is likely to decrease, whereas contribution from heavy events is likely to increase. Extreme precipitation increase at much higher rates than average precipitation, and high rates of increase are expected for more extreme events. 1-year events are likely to increase by 15%, but 20-year events are going to increase by 21% under RCP4.5, 26% and 40% respectively under RCP8.5. The increase of extreme events is likely to be more spatially uniform.
NASA Astrophysics Data System (ADS)
Price-Whelan, Adrian M.; Agueros, M. A.; Fournier, A.; Street, R.; Ofek, E.; Levitan, D. B.; PTF Collaboration
2013-01-01
Many current photometric, time-domain surveys are driven by specific goals such as searches for supernovae or transiting exoplanets, or studies of stellar variability. These goals in turn set the cadence with which individual fields are re-imaged. In the case of the Palomar Transient Factory (PTF), several such sub-surveys are being conducted in parallel, leading to extremely non-uniform sampling over the survey's nearly 20,000 sq. deg. footprint. While the typical 7.26 sq. deg. PTF field has been imaged 20 times in R-band, ~2300 sq. deg. have been observed more than 100 times. We use the existing PTF data 6.4x107 light curves) to study the trade-off that occurs when searching for microlensing events when one has access to a large survey footprint with irregular sampling. To examine the probability that microlensing events can be recovered in these data, we also test previous statistics used on uniformly sampled data to identify variables and transients. We find that one such statistic, the von Neumann ratio, performs best for identifying simulated microlensing events. We develop a selection method using this statistic and apply it to data from all PTF fields with >100 observations to uncover a number of interesting candidate events. This work can help constrain all-sky event rate predictions and tests microlensing signal recovery in large datasets, both of which will be useful to future wide-field, time-domain surveys such as the LSST.
Possible seasonality in large deep-focus earthquakes
NASA Astrophysics Data System (ADS)
Zhan, Zhongwen; Shearer, Peter M.
2015-09-01
Large deep-focus earthquakes (magnitude > 7.0, depth > 500 km) have exhibited strong seasonality in their occurrence times since the beginning of global earthquake catalogs. Of 60 such events from 1900 to the present, 42 have occurred in the middle half of each year. The seasonality appears strongest in the northwest Pacific subduction zones and weakest in the Tonga region. Taken at face value, the surplus of northern hemisphere summer events is statistically significant, but due to the ex post facto hypothesis testing, the absence of seasonality in smaller deep earthquakes, and the lack of a known physical triggering mechanism, we cannot rule out that the observed seasonality is just random chance. However, we can make a testable prediction of seasonality in future large deep-focus earthquakes, which, given likely earthquake occurrence rates, should be verified or falsified within a few decades. If confirmed, deep earthquake seasonality would challenge our current understanding of deep earthquakes.
Some thoughts concerning large load-carrying vehicles
NASA Technical Reports Server (NTRS)
Spearman, M. L.
1983-01-01
Some implications relative to combat operations and force sustainability into the twenty-first century are discussed. The basic conjecture is that, sometime in the future, secure overseas basing may be denied to the United States by the Soviet Union or by unfriendly, unstable governments. In that event, the support of future battle itself, may be conducted from the continental U.S. and would introduce requirements for large, long-range, efficient, and sometimes, fast air vehicles. Some unusual design concepts and the technology requirements for such vehicles are suggested. It is concluded that, while much of the required technology is already being pursued, further advanced should be expected and sought in improved aerodynamics, propulsion, structures, and avionics with a view toward increased efficiency, utility, and affordability.
NASA Astrophysics Data System (ADS)
Price-Whelan, Adrian M.; Agüeros, Marcel A.; Fournier, Amanda P.; Street, Rachel; Ofek, Eran O.; Covey, Kevin R.; Levitan, David; Laher, Russ R.; Sesar, Branimir; Surace, Jason
2014-01-01
Many photometric time-domain surveys are driven by specific goals, such as searches for supernovae or transiting exoplanets, which set the cadence with which fields are re-imaged. In the case of the Palomar Transient Factory (PTF), several sub-surveys are conducted in parallel, leading to non-uniform sampling over its ~20,000 deg2 footprint. While the median 7.26 deg2 PTF field has been imaged ~40 times in the R band, ~2300 deg2 have been observed >100 times. We use PTF data to study the trade off between searching for microlensing events in a survey whose footprint is much larger than that of typical microlensing searches, but with far-from-optimal time sampling. To examine the probability that microlensing events can be recovered in these data, we test statistics used on uniformly sampled data to identify variables and transients. We find that the von Neumann ratio performs best for identifying simulated microlensing events in our data. We develop a selection method using this statistic and apply it to data from fields with >10 R-band observations, 1.1 × 109 light curves, uncovering three candidate microlensing events. We lack simultaneous, multi-color photometry to confirm these as microlensing events. However, their number is consistent with predictions for the event rate in the PTF footprint over the survey's three years of operations, as estimated from near-field microlensing models. This work can help constrain all-sky event rate predictions and tests microlensing signal recovery in large data sets, which will be useful to future time-domain surveys, such as that planned with the Large Synoptic Survey Telescope.
Tsatsoulis, C; Amthauer, H
2003-01-01
A novel methodological approach for identifying clusters of similar medical incidents by analyzing large databases of incident reports is described. The discovery of similar events allows the identification of patterns and trends, and makes possible the prediction of future events and the establishment of barriers and best practices. Two techniques from the fields of information science and artificial intelligence have been integrated—namely, case based reasoning and information retrieval—and very good clustering accuracies have been achieved on a test data set of incident reports from transfusion medicine. This work suggests that clustering should integrate the features of an incident captured in traditional form based records together with the detailed information found in the narrative included in event reports. PMID:14645892
Demblon, Julie; D'Argembeau, Arnaud
2014-02-01
Recent research suggests that many imagined future events are not represented in isolation, but instead are embedded in broader event sequences-referred to as event clusters. It remains unclear, however, whether the production of event clusters reflects the underlying organizational structure of prospective thinking or whether it is an artifact of the event-cuing task in which participants are explicitly required to provide chains of associated future events. To address this issue, the present study examined whether the occurrence of event clusters in prospective thought is apparent when people are left to think freely about events that might happen in their personal future. The results showed that the succession of events participants spontaneously produced when envisioning their future frequently included event clusters. This finding provides more compelling evidence that prospective thinking involves higher-order autobiographical knowledge structures that organize imagined events in coherent themes and sequences. Copyright © 2014 Elsevier Inc. All rights reserved.
Addis, Donna Rose; Wong, Alana T.; Schacter, Daniel L.
2007-01-01
People can consciously re-experience past events and pre-experience possible future events. This fMRI study examined the neural regions mediating the construction and elaboration of past and future events. Participants were cued with a noun for 20 seconds and instructed to construct a past or future event within a specified time period (week, year, 5–20 years). Once participants had the event in mind, they made a button press and for the remainder of the 20 seconds elaborated on the event. Importantly, all events generated were episodic and did not differ on a number of phenomenological qualities (detail, emotionality, personal significance, field/observer perspective). Conjunction analyses indicated the left hippocampus was commonly engaged by past and future event construction, along with posterior visuospatial regions, but considerable neural differentiation was also observed during the construction phase. Future events recruited regions involved in prospective thinking and generation processes, specifically right frontopolar cortex and left ventrolateral prefrontal cortex, respectively. Furthermore, future event construction uniquely engaged the right hippocampus, possibly as a response to the novelty of these events. In contrast to the construction phase, elaboration was characterized by remarkable overlap in regions comprising the autobiographical memory retrieval network, attributable to the common processes engaged during elaboration, including self-referential processing, contextual and episodic imagery. This striking neural overlap is consistent with findings that amnesic patients exhibit deficits in both past and future thinking, and confirms that the episodic system contributes importantly to imagining the future. PMID:17126370
Remembering the past and planning for the future in rats
Crystal, Jonathon D.
2012-01-01
A growing body of research suggests that rats represent and remember specific earlier events from the past. An important criterion for validating a rodent model of episodic memory is to establish that the content of the representation is about a specific event in the past rather than vague information about remoteness. Recent evidence suggests that rats may also represent events that are anticipated to occur in the future. An important capacity afforded by a representation of the future is the ability to plan for the occurrence of a future event. However, relatively little is known about the content of represented future events and the cognitive mechanisms that may support planning. This article reviews evidence that rats remember specific earlier events from the past, represent events that are anticipated to ccur in the future, and develops criteria for validating a rodent model of future planning. These criteria include representing a specific time in the future, the ability to temporarily disengage from a plan and reactivate the plan at an appropriate time in the future, and flexibility to deploy a plan in novel conditions. PMID:23219951
The Legacy of Episodic Climatic Events in Shaping Temperate, Broadleaf Forests
NASA Technical Reports Server (NTRS)
Pederson, Neil; Dyer, James M.; McEwan, Ryan W.; Hessl, Amy E.; Mock, Cary J.; Orwig, David A.; Rieder, Harald E.; Cook, Benjamin I.
2015-01-01
In humid, broadleaf-dominated forests where gap dynamics and partial canopy mortality appears to dominate the disturbance regime at local scales, paleoecological evidence shows alteration at regional-scales associated with climatic change. Yet, little evidence of these broad-scale events exists in extant forests. To evaluate the potential for the occurrence of large-scale disturbance, we used 76 tree-ring collections spanning approx. 840 000 sq km and 5327 tree recruitment dates spanning approx. 1.4 million sq km across the humid eastern United States. Rotated principal component analysis indicated a common growth pattern of a simultaneous reduction in competition in 22 populations across 61 000 km2. Growth-release analysis of these populations reveals an intense and coherent canopy disturbance from 1775 to 1780, peaking in 1776. The resulting time series of canopy disturbance is so poorly described by a Gaussian distribution that it can be described as ''heavy tailed,'' with most of the years from 1775 to 1780 comprising the heavy-tail portion of the distribution. Historical documents provide no evidence that hurricanes or ice storms triggered the 1775-1780 event. Instead, we identify a significant relationship between prior drought and years with elevated rates of disturbance with an intense drought occurring from 1772 to 1775. We further find that years with high rates of canopy disturbance have a propensity to create larger canopy gaps indicating repeated opportunities for rapid change in species composition beyond the landscape scale. Evidence of elevated, regional-scale disturbance reveals how rare events can potentially alter system trajectory: a substantial portion of old-growth forests examined here originated or were substantially altered more than two centuries ago following events lasting just a few years. Our recruitment data, comprised of at least 21 species and several shade-intolerant species, document a pulse of tree recruitment at the subcontinental scale during the late-1600s suggesting that this event was severe enough to open large canopy gaps. These disturbances and their climatic drivers support the hypothesis that punctuated, episodic, climatic events impart a legacy in broadleaf-dominated forests centuries after their occurrence. Given projections of future drought, these results also reveal the potential for abrupt, meso- to large-scale forest change in broadleaf-dominated forests over future decades.
FutureCoast: "Listen to your futures"
NASA Astrophysics Data System (ADS)
Pfirman, S. L.; Eklund, K.; Thacher, S.; Orlove, B. S.; Diane Stovall-Soto, G.; Brunacini, J.; Hernandez, T.
2014-12-01
Two science-arts approaches are emerging as effective means to convey "futurethinking" to learners: systems gaming and experiential futures. FutureCoast exemplifies the latter: by engaging participants with voicemails supposedly leaking from the cloud of possible futures, the storymaking game frames the complexities of climate science in relatable contexts. Because participants make the voicemails themselves, FutureCoast opens up creative ways for people to think about possibly climate-changed futures and personal ways to talk about them. FutureCoast is a project of the PoLAR Partnership with a target audience of informal adult learners primarily reached via mobile devices and online platforms. Scientists increasingly use scenarios and storylines as ways to explore the implications of environmental change and societal choices. Stories help people make connections across experiences and disciplines and link large-scale events to personal consequences. By making the future seem real today, FutureCoast's framework helps people visualize and plan for future climate changes. The voicemails contributed to FutureCoast are spread through the game's intended timeframe (2020 through 2065). Based on initial content analysis of voicemail text, common themes include ecosystems and landscapes, weather, technology, societal issues, governance and policy. Other issues somewhat less frequently discussed include security, food, industry and business, health, energy, infrastructure, water, economy, and migration. Further voicemail analysis is examining: temporal dimensions (salient time frames, short vs. long term issues, intergenerational, etc.), content (adaptation vs. mitigation, challenges vs. opportunities, etc.), and emotion (hopeful, resigned, etc. and overall emotional context). FutureCoast also engaged audiences through facilitated in-person experiences, geocaching events, and social media (Tumblr, Twitter, Facebook, YouTube). Analysis of the project suggests story-based games such as FutureCoast can serve as effective, accessible tools for engaging diverse audiences in thinking and talking about future "what if?" scenarios related to climate change and its impacts.
Integrative Paradigms for Planning Preferred Futures in a Pluralistic Democracy.
ERIC Educational Resources Information Center
Hansen, L. Sunny
This paper argues for a dramatic shift in thinking in the counseling profession and society at large. The argument is divided into three major themes or integrative concepts: (1) Partnerships; (2) Inclusivity; and (3) Connectedness. The themes are prefaced by a brief survey of global trends, national and international events, and crises caused by…
Moving forward: Responding to and mitigating effects of the MPB epidemic [Chapter 8
Claudia Regan; Barry Bollenbacher; Rob Gump; Mike Hillis
2014-01-01
The final webinar in the Future Forest Webinar Series provided an example of how managers utilized available science to address questions about post-epidemic forest conditions. Assessments of current conditions and projected trends, and how these compare with historical patterns, provide important information for land management planning. Large-scale disturbance events...
Investigating NARCCAP Precipitation Extremes via Bivariate Extreme Value Theory (Invited)
NASA Astrophysics Data System (ADS)
Weller, G. B.; Cooley, D. S.; Sain, S. R.; Bukovsky, M. S.; Mearns, L. O.
2013-12-01
We introduce methodology from statistical extreme value theory to examine the ability of reanalysis-drive regional climate models to simulate past daily precipitation extremes. Going beyond a comparison of summary statistics such as 20-year return values, we study whether the most extreme precipitation events produced by climate model simulations exhibit correspondence to the most extreme events seen in observational records. The extent of this correspondence is formulated via the statistical concept of tail dependence. We examine several case studies of extreme precipitation events simulated by the six models of the North American Regional Climate Change Assessment Program (NARCCAP) driven by NCEP reanalysis. It is found that the NARCCAP models generally reproduce daily winter precipitation extremes along the Pacific coast quite well; in contrast, simulation of past daily summer precipitation extremes in a central US region is poor. Some differences in the strength of extremal correspondence are seen in the central region between models which employ spectral nudging and those which do not. We demonstrate how these techniques may be used to draw a link between extreme precipitation events and large-scale atmospheric drivers, as well as to downscale extreme precipitation simulated by a future run of a regional climate model. Specifically, we examine potential future changes in the nature of extreme precipitation along the Pacific coast produced by the pineapple express (PE) phenomenon. A link between extreme precipitation events and a "PE Index" derived from North Pacific sea-surface pressure fields is found. This link is used to study PE-influenced extreme precipitation produced by a future-scenario climate model run.
The data acquisition and reduction challenge at the Large Hadron Collider.
Cittolin, Sergio
2012-02-28
The Large Hadron Collider detectors are technological marvels-which resemble, in functionality, three-dimensional digital cameras with 100 Mpixels-capable of observing proton-proton (pp) collisions at the crossing rate of 40 MHz. Data handling limitations at the recording end imply the selection of only one pp event out of each 10(5). The readout and processing of this huge amount of information, along with the selection of the best approximately 200 events every second, is carried out by a trigger and data acquisition system, supplemented by a sophisticated control and monitor system. This paper presents an overview of the challenges that the development of these systems has presented over the past 15 years. It concludes with a short historical perspective, some lessons learnt and a few thoughts on the future.
Changes in Extreme Events and the Potential Impacts on National Security
NASA Astrophysics Data System (ADS)
Bell, J.
2017-12-01
Extreme weather and climate events affect human health by causing death, injury, and illness, as well as having large socio-economic impacts. Climate change has caused changes in extreme event frequency, intensity and geographic distribution, and will continue to be a driver for changes in the future. Some of the extreme events that have already changed are heat waves, droughts, wildfires, flooding rains, coastal flooding, storm surge, and hurricanes. The pathways connecting extreme events to health outcomes and economic losses can be diverse and complex. The difficulty in predicting these relationships comes from the local intricacies of societal and environmental factors that influences the level of exposure. The goal of this presentation is to discuss the national security implications of changes in extreme weather events and demonstrate how changes in extremes can lead to a host cascading issues. To illustrate this point, this presentation will provide examples of the various pathways that extreme events can increase disease burden and cause economic stress.
Culture, temporal focus, and values of the past and the future.
Guo, Tieyuan; Ji, Li-Jun; Spina, Roy; Zhang, Zhiyong
2012-08-01
This article examines cultural differences in how people value future and past events. Throughout four studies, the authors found that European Canadians attached more monetary value to an event in the future than to an identical event in the past, whereas Chinese and Chinese Canadians placed more monetary value to a past event than to an identical future event. The authors also showed that temporal focus-thinking about the past or future-explained cultural influences on the temporal value asymmetry effect. Specifically, when induced to think about and focus on the future, Chinese valued the future more than the past, just like Euro-Canadians; when induced to think about and focus on the past, Euro-Canadians valued the past more than the future, just like Chinese.
The role of Natural Flood Management in managing floods in large scale basins during extreme events
NASA Astrophysics Data System (ADS)
Quinn, Paul; Owen, Gareth; ODonnell, Greg; Nicholson, Alex; Hetherington, David
2016-04-01
There is a strong evidence database showing the negative impacts of land use intensification and soil degradation in NW European river basins on hydrological response and to flood impact downstream. However, the ability to target zones of high runoff production and the extent to which we can manage flood risk using nature-based flood management solution are less known. A move to planting more trees and having less intense farmed landscapes is part of natural flood management (NFM) solutions and these methods suggest that flood risk can be managed in alternative and more holistic ways. So what local NFM management methods should be used, where in large scale basin should they be deployed and how does flow is propagate to any point downstream? Generally, how much intervention is needed and will it compromise food production systems? If we are observing record levels of rainfall and flow, for example during Storm Desmond in Dec 2015 in the North West of England, what other flood management options are really needed to complement our traditional defences in large basins for the future? In this paper we will show examples of NFM interventions in the UK that have impacted at local scale sites. We will demonstrate the impact of interventions at local, sub-catchment (meso-scale) and finally at the large scale. These tools include observations, process based models and more generalised Flood Impact Models. Issues of synchronisation and the design level of protection will be debated. By reworking observed rainfall and discharge (runoff) for observed extreme events in the River Eden and River Tyne, during Storm Desmond, we will show how much flood protection is needed in large scale basins. The research will thus pose a number of key questions as to how floods may have to be managed in large scale basins in the future. We will seek to support a method of catchment systems engineering that holds water back across the whole landscape as a major opportunity to management water in large scale basins in the future. The broader benefits of engineering landscapes to hold water for pollution control, sediment loss and drought minimisation will also be shown.
Wieczorek, Gerald F.; Eaton, L. Scott; Morgan, Benjamin A.; Wooten, R.M.; Morrissey, M.
2009-01-01
Generally, every several years, heavy amounts of rainfall trigger a large number of debris flows within the central and southern Appalachian Mountains of the Eastern United States. These types of landslides damage buildings, disrupt infrastructure, and occasionally injure and kill people. One of the first large debris flows was described in Pennsylvania in August 1779. The most destructive event occurred during August 19-20, 1969, in Nelson County, Va. During a period of 8 hours, 710 to 800 milimeters of rain triggered more than 3,000 landslides, killing more than 150 people. As the population increases in this region, future storms will likely increase the risks of property damage and loss of life. We provide a general overview of debris flows in the Appalachians, using a compilation of 19 storm events for which rainfall, duration of the storm, and descriptions of the resulting landslides have been substantially documented.
Zhang, Jintao; Zhao, Guoxiang; Li, Xiaoming; Hong, Yan; Fang, Xiaoyi; Barnett, Douglas; Lin, Xiuyun; Zhao, Junfeng; Zhang, Liying
2009-12-01
The current study was designed to explore the effect of future orientation in mediating the relationship between traumatic events and mental health in children affected by HIV/AIDS in rural China. Cross-sectional data were collected from 1221 children affected by HIV/AIDS (755 AIDS orphans and 466 vulnerable children). Future orientation among children was measured using three indicators (future expectation, hopefulness toward the future, and perceived control over the future). Measures of mental health consisted of depression, loneliness, and self-esteem. Children's experience of any traumatic events was measured using a modified version of the Life Incidence of Traumatic Events-Student Form. Mediation analysis was conducted using structural equation modeling (SEM) methods. Among the children surveyed, most of the traumatic indicators were negatively associated with future expectation, hopefulness, perceived control, and self-esteem, and positively associated with depression and loneliness. The SEM of mediation analysis demonstrated an adequate fit. Future orientation fully mediated the relationship between traumatic events and mental health and accounted for 67.9% of the total effect of traumatic events on mental health. Results of this study support the positive effect of future expectation in mediating the relationship between traumatic events and mental health among children affected by HIV/AIDS in China. Future mental health promotion and intervention efforts targeting children affected by HIV/AIDS should include components that can mitigate the negative impact of traumatic events on their lives. These components may aim to develop children's positive future expectations, increase their hopefulness toward the future, and improve their perceived control over the future.
Envisioning the times of future events: The role of personal goals.
Ben Malek, Hédi; Berna, Fabrice; D'Argembeau, Arnaud
2018-05-25
Episodic future thinking refers to the human capacity to imagine or simulate events that might occur in one's personal future. Previous studies have shown that personal goals guide the construction and organization of episodic future thoughts, and here we sought to investigate the role of personal goals in the process of locating imagined events in time. Using a think-aloud protocol, we found that dates were directly accessed more frequently for goal-related than goal-unrelated future events, and the goal-relevance of events was a significant predictor of direct access to temporal information on a trial-by-trial basis. Furthermore, when an event was not directly dated, references to anticipated lifetime periods were more frequently used as a strategy to determine when a goal-related event might occur. Together, these findings shed new light on the mechanisms by which personal goals contribute to the location of imagined events in future times. Copyright © 2018 Elsevier Inc. All rights reserved.
Well-being and Anticipation for Future Positive Events: Evidences from an fMRI Study.
Luo, Yangmei; Chen, Xuhai; Qi, Senqing; You, Xuqun; Huang, Xiting
2017-01-01
Anticipation for future confers great benefits to human well-being and mental health. However, previous work focus on how people's well-being correlate with brain activities during perception of emotional stimuli, rather than anticipation for the future events. Here, the current study investigated how well-being relates to neural circuitry underlying the anticipating process of future desired events. Using event-related functional magnetic resonance imaging, 40 participants were scanned while they were performing an emotion anticipation task, in which they were instructed to anticipate the positive or neutral events. The results showed that bilateral medial prefrontal cortex (MPFC) were activated during anticipation for positive events relative to neutral events, and the enhanced brain activation in MPFC was associated with higher level of well-being. The findings suggest a neural mechanism by which the anticipation process to future desired events correlates to human well-being, which provide a future-oriented view on the neural sources of well-being.
Well-being and Anticipation for Future Positive Events: Evidences from an fMRI Study
Luo, Yangmei; Chen, Xuhai; Qi, Senqing; You, Xuqun; Huang, Xiting
2018-01-01
Anticipation for future confers great benefits to human well-being and mental health. However, previous work focus on how people’s well-being correlate with brain activities during perception of emotional stimuli, rather than anticipation for the future events. Here, the current study investigated how well-being relates to neural circuitry underlying the anticipating process of future desired events. Using event-related functional magnetic resonance imaging, 40 participants were scanned while they were performing an emotion anticipation task, in which they were instructed to anticipate the positive or neutral events. The results showed that bilateral medial prefrontal cortex (MPFC) were activated during anticipation for positive events relative to neutral events, and the enhanced brain activation in MPFC was associated with higher level of well-being. The findings suggest a neural mechanism by which the anticipation process to future desired events correlates to human well-being, which provide a future-oriented view on the neural sources of well-being. PMID:29375415
Chen, Xing-jie; Liu, Lu-lu; Cui, Ji-fang; Wang, Ya; Chen, An-tao; Li, Feng-hua; Wang, Wei-hong; Zheng, Han-feng; Gan, Ming-yuan; Li, Chun-qiu; Shum, David H. K.; Chan, Raymond C. K.
2016-01-01
Mental time travel refers to the ability to recall past events and to imagine possible future events. Schizophrenia (SCZ) patients have problems in remembering specific personal experiences in the past and imagining what will happen in the future. This study aimed to examine episodic past and future thinking in SCZ spectrum disorders including SCZ patients and individuals with schizotypal personality disorder (SPD) proneness who are at risk for developing SCZ. Thirty-two SCZ patients, 30 SPD proneness individuals, and 33 healthy controls participated in the study. The Sentence Completion for Events from the Past Test (SCEPT) and the Sentence Completion for Events in the Future Test were used to measure past and future thinking abilities. Results showed that SCZ patients showed significantly reduced specificity in recalling past and imagining future events, they generated less proportion of specific and extended events compared to healthy controls. SPD proneness individuals only generated less extended events compared to healthy controls. The reduced specificity was mainly manifested in imagining future events. Both SCZ patients and SPD proneness individuals generated less positive events than controls. These results suggest that mental time travel impairments in SCZ spectrum disorders and have implications for understanding their cognitive and emotional deficits. PMID:27507958
NASA Astrophysics Data System (ADS)
Xu, Ying; Gao, Xuejie; Giorgi, Filippo; Zhou, Botao; Shi, Ying; Wu, Jie; Zhang, Yongxiang
2018-04-01
Future changes in the 50-yr return level for temperature and precipitation extremes over mainland China are investigated based on a CMIP5 multi-model ensemble for RCP2.6, RCP4.5 and RCP8.5 scenarios. The following indices are analyzed: TXx and TNn (the annual maximum and minimum of daily maximum and minimum surface temperature), RX5day (the annual maximum consecutive 5-day precipitation) and CDD (maximum annual number of consecutive dry days). After first validating the model performance, future changes in the 50-yr return values and return periods for these indices are investigated along with the inter-model spread. Multi-model median changes show an increase in the 50-yr return values of TXx and a decrease for TNn, more specifically, by the end of the 21st century under RCP8.5, the present day 50-yr return period of warm events is reduced to 1.2 yr, while extreme cold events over the country are projected to essentially disappear. A general increase in RX5day 50-yr return values is found in the future. By the end of the 21st century under RCP8.5, events of the present RX5day 50-yr return period are projected to reduce to < 10 yr over most of China. Changes in CDD-50 show a dipole pattern over China, with a decrease in the values and longer return periods in the north, and vice versa in the south. Our study also highlights the need for further improvements in the representation of extreme events in climate models to assess the future risks and engineering design related to large-scale infrastructure in China.
NASA Technical Reports Server (NTRS)
Grotjahn, Richard; Black, Robert; Leung, Ruby; Wehner, Michael F.; Barlow, Mathew; Bosilovich, Michael G.; Gershunov, Alexander; Gutowski, William J., Jr.; Gyakum, John R.; Katz, Richard W.;
2015-01-01
The objective of this paper is to review statistical methods, dynamics, modeling efforts, and trends related to temperature extremes, with a focus upon extreme events of short duration that affect parts of North America. These events are associated with large scale meteorological patterns (LSMPs). The statistics, dynamics, and modeling sections of this paper are written to be autonomous and so can be read separately. Methods to define extreme events statistics and to identify and connect LSMPs to extreme temperature events are presented. Recent advances in statistical techniques connect LSMPs to extreme temperatures through appropriately defined covariates that supplement more straightforward analyses. Various LSMPs, ranging from synoptic to planetary scale structures, are associated with extreme temperature events. Current knowledge about the synoptics and the dynamical mechanisms leading to the associated LSMPs is incomplete. Systematic studies of: the physics of LSMP life cycles, comprehensive model assessment of LSMP-extreme temperature event linkages, and LSMP properties are needed. Generally, climate models capture observed properties of heat waves and cold air outbreaks with some fidelity. However they overestimate warm wave frequency and underestimate cold air outbreak frequency, and underestimate the collective influence of low-frequency modes on temperature extremes. Modeling studies have identified the impact of large-scale circulation anomalies and landatmosphere interactions on changes in extreme temperatures. However, few studies have examined changes in LSMPs to more specifically understand the role of LSMPs on past and future extreme temperature changes. Even though LSMPs are resolvable by global and regional climate models, they are not necessarily well simulated. The paper concludes with unresolved issues and research questions.
Structuring the Future: Anticipated Life Events, Peer Networks, and Adolescent Sexual Behavior
Soller, Brian; Haynie, Dana L.
2013-01-01
While prior research has established associations between individual expectations of future events and risk behavior among adolescents, the potential effects of peers’ future perceptions on risk-taking have been overlooked. We extend prior research by testing whether peers’ anticipation of college completion is associated with adolescent sexual risk-taking. We also examine whether adolescents’ perceptions of the negative consequences of pregnancy and idealized romantic relationship scripts mediate the association between peers’ anticipation of college completion and sexual risk-taking. Results from multivariate regression models with data from the National Longitudinal Study of Adolescent Health (Add Health) indicate peers’ anticipation of college completion is negatively associated with a composite measure of sexual risk-taking and positively associated with the odds of abstaining from sexual intercourse and only engaging in intercourse with a romantic partner (compared to having intercourse with a non-romantic partner). In addition, perceptions of the negative consequences of pregnancy and sexualized relationship scripts appear to mediate a large portion of the association between peers’ anticipation of future success and sexual risk-taking and the likelihood of abstaining (but not engaging in romantic-only intercourse). Results from our study underscore the importance of peers in shaping adolescent sexual behavior. PMID:24223438
Comparison of Ionospheric and Thermospheric Effects During Two High Speed Stream Events
NASA Astrophysics Data System (ADS)
Verkhoglyadova, O. P.; Tsurutani, B.; Mannucci, A. J.; Paxton, L.; Mlynczak, M. G.; Hunt, L. A.; Echer, E.
2013-12-01
We analyze two CIR-HSS events during ascending phase of the current solar cycle. The first event occurred on 8-12 May 2012 and was characterized by a large CIR and intense High Intensity Long Duration Continuous Auroral Activity (HILDCAA). Long-duration moderate geomagnetic storm (Dst ~ -50 nT) occurred during this event. The second event on 29 April - 4 May 2011 had a large CIR and extended HSS, but weaker geomagnetic activity. We focus on understanding differences and similarities of the magnetosphere-ionosphere-thermosphere coupling during these two events. We will use a suite of ground-based and satellite measurements to create a comprehensive picture of the events. Evolution of the polar cap convection pattern is analyzed based on SuperDARN data. DMSP/SSUSI far ultraviolet measurements provide information on airglow intensity and characteristics of the F-region of the dusktime ionosphere. The GPS total electron content (TEC) database and JPL's Global Ionospheric Maps (GIM) are used to study vertical TEC (VTEC) for different local times and latitude ranges. We discuss dynamics of VTEC above individual ground GPS sites with respect to local time and latitude ranges. We analyze the TIMED/SABER zonal flux of nitric oxide (NO) infrared cooling radiation and auroral heating throughout the events. Global dynamics of the column density ratio ΣO/N2 is studied based on TIMED/GUVI measurements. Our results will advance understanding of the ionosphere-thermosphere response to external forcing and help future forecasting efforts.
Not my future? Core values and the neural representation of future events.
Brosch, Tobias; Stussi, Yoann; Desrichard, Olivier; Sander, David
2018-06-01
Individuals with pronounced self-transcendence values have been shown to put greater weight on the long-term consequences of their actions when making decisions. Using functional magnetic resonance imaging, we investigated the neural mechanisms underlying the evaluation of events occurring several decades in the future as well as the role of core values in these processes. Thirty-six participants viewed a series of events, consisting of potential consequences of climate change, which could occur in the near future (around 2030), and thus would be experienced by the participants themselves, or in the far future (around 2080). We observed increased activation in anterior VMPFC (BA11), a region involved in encoding the personal significance of future events, when participants were envisioning far future events, demonstrating for the first time that the role of the VMPFC in future projection extends to the time scale of decades. Importantly, this activation increase was observed only in participants with pronounced self-transcendence values measured by self-report questionnaire, as shown by a statistically significant interaction of temporal distance and value structure. These findings suggest that future projection mechanisms are modulated by self-transcendence values to allow for a more extensive simulation of far future events. Consistent with this, these participants reported similar concern ratings for near and far future events, whereas participants with pronounced self-enhancement values were more concerned about near future events. Our findings provide a neural substrate for the tendency of individuals with pronounced self-transcendence values to consider the long-term consequences of their actions.
NASA Astrophysics Data System (ADS)
Novelo-Casanova, D. A.; Valdés-González, C.
2008-10-01
Using pattern recognition techniques, we formulate a simple prediction rule for a retrospective prediction of the three last largest eruptions of the Popocatépetl, Mexico, volcano that occurred on 23 April-30 June 1997 (Eruption 1; VEI ~ 2-3); 11 December 2000-23 January 2001 (Eruption 2; VEI ~ 3-4) and 7 June-4 September 2002 (Eruption 3; explosive dome extrusion and destruction phase). Times of Increased Probability (TIP) were estimated from the seismicity recorded by the local seismic network from 1 January 1995 to 31 December 2005. A TIP is issued when a cluster of seismic events occurs under our algorithm considerations in a temporal window several days (or weeks) prior to large volcanic activity providing sufficient time to organize an effective alert strategy. The best predictions of the three analyzed eruptions were obtained when averaging seismicity rate over a 5-day window with a threshold value of 12 events and declaring an alarm for 45 days. A TIP was issued about six weeks before Eruption 1. TIPs were detected about one and four weeks before Eruptions 2 and 3, respectively. According to our objectives, in all cases, the observed TIPs would have allowed the development of an effective civil protection strategy. Although, under our model considerations the three eruptive events were successfully predicted, one false alarm was also issued by our algorithm. An analysis of the epicentral and depth distribution of the local seismicity used by our prediction rule reveals that successful TIPs were issued from microearthquakes that took place below and towards SE of the crater. On the contrary, the seismicity that issued the observed false alarm was concentrated below the summit of the volcano. We conclude that recording of precursory seismicity below and SE of the crater together with detection of TIPs as described here, could become an important tool to predict future large eruptions at Popocatépetl. Although our model worked well for events that occurred in the past, it is necessary to verify the real capability of the model for future eruptive events.
NASA Astrophysics Data System (ADS)
Avakyan, S. V.; Gaponov, V. A.; Nicol'skii, G. A.; Solov'ev, A. A.
2017-06-01
During interplanetary flight, after large solar flares, astronauts are subject to the impact of relativistic solar protons. These particles produce an especially strong effect during extravehicular activity or landing on Mars (in the future). The relativistic protons reach the orbits of the Earth and Mars with a delay of several hours relative to solar X-rays and UV radiation. In this paper, we discuss a new opportunity to predict the most dangerous events caused by Solar Cosmic Rays with protons of maximum (relativistic) energy, known in the of solar-terrestrial physics asGround Level Enhancements or Ground Level Events (GLEs). This new capability is based on a close relationship between the dangerous events and decrease ofTotal Solar Irradiance (TSI)which precedes these events. This important relationship is revealed for the first time.
History of On-orbit Satellite Fragmentations (14th Edition)
NASA Technical Reports Server (NTRS)
Johnson, Nicholas L.; Stansbery, Eugene; Whitlock, David O.; Abercromby, Kira J.; Shoots, Debra
2008-01-01
Since the first serious satellite fragmentation occurred in June 1961 (which instantaneously increased the total Earth satellite population by more than 400%) the issue of space operations within the finite region of space around the Earth has been the subject of increasing interest and concern. The prolific satellite fragmentations of the 1970s and the marked increase in the number of fragmentations in the 1980s served to widen international research into the characteristics and consequences of such events. Continued events in all orbits in later years make definition and historical accounting of those events crucial to future research. Large, manned space stations and the growing number of operational robotic satellites demand a better understanding of the hazards of the dynamic Earth satellite population.
Little, Charles M; McStay, Christopher; Oeth, Justin; Koehler, April; Bookman, Kelly
2018-02-01
The use of after-action reviews (AARs) following major emergency events, such as a disaster, is common and mandated for hospitals and similar organizations. There is a recurrent challenge of identified problems not being resolved and repeated in subsequent events. A process improvement technique called a rapid improvement event (RIE) was used to conduct an AAR following a complete information technology (IT) outage at a large urban hospital. Using RIE methodology to conduct the AAR allowed for the rapid development and implementation of major process improvements to prepare for future IT downtime events. Thus, process improvement methodology, particularly the RIE, is suited for conducting AARs following disasters and holds promise for improving outcomes in emergency management. Little CM , McStay C , Oeth J , Koehler A , Bookman K . Using rapid improvement events for disaster after-action reviews: experience in a hospital information technology outage and response. Prehosp Disaster Med. 2018;33(1):98-100.
Anthropogenic warming exacerbates European soil moisture droughts
NASA Astrophysics Data System (ADS)
Samaniego, L.; Thober, S.; Kumar, R.; Wanders, N.; Rakovec, O.; Pan, M.; Zink, M.; Sheffield, J.; Wood, E. F.; Marx, A.
2018-05-01
Anthropogenic warming is anticipated to increase soil moisture drought in the future. However, projections are accompanied by large uncertainty due to varying estimates of future warming. Here, using an ensemble of hydrological and land-surface models, forced with bias-corrected downscaled general circulation model output, we estimate the impacts of 1-3 K global mean temperature increases on soil moisture droughts in Europe. Compared to the 1.5 K Paris target, an increase of 3 K—which represents current projected temperature change—is found to increase drought area by 40% (±24%), affecting up to 42% (±22%) more of the population. Furthermore, an event similar to the 2003 drought is shown to become twice as frequent; thus, due to their increased occurrence, events of this magnitude will no longer be classified as extreme. In the absence of effective mitigation, Europe will therefore face unprecedented increases in soil moisture drought, presenting new challenges for adaptation across the continent.
Do strategic processes contribute to the specificity of future simulation in depression?
Addis, Donna Rose; Hach, Sylvia; Tippett, Lynette J
2016-06-01
The tendency to generate overgeneral past or future events is characteristic of individuals with a history of depression. Although much research has investigated the contribution of rumination and avoidance to the reduced specificity of past events, comparatively little research has examined (1) whether the specificity of future events is differentially reduced in depression and (2) the role of executive functions in this phenomenon. Our study aimed to redress this imbalance. Participants with either current or past experience of depressive symptoms ('depressive group'; N = 24) and matched controls ('control group'; N = 24) completed tests of avoidance, rumination, and executive functions. A modified Autobiographical Memory Test was administered to assess the specificity of past and future events. The depressive group were more ruminative and avoidant than controls, but did not exhibit deficits in executive function. Although overall the depressive group generated significantly fewer specific events than controls, this reduction was driven by a significant group difference in future event specificity. Strategic retrieval processes were correlated with both past and future specificity, and predictive of the future specificity, whereas avoidance and rumination were not. Our findings demonstrate that future simulation appears to be particularly vulnerable to disruption in individuals with current or past experience of depressive symptoms, consistent with the notion that future simulation is more cognitively demanding than autobiographical memory retrieval. Moreover, our findings suggest that even subtle changes in executive functions such as strategic processes may impact the ability to imagine specific future events. Future simulation may be particularly vulnerable to executive dysfunction in individuals with current/previous depressive symptoms, with evidence of a differential reduction in the specificity of future events. Strategic retrieval abilities were associated with the degree of future event specificity whereas levels of rumination and avoidance were not. Given that the ability to generate specific simulations of the future is associated with enhanced psychological wellbeing, problem solving and coping behaviours, understanding how to increase the specificity of future simulations in depression is an important direction for future research and clinical practice. Interventions focusing on improving the ability to engage strategic processes may be a fruitful avenue for increasing the ability to imagine specific future events in depression. The autobiographical event tasks have somewhat limited ecological validity as they do not account for the many social and environmental cues present in everyday life; the development of more clinically-relevant tasks may be of benefit to this area of study. © 2016 The British Psychological Society.
NASA Astrophysics Data System (ADS)
Sooraj, K. P.; Terray, Pascal; Xavier, Prince
2016-06-01
Numerous global warming studies show the anticipated increase in mean precipitation with the rising levels of carbon dioxide concentration. However, apart from the changes in mean precipitation, the finer details of daily precipitation distribution, such as its intensity and frequency (so called daily rainfall extremes), need to be accounted for while determining the impacts of climate changes in future precipitation regimes. Here we examine the climate model projections from a large set of Coupled Model Inter-comparison Project 5 models, to assess these future aspects of rainfall distribution over Asian summer monsoon (ASM) region. Our assessment unravels a north-south rainfall dipole pattern, with increased rainfall over Indian subcontinent extending into the western Pacific region (north ASM region, NASM) and decreased rainfall over equatorial oceanic convergence zone over eastern Indian Ocean region (south ASM region, SASM). This robust future pattern is well conspicuous at both seasonal and sub-seasonal time scales. Subsequent analysis, using daily rainfall events defined using percentile thresholds, demonstrates that mean rainfall changes over NASM region are mainly associated with more intense and more frequent extreme rainfall events (i.e. above 95th percentile). The inference is that there are significant future changes in rainfall probability distributions and not only a uniform shift in the mean rainfall over the NASM region. Rainfall suppression over SASM seems to be associated with changes involving multiple rainfall events and shows a larger model spread, thus making its interpretation more complex compared to NASM. Moisture budget diagnostics generally show that the low-level moisture convergence, due to stronger increase of water vapour in the atmosphere, acts positively to future rainfall changes, especially for heaviest rainfall events. However, it seems that the dynamic component of moisture convergence, associated with vertical motion, shows a strong spatial and rainfall category dependency, sometimes offsetting the effect of the water vapour increase. Additionally, we found that the moisture convergence is mainly dominated by the climatological vertical motion acting on the humidity changes and the interplay between all these processes proves to play a pivotal role for regulating the intensities of various rainfall events in the two domains.
Knoeferle, Pia; Carminati, Maria Nella; Abashidze, Dato; Essig, Kai
2011-01-01
Eye-tracking findings suggest people prefer to ground their spoken language comprehension by focusing on recently seen events more than anticipating future events: When the verb in NP1-VERB-ADV-NP2 sentences was referentially ambiguous between a recently depicted and an equally plausible future clipart action, listeners fixated the target of the recent action more often at the verb than the object that hadn’t yet been acted upon. We examined whether this inspection preference generalizes to real-world events, and whether it is (vs. isn’t) modulated by how often people see recent and future events acted out. In a first eye-tracking study, the experimenter performed an action (e.g., sugaring pancakes), and then a spoken sentence either referred to that action or to an equally plausible future action (e.g., sugaring strawberries). At the verb, people more often inspected the pancakes (the recent target) than the strawberries (the future target), thus replicating the recent-event preference with these real-world actions. Adverb tense, indicating a future versus past event, had no effect on participants’ visual attention. In a second study we increased the frequency of future actions such that participants saw 50/50 future and recent actions. During the verb people mostly inspected the recent action target, but subsequently they began to rely on tense, and anticipated the future target more often for future than past tense adverbs. A corpus study showed that the verbs and adverbs indicating past versus future actions were equally frequent, suggesting long-term frequency biases did not cause the recent-event preference. Thus, (a) recent real-world actions can rapidly influence comprehension (as indexed by eye gaze to objects), and (b) people prefer to first inspect a recent action target (vs. an object that will soon be acted upon), even when past and future actions occur with equal frequency. A simple frequency-of-experience account cannot accommodate these findings. PMID:22207858
A large-scale dataset of solar event reports from automated feature recognition modules
NASA Astrophysics Data System (ADS)
Schuh, Michael A.; Angryk, Rafal A.; Martens, Petrus C.
2016-05-01
The massive repository of images of the Sun captured by the Solar Dynamics Observatory (SDO) mission has ushered in the era of Big Data for Solar Physics. In this work, we investigate the entire public collection of events reported to the Heliophysics Event Knowledgebase (HEK) from automated solar feature recognition modules operated by the SDO Feature Finding Team (FFT). With the SDO mission recently surpassing five years of operations, and over 280,000 event reports for seven types of solar phenomena, we present the broadest and most comprehensive large-scale dataset of the SDO FFT modules to date. We also present numerous statistics on these modules, providing valuable contextual information for better understanding and validating of the individual event reports and the entire dataset as a whole. After extensive data cleaning through exploratory data analysis, we highlight several opportunities for knowledge discovery from data (KDD). Through these important prerequisite analyses presented here, the results of KDD from Solar Big Data will be overall more reliable and better understood. As the SDO mission remains operational over the coming years, these datasets will continue to grow in size and value. Future versions of this dataset will be analyzed in the general framework established in this work and maintained publicly online for easy access by the community.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiogama, Hideo; Imada, Yukiko; Mori, Masato
Here, we describe two unprecedented large (100-member), longterm (61-year) ensembles based on MRI-AGCM3.2, which were driven by historical and non-warming climate forcing. These ensembles comprise the "Database for Policy Decision making for Future climate change (d4PDF)". We compare these ensembles to large ensembles based on another climate model, as well as to observed data, to investigate the influence of anthropogenic activities on historical changes in the numbers of record-breaking events, including: the annual coldest daily minimum temperature (TNn), the annual warmest daily maximum temperature (TXx) and the annual most intense daily precipitation event (Rx1day). These two climate model ensembles indicatemore » that human activity has already had statistically significant impacts on the number of record-breaking extreme events worldwide mainly in the Northern Hemisphere land. Specifically, human activities have altered the likelihood that a wider area globally would suffer record-breaking TNn, TXx and Rx1day events than that observed over the 2001- 2010 period by a factor of at least 0.6, 5.4 and 1.3, respectively. However, we also find that the estimated spatial patterns and amplitudes of anthropogenic impacts on the probabilities of record-breaking events are sensitive to the climate model and/or natural-world boundary conditions used in the attribution studies.« less
Visual perspective in remembering and episodic future thought.
McDermott, Kathleen B; Wooldridge, Cynthia L; Rice, Heather J; Berg, Jeffrey J; Szpunar, Karl K
2016-01-01
According to the constructive episodic simulation hypothesis, remembering and episodic future thinking are supported by a common set of constructive processes. In the present study, we directly addressed this assertion in the context of third-person perspectives that arise during remembering and episodic future thought. Specifically, we examined the frequency with which participants remembered past events or imagined future events from third-person perspectives. We also examined the different viewpoints from which third-person perspective events were remembered or imagined. Although future events were somewhat more likely to be imagined from a third-person perspective, the spatial viewpoint distributions of third-person perspectives characterizing remembered and imagined events were highly similar. These results suggest that a similar constructive mechanism may be at work when people remember events from a perspective that could not have been experienced in the past and when they imagine events from a perspective that could not be experienced in the future. The findings are discussed in terms of their consistency with--and as extensions of--the constructive episodic simulation hypothesis.
Berntsen, Dorthe; Bohn, Annette
2010-04-01
Episodic future thinking is a projection of the self into the future to mentally preexperience an event. Previous work has shown striking similarities between autobiographical memory and episodic future thinking in response to various experimental manipulations. This has nurtured the idea of a shared neurocognitive system underlying both processes. Here, undergraduates generated autobiographical memories and future event representations in response to cue words and requests for important events and rated their characteristics. Important and word-cued events differed markedly on almost all measures. Past, as compared with future, events were rated as more sensorially vivid and less relevant to life story and identity. However, in contrast to previous work, these main effects were qualified by a number of interactions, suggesting important functional differences between the two temporal directions. For both temporal directions, sensory imagery dropped, whereas self-narrative importance and reference to normative cultural life script events increased with increasing temporal distance.
Shiogama, Hideo; Imada, Yukiko; Mori, Masato; ...
2016-08-07
Here, we describe two unprecedented large (100-member), longterm (61-year) ensembles based on MRI-AGCM3.2, which were driven by historical and non-warming climate forcing. These ensembles comprise the "Database for Policy Decision making for Future climate change (d4PDF)". We compare these ensembles to large ensembles based on another climate model, as well as to observed data, to investigate the influence of anthropogenic activities on historical changes in the numbers of record-breaking events, including: the annual coldest daily minimum temperature (TNn), the annual warmest daily maximum temperature (TXx) and the annual most intense daily precipitation event (Rx1day). These two climate model ensembles indicatemore » that human activity has already had statistically significant impacts on the number of record-breaking extreme events worldwide mainly in the Northern Hemisphere land. Specifically, human activities have altered the likelihood that a wider area globally would suffer record-breaking TNn, TXx and Rx1day events than that observed over the 2001- 2010 period by a factor of at least 0.6, 5.4 and 1.3, respectively. However, we also find that the estimated spatial patterns and amplitudes of anthropogenic impacts on the probabilities of record-breaking events are sensitive to the climate model and/or natural-world boundary conditions used in the attribution studies.« less
Chen, Xing-Jie; Liu, Lu-Lu; Cui, Ji-Fang; Wang, Ya; Shum, David H. K.; Chan, Raymond C. K.
2015-01-01
Mental time travel refers to the ability to recall episodic past and imagine future events. The present study aimed to investigate cultural differences in mental time travel between Chinese and Australian university students. A total of 231 students (108 Chinese and 123 Australians) participated in the study. Their mental time travel abilities were measured by the Sentence Completion for Events from the Past Test (SCEPT) and the Sentence Completion for Events in the Future Test (SCEFT). Results showed that there were no cultural differences in the number of specific events generated for the past or future. Significant differences between the Chinese and Australian participants were found mainly in the emotional valence and content of the events generated. Both Chinese and Australian participants generated more specific positive events compared to negative events when thinking about the future and Chinese participants were more positive about their past than Australian participants when recalling specific events. For content, Chinese participants recalled more events about their interpersonal relationships, while Australian participants imagined more about personal future achievements. These findings shed some lights on cultural differences in episodic past and future thinking. PMID:26167154
NASA Astrophysics Data System (ADS)
Kentel, E.; Çelik, A.; karimzadeh Naghshineh, S.; Askan, A.
2017-12-01
Erzincan city located in the Eastern part of Turkey at the conjunction of three active faults is one of the most hazardous regions in the world. In addition to several historical events, this city has experienced one of the largest earthquakes during the last century: The 27 December 1939 (Ms=8.0) event. With limited knowledge of the tectonic structure by then, the city center was relocated to the North after the 1939 earthquake by almost 5km, indeed closer to the existing major strike slip fault. This decision coupled with poor construction technologies, led to severe damage during a later event that occurred on 13 March 1992 (Mw=6.6). The 1939 earthquake occurred in the pre-instrumental era in the region with no available local seismograms whereas the 1992 event was only recorded by 3 nearby stations. There are empirical isoseismal maps from both events indicating indirectly the spatial distribution of the damage. In this study, we focus on this region and present a multidisciplinary approach to discuss the different components of uncertainties involved in the assessment and mitigation of seismic risk in urban areas. For this initial attempt, ground motion simulation of the 1939 event is performed to obtain the anticipated ground motions and shaking intensities. Using these quantified results along with the spatial distribution of the observed damage, the relocation decision is assessed and suggestions are provided for future large earthquakes to minimize potential earthquake risks.
River-ice break-up/freeze-up: a review of climatic drivers, historical trends and future predictions
NASA Astrophysics Data System (ADS)
Prowse, T. D.; Bonsal, B. R.; Duguay, C. R.; Lacroix, M. P.
2007-10-01
River ice plays a fundamental role in biological, chemical and physical processes that control freshwater regimes of the cold regions. Moreover, it can have enormous economic implications for river-based developments. All such activities and processes can be modified significantly by any changes to river-ice thickness, composition or event timing and severity. This paper briefly reviews some of the major hydraulic, mechanical and thermodynamic processes controlling river-ice events and how these are influenced by variations in climate. A regional and temporal synthesis is also made of the observed historical trends in river-ice break-up/freeze-up occurrence from the Eurasian and North American cold regions. This involves assessment of several hydroclimatic variables that have influenced past trends and variability in river-ice break-up/freeze-up dates including air-temperature indicators (e.g. seasonal temperature, 0°C isotherm dates and various degree-days) and large-scale atmospheric circulation patterns or teleconnections. Implications of future climate change on the timing and severity of river-ice events are presented and discussed in relation to the historical trends. Attention is drawn to the increasing trends towards the occurrence of mid-winter break-up events that can produce especially severe flood conditions but prove to be the most difficult type of event to model and predict.
NASA Astrophysics Data System (ADS)
Lontzek, Thomas S.; Cai, Yongyang; Judd, Kenneth L.; Lenton, Timothy M.
2015-05-01
Perhaps the most `dangerous’ aspect of future climate change is the possibility that human activities will push parts of the climate system past tipping points, leading to irreversible impacts. The likelihood of such large-scale singular events is expected to increase with global warming, but is fundamentally uncertain. A key question is how should the uncertainty surrounding tipping events affect climate policy? We address this using a stochastic integrated assessment model, based on the widely used deterministic DICE model. The temperature-dependent likelihood of tipping is calibrated using expert opinions, which we find to be internally consistent. The irreversible impacts of tipping events are assumed to accumulate steadily over time (rather than instantaneously), consistent with scientific understanding. Even with conservative assumptions about the rate and impacts of a stochastic tipping event, today’s optimal carbon tax is increased by ~50%. For a plausibly rapid, high-impact tipping event, today’s optimal carbon tax is increased by >200%. The additional carbon tax to delay climate tipping grows at only about half the rate of the baseline carbon tax. This implies that the effective discount rate for the costs of stochastic climate tipping is much lower than the discount rate for deterministic climate damages. Our results support recent suggestions that the costs of carbon emission used to inform policy are being underestimated, and that uncertain future climate damages should be discounted at a low rate.
Introduction to the focus section on the 2015 Gorkha, Nepal, earthquake
Hough, Susan E.
2015-01-01
It has long been recognized that Nepal faces high earthquake hazard, with the most recent large (Mw>7.5) events in 1833 and 1934. When the 25 April 2015Mw 7.8 Gorkha earthquake struck, it appeared initially to be a realization of worst fears. In spite of its large magnitude and proximity to the densely populated Kathmandu valley, however, the level of damage was lower than anticipated, with most vernacular structures within the valley experiencing little or no structural damage. Outside the valley, catastrophic damage did occur in some villages, associated with the high vulnerability of stone masonry construction and, in many cases, landsliding. The unexpected observations from this expected earthquake provide an urgent impetus to understand the event itself and to better characterize hazard from future large Himalayan earthquakes. Toward this end, articles in this special focus section present and describe available data sets and initial results that better illuminate and interpret the earthquake and its effects.
Next-generation Event Horizon Telescope developments: new stations for enhanced imaging
NASA Astrophysics Data System (ADS)
Palumbo, Daniel; Johnson, Michael; Doeleman, Sheperd; Chael, Andrew; Bouman, Katherine
2018-01-01
The Event Horizon Telescope (EHT) is a multinational Very Long Baseline Interferometry (VLBI) network of dishes joined to resolve general relativistic behavior near a supermassive black hole. The imaging quality of the EHT is largely dependent upon the sensitivity and spatial frequency coverage of the many baselines between its constituent telescopes. The EHT already contains many highly sensitive dishes, including the crucial Atacama Large Millimeter/Submillimeter Array (ALMA), making it viable to add smaller, cheaper telescopes to the array, greatly improving future capabilities of the EHT. We develop tools for optimizing the positions of new dishes in planned arrays. We also explore the feasibility of adding small orbiting dishes to the EHT, and develop orbital optimization tools for space-based VLBI imaging. Unlike the Millimetron mission planned to be at L2, we specifically treat near-earth orbiters, and find rapid filling of spatial frequency coverage across a large range of baseline lengths. Finally, we demonstrate significant improvement in image quality when adding small dishes to planned arrays in simulated observations.
Maguire, E M; Bokhour, B G; Asch, S M; Wagner, T H; Gifford, A L; Gallagher, T H; Durfee, J M; Martinello, R A; Elwy, A R
2016-06-01
We examined print, broadcast and social media reports about health care systems' disclosures of large scale adverse events to develop future effective messaging. Directed content analysis. We systematically searched four communication databases, YouTube and Really Simple Syndication (RSS) feeds relating to six disclosures of lapses in infection control practices in the Department of Veterans Affairs occurring between 2009 and 2012. We assessed these with a coding frame derived from effective crisis and risk communication models. We identified 148 unique media reports. Some components of effective communication (discussion of cause, reassurance, self-efficacy) were more present than others (apology, lessons learned). Media about 'promoting secrecy' and 'slow response' appeared in reports when time from event discovery to patient notification was over 75 days. Elected officials' quotes (n = 115) were often negative (83%). Hospital officials' comments (n = 165) were predominantly neutral (92%), and focused on information sharing. Health care systems should work to ensure that they develop clear messages focused on what is not well covered by the media, including authentic apologies, remedial actions taken, and shorten the timeframe between event identification and disclosure to patients. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodgers, A; Fowler, A; Al-Amri, A
2005-04-26
A moderate (M{approx}5) earthquake struck the northeastern United Arab Emirates (UAE) and northern Oman on March 11, 2002. The event was felt over a wide area of the northern Emirates and was accompanied by smaller (felt) events before and after the March 11 main shock. The event was large enough to be detected and located by global networks at teleseismic distances. We estimated focal mechanism and depth from broadband complete regional waveform modeling. We report a normal mechanism with a slight right-lateral strike-slip component consistent with the large-scale tectonics. The normal component suggests relaxation of obducted crust of the Semailmore » Ophilite (specifically, the Khor Fakkan Block) while the right-lateral strike-slip component of the mechanism is consistent with shear across the Oman Line. Felt earthquakes are rare in the region, however no regional seismic network exists in the UAE to determine local seismicity. This event offers a unique opportunity to study the active tectonics of the region as well as inform future studies of seismic hazard in the UAE and northern Oman.« less
A new large initial condition ensemble to assess avoided impacts in a climate mitigation scenario
NASA Astrophysics Data System (ADS)
Sanderson, B. M.; Tebaldi, C.; Knutti, R.; Oleson, K. W.
2014-12-01
It has recently been demonstrated that when considering timescales of up to 50 years, natural variability may play an equal role to anthropogenic forcing on subcontinental trends for a variety of climate indicators. Thus, for many questions assessing climate impacts on such time and spatial scales, it has become clear that a significant number of ensemble members may be required to produce robust statistics (and especially so for extreme events). However, large ensemble experiments to date have considered the role of variability in a single scenario, leaving uncertain the relationship between the forced climate trajectory and the variability about that path. To address this issue, we present a new, publicly available, 15 member initial condition ensemble of 21st century climate projections for the RCP 4.5 scenario using the CESM1.1 Earth System Model, which we propose as a companion project to the existing 40 member CESM large ensemble which uses the higher greenhouse gas emission future of RCP8.5. This provides a valuable data set for assessing what societal and ecological impacts might be avoided through a moderate mitigation strategy in contrast to a fossil fuel intensive future. We present some early analyses of these combined ensembles to assess to what degree the climate variability can be considered to combine linearly with the underlying forced response. In regions where there is no detectable relationship between the mean state and the variability about the mean trajectory, then linear assumptions can be trivially exploited to utilize a single ensemble or control simulation to characterize the variability in any scenario of interest. We highlight regions where there is a detectable nonlinearity in extreme event frequency, how far in the future they will be manifested and propose mechanisms to account for these effects.
Teaching Physics to Future Presidents
NASA Astrophysics Data System (ADS)
Jacobsen, Bob
2015-03-01
We present Berkeley's ``Physics for Future Presidents'' course. Created by Prof. Richard Muller, this is an introductory course aimed at preparing our students to make decisions in a physical, technological world. Organized around large topical areas like ``Energy,'' ``Gravity and Force,'' ``Nuclei and Radioactivity,'' and ``Invisible Light,'' we can cover in some depth the scientific issues involved in large-scale energy production via renewable and non-renewable resources, satellites including capabilities and limitations, nuclear power production including risk and waste, UV exposure including discussion of the ozone layer and cancer risk, etc. Although only a small bit of algebra is used, it's a deeply quantitative course. The class is structured around (1) traditional text readings and homework for basic material (2) demo- and discussion-based lectures and (3) readings and essays based on current articles and events. This third component raises student engagement and improves their reasoning & skeptical skills. It also makes the course challenging for both STEM and non-STEM students, and for future teachers.
System engineering analysis of derelict collision prevention options
NASA Astrophysics Data System (ADS)
McKnight, Darren S.; Di Pentino, Frank; Kaczmarek, Adam; Dingman, Patrick
2013-08-01
Sensitivities to the future growth of orbital debris and the resulting hazard to operational satellites due to collisional breakups of large derelict objects are being studied extensively. However, little work has been done to quantify the technical and operational tradeoffs between options for minimizing future derelict fragmentations that act as the primary source for future debris hazard growth. The two general categories of debris mitigation examined for prevention of collisions involving large derelict objects (rocket bodies and payloads) are active debris removal (ADR) and just-in-time collision avoidance (JCA). Timing, cost, and effectiveness are compared for ADR and JCA solutions highlighting the required enhancements in uncooperative element set accuracy, rapid ballistic launch, despin/grappling systems, removal technologies, and remote impulsive devices. The primary metrics are (1) the number of derelict objects moved/removed per the number of catastrophic collisions prevented and (2) cost per collision event prevented. A response strategy that contains five different activities, including selective JCA and ADR, is proposed as the best approach going forward.
Does the self drive mental time travel?
Shao, Yi; Yao, Xiang; Ceci, Stephen J; Wang, Qi
2010-11-01
Research on autobiographical remembering has shown the intertwined relationship between the self and memory. Very little is known about the role of the self in the anticipation of the future. To investigate the association, European American (N=61) and Chinese (N=60) college students each reported two past autobiographical events and anticipated two future events, and described themselves in the past, present, and future. The results from a content analysis found that, regardless of culture, the future self and events were more positive and socially oriented than the past self and events. In general, European Americans provided more positive events and self-descriptions than Chinese. Men showed more personal focus in both experiences and self-descriptions than women at all time epochs. Importantly, independent of culture and gender, the self rather than the past events predicted the valence and personal focus of future events. These findings offer new insights into the dynamic relations between the self and episodic thinking.
The neural basis of temporal order processing in past and future thought.
D'Argembeau, Arnaud; Jeunehomme, Olivier; Majerus, Steve; Bastin, Christine; Salmon, Eric
2015-01-01
Although growing evidence has shown that remembering the past and imagining the future recruit a common core network of frontal-parietal-temporal regions, the extent to which these regions contribute to the temporal dimension of autobiographical thought remains unclear. In this fMRI study, we focused on the event-sequencing aspect of time and examined whether ordering past and future events involve common neural substrates. Participants had to determine which of two past (or future) events occurred (or would occur) before the other, and these order judgments were compared with a task requiring to think about the content of the same past or future events. For both past and future events, we found that the left posterior hippocampus was more activated when establishing the order of events, whereas the anterior hippocampus was more activated when representing their content. Aside from the hippocampus, most of the brain regions that were activated when thinking about temporal order (notably the intraparietal sulcus, dorsolateral pFC, dorsal anterior cingulate, and visual cortex) lied outside the core network and may reflect the involvement of controlled processes and visuospatial imagery to locate events in time. Collectively, these findings suggest (a) that the same processing operations are engaged for ordering past events and planned future events in time, (b) that anterior and posterior portions of the hippocampus are involved in processing different aspects of autobiographical thought, and (c) that temporal order is not necessarily an intrinsic property of memory or future thought but instead requires additional, controlled processes.
Contribution of past and future self-defining event networks to personal identity.
Demblon, Julie; D'Argembeau, Arnaud
2017-05-01
Personal identity is nourished by memories of significant past experiences and by the imagination of meaningful events that one anticipates to happen in the future. The organisation of such self-defining memories and prospective thoughts in the cognitive system has received little empirical attention, however. In the present study, our aims were to investigate to what extent self-defining memories and future projections are organised in networks of related events, and to determine the nature of the connections linking these events. Our results reveal the existence of self-defining event networks, composed of both memories and future events of similar centrality for identity and characterised by similar identity motives. These self-defining networks expressed a strong internal coherence and frequently organised events in meaningful themes and sequences (i.e., event clusters). Finally, we found that the satisfaction of identity motives in represented events and the presence of clustering across events both contributed to increase in the perceived centrality of events for the sense of identity. Overall, these findings suggest that personal identity is not only nourished by representations of significant past and future events, but also depends on the formation of coherent networks of related events that provide an overarching meaning to specific life experiences.
Gallo, David A.; Korthauer, Laura E.; McDonough, Ian M.; Teshale, Salom; Johnson, Elizabeth L.
2013-01-01
This study investigated whether the age-related positivity effect strengthens specific event details in autobiographical memory. Participants retrieved past events or imagined future events in response to neutral or emotional cue words. Older adults rated each kind of event more positively than younger adults, demonstrating an age-related positivity effect. We next administered a source memory test. Participants were given the same cue words and tried to retrieve the previously generated event and its source (past or future). Accuracy on this source test should depend on the recollection of specific details about the earlier generated events, providing a more objective measure of those details than subjective ratings. We found that source accuracy was greater for positive than negative future events in both age groups, suggesting that positive future events were more detailed. In contrast, valence did not affect source accuracy for past events in either age group, suggesting that positive and negative past events were equally detailed. Although aging can bias people to focus on positive aspects of experience, this bias does not appear to strengthen the availability of details for positive relative to negative past events. PMID:21919591
Episodic and Semantic Memory Contribute to Familiar and Novel Episodic Future Thinking.
Wang, Tong; Yue, Tong; Huang, Xi Ting
2016-01-01
Increasing evidence indicates that episodic future thinking (EFT) relies on both episodic and semantic memory; however, event familiarity may importantly affect the extent to which episodic and semantic memory contribute to EFT. To test this possibility, two behavioral experiments were conducted. In Experiment 1, we directly compared the proportion of episodic and semantic memory used in an EFT task. The results indicated that more episodic memory was used when imagining familiar future events compared with novel future events. Conversely, significantly more semantic memory was used when imagining novel events compared with familiar events. Experiment 2 aimed to verify the results of Experiment 1. In Experiment 2, we found that familiarity moderated the effect of priming the episodic memory system on EFT; particularly, it increased the time required to construct a standard familiar episodic future event, but did not significantly affect novel episodic event reaction time. Collectively, these findings support the hypothesis that event familiarity importantly moderates episodic and semantic memory's contribution to EFT.
Future impacts of global warming and reforestation on drought patterns over West Africa
NASA Astrophysics Data System (ADS)
Diasso, Ulrich; Abiodun, Babatunde J.
2017-07-01
This study investigates how a large-scale reforestation in Savanna (8-12°N, 20°W-20°E) could affect drought patterns over West Africa in the future (2031-2060) under the RCP4.5 scenario. Simulations from two regional climate models (RegCM4 and WRF) were analyzed for the study. The study first evaluated the performance of both RCMs in simulating the present-day climate and then applied the models to investigate the future impacts of global warming and reforestation on the drought patterns. The simulated and observed droughts were characterized with the Standardized Precipitation and Evapotranspiration Index (SPEI), and the drought patterns were classified using a Self-organizing Map (SOM) technique. The models capture essential features in the seasonal rainfall and temperature fields (including the Saharan Heat Low), but struggle to reproduce the onset and retreat of the West African Monsoon as observed. Both RCMs project a warmer climate (about 1-2 °C) over West Africa in the future. They do not reach a consensus on future change in rainfall, but they agree on a future increase in frequency of severe droughts (by about 2 to 9 events per decade) over the region. They show that reforestation over the Savanna could reduce the future warming by 0.1 to 0.8 °C and increase the precipitation by 0.8 to 1.2 mm per day. However, the impact of reforestation on the frequency of severe droughts is twofold. While reforestation decreases the droughts frequency (by about 1-2 events per decade) over the Savanna and Guinea coast, it increases droughts frequency (by 1 event per decade) over the Sahel, especially in July to September. The results of this study have application in using reforestation to mitigate impacts of climate change in West Africa.
Mutational jackpot events generate effective frequency-dependent selection in adapting populations
NASA Astrophysics Data System (ADS)
Hallatschek, Oskar
The site-frequency spectrum is one the most easily measurable quantities that characterize the genetic diversity of a population. While most neutral models predict that site frequency spectra should decay with increasing frequency, a high-frequency uptick has been reported in many populations. Anomalies in the high-frequency tail are particularly unsettling because the highest frequencies can be measured with greatest accuracy. Here, we show that an uptick in the spectrum of neutral mutations generally arises when mutant frequencies are dominated by rare jackpot events, mutational events with large descendant numbers. This leads to an effective pattern of frequency-dependent selection (or unstable internal equilibrium at one half frequency) that causes an accumulation of high-frequency polymorphic sites. We reproduce the known uptick occurring for recurrent hitchhiking (genetic draft) as well as rapid adaptation, and (in the future) generalize the shape of the high-frequency tail to other scenarios that are dominated by jackpot events, such as frequent range expansions. We also tackle (in the future) the inverse approach to use the high-frequency uptick for learning about the tail of the offspring number distribution. Positively selected alleles need to surpass, typically, an u NSF Career Award (PoLS), NIH NIGMS R01, Simons Foundation.
De Brigard, Felipe; Giovanello, Kelly S
2012-09-01
Recent findings suggest that our capacity to imagine the future depends on our capacity to remember the past. However, the extent to which episodic memory is involved in our capacity to think about what could have happened in our past, yet did not occur (i.e., episodic counterfactual thinking), remains largely unexplored. The current experiments investigate the phenomenological characteristics and the influence of outcome valence on the experience of past, future and counterfactual thoughts. Participants were asked to mentally simulate past, future, and counterfactual events with positive or negative outcomes. Features of their subjective experiences during each type of simulation were measured using questionnaires and autobiographical interviews. The results suggest that clarity and vividness were higher for past than future and counterfactual simulations. Additionally, emotional intensity was lower for counterfactual simulations than past and future simulations. Finally, outcome valence influenced participants' judgment of probability for future and counterfactual simulations. Copyright © 2012 Elsevier Inc. All rights reserved.
Mioni, Giovanna; Bertucci, Erica; Rosato, Antonella; Terrett, Gill; Rendell, Peter G; Zamuner, Massimo; Stablum, Franca
2017-06-01
Previous studies have shown that traumatic brain injury (TBI) patients have difficulties with prospective memory (PM). Considering that PM is closely linked to independent living it is of primary interest to develop strategies that can improve PM performance in TBI patients. This study employed Virtual Week task as a measure of PM, and we included future event simulation to boost PM performance. Study 1 evaluated the efficacy of the strategy and investigated possible practice effects. Twenty-four healthy participants performed Virtual Week in a no strategy condition, and 24 healthy participants performed it in a mixed condition (no strategy - future event simulation). In Study 2, 18 TBI patients completed the mixed condition of Virtual Week and were compared with the 24 healthy controls who undertook the mixed condition of Virtual Week in Study 1. All participants also completed a neuropsychological evaluation to characterize the groups on level of cognitive functioning. Study 1 showed that participants in the future event simulation condition outperformed participants in the no strategy condition, and these results were not attributable to practice effects. Results of Study 2 showed that TBI patients performed PM tasks less accurately than controls, but that future event simulation can substantially reduce TBI-related deficits in PM performance. The future event simulation strategy also improved the controls' PM performance. These studies showed the value of future event simulation strategy in improving PM performance in healthy participants as well as in TBI patients. TBI patients performed PM tasks less accurately than controls, confirming prospective memory impairment in these patients. Participants in the future event simulation condition out-performed participants in the no strategy condition. Future event simulation can substantially reduce TBI-related deficits in PM performance. Future event simulation strategy also improved the controls' PM performance. © 2017 The British Psychological Society.
NASA Astrophysics Data System (ADS)
Kim, M. Y.; Tylka, A. J.; Dietrich, W. F.; Cucinotta, F. A.
2012-12-01
The occasional occurrence of solar particle events (SPEs) with large amounts of energy is non-predictable, while the expected frequency is strongly influenced by solar cycle activity. The potential for exposure to large SPEs with high energy levels is the major concern during extra-vehicular activities (EVAs) on the Moon, near Earth object, and Mars surface for future long duration space missions. We estimated the propensity for SPE occurrence with large proton fluence as a function of time within a typical future solar cycle from a non-homogeneous Poisson model using the historical database for measurements of protons with energy > 30 MeV, Φ30. The database includes a comprehensive collection of historical data set for the past 5 solar cycles. Using all the recorded proton fluence of SPEs, total fluence distributions of Φ30, Φ60, and Φ100 were simulated ranging from its 5th to 95th percentile for each mission durations. In addition to the total particle intensity of SPEs, the detailed energy spectra of protons, especially at high energy levels, were recognized as extremely important for assessing the radiation cancer risk associated with energetic particles for large events. For radiation exposure assessments of major SPEs, we used the spectral functional form of a double power law in rigidity (the so-called Band function), which have provided a satisfactory representation of the combined satellite and neutron monitor data from ~10 MeV to ~10 GeV. The dependencies of exposure risk were evaluated as a function of proton fluence at a given energy threshold of 30, 60, and 100 MeV, and overall risk prediction was improved as the energy level threshold increases from 30 to 60 to 100 MeV. The results can be applied to the development of approaches of improved radiation protection for astronauts, as well as the optimization of mission planning and shielding for future space missions.
There and Back Again: Learning from the History of a Freshman Seminar Sequence
ERIC Educational Resources Information Center
deLusé, Stephanie R.
2014-01-01
The evolution of The Human Event, a course sequence at Barrett, The Honors College at Arizona State University, provides a case study of using a program's history to understand its present and improve its future. While Barrett is situated at a public university with 76,000 students, and is now a large college in itself with 4,803 honors students,…
2003-02-02
KENNEDY SPACE CENTER, FLA. - Former astronaut Sally Ride talks to young women at the Sally Ride Science Festival, held at the University of Central Florida, Orlando, Fla. The event promotes science, math and technology as future career paths for girls. Breakout sessions afforded closer interaction between Ride and festival attendees. Since it followed the tragic loss of the Columbia astronauts, a large poster was presented which attendees could sign as tribute..
Merged MMCR-WSR88D Reflectivities at SGP
Dong, Xiquan
2008-03-05
There are substantial attenuations of MMCR signals for very large LWP and during precipitation events. We have used the nearest precipitation radar (WSR-88D) to merge two measurements to better represent such selected cases. In the near future, we are going to provide all the cumulus cases from Jan. 1997 to present whenever the two datasets are available. The original 2 data sets:
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. - Former astronaut Sally Ride talks to young women at the Sally Ride Science Festival, held at the University of Central Florida, Orlando, Fla. The event promotes science, math and technology as future career paths for girls. Breakout sessions afforded closer interaction between Ride and festival attendees. Since it followed the tragic loss of the Columbia astronauts, a large poster was presented which attendees could sign as tribute..
Susan J. Prichard; Maureen C. Kennedy
2012-01-01
Fuel reduction treatments are increasingly used to mitigate future wildfire severity in dry forests, but few opportunities exist to assess their effectiveness. We evaluated the influence of fuel treatment, tree size and species on tree mortality following a large wildfire event in recent thin-only, thin and prescribed burn (thin-Rx) units. Of the trees that died within...
NASA Astrophysics Data System (ADS)
Crockett, J.; Westerling, A. L.
2016-12-01
The current drought in California is considered to be most severe drought event of the 20th and 21st century. Climate models forecast increasing temperatures in the Western United States but are less certain regarding precipitation patterns. Here we impose a novel index based on sustained, multiyear moisture deficit anomalies onto a 1/8° grid of the Western United States to investigate 1) whether California's drought is irregular in the recent history of the Western States; 2) how temperature and precipitation affected the development of large drought events; and 3) what impact did drought events have on burn area and severity of fires. Fire records were compiled from the Monitoring Trends in Burn Severity database and compared to drought events since 1984. Results indicate that drought events similar in size and duration to the current drought have occurred in the West since 1918, though previous drought events were not as severe nor centered on California. Six drought events of similar size to the 2012 - 2014 drought were compared: while they were characterized by negative precipitation anomalies, only the 2012 - 2014 event exhibited temperature anomalies that increased over the drought's duration. In addition, we found that large fires ( > 1000 acres) within drought areas had greater total area burned as well as area burned at medium and high severities compared to fires in non-drought areas. Our results suggest that though uncertainty of future precipitation patterns exists, increasing temperatures will exacerbate drought severity when events do occur. In addition, understanding the relationships between droughts and fire can guide land managers to more effective fire management during drought events.
weather@home 2: validation of an improved global-regional climate modelling system
NASA Astrophysics Data System (ADS)
Guillod, Benoit P.; Jones, Richard G.; Bowery, Andy; Haustein, Karsten; Massey, Neil R.; Mitchell, Daniel M.; Otto, Friederike E. L.; Sparrow, Sarah N.; Uhe, Peter; Wallom, David C. H.; Wilson, Simon; Allen, Myles R.
2017-05-01
Extreme weather events can have large impacts on society and, in many regions, are expected to change in frequency and intensity with climate change. Owing to the relatively short observational record, climate models are useful tools as they allow for generation of a larger sample of extreme events, to attribute recent events to anthropogenic climate change, and to project changes in such events into the future. The modelling system known as weather@home, consisting of a global climate model (GCM) with a nested regional climate model (RCM) and driven by sea surface temperatures, allows one to generate a very large ensemble with the help of volunteer distributed computing. This is a key tool to understanding many aspects of extreme events. Here, a new version of the weather@home system (weather@home 2) with a higher-resolution RCM over Europe is documented and a broad validation of the climate is performed. The new model includes a more recent land-surface scheme in both GCM and RCM, where subgrid-scale land-surface heterogeneity is newly represented using tiles, and an increase in RCM resolution from 50 to 25 km. The GCM performs similarly to the previous version, with some improvements in the representation of mean climate. The European RCM temperature biases are overall reduced, in particular the warm bias over eastern Europe, but large biases remain. Precipitation is improved over the Alps in summer, with mixed changes in other regions and seasons. The model is shown to represent the main classes of regional extreme events reasonably well and shows a good sensitivity to its drivers. In particular, given the improvements in this version of the weather@home system, it is likely that more reliable statements can be made with regards to impact statements, especially at more localized scales.
A Framework of Simple Event Detection in Surveillance Video
NASA Astrophysics Data System (ADS)
Xu, Weiguang; Zhang, Yafei; Lu, Jianjiang; Tian, Yulong; Wang, Jiabao
Video surveillance is playing more and more important role in people's social life. Real-time alerting of threaten events and searching interesting content in stored large scale video footage needs human operator to pay full attention on monitor for long time. The labor intensive mode has limit the effectiveness and efficiency of the system. A framework of simple event detection is presented advance the automation of video surveillance. An improved inner key point matching approach is used to compensate motion of background in real-time; frame difference are used to detect foreground; HOG based classifiers are used to classify foreground object into people and car; mean-shift is used to tracking the recognized objects. Events are detected based on predefined rules. The maturity of the algorithms guarantee the robustness of the framework, and the improved approach and the easily checked rules enable the framework to work in real-time. Future works to be done are also discussed.
Multi-decadal Hydrological Retrospective: Case study of Amazon floods and droughts
NASA Astrophysics Data System (ADS)
Wongchuig Correa, Sly; Paiva, Rodrigo Cauduro Dias de; Espinoza, Jhan Carlo; Collischonn, Walter
2017-06-01
Recently developed methodologies such as climate reanalysis make it possible to create a historical record of climate systems. This paper proposes a methodology called Hydrological Retrospective (HR), which essentially simulates large rainfall datasets, using this as input into hydrological models to develop a record of past hydrology, making it possible to analyze past floods and droughts. We developed a methodology for the Amazon basin, where studies have shown an increase in the intensity and frequency of hydrological extreme events in recent decades. We used eight large precipitation datasets (more than 30 years) as input for a large scale hydrological and hydrodynamic model (MGB-IPH). HR products were then validated against several in situ discharge gauges controlling the main Amazon sub-basins, focusing on maximum and minimum events. For the most accurate HR, based on performance metrics, we performed a forecast skill of HR to detect floods and droughts, comparing the results with in-situ observations. A statistical temporal series trend was performed for intensity of seasonal floods and droughts in the entire Amazon basin. Results indicate that HR could represent most past extreme events well, compared with in-situ observed data, and was consistent with many events reported in literature. Because of their flow duration, some minor regional events were not reported in literature but were captured by HR. To represent past regional hydrology and seasonal hydrological extreme events, we believe it is feasible to use some large precipitation datasets such as i) climate reanalysis, which is mainly based on a land surface component, and ii) datasets based on merged products. A significant upward trend in intensity was seen in maximum annual discharge (related to floods) in western and northwestern regions and for minimum annual discharge (related to droughts) in south and central-south regions of the Amazon basin. Because of the global coverage of rainfall datasets, this methodology can be transferred to other regions for better estimation of future hydrological behavior and its impact on society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Gang
Mid-latitude extreme weather events are responsible for a large part of climate-related damage. Yet large uncertainties remain in climate model projections of heat waves, droughts, and heavy rain/snow events on regional scales, limiting our ability to effectively use these projections for climate adaptation and mitigation. These uncertainties can be attributed to both the lack of spatial resolution in the models, and to the lack of a dynamical understanding of these extremes. The approach of this project is to relate the fine-scale features to the large scales in current climate simulations, seasonal re-forecasts, and climate change projections in a very widemore » range of models, including the atmospheric and coupled models of ECMWF over a range of horizontal resolutions (125 to 10 km), aqua-planet configuration of the Model for Prediction Across Scales and High Order Method Modeling Environments (resolutions ranging from 240 km – 7.5 km) with various physics suites, and selected CMIP5 model simulations. The large scale circulation will be quantified both on the basis of the well tested preferred circulation regime approach, and very recently developed measures, the finite amplitude Wave Activity (FAWA) and its spectrum. The fine scale structures related to extremes will be diagnosed following the latest approaches in the literature. The goal is to use the large scale measures as indicators of the probability of occurrence of the finer scale structures, and hence extreme events. These indicators will then be applied to the CMIP5 models and time-slice projections of a future climate.« less
A wrinkle in time: asymmetric valuation of past and future events.
Caruso, Eugene M; Gilbert, Daniel T; Wilson, Timothy D
2008-08-01
A series of studies shows that people value future events more than equivalent events in the equidistant past. Whether people imagined being compensated or compensating others, they required and offered more compensation for events that would take place in the future than for identical events that had taken place in the past. This temporal value asymmetry (TVA) was robust in between-persons comparisons and absent in within-persons comparisons, which suggests that participants considered the TVA irrational. Contemplating future events produced greater affect than did contemplating past events, and this difference mediated the TVA. We suggest that the TVA, the gain-loss asymmetry, and hyperbolic time discounting can be unified in a three-dimensional value function that describes how people value gains and losses of different magnitudes at different moments in time.
Locally-Adaptive, Spatially-Explicit Projection of U.S. Population for 2030 and 2050
McKee, Jacob J.; Rose, Amy N.; Bright, Eddie A.; ...
2015-02-03
Localized adverse events, including natural hazards, epidemiological events, and human conflict, underscore the criticality of quantifying and mapping current population. Moreover, knowing the spatial distribution of future population allows for increased preparation in the event of an emergency. Building on the spatial interpolation technique previously developed for high resolution population distribution data (LandScan Global and LandScan USA), we have constructed an empirically-informed spatial distribution of the projected population of the contiguous U.S. for 2030 and 2050. Whereas most current large-scale, spatially explicit population projections typically rely on a population gravity model to determine areas of future growth, our projection modelmore » departs from these by accounting for multiple components that affect population distribution. Modelled variables, which included land cover, slope, distances to larger cities, and a moving average of current population, were locally adaptive and geographically varying. The resulting weighted surface was used to determine which areas had the greatest likelihood for future population change. Population projections of county level numbers were developed using a modified version of the U.S. Census s projection methodology with the U.S. Census s official projection as the benchmark. Applications of our model include, but are not limited to, suitability modelling, service area planning for governmental agencies, consequence assessment, mitigation planning and implementation, and assessment of spatially vulnerable populations.« less
Locally-Adaptive, Spatially-Explicit Projection of U.S. Population for 2030 and 2050
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKee, Jacob J.; Rose, Amy N.; Bright, Eddie A.
Localized adverse events, including natural hazards, epidemiological events, and human conflict, underscore the criticality of quantifying and mapping current population. Moreover, knowing the spatial distribution of future population allows for increased preparation in the event of an emergency. Building on the spatial interpolation technique previously developed for high resolution population distribution data (LandScan Global and LandScan USA), we have constructed an empirically-informed spatial distribution of the projected population of the contiguous U.S. for 2030 and 2050. Whereas most current large-scale, spatially explicit population projections typically rely on a population gravity model to determine areas of future growth, our projection modelmore » departs from these by accounting for multiple components that affect population distribution. Modelled variables, which included land cover, slope, distances to larger cities, and a moving average of current population, were locally adaptive and geographically varying. The resulting weighted surface was used to determine which areas had the greatest likelihood for future population change. Population projections of county level numbers were developed using a modified version of the U.S. Census s projection methodology with the U.S. Census s official projection as the benchmark. Applications of our model include, but are not limited to, suitability modelling, service area planning for governmental agencies, consequence assessment, mitigation planning and implementation, and assessment of spatially vulnerable populations.« less
Are the Stress Drops of Small Earthquakes Good Predictors of the Stress Drops of Larger Earthquakes?
NASA Astrophysics Data System (ADS)
Hardebeck, J.
2017-12-01
Uncertainty in PSHA could be reduced through better estimates of stress drop for possible future large earthquakes. Studies of small earthquakes find spatial variability in stress drop; if large earthquakes have similar spatial patterns, their stress drops may be better predicted using the stress drops of small local events. This regionalization implies the variance with respect to the local mean stress drop may be smaller than the variance with respect to the global mean. I test this idea using the Shearer et al. (2006) stress drop catalog for M1.5-3.1 events in southern California. I apply quality control (Hauksson, 2015) and remove near-field aftershocks (Wooddell & Abrahamson, 2014). The standard deviation of the distribution of the log10 stress drop is reduced from 0.45 (factor of 3) to 0.31 (factor of 2) by normalizing each event's stress drop by the local mean. I explore whether a similar variance reduction is possible when using the Shearer catalog to predict stress drops of larger southern California events. For catalogs of moderate-sized events (e.g. Kanamori, 1993; Mayeda & Walter, 1996; Boyd, 2017), normalizing by the Shearer catalog's local mean stress drop does not reduce the standard deviation compared to the unmodified stress drops. I compile stress drops of larger events from the literature, and identify 15 M5.5-7.5 earthquakes with at least three estimates. Because of the wide range of stress drop estimates for each event, and the different techniques and assumptions, it is difficult to assign a single stress drop value to each event. Instead, I compare the distributions of stress drop estimates for pairs of events, and test whether the means of the distributions are statistically significantly different. The events divide into 3 categories: low, medium, and high stress drop, with significant differences in mean stress drop between events in the low and the high stress drop categories. I test whether the spatial patterns of the Shearer catalog stress drops can predict the categories of the 15 events. I find that they cannot, rather the large event stress drops are uncorrelated with the local mean stress drop from the Shearer catalog. These results imply that the regionalization of stress drops of small events does not extend to the larger events, at least with current standard techniques of stress drop estimation.
Episodic simulation of future events is impaired in mild Alzheimer's disease
Addis, Donna Rose; Sacchetti, Daniel C.; Ally, Brandon A.; Budson, Andrew E.; Schacter, Daniel L.
2009-01-01
Recent neuroimaging studies have demonstrated that both remembering the past and simulating the future activate a core neural network including the medial temporal lobes. Regions of this network, in particular the medial temporal lobes, are prime sites for amyloid deposition and are structurally and functionally compromised in Alzheimer's disease (AD). While we know some functions of this core network, specifically episodic autobiographical memory, are impaired in AD, no study has examined whether future episodic simulation is similarly impaired. We tested the ability of sixteen AD patients and sixteen age-matched controls to generate past and future autobiographical events using an adapted version of the Autobiographical Interview. Participants also generated five remote autobiographical memories from across the lifespan. Event transcriptions were segmented into distinct details, classified as either internal (episodic) or external (non-episodic). AD patients exhibited deficits in both remembering past events and simulating future events, generating fewer internal and external episodic details than healthy older controls. The internal and external detail scores were strongly correlated across past and future events, providing further evidence of the close linkages between the mental representations of past and future. PMID:19497331
Puig, Vannia A; Szpunar, Karl K
2017-08-01
Over the past decade, psychologists have devoted considerable attention to episodic simulation-the ability to imagine specific hypothetical events. Perhaps one of the most consistent patterns of data to emerge from this literature is that positive simulations of the future are rated as more detailed than negative simulations of the future, a pattern of results that is commonly interpreted as evidence for a positivity bias in future thinking. In the present article, we demonstrate across two experiments that negative future events are consistently simulated in more detail than positive future events when frequency of prior thinking is taken into account as a possible confounding variable and when level of detail associated with simulated events is assessed using an objective scoring criterion. Our findings are interpreted in the context of the mobilization-minimization hypothesis of event cognition that suggests people are especially likely to devote cognitive resources to processing negative scenarios. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
D'Argembeau, Arnaud; Van der Linden, Martial
2004-12-01
As humans, we frequently engage in mental time travel, reliving past experiences and imagining possible future events. This study examined whether similar factors affect the subjective experience associated with remembering the past and imagining the future. Participants mentally "re-experienced" or "pre-experienced" positive and negative events that differed in their temporal distance from the present (close versus distant), and then rated the phenomenal characteristics (i.e., sensorial, contextual, and emotional details) associated with their representations. For both past and future, representations of positive events were associated with a greater feeling of re-experiencing (or pre-experiencing) than representations of negative events. In addition, representations of temporally close events (both past and future) contained more sensorial and contextual details, and generated a stronger feeling of re-experiencing (or pre-experiencing) than representations of temporally distant events. It is suggested that the way we both remember our past and imagine our future is constrained by our current goals.
2017 Valparaíso earthquake sequence and the megathrust patchwork of central Chile
NASA Astrophysics Data System (ADS)
Nealy, Jennifer L.; Herman, Matthew W.; Moore, Ginevra L.; Hayes, Gavin P.; Benz, Harley M.; Bergman, Eric A.; Barrientos, Sergio E.
2017-09-01
In April 2017, a sequence of earthquakes offshore Valparaíso, Chile, raised concerns of a potential megathrust earthquake in the near future. The largest event in the 2017 sequence was a
2017 Valparaíso earthquake sequence and the megathrust patchwork of central Chile
Nealy, Jennifer; Herman, Matthew W.; Moore, Ginevra; Hayes, Gavin; Benz, Harley M.; Bergman, Eric A.; Barrientos, Sergio E
2017-01-01
In April 2017, a sequence of earthquakes offshore Valparaíso, Chile, raised concerns of a potential megathrust earthquake in the near future. The largest event in the 2017 sequence was a M6.9 on 24 April, seemingly colocated with the last great-sized earthquake in the region—a M8.0 in March 1985. The history of large earthquakes in this region shows significant variation in rupture size and extent, typically highlighted by a juxtaposition of large ruptures interspersed with smaller magnitude sequences. We show that the 2017 sequence ruptured an area between the two main slip patches during the 1985 earthquake, rerupturing a patch that had previously slipped during the October 1973 M6.5 earthquake sequence. A significant gap in historic ruptures exists directly to the south of the 2017 sequence, with large enough moment deficit to host a great-sized earthquake in the near future, if it is locked.
Component processes underlying future thinking.
D'Argembeau, Arnaud; Ortoleva, Claudia; Jumentier, Sabrina; Van der Linden, Martial
2010-09-01
This study sought to investigate the component processes underlying the ability to imagine future events, using an individual-differences approach. Participants completed several tasks assessing different aspects of future thinking (i.e., fluency, specificity, amount of episodic details, phenomenology) and were also assessed with tasks and questionnaires measuring various component processes that have been hypothesized to support future thinking (i.e., executive processes, visual-spatial processing, relational memory processing, self-consciousness, and time perspective). The main results showed that executive processes were correlated with various measures of future thinking, whereas visual-spatial processing abilities and time perspective were specifically related to the number of sensory descriptions reported when specific future events were imagined. Furthermore, individual differences in self-consciousness predicted the subjective feeling of experiencing the imagined future events. These results suggest that future thinking involves a collection of processes that are related to different facets of future-event representation.
Solar Eclipse Education and Outreach Activities at APSU
NASA Astrophysics Data System (ADS)
Smith, J. Allyn; Buckner, Spencer L.; Adams, Mitzi; Meisch, Karen; Sudbrink, Don; Wright, Amy; Adams, Angela; Fagan, Ben
2018-01-01
The path of totality for the 21 August 2017 total solar eclipse passed directly over the APSU campus in north-central Tennessee. We discuss our public outreach and education efforts, both on campus and in the community, and present results and lessons learned from this event. We reached nearly 20,000 people via our efforts and hosted nearly 3000 viewers on campus on eclipse day. We also present our science activities and early results from those. On the whole, this event could be viewed as a large success for the university and the region, and the experiences will guide us in our efforts as we plan future eclipse activities.
Determination of electron-nucleus collisions geometry with forward neutrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, L.; Aschenauer, E.; Lee, J. H.
2014-12-29
There are a large number of physics programs one can explore in electron-nucleus collisions at a future electron-ion collider. Collision geometry is very important in these studies, while the measurement for an event-by-event geometric control is rarely discussed in the prior deep-inelastic scattering experiments off a nucleus. This paper seeks to provide some detailed studies on the potential of tagging collision geometries through forward neutron multiplicity measurements with a zero degree calorimeter. As a result, this type of geometry handle, if achieved, can be extremely beneficial in constraining nuclear effects for the electron-nucleus program at an electron-ion collider.
Jeunehomme, Olivier; D'Argembeau, Arnaud
2016-01-01
Recent research suggests that episodic future thoughts can be formed through the same dual mechanisms, direct and generative, as autobiographical memories. However, the prevalence and determinants of the direct production of future event representations remain unclear. Here, we addressed this issue by collecting self-reports of production modes, response times (RTs), and verbal protocols for the production past and future events in the word cueing paradigm. Across three experiments, we found that both past and future events were frequently reported to come directly to mind in response to the cue, and RTs confirmed that events were produced faster for direct than for generative responses. When looking at the determinants of direct responses, we found that most past and future events that were directly produced had already been thought of on a previous occasion, and the frequency of previous thoughts predicted the occurrence of direct access. The direct production of autobiographical thoughts was also more frequent for past and future events that were judged important and emotionally intense. Collectively, these findings provide novel evidence that the direct production of episodic future thoughts is frequent in the word cueing paradigm and often involves the activation of personally significant "memories of the future."
Event construal and temporal distance in natural language.
Bhatia, Sudeep; Walasek, Lukasz
2016-07-01
Construal level theory proposes that events that are temporally proximate are represented more concretely than events that are temporally distant. We tested this prediction using two large natural language text corpora. In study 1 we examined posts on Twitter that referenced the future, and found that tweets mentioning temporally proximate dates used more concrete words than those mentioning distant dates. In study 2 we obtained all New York Times articles that referenced U.S. presidential elections between 1987 and 2007. We found that the concreteness of the words in these articles increased with the temporal proximity to their corresponding election. Additionally the reduction in concreteness after the election was much greater than the increase in concreteness leading up to the election, though both changes in concreteness were well described by an exponential function. We replicated this finding with New York Times articles referencing US public holidays. Overall, our results provide strong support for the predictions of construal level theory, and additionally illustrate how large natural language datasets can be used to inform psychological theory. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Repetition-Related Reductions in Neural Activity during Emotional Simulations of Future Events.
Szpunar, Karl K; Jing, Helen G; Benoit, Roland G; Schacter, Daniel L
2015-01-01
Simulations of future experiences are often emotionally arousing, and the tendency to repeatedly simulate negative future outcomes has been identified as a predictor of the onset of symptoms of anxiety. Nonetheless, next to nothing is known about how the healthy human brain processes repeated simulations of emotional future events. In this study, we present a paradigm that can be used to study repeated simulations of the emotional future in a manner that overcomes phenomenological confounds between positive and negative events. The results show that pulvinar nucleus and orbitofrontal cortex respectively demonstrate selective reductions in neural activity in response to frequently as compared to infrequently repeated simulations of negative and positive future events. Implications for research on repeated simulations of the emotional future in both non-clinical and clinical populations are discussed.
NASA Astrophysics Data System (ADS)
Whittaker, Kara A.; McShane, Dan
2013-02-01
A large storm event in southwest Washington State triggered over 2500 landslides and provided an opportunity to assess two slope stability screening tools. The statistical analysis conducted demonstrated that both screening tools are effective at predicting where landslides were likely to take place (Whittaker and McShane, 2012). Here we reply to two discussions of this article related to the development of the slope stability screening tools and the accuracy and scale of the spatial data used. Neither of the discussions address our statistical analysis or results. We provide greater detail on our sampling criteria and also elaborate on the policy and management implications of our findings and how they complement those of a separate investigation of landslides resulting from the same storm. The conclusions made in Whittaker and McShane (2012) stand as originally published unless future analysis indicates otherwise.
Implications from XMM and Chandra Source Catalogs for Future Studies with Lynx
NASA Astrophysics Data System (ADS)
Ptak, Andrew
2018-01-01
Lynx will perform extremely sensitive X-ray surveys by combining very high-resolution imaging over a large field of view with a high effective area. These will include deep planned surveys and serendipitous source surveys. Here we discuss implications that can be gleaned from current Chandra and XMM-Newton serendipitous source surveys. These current surveys have discovered novel sources such as tidal disruption events, binary AGN, and ULX pulsars. In addition these surveys have detected large samples of normal galaxies, low-luminosity AGN and quasars due to the wide-area coverage of the Chandra and XMM-Newton source catalogs, allowing the evolution of these phenonema to be explored. The wide area Lynx surveys will probe down further in flux and will be coupled with very sensitive wide-area surveys such as LSST and SKA, allowing for detailed modeling of their SEDs and the discovery of rare, exotic sources and transient events.
Exploring the content and quality of episodic future simulations in semantic dementia.
Irish, Muireann; Addis, Donna Rose; Hodges, John R; Piguet, Olivier
2012-12-01
Semantic dementia (SD) is a progressive neurodegenerative disorder characterised by the amodal loss of semantic knowledge in the context of relatively preserved recent episodic memory. Recent studies have demonstrated that despite relatively intact episodic memory the capacity for future simulation in SD is profoundly impaired, resulting in an asymmetric profile where past retrieval is significantly better than future simulation (referred to as a past>future effect). Here, we sought to identify the origins of this asymmetric profile by conducting a fine-grained analysis of the contextual details provided during past retrieval and future simulation in SD. Participants with SD (n=14), Alzheimer's disease (n=11), and healthy controls (n=14) had previously completed an experimental past-future interview in which they generated three past events from the previous year, and three future events in the next year, and provided subjective qualitative ratings of vividness, emotional valence, emotional intensity, task difficulty, and personal significance for each event described. Our results confirmed the striking impairment for future simulation in SD, despite a relative preservation of past episodic retrieval. Examination of the contextual details provided for past memories and future simulations revealed significant impairments irrespective of contextual detail type for future simulations in SD, and demonstrated that the future thinking deficit in this cohort was driven by a marked decline in the provision of internal (episodic) event details. In contrast with this past>future effect for internal event details, SD patients displayed a future>past effect for external (non-episodic) event details. Analyses of the qualitative ratings provided for past and future events indicated that SD patients' phenomenological experience did not differ between temporal conditions. Our findings underscore the fact that successful extraction of episodic elements from the past is not sufficient for the generation of novel future simulations in SD. The notable disconnect between objective task performance and patients' subjective experience during future simulation likely reflects the tendency of SD patients to recast entire past events into the future condition. Accordingly, the familiarity of the recapitulated details results in similar ratings of vividness and emotionality across temporal conditions, despite marked differences in the richness of contextual details as the patient moves from the past to the future. Copyright © 2012 Elsevier Ltd. All rights reserved.
Lavallee, Christina F; Persinger, Michael A
2010-12-01
Previous studies exploring mental time travel paradigms with functional neuroimaging techniques have uncovered both common and distinct neural correlates of re-experiencing past events or pre-experiencing future events. A gap in the mental time travel literature exists, as paradigms have not explored the affective component of re-experiencing past episodic events; this study explored this sparsely researched area. The present study employed standardized low resolution electromagnetic tomography (sLORETA) to identify electrophysiological correlates of re-experience affect-laden and non-affective past events, as well as pre-experiencing a future anticipated event. Our results confirm previous research and are also novel in that we illustrate common and distinct electrophysiological correlates of re-experiencing affective episodic events. Furthermore, research from this experiment yields results outlining a pattern of activation in the frontal and temporal regions is correlated with the time frame of past or future events subjects imagined. Copyright © 2010 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Blanc, Elisabeth; Le Pichon, Alexis; Ceranna, Lars; Pilger, Christoph; Charlton Perez, Andrew; Smets, Pieter
2016-04-01
The International Monitoring System (IMS) developed for the verification of the Comprehensive nuclear-Test-Ban Treaty (CTBT) provides a unique global description of atmospheric disturbances generating infrasound such as extreme events (e.g. meteors, volcanoes, earthquakes, and severe weather) or human activity (e.g. explosions and supersonic airplanes). The analysis of the detected signals, recorded at global scales and over near 15 years at some stations, demonstrates that large-scale atmospheric disturbances strongly affect infrasound propagation. Their time scales vary from several tens of minutes to hours and days. Their effects are in average well resolved by the current model predictions; however, accurate spatial and temporal description is lacking in both weather and climate models. This study reviews recent results using the infrasound technology to characterize these large scale disturbances, including (i) wind fluctuations induced by gravity waves generating infrasound partial reflections and modifications of the infrasound waveguide, (ii) convection from thunderstorms and mountain waves generating gravity waves, (iii) stratospheric warming events which yield wind inversions in the stratosphere, (iv)planetary waves which control the global atmospheric circulation. Improved knowledge of these disturbances and assimilation in future models is an important objective of the ARISE (Atmospheric dynamics Research InfraStructure in Europe) project. This is essential in the context of the future verification of the CTBT as enhanced atmospheric models are necessary to assess the IMS network performance in higher resolution, reduce source location errors, and improve characterization methods.
2003-02-01
Exhibits draw crowds of young women attending the Sally Ride Science Festival, held at the University of Central Florida, Orlando, Fla. The event promotes science, math and technology as future career paths for girls. Former astronaut Sally Ride addressed the girls, while breakout sessions afforded closer interaction between Ride and festival attendees. Since it followed the tragic loss of the Columbia astronauts, a large poster was presented which attendees could sign as tribute.
Sacramento Metropolitan Area, California
1992-02-01
restriction would apply to virtually all of West Sacramento. Future conditions in the bypass areas are expected to remain essentially the same. During...frequency, the stage-frequency curve in the study area essentially becomes flat because of the large storage volume behind upstream levee breaches. This curve...and 400-year flood plains are also essentially the same (15 to 16 feet) because of the following: 1) the flood volume for each event is sufficient to
NASA Technical Reports Server (NTRS)
Contreras, Michael T.; Peng, Chia-Yen; Wang, Dongdong; Chen, Jiun-Shyan
2012-01-01
A wheel experiencing sinkage and slippage events poses a high risk to rover missions as evidenced by recent mobility challenges on the Mars Exploration Rover (MER) project. Because several factors contribute to wheel sinkage and slippage conditions such as soil composition, large deformation soil behavior, wheel geometry, nonlinear contact forces, terrain irregularity, etc., there are significant benefits to modeling these events to a sufficient degree of complexity. For the purposes of modeling wheel sinkage and slippage at an engineering scale, meshfree finite element approaches enable simulations that capture sufficient detail of wheel-soil interaction while remaining computationally feasible. This study demonstrates some of the large deformation modeling capability of meshfree methods and the realistic solutions obtained by accounting for the soil material properties. A benchmark wheel-soil interaction problem is developed and analyzed using a specific class of meshfree methods called Reproducing Kernel Particle Method (RKPM). The benchmark problem is also analyzed using a commercially available finite element approach with Lagrangian meshing for comparison. RKPM results are comparable to classical pressure-sinkage terramechanics relationships proposed by Bekker-Wong. Pending experimental calibration by future work, the meshfree modeling technique will be a viable simulation tool for trade studies assisting rover wheel design.
Climate, icing, and wild arctic reindeer: past relationships and future prospects.
Hansen, Brage Bremset; Aanes, Ronny; Herfindal, Ivar; Kohler, Jack; Saether, Bernt-Erik
2011-10-01
Across the Arctic, heavy rain-on-snow (ROS) is an "extreme" climatic event that is expected to become increasingly frequent with global warming. This has potentially large ecosystem implications through changes in snowpack properties and ground-icing, which can block the access to herbivores' winter food and thereby suppress their population growth rates. However, the supporting empirical evidence for this is still limited. We monitored late winter snowpack properties to examine the causes and consequences of ground-icing in a Svalbard reindeer (Rangifer tarandus platyrhynchus) metapopulation. In this high-arctic area, heavy ROS occurred annually, and ground-ice covered from 25% to 96% of low-altitude habitat in the sampling period (2000-2010). The extent of ground-icing increased with the annual number of days with heavy ROS (> or = 10 mm) and had a strong negative effect on reindeer population growth rates. Our results have important implications as a downscaled climate projection (2021-2050) suggests a substantial future increase in ROS and icing. The present study is the first to demonstrate empirically that warmer and wetter winter climate influences large herbivore population dynamics by generating ice-locked pastures. This may serve as an early warning of the importance of changes in winter climate and extreme weather events in arctic ecosystems.
NASA Astrophysics Data System (ADS)
Pearl, J. K.; Anchukaitis, K. J.; Pederson, N.; Donnelly, J. P.
2017-12-01
Extreme hydrologic events pose a present and future threat to cities and infrastructure in the densely populated coastal corridor of the northeastern United States (NE). An understanding of the potential range and return interval of storms, floods, and droughts is important for improving coastal management and hazard planning, as well as the detection and attribution of trends in regional climate phenomena. Here, we examine a suite of evidence for Common Era paleohydroclimate extreme events in the NE. Our study analyzes a network of hydroclimate sensitive trees, subfossil 'drowned' forests and co-located sediment records, using both classical and isotope dendrochronology, radiocarbon analyses, and sediment stratigraphy. Atlantic White cedar (AWC) forests grow along the NE coast and are exposed to severe coastal weather, as they are typically most successful in near-shore, glacially formed depressions. Many coastal AWC sites are ombrotrophic and contain a precipitation or drought signal in their ring widths. Sub-fossil AWC forests are found where near-shore swamps were drowned and exposed to the ocean. Additionally, the rings of coastal AWC may contain the geochemical signature of landfalling tropical cyclones, which bring with them a large influx of precipitation with distinct oxygen isotopes, which can be used to identify these large storms. Dendrochronology, radiocarbon dating, and analysis of sediment cores are used here to identify and date the occurrence of large overwash events along the coastline of the northeastern United States associated with extreme storms.
Cyclone-induced rapid creation of extreme Antarctic sea ice conditions
Wang, Zhaomin; Turner, John; Sun, Bo; Li, Bingrui; Liu, Chengyan
2014-01-01
Two polar vessels, Akademik Shokalskiy and Xuelong, were trapped by thick sea ice in the Antarctic coastal region just to the west of 144°E and between 66.5°S and 67°S in late December 2013. This event demonstrated the rapid establishment of extreme Antarctic sea ice conditions on synoptic time scales. The event was associated with cyclones that developed at lower latitudes. Near the event site, cyclone-enhanced strong southeasterly katabatic winds drove large westward drifts of ice floes. In addition, the cyclones also gave southward ice drift. The arrival and grounding of Iceberg B9B in Commonwealth Bay in March 2011 led to the growth of fast ice around it, forming a northward protruding barrier. This barrier blocked the westward ice drift and hence aided sea ice consolidation on its eastern side. Similar cyclone-induced events have occurred at this site in the past after the grounding of Iceberg B9B. Future events may be predictable on synoptic time scales, if cyclone-induced strong wind events can be predicted. PMID:24937550
NASA Astrophysics Data System (ADS)
Ludwig, R.
2017-12-01
There is as yet no confirmed knowledge whether and how climate change contributes to the magnitude and frequency of hydrological extreme events and how regional water management could adapt to the corresponding risks. The ClimEx project (2015-2019) investigates the effects of climate change on the meteorological and hydrological extreme events and their implications for water management in Bavaria and Québec. High Performance Computing is employed to enable the complex simulations in a hydro-climatological model processing chain, resulting in a unique high-resolution and transient (1950-2100) dataset of climatological and meteorological forcing and hydrological response: (1) The climate module has developed a large ensemble of high resolution data (12km) of the CRCM5 RCM for Central Europe and North-Eastern North America, downscaled from 50 members of the CanESM2 GCM. The dataset is complemented by all available data from the Euro-CORDEX project to account for the assessment of both natural climate variability and climate change. The large ensemble with several thousand model years provides the potential to catch rare extreme events and thus improves the process understanding of extreme events with return periods of 1000+ years. (2) The hydrology module comprises process-based and spatially explicit model setups (e.g. WaSiM) for all major catchments in Bavaria and Southern Québec in high temporal (3h) and spatial (500m) resolution. The simulations form the basis for in depth analysis of hydrological extreme events based on the inputs from the large climate model dataset. The specific data situation enables to establish a new method for `virtual perfect prediction', which assesses climate change impacts on flood risk and water resources management by identifying patterns in the data which reveal preferential triggers of hydrological extreme events. The presentation will highlight first results from the analysis of the large scale ClimEx model ensemble, showing the current and future ratio of natural variability and climate change impacts on meteorological extreme events. Selected data from the ensemble is used to drive a hydrological model experiment to illustrate the capacity to better determine the recurrence periods of hydrological extreme events under conditions of climate change.
Hydrological Retrospective of floods and droughts: Case study in the Amazon
NASA Astrophysics Data System (ADS)
Wongchuig Correa, Sly; Cauduro Dias de Paiva, Rodrigo; Carlo Espinoza Villar, Jhan; Collischonn, Walter
2017-04-01
Recent studies have reported an increase in intensity and frequency of hydrological extreme events in many regions of the Amazon basin over last decades, these events such as seasonal floods and droughts have originated a significant impact in human and natural systems. Recently, methodologies such as climatic reanalysis are being developed in order to create a coherent register of climatic systems, thus taking this notion, this research efforts to produce a methodology called Hydrological Retrospective (HR), that essentially simulate large rainfall datasets over hydrological models in order to develop a record over past hydrology, enabling the analysis of past floods and droughts. We developed our methodology on the Amazon basin, thus we used eight large precipitation datasets (more than 30 years) through a large scale hydrological and hydrodynamic model (MGB-IPH), after that HR products were validated against several in situ discharge gauges dispersed throughout Amazon basin, given focus in maximum and minimum events. For better HR results according performance metrics, we performed a forecast skill of HR to detect floods and droughts considering in-situ observations. Furthermore, statistical temporal series trend was performed for intensity of seasonal floods and drought in the whole Amazon basin. Results indicate that better HR represented well most past extreme events registered by in-situ observed data and also showed coherent with many events cited by literature, thus we consider viable to use some large precipitation datasets as climatic reanalysis mainly based on land surface component and datasets based in merged products for represent past regional hydrology and seasonal hydrological extreme events. On the other hand, an increase trend of intensity was realized for maximum annual discharges (related to floods) in north-western regions and for minimum annual discharges (related to drought) in central-south regions of the Amazon basin, these features were previously detected by other researches. In the whole basin, we estimated an upward trend of maximum annual discharges at Amazon River. In order to estimate better future hydrological behavior and their impacts on the society, HR could be used as a methodology to understand past extreme events occurrence in many places considering the global coverage of rainfall datasets.
NASA Astrophysics Data System (ADS)
Kawazoe, S.; Gutowski, W. J., Jr.
2015-12-01
We analyze the ability of regional climate models (RCMs) to simulate very heavy daily precipitation and supporting processes for both contemporary and future-scenario simulations during summer (JJA). RCM output comes from North American Regional Climate Change Assessment Program (NARCCAP) simulations, which are all run at a spatial resolution of 50 km. Analysis focuses on the upper Mississippi basin for summer, between 1982-1998 for the contemporary climate, and 2052-2068 during the scenario climate. We also compare simulated precipitation and supporting processes with those obtained from observed precipitation and reanalysis atmospheric states. Precipitation observations are from the University of Washington (UW) and the Climate Prediction Center (CPC) gridded dataset. Utilizing two observational datasets helps determine if any uncertainties arise from differences in precipitation gridding schemes. Reanalysis fields come from the North American Regional Reanalysis. The NARCCAP models generally reproduce well the precipitation-vs.-intensity spectrum seen in observations, while producing overly strong precipitation at high intensity thresholds. In the future-scenario climate, there is a decrease in frequency for light to moderate precipitation intensities, while an increase in frequency is seen for the higher intensity events. Further analysis focuses on precipitation events exceeding the 99.5 percentile that occur simultaneously at several points in the region, yielding so-called "widespread events". For widespread events, we analyze local and large scale environmental parameters, such as 2-m temperature and specific humidity, 500-hPa geopotential heights, Convective Available Potential Energy (CAPE), vertically integrated moisture flux convergence, among others, to compare atmospheric states and processes leading to such events in the models and observations. The results suggest that an analysis of atmospheric states supporting very heavy precipitation events is a more fruitful path for understanding and detecting changes than simply looking at precipitation itself.
The 2006-2007 Kuril Islands great earthquake sequence
Lay, T.; Kanamori, H.; Ammon, C.J.; Hutko, Alexander R.; Furlong, K.; Rivera, L.
2009-01-01
The southwestern half of a ???500 km long seismic gap in the central Kuril Island arc subduction zone experienced two great earthquakes with extensive preshock and aftershock sequences in late 2006 to early 2007. The nature of seismic coupling in the gap had been uncertain due to the limited historical record of prior large events and the presence of distinctive upper plate, trench and outer rise structures relative to adjacent regions along the arc that have experienced repeated great interplate earthquakes in the last few centuries. The intraplate region seaward of the seismic gap had several shallow compressional events during the preceding decades (notably an MS 7.2 event on 16 March 1963), leading to speculation that the interplate fault was seismically coupled. This issue was partly resolved by failure of the shallow portion of the interplate megathrust in an MW = 8.3 thrust event on 15 November 2006. This event ruptured ???250 km along the seismic gap, just northeast of the great 1963 Kuril Island (Mw = 8.5) earthquake rupture zone. Within minutes of the thrust event, intense earthquake activity commenced beneath the outer wall of the trench seaward of the interplate rupture, with the larger events having normal-faulting mechanisms. An unusual double band of interplate and intraplate aftershocks developed. On 13 January 2007, an MW = 8.1 extensional earthquake ruptured within the Pacific plate beneath the seaward edge of the Kuril trench. This event is the third largest normal-faulting earthquake seaward of a subduction zone on record, and its rupture zone extended to at least 33 km depth and paralleled most of the length of the 2006 rupture. The 13 January 2007 event produced stronger shaking in Japan than the larger thrust event, as a consequence of higher short-period energy radiation from the source. The great event aftershock sequences were dominated by the expected faulting geometries; thrust faulting for the 2006 rupture zone, and normal faulting for the 2007 rupture zone. A large intraplate compressional event occurred on 15 January 2009 (Mw = 7.4) near 45 km depth, below the rupture zone of the 2007 event and in the vicinity of the 16 March 1963 compressional event. The fault geometry, rupture process and slip distributions of the two great events are estimated using very broadband teleseismic body and surface wave observations. The occurrence of the thrust event in the shallowest portion of the interplate fault in a region with a paucity of large thrust events at greater depths suggests that the event removed most of the slip deficit on this portion of the interplate fault. This great earthquake doublet demonstrates the heightened seismic hazard posed by induced intraplate faulting following large interplate thrust events. Future seismic failure of the remainder of the seismic gap appears viable, with the northeastern region that has also experienced compressional activity seaward of the megathrust warranting particular attention. Copyright 2009 by the American Geophysical Union.
Developing future precipitation events from historic events: An Amsterdam case study.
NASA Astrophysics Data System (ADS)
Manola, Iris; van den Hurk, Bart; de Moel, Hans; Aerts, Jeroen
2016-04-01
Due to climate change, the frequency and intensity of extreme precipitation events is expected to increase. It is therefore of high importance to develop climate change scenarios tailored towards the local and regional needs of policy makers in order to develop efficient adaptation strategies to reduce the risks from extreme weather events. Current approaches to tailor climate scenarios are often not well adopted in hazard management, since average changes in climate are not a main concern to policy makers, and tailoring climate scenarios to simulate future extremes can be complex. Therefore, a new concept has been introduced recently that uses known historic extreme events as a basis, and modifies the observed data for these events so that the outcome shows how the same event would occur in a warmer climate. This concept is introduced as 'Future Weather', and appeals to the experience of stakeholders and users. This research presents a novel method of projecting a future extreme precipitation event, based on a historic event. The selected precipitation event took place over the broader area of Amsterdam, the Netherlands in the summer of 2014, which resulted in blocked highways, disruption of air transportation, flooded buildings and public facilities. An analysis of rain monitoring stations showed that an event of such intensity has a 5 to 15 years return period. The method of projecting a future event follows a non-linear delta transformation that is applied directly on the observed event assuming a warmer climate to produce an "up-scaled" future precipitation event. The delta transformation is based on the observed behaviour of the precipitation intensity as a function of the dew point temperature during summers. The outcome is then compared to a benchmark method using the HARMONIE numerical weather prediction model, where the boundary conditions of the event from the Ensemble Prediction System of ECMWF (ENS) are perturbed to indicate a warmer climate. The two methodologies are statistically compared and evaluated. The comparison between the historic event generated by the model and the observed event will give information on the realism of the model for this event. The comparison between the delta transformation method and the future simulation will provide information on how the dynamics would affect the precipitation field, as compared to the statistical method.
January 2016 West Antarctic Melt Event: Large Scale Forcing and Local Processes
NASA Astrophysics Data System (ADS)
Bromwich, D. H.; Nicolas, J. P.
2017-12-01
A huge surface melt event occurred in January 2016 that affected a large portion of the Ross Ice Shelf and adjacent parts of Marie Byrd Land of West Antarctica. It coincided with one of the strongest El Niño events on record in the tropical Pacific Ocean. The El Niño teleconnection pattern in the South Pacific Ocean favors the advection of warm, moist air into the western part of West Antarctica. At the same time strong westerly winds over the Southern Ocean, captured by the Southern Annular Mode or SAM, were strong before, during, and after the melting episode, and these tend to limit the transport of marine air into the Ross Ice Shelf region. This prominent melt event demonstrates that extensive melting can happen regardless of the state of the SAM when the El Niño forcing is strong. Furthermore, because climate models project more frequent major El Niños in the future with a warming climate, we can expect more major surface melt events in West Antarctica as the 21st century unfolds. The melting event occurred in part of the West Antarctic Ice Sheet that the ice sheet modeling study of DeConto and Pollard (2016) suggests is prone to collapse as a result of extreme greenhouse warming. This melt event happened while an important field campaign, the Atmospheric Radiation Measurement West Antarctic Radiation Experiment (AWARE), was ongoing in central West Antarctica. The observations collected during this campaign provided unique insight into some of the physical mechanisms governing surface melting in this otherwise data-sparse region. In particular, these observations highlighted the presence of low-level liquid-water clouds, which aided the radiative heating of the snow surface from both shortwave and longwave radiation, reminiscent of summer melting conditions in Greenland. The resulting large flux of energy into the snow pack was reflected in increased satellite microwave brightness temperatures that were used to follow the evolution of the widespread melting.
Probabilistic Assessment of Cancer Risk from Solar Particle Events
NASA Astrophysics Data System (ADS)
Kim, Myung-Hee Y.; Cucinotta, Francis A.
For long duration missions outside of the protection of the Earth's magnetic field, space radi-ation presents significant health risks including cancer mortality. Space radiation consists of solar particle events (SPEs), comprised largely of medium energy protons (less than several hundred MeV); and galactic cosmic ray (GCR), which include high energy protons and heavy ions. While the frequency distribution of SPEs depends strongly upon the phase within the solar activity cycle, the individual SPE occurrences themselves are random in nature. We es-timated the probability of SPE occurrence using a non-homogeneous Poisson model to fit the historical database of proton measurements. Distributions of particle fluences of SPEs for a specified mission period were simulated ranging from its 5th to 95th percentile to assess the cancer risk distribution. Spectral variability of SPEs was also examined, because the detailed energy spectra of protons are important especially at high energy levels for assessing the cancer risk associated with energetic particles for large events. We estimated the overall cumulative probability of GCR environment for a specified mission period using a solar modulation model for the temporal characterization of the GCR environment represented by the deceleration po-tential (φ). Probabilistic assessment of cancer fatal risk was calculated for various periods of lunar and Mars missions. This probabilistic approach to risk assessment from space radiation is in support of mission design and operational planning for future manned space exploration missions. In future work, this probabilistic approach to the space radiation will be combined with a probabilistic approach to the radiobiological factors that contribute to the uncertainties in projecting cancer risks.
Probabilistic Assessment of Cancer Risk from Solar Particle Events
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee Y.; Cucinotta, Francis A.
2010-01-01
For long duration missions outside of the protection of the Earth s magnetic field, space radiation presents significant health risks including cancer mortality. Space radiation consists of solar particle events (SPEs), comprised largely of medium energy protons (less than several hundred MeV); and galactic cosmic ray (GCR), which include high energy protons and heavy ions. While the frequency distribution of SPEs depends strongly upon the phase within the solar activity cycle, the individual SPE occurrences themselves are random in nature. We estimated the probability of SPE occurrence using a non-homogeneous Poisson model to fit the historical database of proton measurements. Distributions of particle fluences of SPEs for a specified mission period were simulated ranging from its 5 th to 95th percentile to assess the cancer risk distribution. Spectral variability of SPEs was also examined, because the detailed energy spectra of protons are important especially at high energy levels for assessing the cancer risk associated with energetic particles for large events. We estimated the overall cumulative probability of GCR environment for a specified mission period using a solar modulation model for the temporal characterization of the GCR environment represented by the deceleration potential (^). Probabilistic assessment of cancer fatal risk was calculated for various periods of lunar and Mars missions. This probabilistic approach to risk assessment from space radiation is in support of mission design and operational planning for future manned space exploration missions. In future work, this probabilistic approach to the space radiation will be combined with a probabilistic approach to the radiobiological factors that contribute to the uncertainties in projecting cancer risks.
Modeling an unmitigated thermal quench event in a large field magnet in a DEMO reactor
Merrill, Brad J.
2015-03-25
The superconducting magnet systems of future fusion reactors, such as a Demonstration Power Plant (DEMO), will produce magnetic field energies in the 10 s of GJ range. The release of this energy during a fault condition could produce arcs that can damage the magnets of these systems. The public safety consequences of such events must be explored for a DEMO reactor because the magnets are located near the DEMO's primary radioactive confinement barrier, the reactor's vacuum vessel (VV). Great care will be taken in the design of DEMO's magnet systems to detect and provide a rapid field energy dump tomore » avoid any accidents conditions. During an event when a fault condition proceeds undetected, the potential of producing melting of the magnet exists. If molten material from the magnet impinges on the walls of the VV, these walls could fail, resulting in a pathway for release of radioactive material from the VV. A model is under development at Idaho National Laboratory (INL) called MAGARC to investigate the consequences of this accident in a large toroidal field (TF) coil. Recent improvements to this model are described in this paper, along with predictions for a DEMO relevant event in a toroidal field magnet.« less
What aspects of future rainfall changes matter for crop yields in West Africa?
NASA Astrophysics Data System (ADS)
Guan, Kaiyu; Sultan, Benjamin; Biasutti, Michela; Baron, Christian; Lobell, David B.
2015-10-01
How rainfall arrives, in terms of its frequency, intensity, the timing and duration of rainy season, may have a large influence on rainfed agriculture. However, a thorough assessment of these effects is largely missing. This study combines a new synthetic rainfall model and two independently validated crop models (APSIM and SARRA-H) to assess sorghum yield response to possible shifts in seasonal rainfall characteristics in West Africa. We find that shifts in total rainfall amount primarily drive the rainfall-related crop yield change, with less relevance to intraseasonal rainfall features. However, dry regions (total annual rainfall below 500 mm/yr) have a high sensitivity to rainfall frequency and intensity, and more intense rainfall events have greater benefits for crop yield than more frequent rainfall. Delayed monsoon onset may negatively impact yields. Our study implies that future changes in seasonal rainfall characteristics should be considered in designing specific crop adaptations in West Africa.
A study of correlations between crude oil spot and futures markets: A rolling sample test
NASA Astrophysics Data System (ADS)
Liu, Li; Wan, Jieqiu
2011-10-01
In this article, we investigate the asymmetries of exceedance correlations and cross-correlations between West Texas Intermediate (WTI) spot and futures markets. First, employing the test statistic proposed by Hong et al. [Asymmetries in stock returns: statistical tests and economic evaluation, Review of Financial Studies 20 (2007) 1547-1581], we find that the exceedance correlations were overall symmetric. However, the results from rolling windows show that some occasional events could induce the significant asymmetries of the exceedance correlations. Second, employing the test statistic proposed by Podobnik et al. [Quantifying cross-correlations using local and global detrending approaches, European Physics Journal B 71 (2009) 243-250], we find that the cross-correlations were significant even for large lagged orders. Using the detrended cross-correlation analysis proposed by Podobnik and Stanley [Detrended cross-correlation analysis: a new method for analyzing two nonstationary time series, Physics Review Letters 100 (2008) 084102], we find that the cross-correlations were weakly persistent and were stronger between spot and futures contract with larger maturity. Our results from rolling sample test also show the apparent effects of the exogenous events. Additionally, we have some relevant discussions on the obtained evidence.
Hydrologic Modeling in the Kenai River Watershed using Event Based Calibration
NASA Astrophysics Data System (ADS)
Wells, B.; Toniolo, H. A.; Stuefer, S. L.
2015-12-01
Understanding hydrologic changes is key for preparing for possible future scenarios. On the Kenai Peninsula in Alaska the yearly salmon runs provide a valuable stimulus to the economy. It is the focus of a large commercial fishing fleet, but also a prime tourist attraction. Modeling of anadromous waters provides a tool that assists in the prediction of future salmon run size. Beaver Creek, in Kenai, Alaska, is a lowlands stream that has been modeled using the Army Corps of Engineers event based modeling package HEC-HMS. With the use of historic precipitation and discharge data, the model was calibrated to observed discharge values. The hydrologic parameters were measured in the field or calculated, while soil parameters were estimated and adjusted during the calibration. With the calibrated parameter for HEC-HMS, discharge estimates can be used by other researches studying the area and help guide communities and officials to make better-educated decisions regarding the changing hydrology in the area and the tied economic drivers.
The MJO-SSW Teleconnection: Interaction Between MJO-Forced Waves and the Midlatitude Jet
NASA Astrophysics Data System (ADS)
Kang, Wanying; Tziperman, Eli
2018-05-01
The Madden-Julian Oscillation (MJO) was shown to affect both present-day sudden stratospheric warming (SSW) events in the Arctic and their future frequency under global warming scenarios, with implications to the Arctic Oscillation and midlatitude extreme weather. This work uses a dry dynamic core model to understand the dependence of SSW frequency on the amplitude and longitudinal range of the MJO, motivated by the prediction that the MJO will strengthen and broaden its longitudinal range in a warmer climate. We focus on the response of the midlatitude jets and the corresponding generated stationary waves, which are shown to dominate the response of SSW events to MJO forcing. Momentum budget analysis of a large ensemble of spinup simulations suggests that the climatological jet response is driven by the MJO-forced meridional eddy momentum transport. The results suggest that the trends in both MJO amplitude and longitudinal range are important for the prediction of the midlatitude jet response and for the prediction of SSWs in a future climate.
NASA Astrophysics Data System (ADS)
Li, Ke; Liao, Hong; Cai, Wenju; Yang, Yang
2018-02-01
Severe haze pollution in eastern China has caused substantial health impacts and economic loss. Conducive atmospheric conditions are important to affect occurrence of severe haze events, and circulation changes induced by future global climate warming are projected to increase the frequency of such events. However, a potential contribution of an anthropogenic influence to recent most severe haze (December 2015 and January 2013) over eastern China remains unclear. Here we show that the anthropogenic influence, which is estimated by using large ensemble runs with a climate model forced with and without anthropogenic forcings, has already increased the probability of the atmospheric patterns conducive to severe haze by at least 45% in January 2013 and 27% in December 2015, respectively. We further confirm that simulated atmospheric circulation pattern changes induced by anthropogenic influence are driven mainly by increased greenhouse gas emissions. Our results suggest that more strict reductions in pollutant emissions are needed under future anthropogenic warming.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Ke; Liao, Hong; Cai, Wenju
Severe haze pollution in eastern China has caused substantial health impacts and economic loss. Conducive atmospheric conditions are important to affect occurrence of severe haze events, and circulation changes induced by future global climate warming are projected to increase the frequency of such events. However, a potential contribution of an anthropogenic influence to recent most severe haze (December 2015 and January 2013) over eastern China remains unclear. Here we show that the anthropogenic influence, which is estimated by using large ensemble runs with a climate model forced with and without anthropogenic forcings, has already increased the probability of the atmosphericmore » patterns conducive to severe haze by at least 45% in January 2013 and 27% in December 2015, respectively. We further confirm that simulated atmospheric circulation pattern changes induced by anthropogenic influence are driven mainly by increased greenhouse gas emissions. Our results suggest that more strict reductions in pollutant emissions are needed under future anthropogenic warming.« less
Nair, Satheesh Balakrishnan; Malik, Rayaz; Khattar, Rajdeep S
2012-12-01
Ultrasound measurement of carotid intima-media thickness (IMT) has become a valuable tool for detecting and monitoring progression of atherosclerosis and recently published recommendations provide guidance for proper standardisation of these measurements. Important determinants of carotid IMT include age, gender, systolic blood pressure, diabetes mellitus and serum cholesterol levels. Many studies have shown carotid IMT to correlate with the severity of coronary atherosclerosis assessed by CT coronary calcification scores, coronary angiography and intravascular ultrasound. Consistent with its correlation with cardiovascular risk factors and coronary artery disease, a meta-analysis of large observational studies has shown carotid IMT to be a strong predictor of future cardiovascular events. Moreover, in patients with established coronary artery disease a reduction in carotid IMT has been shown to translate into a reduction in future cardiovascular events. Consensus statements now also recommend carotid IMT measurements to further refine the prognostic assessment of patients traditionally considered to be at an intermediate risk of cardiovascular disease.
Jing, Helen G; Madore, Kevin P; Schacter, Daniel L
2017-12-01
A critical adaptive feature of future thinking involves the ability to generate alternative versions of possible future events. However, little is known about the nature of the processes that support this ability. Here we examined whether an episodic specificity induction - brief training in recollecting details of a recent experience that selectively impacts tasks that draw on episodic retrieval - (1) boosts alternative event generation and (2) changes one's initial perceptions of negative future events. In Experiment 1, an episodic specificity induction significantly increased the number of alternative positive outcomes that participants generated to a series of standardized negative events, compared with a control induction not focused on episodic specificity. We also observed larger decreases in the perceived plausibility and negativity of the original events in the specificity condition, where participants generated more alternative outcomes, relative to the control condition. In Experiment 2, we replicated and extended these findings using a series of personalized negative events. Our findings support the idea that episodic memory processes are involved in generating alternative outcomes to anticipated future events, and that boosting the number of alternative outcomes is related to subsequent changes in the perceived plausibility and valence of the original events, which may have implications for psychological well-being. Published by Elsevier B.V.
Mental simulation of future scenarios in transient global amnesia.
Juskenaite, Aurelija; Quinette, Peggy; Desgranges, Béatrice; de La Sayette, Vincent; Viader, Fausto; Eustache, Francis
2014-10-01
Researchers exploring mental time travel into the future have emphasized the role played by episodic memory and its cerebral substrates. Recently, owing to controversial findings in amnesic patients, this role has become a matter of intense debate. In order to understand whether episodic memory is indeed crucial to future thinking, we assessed this ability in 11 patients during an episode of transient global amnesia (TGA), a unique and severe amnesic syndrome that primarily affects episodic memory. In the first of two experiments, TGA patients were asked to recall personal past events as well as to imagine personal future events, without any guidance regarding content. Under this condition, compared with controls, they provided fewer past and fewer future events, and the latter were less closely related to their personal goals. Furthermore, TGA patients׳ descriptions of past and future events were scant, containing fewer descriptive elements in total and fewer internal details. In order to assess whether TGA patients might have been basing their future event narratives on their general knowledge about how these events usually unfold, in our second experiment, we asked them to imagine future events in response to short descriptions of common scenarios. Under this condition, inherently eliciting less detailed descriptions, not only were all the TGA patients able to describe common events as happening in the future, but their narratives contained comparable amounts of internal detail to those of controls, despite being less detailed overall. Taken together, our results indicate that severe amnesia interferes with TGA patients׳ ability to envisage their personal past and future on a general level as well as in detail, but less severely affects their ability to imagine common scenarios, which are not related to their personal goals, probably owing to their preserved semantic memory, logical reasoning and ability to create vivid mental images. Copyright © 2014 Elsevier Ltd. All rights reserved.
Effects of spatial attention on mental time travel in patients with neglect.
Anelli, Filomena; Avanzi, Stefano; Arzy, Shahar; Mancuso, Mauro; Frassinetti, Francesca
2018-04-01
Numerous studies agree that time is represented in spatial terms in the brain. Here we investigate how a deficit in orienting attention in space influences the ability to mentally travel in time, that is to recall the past and anticipate the future. Right brain-damaged patients, with (RBD-N+) and without neglect (RBD-N-), and healthy controls (HC) were subjected to a Mental Time Travel (MTT) task. Participants were asked to project themselves in time to past, present or future (i.e., self-projection) and, for each self-projection, to judge whether events were located relatively in the past or the future (i.e., self-reference). The MTT-task was performed before and after a manipulation, through prismatic adaptation (PA), inducing a leftward shift of spatial attention. Before PA, RBD-N+ were slower for future than for past events, whereas RBD-N- and HC responded similarly to past and future events. A leftward shift of spatial attention by PA reduced the difference in past/future processing in RBD-N+ and fastened RBD-N- and HC's response to past events. Assuming that time concepts, such as past/future, are coded with a left-to-right order on a mental time line (MTL), a recursive search of future-events can explain neglect patients' performance. Improvement of the spatial deficit following PA reduces the recursive search of future events on the rightmost part of the MTL, facilitating exploration of past events on the leftmost part of the MTL, finally favoring the correct location of past and future events. In addition, the study of the anatomical correlates of the temporal deficit in mental time travel through voxel-based lesion-symptom mapping showed a correlation with a lesion located in the insula and in the thalamus. These findings provide new insights about the inter-relations of space and time, and can pave the way to a procedure to rehabilitate a deficit in these cognitive domains. Copyright © 2018 Elsevier Ltd. All rights reserved.
Visuospatial asymmetries and emotional valence influence mental time travel.
Thomas, Nicole A; Takarangi, Melanie K T
2018-06-01
Spatial information is tightly intertwined with temporal and valence-based information. Namely, "past" is represented on the left, and "future" on the right, along a horizontal mental timeline. Similarly, right is associated with positive, whereas left is negative. We developed a novel task to examine the effects of emotional valence and temporal distance on mental representations of time. We compared positivity biases, where positive events are positioned closer to now, and right hemisphere emotion biases, where negative events are positioned to the left. When the entire life span was used, a positivity bias emerged; positive events were closer to now. When timeline length was reduced, positivity and right hemisphere emotion biases were consistent for past events. In contrast, positive and negative events were equidistant from now in the future condition, suggesting positivity and right hemisphere emotion biases opposed one another, leading events to be positioned at a similar distance. We then reversed the timeline by moving past to the right and future to the left. Positivity biases in the past condition were eliminated, and negative events were placed slightly closer to now in the future condition. We conclude that an underlying left-to-right mental representation of time is necessary for positivity biases to emerge for past events; however, our mental representations of future events are inconsistent with positivity biases. These findings point to an important difference in the way in which we represent the past and the future on our mental timeline. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Induced Seismicity Potential of Energy Technologies
NASA Astrophysics Data System (ADS)
Hitzman, Murray
2013-03-01
Earthquakes attributable to human activities-``induced seismic events''-have received heightened public attention in the United States over the past several years. Upon request from the U.S. Congress and the Department of Energy, the National Research Council was asked to assemble a committee of experts to examine the scale, scope, and consequences of seismicity induced during fluid injection and withdrawal associated with geothermal energy development, oil and gas development, and carbon capture and storage (CCS). The committee's report, publicly released in June 2012, indicates that induced seismicity associated with fluid injection or withdrawal is caused in most cases by change in pore fluid pressure and/or change in stress in the subsurface in the presence of faults with specific properties and orientations and a critical state of stress in the rocks. The factor that appears to have the most direct consequence in regard to induced seismicity is the net fluid balance (total balance of fluid introduced into or removed from the subsurface). Energy technology projects that are designed to maintain a balance between the amount of fluid being injected and withdrawn, such as most oil and gas development projects, appear to produce fewer seismic events than projects that do not maintain fluid balance. Major findings from the study include: (1) as presently implemented, the process of hydraulic fracturing for shale gas recovery does not pose a high risk for inducing felt seismic events; (2) injection for disposal of waste water derived from energy technologies does pose some risk for induced seismicity, but very few events have been documented over the past several decades relative to the large number of disposal wells in operation; and (3) CCS, due to the large net volumes of injected fluids suggested for future large-scale carbon storage projects, may have potential for inducing larger seismic events.
Public support for restrictions on fast food company sponsorship of community events.
Pettigrew, Simone; Pescud, Melanie; Rosenberg, Michael; Ferguson, Renee; Houghton, Stephen
2012-01-01
This study investigated community attitudes to fast food companies' sponsorship of community events. The aim was to inform future efforts to introduce greater restrictions on these marketing activities to reduce child obesity. While previous research has focused on the sponsorship of sporting events, the present study included all community events and gauged public support for fast food company sponsorships in general as well as specific sponsorship activities such as securing event naming rights, advertising on event premises, and distributing free items to children in the form of food and redeemable vouchers. A large and diverse sample of Western Australian adults (n=2,005) responded to a community attitudes telephone survey that included questions relating to event sponsorship. Almost half of the respondents reported that the promotion of fast foods is inappropriate at community events, and only a third considered it appropriate at events where children are likely to be present. Around two-thirds agreed that promoting fast foods at such events sends contradictory messages to children and just a quarter of respondents considered it acceptable for free fast food to be distributed at events or for children to be rewarded for participation with fast food vouchers. The results suggest that efforts to reduce child obesity that involve restrictions on the sponsorship of community events by organisations promoting unhealthy foods may be supported by a substantial proportion of the population.
Seismic and Geodetic Monitoring of the Nicoya, Costa Rica, Seismic Gap
NASA Astrophysics Data System (ADS)
Protti, M.; Gonzalez, V.; Schwartz, S.; Dixon, T.; Kato, T.; Kaneda, Y.; Simila, G.; Sampson, D.
2007-05-01
The Nicoya segment of the Middle America Trench has been recognized as a mature seismic gap with potential to generate a large earthquake in the near future (it ruptured with large earthquakes in 1853, 1900 and 1950). Low level of background seismicity and fast crustal deformation of the forearc are indicatives of strong coupling along the plate interface. Given its high seismic potential, the available data and especially the fact that the Nicoya peninsula extends over large part of the rupture area, this gap was selected as one of the two sites for a MARGINS-SEIZE experiment. With the goal of documenting the evolution of loading and stress release along this seismic gap, an international effort involving several institutions from Costa Rica, the United States and Japan is being carried out for over a decade in the region. This effort involves the installation of temporary and permanent seismic and geodetic networks. The seismic network includes short period, broad band and strong motion instruments. The seismic monitoring has provided valuable information on the geometry and characteristics of the plate interface. The geodetic network includes temporary and permanent GPS stations as well as surface and borehole tiltmeters. The geodetic networks have helped quantify the extend and degree of coupling. A continuously recording, three- station GPS network on the Nicoya Peninsula, Costa Rica, recorded what we believe is the first slow slip event observed along the plate interface of the Costa Rica subduction zone. We will present results from these monitoring networks. Collaborative international efforts are focused on expanding these seismic and geodetic networks to provide improved resolution of future creep events, to enhanced understanding of the mechanical behavior of the Nicoya subduction segment of the Middle American Trench and possibly capture the next large earthquake and its potential precursor deformation.
Medical Implications of Space Radiation Exposure Due to Low-Altitude Polar Orbits.
Chancellor, Jeffery C; Auñon-Chancellor, Serena M; Charles, John
2018-01-01
Space radiation research has progressed rapidly in recent years, but there remain large uncertainties in predicting and extrapolating biological responses to humans. Exposure to cosmic radiation and solar particle events (SPEs) may pose a critical health risk to future spaceflight crews and can have a serious impact on all biomedical aspects of space exploration. The relatively minimal shielding of the cancelled 1960s Manned Orbiting Laboratory (MOL) program's space vehicle and the high inclination polar orbits would have left the crew susceptible to high exposures of cosmic radiation and high dose-rate SPEs that are mostly unpredictable in frequency and intensity. In this study, we have modeled the nominal and off-nominal radiation environment that a MOL-like spacecraft vehicle would be exposed to during a 30-d mission using high performance, multicore computers. Projected doses from a historically large SPE (e.g., the August 1972 solar event) have been analyzed in the context of the MOL orbit profile, providing an opportunity to study its impact to crew health and subsequent contingencies. It is reasonable to presume that future commercial, government, and military spaceflight missions in low-Earth orbit (LEO) will have vehicles with similar shielding and orbital profiles. Studying the impact of cosmic radiation to the mission's operational integrity and the health of MOL crewmembers provides an excellent surrogate and case-study for future commercial and military spaceflight missions.Chancellor JC, Auñon-Chancellor SM, Charles J. Medical implications of space radiation exposure due to low-altitude polar orbits. Aerosp Med Hum Perform. 2018; 89(1):3-8.
Fitzharris, Michael; Liu, Sara; Stephens, Amanda N; Lenné, Michael G
2017-05-29
Real-time driver monitoring systems represent a solution to address key behavioral risks as they occur, particularly distraction and fatigue. The efficacy of these systems in real-world settings is largely unknown. This article has three objectives: (1) to document the incidence and duration of fatigue in real-world commercial truck-driving operations, (2) to determine the reduction, if any, in the incidence of fatigue episodes associated with providing feedback, and (3) to tease apart the relative contribution of in-cab warnings from 24/7 monitoring and feedback to employers. Data collected from a commercially available in-vehicle camera-based driver monitoring system installed in a commercial truck fleet operating in Australia were analyzed. The real-time driver monitoring system makes continuous assessments of driver drowsiness based on eyelid position and other factors. Data were collected in a baseline period where no feedback was provided to drivers. Real-time feedback to drivers then occurred via in-cab auditory and haptic warnings, which were further enhanced by direct feedback by company management when fatigue events were detected by external 24/7 monitors. Fatigue incidence rates and their timing of occurrence across the three time periods were compared. Relative to no feedback being provided to drivers when fatigue events were detected, in-cab warnings resulted in a 66% reduction in fatigue events, with a 95% reduction achieved by the real-time provision of direct feedback in addition to in-cab warnings (p < 0.01). With feedback, fatigue events were shorter in duration a d occurred later in the trip, and fewer drivers had more than one verified fatigue event per trip. That the provision of feedback to the company on driver fatigue events in real time provides greater benefit than feedback to the driver alone has implications for companies seeking to mitigate risks associated with fatigue. Having fewer fatigue events is likely a reflection of the device itself and the accompanying safety culture of the company in terms of how the information is used. Data were analysed on a per-truck trip basis, and the findings are indicative of fatigue events in a large-scale commercial transport fleet. Future research ought to account for individual driver performance, which was not possible with the available data in this retrospective analysis. Evidence that real-time driver monitoring feedback is effective in reducing fatigue events is invaluable in the development of fleet safety policies, and of future national policy and vehicle safety regulations. Implications for automotive driver monitoring are discussed.
Three-dimensional imaging for large LArTPCs
NASA Astrophysics Data System (ADS)
Qian, X.; Zhang, C.; Viren, B.; Diwan, M.
2018-05-01
High-performance event reconstruction is critical for current and future massive liquid argon time projection chambers (LArTPCs) to realize their full scientific potential. LArTPCs with readout using wire planes provide a limited number of 2D projections. In general, without a pixel-type readout it is challenging to achieve unambiguous 3D event reconstruction. As a remedy, we present a novel 3D imaging method, Wire-Cell, which incorporates the charge and sparsity information in addition to the time and geometry through simple and robust mathematics. The resulting 3D image of ionization density provides an excellent starting point for further reconstruction and enables the true power of 3D tracking calorimetry in LArTPCs.
2003-02-02
KENNEDY SPACE CENTER, FLA. -- At the Sally Ride Science Festival, held at the University of Central Florida, Orlando, Fla., young women gather to sign a large poster in tribute to the Columbia astronauts who were lost in the Shuttle's explosion the day before. The Sally Ride event promotes science, math and technology as future career paths for girls. Former astronaut Sally Ride addressed the girls, while breakout sessions afforded closer interaction between Ride and festival attendees.
2003-02-02
KENNEDY SPACE CENTER, FLA. -- At the Sally Ride Science Festival, held at the University of Central Florida, Orlando, Fla., young women gather to sign a large poster in tribute to the Columbia astronauts who were lost in the Shuttle's explosion the day before. The Sally Ride event promotes science, math and technology as future career paths for girls. Former astronaut Sally Ride addressed the girls, while breakout sessions afforded closer interaction between Ride and festival attendees.
2003-02-02
KENNEDY SPACE CENTER, FLA. -- At the Sally Ride Science Festival, held at the University of Central Florida, Orlando, Fla., young women gather to sign a large poster in tribute to the Columbia astronauts who were lost in the Shuttle's explosion the day before. The Sally Ride event promotes science, math and technology as future career paths for girls. Former astronaut Sally Ride addressed the girls, while breakout sessions afforded closer interaction between Ride and festival attendees.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. -- At the Sally Ride Science Festival, held at the University of Central Florida, Orlando, Fla., young women gather to sign a large poster in tribute to the Columbia astronauts who were lost in the Shuttle's explosion the day before. The Sally Ride event promotes science, math and technology as future career paths for girls. Former astronaut Sally Ride addressed the girls, while breakout sessions afforded closer interaction between Ride and festival attendees.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. -- At the Sally Ride Science Festival, held at the University of Central Florida, Orlando, Fla., young women gather to sign a large poster in tribute to the Columbia astronauts who were lost in the Shuttle's explosion the day before. The Sally Ride event promotes science, math and technology as future career paths for girls. Former astronaut Sally Ride addressed the girls, while breakout sessions afforded closer interaction between Ride and festival attendees.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. -- Exhibits draw crowds of young women attending the Sally Ride Science Festival, held at the University of Central Florida, Orlando, Fla. The event promotes science, math and technology as future career paths for girls. Former astronaut Sally Ride addressed the girls, while breakout sessions afforded closer interaction between Ride and festival attendees. Since it followed the tragic loss of the Columbia astronauts, a large poster was presented which attendees could sign as tribute.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. -- At the Sally Ride Science Festival, held at the University of Central Florida, Orlando, Fla., young women gather to sign a large poster in tribute to the Columbia astronauts who were lost in the Shuttle's explosion the day before. The Sally Ride event promotes science, math and technology as future career paths for girls. Former astronaut Sally Ride addressed the girls, while breakout sessions afforded closer interaction between Ride and festival attendees.
Terrestrial Biosphere Dynamics in the Climate System: Past and Future
NASA Astrophysics Data System (ADS)
Overpeck, J.; Whitlock, C.; Huntley, B.
2002-12-01
The paleoenvironmental record makes it clear that climate change as large as is likely to occur in the next two centuries will drive change in the terrestrial biosphere that is both large and difficult to predict, or plan for. Many species, communities and ecosystems could experience rates of climate change, and "destination climates" that are unprecedented in their time on earth. The paleorecord also makes it clear that a wide range of possible climate system behavior, such as decades-long droughts, increases in large storm and flood frequency, and rapid sea level rise, all occurred repeatedly in the past, and for poorly understood reasons. These types of events, if they were to reoccur in the future, could have especially devastating impacts on biodiversity, both because their timing and spatial extent cannot be anticipated, and because the biota's natural defenses have been compromised by land-use, reductions in genetic flexibility, pollution, excess water utilization, invasive species, and other human influences. Vegetation disturbance (e.g., by disease, pests and fire) will undoubtedly be exacerbated by climate change (stress), but could also speed the rate at which terrestrial biosphere change takes place in the future. The paleoenvironmental record makes it clear that major scientific challenges include an improved ability to model regional biospheric change, both past and future. This in turn will be a prerequisite to obtaining realistic estimates of future biogeochemical and biophysical feedbacks, and thus to obtaining better assessments of future climate change. These steps will help generate the improved understanding of climate variability that is needed to manage global biodiversity. However, the most troubling message from the paleoenvironmental record is that unchecked anthropogenic climate change could make the Earth's 6th major mass extinction unavoidable.
Highly variable recurrence of tsunamis in the 7,400 years before the 2004 Indian Ocean tsunami
NASA Astrophysics Data System (ADS)
Horton, B.; Rubin, C. M.; Sieh, K.; Jessica, P.; Daly, P.; Ismail, N.; Parnell, A. C.
2017-12-01
The devastating 2004 Indian Ocean tsunami caught millions of coastal residents and the scientific community off-guard. Subsequent research in the Indian Ocean basin has identified prehistoric tsunamis, but the timing and recurrence intervals of such events are uncertain. Here, we identify coastal caves as a new depositional environment for reconstructing tsunami records and present a 5,000 year record of continuous tsunami deposits from a coastal cave in Sumatra, Indonesia which shows the irregular recurrence of 11 tsunamis between 7,400 and 2,900 years BP. The data demonstrates that the 2004 tsunami was just the latest in a sequence of devastating tsunamis stretching back to at least the early Holocene and suggests a high likelihood for future tsunamis in the Indian Ocean. The sedimentary record in the cave shows that ruptures of the Sunda megathrust vary between large (which generated the 2004 Indian Ocean tsunami) and smaller slip failures. The chronology of events suggests the recurrence of multiple smaller tsunamis within relatively short time periods, interrupted by long periods of strain accumulation followed by giant tsunamis. The average time period between tsunamis is about 450 years with intervals ranging from a long, dormant period of over 2,000 years, to multiple tsunamis within the span of a century. The very long dormant period suggests that the Sunda megathrust is capable of accumulating large slip deficits between earthquakes. Such a high slip rupture would produce a substantially larger earthquake than the 2004 event. Although there is evidence that the likelihood of another tsunamigenic earthquake in Aceh province is high, these variable recurrence intervals suggest that long dormant periods may follow Sunda Megathrust ruptures as large as that of 2004 Indian Ocean tsunami. The remarkable variability of recurrence suggests that regional hazard mitigation plans should be based upon the high likelihood of future destructive tsunami demonstrated by the cave record and other paleotsunami sites, rather than estimates of recurrence intervals.
NASA Astrophysics Data System (ADS)
Fukuyama, E.; Dreger, D. S.
2000-06-01
We have investigated how the automated moment tensor determination (AMTD) system using the FREESIA/KIBAN broadband network is likely to behave during a future large earthquake. Because we do not have enough experience with a large (M >8) nearby earthquake, we computed synthetic waveforms for such an event by assuming the geometrical configuration of the anticipated Tokai earthquake and several fault rupture scenarios. Using this synthetic data set, we examined the behavior of the AMTD system to learn how to prepare for such an event. For our synthetic Tokai event data we assume its focal mechanism, fault dimension, and scalar seismic moment. We also assume a circular rupture propagation with constant rupture velocity and dislocation rise time. Both uniform and heterogeneous slip models are tested. The results show that performance depends on both the hypocentral location (i.e. unilateral vs. bilateral) and the degree of heterogeneity of slip. In the tests that we have performed the rupture directivity appears to be more important than slip heterogeneity. We find that for such large earthquakes it is necessary to use stations at distances greater than 600 km and frequencies between 0.005 to 0.02 Hz to maintain a point-source assumption and to recover the full scalar seismic moment and radiation pattern. In order to confirm the result of the synthetic test, we have analyzed the 1993 Hokkaido Nansei-oki (MJ7.8) and the 1995 Kobe (MJ7.2) earthquakes by using observed broadband waveforms. For the Kobe earthquake we successfully recovered the moment tensor by using the routinely used frequency band (0.01-0.05 Hz displacements). However, we failed to estimate a correct solution for the Hokkaido Nansei-oki earthquake by using the same routine frequency band. In this case, we had to use the frequencies between 0.005 to 0.02 Hz to recover the moment tensor, confirming the validity of the synthetic test result for the Tokai earthquake.
ERIC Educational Resources Information Center
Viard, Armelle; Desgranges, Beatrice; Eustache, Francis; Piolino, Pascale
2012-01-01
Remembering the past and envisioning the future are at the core of one's sense of identity. Neuroimaging studies investigating the neural substrates underlying past and future episodic events have been growing in number. However, the experimental paradigms used to select and elicit episodic events vary greatly, leading to disparate results,…
Developmental and Cognitive Perspectives on Humans' Sense of the Times of Past and Future Events
ERIC Educational Resources Information Center
Friedman, W.J.
2005-01-01
Mental time travel in human adults includes a sense of when past events occurred and future events are expected to occur. Studies with adults and children reveal that a number of distinct psychological processes contribute to a temporally differentiated sense of the past and future. Adults possess representations of multiple time patterns, and…
Automatic optimism: the affective basis of judgments about the likelihood of future events.
Lench, Heather C
2009-05-01
People generally judge that the future will be consistent with their desires, but the reason for this desirability bias is unclear. This investigation examined whether affective reactions associated with future events are the mechanism through which desires influence likelihood judgments. In 4 studies, affective reactions were manipulated for initially neutral events. Compared with a neutral condition, events associated with positive reactions were judged as likely to occur, and events associated with negative reactions were judged as unlikely to occur. Desirability biases were reduced when participants could misattribute affective reactions to a source other than future events, and the relationship between affective reactions and judgments was influenced when approach and avoidance motivations were independently manipulated. Together, these findings demonstrate that positive and negative affective reactions to potential events cause the desirability bias in likelihood judgments and suggest that this effect occurs because of a tendency to approach positive possibilities and avoid negative possibilities. (c) 2009 APA, all rights reserved.
Productivity responses of desert vegetation to precipitation patterns across a rainfall gradient.
Li, Fang; Zhao, Wenzhi; Liu, Hu
2015-03-01
The influences of previous-year precipitation and episodic rainfall events on dryland plants and communities are poorly quantified in the temperate desert region of Northwest China. To evaluate the thresholds and lags in the response of aboveground net primary productivity (ANPP) to variability in rainfall pulses and seasonal precipitation along the precipitation-productivity gradient in three desert ecosystems with different precipitation regimes, we collected precipitation data from 2000 to 2012 in Shandan (SD), Linze (LZ) and Jiuquan (JQ) in northwestern China. Further, we extracted the corresponding MODIS Normalized Difference Vegetation Index (NDVI, a proxy for ANPP) datasets at 250 m spatial resolution. We then evaluated different desert ecosystems responses using statistical analysis, and a threshold-delay model (TDM). TDM is an integrative framework for analysis of plant growth, precipitation thresholds, and plant functional type strategies that capture the nonlinear nature of plant responses to rainfall pulses. Our results showed that: (1) the growing season NDVIINT (INT stands for time-integrated) was largely correlated with the warm season (spring/summer) at our mildly-arid desert ecosystem (SD). The arid ecosystem (LZ) exhibited a different response, and the growing season NDVIINT depended highly on the previous year's fall/winter precipitation and ANPP. At the extremely arid site (JQ), the variability of growing season NDVIINT was equally correlated with the cool- and warm-season precipitation; (2) some parameters of threshold-delay differed among the three sites: while the response of NDVI to rainfall pulses began at about 5 mm for all the sites, the maximum thresholds in SD, LZ, and JQ were about 55, 35 and 30 mm respectively, increasing with an increase in mean annual precipitation. By and large, more previous year's fall/winter precipitation, and large rainfall events, significantly enhanced the growth of desert vegetation, and desert ecosystems should be much more adaptive under likely future scenarios of increasing fall/winter precipitation and large rainfall events. These results highlight the inherent complexity in predicting how desert ecosystems will respond to future fluctuations in precipitation.
Public health consequences on vulnerable populations from acute chemical releases.
Ruckart, Perri Zeitz; Orr, Maureen F
2008-07-09
Data from a large, multi-state surveillance system on acute chemical releases were analyzed to describe the type of events that are potentially affecting vulnerable populations (children, elderly and hospitalized patients) in order to better prevent and plan for these types of incidents in the future. During 2003-2005, there were 231 events where vulnerable populations were within ¼ mile of the event and the area of impact was greater than 200 feet from the facility/point of release. Most events occurred on a weekday during times when day care centers or schools were likely to be in session. Equipment failure and human error caused a majority of the releases. Agencies involved in preparing for and responding to chemical emergencies should work with hospitals, nursing homes, day care centers, and schools to develop policies and procedures for initiating appropriate protective measures and managing the medical needs of patients. Chemical emergency response drills should involve the entire community to protect those that may be more susceptible to harm.
Public Health Consequences on Vulnerable Populations from Acute Chemical Releases
Ruckart, Perri Zeitz; Orr, Maureen F.
2008-01-01
Data from a large, multi-state surveillance system on acute chemical releases were analyzed to describe the type of events that are potentially affecting vulnerable populations (children, elderly and hospitalized patients) in order to better prevent and plan for these types of incidents in the future. During 2003–2005, there were 231 events where vulnerable populations were within ¼ mile of the event and the area of impact was greater than 200 feet from the facility/point of release. Most events occurred on a weekday during times when day care centers or schools were likely to be in session. Equipment failure and human error caused a majority of the releases. Agencies involved in preparing for and responding to chemical emergencies should work with hospitals, nursing homes, day care centers, and schools to develop policies and procedures for initiating appropriate protective measures and managing the medical needs of patients. Chemical emergency response drills should involve the entire community to protect those that may be more susceptible to harm. PMID:21572842
Hurricanes and coral bleaching linked to changes in coral recruitment in Tobago.
Mallela, J; Crabbe, M J C
2009-10-01
Knowledge of coral recruitment patterns helps us understand how reefs react following major disturbances and provides us with an early warning system for predicting future reef health problems. We have reconstructed and interpreted historical and modern-day recruitment patterns, using a combination of growth modelling and in situ recruitment experiments, in order to understand how hurricanes, storms and bleaching events have influenced coral recruitment on the Caribbean coastline of Tobago. Whilst Tobago does not lie within the main hurricane belt results indicate that regional hurricane events negatively impact coral recruitment patterns in the Southern Caribbean. In years following hurricanes, tropical storms and bleaching events, coral recruitment was reduced when compared to normal years (p=0.016). Following Hurricane Ivan in 2004 and the 2005-2006 bleaching event, coral recruitment was markedly limited with only 2% (n=6) of colonies estimated to have recruited during 2006 and 2007. Our experimental results indicate that despite multiple large-scale disturbances corals are still recruiting on Tobago's marginal reef systems, albeit in low numbers.
Terrestrial lidar measurement of an ongoing calving event on Lange Glacier.
NASA Astrophysics Data System (ADS)
Pętlicki, Michał
2017-04-01
Increased tourist and scientific marine traffic along the fronts of tidewater glaciers face a security risk due to possible calving-related hazards. A series of serious accidents involving the falling ice block, calving-generated tsunami wave and the ice projectile impacts were reported. Despite the large interest in calving mechanics, still little is known about the impact range of calving events. Three ongoing calving events on Lange Glacier, King George Island, South Shetland Islands were measured with a terrestrial lidar, giving an insight to the mechanics of the calving processes including the subsequent splash of sea water and the range of ice projectiles released from the front. During the acquisition of the point cloud of the ice front, three calving events of different size occurred. The volume of the calved ice, its potential energy and free-fall velocity was computed and compared with the range of the water splash and ice projectiles. Such measurements can be used in future to mitigate the risk of calving-related marine accidents.
Teng, Zhongzhao; Sadat, Umar; Wang, Wenkai; Bahaei, Nasim S; Chen, Shengyong; Young, Victoria E; Graves, Martin J; Gillard, Jonathan H
2013-01-01
Stretch is a mechanical parameter, which has been proposed previously to affect the biological activities in different tissues. This study explored its utility in determining plaque vulnerability. One hundred and six patients with mild to moderate carotid stenosis were recruited in this study (53 symptomatic and 53 asymptomatic). High resolution, multi-sequence magnetic resonance (MR) imaging was performed to delineate various plaque components. Finite element method was used to predict high stretch concentration within the plaque. During a two-year follow-up, 11 patients in symptomatic group and 3 in asymptomatic group experienced recurrent cerebrovascular events. Plaque stretch at systole and stretch variation during one cardiac cycle was greater in symptomatic group than those in the asymptomatic. Within the symptomatic group, a similar trend was observed in patients with recurrent events compared to those without. Plaques with high stretch concentration and large stretch variation are associated with increased risk of future cerebrovascular events.
Triggering of destructive earthquakes in El Salvador
NASA Astrophysics Data System (ADS)
Martínez-Díaz, José J.; Álvarez-Gómez, José A.; Benito, Belén; Hernández, Douglas
2004-01-01
We investigate the existence of a mechanism of static stress triggering driven by the interaction of normal faults in the Middle American subduction zone and strike-slip faults in the El Salvador volcanic arc. The local geology points to a large strike-slip fault zone, the El Salvador fault zone, as the source of several destructive earthquakes in El Salvador along the volcanic arc. We modeled the Coulomb failure stress (CFS) change produced by the June 1982 and January 2001 subduction events on planes parallel to the El Salvador fault zone. The results have broad implications for future risk management in the region, as they suggest a causative relationship between the position of the normal-slip events in the subduction zone and the strike-slip events in the volcanic arc. After the February 2001 event, an important area of the El Salvador fault zone was loaded with a positive change in Coulomb failure stress (>0.15 MPa). This scenario must be considered in the seismic hazard assessment studies that will be carried out in this area.
Axelsson, Charles; van Sebille, Erik
2017-11-15
The leakage of large plastic litter (macroplastics) into the ocean is a major environmental problem. A significant fraction of this leakage originates from coastal cities, particularly during extreme rainfall events. As coastal cities continue to grow, finding ways to reduce this macroplastic leakage is extremely pertinent. Here, we explore why and how coastal cities can reduce macroplastic leakages during extreme rainfall events. Using nine global cities as a basis, we establish that while cities actively create policies that reduce plastic leakages, more needs to be done. Nonetheless, these policies are economically, socially and environmentally cobeneficial to the city environment. While the lack of political engagement and economic concerns limit these policies, lacking social motivation and engagement is the largest limitation towards implementing policy. We recommend cities to incentivize citizen and municipal engagement with responsible usage of plastics, cleaning the environment and preparing for future extreme rainfall events. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
An Assessment of the Current LEO Debris Environment and the Need for Active Debris Removal
NASA Technical Reports Server (NTRS)
Liou, Jer-Chyi
2010-01-01
The anti-satellite test on the Fengun-1 C weather satellite in early 2007 and the collision between Iridium 33 and Cosmos 2251 in 2009 dramatically altered the landscape of the human-made orbital debris environment in the low Earth orbit (LEO). The two events generated approximately 5500 fragments large enough to be tracked by the U.S. Space Surveillance Network. Those fragments account for more than 60% increase to the debris population in LEO. However, even before the ASAT test, model analyses already indicated that the debris population (for those larger than 10 cm) in LEO had reached a point where the population would continue to increase, due to collisions among existing objects, even without any future launches. The conclusion implies that as satellites continue to be launched and unexpected breakup events continue to occur, commonly-adopted mitigation measures will not be able to stop the collision-driven population growth. To remediate the debris environment in LEO, active debris removal must be considered. This presentation will provide an updated assessment of the debris environment after the Iridium 33/Cosmos 2251 collision, an analysis of several future environment projections based on different scenarios, and a projection of collision activities in LEO in the near future. The need to use active debris removal to stabilize future debris environment will be demonstrated and the effectiveness of various active debris removal strategies will be quantified.
Race, Elizabeth; Keane, Margaret M.; Verfaellie, Mieke
2015-01-01
The medial temporal lobe (MTL) makes critical contributions to episodic memory, but its contributions to episodic future thinking remain a matter of debate. By one view, imagining future events relies on MTL mechanisms that also support memory for past events. Alternatively, it has recently been suggested that future thinking is independent of MTL-mediated processes and can be supported by regions outside the MTL. The current study investigated the nature and necessity of MTL involvement in imagining the future and tested the novel hypothesis that the MTL contributes to future thinking by supporting online binding processes related to narrative construction. Human amnesic patients with well-characterized MTL damage and healthy controls constructed narratives about (a) future events, (b) past events, and (c) visually-presented pictures. While all three tasks place similar demands on narrative construction, only the past and future conditions require memory/future thinking to mentally generate relevant narrative information. Patients produced impoverished descriptions of both past and future events but were unimpaired at producing detailed picture narratives. In addition, future-thinking performance positively correlated with episodic memory performance but did not correlate with picture narrative performance. Finally, future-thinking impairments were present when MTL lesions were restricted to the hippocampus and did not depend on the presence of neural damage outside the MTL. These results indicate that the ability to generate and maintain a detailed narrative is preserved in amnesia and suggest that a common MTL mechanism supports both episodic memory and episodic future thinking. PMID:21753003
Race, Elizabeth; Keane, Margaret M; Verfaellie, Mieke
2011-07-13
The medial temporal lobe (MTL) makes critical contributions to episodic memory, but its contributions to episodic future thinking remain a matter of debate. By one view, imagining future events relies on MTL mechanisms that also support memory for past events. Alternatively, it has recently been suggested that future thinking is independent of MTL-mediated processes and can be supported by regions outside the MTL. The current study investigated the nature and necessity of MTL involvement in imagining the future and tested the novel hypothesis that the MTL contributes to future thinking by supporting online binding processes related to narrative construction. Human amnesic patients with well characterized MTL damage and healthy controls constructed narratives about (1) future events, (2) past events, and (3) visually presented pictures. While all three tasks place similar demands on narrative construction, only the past and future conditions require memory/future thinking to mentally generate relevant narrative information. Patients produced impoverished descriptions of both past and future events but were unimpaired at producing detailed picture narratives. In addition, future-thinking performance positively correlated with episodic memory performance but did not correlate with picture narrative performance. Finally, future-thinking impairments were present when MTL lesions were restricted to the hippocampus and did not depend on the presence of neural damage outside the MTL. These results indicate that the ability to generate and maintain a detailed narrative is preserved in amnesia and suggest that a common MTL mechanism supports both episodic memory and episodic future thinking.
A Chinese cave links climate change, social impacts, and human adaptation over the last 500 years.
Tan, Liangcheng; Cai, Yanjun; An, Zhisheng; Cheng, Hai; Shen, Chuan-Chou; Breitenbach, Sebastian F M; Gao, Yongli; Edwards, R Lawrence; Zhang, Haiwei; Du, Yajuan
2015-08-13
The collapse of some pre-historical and historical cultures, including Chinese dynasties were presumably linked to widespread droughts, on the basis of synchronicities of societal crises and proxy-based climate events. Here, we present a comparison of ancient inscriptions in Dayu Cave from Qinling Mountains, central China, which described accurate times and detailed impacts of seven drought events during the period of 1520-1920 CE, with high-resolution speleothem records from the same cave. The comparable results provide unique and robust tests on relationships among speleothem δ(18)O changes, drought events, and societal unrest. With direct historical evidences, our results suggest that droughts and even modest events interrupting otherwise wet intervals can cause serious social crises. Modeling results of speleothem δ(18)O series suggest that future precipitation in central China may be below the average of the past 500 years. As Qinling Mountain is the main recharge area of two large water transfer projects and habitats of many endangered species, it is imperative to explore an adaptive strategy for the decline in precipitation and/or drought events.
A Chinese cave links climate change, social impacts, and human adaptation over the last 500 years
Tan, Liangcheng; Cai, Yanjun; An, Zhisheng; Cheng, Hai; Shen, Chuan-Chou; Breitenbach, Sebastian F. M.; Gao, Yongli; Edwards, R. Lawrence; Zhang, Haiwei; Du, Yajuan
2015-01-01
The collapse of some pre-historical and historical cultures, including Chinese dynasties were presumably linked to widespread droughts, on the basis of synchronicities of societal crises and proxy-based climate events. Here, we present a comparison of ancient inscriptions in Dayu Cave from Qinling Mountains, central China, which described accurate times and detailed impacts of seven drought events during the period of 1520–1920 CE, with high-resolution speleothem records from the same cave. The comparable results provide unique and robust tests on relationships among speleothem δ18O changes, drought events, and societal unrest. With direct historical evidences, our results suggest that droughts and even modest events interrupting otherwise wet intervals can cause serious social crises. Modeling results of speleothem δ18O series suggest that future precipitation in central China may be below the average of the past 500 years. As Qinling Mountain is the main recharge area of two large water transfer projects and habitats of many endangered species, it is imperative to explore an adaptive strategy for the decline in precipitation and/or drought events. PMID:26270656
Anderson, Rachel J; Dewhurst, Stephen A; Nash, Robert A
2012-03-01
Recent literature has argued that whereas remembering the past and imagining the future make use of shared cognitive substrates, simulating future events places heavier demands on executive resources. These propositions were explored in 3 experiments comparing the impact of imagery and concurrent task demands on speed and accuracy of past event retrieval and future event simulation. Results provide support for the suggestion that both past and future episodes can be constructed through 2 mechanisms: a noneffortful "direct" pathway and a controlled, effortful "generative" pathway. However, limited evidence emerged for the suggestion that simulating of future, compared with retrieving past, episodes places heavier demands on executive resources; only under certain conditions did it emerge as a more error prone and lengthier process. The findings are discussed in terms of how retrieval and simulation make use of the same cognitive substrates in subtly different ways. 2012 APA, all rights reserved
Stochastic Earthquake Rupture Modeling Using Nonparametric Co-Regionalization
NASA Astrophysics Data System (ADS)
Lee, Kyungbook; Song, Seok Goo
2017-09-01
Accurate predictions of the intensity and variability of ground motions are essential in simulation-based seismic hazard assessment. Advanced simulation-based ground motion prediction methods have been proposed to complement the empirical approach, which suffers from the lack of observed ground motion data, especially in the near-source region for large events. It is important to quantify the variability of the earthquake rupture process for future events and to produce a number of rupture scenario models to capture the variability in simulation-based ground motion predictions. In this study, we improved the previously developed stochastic earthquake rupture modeling method by applying the nonparametric co-regionalization, which was proposed in geostatistics, to the correlation models estimated from dynamically derived earthquake rupture models. The nonparametric approach adopted in this study is computationally efficient and, therefore, enables us to simulate numerous rupture scenarios, including large events ( M > 7.0). It also gives us an opportunity to check the shape of true input correlation models in stochastic modeling after being deformed for permissibility. We expect that this type of modeling will improve our ability to simulate a wide range of rupture scenario models and thereby predict ground motions and perform seismic hazard assessment more accurately.
NASA Astrophysics Data System (ADS)
Mróz, Przemek; Poleski, Radosław
2018-04-01
We use three-dimensional distributions of classical Cepheids and RR Lyrae stars in the Small Magellanic Cloud (SMC) to model the stellar density distribution of a young and old stellar population in that galaxy. We use these models to estimate the microlensing self-lensing optical depth to the SMC, which is in excellent agreement with the observations. Our models are consistent with the total stellar mass of the SMC of about 1.0× {10}9 {M}ȯ under the assumption that all microlensing events toward this galaxy are caused by self-lensing. We also calculate the expected event rates and estimate that future large-scale surveys, like the Large Synoptic Survey Telescope (LSST), will be able to detect up to a few dozen microlensing events in the SMC annually. If the planet frequency in the SMC is similar to that in the Milky Way, a few extragalactic planets can be detected over the course of the LSST survey, provided significant changes in the SMC observing strategy are devised. A relatively small investment of LSST resources can give us a unique probe of the population of extragalactic exoplanets.
Historical Time Series of Extreme Convective Weather in Finland
NASA Astrophysics Data System (ADS)
Laurila, T. K.; Mäkelä, A.; Rauhala, J.; Olsson, T.; Jylhä, K.
2016-12-01
Thunderstorms, lightning, tornadoes, downbursts, large hail and heavy precipitation are well-known for their impacts to human life. In the high latitudes as in Finland, these hazardous warm season convective weather events are focused in the summer season, roughly from May to September with peak in the midsummer. The position of Finland between the maritime Atlantic and the continental Asian climate zones makes possible large variability in weather in general which reflects also to the occurrence of severe weather; the hot, moist and extremely unstable air masses sometimes reach Finland and makes possible for the occurrence of extreme and devastating weather events. Compared to lower latitudes, the Finnish climate of severe convection is "moderate" and contains a large year-to-year variation; however, behind the modest annual average is hidden the climate of severe weather events that practically every year cause large economical losses and sometimes even losses of life. Because of the increased vulnerability of our modern society, these episodes have gained recently plenty of interest. During the decades, the Finnish Meteorological Institute (FMI) has collected observations and damage descriptions of severe weather episodes in Finland; thunderstorm days (1887-present), annual number of lightning flashes (1960-present), tornados (1796-present), large hail (1930-present), heavy rainfall (1922-present). The research findings show e.g. that a severe weather event may occur practically anywhere in the country, although in general the probability of occurrence is smaller in the Northern Finland. This study, funded by the Finnish Research Programme on Nuclear Power Plant Safety (SAFIR), combines the individual Finnish severe weather time series' and examines their trends, cross-correlation and correlations with other atmospheric parameters. Furthermore, a numerical weather model (HARMONIE) simulation is performed for a historical severe weather case for analyzing how well the present state-of-the-art models grasp these small-scale weather phenomena. Our results give important background for estimating the Finnish severe weather climate in the future.
Event and Apparent Horizon Finders for 3 + 1 Numerical Relativity.
Thornburg, Jonathan
2007-01-01
Event and apparent horizons are key diagnostics for the presence and properties of black holes. In this article I review numerical algorithms and codes for finding event and apparent horizons in numerically-computed spacetimes, focusing on calculations done using the 3 + 1 ADM formalism. The event horizon of an asymptotically-flat spacetime is the boundary between those events from which a future-pointing null geodesic can reach future null infinity and those events from which no such geodesic exists. The event horizon is a (continuous) null surface in spacetime. The event horizon is defined nonlocally in time : it is a global property of the entire spacetime and must be found in a separate post-processing phase after all (or at least the nonstationary part) of spacetime has been numerically computed. There are three basic algorithms for finding event horizons, based on integrating null geodesics forwards in time, integrating null geodesics backwards in time, and integrating null surfaces backwards in time. The last of these is generally the most efficient and accurate. In contrast to an event horizon, an apparent horizon is defined locally in time in a spacelike slice and depends only on data in that slice, so it can be (and usually is) found during the numerical computation of a spacetime. A marginally outer trapped surface (MOTS) in a slice is a smooth closed 2-surface whose future-pointing outgoing null geodesics have zero expansion Θ. An apparent horizon is then defined as a MOTS not contained in any other MOTS. The MOTS condition is a nonlinear elliptic partial differential equation (PDE) for the surface shape, containing the ADM 3-metric, its spatial derivatives, and the extrinsic curvature as coefficients. Most "apparent horizon" finders actually find MOTSs. There are a large number of apparent horizon finding algorithms, with differing trade-offs between speed, robustness, accuracy, and ease of programming. In axisymmetry, shooting algorithms work well and are fairly easy to program. In slices with no continuous symmetries, spectral integral-iteration algorithms and elliptic-PDE algorithms are fast and accurate, but require good initial guesses to converge. In many cases, Schnetter's "pretracking" algorithm can greatly improve an elliptic-PDE algorithm's robustness. Flow algorithms are generally quite slow but can be very robust in their convergence. Minimization methods are slow and relatively inaccurate in the context of a finite differencing simulation, but in a spectral code they can be relatively faster and more robust.
NASA Astrophysics Data System (ADS)
Freychet, N.; Duchez, A.; Wu, C.-H.; Chen, C.-A.; Hsu, H.-H.; Hirschi, J.; Forryan, A.; Sinha, B.; New, A. L.; Graham, T.; Andrews, M. B.; Tu, C.-Y.; Lin, S.-J.
2017-02-01
This work investigates the variability of extreme weather events (drought spells, DS15, and daily heavy rainfall, PR99) over East Asia. It particularly focuses on the large scale atmospheric circulation associated with high levels of the occurrence of these extreme events. Two observational datasets (APHRODITE and PERSIANN) are compared with two high-resolution global climate models (HiRAM and HadGEM3-GC2) and an ensemble of other lower resolution climate models from CMIP5. We first evaluate the performance of the high resolution models. They both exhibit good skill in reproducing extreme events, especially when compared with CMIP5 results. Significant differences exist between the two observational datasets, highlighting the difficulty of having a clear estimate of extreme events. The link between the variability of the extremes and the large scale circulation is investigated, on monthly and interannual timescales, using composite and correlation analyses. Both extreme indices DS15 and PR99 are significantly linked to the low level wind intensity over East Asia, i.e. the monsoon circulation. It is also found that DS15 events are strongly linked to the surface temperature over the Siberian region and to the land-sea pressure contrast, while PR99 events are linked to the sea surface temperature anomalies over the West North Pacific. These results illustrate the importance of the monsoon circulation on extremes over East Asia. The dependencies on of the surface temperature over the continent and the sea surface temperature raise the question as to what extent they could affect the occurrence of extremes over tropical regions in future projections.
Lin, Li-An; Luo, Sheng; Davis, Barry R
2018-01-01
In the course of hypertension, cardiovascular disease events (e.g., stroke, heart failure) occur frequently and recurrently. The scientific interest in such study may lie in the estimation of treatment effect while accounting for the correlation among event times. The correlation among recurrent event times come from two sources: subject-specific heterogeneity (e.g., varied lifestyles, genetic variations, and other unmeasurable effects) and event dependence (i.e., event incidences may change the risk of future recurrent events). Moreover, event incidences may change the disease progression so that there may exist event-varying covariate effects (the covariate effects may change after each event) and event effect (the effect of prior events on the future events). In this article, we propose a Bayesian regression model that not only accommodates correlation among recurrent events from both sources, but also explicitly characterizes the event-varying covariate effects and event effect. This model is especially useful in quantifying how the incidences of events change the effects of covariates and risk of future events. We compare the proposed model with several commonly used recurrent event models and apply our model to the motivating lipid-lowering trial (LLT) component of the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT) (ALLHAT-LLT).
Lin, Li-An; Luo, Sheng; Davis, Barry R.
2017-01-01
In the course of hypertension, cardiovascular disease events (e.g., stroke, heart failure) occur frequently and recurrently. The scientific interest in such study may lie in the estimation of treatment effect while accounting for the correlation among event times. The correlation among recurrent event times come from two sources: subject-specific heterogeneity (e.g., varied lifestyles, genetic variations, and other unmeasurable effects) and event dependence (i.e., event incidences may change the risk of future recurrent events). Moreover, event incidences may change the disease progression so that there may exist event-varying covariate effects (the covariate effects may change after each event) and event effect (the effect of prior events on the future events). In this article, we propose a Bayesian regression model that not only accommodates correlation among recurrent events from both sources, but also explicitly characterizes the event-varying covariate effects and event effect. This model is especially useful in quantifying how the incidences of events change the effects of covariates and risk of future events. We compare the proposed model with several commonly used recurrent event models and apply our model to the motivating lipid-lowering trial (LLT) component of the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT) (ALLHAT-LLT). PMID:29755162
Assessing the present and future probability of Hurricane Harvey's rainfall
NASA Astrophysics Data System (ADS)
Emanuel, Kerry
2017-11-01
We estimate, for current and future climates, the annual probability of areally averaged hurricane rain of Hurricane Harvey's magnitude by downscaling large numbers of tropical cyclones from three climate reanalyses and six climate models. For the state of Texas, we estimate that the annual probability of 500 mm of area-integrated rainfall was about 1% in the period 1981–2000 and will increase to 18% over the period 2081–2100 under Intergovernmental Panel on Climate Change (IPCC) AR5 representative concentration pathway 8.5. If the frequency of such event is increasingly linearly between these two periods, then in 2017 the annual probability would be 6%, a sixfold increase since the late 20th century.
Cole, Scott N; Berntsen, Dorthe
2016-01-01
Our overriding hypothesis was that future thinking would be linked with goals to a greater extent than memories; conceptualizing goals as current concerns (i.e., uncompleted personal goals). We also hypothesized that current-concern-related events would differ from non-current-concern-related events on a set of phenomenological characteristics. We report novel data from a study examining involuntary and voluntary mental time travel using an adapted laboratory paradigm. Specifically, after autobiographical memories or future thoughts were elicited (between participants) in an involuntary and voluntary retrieval mode (within participants), participants self-generated five current concerns and decided whether each event was relevant or not to their current concerns. Consistent with our hypothesis, compared with memories, a larger percentage of involuntary and voluntary future thoughts reflected current concerns. Furthermore, events related to current concerns differed from non-concern-related events on a range of cognitive, representational, and affective phenomenological measures. These effects were consistent across temporal direction. In general, our results agree with the proposition that involuntary and voluntary future thinking is important for goal-directed cognition and behaviour.
Seismic‐wave attenuation determined from tectonic tremor in multiple subduction zones
Yabe, Suguru; Baltay, Annemarie S.; Ide, Satoshi; Beroza, Gregory C.
2014-01-01
Tectonic tremor provides a new source of observations that can be used to constrain the seismic attenuation parameter for ground‐motion prediction and hazard mapping. Traditionally, recorded earthquakes of magnitude ∼3–8 are used to develop ground‐motion prediction equations; however, typical earthquake records may be sparse in areas of high hazard. In this study, we constrain the distance decay of seismic waves using measurements of the amplitude decay of tectonic tremor, which is plentiful in some regions. Tectonic tremor occurs in the frequency band of interest for ground‐motion prediction (i.e., ∼2–8 Hz) and is located on the subducting plate interface, at the lower boundary of where future large earthquakes are expected. We empirically fit the distance decay of peak ground velocity from tremor to determine the attenuation parameter in four subduction zones: Nankai, Japan; Cascadia, United States–Canada; Jalisco, Mexico; and southern Chile. With the large amount of data available from tremor, we show that in the upper plate, the lower crust is less attenuating than the upper crust. We apply the same analysis to intraslab events in Nankai and show the possibility that waves traveling from deeper intraslab events experience more attenuation than those from the shallower tremor due to ray paths that pass through the subducting and highly attenuating oceanic crust. This suggests that high pore‐fluid pressure is present in the tremor source region. These differences imply that the attenuation parameter determined from intraslab earthquakes may underestimate ground motion for future large earthquakes on the plate interface.
Northern Plains Blizzards in Past and Future Climates
NASA Astrophysics Data System (ADS)
Trellinger, A.; Kennedy, A. D.
2017-12-01
High-latitude regions of the globe including the northern tier of the United States are subject to adverse conditions during the winter such as snowstorms. When snowfall combines with strong winds, blizzards can result and these events have significant personal, societal, and economic impacts for the Northern Plains. Although the climatology of wintertime extremes such as blizzards is reasonably understood, it is not known how the frequency and intensity of these events may change in a warming climate. Complicating factors include competing trends that suggest winter will have more snow over this region, but over a shorter seasonal duration. Identifying blizzards in climate models is difficult due to the horizontal and vertical grid spacing used. Additionally, blowing snow is not considered in these models, so it cannot be directly diagnosed. Instead, alternative ways must be developed to identify these events. The presented work will use a competitive neural network known as the Self-Organizing Map (SOM) to identify meteorological patterns associated with blizzard events over the Northern Plains from 1979-2016. Once these large-scale patterns are identified from observations, they will be identified in Community Climate System Model (CESM) 4.0 20th Century forcing climate simulations run in support for the Coupled Model Intercomparison Project Phase 5 (CMIP-5). In specific, the methodology will rely on the `Mother of All Runs' (MOAR) ensemble member. Because this member provides subdaily output for many variables, specific meteorological patterns can be identified. Blizzard events will be identified during historical time periods to determine biases, and then under future emissions scenarios.
Detection of High-Risk Atherosclerotic Plaque
Fleg, Jerome L.; Stone, Gregg W.; Fayad, Zahi A.; Granada, Juan F.; Hatsukami, Thomas S.; Kolodgie, Frank D.; Ohayon, Jacques; Pettigrew, Roderic; Sabatine, Marc S.; Tearney, Guillermo; Waxman, Sergio; Domanski, Michael J.; Srinivas, Pothur R.; Narula, Jagat
2013-01-01
The leading cause of major morbidity and mortality in most countries around the world is atherosclerotic cardiovascular disease, most commonly caused by thrombotic occlusion of a high-risk coronary plaque resulting in myocardial infarction or cardiac death, or embolization from a high-risk carotid plaque resulting in stroke. The lesions prone to result in such clinical events are termed vulnerable or high-risk plaques, and their identification may lead to the development of pharmacological and mechanical intervention strategies to prevent such events. Autopsy studies from patients dying of acute myocardial infarction or sudden death have shown that such events typically arise from specific types of atherosclerotic plaques, most commonly the thin-cap fibroatheroma. However, the search in human beings for vulnerable plaques before their becoming symptomatic has been elusive. Recently, the PROSPECT (Providing Regional Observations to Study Predictors of Events in the Coronary Tree) study demonstrated that coronary plaques that are likely to cause future cardiac events, regardless of angiographic severity, are characterized by large plaque burden and small lumen area and/or are thin-cap fibroatheromas verified by radiofrequency intravascular ultrasound imaging. This study opened the door to identifying additional invasive and noninvasive imaging modalities that may improve detection of high-risk atherosclerotic lesions and patients. Beyond classic risk factors, novel biomarkers and genetic profiling may identify those patients in whom noninvasive imaging for vulnerable plaque screening, followed by invasive imaging for risk confirmation is warranted, and in whom future pharmacological and/or device-based focal or regional therapies may be applied to improve long-term prognosis. PMID:22974808
Environmental conditions synchronize waterbird mortality events in the Great Lakes
Prince, Karine; Chipault, Jennifer G.; White, C. LeAnn; Zuckerberg, Benjamin
2018-01-01
Since the 1960s, periodic outbreaks of avian botulism type E have contributed to large-scale die-offs of thousands of waterbirds throughout the Great Lakes of the United States. In recent years, these events have become more common and widespread. Occurring during the summer and autumn months, the prevalence of these die-offs varies across years and is often associated with years of warmer lake temperatures and lower water levels. Little information exists on how environmental conditions mediate the spatial and temporal characteristics of mortality events.In 2010, a citizen science programme, Avian Monitoring for Botulism Lakeshore Events (AMBLE), was launched to enhance surveillance efforts and detect the appearance of beached waterbird carcasses associated with avian botulism type E outbreaks in northern Lake Michigan. Using these data, our goal was to quantify the within-year characteristics of mortality events for multiple species, and to test whether the synchrony of these events corresponded to fluctuations in two environmental factors suspected to be important in the spread of avian botulism: water temperature and the prevalence of green macroalgae.During two separate events of mass waterbird mortality, we found that the detection of bird carcasses was spatially synchronized at scales of c. 40 km. Notably, the extent of this spatial synchrony in avian mortality matched that of fluctuations in lake surface water temperatures and the prevalence of green macroalgae.Synthesis and applications. Our findings are suggestive of a synchronizing effect where warmer lake temperatures and the appearance of macroalgae mediate the characteristics of avian mortality. In future years, rising lake temperatures and a higher propensity of algal masses could lead to increases in the magnitude and synchronization of avian mortality due to botulism. We advocate that citizen-based monitoring efforts are critical for identifying the potential environmental conditions associated with widespread mortality events and estimating future risk to waterbird populations.
Elwy, A Rani; Bokhour, Barbara G; Maguire, Elizabeth M; Wagner, Todd H; Asch, Steven M; Gifford, Allen L; Gallagher, Thomas H; Durfee, Janet M; Martinello, Richard A; Schiffner, Susan; Jesse, Robert L
2014-12-01
The Department of Veterans Affairs (VA) mandates disclosure of large-scale adverse events to patients, even if risk of harm is not clearly present. Concerns about past disclosures warranted further examination of the impact of this policy. Through a collaborative partnership between VA leaders, policymakers, researchers and stakeholders, the objective was to empirically identify critical aspects of disclosure processes as a first step towards improving future disclosures. Semi-structured interviews were conducted with participants at nine VA facilities where recent disclosures took place. Ninety-seven stakeholders participated in the interviews: 38 employees, 28 leaders (from facilities, regions and national offices), 27 Veteran patients and family members, and four congressional staff members. Facility and regional leaders were interviewed by telephone, followed by a two-day site visit where employees, patients and family members were interviewed face-to-face. National leaders and congressional staff also completed telephone interviews. Interviews were analyzed using rapid qualitative assessment processes. Themes were mapped to the stages of the Crisis and Emergency Risk Communication model: pre-crisis, initial event, maintenance, resolution and evaluation. Many areas for improvement during disclosure were identified, such as preparing facilities better (pre-crisis), creating rapid communications, modifying disclosure language, addressing perceptions of harm, reducing complexity, and seeking assistance from others (initial event), managing communication with other stakeholders (maintenance), minimizing effects on staff and improving trust (resolution), and addressing facilities' needs (evaluation). Through the partnership, five recommendations to improve disclosures during each stage of communication have been widely disseminated throughout the VA using non-academic strategies. Some improvements have been made; other recommendations will be addressed through implementation of a large-scale adverse event disclosure toolkit. These toolkit strategies will enable leaders to provide timely and transparent information to patients and families, while reducing the burden on employees and the healthcare system during these events.
The Generation of a Stochastic Flood Event Catalogue for Continental USA
NASA Astrophysics Data System (ADS)
Quinn, N.; Wing, O.; Smith, A.; Sampson, C. C.; Neal, J. C.; Bates, P. D.
2017-12-01
Recent advances in the acquisition of spatiotemporal environmental data and improvements in computational capabilities has enabled the generation of large scale, even global, flood hazard layers which serve as a critical decision-making tool for a range of end users. However, these datasets are designed to indicate only the probability and depth of inundation at a given location and are unable to describe the likelihood of concurrent flooding across multiple sites.Recent research has highlighted that although the estimation of large, widespread flood events is of great value to flood mitigation and insurance industries, to date it has been difficult to deal with this spatial dependence structure in flood risk over relatively large scales. Many existing approaches have been restricted to empirical estimates of risk based on historic events, limiting their capability of assessing risk over the full range of plausible scenarios. Therefore, this research utilises a recently developed model-based approach to describe the multisite joint distribution of extreme river flows across continental USA river gauges. Given an extreme event at a site, the model characterises the likelihood neighbouring sites are also impacted. This information is used to simulate an ensemble of plausible synthetic extreme event footprints from which flood depths are extracted from an existing global flood hazard catalogue. Expected economic losses are then estimated by overlaying flood depths with national datasets defining asset locations, characteristics and depth damage functions. The ability of this approach to quantify probabilistic economic risk and rare threshold exceeding events is expected to be of value to those interested in the flood mitigation and insurance sectors.This work describes the methodological steps taken to create the flood loss catalogue over a national scale; highlights the uncertainty in the expected annual economic vulnerability within the USA from extreme river flows; and presents future developments to the modelling approach.
Using large-scale diagnostic quantities to investigate change in East Coast Lows
NASA Astrophysics Data System (ADS)
Ji, Fei; Evans, Jason P.; Argueso, Daniel; Fita, Lluis; Di Luca, Alejandro
2015-11-01
East Coast Lows (ECLs) are intense low-pressure systems that affect the eastern seaboard of Australia. They have attracted research interest for both their destructive nature and water supplying capability. Estimating the changes in ECLs in the future has a major impact on emergency response as well as water management strategies for the coastal communities on the east coast of Australia. In this study, ECLs were identified using two large-scale diagnostic quantities: isentropic potential vorticity (IPV) and geostrophic vorticity (GV), which were calculated from outputs of historical and future regional climate simulations from the NSW/ACT regional climate modelling (NARCliM) project. The diagnostic results for the historical period were evaluated against a subjective ECL event database. Future simulations using a high emission scenario were examined to estimate changes in frequency, duration, and intensity of ECLs. The use of a relatively high resolution regional climate model makes this the first study to examine future changes in ECLs while resolving the full range of ECL sizes which can be as small as 100-200 km in diameter. The results indicate that it is likely that there will be fewer ECLs, with weaker intensity in the future. There could also be a seasonal shift in ECLs from cool months to warm months. These changes have the potential to significantly impact the water security on the east coast of Australia.
The 2013 Russian fireball largest ever detected by CTBTO infrasound sensors
NASA Astrophysics Data System (ADS)
Le Pichon, Alexis; Ceranna, Lars; Pilger, Christoph; Mialle, Pierrick; Brown, David; Herry, Pascal; Brachet, Nicolas
2013-07-01
15 February 2013, a large Earth-impacting fireball disintegrated over the Ural Mountains. This extraordinary event is, together with the 1908 Tunguska fireball, among the most energetic events ever instrumentally recorded. It generated infrasound returns, after circling the globe, at distances up to ~85,000 km, and was detected at 20 infrasonic stations of the global International Monitoring System (IMS). For the first time since the establishment of the IMS infrasound network, multiple arrivals involving waves that traveled twice round the globe have been clearly identified. A preliminary estimate of the explosive energy using empirical period-yield scaling relations gives a value of 460 kt of TNT equivalent. In the context of the future verification of the Comprehensive Nuclear-Test-Ban Treaty, this event provides a prominent milestone for studying in detail infrasound propagation around the globe for almost 3 days as well as for calibrating the performance of the IMS network.
Fermi Observations of the LIGO Event GW170104
Goldstein, A.; Veres, P.; Burns, E.; ...
2017-08-28
We present the Fermi Gamma-ray Burst Monitor (GBM) and Large Area Telescope (LAT) observations of the LIGO binary black hole merger (BBH) event GW170104. No candidate electromagnetic counterparts was detected by either GBM or LAT. A detailed analysis of the GBM and LAT data over timescales from seconds to days covering the LIGO localization region is presented. The resulting ux upper bound from the GBM is (5.2{9.4) 10 -7 erg cm -2 s -1 in the 10-1000 keV range and from the LAT is (0.2{13) 10 -9 erg cm -2 s -1 in the 0.1{1 GeV range. We also describemore » the improvements to our automated pipelines and analysis techniques for searching for and characterizing the potential electromagnetic counterparts for future gravitational wave events from Advanced LIGO/VIRGO.« less
[HEALTH SCARES: A CHRONICLE UNNECESSARY ANXIETY].
Sagy, Iftach; Greenberg, Dan; Jotkowitz, Alan; Barski, Leonid; Novack, Victor
2016-12-01
A health scare is an event characterized by fear of catastrophic consequences with little actual results. Regardless of these negligible results, the health, social and economic impacts of such events may be significant. Health scares are spread throughout four major groups: the media, relevant medical experts, policy makers and the public at large. In this review, we described two recent cases in Israel: the case of Eltroxin exchange that occurred in Israel as well as other countries, in addition to the polio virus spread in sewage, in the context of health scares. Furthermore, we summarized the interaction between these groups, focusing on their functioning in selected health scares from the previous two decades. There is increased need for creating a priori coordinating methods, in order to deal efficiently with such events in the future. In that way, the implications of health scares can be reduce to minimum.
Prediction of Exposure Level of Energetic Solar Particle Events
NASA Astrophysics Data System (ADS)
Kim, M. H. Y.; Blattnig, S.
2016-12-01
The potential for exposure to large solar particle events (SPEs) with fluxes that extend to high energies is a major concern during interplanetary transfer and extravehicular activities (EVAs) on the lunar and Martian surfaces. Prediction of sporadic occurrence of SPEs is not accurate for near or long-term scales, while the expected frequency of such events is strongly influenced by solar cycle activity. In the development of NASA's operational strategies real-time estimation of exposure to SPEs has been considered so that adequate responses can be applied in a timely manner to reduce exposures to well below the exposure limits. Previously, the organ doses of large historical SPEs had been calculated by using the complete energy spectra of each event and then developing a prediction model for blood-forming organ (BFO) dose based solely on an assumed value of integrated fluence above 30 MeV (Φ30) for an otherwise unspecified future SPE. While BFO dose is determined primarily by solar protons with high energies, it was reasoned that more accurate BFO dose prediction models could be developed using integrated fluence above 60 MeV (Φ60) and above 100 MeV (Φ100) as predictors instead of Φ30. In the current study, re-analysis of major SPEs (in which the proton spectra of the ground level enhancement [GLE] events since 1956 are correctly described by Band functions) has been used in evaluation of exposure levels. More accurate prediction models for BFO dose and NASA effective dose are then developed using integrated fluence above 200 MeV (Φ200), which by far have the most weight in the calculation of doses for deep-seated organs from exposure to extreme SPEs (GLEs or sub-GLEs). The unconditional probability of a BFO dose exceeding a pre-specified BFO dose limit is simultaneously calculated by taking into account the distribution of the predictor (Φ30, Φ60, Φ100, or Φ200) as estimated from historical SPEs. These results can be applied to the development of approaches to improve radiation protection of astronauts and the optimization of mission planning for future space missions.
Large projected increases in rain-on-snow flood potential over western North America
NASA Astrophysics Data System (ADS)
Musselman, K. N.; Ikeda, K.; Barlage, M. J.; Lehner, F.; Liu, C.; Newman, A. J.; Prein, A. F.; Mizukami, N.; Gutmann, E. D.; Clark, M. P.; Rasmussen, R.
2017-12-01
In the western US and Canada, some of the largest annual flood events occur when warm storm systems drop substantial rainfall on extensive snow-cover. For example, last winter's Oroville dam crisis in California was exacerbated by rapid snowmelt during a rain-on-snow (ROS) event. We present an analysis of ROS events with flood-generating potential over western North America simulated at high-resolution by the Weather Research and Forecasting (WRF) model run for both a 13-year control time period and re-run with a `business-as-usual' future (2071-2100) climate scenario. Daily ROS with flood-generating potential is defined as rainfall of at least 10 mm per day falling on snowpack of at least 10 mm water equivalent, where the sum of rainfall and snowmelt contains at least 20% snowmelt. In a warmer climate, ROS is less frequent in regions where it is historically common, and more frequent elsewhere. This is evidenced by large simulated reductions in snow-cover and ROS frequency at lower elevations, particularly in warmer, coastal regions, and greater ROS frequency at middle elevations and in inland regions. The same trend is reflected in the annual-average ROS runoff volume (rainfall + snowmelt) aggregated to major watersheds; large reductions of 25-75% are projected for much of the U.S. Pacific Northwest, while large increases are simulated for the Colorado River basin, western Canada, and the higher elevations of the Sierra Nevada. In the warmer climate, snowmelt contributes substantially less to ROS runoff per unit rainfall, particularly in inland regions. The reduction in snowmelt contribution is due to a shift in ROS timing from warm spring events to cooler winter conditions and/or from warm, lower elevations to cool, higher elevations. However, the slower snowmelt is offset by an increase in rainfall intensity, maintaining the flood potential of ROS at or above historical levels. In fact, we report large projected increases in the intensity of extreme ROS events. The projected increases in ROS flood potential are highest in historically flood-prone mountain basins and the Canadian Prairies. Increases in extreme ROS event intensity, together with a greater proportion of precipitation falling as rain, have critical implications on the climate resilience of regional flood control systems.
Drought and heatwaves in Europe: historical reconstruction and future projections
NASA Astrophysics Data System (ADS)
Samaniego, Luis; Thober, Stephan; Kumar, Rohini; Rakovec, Olda; Wood, Eric; Sheffield, Justin; Pan, Ming; Wanders, Niko; Prudhomme, Christel
2017-04-01
Heat waves and droughts are creeping hydro-meteorological events that may bring societies and natural systems to their limits by inducing large famines, increasing health risks to the population, creating drinking and irrigation water shortfalls, inducing natural fires and degradation of soil and water quality, and in many cases causing large socio-economic losses. Europe, in particular, has endured large scale drought-heat-wave events during the recent past (e.g., 2003 European drought), which have induced enormous socio-economic losses as well as casualties. Recent studies showed that the prediction of droughts and heatwaves is subject to large-scale forcing and parametric uncertainties that lead to considerable uncertainties in the projections of extreme characteristics such as drought magnitude/duration and area under drought, among others. Future projections are also heavily influenced by the RCP scenario uncertainty as well as the coarser spatial resolution of the models. The EDgE project funded by the Copernicus programme (C3S) provides an unique opportunity to investigate the evolution of droughts and heatwaves from 1950 until 2099 over the Pan-EU domain at a scale of 5x5 km2. In this project, high-resolution multi-model hydrologic simulations with the mHM (www.ufz.de/mhm), Noah-MP, VIC and PCR-GLOBWB have been completed for the historical period 1955-2015. Climate projections have been carried out with five CMIP-5 GCMs: GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM-CHEM, NorESM1-M from 2006 to 2099 under RCP2.6 and RCP8.5. Using these multi-model unprecedented simulations, daily soil moisture index and temperature anomalies since 1955 until 2099 will be estimated. Using the procedure proposed by Samaniego et al. (2013), the probabilities of exceeding the benchmark events in the reference period 1980-2010 will be estimated for each RCP scenario. References http://climate.copernicus.eu/edge-end-end-demonstrator-improved-decision-making-water-sector-europe Samaniego, L., R. Kumar, and M. Zink, 2013: Implications of parameter uncertainty on soil moisture drought analysis in Germany. J. Hydrometeor., 14, 47-68, doi:10.1175/JHM-D-12-075.1. Samaniego, L., et al. 2016: Propagation of forcing and model uncertainties on to hydrological drought characteristics in a multi-model century-long experiment in large river basins. Climatic Change. 1-15.
An Oracle-based event index for ATLAS
NASA Astrophysics Data System (ADS)
Gallas, E. J.; Dimitrov, G.; Vasileva, P.; Baranowski, Z.; Canali, L.; Dumitru, A.; Formica, A.; ATLAS Collaboration
2017-10-01
The ATLAS Eventlndex System has amassed a set of key quantities for a large number of ATLAS events into a Hadoop based infrastructure for the purpose of providing the experiment with a number of event-wise services. Collecting this data in one place provides the opportunity to investigate various storage formats and technologies and assess which best serve the various use cases as well as consider what other benefits alternative storage systems provide. In this presentation we describe how the data are imported into an Oracle RDBMS (relational database management system), the services we have built based on this architecture, and our experience with it. We’ve indexed about 26 billion real data events thus far and have designed the system to accommodate future data which has expected rates of 5 and 20 billion events per year. We have found this system offers outstanding performance for some fundamental use cases. In addition, profiting from the co-location of this data with other complementary metadata in ATLAS, the system has been easily extended to perform essential assessments of data integrity and completeness and to identify event duplication, including at what step in processing the duplication occurred.
Solar Energetic Particle Event Risks for Future Human Missions within the Inner Heliosphere
NASA Astrophysics Data System (ADS)
Over, S.; Ford, J.
2017-12-01
As astronauts travel beyond low-Earth orbit (LEO), space weather research will play a key role in determining risks from space radiation. Of interest are the rare, large solar energetic particle (SEP) events that can cause significant medical effects during flight. Historical SEP data were analyzed from the Geostationary Operational Environmental Satellites (GOES) program covering the time period of 1986 to 2016 for SEP events. The SEP event data were combined with a Monte Carlo approach to develop a risk model to determine maximum expected doses for missions within the inner heliosphere. Presented here are results from risk assessments for proposed Mars transits as compared to a geostationary Earth-bound mission. Overall, the greatest risk was for the return from Mars with a Venus swing-by, due to the additional transit length and decreased distance from the Sun as compared to traditional Hohmann transfers. The overall results do not indicate that the effects of SEP events alone would prohibit these missions based on current radiation limits alone, but the combination of doses from SEP events and galactic cosmic radiation may be significant, and should be considered in all phases of mission design.
Expressed Likelihood as Motivator: Creating Value through Engaging What’s Real
Higgins, E. Tory; Franks, Becca; Pavarini, Dana; Sehnert, Steen; Manley, Katie
2012-01-01
Our research tested two predictions regarding how likelihood can have motivational effects as a function of how a probability is expressed. We predicted that describing the probability of a future event that could be either A or B using the language of high likelihood (“80% A”) rather than low likelihood (“20% B”), i.e., high rather than low expressed likelihood, would make a present activity more real and engaging, as long as the future event had properties relevant to the present activity. We also predicted that strengthening engagement from the high (vs. low) expressed likelihood of a future event would intensify the value of present positive and negative objects (in opposite directions). Both predictions were supported. There was also evidence that this intensification effect from expressed likelihood was independent of the actual probability or valence of the future event. What mattered was whether high versus low likelihood language was used to describe the future event. PMID:23940411
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagaoka, Masataka; Core Research for Evolutional Science and Technology; ESICB, Kyoto University, Kyodai Katsura, Nishikyo-ku, Kyoto 615-8520
A new efficient hybrid Monte Carlo (MC)/molecular dynamics (MD) reaction method with a rare event-driving mechanism is introduced as a practical ‘atomistic’ molecular simulation of large-scale chemically reactive systems. Starting its demonstrative application to the racemization reaction of (R)-2-chlorobutane in N,N-dimethylformamide solution, several other applications are shown from the practical viewpoint of molecular controlling of complex chemical reactions, stereochemistry and aggregate structures. Finally, I would like to mention the future applications of the hybrid MC/MD reaction method.
Fukushima Accident: Sequence of Events and Lessons Learned
NASA Astrophysics Data System (ADS)
Morse, Edward C.
2011-10-01
The Fukushima Dai-Ichi nuclear power station suffered a devastating Richter 9.0 earthquake followed by a 14.0 m tsunami on 11 March 2011. The subsequent loss of power for emergency core cooling systems resulted in damage to the fuel in the cores of three reactors. The relief of pressure from the containment in these three reactors led to sufficient hydrogen gas release to cause explosions in the buildings housing the reactors. There was probably subsequent damage to a spent fuel pool of a fourth reactor caused by debris from one of these explosions. Resultant releases of fission product isotopes in air were significant and have been estimated to be in the 3 . 7 --> 6 . 3 ×1017 Bq range (~10 MCi) for 131I and 137Cs combined, or approximately one tenth that of the Chernobyl accident. A synopsis of the sequence of events leading up to this large release of radioactivity will be presented, along with likely scenarios for stabilization and site cleanup in the future. Some aspects of the isotope monitoring programs, both locally and at large, will also be discussed. An assessment of radiological health risk for the plant workers as well as the general public will also be presented. Finally, the impact of this accident on design and deployment of nuclear generating stations in the future will be discussed.
Using ADOPT Algorithm and Operational Data to Discover Precursors to Aviation Adverse Events
NASA Technical Reports Server (NTRS)
Janakiraman, Vijay; Matthews, Bryan; Oza, Nikunj
2018-01-01
The US National Airspace System (NAS) is making its transition to the NextGen system and assuring safety is one of the top priorities in NextGen. At present, safety is managed reactively (correct after occurrence of an unsafe event). While this strategy works for current operations, it may soon become ineffective for future airspace designs and high density operations. There is a need for proactive management of safety risks by identifying hidden and "unknown" risks and evaluating the impacts on future operations. To this end, NASA Ames has developed data mining algorithms that finds anomalies and precursors (high-risk states) to safety issues in the NAS. In this paper, we describe a recently developed algorithm called ADOPT that analyzes large volumes of data and automatically identifies precursors from real world data. Precursors help in detecting safety risks early so that the operator can mitigate the risk in time. In addition, precursors also help identify causal factors and help predict the safety incident. The ADOPT algorithm scales well to large data sets and to multidimensional time series, reduce analyst time significantly, quantify multiple safety risks giving a holistic view of safety among other benefits. This paper details the algorithm and includes several case studies to demonstrate its application to discover the "known" and "unknown" safety precursors in aviation operation.
Severe Weather in a Changing Climate: Getting to Adaptation
NASA Astrophysics Data System (ADS)
Wuebbles, D. J.; Janssen, E.; Kunkel, K.
2011-12-01
Analyses of observation records from U.S. weather stations indicate there is an increasing trend over recent decades in certain types of severe weather, especially large precipitation events. Widespread changes in temperature extremes have been observed over the last 50 years. In particular, the number of heat waves globally (and some parts of the U.S.) has increased, and there have been widespread increases in the numbers of warm nights. Also, analyses show that we are now breaking twice as many heat records as cold records in the U.S. Since 1957, there has been an increase in the number of historically top 1% of heavy precipitation events across the U.S. Our new analyses of the repeat or reoccurrence frequencies of large precipitation storms are showing that such events are occurring more often than in the past. The pattern of precipitation change is one of increases generally at higher northern latitudes and drying in the tropics and subtropics over land. It needs to be recognized that every weather event that happens nowadays takes place in the context of the changes in the background climate system. So nothing is entirely "natural" anymore. It's a fallacy to think that individual events are caused entirely by any one thing, either natural variation or human-induced climate change. Every event is influenced by many factors. Human-induced climate change is now a factor in weather events. The changes occurring in precipitation are consistent with the analyses of our changing climate. For extreme precipitation, we know that more precipitation is falling in very heavy events. And we know key reasons why; warmer air holds more water vapor, and so when any given weather system moves through, the extra water dumps can lead to a heavy downpour. As the climate system continues to warm, models of the Earth's climate system indicate severe precipitation events will likely become more commonplace. Water vapor will continue to increase in the atmosphere along with the warming, and large precipitation events will likely increase in intensity and frequency. In the presentation, we will not only discuss the recent trends in severe weather and the projections of the impacts of climate change on severe weather in the future, but also specific examples of how this information is being used in developing and applying adaptation policies.
Flash floods in the Tatra Mountain streams: frequency and triggers.
Ballesteros-Cánovas, J A; Czajka, B; Janecka, K; Lempa, M; Kaczka, R J; Stoffel, M
2015-04-01
Flash floods represent a frequently recurring natural phenomenon in the Tatra Mountains. On the northern slopes of the mountain chain, located in Poland, ongoing and expected future changes in climate are thought to further increase the adverse impacts of flash floods. Despite the repeat occurrence of major floods in the densely populated foothills of the Polish Tatras, the headwaters have been characterized by a surprising lack of data, such that any analysis of process variability or hydrometeorological triggers has been largely hampered so far. In this study, dendrogeomorphic techniques have been employed in four poorly-gauged torrential streams of the northern slope of the Tatra Mountains to reconstruct temporal and spatial patterns of past events. Using more than 1100 increment cores of trees injured by past flash floods, we reconstruct 47 events covering the last 148 years and discuss synoptic situations leading to the triggering of flash floods with the existing meteorological and flow gauge data. Tree-ring analyses have allowed highlighting the seasonality of events, providing new insights about potential hydrometeorological triggers as well as a differentiating flash flood activity between catchments. Results of this study could be useful to design future strategies to deal with flash flood risks at the foothills of the Polish Tatras and in the Vistula River catchment. Copyright © 2014. Published by Elsevier B.V.
Prediction of frequency and exposure level of solar particle events.
Kim, Myung-Hee Y; Hayat, Matthew J; Feiveson, Alan H; Cucinotta, Francis A
2009-07-01
For future space missions outside of the Earth's magnetic field, the risk of radiation exposure from solar particle events (SPEs) during extra-vehicular activities (EVAs) or in lightly shielded vehicles is a major concern when designing radiation protection including determining sufficient shielding requirements for astronauts and hardware. While the expected frequency of SPEs is strongly influenced by solar modulation, SPE occurrences themselves are chaotic in nature. We report on a probabilistic modeling approach, where a cumulative expected occurrence curve of SPEs for a typical solar cycle was formed from a non-homogeneous Poisson process model fitted to a database of proton fluence measurements of SPEs that occurred during the past 5 solar cycles (19-23) and those of large SPEs identified from impulsive nitrate enhancements in polar ice. From the fitted model, we then estimated the expected frequency of SPEs at any given proton fluence threshold with energy >30 MeV (Phi(30)) during a defined space mission period. Analytic energy spectra of 34 large SPEs observed in the space era were fitted over broad energy ranges extending to GeV, and subsequently used to calculate the distribution of mGy equivalent (mGy-Eq) dose for a typical blood-forming organ (BFO) inside a spacecraft as a function of total Phi(30) fluence. This distribution was combined with a simulation of SPE events using the Poisson model to estimate the probability of the BFO dose exceeding the NASA 30-d limit of 250 mGy-Eq per 30 d. These results will be useful in implementing probabilistic risk assessment approaches at NASA and guidelines for protection systems for astronauts on future space exploration missions.
Clinical review: SARS - lessons in disaster management.
Hawryluck, Laura; Lapinsky, Stephen E; Stewart, Thomas E
2005-08-01
Disaster management plans have traditionally been required to manage major traumatic events that create a large number of victims. Infectious diseases, whether they be natural (e.g. SARS [severe acute respiratory syndrome] and influenza) or the result of bioterrorism, have the potential to create a large influx of critically ill into our already strained hospital systems. With proper planning, hospitals, health care workers and our health care systems can be better prepared to deal with such an eventuality. This review explores the Toronto critical care experience of coping in the SARS outbreak disaster. Our health care system and, in particular, our critical care system were unprepared for this event, and as a result the impact that SARS had was worse than it could have been. Nonetheless, we were able to organize a response rapidly during the outbreak. By describing our successes and failures, we hope to help others to learn and avoid the problems we encountered as they develop their own disaster management plans in anticipation of similar future situations.
Drivers and implications of recent large fire years in boreal North America
NASA Astrophysics Data System (ADS)
Veraverbeke, S.; Rogers, B. M.; Goulden, M.; Jandt, R.; Miller, C. E.; Wiggins, E. B.; Randerson, J. T.
2016-12-01
High latitude ecosystems are rapidly transforming because of climate change. Boreal North America recently experienced two exceptionally large fire years: 2014 in the Northwest Territories, Canada, and 2015 in Alaska, USA. We used geospatial climate, lightning, fire, and vegetation datasets to assess the mechanisms contributing to these recent extreme years and to the causes of recent decadal-scale changes in fire dynamics. We found that the two events had a record number of lightning ignitions and unusually high levels of burning near the boreal treeline, contributing to emissions of 164 ± 32 Tg C in the Northwest Territories and 65 ± 13 Tg C in Interior Alaska. The annual number ignitions in both regions displayed a significant increasing trend since 1975, driven by an increase in lightning ignitions. We found that vapor pressure deficit (VPD) in June, lightning, and ignition events were significantly correlated on interannual timescales. Future climate-driven increases in VPD and lightning near the treeline ecotone may enable northward forest expansion within tundra ecosystems.
Cardiovascular safety of biologic therapies for the treatment of RA.
Greenberg, Jeffrey D; Furer, Victoria; Farkouh, Michael E
2011-11-15
Cardiovascular disease represents a major source of extra-articular comorbidity in patients with rheumatoid arthritis (RA). A combination of traditional cardiovascular risk factors and RA-related factors accounts for the excess risk in RA. Among RA-related factors, chronic systemic inflammation has been implicated in the pathogenesis and progression of atherosclerosis. A growing body of evidence--mainly derived from observational databases and registries--suggests that specific RA therapies, including methotrexate and anti-TNF biologic agents, can reduce the risk of future cardiovascular events in patients with RA. The cardiovascular profile of other biologic therapies for the treatment of RA has not been adequately studied, including of investigational drugs that improve systemic inflammation but alter traditional cardiovascular risk factors. In the absence of large clinical trials adequately powered to detect differences in cardiovascular events between biologic drugs in RA, deriving firm conclusions on cardiovascular safety is challenging. Nevertheless, observational research using large registries has emerged as a promising approach to study the cardiovascular risk of emerging RA biologic therapies.
Understanding the impact of hypoglycemia on the cardiovascular system
Davis, Ian Charles; Ahmadizadeh, Ida; Randell, Jacqueline; Younk, Lisa; Davis, Stephen N
2017-01-01
Introduction Hypoglycemia occurs commonly in insulin requiring individuals with either Type 1 or Type 2 Diabetes. Areas Covered This article will review recent information on the pro-inflammatory and pro-atherothrombotic effects of hypoglycemia. Additionally, effects of hypoglycemia on arrhythmogenic potential and arterial endothelial dysfunction will be discussed. Effects of hypoglycemia on cardiovascular morbidity and mortality from large clinical studies in Type 1 and Type 2 DM will also be reviewed. Expert Commentary The relative and absolute risk of severe hypoglycemia leading to death and serious adverse events in both cardiovascular and other organ systems has been highlighted following the publication of recent large clinical trials focused on glucose control and outcomes. It would be helpful if future studies could develop broader end points to include minor and moderate hypoglycemia as well as more robust methods for capturing hypoglycemia contemporaneously with adverse events. In addition, perhaps consideration of including hypoglycemia as a primary outcome, may help identify the possible cause and effect of hypoglycemia on cardiovascular morbidity and mortality. PMID:29109754
Guffey, Patrick; Szolnoki, Judit; Caldwell, James; Polaner, David
2011-07-01
Current incident reporting systems encourage retrospective reporting of morbidity and mortality and have low participation rates. A near miss is an event that did not cause patient harm, but had the potential to. By tracking and analyzing near misses, systems improvements can be targeted appropriately, and future errors may be prevented. An electronic, web based, secure, anonymous reporting system for anesthesiologists was designed and instituted at The Children's Hospital, Denver. This portal was compared to an existing hospital incident reporting system. A total of 150 incidents were reported in the first 3 months of operation, compared to four entered in the same time period 1 year ago. An anesthesia-specific anonymous near-miss reporting system, which eases and facilitates data entry and can prospectively identify processes and practices that place patients at risk, was implemented at a large, academic, freestanding children's hospital. This resulted in a dramatic increase in reported events and provided data to target and drive quality and process improvement. © 2011 Blackwell Publishing Ltd.
PREFACE: 7th International Symposium on Large TPCs for Low-Energy Rare Event Detection
NASA Astrophysics Data System (ADS)
Colas, P.; Giomataris, I.; Irastorza, I.; Patzak, Th
2015-11-01
The seventh "International Symposium on Large TPCs for Low-Energy Rare Event Detection", took place in Paris between the 15th and 17th of December 2014 at the Institute of Astroparticle Physics (APC) campus - Paris Diderot University. As usual the conference was organized during the week before Christmas, which seems to be convenient for most of the people and occurs every two years with almost 120 participants attending. Many people contributed to the success of the conference, but the organizers would particularly like to thank the management of APC for providing the nice Buffon auditorium and infrastructure. We also acknowledge the valuable support of DSM-Irfu and the University of Zaragoza. The scientific program consisted of plenary sessions including the following topics with theoretical and experimental lectures: • Low energy neutrino physics • Neutrinoless double beta decay process • Dark matter searches • Axion and especially solar axion searches • Space experiments and gamma-ray polarimetry • New detector R&D and future experiments
Earthquake and submarine landslide tsunamis: how can we tell the difference? (Invited)
NASA Astrophysics Data System (ADS)
Tappin, D. R.; Grilli, S. T.; Harris, J.; Geller, R. J.; Masterlark, T.; Kirby, J. T.; Ma, G.; Shi, F.
2013-12-01
Several major recent events have shown the tsunami hazard from submarine mass failures (SMF), i.e., submarine landslides. In 1992 a small earthquake triggered landslide generated a tsunami over 25 meters high on Flores Island. In 1998 another small, earthquake-triggered, sediment slump-generated tsunami up to 15 meters high devastated the local coast of Papua New Guinea killing 2,200 people. It was this event that led to the recognition of the importance of marine geophysical data in mapping the architecture of seabed sediment failures that could be then used in modeling and validating the tsunami generating mechanism. Seabed mapping of the 2004 Indian Ocean earthquake rupture zone demonstrated, however, that large, if not great, earthquakes do not necessarily cause major seabed failures, but that along some convergent margins frequent earthquakes result in smaller sediment failures that are not tsunamigenic. Older events, such as Messina, 1908, Makran, 1945, Alaska, 1946, and Java, 2006, all have the characteristics of SMF tsunamis, but for these a SMF source has not been proven. When the 2011 tsunami struck Japan, it was generally assumed that it was directly generated by the earthquake. The earthquake has some unusual characteristics, such as a shallow rupture that is somewhat slow, but is not a 'tsunami earthquake.' A number of simulations of the tsunami based on an earthquake source have been published, but in general the best results are obtained by adjusting fault rupture models with tsunami wave gauge or other data so, to the extent that they can model the recorded tsunami data, this demonstrates self-consistency rather than validation. Here we consider some of the existing source models of the 2011 Japan event and present new tsunami simulations based on a combination of an earthquake source and an SMF mapped from offshore data. We show that the multi-source tsunami agrees well with available tide gauge data and field observations and the wave data from offshore buoys, and that the SMF generated the large runups in the Sanriku region (northern Tohoku). Our new results for the 2011 Tohoku event suggest that care is required in using tsunami wave and tide gauge data to both model and validate earthquake tsunami sources. They also suggest a potential pitfall in the use of tsunami waveform inversion from tide gauges and buoys to estimate the size and spatial characteristics of earthquake rupture. If the tsunami source has a significant SMF component such studies may overestimate earthquake magnitude. Our seabed mapping identifies other large SMFs off Sanriku that have the potential to generate significant tsunamis and which should be considered in future analyses of the tsunami hazard in Japan. The identification of two major SMF-generated tsunamis (PNG and Tohoku), especially one associated with a M9 earthquake, is important in guiding future efforts at forecasting and mitigating the tsunami hazard from large megathrust plus SMF events both in Japan and globally.
Martin, Julien; Runge, Michael C.; Flewelling, Leanne J.; Deutsch, Charles J.; Landsberg, Jan H.
2017-11-20
Red tides (blooms of the harmful alga Karenia brevis) are one of the major sources of mortality for the Florida manatee (Trichechus manatus latirostris), especially in southwest Florida. It has been hypothesized that the frequency and severity of red tides may increase in the future because of global climate change and other factors. To improve our ecological forecast for the effects of red tides on manatee population dynamics and long-term persistence, we conducted a formal expert judgment process to estimate probability distributions for the frequency and relative magnitude of red-tide-related manatee mortality (RTMM) events over a 100-year time horizon in three of the four regions recognized as manatee management units in Florida. This information was used to update a population viability analysis for the Florida manatee (the Core Biological Model). We convened a panel of 12 experts in manatee biology or red-tide ecology; the panel met to frame, conduct, and discuss the elicitation. Each expert provided a best estimate and plausible low and high values (bounding a confidence level of 80 percent) for each parameter in each of three regions (Northwest, Southwest, and Atlantic) of the subspecies’ range (excluding the Upper St. Johns River region) for two time periods (0−40 and 41−100 years from present). We fitted probability distributions for each parameter, time period, and expert by using these three elicited values. We aggregated the parameter estimates elicited from individual experts and fitted a parametric distribution to the aggregated results.Across regions, the experts expected the future frequency of RTMM events to be higher than historical levels, which is consistent with the hypothesis that global climate change (among other factors) may increase the frequency of red-tide blooms. The experts articulated considerable uncertainty, however, about the future frequency of RTMM events. The historical frequency of moderate and intense RTMM (combined) in the Southwest region was 0.35 (80-percent confidence interval [CI]: 0.21−0.52), whereas the forecast probability was 0.48 (80-percent CI: 0.30−0.64) over a 40-year projected time horizon. Moderate and intense RTMM events are expected to continue to be most frequent in the Southwest region, to increase in mean frequency in the Northwest region (historical frequency of moderate and intense RTMM events [combined] in the Northwest region was 0, whereas the forecast probability was 0.12 [80-percent CI: 0.02−0.39] over a 40-year projected time horizon) and in the Atlantic region (historical frequency of moderate and intense RTMM events [combined] in the Atlantic region was 0.05 [80-percent CI: 0.005–0.18], whereas the forecast probability was 0.11 [80-percent CI: 0.03−0.25] over a 40-year projected time horizon), and to remain absent from the Upper St. Johns River region. The impact of red-tide blooms on manatee mortality has been measured for the Southwest region but not for the Northwest and Atlantic regions, where such events have been rare. The expert panel predicted that the median magnitude of RTMM events in the Atlantic and Northwest regions will be much smaller than that in the Southwest; given the large uncertainties, however, they acknowledged the possibility that these events could be larger in their mortality impacts than in the Southwest region. By its nature, forecasting requires expert judgment because it is impossible to have empirical evidence about the future. The large uncertainties in parameter estimates over a 100-year timeframe are to be expected and may also indicate that the training provided to panelists successfully minimized one common pitfall of expert judgment, that of overconfidence. This study has provided useful and needed inputs to the Florida manatee population viability analysis associated with an important and recurrent source of mortality from harmful algal blooms.
Tedder, Jacqui; Miller, Laurie; Tu, Sicong; Hornberger, Michael; Lah, Suncica
2016-02-01
Remembering the past and imaging the future are both manifestations of 'mental time travel'. These processes have been found to be impaired in patients with bilateral hippocampal lesions. Here, we examined the question of whether future thinking is affected by other Papez circuit lesions, namely: damage to the mammillary bodies/fornix. Case (SL) was a 43-year-old woman who developed dense anterograde and retrograde amnesia suddenly, as a result of Wernicke-Korsakoff's syndrome. A region of interest volumetric Magnetic resonance imaging (MRI) analysis was performed. We assessed past and future thinking in SL and 11 control subjects of similar age and education with the adapted Autobiographical Interview (AI). Participants also completed a battery of neuropsychological tests. Volumetric MRI analyses revealed severely reduced fornix and mammillary body volumes, but intact hippocampi. SL showed substantial, albeit temporally graded retrograde memory deficits on the adapted AI. Strikingly, whilst SL could not provide any specific details of events from the past two weeks or past two years and had impaired recall of events from her late 30s, her descriptions of potential future events were normal in number of event details and plausibility. This dissociation of past and future events' performance after mammillary body and fornix damage is at odds with the findings of the majority of patients with adult onset hippocampal amnesia. It suggests that these non-hippocampal regions of the Papez circuit are only critical for past event retrieval and not for the generation of possible future events.
NASA Astrophysics Data System (ADS)
Wünnemann, K.; Collins, G. S.; Weiss, R.
2010-12-01
The strike of a cosmic body into a marine environment differs in several respects from impact on land. Oceans cover approximately 70% of the Earth's surface, implying not only that oceanic impact is a very likely scenario for future impacts but also that most impacts in Earth's history must have happened in marine environments. Therefore, the study of oceanic impact is imperative in two respects: (1) to quantify the hazard posed by future oceanic impacts, including the potential threat of large impact-generated tsunami-like waves, and (2) to reconstruct Earth's impact record by accounting for the large number of potentially undiscovered crater structures in the ocean crust. Reconstruction of the impact record is of crucial importance both for assessing the frequency of collision events in the past and for better predicting the probability of future impact. We summarize the advances in the study of oceanic impact over the last decades and focus in particular on how numerical models have improved our understanding of cratering in the oceanic environment and the generation of waves by impact. We focus on insight gleaned from numerical modeling studies into the deceleration of the projectile by the water, cratering of the ocean floor, the late stage modification of the crater due to gravitational collapse, and water resurge. Furthermore, we discuss the generation and propagation of large tsunami-like waves as a result of a strike of a cosmic body in marine environments.
Event visualisation in ALICE - current status and strategy for Run 3
NASA Astrophysics Data System (ADS)
Niedziela, Jeremi; von Haller, Barthélémy
2017-10-01
A Large Ion Collider Experiment (ALICE) is one of the four big experiments running at the Large Hadron Collider (LHC), which focuses on the study of the Quark-Gluon Plasma (QGP) being produced in heavy-ion collisions. The ALICE Event Visualisation Environment (AliEve) is a tool providing an interactive 3D model of the detector’s geometry and a graphical representation of the data. Together with the online reconstruction module, it provides important quality monitoring of the recorded data. As a consequence it has been used in the ALICE Run Control Centre during all stages of Run 2. Static screenshots from the online visualisation are published on the public website - ALICE LIVE. Dedicated converters have been developed to provide geometry and data for external projects. An example of such project is the Total Event Display (TEV) - a visualisation tool recently developed by the CERN Media Lab based on the Unity game engine. It can be easily deployed on any platform, including web and mobile platforms. Another external project is More Than ALICE - an augmented reality application for visitors, overlaying detector descriptions and event visualisations on the camera’s picture. For the future Run 3 both AliEve and TEV will be adapted to fit the ALICE O2 project. Several changes are required due to the new data formats, especially so-called Compressed Time Frames.
Estimating floodwater depths from flood inundation maps and topography
Cohen, Sagy; Brakenridge, G. Robert; Kettner, Albert; Bates, Bradford; Nelson, Jonathan M.; McDonald, Richard R.; Huang, Yu-Fen; Munasinghe, Dinuke; Zhang, Jiaqi
2018-01-01
Information on flood inundation extent is important for understanding societal exposure, water storage volumes, flood wave attenuation, future flood hazard, and other variables. A number of organizations now provide flood inundation maps based on satellite remote sensing. These data products can efficiently and accurately provide the areal extent of a flood event, but do not provide floodwater depth, an important attribute for first responders and damage assessment. Here we present a new methodology and a GIS-based tool, the Floodwater Depth Estimation Tool (FwDET), for estimating floodwater depth based solely on an inundation map and a digital elevation model (DEM). We compare the FwDET results against water depth maps derived from hydraulic simulation of two flood events, a large-scale event for which we use medium resolution input layer (10 m) and a small-scale event for which we use a high-resolution (LiDAR; 1 m) input. Further testing is performed for two inundation maps with a number of challenging features that include a narrow valley, a large reservoir, and an urban setting. The results show FwDET can accurately calculate floodwater depth for diverse flooding scenarios but also leads to considerable bias in locations where the inundation extent does not align well with the DEM. In these locations, manual adjustment or higher spatial resolution input is required.
The Spatial Scaling of Global Rainfall Extremes
NASA Astrophysics Data System (ADS)
Devineni, N.; Xi, C.; Lall, U.; Rahill-Marier, B.
2013-12-01
Floods associated with severe storms are a significant source of risk for property, life and supply chains. These property losses tend to be determined as much by the duration of flooding as by the depth and velocity of inundation. High duration floods are typically induced by persistent rainfall (upto 30 day duration) as seen recently in Thailand, Pakistan, the Ohio and the Mississippi Rivers, France, and Germany. Events related to persistent and recurrent rainfall appear to correspond to the persistence of specific global climate patterns that may be identifiable from global, historical data fields, and also from climate models that project future conditions. A clear understanding of the space-time rainfall patterns for events or for a season will enable in assessing the spatial distribution of areas likely to have a high/low inundation potential for each type of rainfall forcing. In this paper, we investigate the statistical properties of the spatial manifestation of the rainfall exceedances. We also investigate the connection of persistent rainfall events at different latitudinal bands to large-scale climate phenomena such as ENSO. Finally, we present the scaling phenomena of contiguous flooded areas as a result of large scale organization of long duration rainfall events. This can be used for spatially distributed flood risk assessment conditional on a particular rainfall scenario. Statistical models for spatio-temporal loss simulation including model uncertainty to support regional and portfolio analysis can be developed.
Reality Check Algorithm for Complex Sources in Early Warning
NASA Astrophysics Data System (ADS)
Karakus, G.; Heaton, T. H.
2013-12-01
In almost all currently operating earthquake early warning (EEW) systems, presently available seismic data are used to predict future shaking. In most cases, location and magnitude are estimated. We are developing an algorithm to test the goodness of that prediction in real time. We monitor envelopes of acceleration, velocity, and displacement; if they deviate significantly from the envelope predicted by Cua's envelope gmpe's then we declare an overfit (perhaps false alarm) or an underfit (possibly a larger event has just occurred). This algorithm is designed to provide a robust measure and to work as quickly as possible in real-time. We monitor the logarithm of the ratio between the envelopes of the ongoing observed event and the envelopes derived from the predicted envelopes of channels of ground motion of the Virtual Seismologist (VS) (Cua, G. and Heaton, T.). Then, we recursively filter this result with a simple running median (de-spiking operator) to minimize the effect of one single high value. Depending on the result of the filtered value we make a decision such as if this value is large enough (e.g., >1), then we would declare, 'that a larger event is in progress', or similarly if this value is small enough (e.g., <-1), then we would declare a false alarm. We design the algorithm to work at a wide range of amplitude scales; that is, it should work for both small and large events.
West Coast atmospheric river climatology in CMIP5 climate models
NASA Astrophysics Data System (ADS)
Warner, M.; Mass, C.; Salathe, E. P.
2015-12-01
In recent years, there has been a flurry of research on how atmospheric river events (ARs) will respond to anthropogenic global warming. This study uses 10 CMIP5 RCP 8.5 climate models to focus on changes in AR frequency, seasonality, and synoptic conditions along the west coast of the United States and is a follow-up to previous work by the same authors (Warner et al. 2015) which investigated expected changes in AR intensity in the same region. There are only very slight changes in annual AR climatology from the end of the last century to the end of this century when considering the most extreme integrated water vapor transport (IVT) events (99th percentile). However, when evaluating by the number of future days exceeding a historical threshold, there are significant increases in extreme IVT events in all months, especially during months when the majority of events take place. The peaks in historical and future frequency occur in similar months given the amount of model variability. Extreme IVT events appear to be occurring slightly earlier in the season, particularly along the northern US coast, and these results are similar to other studies. Spatially, 10-model mean historical composites of IVT reveal canonical AR conditions. At locations farther south, there is less model agreement on the spatial extent and intensity of AR events; whereas farther north, the various models are in agreement. Composites of future events indicate very little spatial change from historical events. The location and orientation of AR events in the historical and future time periods are similar, and the upper-level winds change little over that time period (Warner et al. 2015). This suggests little change in synoptic conditions for approaching ARs. The future-historical difference plots highlight the largest changes expected in the future, namely increases in IVT intensity which are primarily associated with thermodynamic changes related to future integrated water vapor increases due to a warming atmosphere.
NASA Astrophysics Data System (ADS)
Ahmadalipour, A.; Beal, B.; Moradkhani, H.
2015-12-01
Changing climate and potential future increases in global temperature are likely to have impacts on drought characteristics and hydrologic cylce. In this study, we analyze changes in temporal and spatial extent of meteorological and hydrological droughts in future, and their trends. Three statistically downscaled datasets from NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP), Multivariate Adaptive Constructed Analogs (MACA), and Bias Correction and Spatial Disagregation (BCSD-PSU) each consisting of 10 CMIP5 Global Climate Models (GCM) are utilized for RCP4.5 and RCP8.5 scenarios. Further, Precipitation Runoff Modeling System (PRMS) hydrologic model is used to simulate streamflow from GCM inputs and assess the hydrological drought characteristics. Standard Precipitation Index (SPI) and Streamflow Drought Index (SDI) are the two indexes used to investigate meteorological and hydrological drought, respectively. Study is done for Willamette Basin with a drainage area of 29,700 km2 accommodating more than 3 million inhabitants and 25 dams. We analyze our study for annual time scale as well as three future periods of near future (2010-2039), intermediate future (2040-2069), and far future (2070-2099). Large uncertainty is found from GCM predictions. Results reveal that meteorological drought events are expected to increase in near future. Severe to extreme drought with large areal coverage and several years of occurance is predicted around year 2030 with the likelihood of exceptional drought for both drought types. SPI is usually showing positive trends, while SDI indicates negative trends in most cases.
NASA Astrophysics Data System (ADS)
Johnson, E. R.; Rowland, R. D.; Protokowicz, J.; Inamdar, S. P.; Kan, J.; Vargas, R.
2016-12-01
Extreme storm events have tremendous erosive energy which is capable of mobilizing vast amounts of material from watershed sources into fluvial systems. This complex mixture of sediment and particulate organic matter (POM) is a nutrient source, and has the potential to impact downstream water quality. The impact of POM on receiving aquatic systems can vary not only by the total amount exported but also by the various sources involved and the particle sizes of POM. This study examines the composition of POM in potential sources and within-event POM by: (1) determining the amount and quality of dissolved organic matter (DOM) that can be leached from coarse, medium and fine particle classes; (2) assessing the C and N content and isotopic character of within-event POM; and (3) coupling physical and chemical properties to evaluate storm event POM influence on stream water. Storm event POM samples and source sediments were collected from a forested headwater catchment (second order stream) in the Piedmont region of Maryland. Samples were sieved into three particle classes - coarse (2mm-1mm), medium (1mm-250µm) and fine (<250µm). Extractions were performed for three particle class sizes and the resulting fluorescent organic matter was analyzed. Carbon (C) and Nitrogen (N) amount, C:N ratio, and isotopic analysis of 13C and 15N were performed on solid state event and source material. Future work will include examination of microbial communities associated with POM particle size classes. Physical size class separation of within-event POM exhibited differences in C:N ratios, δ15N composition, and extracted DOM lability. Smaller size classes exhibited lower C:N ratios, more enriched δ15N and more recalcitrant properties in leached DOM. Source material had varying C:N ratios and contributions to leached DOM. These results indicate that both source and size class strongly influence the POM contribution to fluvial systems during large storm events.
Three-dimensional imaging for large LArTPCs
Qian, X.; Zhang, Chao; Viren, B.; ...
2018-05-29
High-performance event reconstruction is critical for current and future massive liquid argon time projection chambers (LArTPCs) to realize their full scientific potential. LArTPCs with readout using wire planes provide a limited number of 2D projections. In general, without a pixel- type readout it is challenging to achieve unambiguous 3D event reconstruction. As a remedy, we present a novel 3D imaging method, Wire-Cell, which incorporates the charge and sparsity information in addition to the time and geometry through simple and robust mathematics. Furthermore, the resulting 3D image of ionization density provides an excellent starting point for further reconstruction and enables themore » true power of 3D tracking calorimetry in LArTPCs.« less
Three-dimensional imaging for large LArTPCs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qian, X.; Zhang, Chao; Viren, B.
High-performance event reconstruction is critical for current and future massive liquid argon time projection chambers (LArTPCs) to realize their full scientific potential. LArTPCs with readout using wire planes provide a limited number of 2D projections. In general, without a pixel- type readout it is challenging to achieve unambiguous 3D event reconstruction. As a remedy, we present a novel 3D imaging method, Wire-Cell, which incorporates the charge and sparsity information in addition to the time and geometry through simple and robust mathematics. Furthermore, the resulting 3D image of ionization density provides an excellent starting point for further reconstruction and enables themore » true power of 3D tracking calorimetry in LArTPCs.« less
NASA Astrophysics Data System (ADS)
Brandt, M. E.
2009-12-01
Understanding the variation in coral bleaching response is necessary for making accurate predictions of population changes and the future state of reefs in a climate of increasing thermal stress events. Individual coral colonies, belonging to inshore patch reef communities of the Florida Keys, were followed through the 2005 mass bleaching event. Overall, coral bleaching patterns followed an index of accumulated thermal stress more closely than in situ temperature measurements. Eight coral species ( Colpophyllia natans, Diploria strigosa, Montastraea cavernosa, M. faveolata, Porites astreoides, P. porites, Siderastrea siderea, and Stephanocoenia intersepta), representing >90% of the coral colonies studied, experienced intense levels of bleaching, but responses varied. Bleaching differed significantly among species: Colpophyllia natans and Diploria strigosa were most susceptible to thermal stress, while Stephanocoenia intersepta was the most tolerant. For colonies of C. natans, M. faveolata, and S. siderea, larger colonies experienced more extensive bleaching than smaller colonies. The inshore patch reef communities of the Florida Keys have historically been dominated by large colonies of Montastraea sp. and Colpophyllia natans. These results provide evidence that colony-level differences can affect bleaching susceptibility in this habitat and suggest that the impact of future thermal stress events may be biased toward larger colonies of dominant reef-building species. Predicted increases in the frequency of mass bleaching and subsequent mortality may therefore result in significant structural shifts of these ecologically important communities.
Impact of climate change on European weather extremes
NASA Astrophysics Data System (ADS)
Duchez, Aurelie; Forryan, Alex; Hirschi, Joel; Sinha, Bablu; New, Adrian; Freychet, Nicolas; Scaife, Adam; Graham, Tim
2015-04-01
An emerging science consensus is that global climate change will result in more extreme weather events with concomitant increasing financial losses. Key questions that arise are: Can an upward trend in natural extreme events be recognised and predicted at the European scale? What are the key drivers within the climate system that are changing and making extreme weather events more frequent, more intense, or both? Using state-of-the-art coupled climate simulations from the UK Met Office (HadGEM3-GC2, historical and future scenario runs) as well as reanalysis data, we highlight the potential of the currently most advanced forecasting systems to progress understanding of the causative drivers of European weather extremes, and assess future frequency and intensity of extreme weather under various climate change scenarios. We characterize European extremes in these simulations using a subset of the 27 core indices for temperature and precipitation from The Expert Team on Climate Change Detection and Indices (Tank et al., 2009). We focus on temperature and precipitation extremes (e.g. extremes in daily and monthly precipitation and temperatures) and relate them to the atmospheric modes of variability over Europe in order to establish the large-scale atmospheric circulation patterns that are conducive to the occurrence of extreme precipitation and temperature events. Klein Tank, Albert M.G., and Francis W. Zwiers. Guidelines on Analysis of Extremes in a Changing Climate in Support of Informed Decisions for Adaptation. WMO-TD No. 1500. Climate Data and Monitoring. World Meteorological Organization, 2009.
Sharing the Past and Future among Adolescents and Their Parents
ERIC Educational Resources Information Center
Shirai, Toshiaki; Higata, Atsuko
2016-01-01
This study explored how sharing past and future life events among late adolescents and their parents influenced the quality of their own time perspectives. Triads (N =104) of female students and their parents described three important life events from their past and future. The results showed that adolescents who shared past and future life events…
Dozza, Marco; González, Nieves Pañeda
2013-11-01
New trends in research on traffic accidents include Naturalistic Driving Studies (NDS). NDS are based on large scale data collection of driver, vehicle, and environment information in real world. NDS data sets have proven to be extremely valuable for the analysis of safety critical events such as crashes and near crashes. However, finding safety critical events in NDS data is often difficult and time consuming. Safety critical events are currently identified using kinematic triggers, for instance searching for deceleration below a certain threshold signifying harsh braking. Due to the low sensitivity and specificity of this filtering procedure, manual review of video data is currently necessary to decide whether the events identified by the triggers are actually safety critical. Such reviewing procedure is based on subjective decisions, is expensive and time consuming, and often tedious for the analysts. Furthermore, since NDS data is exponentially growing over time, this reviewing procedure may not be viable anymore in the very near future. This study tested the hypothesis that automatic processing of driver video information could increase the correct classification of safety critical events from kinematic triggers in naturalistic driving data. Review of about 400 video sequences recorded from the events, collected by 100 Volvo cars in the euroFOT project, suggested that drivers' individual reaction may be the key to recognize safety critical events. In fact, whether an event is safety critical or not often depends on the individual driver. A few algorithms, able to automatically classify driver reaction from video data, have been compared. The results presented in this paper show that the state of the art subjective review procedures to identify safety critical events from NDS can benefit from automated objective video processing. In addition, this paper discusses the major challenges in making such video analysis viable for future NDS and new potential applications for NDS video processing. As new NDS such as SHRP2 are now providing the equivalent of five years of one vehicle data each day, the development of new methods, such as the one proposed in this paper, seems necessary to guarantee that these data can actually be analysed. Copyright © 2013 Elsevier Ltd. All rights reserved.
Characterizing uncertain sea-level rise projections to support investment decisions.
Sriver, Ryan L; Lempert, Robert J; Wikman-Svahn, Per; Keller, Klaus
2018-01-01
Many institutions worldwide are considering how to include uncertainty about future changes in sea-levels and storm surges into their investment decisions regarding large capital infrastructures. Here we examine how to characterize deeply uncertain climate change projections to support such decisions using Robust Decision Making analysis. We address questions regarding how to confront the potential for future changes in low probability but large impact flooding events due to changes in sea-levels and storm surges. Such extreme events can affect investments in infrastructure but have proved difficult to consider in such decisions because of the deep uncertainty surrounding them. This study utilizes Robust Decision Making methods to address two questions applied to investment decisions at the Port of Los Angeles: (1) Under what future conditions would a Port of Los Angeles decision to harden its facilities against extreme flood scenarios at the next upgrade pass a cost-benefit test, and (2) Do sea-level rise projections and other information suggest such conditions are sufficiently likely to justify such an investment? We also compare and contrast the Robust Decision Making methods with a full probabilistic analysis. These two analysis frameworks result in similar investment recommendations for different idealized future sea-level projections, but provide different information to decision makers and envision different types of engagement with stakeholders. In particular, the full probabilistic analysis begins by aggregating the best scientific information into a single set of joint probability distributions, while the Robust Decision Making analysis identifies scenarios where a decision to invest in near-term response to extreme sea-level rise passes a cost-benefit test, and then assembles scientific information of differing levels of confidence to help decision makers judge whether or not these scenarios are sufficiently likely to justify making such investments. Results highlight the highly-localized and context dependent nature of applying Robust Decision Making methods to inform investment decisions.
Characterizing uncertain sea-level rise projections to support investment decisions
Lempert, Robert J.; Wikman-Svahn, Per; Keller, Klaus
2018-01-01
Many institutions worldwide are considering how to include uncertainty about future changes in sea-levels and storm surges into their investment decisions regarding large capital infrastructures. Here we examine how to characterize deeply uncertain climate change projections to support such decisions using Robust Decision Making analysis. We address questions regarding how to confront the potential for future changes in low probability but large impact flooding events due to changes in sea-levels and storm surges. Such extreme events can affect investments in infrastructure but have proved difficult to consider in such decisions because of the deep uncertainty surrounding them. This study utilizes Robust Decision Making methods to address two questions applied to investment decisions at the Port of Los Angeles: (1) Under what future conditions would a Port of Los Angeles decision to harden its facilities against extreme flood scenarios at the next upgrade pass a cost-benefit test, and (2) Do sea-level rise projections and other information suggest such conditions are sufficiently likely to justify such an investment? We also compare and contrast the Robust Decision Making methods with a full probabilistic analysis. These two analysis frameworks result in similar investment recommendations for different idealized future sea-level projections, but provide different information to decision makers and envision different types of engagement with stakeholders. In particular, the full probabilistic analysis begins by aggregating the best scientific information into a single set of joint probability distributions, while the Robust Decision Making analysis identifies scenarios where a decision to invest in near-term response to extreme sea-level rise passes a cost-benefit test, and then assembles scientific information of differing levels of confidence to help decision makers judge whether or not these scenarios are sufficiently likely to justify making such investments. Results highlight the highly-localized and context dependent nature of applying Robust Decision Making methods to inform investment decisions. PMID:29414978
Wong, Adrian; Plasek, Joseph M; Montecalvo, Steven P; Zhou, Li
2018-06-09
The safety of medication use has been a priority in the United States since the late 1930s. Recently, it has gained prominence due to the increasing amount of data suggesting that a large amount of patient harm is preventable and can be mitigated with effective risk strategies that have not been sufficiently adopted. Adverse events from medications are part of clinical practice, but the ability to identify a patient's risk and to minimize that risk must be a priority. The ability to identify adverse events has been a challenge due to limitations of available data sources, which are often free text. The use of natural language processing (NLP) may help to address these limitations. NLP is the artificial intelligence domain of computer science that uses computers to manipulate unstructured data (i.e., narrative text or speech data) in the context of a specific task. In this narrative review, we illustrate the fundamentals of NLP and discuss NLP's application to medication safety in four data sources: electronic health records, Internet-based data, published literature, and reporting systems. Given the magnitude of available data from these sources, a growing area is the use of computer algorithms to help automatically detect associations between medications and adverse effects. The main benefit of NLP is in the time savings associated with automation of various medication safety tasks such as the medication reconciliation process facilitated by computers, as well as the potential for near-real time identification of adverse events for postmarketing surveillance such as those posted on social media that would otherwise go unanalyzed. NLP is limited by a lack of data sharing between health care organizations due to insufficient interoperability capabilities, inhibiting large-scale adverse event monitoring across populations. We anticipate that future work in this area will focus on the integration of data sources from different domains to improve the ability to identify potential adverse events more quickly and to improve clinical decision support with regard to a patient's estimated risk for specific adverse events at the time of medication prescription or review. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
The impact of shifting vantage perspective when recalling and imagining positive events.
Vella, Nicholas C; Moulds, Michelle L
2014-01-01
The vantage perspective from which memories are recalled influences their emotional impact. To date, however, the impact of vantage perspective on the emotions elicited by positive memories and images of positive future events has been minimally explored. We experimentally manipulated the vantage perspective from which a sample of undergraduate students (n =80) recalled positive memories and imagined positive future events. Participants who naturally recalled their positive memories from a field perspective reported decreased vividness and positive affect (i.e., happiness, optimism, hopefulness) when they were instructed to shift to an observer perspective. The same pattern of emotionality ratings was observed when participants' vantage perspective of imagined future events was manipulated. In contrast, shifting participants from observer to field perspective recall of positive memories did not result in changes in ratings of memory-related emotion, although we found an unexpected trend towards reduced vividness. For positive future events, shifting from an observer to a field perspective resulted in decreased vividness but did not lead to any changes in positive emotion. Our findings confirm that vantage perspective plays a key role in determining the emotional impact of positive memories, and demonstrate that this relationship is also evident for images of future positive events.
Marroquín, Brett; Boyle, Chloe C.; Nolen-Hoeksema, Susan; Stanton, Annette L.
2016-01-01
Predictions about the future are susceptible to mood-congruent influences of emotional state. However, recent work suggests individuals also differ in the degree to which they incorporate emotion into cognition. This study examined the role of such individual differences in the context of state negative emotion. We examined whether trait tendencies to use negative or positive emotion as information affect individuals' predictions of what will happen in the future (likelihood estimation) and how events will feel (affective forecasting), and whether trait influences depend on emotional state. Participants (N=119) reported on tendencies to use emotion as information (“following feelings”), underwent an emotion induction (negative versus neutral), and made likelihood estimates and affective forecasts for future events. Views of the future were predicted by both emotional state and individual differences in following feelings. Whereas following negative feelings affected most future-oriented cognition across emotional states, following positive feelings specifically buffered individuals' views of the future in the negative emotion condition, and specifically for positive future events, a category of future-event prediction especially important in psychological health. Individual differences may confer predisposition toward optimistic or pessimistic expectations of the future in the context of acute negative emotion, with implications for adaptive and maladaptive functioning. PMID:27041783
NASA Astrophysics Data System (ADS)
Mukuhira, Y.; Asanuma, H.; Niitsuma, H.; Häring, M. O.
2011-12-01
Hydraulic stimulation is commonly used to develop engineered geothermal systems (EGS) and enhancement of oil recovery (EOR). Occurrence of seismic events with larger magnitude has been highlighted as one of the practical and critical problems. Some seismic events with moment magnitude (Mw) larger than 2.0 occurred during and after hydraulic stimulation in Basel, Switzerland, in 2006, and these large events led to the geothermal project discontinued. We defined the large event as seismic events with Mw>2.0, and have investigated fundamental characteristics of them as summarized in Table 1. It has been revealed that the characteristics of the large events are dependent on hypocentral location and origin time. We also found most of the large events occurred from 2 types of fracture planes: 6 of 9large events had FPSs with N-S azimuth. Other 3 large events including the largest events had FPSs ESE-WNW azimuth, which can be interpreted as "most slip-able" under stress state at Basel. The large events clearly followed "constant stress drop scaling law". We also estimated critical pore pressure for shear slip using Coulomb failure criterion, and have revealed that the critical pore pressure of the large events was relatively lower. Our result shows that the occurrences of the large events can not be simply interpreted by previous experience on induced seismicity.
NASA Astrophysics Data System (ADS)
Hartmann, A. J.; Gleeson, T. P.; Wagener, T.; Wada, Y.
2016-12-01
Karst aquifers in Europe are an important source of fresh water contributing up to half of the total drinking water supply in some countries. Karstic groundwater recharge is one of the most important components of the water balance of karst systems as it feeds the karst aquifers. Presently available large-scale hydrological models do not consider karst heterogeneity adequately. Projections of current and potential future groundwater recharge of Europe's karst aquifers are therefore unclear. In this study we compare simulations of present (1991-2010) and future (2080-2099) recharge using two different models to simulate groundwater recharge processes. One model includes karst processes (subsurface heterogeneity, lateral flow and concentrated recharge), while the other is based on the conceptual understanding of common hydrological systems (homogeneous subsurface, saturation excess overland flow). Both models are driven by the bias-corrected 5 GCMs of the ISI-MIP project (RCP8.5). To further assess sensitivity of groundwater recharge to climate variability, we calculate the elasticity of recharge rates to annual precipitation, temperature and average intensity of rainfall events, which is the median change of recharge that corresponds to the median change of these climate variables within the present and future time period, respectively. Our model comparison shows that karst regions over Europe have enhanced recharge rates with greater inter-annual variability compared to those with more homogenous subsurface properties. Furthermore, the heterogeneous representation shows stronger elasticity concerning climate variability than the homogeneous subsurface representation. This difference tends to increase towards the future. Our results suggest that water management in regions with heterogeneous subsurface can expect a higher water availability than estimated by most of the current large-scale simulations, while measures should be taken to prepare for increasingly variable groundwater recharge rates.
Introduction to the special issue on the 25 April 2015 Mw 7.8 Gorkha(Nepal) earthquake
Hayes, Gavin; Briggs, Richard
2016-01-01
On April 25, 2015, a moment magnitude (Mw) 7.8 earthquake struck central Nepal, breaking a section of the broader Himalayan Front that had been largely quiescent in moderate-to-large earthquakes for much of the modern seismological era. Ground shaking associated with the event resulted in a broad distribution of triggered avalanches and landslides. The ensuing aftershock sequence was punctuated by a Mw 7.3 event 17 days after the mainshock. The combined effects of these earthquakes and secondary hazards have led to the Gorkha earthquake becoming the worst natural disaster in Nepal since the 1934 Nepal-Bihar earthquake, causing close to 9000 deaths and severely injuring over 21,000 people (OCHA, 2015).Despite the devastating effects of this earthquake, the convergent margin that hosted it is thought to be capable of much larger ruptures—perhaps as large as Mw 9 (Feldl and Bilham, 2006). The 2015 Gorkha rupture lies just to the west of the 1934 M 8.0–8.4 event (Sapkota et al., 2013; Bollinger et al., 2014). Unlike the 1934 event, which has been documented in paleoseismic trenches along the Himalayan Front (e.g., Sapkota et al., 2013), and other large ruptures along the arc (e.g., Lavé et al., 2005; Kumar et al., 2006), the 2015 event did not rupture to the surface (e.g., Galetzka et al., 2015). As a result, some researchers have suggested that the Gorkha earthquake was not as large, or as damaging, as might have been expected based on our (albeit limited) understanding of historic earthquakes, seismic hazard and risk (e.g., Bilham, 2015; Hough, 2015).Important questions surrounding the earthquake and its regional setting thus arise. What were the detailed characteristics of the rupture and the aftershock sequence, and what is the relationship between mainshock slip and subsequent seismicity? Why did this event not rupture to the surface? Was damage less than should have been expected; and if so, why? What role did path effects, such as basin amplification, play? Do details of the earthquake sequence allow us to better understand regional seismotectonics, and in turn, future risk? Discussion of these and other issues has been ongoing since the earthquake; a large body of literature already exists that characterizes details of the earthquake sequence and its effects. This special issue attempts to gather a wide variety of detailed studies that wholly characterize this event to a degree that has not yet been possible. The studies herein provide an improved understanding of the Gorkha earthquake, its impact on the region, and its place in the broader seismotectonic history of the Himalayan Front.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spagliardi, Fabio
Liquid argon Time Projection Chambers (LArTPCs) are becoming widely used as neutrino detectors because of their image-like event reconstruction which enables precision neutrino measurements. They primarily use ionisation charge to reconstruct neutrino events. It has been shown, however, that the scintillation light emitted by liquid argon could be exploited to improve their performance. As the neutrino measurements planned in the near future require large-scale experiments, their construction presents challenges in terms of both charge and light collection. In this dissertation we present solutions developed to improve the performance in both aspects of these detectors. We present a new wire tensioningmore » measurement method that allows a remote measurement of the tension of the large number wires that constitute the TPC anode. We also discuss the development and installation of WLS-compound covered foils for the SBND neutrino detector at Fermilab, which is a technique proposed t o augment light collection in LArTPCs. This included preparing a SBND-like mesh cathode and testing it in the Run III of LArIAT, a test beam detector also located at Fermilab. Finally, we present a study aimed at understanding late scintillation light emitted by recombining positive argon ions using LArIAT data, which could affect large scale surface detectors.« less
NASA Astrophysics Data System (ADS)
Kain, Claire L.; Rigby, Edward H.; Mazengarb, Colin
2018-02-01
Two episodes of intense flooding and sediment movement occurred in the Westmorland Stream alluvial system near Caveside, Australia in January 2011 and June 2016. The events were investigated in order to better understand the drivers and functioning of this composite alluvial system on a larger scale, so as to provide awareness of the potential hazard from future flood and debris flow events. A novel combination of methods was employed, including field surveys, catchment morphometry, GIS mapping from LiDAR and aerial imagery, and hydraulic modelling using RiverFlow-2D software. Both events were initiated by extreme rainfall events (< 1% Annual Exceedance Probability for durations exceeding 6 h) and resulted in flooding and sediment deposition across the alluvial fan. The impacts of the 2011 and 2016 events on the farmland appeared similar; however, there were differences in sediment source and transport processes that have implications for understanding recurrence probabilities. A debris flow was a key driver in the 2011 event, by eroding the stream channel in the forested watershed and delivering a large volume of sediment downstream to the alluvial fan. In contrast, modelled flooding velocities suggest the impacts of the 2016 event were the result of an extended period of extreme stream flooding and consequent erosion of alluvium directly above the current fan apex. The morphometry of the catchment is better aligned with values from fluvially dominated fans found elsewhere, which suggests that flooding represents a more frequent future risk than debris flows. These findings have wider implications for the estimation of debris flow and flood hazard on alluvial fans in Tasmania and elsewhere, as well as further demonstrating the capacity of combined hydraulic modelling and geomorphologic investigation as a predictive tool to inform hazard management practices in environments affected by flooding and sediment movement.
Mediators of the Availability Heuristic in Probability Estimates of Future Events.
ERIC Educational Resources Information Center
Levi, Ariel S.; Pryor, John B.
Individuals often estimate the probability of future events by the ease with which they can recall or cognitively construct relevant instances. Previous research has not precisely identified the cognitive processes mediating this "availability heuristic." Two potential mediators (imagery of the event, perceived reasons or causes for the…
2003-02-02
KENNEDY SPACE CENTER, FLA. -- A large poster in tribute to the Columbia astronauts who were lost in the Shuttle's explosion Feb. 1, is on display in the NASA News Center at KSC. The poster was signed by young women attending the Sally Ride Science Festival at the University of Central Florida, Orlando, Fla. The Sally Ride event promotes science, math and technology as future career paths for girls. Former astronaut Sally Ride addressed the girls at the festival, while breakout sessions afforded closer interaction between Ride and festival attendees.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. -- A large poster in tribute to the Columbia astronauts who were lost in the Shuttle's explosion Feb. 1, is on display in the NASA News Center at KSC. The poster was signed by young women attending the Sally Ride Science Festival at the University of Central Florida, Orlando, Fla. The Sally Ride event promotes science, math and technology as future career paths for girls. Former astronaut Sally Ride addressed the girls at the festival, while breakout sessions afforded closer interaction between Ride and festival attendees.
Repetition-related reductions in neural activity reveal component processes of mental simulation.
Szpunar, Karl K; St Jacques, Peggy L; Robbins, Clifford A; Wig, Gagan S; Schacter, Daniel L
2014-05-01
In everyday life, people adaptively prepare for the future by simulating dynamic events about impending interactions with people, objects and locations. Previous research has consistently demonstrated that a distributed network of frontal-parietal-temporal brain regions supports this ubiquitous mental activity. Nonetheless, little is known about the manner in which specific regions of this network contribute to component features of future simulation. In two experiments, we used a functional magnetic resonance (fMR)-repetition suppression paradigm to demonstrate that distinct frontal-parietal-temporal regions are sensitive to processing the scenarios or what participants imagined was happening in an event (e.g., medial prefrontal, posterior cingulate, temporal-parietal and middle temporal cortices are sensitive to the scenarios associated with future social events), people (medial prefrontal cortex), objects (inferior frontal and premotor cortices) and locations (posterior cingulate/retrosplenial, parahippocampal and posterior parietal cortices) that typically constitute simulations of personal future events. This pattern of results demonstrates that the neural substrates of these component features of event simulations can be reliably identified in the context of a task that requires participants to simulate complex, everyday future experiences.
Seismic Search Engine: A distributed database for mining large scale seismic data
NASA Astrophysics Data System (ADS)
Liu, Y.; Vaidya, S.; Kuzma, H. A.
2009-12-01
The International Monitoring System (IMS) of the CTBTO collects terabytes worth of seismic measurements from many receiver stations situated around the earth with the goal of detecting underground nuclear testing events and distinguishing them from other benign, but more common events such as earthquakes and mine blasts. The International Data Center (IDC) processes and analyzes these measurements, as they are collected by the IMS, to summarize event detections in daily bulletins. Thereafter, the data measurements are archived into a large format database. Our proposed Seismic Search Engine (SSE) will facilitate a framework for data exploration of the seismic database as well as the development of seismic data mining algorithms. Analogous to GenBank, the annotated genetic sequence database maintained by NIH, through SSE, we intend to provide public access to seismic data and a set of processing and analysis tools, along with community-generated annotations and statistical models to help interpret the data. SSE will implement queries as user-defined functions composed from standard tools and models. Each query is compiled and executed over the database internally before reporting results back to the user. Since queries are expressed with standard tools and models, users can easily reproduce published results within this framework for peer-review and making metric comparisons. As an illustration, an example query is “what are the best receiver stations in East Asia for detecting events in the Middle East?” Evaluating this query involves listing all receiver stations in East Asia, characterizing known seismic events in that region, and constructing a profile for each receiver station to determine how effective its measurements are at predicting each event. The results of this query can be used to help prioritize how data is collected, identify defective instruments, and guide future sensor placements.
Changing Global Risk Landscape - Challenges for Risk Management (Invited)
NASA Astrophysics Data System (ADS)
Wenzel, F.
2009-12-01
The exponentially growing losses related to natural disasters on a global scale reflect a changing risk landscape that is characterized by the influence of climate change and a growing population, particularly in urban agglomerations and coastal zones. In consequence of these trends we witness (a) new hazards such as landslides due to dwindling permafrost, new patterns of strong precipitation and related floods, potential for tropical cyclones in the Mediterranean, sea level rise and others; (b) new risks related to large numbers of people in very dense urban areas, and risks related to the vulnerability of infrastructure such as energy supply, water supply, transportation, communication, etc. (c) extreme events with unprecedented size and implications. An appropriate answer to these challenges goes beyond classical views of risk assessment and protection. It must include an understanding of risk as changing with time so that risk assessment needs to be supplemented by risk monitoring. It requires decision making under high uncertainty. The risks (i.e. potentials for future losses) of extreme events are not only high but also very difficult to quantify, as they are characterized by high levels of uncertainty. Uncertainties relate to frequency, time of occurrence, strength and impact of extreme events but also to the coping capacities of society in response to them. The characterization, quantification, reduction in the extent possible of the uncertainties is an inherent topic of extreme event research. However, they will not disappear, so a rational approach to extreme events must include more than reducing uncertainties. It requires us to assess and rate the irreducible uncertainties, to evaluate options for mitigation under large uncertainties, and their communication to societal sectors. Thus scientist need to develop methodologies that aim at a rational approach to extreme events associated with high levels of uncertainty.
NASA Astrophysics Data System (ADS)
Pistolesi, Marco; Cioni, Raffaello; Rosi, Mauro; Aguilera, Eduardo
2014-02-01
The ice-capped Cotopaxi volcano is known worldwide for the large-scale, catastrophic lahars that have occurred in connection with historical explosive eruptions. The most recent large-scale lahar event occurred in 1877 when scoria flows partially melted ice and snow of the summit glacier, generating debris flows that severely impacted all the river valleys originating from the volcano. The 1877 lahars have been considered in the recent years as a maximum expected event to define the hazard associated to lahar generation at Cotopaxi. Conversely, recent field-based studies have shown that such debris flows have occurred several times during the last 800 years of activity at Cotopaxi, and that the scale of lahars has been variable, including events much larger than that of 1877. Despite a rapid retreat of the summit ice cap over the past century, in fact, there are no data clearly suggesting that future events will be smaller than those observed in the deposits of the last 800 years of activity. In addition, geological field data prove that the lahar triggering mechanism also has to be considered as a key input parameter and, under appropriate eruptive mechanisms, a hazard scenario of a lahar with a volume 3-times larger than the 1877 event is likely. In order to analyze the impact scenarios in the southern drainage system of the volcano, simulations of inundation areas were performed with a semi-empirical model (LAHARZ), using input parameters including variable water volume. Results indicate that a lahar 3-times larger than the 1877 event would invade much wider areas than those flooded by the 1877 lahars along the southern valley system, eventually impacting highly-urbanized areas such as the city of Latacunga.
NASA Astrophysics Data System (ADS)
Ludwig, Ralf; Baese, Frank; Braun, Marco; Brietzke, Gilbert; Brissette, Francois; Frigon, Anne; Giguère, Michel; Komischke, Holger; Kranzlmueller, Dieter; Leduc, Martin; Martel, Jean-Luc; Ricard, Simon; Schmid, Josef; von Trentini, Fabian; Turcotte, Richard; Weismueller, Jens; Willkofer, Florian; Wood, Raul
2017-04-01
The recent accumulation of extreme hydrological events in Bavaria and Québec has stimulated scientific and also societal interest. In addition to the challenges of an improved prediction of such situations and the implications for the associated risk management, there is, as yet, no confirmed knowledge whether and how climate change contributes to the magnitude and frequency of hydrological extreme events and how regional water management could adapt to the corresponding risks. The ClimEx project (2015-2019) investigates the effects of climate change on the meteorological and hydrological extreme events and their implications for water management in Bavaria and Québec. High Performance Computing is employed to enable the complex simulations in a hydro-climatological model processing chain, resulting in a unique high-resolution and transient (1950-2100) dataset of climatological and meteorological forcing and hydrological response: (1) The climate module has developed a large ensemble of high resolution data (12km) of the CRCM5 RCM for Central Europe and North-Eastern North America, downscaled from 50 members of the CanESM2 GCM. The dataset is complemented by all available data from the Euro-CORDEX project to account for the assessment of both natural climate variability and climate change. The large ensemble with several thousand model years provides the potential to catch rare extreme events and thus improves the process understanding of extreme events with return periods of 1000+ years. (2) The hydrology module comprises process-based and spatially explicit model setups (e.g. WaSiM) for all major catchments in Bavaria and Southern Québec in high temporal (3h) and spatial (500m) resolution. The simulations form the basis for in depth analysis of hydrological extreme events based on the inputs from the large climate model dataset. The specific data situation enables to establish a new method for 'virtual perfect prediction', which assesses climate change impacts on flood risk and water resources management by identifying patterns in the data which reveal preferential triggers of hydrological extreme events. The presentation will highlight first results from the analysis of the large scale ClimEx model ensemble, showing the current and future ratio of natural variability and climate change impacts on meteorological extreme events. Selected data from the ensemble is used to drive a hydrological model experiment to illustrate the capacity to better determine the recurrence periods of hydrological extreme events under conditions of climate change. [The authors acknowledge funding for the project from the Bavarian State Ministry for the Environment and Consumer Protection].
Future Heat Waves in Paris Metropolitan Area
NASA Astrophysics Data System (ADS)
Beaulant, A.; Lemonsu, A.; Somot, S.; Masson, V.
2010-12-01
Cities are particularly vulnerable to heat waves, firstly because they concentrate the majority of the population and, secondly because the heat island that characterizes the urban climate exacerbates heat wave effects. This work is part of the interdisciplinary VURCA project (Vulnerability of cities to heat waves), which deals with the evolution of heat wave events in the context of global warming, urban vulnerability and adaptation strategies. The aim of this study is to analyse urban heat wave events in present climate (1950-2009) and their evolution in an enhanced greenhouse gazes future climate (2010-2100). We used daily observations of temperature from several stations covering Paris metropolitan area and climate projections following three different IPCC-SRES scenarios (B1, A1B, A2) and issued from several ENSEMBLES regional climate models. The heat wave definition is based on the indexes of the operational French warning system. A heat wave is detected within observed or simulated time-series by a heat wave peak, when the temperatures exceed the value of the 99.9th percentile. Its duration is determined by all adjacent days to this peak, for which the temperatures are not durably smaller than the 99.9th percentile value minus 2 °C. The 99.9th percentile threshold is inferred from quantile-quantile plots produced for each climate model in comparison with observations for the reference period 1950-2000. Heat waves have been extracted within observations and 12 climatic simulations. The number of heat wave events and cumulated HW days per year have been calculated, the maximum being seven heat waves cumulating more than 60 HW days in one year in the case of the A2 scenario and until 50 days in the case of the more moderate A1B scenario. From 2050, the occurrence of three or four HW events per year is becoming the norm all scenarios taken together. The evolution of heat wave features has been analysed, highlighting the large variability of the climatic simulations, but also an overall trend to an increase in frequency and duration but less significantly in intensity. Further work will be carried out in order to assess the sensitivity of the Paris urban climate to different future heat wave events. Synthetic HW events will be built from future HW features as duration and intensity, and will be simulated using a urban-weather model. Then, the impacts in terms of energy consumption and bioclimatic comfort will be analysed and adaptation strategies will be proposed.
Adachi, Sachiho A; Nishizawa, Seiya; Yoshida, Ryuji; Yamaura, Tsuyoshi; Ando, Kazuto; Yashiro, Hisashi; Kajikawa, Yoshiyuki; Tomita, Hirofumi
2017-12-20
Future changes in large-scale climatology and perturbation may have different impacts on regional climate change. It is important to understand the impacts of climatology and perturbation in terms of both thermodynamic and dynamic changes. Although many studies have investigated the influence of climatology changes on regional climate, the significance of perturbation changes is still debated. The nonlinear effect of these two changes is also unknown. We propose a systematic procedure that extracts the influences of three factors: changes in climatology, changes in perturbation and the resulting nonlinear effect. We then demonstrate the usefulness of the procedure, applying it to future changes in precipitation. All three factors have the same degree of influence, especially for extreme rainfall events. Thus, regional climate assessments should consider not only the climatology change but also the perturbation change and their nonlinearity. This procedure can advance interpretations of future regional climates.
Probing neutrino coupling to a light scalar with coherent neutrino scattering
NASA Astrophysics Data System (ADS)
Farzan, Yasaman; Lindner, Manfred; Rodejohann, Werner; Xu, Xun-Jie
2018-05-01
Large neutrino event numbers in future experiments measuring coherent elastic neutrino nucleus scattering allow precision measurements of standard and new physics. We analyze the current and prospective limits of a light scalar particle coupling to neutrinos and quarks, using COHERENT and CONUS as examples. Both lepton number conserving and violating interactions are considered. It is shown that current (future) experiments can probe for scalar masses of a few MeV couplings down to the level of 10-4 (10-6). Scalars with masses around the neutrino energy allow to determine their mass via a characteristic spectrum shape distortion. Our present and future limits are compared with constraints from supernova evolution, Big Bang nucleosynthesis and neutrinoless double beta decay. We also outline UV-complete underlying models that include a light scalar with coupling to quarks for both lepton number violating and conserving coupling to neutrinos.
Remarks on the maximum luminosity
NASA Astrophysics Data System (ADS)
Cardoso, Vitor; Ikeda, Taishi; Moore, Christopher J.; Yoo, Chul-Moon
2018-04-01
The quest for fundamental limitations on physical processes is old and venerable. Here, we investigate the maximum possible power, or luminosity, that any event can produce. We show, via full nonlinear simulations of Einstein's equations, that there exist initial conditions which give rise to arbitrarily large luminosities. However, the requirement that there is no past horizon in the spacetime seems to limit the luminosity to below the Planck value, LP=c5/G . Numerical relativity simulations of critical collapse yield the largest luminosities observed to date, ≈ 0.2 LP . We also present an analytic solution to the Einstein equations which seems to give an unboundedly large luminosity; this will guide future numerical efforts to investigate super-Planckian luminosities.
Losing your edge: climate change and the conservation value of range-edge populations.
Rehm, Evan M; Olivas, Paulo; Stroud, James; Feeley, Kenneth J
2015-10-01
Populations occurring at species' range edges can be locally adapted to unique environmental conditions. From a species' perspective, range-edge environments generally have higher severity and frequency of extreme climatic events relative to the range core. Under future climates, extreme climatic events are predicted to become increasingly important in defining species' distributions. Therefore, range-edge genotypes that are better adapted to extreme climates relative to core populations may be essential to species' persistence during periods of rapid climate change. We use relatively simple conceptual models to highlight the importance of locally adapted range-edge populations (leading and trailing edges) for determining the ability of species to persist under future climates. Using trees as an example, we show how locally adapted populations at species' range edges may expand under future climate change and become more common relative to range-core populations. We also highlight how large-scale habitat destruction occurring in some geographic areas where many species range edge converge, such as biome boundaries and ecotones (e.g., the arc of deforestation along the rainforest-cerrado ecotone in the southern Amazonia), can have major implications for global biodiversity. As climate changes, range-edge populations will play key roles in helping species to maintain or expand their geographic distributions. The loss of these locally adapted range-edge populations through anthropogenic disturbance is therefore hypothesized to reduce the ability of species to persist in the face of rapid future climate change.
Climate change and rising heat: population health implications for working people in Australia.
Hanna, Elizabeth G; Kjellstrom, Tord; Bennett, Charmian; Dear, Keith
2011-03-01
The rapid rise in extreme heat events in Australia recently is already taking a health toll. Climate change scenarios predict increases in the frequency and intensity of extreme heat events in the future, and population health may be significantly compromised for people who cannot reduce their heat exposure. Exposure to extreme heat presents a health hazard to all who are physically active, particularly outdoor workers and indoor workers with minimal access to cooling systems while working. At air temperatures close to (or beyond) the core body temperature of 37°C, body cooling via sweating is essential, and this mechanism is hampered by high air humidity. Heat exposure among elite athletes and the military has been investigated, whereas the impacts on workers remain largely unexplored, particularly in relation to future climate change. Workers span all age groups and diverse levels of fitness and health status, including people with higher than "normal" sensitivity to heat. In a hotter world, workers are likely to experience more heat stress and find it increasingly difficult to maintain productivity. Modeling of future climate change in Australia shows a substantial increase in the number of very hot days (>35°C) across the country. In this article, the authors characterize the health risks associated with heat exposure on working people and discuss future exposure risks as temperatures rise. Progress toward developing occupational health and safety guidelines for heat in Australia are summarized.
Assessing the present and future probability of Hurricane Harvey's rainfall.
Emanuel, Kerry
2017-11-28
We estimate, for current and future climates, the annual probability of areally averaged hurricane rain of Hurricane Harvey's magnitude by downscaling large numbers of tropical cyclones from three climate reanalyses and six climate models. For the state of Texas, we estimate that the annual probability of 500 mm of area-integrated rainfall was about 1% in the period 1981-2000 and will increase to 18% over the period 2081-2100 under Intergovernmental Panel on Climate Change (IPCC) AR5 representative concentration pathway 8.5. If the frequency of such event is increasingly linearly between these two periods, then in 2017 the annual probability would be 6%, a sixfold increase since the late 20th century. Copyright © 2017 the Author(s). Published by PNAS.
Management of Forested Landscapes: Simulations of three alternatives
Stephen G. Boyce; W. Henry McNab
1994-01-01
Forested landscapes can be managed to support variouscombinations of timber, biological diversity,esthetic values, and habitats. However, all such management decisions arechoices basedon opinions about future events. Opinions underlie managementdecisionsbecause thereis no way to jump into the future, verify a future event, jump back to the present, and make a...
Estimating the effect of multiple environmental stressors on coral bleaching and mortality.
Welle, Paul D; Small, Mitchell J; Doney, Scott C; Azevedo, Inês L
2017-01-01
Coral cover has been declining in recent decades due to increased temperatures and environmental stressors. However, the extent to which different stressors contribute both individually and in concert to bleaching and mortality is still very uncertain. We develop and use a novel regression approach, using non-linear parametric models that control for unobserved time invariant effects to estimate the effects on coral bleaching and mortality due to temperature, solar radiation, depth, hurricanes and anthropogenic stressors using historical data from a large bleaching event in 2005 across the Caribbean. Two separate models are created, one to predict coral bleaching, and the other to predict near-term mortality. A large ensemble of supporting data is assembled to control for omitted variable bias and improve fit, and a significant improvement in fit is observed from univariate linear regression based on temperature alone. The results suggest that climate stressors (temperature and radiation) far outweighed direct anthropogenic stressors (using distance from shore and nearby human population density as a proxy for such stressors) in driving coral health outcomes during the 2005 event. Indeed, temperature was found to play a role ~4 times greater in both the bleaching and mortality response than population density across their observed ranges. The empirical models tested in this study have large advantages over ordinary-least squares-they offer unbiased estimates for censored data, correct for spatial correlation, and are capable of handling more complex relationships between dependent and independent variables. The models offer a framework for preparing for future warming events and climate change; guiding monitoring and attribution of other bleaching and mortality events regionally and around the globe; and informing adaptive management and conservation efforts.
Estimating the effect of multiple environmental stressors on coral bleaching and mortality
Welle, Paul D.; Small, Mitchell J.; Doney, Scott C.; Azevedo, Inês L.
2017-01-01
Coral cover has been declining in recent decades due to increased temperatures and environmental stressors. However, the extent to which different stressors contribute both individually and in concert to bleaching and mortality is still very uncertain. We develop and use a novel regression approach, using non-linear parametric models that control for unobserved time invariant effects to estimate the effects on coral bleaching and mortality due to temperature, solar radiation, depth, hurricanes and anthropogenic stressors using historical data from a large bleaching event in 2005 across the Caribbean. Two separate models are created, one to predict coral bleaching, and the other to predict near-term mortality. A large ensemble of supporting data is assembled to control for omitted variable bias and improve fit, and a significant improvement in fit is observed from univariate linear regression based on temperature alone. The results suggest that climate stressors (temperature and radiation) far outweighed direct anthropogenic stressors (using distance from shore and nearby human population density as a proxy for such stressors) in driving coral health outcomes during the 2005 event. Indeed, temperature was found to play a role ~4 times greater in both the bleaching and mortality response than population density across their observed ranges. The empirical models tested in this study have large advantages over ordinary-least squares–they offer unbiased estimates for censored data, correct for spatial correlation, and are capable of handling more complex relationships between dependent and independent variables. The models offer a framework for preparing for future warming events and climate change; guiding monitoring and attribution of other bleaching and mortality events regionally and around the globe; and informing adaptive management and conservation efforts. PMID:28472031
Performance of Oil Infrastructure during Hurricane Harvey
NASA Astrophysics Data System (ADS)
Bernier, C.; Kameshwar, S.; Padgett, J.
2017-12-01
Three major refining centers - Corpus Christi, Houston, and Beaumont/Port Arthur - were affected during Hurricane Harvey. Damage to oil infrastructure, especially aboveground storage tanks (ASTs), caused the release of more than a million gallons of hazardous chemicals in the environment. The objective of this presentation is to identify and gain a better understanding of the different damage mechanisms that occurred during Harvey in order to avoid similar failures during future hurricane events. First, a qualitative description of the damage suffered by ASTs during Hurricane Harvey is presented. Analysis of aerial imagery and incident reports indicate that almost all spills were caused by rainfall and the associated flooding. The largest spill was caused by two large ASTs that floated due to flooding in the Houston Ship Channel releasing 500,000 gallons of gasoline. The vulnerability of ASTs subjected to flooding was already well known and documented from previous storm events. In addition to flooding, Harvey also exposed the vulnerability of ASTs with external floating roof to extreme rainfall; more than 15 floating roofs sank or tilted due to rain water accumulation on them, releasing pollutants in the atmosphere. Secondly, recent fragility models developed by the authors are presented which allow structural vulnerability assessment of floating roofs during rainfall events and ASTs during flood events. The fragility models are then coupled with Harvey rainfall and flood empirical data to identify the conditions (i.e.: internal liquid height or density, drainage system design and efficiency, etc.) that could have led to the observed failures during Hurricane Harvey. Finally, the conditions causing tank failures are studied to propose mitigation measures to prevent future AST failures during severe storm, flood, or rainfall events.
Jalali, Subhadra; Balakrishnan, Divya; Zeynalova, Zarifa; Padhi, Tapas Ranjan; Rani, Padmaja Kumari
2013-07-01
To report serious adverse events and long-term outcomes of initial experience with intraocular bevacizumab in retinopathy of prematurity (ROP). Consecutive vascularly active ROP cases treated with bevacizumab, in addition to laser and surgery, were analysed retrospectively from a prospective computerised ROP database. Primary efficacy outcome was regression of new vessels. Secondary outcomes included the anatomic and visual status. Serious systemic and ocular adverse events were documented. 24 ROP eyes in 13 babies, received single intraocular bevacizumab for severe stage 3 plus after failed laser (seven eyes), stage 4A plus (eight eyes), and stage 4B/5 plus (nine eyes). Drug was injected intravitreally in 23 eyes and intracamerally in one eye. New vessels regressed in all eyes. Vision salvage in 14 of 24 eyes and no serious neurodevelopmental abnormalities were noted up to 60 months (mean 30.7 months) follow-up. Complications included macular hole and retinal breaks causing rhegmatogenous retinal detachment (one eye); bilateral, progressive vascular attenuation, perivascular exudation and optic atrophy in one baby, and progression of detachment bilaterally to stage 5 in one baby with missed follow-up. One baby who received intracameral injection developed hepatic dysfunction. One eye of this baby also showed a large choroidal rupture. Though intraocular bevacizumab, along with laser and surgery salvaged vision in many otherwise progressive cases of ROP, vigilance and reporting of serious adverse events is essential for future rationalised use of the drug. We report one systemic and four ocular adverse events that require consideration in future use of the drug.
NASA Astrophysics Data System (ADS)
Rasmussen, Roy; Ikeda, Kyoko; Liu, Changhai; Gutmann, Ethan; Gochis, David
2016-04-01
Modeling of extreme weather events often require very finely resolved treatment of atmospheric circulation structures in order to produce and localize the large moisture fluxes that result in extreme precipitation. This is particularly true for cool season orographic precipitation processes where the representation of the landform can significantly impact vertical velocity profiles and cloud moisture entrainment rates. This study presents results for high resolution regional climate modeling study of the Colorado Headwaters region using an updated version of the Weather Research and Forecasting (WRF) model run at 4 km horizontal resolution and a hydrological extension package called WRF-Hydro. Previous work has shown that the WRF modeling system can produce credible depictions of winter orographic precipitation over the Colorado Rockies if run at horizontal resolutions < 6 km. Here we present results from a detailed study of an extreme springtime snowfall event that occurred along the Colorado Front Range in March 2003. Results from the impact of warming on total precipitation, snow-rain partitioning and surface hydrological fluxes (evapotranspiration and runoff) will be discussed in the context of how potential changes in temperature impact the amount of precipitation, the phase of precipitation (rain vs. snow) and the timing and amplitude of streamflow responses. The results show using the Pseudo Global Warming technique that intense precipitation rates significantly increased during the event and a significant fraction of the snowfall converts to rain which significantly amplifies the runoff response from one where runoff is produced gradually to one in which runoff is rapidly translated into streamflow values that approach significant flooding risks. Results from a new, CONUS scale high resolution climate simulation of extreme events in a current and future climate will be presented as time permits.
Perfect 24-h management of hypertension: clinical relevance and perspectives.
Kario, K
2017-04-01
Out-of-office blood pressure (BP) measured by home BP monitoring, or ambulatory BP monitoring, was demonstrated to be superior to office BP for the prediction of cardiovascular events. The J-HOP study of a nationwide Japanese cohort demonstrated that morning home BP is the best stroke predictor. In the prospective HONEST study of >21 000 hypertensives, on-treatment morning home BP was shown to be a strong predictor both of future coronary artery disease and stroke events. In subjects whose office BP was maintained at ⩾150 mm Hg, there was no increase in cardiovascular events when their morning systolic BP was well-controlled at <125 mm Hg. Since Asians show greater morning BP surges, it is particularly important for Asians to achieve 'perfect 24-hr BP control,' that is, the 24-h BP level, nocturnal BP dipping and BP variability including morning surge. The morning BP surge and the extremes of disrupted circadian rhythm (riser and extreme dipper patterns) are independent risks for stroke in hypertensives. A morning BP-guided approach is thus the first step toward perfect 24-h BP control, followed by the control of nocturnal hypertension. In the resonance hypothesis, the synergistic resonance of BP variability phenotypes would produce an extraordinary large 'dynamic BP surge' that can trigger a cardiovascular event, especially in high-risk patients with systemic hemodynamic atherothrombotic syndrome, a vicious cycle of exaggerated BP variability and vascular disease. In the future, information and communications technology and artificial intelligence technology with the innovation of wearable continuous surge BP monitoring will contribute to 'anticipation medicine' with the goal of zero cardiovascular events.
NASA Astrophysics Data System (ADS)
Eidietis, N. W.; Choi, W.; Hahn, S. H.; Humphreys, D. A.; Sammuli, B. S.; Walker, M. L.
2018-05-01
A finite-state off-normal and fault response (ONFR) system is presented that provides the supervisory logic for comprehensive disruption avoidance and machine protection in tokamaks. Robust event handling is critical for ITER and future large tokamaks, where plasma parameters will necessarily approach stability limits and many systems will operate near their engineering limits. Events can be classified as off-normal plasmas events, e.g. neoclassical tearing modes or vertical displacements events, or faults, e.g. coil power supply failures. The ONFR system presented provides four critical features of a robust event handling system: sequential responses to cascading events, event recovery, simultaneous handling of multiple events and actuator prioritization. The finite-state logic is implemented in Matlab®/Stateflow® to allow rapid development and testing in an easily understood graphical format before automated export to the real-time plasma control system code. Experimental demonstrations of the ONFR algorithm on the DIII-D and KSTAR tokamaks are presented. In the most complex demonstration, the ONFR algorithm asynchronously applies ‘catch and subdue’ electron cyclotron current drive (ECCD) injection scheme to suppress a virulent 2/1 neoclassical tearing mode, subsequently shuts down ECCD for machine protection when the plasma becomes over-dense, and enables rotating 3D field entrainment of the ensuing locked mode to allow a safe rampdown, all in the same discharge without user intervention. When multiple ONFR states are active simultaneously and requesting the same actuator (e.g. neutral beam injection or gyrotrons), actuator prioritization is accomplished by sorting the pre-assigned priority values of each active ONFR state and giving complete control of the actuator to the state with highest priority. This early experience makes evident that additional research is required to develop an improved actuator sharing protocol, as well as a methodology to minimize the number and topological complexity of states as the finite-state ONFR system is scaled to a large, highly constrained device like ITER.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eidietis, N. W.; Choi, W.; Hahn, S. H.
A finite-state off-normal and fault response (ONFR) system is presented that provides the supervisory logic for comprehensive disruption avoidance and machine protection in tokamaks. Robust event handling is critical for ITER and future large tokamaks, where plasma parameters will necessarily approach stability limits and many systems will operate near their engineering limits. Events can be classified as off-normal plasmas events, e.g. neoclassical tearing modes or vertical displacements events, or faults, e.g. coil power supply failures. The ONFR system presented provides four critical features of a robust event handling system: sequential responses to cascading events, event recovery, simultaneous handling of multiplemore » events and actuator prioritization. The finite-state logic is implemented in Matlab*/Stateflow* to allow rapid development and testing in an easily understood graphical format before automated export to the real-time plasma control system code. Experimental demonstrations of the ONFR algorithm on the DIII-D and KSTAR tokamaks are presented. In the most complex demonstration, the ONFR algorithm asynchronously applies “catch and subdue” electron cyclotron current drive (ECCD) injection scheme to suppress a virulent 2/1 neoclassical tearing mode, subsequently shuts down ECCD for machine protection when the plasma becomes over-dense, and enables rotating 3D field entrainment of the ensuing locked mode to allow a safe rampdown, all in the same discharge without user intervention. When multiple ONFR states are active simultaneously and requesting the same actuator (e.g. neutral beam injection or gyrotrons), actuator prioritization is accomplished by sorting the pre-assigned priority values of each active ONFR state and giving complete control of the actuator to the state with highest priority. This early experience makes evident that additional research is required to develop an improved actuator sharing protocol, as well as a methodology to minimize the number and topological complexity of states as the finite-state ONFR system is scaled to a large, highly constrained device like ITER.« less
Eidietis, N. W.; Choi, W.; Hahn, S. H.; ...
2018-03-29
A finite-state off-normal and fault response (ONFR) system is presented that provides the supervisory logic for comprehensive disruption avoidance and machine protection in tokamaks. Robust event handling is critical for ITER and future large tokamaks, where plasma parameters will necessarily approach stability limits and many systems will operate near their engineering limits. Events can be classified as off-normal plasmas events, e.g. neoclassical tearing modes or vertical displacements events, or faults, e.g. coil power supply failures. The ONFR system presented provides four critical features of a robust event handling system: sequential responses to cascading events, event recovery, simultaneous handling of multiplemore » events and actuator prioritization. The finite-state logic is implemented in Matlab*/Stateflow* to allow rapid development and testing in an easily understood graphical format before automated export to the real-time plasma control system code. Experimental demonstrations of the ONFR algorithm on the DIII-D and KSTAR tokamaks are presented. In the most complex demonstration, the ONFR algorithm asynchronously applies “catch and subdue” electron cyclotron current drive (ECCD) injection scheme to suppress a virulent 2/1 neoclassical tearing mode, subsequently shuts down ECCD for machine protection when the plasma becomes over-dense, and enables rotating 3D field entrainment of the ensuing locked mode to allow a safe rampdown, all in the same discharge without user intervention. When multiple ONFR states are active simultaneously and requesting the same actuator (e.g. neutral beam injection or gyrotrons), actuator prioritization is accomplished by sorting the pre-assigned priority values of each active ONFR state and giving complete control of the actuator to the state with highest priority. This early experience makes evident that additional research is required to develop an improved actuator sharing protocol, as well as a methodology to minimize the number and topological complexity of states as the finite-state ONFR system is scaled to a large, highly constrained device like ITER.« less
Vazou, Spyridoula; Vlachopoulos, Symeon P
2014-11-01
Research on the motivation of stakeholders to integrate physical activity into daily school life is limited. The purpose was to examine the motivation of stakeholders to participate in a world record physical activity event and whether motivation was associated with future intention to use activity breaks during the daily school life and future participation in a similar event. After the 2012 JAM (Just-a-Minute) World Record event, 686 adults (591 women; 76.1% participated for children <10 years) completed measures of motivational regulations and future intention to (a) use the activity breaks and (b) participate in the event. High intrinsic motivation and low extrinsic motivation and amotivation for participation in the next event were reported. Hierarchical regression analysis, controlling for age, gender, and occupation, showed that intrinsic forms of motivation positively predicted, whereas amotivation negatively predicted, future intention to participate in the event and use the activity breaks. Multivariate analyses of variance revealed that school-related participants were more intrinsically motivated and intended to use the activity breaks and repeat the event more than those who were not affiliated with a school. Nonschool participants reported higher extrinsic motivation and amotivation than school-related participants. © 2014 Society for Public Health Education.
An fMRI investigation of the relationship between future imagination and cognitive flexibility
Roberts, R.P.; Wiebels, K.; Sumner, R.L.; van Mulukom, V.; Grady, C.L.; Schacter, D.L.; Addis, D.R.
2016-01-01
While future imagination is largely considered to be a cognitive process grounded in default mode network activity, studies have shown that future imagination recruits regions in both default mode and frontoparietal control networks. In addition, it has recently been shown that the ability to imagine the future is associated with cognitive flexibility, and that tasks requiring cognitive flexibility result in increased coupling of the default mode network with frontoparietal control and salience networks. In the current study, we investigated the neural correlates underlying the association between cognitive flexibility and future imagination in two ways. First, we experimentally varied the degree of cognitive flexibility required during future imagination by manipulating the disparateness of episodic details contributing to imagined events. To this end, participants generated episodic details (persons, locations, objects) within three social spheres; during fMRI scanning they were presented with sets of three episodic details all taken from the same social sphere (Congruent condition) or different social spheres (Incongruent condition) and required to imagine a future event involving the three details. We predicted that, relative to the Congruent condition, future simulation in the Incongruent condition would be associated with increased activity in regions of the default mode, frontoparietal and salience networks. Second, we hypothesized that individual differences in cognitive flexibility, as measured by performance on the Alternate Uses Task, would correspond to individual differences in the brain regions recruited during future imagination. A task partial least squares (PLS) analysis showed that the Incongruent condition resulted in an increase in activity in regions in salience networks (e.g. the insula) but, contrary to our prediction, reduced activity in many regions of the default mode network (including the hippocampus). A subsequent functional connectivity (within-subject seed PLS) analysis showed that the insula exhibited increased coupling with default mode regions during the Incongruent condition. Finally, a behavioral PLS analysis showed that individual differences in cognitive flexibility were associated with differences in activity in a number of regions from frontoparietal, salience and default-mode networks during both future imagination conditions, further highlighting that the cognitive flexibility underlying future imagination is grounded in the complex interaction of regions in these networks. PMID:27908591
Introducing Life Events in Preschool Education: Future Educators' Attitudes and Perceptions
ERIC Educational Resources Information Center
Brouskeli, Vasiliki
2014-01-01
In this study, we aimed to clarify future preschool teachers' attitudes and perceptions about introducing life events, such as chronic illness, hospitalisation, divorce and death to their pupils. We used semi-structured interviews for two different groups who had and had not attended relative to life events courses. Results indicated that future…
Improving estuary models by reducing uncertainties associated with river flows
NASA Astrophysics Data System (ADS)
Robins, Peter E.; Lewis, Matt J.; Freer, Jim; Cooper, David M.; Skinner, Christopher J.; Coulthard, Tom J.
2018-07-01
To mitigate against future changes to estuaries such as water quality, catchment and estuary models can be coupled to simulate the transport of harmful pathogenic viruses, pollutants and nutrients from their terrestrial sources, through the estuary and to the coast. To predict future changes to estuaries, daily mean river flow projections are typically used. We show that this approach cannot resolve higher frequency discharge events that have large impacts to estuarine dilution, contamination and recovery for two contrasting estuaries. We therefore characterise sub-daily scale flow variability and propagate this through an estuary model to provide robust estimates of impacts for the future. River flow data (35-year records at 15-min sampling) were used to characterise variabilities in storm hydrograph shapes and simulate the estuarine response. In particular, we modelled a fast-responding catchment-estuary system (Conwy, UK), where the natural variability in hydrograph shapes generated large variability in estuarine circulation that was not captured when using daily-averaged river forcing. In the extreme, the freshwater plume from a 'flash' flood (lasting <12 h) was underestimated by up to 100% - and the response to nutrient loading was underestimated further still. A model of a slower-responding system (Humber, UK), where hydrographs typically last 2-4 days, showed less variability in estuarine circulation and good approximation with daily-averaged flow forcing. Our result has implications for entire system impact modelling; when we determine future changes to estuaries, some systems will need higher resolution future river flow estimates.
NASA Astrophysics Data System (ADS)
Acierto, R. A. E.; Kawasaki, A.
2017-12-01
Perennial flooding due to heavy rainfall events causes strong impacts on the society and economy. With increasing pressures of rapid development and potential for climate change impacts, Myanmar experiences a rapid increase in disaster risk. Heavy rainfall hazard assessment is key on quantifying such disaster risk in both current and future conditions. Downscaling using Regional Climate Models (RCM) such as Weather Research and Forecast model have been used extensively for assessing such heavy rainfall events. However, usage of convective parameterizations can introduce large errors in simulating rainfall. Convective-permitting simulations have been used to deal with this problem by increasing the resolution of RCMs to 4km. This study focuses on the heavy rainfall events during the six-year (2010-2015) wet period season from May to September in Myanmar. The investigation primarily utilizes rain gauge observation for comparing downscaled heavy rainfall events in 4km resolution using ERA-Interim as boundary conditions using 12km-4km one-way nesting method. The study aims to provide basis for production of high-resolution climate projections over Myanmar in order to contribute for flood hazard and risk assessment.
Global mortality from storm surges is decreasing
NASA Astrophysics Data System (ADS)
Bouwer, Laurens M.; Jonkman, Sebastiaan N.
2018-01-01
Changes in society’s vulnerability to natural hazards are important to understand, as they determine current and future risks, and the need to improve protection. Very large impacts including high numbers of fatalities occur due to single storm surge flood events. Here, we report on impacts of global coastal storm surge events since the year 1900, based on a compilation of events and data on loss of life. We find that over the past, more than eight thousand people are killed and 1.5 million people are affected annually by storm surges. The occurrence of very substantial loss of life (>10 000 persons) from single events has however decreased over time. Moreover, there is a consistent decrease in event mortality, measured by the fraction of exposed people that are killed, for all global regions, except South East Asia. Average mortality for storm surges is slightly higher than for river floods, but lower than for flash floods. We also find that for the same coastal surge water level, mortality has decreased over time. This indicates that risk reduction efforts have been successful, but need to be continued with projected climate change, increased rates of sea-level rise and urbanisation in coastal zones.
NASA Astrophysics Data System (ADS)
Li, Donghuan; Zhou, Tianjun; Zou, Liwei; Zhang, Wenxia; Zhang, Lixia
2018-02-01
Extreme high-temperature events have large socioeconomic and human health impacts. East Asia (EA) is a populous region, and it is crucial to assess the changes in extreme high-temperature events in this region under different climate change scenarios. The Community Earth System Model low-warming experiment data were applied to investigate the changes in the mean and extreme high temperatures in EA under 1.5°C and 2°C warming conditions above preindustrial levels. The results show that the magnitude of warming in EA is approximately 0.2°C higher than the global mean. Most populous subregions, including eastern China, the Korean Peninsula, and Japan, will see more intense, more frequent, and longer-lasting extreme temperature events under 1.5°C and 2°C warming. The 0.5°C lower warming will help avoid 35%-46% of the increases in extreme high-temperature events in terms of intensity, frequency, and duration in EA with maximal avoidance values (37%-49%) occurring in Mongolia. Thus, it is beneficial for EA to limit the warming target to 1.5°C rather than 2°C.
A Sulfate Aerosol Trigger for the Sturtian Neoproterozoic Snowball Event
NASA Astrophysics Data System (ADS)
Wordsworth, R. D.; Macdonald, F. A.
2017-12-01
Despite the dominance of the carbon cycle in determining the evolution of Earth's climate in general, certain events defy easy explanation via atmospheric CO2 changes alone. Here we discuss the particular role that transient planetary albedo changes via sulfate aerosol formation can play in major climate transitions. Specifically, we propose that SO2 outgassing associated with the eruption of the Franklin Large Igneous Province (LIP) led to the first Neoproterozoic Snowball event, the Sturtian, 716 Ma. We summarize U/Pb zircon and baddeleyite dating indicating the synchronicity of the Franklin eruptions and the onset of the Sturtian, and paleomagnetic data indicating that the Franklin erupted close to the equator. We then discuss in detail the modeling we have performed of eruption rate, the plume height achieved during basaltic fissure volcanism, the chemistry and microphysics of sulfate aerosol formation, and the dependence of aerosol longwave and shortwave radiative effects on atmospheric loading, particle size and surface albedo. We discuss the critical importance of the latitude of eruption, the tropopause height, and ocean dynamics in determining the strength and sign of aerosol radiative forcing. We finish by comparing the Franklin event with other LIP emplacement events in Earth history and make suggestions for future modeling.
Uncertainties in radiation effect predictions for the natural radiation environments of space.
McNulty, P J; Stassinopoulos, E G
1994-10-01
Future manned missions beyond low earth orbit require accurate predictions of the risk to astronauts and to critical systems from exposure to ionizing radiation. For low-level exposures, the hazards are dominated by rare single-event phenomena where individual cosmic-ray particles or spallation reactions result in potentially catastrophic changes in critical components. Examples might be a biological lesion leading to cancer in an astronaut or a memory upset leading to an undesired rocket firing. The risks of such events appears to depend on the amount of energy deposited within critical sensitive volumes of biological cells and microelectronic components. The critical environmental information needed to estimate the risks posed by the natural space environments, including solar flares, is the number of times more than a threshold amount of energy for an event will be deposited in the critical microvolumes. These predictions are complicated by uncertainties in the natural environments, particularly the composition of flares, and by the effects of shielding. Microdosimetric data for large numbers of orbits are needed to improve the environmental models and to test the transport codes used to predict event rates.
Sea ice, rain-on-snow and tundra reindeer nomadism in Arctic Russia
Kumpula, Timo; Meschtyb, Nina; Laptander, Roza; Macias-Fauria, Marc; Zetterberg, Pentti; Verdonen, Mariana; Kim, Kwang-Yul; Boisvert, Linette N.; Stroeve, Julienne C.; Bartsch, Annett
2016-01-01
Sea ice loss is accelerating in the Barents and Kara Seas (BKS). Assessing potential linkages between sea ice retreat/thinning and the region's ancient and unique social–ecological systems is a pressing task. Tundra nomadism remains a vitally important livelihood for indigenous Nenets and their large reindeer herds. Warming summer air temperatures have been linked to more frequent and sustained summer high-pressure systems over West Siberia, Russia, but not to sea ice retreat. At the same time, autumn/winter rain-on-snow (ROS) events have become more frequent and intense. Here, we review evidence for autumn atmospheric warming and precipitation increases over Arctic coastal lands in proximity to BKS ice loss. Two major ROS events during November 2006 and 2013 led to massive winter reindeer mortality episodes on the Yamal Peninsula. Fieldwork with migratory herders has revealed that the ecological and socio-economic impacts from the catastrophic 2013 event will unfold for years to come. The suggested link between sea ice loss, more frequent and intense ROS events and high reindeer mortality has serious implications for the future of tundra Nenets nomadism. PMID:27852939
Human contribution to the United States extreme heatwaves in the coming decades
NASA Astrophysics Data System (ADS)
Russo, E.; Marchese, A. F.; Immè, G.; Russo, S.
2015-12-01
In the past decades many intense and long heatwaves have hit large areas across the United States producing notable impacts on human mortality,regional economies, and natural ecosystems.Evidence indicates that anthropogenic climate change will alter the magnitude and frequency of these events. Here, by means of the Heat Wave Magnitude Index daily (HWMId) applied to daily maximum temperature from the United States reanalysis dataset (NLDAS-2), we grade the heat waves occurred in the U.S. since 1980, demonstrating that the two worst events within the studied period occurred in the summer of 1980 and 2011. Moreover, by referring to these two events as extremes, we show that model predictions from the North American COordinated Regional climate Downscaling EXperiment (CORDEX) under different IPCC AR5 scenarios, suggest an increased risk of occurrence of extreme heat waves in the near future (2021-2050). In particular, under the most severe scenario, events of the same severity, as the 1980 and 2011 U.S. heat waves, will become more likely in the studied region.
Sea ice, rain-on-snow and tundra reindeer nomadism in Arctic Russia.
Forbes, Bruce C; Kumpula, Timo; Meschtyb, Nina; Laptander, Roza; Macias-Fauria, Marc; Zetterberg, Pentti; Verdonen, Mariana; Skarin, Anna; Kim, Kwang-Yul; Boisvert, Linette N; Stroeve, Julienne C; Bartsch, Annett
2016-11-01
Sea ice loss is accelerating in the Barents and Kara Seas (BKS). Assessing potential linkages between sea ice retreat/thinning and the region's ancient and unique social-ecological systems is a pressing task. Tundra nomadism remains a vitally important livelihood for indigenous Nenets and their large reindeer herds. Warming summer air temperatures have been linked to more frequent and sustained summer high-pressure systems over West Siberia, Russia, but not to sea ice retreat. At the same time, autumn/winter rain-on-snow (ROS) events have become more frequent and intense. Here, we review evidence for autumn atmospheric warming and precipitation increases over Arctic coastal lands in proximity to BKS ice loss. Two major ROS events during November 2006 and 2013 led to massive winter reindeer mortality episodes on the Yamal Peninsula. Fieldwork with migratory herders has revealed that the ecological and socio-economic impacts from the catastrophic 2013 event will unfold for years to come. The suggested link between sea ice loss, more frequent and intense ROS events and high reindeer mortality has serious implications for the future of tundra Nenets nomadism. © 2016 The Authors.
Competitive Science Events: Gender, Interest, Science Self-Efficacy, and Academic Major Choice
NASA Astrophysics Data System (ADS)
Forrester, Jennifer Harris
Understanding present barriers to choosing a STEM major is important for science educators so that we may better prepare and inspire future generations of scientists and engineers. This study examined the relationships between participation in competitive science events, gender, race, science self-efficacy, interest in science, and choosing a STEM discipline as a college major. The participants included 1,488 freshman students at a large southeastern public university. Students completed a survey of pre-college experiences with science events, science interests, and college major, as well as, an assessment of science self-efficacy. A subsample of sixty students (30 STEM; 30 non-STEM majors) were interviewed about their participation and academic major choice. Results showed that science, engineering, and non-STEM disciplines were the most frequently reported academic majors. Significant gender differences were found for science self-efficacy and academic major choice. There were significant race differences for participation in specific types of science competitions. Study participants also reported being motivated to participate in a competitive science event as a result of their teacher or parents' encouragement.
Uncertainties in radiation effect predictions for the natural radiation environments of space
NASA Technical Reports Server (NTRS)
Mcnulty, P. J.; Stassinopoulos, E. G.
1994-01-01
Future manned missions beyond low earth orbit require accurate predictions of the risk to astronauts and to critical systems from exposure to ionizing radiation. For low-level exposures, the hazards are dominated by rare single-event phenomena where individual cosmic-ray particles or spallation reactions result in potentially catastrophic changes in critical components. Examples might be a biological lesion leading to cancer in an astronaut or a memory upset leading to an undesired rocket firing. The risks of such events appears to depend on the amount of energy deposited within critical sensitive volumes of biological cells and microelectronic components. The critical environmental information needed to estimate the risks posed by the natural space environments, including solar flares, is the number of times more than a threshold amount of energy for an event will be deposited in the critical microvolumes. These predictions are complicated by uncertainties in the natural environments, particularly the composition of flares, and by the effects of shielding. Microdosimetric data for large numbers of orbits are needed to improve the environmental models and to test the transport codes used to predict event rates.
Code-division-multiplexed readout of large arrays of TES microcalorimeters
NASA Astrophysics Data System (ADS)
Morgan, K. M.; Alpert, B. K.; Bennett, D. A.; Denison, E. V.; Doriese, W. B.; Fowler, J. W.; Gard, J. D.; Hilton, G. C.; Irwin, K. D.; Joe, Y. I.; O'Neil, G. C.; Reintsema, C. D.; Schmidt, D. R.; Ullom, J. N.; Swetz, D. S.
2016-09-01
Code-division multiplexing (CDM) offers a path to reading out large arrays of transition edge sensor (TES) X-ray microcalorimeters with excellent energy and timing resolution. We demonstrate the readout of X-ray TESs with a 32-channel flux-summed code-division multiplexing circuit based on superconducting quantum interference device (SQUID) amplifiers. The best detector has energy resolution of 2.28 ± 0.12 eV FWHM at 5.9 keV and the array has mean energy resolution of 2.77 ± 0.02 eV over 30 working sensors. The readout channels are sampled sequentially at 160 ns/row, for an effective sampling rate of 5.12 μs/channel. The SQUID amplifiers have a measured flux noise of 0.17 μΦ0/√Hz (non-multiplexed, referred to the first stage SQUID). The multiplexed noise level and signal slew rate are sufficient to allow readout of more than 40 pixels per column, making CDM compatible with requirements outlined for future space missions. Additionally, because the modulated data from the 32 SQUID readout channels provide information on each X-ray event at the row rate, our CDM architecture allows determination of the arrival time of an X-ray event to within 275 ns FWHM with potential benefits in experiments that require detection of near-coincident events.
Challenges in Assessing Seismic Hazard in Intraplate Europe
NASA Astrophysics Data System (ADS)
Hintersberger, E.; Kuebler, S.; Landgraf, A.; Stein, S. A.
2014-12-01
Intraplate regions are often characterized by scattered, clustered and migrating seismicity and the occurrence of low-strain areas next to high-strain ones. Increasing evidence for large paleoearthquakes in such regions together with population growth and development of critical facilities, call for better assessments of earthquake hazards. Existing seismic hazard assessment for intraplate Europe is based on instrumental and historical seismicity of the past 1000 years, as well some active fault data. These observations face important limitations due to the quantity and quality of the available data bases. Even considering the long record of historical events in some populated areas of Europe, this time-span of thousand years likely fails to capture some faults' typical large-event recurrence intervals that are in the order of tens of thousands of years. Paleoseismology helps lengthen the observation window, but only produces point measurements, and preferentially in regions suspected to be seismically active. As a result, the expected maximum magnitudes of future earthquakes are quite uncertain, likely to be underestimated, and earthquakes are likely to occur in unexpected locations. These issues in particular arise in the heavily populated Rhine Graben and Vienna Basin areas, and in considering the hazard to critical facilities like nuclear power plants posed by low-probability events.
Variable H13CO+ Emission in the IM Lup Disk: X-Ray Driven Time-dependent Chemistry?
NASA Astrophysics Data System (ADS)
Cleeves, L. Ilsedore; Bergin, Edwin A.; Öberg, Karin I.; Andrews, Sean; Wilner, David; Loomis, Ryan
2017-07-01
We report the first detection of a substantial brightening event in an isotopologue of a key molecular ion, HCO+, within a protoplanetary disk of a T Tauri star. The H13CO+ J=3-2 rotational transition was observed three times toward IM Lup between 2014 July and 2015 May with the Atacama Large Millimeter/submillimeter Array. The first two observations show similar spectrally integrated line and continuum fluxes, while the third observation shows a doubling in the disk-integrated J=3-2 line flux compared to the continuum, which does not change between the three epochs. We explore models of an X-ray active star irradiating the disk via stellar flares, and find that the optically thin H13CO+ emission variation can potentially be explained via X-ray-driven chemistry temporarily enhancing the HCO+ abundance in the upper layers of the disk atmosphere during large or prolonged flaring events. If the HCO+ enhancement is indeed caused by an X-ray flare, future observations should be able to spatially resolve these events and potentially enable us to watch the chemical aftermath of the high-energy stellar radiation propagating across the face of protoplanetary disks, providing a new pathway to explore ionization physics and chemistry, including electron density, in disks.
ENSO Diversity Changes Due To Global Warming In CESM-LE
NASA Astrophysics Data System (ADS)
Carreric, A.; Dewitte, B.; Guemas, V.
2017-12-01
The El Niño Southern Oscillation (ENSO) is predicted to be modified due to global warming based on the CMIP3 and CMIP5 data bases. In particular the frequency of occurrence of extreme Eastern Pacific El Niño events is to double in the future in response to the increase in green-house gazes. Such forecast relies however on state-of-the-art models that still present mean state biases and do not simulate realistically key features of El Niño events such as its diversity which is related to the existence of at least two types of El Niño events, the Eastern Pacific (EP) El Nino and the Central Pacific (CP) El Niño events. Here we take advantage of the Community Earth System Model (CESM) Large Ensemble (LE) that provides 35 realizations of the climate of the 1920-2100 period with a combination of both natural and anthropogenic climate forcing factors, to explore on the one hand methods to detect changes in ENSO statistics and on the other hand to investigate changes in thermodynamical processes associated to the increase oceanic stratification owed to global warming. The CESM simulates realistically many aspects of the ENSO diversity, in particular the non-linear evolution of the phase space of the first two EOF modes of Sea Surface Temperature (SST) anomalies in the tropical Pacific. Based on indices accounting for the two ENSO regimes used in the literature, we show that, although there is no statistically significant (i.e. confidence level > 95%) changes in the occurrence of El Niño types from the present to the future climate, the estimate of the changes is sensitive to the definition of ENSO indices that is used. CESM simulates in particular an increase occurrence of extreme El Niño events that can vary by 28% from one method to the other. It is shown that the seasonal evolution of EP El Niño events is modified from the present to the future climate, with in particular a larger occurrence of events taking place in Austral summer in the warmer climate compared to events peaking in Austral winter. The ENSO non-linearity is also showed to increase, which is interpreted as resulting from the increased stratification based on the analysis of the control experiment and an estimate of the oceanic mixed-layer heat budget. Implications for understanding processes associated to change in ENSO in a warmer climate are discussed.
Kranenburg, Guido; Spiering, Wilko; de Jong, Pim A; Kappelle, L Jaap; de Borst, Gert Jan; Cramer, Maarten J; Visseren, Frank L J; Aboyans, Victor; Westerink, Jan
2017-10-01
Inter-arm systolic blood pressure difference (SBPD) is an easily obtained patient characteristic which relates to vascular disease. We aimed to identify determinants of large inter-arm SBPD and to investigate the relation between inter-arm SBPD and vascular events in patients with and without manifest vascular disease. In a cohort of 7344 patients with manifest vascular disease or vascular risk factors alone enrolled in the Second Manifestations of ARTerial disease (SMART) study, single bilateral non-simultaneous blood pressure measurements were performed. Logistic and Cox regression was used to identify determinants of large inter-arm SBPD (≥15mmHg) and to investigate the relation between inter-arm SBPD and vascular events (composite of non-fatal myocardial infarction, stroke, and vascular mortality) and all-cause mortality. In all patients the median inter-arm SBPD was 7mmHg (IQR 3-11) and 1182 (16%) patients had inter-arm SBPD ≥15mmHg. Higher age, higher systolic blood pressure, diabetes mellitus, peripheral artery disease, carotid artery stenosis, higher carotid intima-media thickness, and lower ankle-brachial indices were related to large inter-arm SBPD (≥15mmHg). Each 5mmHg increase in inter-arm SBPD was related to a 12% higher risk of vascular events in patients without manifest vascular disease (HR 1.12; 95% CI 1.00-1.27), whereas no relation was apparent in patients with manifest vascular disease (HR 0.98; 95% CI 0.93-1.04, interaction p-value 0.036). Inter-arm SBPD was not related to all-cause mortality (HR 1.05; 95% CI 0.93-1.19). Inter-arm SBPD relates to a higher risk of vascular events in patients without manifest vascular disease, whereas this relation is not apparent in patients with manifest vascular disease. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bourham, Mohamed A.; Gilligan, John G.
Safety considerations in large future fusion reactors like ITER are important before licensing the reactor. Several scenarios are considered hazardous, which include safety of plasma-facing components during hard disruptions, high heat fluxes and thermal stresses during normal operation, accidental energy release, and aerosol formation and transport. Disruption events, in large tokamaks like ITER, are expected to produce local heat fluxes on plasma-facing components, which may exceed 100 GW/m{sup 2} over a period of about 0.1 ms. As a result, the surface temperature dramatically increases, which results in surface melting and vaporization, and produces thermal stresses and surface erosion. Plasma-facing componentsmore » safety issues extends to cover a wide range of possible scenarios, including disruption severity and the impact of plasma-facing components on disruption parameters, accidental energy release and short/long term LOCA's, and formation of airborne particles by convective current transport during a LOVA (water/air ingress disruption) accident scenario. Study, and evaluation of, disruption-induced aerosol generation and mobilization is essential to characterize database on particulate formation and distribution for large future fusion tokamak reactor like ITER. In order to provide database relevant to ITER, the SIRENS electrothermal plasma facility at NCSU has been modified to closely simulate heat fluxes expected in ITER.« less
NASA Astrophysics Data System (ADS)
Dai, Aiguo; Rasmussen, Roy M.; Liu, Changhai; Ikeda, Kyoko; Prein, Andreas F.
2017-08-01
Climate models project increasing precipitation intensity but decreasing frequency as greenhouse gases increase. However, the exact mechanism for the frequency decrease remains unclear. Here we investigate this by analyzing hourly data from regional climate change simulations with 4 km grid spacing covering most of North America using the Weather Research and Forecasting model. The model was forced with present and future boundary conditions, with the latter being derived by adding the CMIP5 19-model ensemble mean changes to the ERA-interim reanalysis. The model reproduces well the observed seasonal and spatial variations in precipitation frequency and histograms, and the dry interval between rain events over the contiguous US. Results show that overall precipitation frequency indeed decreases during the warm season mainly due to fewer light-moderate precipitation (0.1 < P ≤ 2.0 mm/h) events, while heavy (2 < P ≤ 10 mm/h) to very heavy precipitation (P > 10 mm/h) events increase. Dry spells become longer and more frequent, together with a reduction in time-mean relative humidity (RH) in the lower troposphere during the warm season. The increased dry hours and decreased RH lead to a reduction in overall precipitation frequency and also for light-moderate precipitation events, while water vapor-induced increases in precipitation intensity and the positive latent heating feedback in intense storms may be responsible for the large increase in intense precipitation. The size of intense storms increases while their number decreases in the future climate, which helps explain the increase in local frequency of heavy precipitation. The results generally support a new hypothesis for future warm-season precipitation: each rainstorm removes ≥7% more moisture from the air per 1 K local warming, and surface evaporation and moisture advection take slightly longer than currently to replenish the depleted moisture before the next storm forms, leading to longer dry spells and a reduction in precipitation frequency, as well as decreases in time-mean RH and vertical motion.
Automatic Optimism: The Affective Basis of Judgments about the Likelihood of Future Events
ERIC Educational Resources Information Center
Lench, Heather C.
2009-01-01
People generally judge that the future will be consistent with their desires, but the reason for this desirability bias is unclear. This investigation examined whether affective reactions associated with future events are the mechanism through which desires influence likelihood judgments. In 4 studies, affective reactions were manipulated for…
Brown, Adam D; Addis, Donna Rose; Romano, Tracy A; Marmar, Charles R; Bryant, Richard A; Hirst, William; Schacter, Daniel L
2014-01-01
Individuals with post-traumatic stress disorder (PTSD) tend to retrieve autobiographical memories with less episodic specificity, referred to as overgeneralised autobiographical memory. In line with evidence that autobiographical memory overlaps with one's capacity to imagine the future, recent work has also shown that individuals with PTSD also imagine themselves in the future with less episodic specificity. To date most studies quantify episodic specificity by the presence of a distinct event. However, this method does not distinguish between the numbers of internal (episodic) and external (semantic) details, which can provide additional insights into remembering the past and imagining the future. This study employed the Autobiographical Interview (AI) coding scheme to the autobiographical memory and imagined future event narratives generated by combat veterans with and without PTSD. Responses were coded for the number of internal and external details. Compared to combat veterans without PTSD, those with PTSD generated more external than internal details when recalling past or imagining future events, and fewer internal details were associated with greater symptom severity. The potential mechanisms underlying these bidirectional deficits and clinical implications are discussed.
The role of magical thinking in forecasting the future.
Stavrova, Olga; Meckel, Andrea
2017-02-01
This article explores the role of magical thinking in the subjective probabilities of future chance events. In five experiments, we show that individuals tend to predict a more lucky future (reflected in probability judgements of lucky and unfortunate chance events) for someone who happened to purchase a product associated with a highly moral person than for someone who unknowingly purchased a product associated with a highly immoral person. In the former case, positive events were considered more likely than negative events, whereas in the latter case, the difference in the likelihood judgement of positive and negative events disappeared or even reversed. Our results indicate that this effect is unlikely to be driven by participants' immanent justice beliefs, the availability heuristic, or experimenter demand. Finally, we show that individuals rely more heavily on magical thinking when their need for control is threatened, thus suggesting that lack of control represents a factor in driving magical thinking in making predictions about the future. © 2016 The British Psychological Society.
Data Mining of the Public Version of the FDA Adverse Event Reporting System
Sakaeda, Toshiyuki; Tamon, Akiko; Kadoyama, Kaori; Okuno, Yasushi
2013-01-01
The US Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS, formerly AERS) is a database that contains information on adverse event and medication error reports submitted to the FDA. Besides those from manufacturers, reports can be submitted from health care professionals and the public. The original system was started in 1969, but since the last major revision in 1997, reporting has markedly increased. Data mining algorithms have been developed for the quantitative detection of signals from such a large database, where a signal means a statistical association between a drug and an adverse event or a drug-associated adverse event, including the proportional reporting ratio (PRR), the reporting odds ratio (ROR), the information component (IC), and the empirical Bayes geometric mean (EBGM). A survey of our previous reports suggested that the ROR provided the highest number of signals, and the EBGM the lowest. Additionally, an analysis of warfarin-, aspirin- and clopidogrel-associated adverse events suggested that all EBGM-based signals were included in the PRR-based signals, and also in the IC- or ROR-based ones, and that the PRR- and IC-based signals were in the ROR-based ones. In this article, the latest information on this area is summarized for future pharmacoepidemiological studies and/or pharmacovigilance analyses. PMID:23794943
When does the future begin? Time metrics matter, connecting present and future selves.
Lewis, Neil A; Oyserman, Daphna
2015-06-01
People assume they should attend to the present; their future self can handle the future. This seemingly plausible rule of thumb can lead people astray, in part because some future events require current action. In order for the future to energize and motivate current action, it must feel imminent. To create this sense of imminence, we manipulated time metric--the units (e.g., days, years) in which time is considered. People interpret accessible time metrics in two ways: If preparation for the future is under way (Studies 1 and 2), people interpret metrics as implying when a future event will occur. If preparation is not under way (Studies 3-5), they interpret metrics as implying when preparation should start (e.g., planning to start saving 4 times sooner for a retirement in 10,950 days instead of 30 years). Time metrics mattered not because they changed how distal or important future events felt (Study 6), but because they changed how connected and congruent their current and future selves felt (Study 7). © The Author(s) 2015.
Detecting TLEs using a massive all-sky camera network
NASA Astrophysics Data System (ADS)
Garnung, M. B.; Celestin, S. J.
2017-12-01
Transient Luminous Events (TLEs) are large-scale optical events occurring in the upper-atmosphere from the top of thunderclouds up to the ionosphere. TLEs may have important effects in local, regional, and global scales, and many features of TLEs are not fully understood yet [e.g, Pasko, JGR, 115, A00E35, 2010]. Moreover, meteor events have been suggested to play a role in sprite initiation by producing ionospheric irregularities [e.g, Qin et al., Nat. Commun., 5, 3740, 2014]. The French Fireball Recovery and InterPlanetary Observation Network (FRIPON, https://www.fripon.org/?lang=en), is a national all-sky 30 fps camera network designed to continuously detect meteor events. We seek to make use of this network to observe TLEs over unprecedented space and time scales ( 1000×1000 km with continuous acquisition). To do so, we had to significantly modify FRIPON's triggering software Freeture (https://github.com/fripon/freeture) while leaving the meteor detection capability uncompromised. FRIPON has a great potential in the study of TLEs. Not only could it produce new results about spatial and time distributions of TLEs over a very large area, it could also be used to validate and complement observations from future space missions such as ASIM (ESA) and TARANIS (CNES). In this work, we present an original image processing algorithm that can detect sprites using all-sky cameras while strongly limiting the frequency of false positives and our ongoing work on sprite triangulation using the FRIPON network.
Return periods of losses associated with European windstorm series in a changing climate
NASA Astrophysics Data System (ADS)
Karremann, Melanie K.; Pinto, Joaquim G.; Reyers, Mark; Klawa, Matthias
2015-04-01
During the last decades, several windstorm series hit Europe leading to large aggregated losses. Such storm series are examples of serial clustering of extreme cyclones, presenting a considerable risk for the insurance industry. Clustering of events and return periods of storm series affecting Europe are quantified based on potential losses using empirical models. Moreover, possible future changes of clustering and return periods of European storm series with high potential losses are quantified. Historical storm series are identified using 40 winters of NCEP reanalysis data (1973/1974 - 2012/2013). Time series of top events (1, 2 or 5 year return levels) are used to assess return periods of storm series both empirically and theoretically. Return periods of historical storm series are estimated based on the Poisson and the negative binomial distributions. Additionally, 800 winters of ECHAM5/MPI-OM1 general circulation model simulations for present (SRES scenario 20C: years 1960- 2000) and future (SRES scenario A1B: years 2060- 2100) climate conditions are investigated. Clustering is identified for most countries in Europe, and estimated return periods are similar for reanalysis and present day simulations. Future changes of return periods are estimated for fixed return levels and fixed loss index thresholds. For the former, shorter return periods are found for Western Europe, but changes are small and spatially heterogeneous. For the latter, which combines the effects of clustering and event ranking shifts, shorter return periods are found everywhere except for Mediterranean countries. These changes are generally not statistically significant between recent and future climate. However, the return periods for the fixed loss index approach are mostly beyond the range of preindustrial natural climate variability. This is not true for fixed return levels. The quantification of losses associated with storm series permits a more adequate windstorm risk assessment in a changing climate.
Projections of Flood Risk using Credible Climate Signals in the Ohio River Basin
NASA Astrophysics Data System (ADS)
Schlef, K.; Robertson, A. W.; Brown, C.
2017-12-01
Estimating future hydrologic flood risk under non-stationary climate is a key challenge to the design of long-term water resources infrastructure and flood management strategies. In this work, we demonstrate how projections of large-scale climate patterns can be credibly used to create projections of long-term flood risk. Our study area is the northwest region of the Ohio River Basin in the United States Midwest. In the region, three major teleconnections have been previously demonstrated to affect synoptic patterns that influence extreme precipitation and streamflow: the El Nino Southern Oscillation, the Pacific North American pattern, and the Pacific Decadal Oscillation. These teleconnections are strongest during the winter season (January-March), which also experiences the greatest number of peak flow events. For this reason, flood events are defined as the maximum daily streamflow to occur in the winter season. For each gage in the region, the location parameter of a log Pearson type 3 distribution is conditioned on the first principal component of the three teleconnections to create a statistical model of flood events. Future projections of flood risk are created by forcing the statistical model with projections of the teleconnections from general circulation models selected for skill. We compare the results of our method to the results of two other methods: the traditional model chain (i.e., general circulation model projections to downscaling method to hydrologic model to flood frequency analysis) and that of using the historic trend. We also discuss the potential for developing credible projections of flood events for the continental United States.
Flow-mediated dilation and cardiovascular event prediction: does nitric oxide matter?
Green, Daniel J; Jones, Helen; Thijssen, Dick; Cable, N T; Atkinson, Greg
2011-03-01
Endothelial dysfunction is an early atherosclerotic event that precedes clinical symptoms and may also render established plaque vulnerable to rupture. Noninvasive assessment of endothelial function is commonly undertaken using the flow-mediated dilation (FMD) technique. Some studies indicate that FMD possesses independent prognostic value to predict future cardiovascular events that may exceed that associated with traditional risk factor assessment. It has been assumed that this association is related to the proposal that FMD provides an index of endothelium-derived nitric oxide (NO) function. Interestingly, placement of the occlusion cuff during the FMD procedure alters the shear stress stimulus and NO dependency of the resulting dilation: cuff placement distal to the imaged artery leads to a largely NO-mediated response, whereas proximal cuff placement leads to dilation which is less NO dependent. We used this physiological observation and the knowledge that prognostic studies have used both approaches to examine whether the prognostic capacity of FMD is related to its role as a putative index of NO function. In a meta-analysis of 14 studies (>8300 subjects), we found that FMD derived using a proximal cuff was at least as predictive as that derived using distal cuff placement, despite the latter being more NO dependent. This suggests that, whilst FMD is strongly predictive of future cardiovascular events, this may not solely be related to its assumed NO dependency. Although this finding should be confirmed with more and larger studies, we suggest that any direct measure of vascular (endothelial) function may provide independent prognostic information in humans.
Nowack, Kati; Milfont, Taciano L; van der Meer, Elke
2013-02-01
Mental representations of events contain many components such as typical agents, instruments, objects as well as a temporal dimension that is directed towards the future. While the role of temporal orientation (chronological, reverse) in event knowledge has been demonstrated by numerous studies, little is known about the influence of time perspective (present or future) as source of individual differences affecting event knowledge. The present study combined behavioral data with task-evoked pupil dilation to examine the impact of time perspective on cognitive resource allocation. In a relatedness judgment task, everyday events like raining were paired with an object feature like wet. Chronological items were processed more easily than reverse items regardless of time perspective. When more automatic processes were applied, greater scores on future time perspective were associated with lower error rates for chronological items. This suggests that a match between a strong focus on future consequences and items with a temporal orientation directed toward the future serves to enhance responding accuracy. Indexed by pupillary data, future-oriented participants invested more cognitive resources while outperforming present-oriented participants in reaction times across all conditions. This result was supported by a principal component analysis on the pupil data, which demonstrated the same impact of time perspective on the factor associated with more general aspects of cognitive effort. These findings suggest that future time perspective may be linked to a more general cognitive performance characteristic that improves overall task performance. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Smith, M. D.; Knapp, A.; Hoover, D. L.; Avolio, M. L.; Felton, A. J.; Slette, I.; Wilcox, K.
2017-12-01
Climate extremes, such as drought, are increasing in frequency and intensity, and the ecological consequences of these extreme events can be substantial and widespread. Yet, little is known about the factors that determine recovery of ecosystem function post-drought. Such knowledge is particularly important because post-drought recovery periods can be protracted depending on drought legacy effects (e.g., loss key plant populations, altered community structure and/or biogeochemical processes). These drought legacies may alter ecosystem function for many years post-drought and may impact future sensitivity to climate extremes. With forecasts of more frequent drought, there is an imperative to understand whether and how post-drought legacies will affect ecosystem response to future drought events. To address this knowledge gap, we experimentally imposed over an eight year period two extreme growing season droughts, each two years in duration followed by a two-year recovery period, in a central US grassland. We found that aboveground net primary productivity (ANPP) declined dramatically with the first drought and was accompanied by a large shift in plant species composition (loss of C3 forb and increase in C4 grasses). This drought legacy - shift in plant composition - persisted two years post-drought. Yet, despite this legacy, ANPP recovered fully. However, we expected that previously-droughted grassland would be less sensitive to a second extreme drought due to the shift in plant composition. Contrary to this expectation, previously droughted grassland experienced a greater loss in ANPP than grassland that had not experienced drought. Furthermore, previously droughted grassland did not fully recover after the second drought. Thus, the legacy of drought - a shift in plant community composition - increased ecosystem sensitivity to a future extreme drought event.
Aerosol impacts on regional trends in atmospheric stagnation
NASA Astrophysics Data System (ADS)
Mascioli, N. R.; Fiore, A. M.; Previdi, M. J.
2017-12-01
Extreme pollution events pose a significant threat to human health and are a leading cause of premature mortality worldwide. While emissions of atmospheric pollutants and their precursors are projected to decrease in the future due to air quality legislation, future climate change may affect the underlying meteorological conditions that contribute to extreme pollution events. Stagnation events, characterized by weak winds and an absence of precipitation, contribute to extreme pollution by halting the removal of pollutants via advection and wet deposition. Here, we use a global climate model (GFDL-CM3) to show that regional stagnation trends over the historical period (1860-2005) are driven by changes in anthropogenic aerosol emissions, rather than rising greenhouse gases. In the northeastern and central United States, aerosol-induced changes in surface and upper level winds have produced significant decreases in the number of stagnant summer days, while decreasing precipitation in the southeast US has increased the number of stagnant summer days. Significant drying over eastern China in response to aerosol forcing contributed to increased stagnation. Additionally, this region was found to be particularly sensitive to changes in local emissions, indicating that improving air quality will also lessen stagnation. In Europe, we find a dipole pattern wherein stagnation decreases over southern Europe and increases over northern Europe in response to global increases in aerosol emissions. We hypothesize that this is due to changes in the large-scale circulation patterns associated with a poleward shift of the North Atlantic storm track. We find that in the future, the combination of declining aerosol emissions and the continued rise of greenhouse gas emissions will lead to a reversal of the historical stagnation trends.
ERIC Educational Resources Information Center
Botzung, Anne; Denkova, Ekaterina; Manning, Lilianne
2008-01-01
Functional MRI was used in healthy subjects to investigate the existence of common neural structures supporting re-experiencing the past and pre-experiencing the future. Past and future events evocation appears to involve highly similar patterns of brain activation including, in particular, the medial prefrontal cortex, posterior regions and the…
The Relationship of Work Values to Satisfaction with Retirement and Future Time Perspective.
ERIC Educational Resources Information Center
Halpern, Doryan
This study tested two hypotheses: (1) the importance attached to the intrinsic aspects of work is negatively related to retirement satisfaction, maximum extension of future time perspective (FTP), and the number of events anticipated in the future; (2) retirement satisfaction is positively related to FTP maximum length and events anticipated.…
NASA Astrophysics Data System (ADS)
Thornton, James; Desarthe, Jérémy; Naulin, Jean-Philippe; Garnier, Emmanuel; Liu, Ye; Moncoulon, David
2015-04-01
On the islands of the French Antilles, the period for which systematic meteorological measurements and historic event loss data are available is short relative to the recurrence intervals of very intense, damaging hurricanes. Additionally, the value of property at risk changes through time. As such, the recent past can only provide limited insight into potential losses from extreme storms in coming years. Here we present some research that seeks to overcome, as far as is possible, the limitations of record length in assessing the possible impacts of near-future hurricanes on insured properties. First, using the archives of the French overseas departments (which included administrative and weather reports, inventories of damage to houses, crops and trees, as well as some meteorological observations after 1950) we reconstructed the spatial patterns of hazard intensity associated with three historical events. They are: i) the 1928 Hurricane (Guadeloupe), ii) Hurricane Betsy (1956, Guadeloupe) and iii) Hurricane David (1979, Martinique). These events were selected because all were damaging, and the information available on each is rich. Then, using a recently developed catastrophe model for hurricanes affecting Guadeloupe, Martinique, Saint-Barthélemy and Saint-Martin, we simulated the hypothetical losses to insured properties that the reconstructed events might cause if they were to reoccur today. The model simulated damage due to wind, rainfall-induced flooding and storm surge flooding. These 'what if' scenarios provided an initial indication of the potential present-day exposure of the insurance industry to intense hurricanes. However, we acknowledge that historical events are unlikely to repeat exactly. We therefore extended the study by producing a stochastic event catalogue containing a large number of synthetic but plausible hurricane events. Instrumental data were used as a basis for event generation, but importantly the statistical methods we applied permit the extrapolation of simulated events beyond the observed intensity ranges. The event catalogue enabled the model to be run in a probabilistic mode; the losses for each synthetic event in a 10,000-year period were simulated. In this way, the aleatory uncertainty associated with future hazard outcomes was addressed. In conclusion, we consider how the reconstructed event hazard intensities and losses compare with the distribution of 32,320 events in the stochastic event set. Further comparisons are made with a longer chronology of tropical cyclones in the Antilles (going back to the 17th Century) prepared solely from documentary sources. Overall, the novelty of this work lies in the integration of data sources that are frequently overlooked in catastrophe model development and evaluation.
Public perceptions of climate change and extreme weather events
NASA Astrophysics Data System (ADS)
Bruine de Bruin, W.; Dessai, S.; Morgan, G.; Taylor, A.; Wong-Parodi, G.
2013-12-01
Climate experts face a serious communication challenge. Public debate about climate change continues, even though at the same time people seem to complain about extreme weather events becoming increasingly common. As compared to the abstract concept of ';climate change,' (changes in) extreme weather events are indeed easier to perceive, more vivid, and personally relevant. Public perception research in different countries has suggested that people commonly expect that climate change will lead to increases in temperature, and that unseasonably warm weather is likely to be interpreted as evidence of climate change. However, relatively little is known about whether public concerns about climate change may also be driven by changes in other types of extreme weather events, such as exceptional amounts of precipitation or flooding. We therefore examined how perceptions of and personal experiences with changes in these specific weather events are related to public concerns about climate change. In this presentation, we will discuss findings from two large public perception surveys conducted in flood-prone Pittsburgh, Pennsylvania (US) and with a national sample in the UK, where extreme flooding has recently occurred across the country. Participants completed questions about their perceptions of and experiences with specific extreme weather events, and their beliefs about climate change. We then conducted linear regressions to predict individual differences in climate-change beliefs, using perceptions of and experiences with specific extreme weather events as predictors, while controlling for demographic characteristics. The US study found that people (a) perceive flood chances to be increasing over the decades, (b) believe climate change to play a role in increases in future flood chances, and (c) would interpret future increases in flooding as evidence for climate change. The UK study found that (a) UK residents are more likely to perceive increases in ';wet' events such as flooding and heavy rainfall than in ';hot' events such as heatwaves, (b) perceptions of these ';wet' weather events are more strongly associated with climate-change beliefs than were extremely ';hot' weather events, and (c) personal experiences with the negative consequences of specific extreme weather events are associated with stronger climate-change beliefs. Hence, which specific weather events people interpret as evidence of climate change may depend on their personal perceptions and experiences - which may not involve the temperature increases that are commonly the focus of climate-change communications. Overall, these findings suggest that climate experts should consider focusing their public communications on extreme weather events that are relevant to their intended audience. We will discuss strategies for designing and evaluating communications about climate change and adaptation.
How Unusual were Hurricane Harvey's Rains?
NASA Astrophysics Data System (ADS)
Emanuel, K.
2017-12-01
We apply an advanced technique for hurricane risk assessment to evaluate the probability of hurricane rainfall of Harvey's magnitude. The technique embeds a detailed computational hurricane model in the large-scale conditions represented by climate reanalyses and by climate models. We simulate 3700 hurricane events affecting the state of Texas, from each of three climate reanalyses spanning the period 1980-2016, and 2000 events from each of six climate models for each of two periods: the period 1981-2000 from historical simulations, and the period 2081-2100 from future simulations under Representative Concentration Pathway (RCP) 8.5. On the basis of these simulations, we estimate that hurricane rain of Harvey's magnitude in the state of Texas would have had an annual probability of 0.01 in the late twentieth century, and will have an annual probability of 0.18 by the end of this century, with remarkably small scatter among the six climate models downscaled. If the event frequency is changing linearly over time, this would yield an annual probability of 0.06 in 2017.
A review of severe thunderstorms in Australia
NASA Astrophysics Data System (ADS)
Allen, John T.; Allen, Edwina R.
2016-09-01
Severe thunderstorms are a common occurrence in Australia and have been documented since the first European settlement in 1788. These events are characterized by large damaging hail in excess of 2 cm, convective wind gusts greater than 90 km h- 1 and tornadoes, and contribute a quarter of all natural hazard-related losses in the country. This impact has lead to a growing body of research and insight into these events. In this article, the state of knowledge regarding their incidence, distribution, and the resulting hail, tornado, convective wind, and lightning risk will be reviewed. Applying this assessment of knowledge, the implications for forecasting, the warning process, and how these events may respond to climate change and variability will also be discussed. Based on this review, ongoing work in the field is outlined, and several potential avenues for future research and exploration are suggested. Most notably, the need for improved observational or proxy climatologies, the forecasting guidelines for tornadoes, and the need for a greater understanding of how severe thunderstorms respond to climate variability are highlighted.
Looking forward: the effects of photographs on the qualities of future thinking.
Bays, Rebecca B; Wellen, Brianna C M; Greenberg, Katherine S
2018-04-01
Future episodic thinking relies on the reconstruction of remembered experiences. Photographs provide one means of remembering, acting as a "cognitive springboard" for generating related memory qualities. We wondered whether photographs would also invite embellishment of future thought qualities, particularly in the presence (or absence) of associated memories. In two studies participants generated future events in familiar (associated memories) and novel (no associated memories) locations. Half of the participants viewed scene location photographs during event generation. All participants then imagined the events for one minute and completed a self-report measure of content qualities. Results of the current set of studies suggested that for novel locations, no differences in qualities emerged; however, for familiar locations, photographs did not enhance qualities and, in some cases, actually constrained perceptual (Experiments 1 and 2) and sensory (Experiment 1) detail ratings of future thoughts. Thus, photographs did not invite embellishment of future thought details.
Episodic Future Thinking in Generalized Anxiety Disorder
Wu, Jade Q.; Szpunar, Karl K.; Godovich, Sheina A.; Schacter, Daniel L.; Hofmann, Stefan G.
2015-01-01
Research on future-oriented cognition in generalized anxiety disorder (GAD) has primarily focused on worry, while less is known about the role of episodic future thinking (EFT), an imagery-based cognitive process. To characterize EFT in this disorder, we used the experimental recombination procedure, in which 21 GAD and 19 healthy participants simulated positive, neutral and negative novel future events either once or repeatedly, and rated their phenomenological experience of EFT. Results showed that healthy controls spontaneously generated more detailed EFT over repeated simulations. Both groups found EFT easier to generate after repeated simulations, except when GAD participants simulated positive events. They also perceived higher plausibility of negative—not positive or neutral—future events than did controls. These results demonstrate a negativity bias in GAD individuals’ episodic future cognition, and suggest their relative deficit in generating vivid EFT. We discuss implications for the theory and treatment of GAD. PMID:26398003
NASA Astrophysics Data System (ADS)
Simila, G.; Lafromboise, E.; McNally, K.; Quintereo, R.; Segura, J.
2007-12-01
The seismic strong motion array project (SSMAP) for the Nicoya Peninsula in northwestern Costa Rica is composed of 10 - 13 sites including Geotech A900/A800 accelerographs (three-component), Ref-Teks (three- component velocity), and Kinemetric Episensors. The main objectives of the array are to: 1) record and locate strong subduction zone mainshocks [and foreshocks, "early aftershocks", and preshocks] in Nicoya Peninsula, at the entrance of the Nicoya Gulf, and in the Papagayo Gulf regions of Costa Rica, and 2) record and locate any moderate to strong upper plate earthquakes triggered by a large subduction zone earthquake in the above regions. Our digital accelerograph array has been deployed as part of our ongoing research on large earthquakes in conjunction with the Earthquake and Volcano Observatory (OVSICORI) at the Universidad Nacional in Costa Rica. The country wide seismographic network has been operating continuously since the 1980's, with the first earthquake bulletin published more than 20 years ago, in 1984. The recording of seismicity and strong motion data for large earthquakes along the Middle America Trench (MAT) has been a major research project priority over these years, and this network spans nearly half the time of a "repeat cycle" (~ 50 years) for large (Ms ~ 7.5- 7.7) earthquakes beneath the Nicoya Peninsula, with the last event in 1950. Our long time co- collaborators include the seismology group OVSICORI, with coordination for this project by Dr. Ronnie Quintero and Mr. Juan Segura. The major goal of our project is to contribute unique scientific information pertaining to a large subduction zone earthquake and its related seismic activity when the next large earthquake occurs in Nicoya. We are now collecting a database of strong motion records for moderate sized events to document this last stage prior to the next large earthquake. A recent event (08/18/06; M=4.3) located 20 km northwest of Samara was recorded by two stations (Playa Carrillo and Nicoya) at distances of 25-30 km with maximum acceleration of 0.2g.
A Naive Bayes machine learning approach to risk prediction using censored, time-to-event data.
Wolfson, Julian; Bandyopadhyay, Sunayan; Elidrisi, Mohamed; Vazquez-Benitez, Gabriela; Vock, David M; Musgrove, Donald; Adomavicius, Gediminas; Johnson, Paul E; O'Connor, Patrick J
2015-09-20
Predicting an individual's risk of experiencing a future clinical outcome is a statistical task with important consequences for both practicing clinicians and public health experts. Modern observational databases such as electronic health records provide an alternative to the longitudinal cohort studies traditionally used to construct risk models, bringing with them both opportunities and challenges. Large sample sizes and detailed covariate histories enable the use of sophisticated machine learning techniques to uncover complex associations and interactions, but observational databases are often 'messy', with high levels of missing data and incomplete patient follow-up. In this paper, we propose an adaptation of the well-known Naive Bayes machine learning approach to time-to-event outcomes subject to censoring. We compare the predictive performance of our method with the Cox proportional hazards model which is commonly used for risk prediction in healthcare populations, and illustrate its application to prediction of cardiovascular risk using an electronic health record dataset from a large Midwest integrated healthcare system. Copyright © 2015 John Wiley & Sons, Ltd.
Future summer mega-heatwave and record-breaking temperatures in a warmer France climate
NASA Astrophysics Data System (ADS)
Bador, Margot; Terray, Laurent; Boé, Julien; Somot, Samuel; Alias, Antoinette; Gibelin, Anne-Laure; Dubuisson, Brigitte
2017-07-01
This study focuses on future very hot summers associated with severe heatwaves and record-breaking temperatures in France. Daily temperature observations and a pair of historical and scenario (greenhouse gas radiative concentration pathway 8.5) simulations with the high-resolution (∼12.5 km) ALADIN regional climate model provide a robust framework to examine the spatial distribution of these extreme events and their 21st century evolution. Five regions are identified with an extreme event spatial clustering algorithm applied to observed temperatures. They are used to diagnose the 21st century heatwave spatial patterns. In the 2070s, we find a simulated mega-heatwave as severe as the 2003 observed heatwave relative to its contemporaneous climate. A 20-member initial condition ensemble is used to assess the sensitivity of this future heatwave to the internal variability in the regional climate model and to pre-existing land surface conditions. Even in a much warmer and drier climate in France, late spring dry land conditions may lead to a significant amplification of summer extreme temperatures and heatwave intensity through limitations in evapotranspiration. By 2100, the increase in summer temperature maxima exhibits a range from 6 °C to almost 13 °C in the five regions in France, relative to historical maxima. These projections are comparable with the estimates given by a large number of global climate models.
Adaptive constructive processes and the future of memory.
Schacter, Daniel L
2012-11-01
Memory serves critical functions in everyday life but is also prone to error. This article examines adaptive constructive processes, which play a functional role in memory and cognition but can also produce distortions, errors, and illusions. The article describes several types of memory errors that are produced by adaptive constructive processes and focuses in particular on the process of imagining or simulating events that might occur in one's personal future. Simulating future events relies on many of the same cognitive and neural processes as remembering past events, which may help to explain why imagination and memory can be easily confused. The article considers both pitfalls and adaptive aspects of future event simulation in the context of research on planning, prediction, problem solving, mind-wandering, prospective and retrospective memory, coping and positivity bias, and the interconnected set of brain regions known as the default network. PsycINFO Database Record (c) 2012 APA, all rights reserved.
A Comparison of Preschoolers' Memory, Knowledge, and Anticipation of Events
ERIC Educational Resources Information Center
Quon, Elizabeth; Atance, Cristina M.
2010-01-01
This study examined the development of the episodic and semantic memory systems, with an emphasis on the emergence of the two aspects of the former: episodic memory (the ability to re-experience a past event) and episodic future thinking (the ability to pre-experience a future event). Three-, 4-, and 5-year olds were randomly assigned to one of…
ERIC Educational Resources Information Center
Robin, Jessica; Moscovitch, Morris
2014-01-01
Several recent studies have explored the effect of contextual familiarity on remembered and imagined events. The aim of this study was to examine the extent of this effect by comparing the effect of cuing spatial memories, episodic memories, and imagined future events with spatial contextual cues of varying levels of familiarity. We used…
Getting What You Expect? Future Self-Views Predict the Valence of Life Events
ERIC Educational Resources Information Center
Voss, Peggy; Kornadt, Anna E.; Rothermund, Klaus
2017-01-01
Views on aging have been shown to predict the occurrence of events related to physical health in previous studies. Extending these findings, we investigated the relation between aging-related future self-views and life events in a longitudinal study across a range of different life domains. Participants (N = 593, age range 30-80 years at…
The UT 7/8 February 2013 Sila-Nunam Mutual Event and Future Predictions
NASA Technical Reports Server (NTRS)
Benecchi, S. D.; Noll, K. S.; Thirouin, A.; Ryan, E.; Grundy, W. M.; Verbiscer, A.; Doressoundiram, A.; Hestroffer, D.; Beaton, R.; Rabinowitz, D.;
2013-01-01
A superior mutual event of the Kuiper Belt binary system (79360) Sila-Nunam was observed over 15.47 h on UT 7/8 February 2013 by a coordinated effort at four different telescope facilities; it started approximately 1.5 h earlier than anticipated, the duration was approximately 9.5 h (about 10% longer than predicted), and was slightly less deep than predicted. It is the first full event observed for a comparably sized binary Kuiper Belt object. We provide predictions for future events refined by this and other partial mutual event observations obtained since the mutual event season began.
NASA Astrophysics Data System (ADS)
Leslie, S.; Mann, P.
2015-12-01
The Colombian Caribbean margin provides an ideal setting for the formation of large mass transport deposits (MTDs): 1) the Caribbean Plate is slowly subducting at rates of 20 mm/yr with infrequent large thrust earthquakes and a complete lack of subduction events in the 400-year-long historical record; 2) the margin is a broad zone of active faults including a ~50 km-wide accretionary prism and strike-slip faults landward of the prism; 3) the active margin is draped by the Magdalena delta and submarine fan fed by the Magdalena River, the 26th largest in the world; and 4) the margin is over-steepened to slopes of up to 7° from the combination of tectonic activity and rapid rates of deltaic progradation. Using seismic data we have identified three late Miocene-Pliocene MTDs, the largest of which is between 4500 and 6000 km3, comparable in size to the well-studied Storegga slide of Norway. The tsunamigenic potential of future, analog MTD events are modeled using GeoWave tsunami modeling software. The largest and youngest of these MTDs, the Santa Marta slide, is used as an analog to infer the location and input parameters for the tsunami model. The event is modeled as a translational slide ~46 km long and ~37 km wide with the center of the slide located ~57 km W/NW from the mouth of the present day Magdalena River in water depths of 1500 m. The volume for the initial failure is conservatively estimated at ~680 km3 of material. The resulting tsunami wave from such an event has an initial maximum trough amplitude of -65.8 m and a peak amplitude of 19.2 m. The impact of such a tsunami would include: 1) Kingston, Jamaica (population 938K), tsunami height 7.5 m, peak arrival at 60 min.; 2) Santo Domingo, Dominican Republic (population 965K, height 6 m, peak arrival at 80 min.); and 3) Cartagena, Colombia (population 845K, height 21 m, peak arrival at 34 min.). A number of parameters to the model are varied to analyze sensitivity of modeling results to changes in slide depth, angle of failure, slide volume, and slide density.
Borehole Strainmeters and the monitoring of the North Anatolian Fault in the Marmara Sea.
NASA Astrophysics Data System (ADS)
Johnson, W.; Mencin, D.; Bilham, R. G.; Gottlieb, M. H.; Van Boskirk, E.; Hodgkinson, K. M.; Mattioli, G. S.; Acarel, D.; Bulut, F.; Bohnhoff, M.; Ergintav, S.; Bal, O.; Ozener, H.
2016-12-01
Twice in the past 1000 years a sequence of large earthquakes has propagated from east to west along the North Anatolian fault (NAF) in Turkey towards Istanbul, with the final earthquake in the sequence destroying the city. This occurred most recently in 1509. The population of greater Istanbul is 20 million and the next large earthquake of the current sequence is considered imminent. The most likely location for a major earthquake on the NAF is considered the Marmara-Sea/Princes-Island segment south and southeast of Istanbul [Bohnhoff et al., 2013]. Insights into the nucleation and future behavior of this segment of the NAF are anticipated from measuring deformation near the fault, and in particular possible aseismic slip processes on the fault that may precede as well as accompany any future rupture. Aseismic slip processes near the western end of the Izmit rupture, near where it passes offshore beneath the Sea of Marmara near Izmit, has been successfully monitored using InSAR, GPS, and creepmeters. A 1mm amplitude, 24h creep event was recorded by our creepmeter near Izmit in 2015. These instruments and methods are of limited utility in monitoring the submarine portion of the NAF Data from numerous borehole strainmeters (BSM) along the San Andreas Fault, including those that were installed and maintained as part of the EarthScope Plate Boundary Observatory (PBO), demonstrate that the characteristics of creep propagation events with sub-cm slip amplitudes can be quantified for slip events at 10 km source-to-sensor distances. Such distances are comparable to those between the mainland and the submarine NAF, with some islands allowing installations within 3 km of the fault. In a collaborative program (GeoGONAF) between the National Science Foundation, GeoForschungsZentrum, Turkish Disaster and Emergency Management Authority, and the Kandilli Observatory, we installed an array of six PBO type BSM systems, which include strainmeters and seismometers, around the eastern end of the Marmara. The sensors are installed at depths of 100 m and record at a rate of 100Hz. During the installation phase (2014-16), the partially complete array successfully recorded seiches in the Sea of Marmara and a number of teleseismic events. The ESNK station, which is located to the west of Yalova is recording signals indicative of creep events.
NASA Astrophysics Data System (ADS)
Zhou, Weijie; Dang, Yaoguo; Gu, Rongbao
2013-03-01
We apply the multifractal detrending moving average (MFDMA) to investigate and compare the efficiency and multifractality of 5-min high-frequency China Securities Index 300 (CSI 300). The results show that the CSI 300 market becomes closer to weak-form efficiency after the introduction of CSI 300 future. We find that the CSI 300 is featured by multifractality and there are less complexity and risk after the CSI 300 index future was introduced. With the shuffling, surrogating and removing extreme values procedures, we unveil that extreme events and fat-distribution are the main origin of multifractality. Besides, we discuss the knotting phenomena in multifractality, and find that the scaling range and the irregular fluctuations for large scales in the Fq(s) vs s plot can cause a knot.
Preventing the collapse of the Baltic cod stock through an ecosystem-based management approach
Lindegren, Martin; Möllmann, Christian; Nielsen, Anders; Stenseth, Nils C.
2009-01-01
Worldwide a number of fish stocks have collapsed because of overfishing and climate-induced ecosystem changes. Developing ecosystem-based fisheries management (EBFM) to prevent these catastrophic events in the future requires ecological models incorporating both internal food-web dynamics and external drivers such as fishing and climate. Using a stochastic food-web model for a large marine ecosystem (i.e., the Baltic Sea) hosting a commercially important cod stock, we were able to reconstruct the history of the stock. Moreover we demonstrate that in hindsight the collapse could only have been avoidable by adapting fishing pressure to environmental conditions and food-web interactions. The modeling approach presented here represents a significant advance for EBFM, the application of which is important for sustainable resource management in the future. PMID:19706557
NASA Astrophysics Data System (ADS)
Cook, B.; Anchukaitis, K. J.
2017-12-01
Comparative analyses of paleoclimate reconstructions and climate model simulations can provide valuable insights into past and future climate events. Conducting meaningful and quantitative comparisons, however, can be difficult for a variety of reasons. Here, we use tree-ring based hydroclimate reconstructions to discuss some best practices for paleoclimate-model comparisons, highlighting recent studies that have successfully used this approach. These analyses have improved our understanding of the Medieval-era megadroughts, ocean forcing of large scale drought patterns, and even climate change contributions to future drought risk. Additional work is needed, however, to better reconcile and formalize uncertainties across observed, modeled, and reconstructed variables. In this regard, process based forward models of proxy-systems will likely be a critical tool moving forward.
Volcanic hazards at Mount Rainier, Washington
Crandell, Dwight Raymond; Mullineaux, Donal Ray
1967-01-01
Mount Rainier is a large stratovolcano of andesitic rock in the Cascade Range of western Washington. Although the volcano as it now stands was almost completely formed before the last major glaciation, geologic formations record a variety of events that have occurred at the volcano in postglacial time. Repetition of some of these events today without warning would result in property damage and loss of life on a catastrophic scale. It is appropriate, therefore, to examine the extent, frequency, and apparent origin of these phenomena and to attempt to predict the effects on man of similar events in the future. The present report was prompted by a contrast that we noted during a study of surficial geologic deposits in Mount Rainier National Park, between the present tranquil landscape adjacent to the volcano and the violent events that shaped parts of that same landscape in the recent past. Natural catastrophes that have geologic causes - such as eruptions, landslides, earthquakes, and floods - all too often are disastrous primarily because man has not understood and made allowance for the geologic environment he occupies. Assessment of the potential hazards of a volcanic environment is especially difficult, for prediction of the time and kind of volcanic activity is still an imperfect art, even at active volcanoes whose behavior has been closely observed for many years. Qualified predictions, however, can be used to plan ways in which hazards to life and property can be minimized. The prediction of eruptions is handicapped because volcanism results from conditions far beneath the surface of the earth, where the causative factors cannot be seen and, for the most part, cannot be measured. Consequently, long-range predictions at Mount Rainier can be based only on the past behavior of the volcano, as revealed by study of the deposits that resulted from previous eruptions. Predictions of this sort, of course, cannot be specific as to time and locale of future events, and clearly are valid only if the past behavior is, as we believe, a reliable guide. The purpose of this report is to infer the events recorded by certain postglacial deposits at Mount Rainier and to suggest what bearing similar events in the future might have on land use within and near the park. In addition, table 2 (page 22) gives possible warning signs of an impending eruption. We want to increase man's understanding of a possibly hazardous geologic environment around Mount Rainier volcano, yet we do not wish to imply for certain that the hazards described are either immediate or inevitable. However, we do believe that hazards exist, that some caution is warranted, and that some major hazards can be avoided by judicious planning. Most of the events with which we are concerned are sporadic phenomena that have resulted directly or indirectly from volcanic eruptions. Although no eruptions (other than steam emission) of the volcano in historic time are unequivocally known (Hopson and others, 1962), pyroclastic (air-laid) deposits of pumice and rock debris attest to repeated, widely spaced eruptions during the 10,000 years or so of postglacial time. In addition, the constituents of some debris flows indicate an origin during eruptions of molten rock; other debris flows, because of their large size and constituents, are believed to have been caused by steam explosions. Some debris flows, however, are not related to volcanism at all.
Towards a Systematic Search for Triggered Seismic Events in the USA
NASA Astrophysics Data System (ADS)
Tang, V.; Chao, K.; Van der Lee, S.
2017-12-01
Dynamic triggering of small earthquakes and tectonic tremor by small stress variations associated with passing surface waves from large-magnitude teleseismic earthquakes have been observed in seismically active regions in the western US. Local stress variations as small as 5 10 kPa can suffice to advance slip on local faults. Observations of such triggered events share certain distinct characteristics. With an eye towards an eventual application of machine learning, we began a systematic search for dynamically triggered seismic events in the USA that have these characteristics. Such a systematic survey has the potential to help us to better understand the fundamental process of dynamic triggering and hazards implied by it. Using visual inspection on top of timing and frequency based selection criteria for these seismic phenomena, our search yielded numerous false positives, indicating the challenge posed by moving from ad-hoc observations of dynamic triggering to a systematic search that also includes a catalog of non-triggering, even when sufficient stress variations are supplied. Our search includes a dozen large earthquakes that occurred during the tenure of USArray. One of these earthquakes (11 April 2012 Mw8.6 Sumatra), for example, was observed by USArray-TA stations in the Midwest and other station networks (such as PB and UW), and yielded candidate-triggered events at 413 stations. We kept 79 of these observations after closer visual inspection of the observed events suggested distinct P and S arrivals from a local earthquake, or a tremor modulation with the same period as the surface wave, among other criteria. We confirmed triggered seismic events in 63 stations along the western plate boundary where triggered events have previously been observed. We also newly found triggered tremor sources in eastern Oregon and Yellowstone, and candidate-triggered earthquake sources in New Mexico and Minnesota. Learning whether 14 of remaining candidates are confirmed as triggered events or not will provide constraints on the state of intraplate stress in the USA. Learning what it takes to discriminate between triggered events and false positives will be important for future monitoring practices.
Do Potential Past and Future Events Activate the Left-Right Mental Timeline?
ERIC Educational Resources Information Center
Aguirre, Roberto; Santiago, Julio
2017-01-01
Current evidence provides support for the idea that time is mentally represented by spatial means, i.e., a left-right mental timeline. However, available studies have tested only factual events, i.e., those which have occurred in the past or can be predicted to occur in the future. In the present study we tested whether past and future potential…
2014 Summer Series - Rusty Schweickart - Dinosaur Syndrome Avoidance Project: How Gozit?
2014-07-17
The 2013 Chelyabinsk meteor demonstrated that grave uncertainties exist pertaining to near-Earth objects (NEOs). Although the impact rate for dangerous asteroids is relatively low, the consequences of such an event are severe. Apollo Astronaut Rusty Schweickart, will talk about our prospects of avoiding the same fate as the dinosaurs. He will review the status of the global efforts to protect life on the planet from the devastation of large asteroid impacts. He will also discuss both the technical and geopolitical components of the challenge of preventing future asteroid impacts.
NASA Technical Reports Server (NTRS)
Koesterer, M. G.; Geating, J. A.
1975-01-01
Truckloads of materials such as rare books, papers, engineering drawings, blue prints, art work, leather objects such as shoes, and clothing were successfully dried, decontaminated and impregnated against future infestation by microorganisms in a large 12 x 24 foot vacuum chamber designed originally for testing unmanned spacecraft. The process is unique in that it allows either frozen or wet material, soaked by some castastrophic event to be dried and sterilized in the same chamber with a minimum of handling and transportation.
ASSOCIATIONS BETWEEN TRAUMATIC EVENTS AND SUICIDAL BEHAVIOUR IN SOUTH AFRICA
Sorsdahl, Katherine; Stein, Dan J.; Williams, David R.; Nock, Matthew K.
2011-01-01
Research conducted predominantly in the developed world suggests that there is an association between trauma exposure and suicidal behaviour. However, there are limited data available investigating whether specific traumas are uniquely predictive of suicidal behaviour, or the extent to which traumatic events predict the progression from suicide ideation to plans and attempts. A national survey was conducted with 4351 adult South Africans between 2002 and 2004 as part of the WHO World Mental Health Surveys. Data on trauma exposure and subsequent suicidal behaviour were collected. Bivariate and multivariate survival models tested the relationship between the type and number of traumatic events and lifetime suicidal behaviour. A range of traumatic events are associated with lifetime suicide ideation and attempt; however, after controlling for all traumatic events in a multivariate model, only sexual violence (OR=4.7, CI 2.3-9.4) and having witnessed violence (OR=1.8, 1.1-2.9) remained significant predictors of life-time suicide attempts. Disaggregation of the associations between traumatic events and suicide attempts indicates that they are largely due to traumatic events predicting suicide ideation rather than to the progression from suicide ideation to attempt. This paper highlights the importance of traumatic life events in the occurrence of suicidal thoughts and behaviours and provides important information about the nature of this association. Future research is needed to better understand how and why such experiences increase the risk of suicidal outcomes. PMID:22134450
Using Family Science Day Events to Inspire Future Scientists
NASA Astrophysics Data System (ADS)
Brevik, Corinne
2015-04-01
Dickinson State University organizes four Family Science Day events each fall to increase student engagement in the sciences. Offered on Saturday afternoons, each event focuses on a different science-related theme. Families can attend these events free of charge, and the kids participate in a large-variety of hands-on activities which center around the event's theme. Previous themes include The Amazing Telescope, Night of the Titanic, Dinosaur Prophecy, and Space Exploration. These events are amazing opportunities to show young children how much fun science can be. Many of the kids come from schools where science is neither interactive nor engaging. The activities help the children learn that science is a process of discovery that helps us better understand the world around us. University students staff all of the activity booths at these events, and this has proven to be a very valuable experience for them as well. Some of the students who help are majoring in a science field, and for them, the experience teaches public communication. They learn to break complicated concepts down into simpler terms that young kids can understand. Other students who help with these events are not science majors but may be taking a science course as part of their college curriculum. For these students, the experience reinforces various concepts that they are learning in their science class. For many of them, it also opens their eyes to the idea that science can be engaging. Some of them even discover that they have a true gift for teaching.
A Hybrid Ground-Motion Prediction Equation for Earthquakes in Western Alberta
NASA Astrophysics Data System (ADS)
Spriggs, N.; Yenier, E.; Law, A.; Moores, A. O.
2015-12-01
Estimation of ground-motion amplitudes that may be produced by future earthquakes constitutes the foundation of seismic hazard assessment and earthquake-resistant structural design. This is typically done by using a prediction equation that quantifies amplitudes as a function of key seismological variables such as magnitude, distance and site condition. In this study, we develop a hybrid empirical prediction equation for earthquakes in western Alberta, where evaluation of seismic hazard associated with induced seismicity is of particular interest. We use peak ground motions and response spectra from recorded seismic events to model the regional source and attenuation attributes. The available empirical data is limited in the magnitude range of engineering interest (M>4). Therefore, we combine empirical data with a simulation-based model in order to obtain seismologically informed predictions for moderate-to-large magnitude events. The methodology is two-fold. First, we investigate the shape of geometrical spreading in Alberta. We supplement the seismic data with ground motions obtained from mining/quarry blasts, in order to gain insights into the regional attenuation over a wide distance range. A comparison of ground-motion amplitudes for earthquakes and mining/quarry blasts show that both event types decay at similar rates with distance and demonstrate a significant Moho-bounce effect. In the second stage, we calibrate the source and attenuation parameters of a simulation-based prediction equation to match the available amplitude data from seismic events. We model the geometrical spreading using a trilinear function with attenuation rates obtained from the first stage, and calculate coefficients of anelastic attenuation and site amplification via regression analysis. This provides a hybrid ground-motion prediction equation that is calibrated for observed motions in western Alberta and is applicable to moderate-to-large magnitude events.
Havens, Karl E; Steinman, Alan D
2015-04-01
We considered how Lake Okeechobee, a large shallow lake in Florida, USA, might respond to altered hydrology associated with climate change scenarios in 2060. Water budgets and stage hydrographs were provided from the South Florida Water Management Model, a regional hydrologic model used to develop plans for Everglades restoration. Future scenarios include a 10% increase or decrease in rainfall (RF) and a calculated increase in evapotranspiration (ET), which is based on a 1.5 °C rise in temperature. Increasing RF and ET had counter-balancing effects on the water budget and when changing concurrently did not affect hydrology. In contrast, when RF decreased while ET increased, this resulted in a large change in hydrology. The surface elevation of the lake dropped by more than 2 m under this scenario compared to a future base condition, and extreme low elevation persisted for multiple years. In this declining RF/increasing ET scenario, the littoral and near-shore zones, areas that support emergent and submerged plants, were dry 55% of the time compared to less than 4% of the time in the future base run. There also were times when elevation increased as much as 3 m after intense RF events. Overall, these changes in hydrologic conditions would dramatically alter ecosystem services. Uncertainty about responses is highest at the pelagic-littoral interface, in regard to whether an extremely shallow lake could support submerged vascular plants, which are critical to the recreational fishery and for migratory birds. Along with improved regional climate modeling, research in that interface zone is needed to guide the adaptive process of Everglades restoration.
NASA Astrophysics Data System (ADS)
Havens, Karl E.; Steinman, Alan D.
2015-04-01
We considered how Lake Okeechobee, a large shallow lake in Florida, USA, might respond to altered hydrology associated with climate change scenarios in 2060. Water budgets and stage hydrographs were provided from the South Florida Water Management Model, a regional hydrologic model used to develop plans for Everglades restoration. Future scenarios include a 10 % increase or decrease in rainfall (RF) and a calculated increase in evapotranspiration (ET), which is based on a 1.5 °C rise in temperature. Increasing RF and ET had counter-balancing effects on the water budget and when changing concurrently did not affect hydrology. In contrast, when RF decreased while ET increased, this resulted in a large change in hydrology. The surface elevation of the lake dropped by more than 2 m under this scenario compared to a future base condition, and extreme low elevation persisted for multiple years. In this declining RF/increasing ET scenario, the littoral and near-shore zones, areas that support emergent and submerged plants, were dry 55 % of the time compared to less than 4 % of the time in the future base run. There also were times when elevation increased as much as 3 m after intense RF events. Overall, these changes in hydrologic conditions would dramatically alter ecosystem services. Uncertainty about responses is highest at the pelagic-littoral interface, in regard to whether an extremely shallow lake could support submerged vascular plants, which are critical to the recreational fishery and for migratory birds. Along with improved regional climate modeling, research in that interface zone is needed to guide the adaptive process of Everglades restoration.
Precipitation Organization in a Warmer Climate
NASA Astrophysics Data System (ADS)
Rickenbach, T. M.; Nieto Ferreira, R.; Nissenbaum, M.
2014-12-01
This study will investigate changes in precipitation organization in a warmer climate using the Weather Research and Forecasting (WRF) model and CMIP-5 ensemble climate simulations. This work builds from an existing four-year NEXRAD radar-based precipitation climatology over the southeastern U.S. that uses a simple two-category framework of precipitation organization based on instantaneous precipitating feature size. The first category - mesoscale precipitation features (MPF) - dominates winter precipitation and is linked to the more predictable large-scale forcing provided by the extratropical cyclones. In contrast, the second category - isolated precipitation - dominates the summer season precipitation in the southern coastal and inland regions but is linked to less predictable mesoscale circulations and to local thermodynamics more crudely represented in climate models. Most climate modeling studies suggest that an accelerated water cycle in a warmer world will lead to an overall increase in precipitation, but few studies have addressed how precipitation organization may change regionally. To address this, WRF will simulate representative wintertime and summertime precipitation events in the Southeast US under the current and future climate. These events will be simulated in an environment resembling the future climate of the 2090s using the pseudo-global warming (PGW) approach based on an ensemble of temperature projections. The working hypothesis is that the higher water vapor content in the future simulation will result in an increase in the number of isolated convective systems, while MPFs will be more intense and longer-lasting. In the context of the seasonal climatology of MPF and isolated precipitation, these results have implications for assessing the predictability of future regional precipitation in the southeastern U.S.
Microlensing Constraints on the Mass of Single Stars from HST Astrometric Measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kains, N.; Calamida, A.; Sahu, K. C.
Here, we report on the first results from a large-scale observing campaign aiming to use astrometric microlensing to detect and place limits on the mass of single objects, including stellar remnants. We used the Hubble Space Telescope to monitor stars near the Galactic Center for three years, and we measured the brightness and positions of ~2 million stars at each observing epoch. In addition to this, we monitored the same pointings using the VIMOS imager on the Very Large Telescope. The stars we monitored include several bright microlensing events observed from the ground by the OGLE collaboration. In this paper,more » we present the analysis of our photometric and astrometric measurements for six of these events, and derive mass constraints for the lens in each of them. Although these constraints are limited by the photometric precision of ground-based data, and our ability to determine the lens distance, we were able to constrain the size of the Einstein ring radius thanks to our precise astrometric measurements—the first routine measurements of this type from a large-scale observing program. In conclusion, this demonstrates the power of astrometric microlensing as a tool to constrain the masses of stars, stellar remnants, and, in the future, extrasolar planets, using precise ground- and space-based observations.« less
Microlensing Constraints on the Mass of Single Stars from HST Astrometric Measurements
Kains, N.; Calamida, A.; Sahu, K. C.; ...
2017-07-14
Here, we report on the first results from a large-scale observing campaign aiming to use astrometric microlensing to detect and place limits on the mass of single objects, including stellar remnants. We used the Hubble Space Telescope to monitor stars near the Galactic Center for three years, and we measured the brightness and positions of ~2 million stars at each observing epoch. In addition to this, we monitored the same pointings using the VIMOS imager on the Very Large Telescope. The stars we monitored include several bright microlensing events observed from the ground by the OGLE collaboration. In this paper,more » we present the analysis of our photometric and astrometric measurements for six of these events, and derive mass constraints for the lens in each of them. Although these constraints are limited by the photometric precision of ground-based data, and our ability to determine the lens distance, we were able to constrain the size of the Einstein ring radius thanks to our precise astrometric measurements—the first routine measurements of this type from a large-scale observing program. In conclusion, this demonstrates the power of astrometric microlensing as a tool to constrain the masses of stars, stellar remnants, and, in the future, extrasolar planets, using precise ground- and space-based observations.« less
Partier, A; Gay, G; Tassy, C; Beckert, M; Feuillet, C; Barret, P
2017-10-01
A large, 53-kbp, intact DNA fragment was inserted into the wheat ( Triticum aestivum L.) genome. FISH analyses of individual transgenic events revealed multiple insertions of intact fragments. Transferring large intact DNA fragments containing clusters of resistance genes or complete metabolic pathways into the wheat genome remains a challenge. In a previous work, we showed that the use of dephosphorylated cassettes for wheat transformation enabled the production of simple integration patterns. Here, we used the same technology to produce a cassette containing a 44-kb Arabidopsis thaliana BAC, flanked by one selection gene and one reporter gene. This 53-kb linear cassette was integrated in the bread wheat (Triticum aestivum L.) genome by biolistic transformation. Our results showed that transgenic plants harboring the entire cassette were generated. The inheritability of the cassette was demonstrated in the T1 and T2 generation. Surprisingly, FISH analysis performed on T1 progeny of independent events identified double genomic insertions of intact fragments in non-homoeologous positions. Inheritability of these double insertions was demonstrated by FISH analysis of the T1 generation. Relative conclusions that can be drawn from molecular or FISH analysis are discussed along with future prospects of the engineering of large fragments for wheat transformation or genome editing.
Albedo feedbacks to future climate via climate change impacts on dryland biocrusts.
Rutherford, William A; Painter, Thomas H; Ferrenberg, Scott; Belnap, Jayne; Okin, Gregory S; Flagg, Cody; Reed, Sasha C
2017-03-10
Drylands represent the planet's largest terrestrial biome and evidence suggests these landscapes have large potential for creating feedbacks to future climate. Recent studies also indicate that dryland ecosystems are responding markedly to climate change. Biological soil crusts (biocrusts) ‒ soil surface communities of lichens, mosses, and/or cyanobacteria ‒ comprise up to 70% of dryland cover and help govern fundamental ecosystem functions, including soil stabilization and carbon uptake. Drylands are expected to experience significant changes in temperature and precipitation regimes, and such alterations may impact biocrust communities by promoting rapid mortality of foundational species. In turn, biocrust community shifts affect land surface cover and roughness-changes that can dramatically alter albedo. We tested this hypothesis in a full-factorial warming (+4 °C above ambient) and altered precipitation (increased frequency of 1.2 mm monsoon-type watering events) experiment on the Colorado Plateau, USA. We quantified changes in shortwave albedo via multi-angle, solar-reflectance measurements. Warming and watering treatments each led to large increases in albedo (>30%). This increase was driven by biophysical factors related to treatment effects on cyanobacteria cover and soil surface roughness following treatment-induced moss and lichen mortality. A rise in dryland surface albedo may represent a previously unidentified feedback to future climate.
Albedo feedbacks to future climate via climate change impacts on dryland biocrusts
NASA Astrophysics Data System (ADS)
Rutherford, William A.; Painter, Thomas H.; Ferrenberg, Scott; Belnap, Jayne; Okin, Gregory S.; Flagg, Cody; Reed, Sasha C.
2017-03-01
Drylands represent the planet’s largest terrestrial biome and evidence suggests these landscapes have large potential for creating feedbacks to future climate. Recent studies also indicate that dryland ecosystems are responding markedly to climate change. Biological soil crusts (biocrusts) ‒ soil surface communities of lichens, mosses, and/or cyanobacteria ‒ comprise up to 70% of dryland cover and help govern fundamental ecosystem functions, including soil stabilization and carbon uptake. Drylands are expected to experience significant changes in temperature and precipitation regimes, and such alterations may impact biocrust communities by promoting rapid mortality of foundational species. In turn, biocrust community shifts affect land surface cover and roughness—changes that can dramatically alter albedo. We tested this hypothesis in a full-factorial warming (+4 °C above ambient) and altered precipitation (increased frequency of 1.2 mm monsoon-type watering events) experiment on the Colorado Plateau, USA. We quantified changes in shortwave albedo via multi-angle, solar-reflectance measurements. Warming and watering treatments each led to large increases in albedo (>30%). This increase was driven by biophysical factors related to treatment effects on cyanobacteria cover and soil surface roughness following treatment-induced moss and lichen mortality. A rise in dryland surface albedo may represent a previously unidentified feedback to future climate.
Albedo feedbacks to future climate via climate change impacts on dryland biocrusts
Rutherford, William A.; Painter, Thomas H.; Ferrenberg, Scott; Belnap, Jayne; Okin, Gregory S.; Flagg, Cody B.; Reed, Sasha C.
2017-01-01
Drylands represent the planet’s largest terrestrial biome and evidence suggests these landscapes have large potential for creating feedbacks to future climate. Recent studies also indicate that dryland ecosystems are responding markedly to climate change. Biological soil crusts (biocrusts) ‒ soil surface communities of lichens, mosses, and/or cyanobacteria ‒ comprise up to 70% of dryland cover and help govern fundamental ecosystem functions, including soil stabilization and carbon uptake. Drylands are expected to experience significant changes in temperature and precipitation regimes, and such alterations may impact biocrust communities by promoting rapid mortality of foundational species. In turn, biocrust community shifts affect land surface cover and roughness—changes that can dramatically alter albedo. We tested this hypothesis in a full-factorial warming (+4 °C above ambient) and altered precipitation (increased frequency of 1.2 mm monsoon-type watering events) experiment on the Colorado Plateau, USA. We quantified changes in shortwave albedo via multi-angle, solar-reflectance measurements. Warming and watering treatments each led to large increases in albedo (>30%). This increase was driven by biophysical factors related to treatment effects on cyanobacteria cover and soil surface roughness following treatment-induced moss and lichen mortality. A rise in dryland surface albedo may represent a previously unidentified feedback to future climate.
Abram, M; Picard, L; Navarro, B; Piolino, P
2014-10-01
We investigated the episodic/semantic distinction in remembering the past and imagining the future and explored cognitive mechanisms predicting events' specificity throughout the lifespan. Eighty-three 6- to 81-year-old participants, divided into 5 age groups, underwent past, present and future episodic (events' evocation) and semantic (self-descriptions) autobiographical tasks and a complementary cognitive test battery (executive functions, working and episodic memory). The main results showed age effects on episodic events' evocation indicating an inverted U function (i.e., developmental progression from 6 to 21years and aging decline). By contrast, age effects were slighter on self-descriptions while self-defining events' evocation increased with age. Furthermore, age effects on episodic events' evocation were mainly mediated by age effects on cognitive functions and personal semantics. These new findings indicate a developmental and aging episodic/semantic distinction for both remembering the past and imagining the future, and suggest that above similarities, these abilities could have a fundamentally different basis. Copyright © 2014 Elsevier Inc. All rights reserved.
Waikar, S V; Craske, M G
1997-01-01
Expectancies about future life events were assessed in anxious and depressed patients to test predictions of the Helplessness/Hopelessness model of anxiety and depression (Alloy, Kelly, Mineka, & Clements, 1990). In addition to expectancies for future events, patients from affective and anxiety treatment clinics completed anxiety and depression symptom ratings and positive and negative affects scales. Findings revealed partial support for the model. Negative outcome and helplessness expectancies were related specifically to depression. Cognitions regarding future positive events were interrelated and associated with symptom measures more strongly than were cognitions regarding negative events. Additionally, positive affects was more strongly related to depression than to anxiety symptom ratings. Implications and limitations of these findings are discussed.
Extreme Events and Disaster Risk Reduction - a Future Earth KAN initiative
NASA Astrophysics Data System (ADS)
Frank, Dorothea; Reichstein, Markus
2017-04-01
The topic of Extreme Events in the context of global environmental change is both a scientifically challenging and exciting topic, and of very high societal relevance. The Future Earth Cluster initiative E3S organized in 2016 a cross-community/co-design workshop on Extreme Events and Environments from Climate to Society (http://www.e3s-future-earth.eu/index.php/ConferencesEvents/ConferencesAmpEvents). Based on the results, co-design research strategies and established network of the workshop, and previous activities, E3S is thriving to establish the basis for a longer-term research effort under the umbrella of Future Earth. These led to an initiative for a Future Earth Knowledge Action Network on Extreme Events and Disaster Risk Reduction. Example initial key question in this context include: What are meaningful indices to describe and quantify impact-relevant (e.g. climate) extremes? Which system properties yield resistance and resilience to extreme conditions? What are the key interactions between global urbanization processes, extreme events, and social and infrastructure vulnerability and resilience? The long-term goal of this KAN is to contribute to enhancing the resistance, resilience, and adaptive capacity of socio-ecological systems across spatial, temporal and institutional scales, in particular in the light of hazards affected by ongoing environmental change (e.g. climate change, global urbanization and land use/land cover change). This can be achieved by enhanced understanding, prediction, improved and open data and knowledge bases for detection and early warning decision making, and by new insights on natural and societal conditions and governance for resilience and adaptive capacity.
Attribution of changes in precipitation patterns in African rainforests
NASA Astrophysics Data System (ADS)
Otto, F. E.; Jones, R. G.; Halladay, K.; Allen, M. R.
2013-12-01
The effects of projected future global and regional climate change on the water cycle and thus on global water security are amongst the most economically and politically important challenges that society faces in the 21st century. The provision of secure access to water resources and the protection of communities from water-related risks have emerged as top priorities amongst policymakers within the public and private sectors alike. Investment decisions on water infrastructure rely heavily on quantitative assessments of risks and uncertainties associated with future changes in water-related threats. Especially with the introduction of loss and damages on the agenda of the UNFCCC additionally the attribution of such changes to anthropogenic climate change and other external climate drivers is crucial. Probabilistic event attribution (PEA) provides a method of evaluating the extent to which human-induced climate change is affecting localised weather events and impacts of such events that relies on good observations as well as climate modelling. The overall approach is to simulate both, the statistics of observed weather, and the statistics of the weather that would have occurred had specific external drivers of climate change been absent. The majority of studies applying PEA have focused on quantifying attributable risk, with changes in risk depending on an assumption of 'all other things being equal', including natural drivers of climate change and vulnerability. Most previous attribution studies have focused on European extreme weather events, but the most vulnerable regions to climate change are in Asia and Africa. One of the most complex hydrological systems is the tropical rainforest, with the rainforests in tropical Africa being some of the most under-researched regions in the world. Research in the Amazonian rainforest suggests potential vulnerability to climate change. We will present results from using the large ensemble of atmosphere-only general circulation model (AGCM) simulations within the weather@home project, and analysing statistics of precipitation in the dry season of the Congo Basin rainforests. Because observed data sets in that region are of very poor quality we show how validation methods not only relying on such data have been used to investigate the applicability of PEA analysis from large model ensembles to this tropical region. Additionally we will present results for the same region but generated with a very large ensemble of regional climate simulations which allows analysing the importance of a realistic simulation of small scale precipitation processes for attribution studies in a tropical climate. We highlight that PEA analysis has the potential to provide valuable scientific evidence of recent or anticipated climatological changes in the water cycle, especially in regions with sparse observational data and unclear projections of future changes. However, the strong influence of SST tele-connection patterns on tropical precipitation provides more challenges in the set-up of attribution studies than studies on mid-latitude rainfall.
Hamama-Raz, Yaira; Palgi, Yuval; Shrira, Amit; Goodwin, Robin; Kaniasty, Krzysztof; Ben-Ezra, Menachem
2015-06-01
Hurricane Sandy was a natural disaster of large proportions--a category 3 storm at its peak intensity that struck New York Metropolitan Area on October, 2012. The death and destruction caused by a hurricane can rise numerous of mental health vulnerabilities such as, acute stress disorder, posttraumatic stress disorder, depression, and anxiety. Gender has been identified as one critical variable that can impact vulnerability to adverse effects of trauma, as well as how these reactions are managed. The present research provides an evaluation of gender differences regarding posttraumatic stress symptoms, recollections of national disasters and fears of future negative life events. It also aims to explore information seeking and sources of assistance that were utilized during Hurricane Sandy. An online survey sample of 1,000 people from New York Metropolitan Area completed a battery of self-report questionnaires four weeks after the storm. Results revealed that recollections of national disaster and fear of future events were found to be significantly different among women compared to men. Additionally, women were more inclined toward information seeking through Facebook than men, although no gender differences emerged when examining sources of support. The results indicate that disaster practitioners should tailor gender sensitive interventions.
Simulating Operations at a Spaceport
NASA Technical Reports Server (NTRS)
Nevins, Michael R.
2007-01-01
SPACESIM is a computer program for detailed simulation of operations at a spaceport. SPACESIM is being developed to greatly improve existing spaceports and to aid in designing, building, and operating future spaceports, given that there is a worldwide trend in spaceport operations from very expensive, research- oriented launches to more frequent commercial launches. From an operational perspective, future spaceports are expected to resemble current airports and seaports, for which it is necessary to resolve issues of safety, security, efficient movement of machinery and people, cost effectiveness, timeliness, and maximizing effectiveness in utilization of resources. Simulations can be performed, for example, to (1) simultaneously analyze launches of reusable and expendable rockets and identify bottlenecks arising from competition for limited resources or (2) perform what-if scenario analyses to identify optimal scenarios prior to making large capital investments. SPACESIM includes an object-oriented discrete-event-simulation engine. (Discrete- event simulation has been used to assess processes at modern seaports.) The simulation engine is built upon the Java programming language for maximum portability. Extensible Markup Language (XML) is used for storage of data to enable industry-standard interchange of data with other software. A graphical user interface facilitates creation of scenarios and analysis of data.
Predicting space climate change
NASA Astrophysics Data System (ADS)
Balcerak, Ernie
2011-10-01
Galactic cosmic rays and solar energetic particles can be hazardous to humans in space, damage spacecraft and satellites, pose threats to aircraft electronics, and expose aircrew and passengers to radiation. A new study shows that these threats are likely to increase in coming years as the Sun approaches the end of the period of high solar activity known as “grand solar maximum,” which has persisted through the past several decades. High solar activity can help protect the Earth by repelling incoming galactic cosmic rays. Understanding the past record can help scientists predict future conditions. Barnard et al. analyzed a 9300-year record of galactic cosmic ray and solar activity based on cosmogenic isotopes in ice cores as well as on neutron monitor data. They used this to predict future variations in galactic cosmic ray flux, near-Earth interplanetary magnetic field, sunspot number, and probability of large solar energetic particle events. The researchers found that the risk of space weather radiation events will likely increase noticeably over the next century compared with recent decades and that lower solar activity will lead to increased galactic cosmic ray levels. (Geophysical Research Letters, doi:10.1029/2011GL048489, 2011)
A precision medicine approach for psychiatric disease based on repeated symptom scores.
Fojo, Anthony T; Musliner, Katherine L; Zandi, Peter P; Zeger, Scott L
2017-12-01
For psychiatric diseases, rich information exists in the serial measurement of mental health symptom scores. We present a precision medicine framework for using the trajectories of multiple symptoms to make personalized predictions about future symptoms and related psychiatric events. Our approach fits a Bayesian hierarchical model that estimates a population-average trajectory for all symptoms and individual deviations from the average trajectory, then fits a second model that uses individual symptom trajectories to estimate the risk of experiencing an event. The fitted models are used to make clinically relevant predictions for new individuals. We demonstrate this approach on data from a study of antipsychotic therapy for schizophrenia, predicting future scores for positive, negative, and general symptoms, and the risk of treatment failure in 522 schizophrenic patients with observations over 8 weeks. While precision medicine has focused largely on genetic and molecular data, the complementary approach we present illustrates that innovative analytic methods for existing data can extend its reach more broadly. The systematic use of repeated measurements of psychiatric symptoms offers the promise of precision medicine in the field of mental health. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Geoffard, Pierre-Yves; Luchini, Stéphane
2010-01-01
In this paper, we consider that our experience of time (to come) depends on the emotions we feel when we imagine future pleasant or unpleasant events. A positive emotion such as relief or joy associated with a pleasant event that will happen in the future induces impatience. Impatience, in our context, implies that the experience of time up to the forthcoming event expands. A negative emotion such as grief or frustration associated with an unpleasant event that will happen in the future triggers anxiety. This will give the experience of time contraction. Time, therefore, is not exogeneously given to the individual and emotions, which link together events or situations, are a constitutive ingredient of the experience of time. Our theory can explain experimental evidence that people tend to prefer to perform painful actions earlier than pleasurable ones, contrary to the predictions yielded by the standard exponential discounting framework. PMID:20026465
Possible future changes in extreme events over Northern Eurasia
NASA Astrophysics Data System (ADS)
Monier, Erwan; Sokolov, Andrei; Scott, Jeffery
2013-04-01
In this study, we investigate possible future climate change over Northern Eurasia and its impact on extreme events. Northern Eurasia is a major player in the global carbon budget because of boreal forests and peatlands. Circumpolar boreal forests alone contain more than five times the amount of carbon of temperate forests and almost double the amount of carbon of the world's tropical forests. Furthermore, severe permafrost degradation associated with climate change could result in peatlands releasing large amounts of carbon dioxide and methane. Meanwhile, changes in the frequency and magnitude of extreme events, such as extreme precipitation, heat waves or frost days are likely to have substantial impacts on Northern Eurasia ecosystems. For this reason, it is very important to quantify the possible climate change over Northern Eurasia under different emissions scenarios, while accounting for the uncertainty in the climate response and changes in extreme events. For several decades, the Massachusetts Institute of Technology (MIT) Joint Program on the Science and Policy of Global Change has been investigating uncertainty in climate change using the MIT Integrated Global System Model (IGSM) framework, an integrated assessment model that couples an earth system model of intermediate complexity (with a 2D zonal-mean atmosphere) to a human activity model. In this study, regional change is investigated using the MIT IGSM-CAM framework that links the IGSM to the National Center for Atmospheric Research (NCAR) Community Atmosphere Model (CAM). New modules were developed and implemented in CAM to allow climate parameters to be changed to match those of the IGSM. The simulations presented in this paper were carried out for two emission scenarios, a "business as usual" scenario and a 660 ppm of CO2-equivalent stabilization, which are similar to, respectively, the Representative Concentration Pathways RCP8.5 and RCP4.5 scenarios. Values of climate sensitivity and net aerosol forcing used in the simulations within the IGSM-CAM framework provide a good approximation for the median, and the lower and upper bound of 90% probability distribution of 21st century climate change. Five member ensembles were carried out for each choice of parameters using different initial conditions. With these simulations, we investigate the role of emissions scenarios (climate policies), the global climate response (climate sensitivity) and natural variability (initial conditions) on the uncertainty in future climate changes over Northern Eurasia. A particular emphasis is made on future changes in extreme events, including frost days, extreme summer temperature and extreme summer and winter precipitation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldstein, A.; Veres, P.; Burns, E.
We present the Fermi Gamma-ray Burst Monitor (GBM) and Large Area Telescope (LAT) observations of the LIGO binary black hole merger (BBH) event GW170104. No candidate electromagnetic counterparts was detected by either GBM or LAT. A detailed analysis of the GBM and LAT data over timescales from seconds to days covering the LIGO localization region is presented. The resulting ux upper bound from the GBM is (5.2{9.4) 10 -7 erg cm -2 s -1 in the 10-1000 keV range and from the LAT is (0.2{13) 10 -9 erg cm -2 s -1 in the 0.1{1 GeV range. We also describemore » the improvements to our automated pipelines and analysis techniques for searching for and characterizing the potential electromagnetic counterparts for future gravitational wave events from Advanced LIGO/VIRGO.« less
NASA Astrophysics Data System (ADS)
Zhao, H.; Fu, C.; Yu, D.; Wang, Z.; Hu, T.; Ruan, M.
2018-03-01
The design and optimization of the Electromagnetic Calorimeter (ECAL) are crucial for the Circular Electron Positron Collider (CEPC) project, a proposed future Higgs/Z factory. Following the reference design of the International Large Detector (ILD), a set of silicon-tungsten sampling ECAL geometries are implemented into the Geant4 simulation, whose performance is then scanned using Arbor algorithm. The photon energy response at different ECAL longitudinal structures is analyzed, and the separation performance between nearby photon showers with different ECAL transverse cell sizes is investigated and parametrized. The overall performance is characterized by a set of physics benchmarks, including νν H events where Higgs boson decays into a pair of photons (EM objects) or gluons (jets) and Z→τ+τ- events. Based on these results, we propose an optimized ECAL geometry for the CEPC project.
In Forests Globally, Large Trees Suffer Most during Drought
NASA Astrophysics Data System (ADS)
Bennett, A. C.; McDowell, N. G.; Allen, C. D.; Anderson-Teixeira, K. J.
2014-12-01
Globally, drought events are increasing in both frequency and intensity. Spatial and temporal variation in water availability is expected to alter the ecophysiology and structure of forests, with consequent feedbacks to climate change. Extensive tree mortality induced by heat and aridity has been documented across a range of latitudes, and several global vegetation models have simulated widespread forest die-off in the future. The impact of drought on forest structure and function will depend on the differential responses of trees of different sizes. Understanding the size-dependence of drought-induced mortality is necessary to predict local and global impacts. Here we show that in forests worldwide, drought has a greater impact on the growth and mortality of large trees compared to smaller trees. This trend holds true for forests ranging from semiarid woodlands to tropical rainforests. This finding contrasts with what would be expected if deep root access to water were the primary determinant of tree drought response. Rather, the greater drought response of larger trees could be driven by greater inherent vulnerability of large trees to hydraulic stress or by canopy position becoming more of a liability under drought, as exposed crowns face higher evaporative demand. These findings imply that future droughts will have a disproportionate effect on large trees, resulting in a larger feedback to climate change than would occur if all tree size classes were equally affected by drought.
Accelerated Seismic Release and Related Aspects of Seismicity Patterns on Earthquake Faults
NASA Astrophysics Data System (ADS)
Ben-Zion, Y.; Lyakhovsky, V.
Observational studies indicate that large earthquakes are sometimes preceded by phases of accelerated seismic release (ASR) characterized by cumulative Benioff strain following a power law time-to-failure relation with a term (tf-t)m, where tf is the failure time of the large event and observed values of m are close to 0.3. We discuss properties of ASR and related aspects of seismicity patterns associated with several theoretical frameworks. The subcritical crack growth approach developed to describe deformation on a crack prior to the occurrence of dynamic rupture predicts great variability and low asymptotic values of the exponent m that are not compatible with observed ASR phases. Statistical physics studies assuming that system-size failures in a deforming region correspond to critical phase transitions predict establishment of long-range correlations of dynamic variables and power-law statistics before large events. Using stress and earthquake histories simulated by the model of Ben-Zion (1996) for a discrete fault with quenched heterogeneities in a 3-D elastic half space, we show that large model earthquakes are associated with nonrepeating cyclical establishment and destruction of long-range stress correlations, accompanied by nonstationary cumulative Benioff strain release. We then analyze results associated with a regional lithospheric model consisting of a seismogenic upper crust governed by the damage rheology of Lyakhovskyet al. (1997) over a viscoelastic substrate. We demonstrate analytically for a simplified 1-D case that the employed damage rheology leads to a singular power-law equation for strain proportional to (tf-t)-1/3, and a nonsingular power-law relation for cumulative Benioff strain proportional to (tf-t)1/3. A simple approximate generalization of the latter for regional cumulative Benioff strain is obtained by adding to the result a linear function of time representing a stationary background release. To go beyond the analytical expectations, we examine results generated by various realizations of the regional lithospheric model producing seismicity following the characteristic frequency-size statistics, Gutenberg-Richter power-law distribution, and mode switching activity. We find that phases of ASR exist only when the seismicity preceding a given large event has broad frequency-size statistics. In such cases the simulated ASR phases can be fitted well by the singular analytical relation with m = -1/3, the nonsingular equation with m = 0.2, and the generalized version of the latter including a linear term with m = 1/3. The obtained good fits with all three relations highlight the difficulty of deriving reliable information on functional forms and parameter values from such data sets. The activation process in the simulated ASR phases is found to be accommodated both by increasing rates of moderate events and increasing average event size, with the former starting a few years earlier than the latter. The lack of ASR in portions of the seismicity not having broad frequency-size statistics may explain why some large earthquakes are preceded by ASR and other are not. The results suggest that observations of moderate and large events contain two complementary end-member predictive signals on the time of future large earthquakes. In portions of seismicity following the characteristic earthquake distribution, such information exists directly in the associated quasi-periodic temporal distribution of large events. In portions of seismicity having broad frequency-size statistics with random or clustered temporal distribution of large events, the ASR phases have predictive information. The extent to which natural seismicity may be understood in terms of these end-member cases remains to be clarified. Continuing studies of evolving stress and other dynamic variables in model calculations combined with advanced analyses of simulated and observed seismicity patterns may lead to improvements in existing forecasting strategies.
Research Needs for Wind Resource Characterization
NASA Astrophysics Data System (ADS)
Schreck, S. J.; Lundquist, J. K.; Shaw, W. J.
2008-12-01
Currently, wind energy provides about 1 percent of U.S. electricity generation. A recent analysis by DOE, NREL, and AWEA showed the feasibility of expanding U.S. wind energy capacity to 20 percent, comprising approximately 300 gigawatts. Though not a prediction of the future, this represents a plausible scenario for U.S. wind energy. To exploit these opportunities, a workshop on Research Needs for Wind Resource Characterization was held during January 2008. This event was organized on behalf of two DOE organizations; the Office of Biological and Environmental Research and the Office of Energy Efficiency and Renewable Energy. Over 120 atmospheric science and wind energy researchers attended the workshop from industry, academia, and federal laboratories in North America and Europe. Attendees identified problems that could impede achieving the 20 percent wind scenario and formulated research recommendations to attack these problems. Findings were structured into four focus areas: 1) Turbine Dynamics, 2) Micrositing and Array Effects, 3) Mesoscale Processes, and 4) Climate Effects. In the Turbine Dynamics area, detailed characterizations of inflows and turbine flow fields were deemed crucial to attaining accuracy levels in aerodynamics loads required for future designs. To address the complexities inherent in this area, an incremental approach involving hierarchical computational modeling and detailed measurements was recommended. Also recommended was work to model extreme and anomalous atmospheric inflow events and aerostructural responses of turbines to these events. The Micrositing and Array Effects area considered improved wake models important for large, multiple row wind plants. Planetary boundary layer research was deemed necessary to accurately determine inflow characteristics in the presence of atmospheric stability effects and complex surface characteristics. Finally, a need was identified to acquire and exploit large wind inflow data sets, covering heights to 200 meters and encompassing spatial and temporal resolution ranges unique to wind energy. The Mesoscale Processes area deemed improved understanding of mesoscale and local flows crucial to providing enhanced model outputs for wind energy production forecasts and wind plant siting. Modeling approaches need to be developed to resolve spatial scales in the 100 to 1000 meter range, a notable gap in current capabilities. Validation of these models will require new instruments and observational strategies, including augmented analyses of existing measurements. In the Climate Effects area, research was recommended to understand historical trends in wind resource variability. This was considered a prerequisite for improved predictions of future wind climate and resources, which would enable reliable wind resource estimation for future planning. Participants also considered it important to characterize interactions between wind plants and climates through modeling and observations that suitably emphasize atmospheric boundary layer dynamics. High-penetration wind energy deployment represents a crucial and attainable U.S. strategic objective. Achieving the 20 percent wind scenario will require an unprecedented ability for characterizing large wind turbines arrayed in gigawatt wind plants and extracting elevated energy levels from the atmosphere. DOE national laboratories, with industry and academia, represents a formidable capability for attaining these objectives.
Large-Angular-Scale Clustering as a Clue to the Source of UHECRs
NASA Astrophysics Data System (ADS)
Berlind, Andreas A.; Farrar, Glennys R.
We explore what can be learned about the sources of UHECRs from their large-angular-scale clustering (referred to as their "bias" by the cosmology community). Exploiting the clustering on large scales has the advantage over small-scale correlations of being insensitive to uncertainties in source direction from magnetic smearing or measurement error. In a Cold Dark Matter cosmology, the amplitude of large-scale clustering depends on the mass of the system, with more massive systems such as galaxy clusters clustering more strongly than less massive systems such as ordinary galaxies or AGN. Therefore, studying the large-scale clustering of UHECRs can help determine a mass scale for their sources, given the assumption that their redshift depth is as expected from the GZK cutoff. We investigate the constraining power of a given UHECR sample as a function of its cutoff energy and number of events. We show that current and future samples should be able to distinguish between the cases of their sources being galaxy clusters, ordinary galaxies, or sources that are uncorrelated with the large-scale structure of the universe.
The American Academy of Sleep Medicine Inter-scorer Reliability Program: Respiratory Events
Rosenberg, Richard S.; Van Hout, Steven
2014-01-01
Study Objectives: The American Academy of Sleep Medicine (AASM) Inter-scorer Reliability program provides a unique opportunity to compare a large number of scorers with varied levels of experience to determine agreement in the scoring of respiratory events. The objective of this paper is to examine areas of disagreement to inform future revisions of the AASM Manual for the Scoring of Sleep and Associated Events. Methods: The sample included 15 monthly records, 200 epochs each. The number of scorers increased steadily during the period of data collection, reaching more than 3,600 scorers by the final record. Scorers were asked to identify whether an obstructive, mixed, or central apnea; a hypopnea; or no event was seen in each of the 200 epochs. The “correct” respiratory event score was defined as the score endorsed by the most scorers. Percentage agreement with the majority score was determined for each epoch and the mean agreement determined. Results: The overall agreement for scoring of respiratory events was 93.9% (κ = 0.92). There was very high agreement on epochs without respiratory events (97.4%), and the majority score for most of the epochs (87.8%) was no event. For the 364 epochs scored as having a respiratory event, overall agreement that some type of respiratory event occurred was 88.4% (κ = 0.77). The agreement for epochs scored as obstructive apnea by the majority was 77.1% (κ = 0.71), and the most common disagreement was hypopnea rather than obstructive apnea (14.4%). The agreement for hypopnea was 65.4% (κ = 0.57), with 16.4% scoring no event and 14.8% scoring obstructive apnea. The agreement for central apnea was 52.4% (κ = 0.41). A single epoch was scored as a mixed apnea by a plurality of scorers. Conclusions: The study demonstrated excellent agreement among a large sample of scorers for epochs with no respiratory events. Agreement for some type of event was good, but disagreements in scoring of apnea vs. hypopnea and type of apnea were common. A limitation of the analysis is that most of the records had normal breathing. A review of controversial events yielded no consistent bias that might be resolved by a change of scoring rules. Citation: Rosenberg RS; Van Hout S. The American Academy of Sleep Medicine inter-scorer reliability program: respiratory events. J Clin Sleep Med 2014;10(4):447-454. PMID:24733993
NASA Astrophysics Data System (ADS)
Odaka, Shigeru; Kurihara, Yoshimasa
2016-12-01
An event generator for diphoton (γ γ ) production in hadron collisions that includes associated jet production up to two jets has been developed using a subtraction method based on the limited leading-log subtraction. The parton shower (PS) simulation to restore the subtracted divergent components involves both quantum electrodynamic (QED) and quantum chromodynamic radiation, and QED radiation at very small Q2 is simulated by referring to a fragmentation function (FF). The PS/FF simulation has the ability to enforce the radiation of a given number of energetic photons. The generated events can be fed to PYTHIA to obtain particle (hadron) level event information, which enables us to perform realistic simulations of photon isolation and hadron-jet reconstruction. The simulated events, in which the loop-mediated g g →γ γ process is involved, reasonably reproduce the diphoton kinematics measured at the LHC. Using the developed simulation, we found that the two-jet processes significantly contribute to diphoton production. A large two-jet contribution can be considered as a common feature in electroweak-boson production in hadron collisions although the reason is yet to be understood. Discussion concerning the treatment of the underlying events in photon isolation is necessary for future higher precision measurements.
Mac Giollabhui, Naoise; Nielsen, Johanna; Seidman, Sam; Olino, Thomas M; Abramson, Lyn Y; Alloy, Lauren B
2018-01-05
Hopelessness is implicated in multiple psychological disorders. Little is known, however, about the trajectory of hopelessness during adolescence or how emergent future orientation may influence its trajectory. Parallel process latent growth curve modelling tested whether (i) trajectories of future orientation and hopelessness and (ii) within-individual change in future orientation and hopelessness were related. The study was comprised of 472 adolescents [52% female, 47% Caucasian, 47% received free lunch] recruited at ages 12-13 who completed measures of future orientation and hopelessness at five annual assessments. The results indicate that a general decline in hopelessness across adolescence occurs quicker for those experiencing faster development of future orientation, when controlling for age, sex, low socio-economic status in addition to stressful life events in childhood and adolescence. Stressful childhood life events were associated with worse future orientation at baseline and negative life events experienced during adolescence were associated with both an increase in the trajectory of hopelessness as well as a decrease in the trajectory of future orientation. This study provides compelling evidence that the development of future orientation during adolescence is associated with a faster decline in hopelessness.
Climate Change Extreme Events: Meeting the Information Needs of Water Resource Managers
NASA Astrophysics Data System (ADS)
Quay, R.; Garfin, G. M.; Dominguez, F.; Hirschboeck, K. K.; Woodhouse, C. A.; Guido, Z.; White, D. D.
2013-12-01
Information about climate has long been used by water managers to develop short term and long term plans and strategies for regional and local water resources. Inherent within longer term forecasts is an element of uncertainty, which is particularly evident in Global Climate model results for precipitation. For example in the southwest estimates in the flow of the Colorado River based on GCM results indicate changes from 120% or current flow to 60%. Many water resource managers are now using global climate model down scaled estimates results as indications of potential climate change as part of that planning. They are addressing the uncertainty within these estimates by using an anticipatory planning approach looking at a range of possible futures. One aspect of climate that is important for such planning are estimates of future extreme storm (short term) and drought (long term) events. However, the climate science of future possible changes in extreme events is less mature than general climate change science. At a recent workshop among climate scientists and water managers in the southwest, it was concluded the science of climate change extreme events is at least a decade away from being robust enough to be useful for water managers in their water resource management activities. However, it was proposed that there are existing estimates and records of past flooding and drought events that could be combined with general climate change science to create possible future events. These derived events could be of sufficient detail to be used by water resource managers until such time that the science of extreme events is able to provide more detailed estimates. Based on the results of this workshop and other work being done by the Decision Center for a Desert City at Arizona State University and the Climate Assessment for the Southwest center at University of Arizona., this article will 1) review what are the extreme event data needs of Water Resource Managers in the southwest, 2) review of the current state of extreme event climate science, 3) review what information is available about past extreme events in the southwest, 4) report the results of the 2012 workshop on climate change and extreme events, and 5) propose a method for combining this past information with current climate science information to produce estimates of possible future extreme events in sufficient detail to be useful to water resource managers.
NASA Astrophysics Data System (ADS)
Yugsi Molina, F. X.; Hermanns, R. L.; Crosta, G. B.; Dehls, J.; Sosio, R.; Sepúlveda, S. A.
2012-04-01
Iquique is a city of about 215,000 inhabitants (Chilean national census 2002) settled on one of the seismic gaps in the South American subduction zone, where a M >8 earthquake with overdue return periods of ca. 100 yr is expected in the near future. The city has only two access roads coming from the east and south. The road to the east comes down along the escarpment that connects the Coastal Cordillera to the Coastal Plain. The road has been blocked by small magnitude earthquake-triggered landslides at least once in recent years. The second road, coming from the south, crosses along the Coastal Plain and connects the city to the airport where at least ten ancient debris deposits related to rock avalanches are found. These facts show the importance of determining the effects of a future high magnitude earthquake on the stability of the slopes in the area and the impact of possible slope failures on people, infrastructure and emergency management. The present work covers an area of approximately 130 km2 parallel to the coastline to the south of Iquique, divided into the two main morphological units briefly mentioned above. The eastern part corresponds to the Coastal Cordillera, a set of smoothed hills and shallow valleys that reaches up to 1200 m asl. This sector is limited to the west by a steep escarpment followed by the Coastal Plain and a narrow emerged marine plateau (1-3 km wide) locally overlaid by deposits of recent rock avalanches. Rock avalanche events have recurrently occurred at two sites to the north and center of the study area on the Coastal Cordillera escarpment. Another major single event has been mapped to the south. Marls, red and black shales, and shallow marine glauconitic deposits from Jurassic constitute the source rock for the rock avalanches in all sites. Clusters of deposits are found in the first two sites (retrogressive advance) with younger events running shorter distances and partially overlaying the older ones. Multiple lobes have been mapped characterized by well defined lateral levees and clear internal morphological features (ridges and furrows, hummocks). Rock avalanche run out simulations have been carried out to back analyze the sites using DAN 3D and a 3 m pixel resolution digital elevation model (DEM) obtained from stereoscopic Geoeye-1 images to assess parameters that controlled propagation mechanism and impact area extent of the events. The older lobes were dated by radiocarbon methods. Results indicate ages higher than 40,000 yr BP for the northern site. The second site could only be dated relatively with an underlying terrace that resulted older than the age limit of radiocarbon dating (43.500 yr BP). All the deposits are positioned well above (40-70 m) the present sea level rise, and at the reported uplift rates for the area, they could be associated to events older than some hundreds of thousand years. A more complete record of the failure history of the sites will be obtained when results of cosmogenic nuclides (CN) and luminescence dating will become available later this year. Several other smaller rock avalanches have been mapped in the study area. Satellite-based radar interferometry (InSAR) was performed using ERS-1 and ERS-2 scenes from 1995-2000 as well as ENVISAT ASAR scenes from 2004-2010. Both datasets show only small deformation in the area. This deformation includes sliding of small surficial slope deposits and subsidence apparently due to local groundwater withdrawal. No deformation of bedrock along the escarpment edge is observed. Results show that only major rock avalanches could reach the main access roads to Iquique and currently no large slope segments show signs of large displacement rates. Moreover, there is no strong correlation between M > 8 earthquakes return periods and age of the dated deposits, which implies that large rock avalanches could have been triggered by other factors. Hence, from a hazard and risk perspective, it is unlikely that large rock avalanches, that could block the access roads to the city, would occur in the near future. Results from CN and luminescence dating will help to get a better understanding of the conditioning and triggering of past events.
Impact Assessments and Projections in Microclimates: Working with End-Users
NASA Astrophysics Data System (ADS)
Outten, S.; Wolf, T.
2015-12-01
Local impacts of meteorological events are often shaped by the microclimates in which they occur and only by including understanding of these microclimates can robust assessments and projections of such events be made. However, co-production of knowledge with end users is also required in order to make the assessments useful for decision makers and for society as a whole. This work presents two studies working with end users around the European city of Bergen, Norway. The first study is on extreme winds assessment for larger-scale construction. While such an assessment is usually based on historical observations when the climate was more stationary, under a changing climate, infrastructure built to last for the next fifty years or more may experience events not seen in the observational period. The case study is presented for the newly completed Hardanger Bridge in Norway and demonstrates a novel method for incorporating estimates of future changes in extreme winds into the design process (figure 1). Given the close collaboration with the engineers involved in the bridge's construction, the method was tailored to fit with existing practices and standards. The second study focuses on air pollution events within the city that are favoured by persistent wintertime temperature inversions in the narrow Bergen valley. Using a temperature profile radiometer, these temperature inversions have been characterized and related to the local circulation in- and above the valley. There has been the assumption that the many large ships in Bergen harbour had a major contribution to high pollution events within the city. Results from this study however indicate that temperature inversions are mostly connected to down-valley winds. These should remove the ship-emissions from the city, giving the ships a much smaller impact on high air pollution events than previously assumed, something that is under further evaluation and of high interest for the local harbour authority. Figure 1. Extreme wind speed distributions at the Utsira meteorological station from observations (black), with future estimates based on multiple regional climate models (red and blue). Vertical lines indicate the 50-year return event.
Future perspective and healthy lifestyle choices in adulthood.
Tasdemir-Ozdes, Aylin; Strickland-Hughes, Carla M; Bluck, Susan; Ebner, Natalie C
2016-09-01
Regardless of age, making healthy lifestyle choices is prudent. Despite that, individuals of all ages sometimes have difficulty choosing the healthy option. We argue that individuals' view of the future and position in the life span affects their current lifestyle choices. We capture the multidimensionality of future thinking by assessing 3 types of future perspective. Younger and older men and women (N = 127) reported global future time perspective, future health perspective, and perceived importance of future health-related events. They also rated their likelihood of making healthy lifestyle choices. As predicted, older participants indicated greater intention to make healthy choices in their current life than did younger participants. Compared to younger participants, older participants reported shorter global future time perspective and anticipated worse future health but perceived future health-related events as more important. Having a positive view of one's future health and seeing future health-related events as important were related to greater intention to make healthy lifestyle choices, but greater global future time perspective was not directly related to healthy choices. However, follow-up analyses suggested that greater global future time perspective indirectly affected healthy choices via a more positive view of future health. None of these relations were moderated by age. Individuals' perspective on the future is shown to be an important multidimensional construct affecting everyday healthy lifestyle choices for both younger and older adults. Implications for encouraging healthy choices across the adult life span are discussed. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Wang, Kaiti; Lin, Ching-Huei; Wang, Lu-Yin; Hada, Tohru; Nishimura, Yukitoshi; Turner, Drew L.; Angelopoulos, Vassilis
2014-12-01
Changes in pitch angle distributions of electrons with energies from a few eV to 1 MeV at dipolarization sites in Earth's magnetotail are investigated statistically to determine the extent to which adiabatic acceleration may contribute to these changes. Forty-two dipolarization events from 2008 and 2009 observed by Time History of Events and Macroscale Interactions during Substorms probes covering the inner plasma sheet from 8 RE to 12 RE during geomagnetic activity identified by the AL index are analyzed. The number of observed events with cigar-type distributions (peaks at 0° and 180°) decreases sharply below 1 keV after dipolarization because in many of these events, electron distributions became more isotropized. From above 1 keV to a few tens of keV, however, the observed number of cigar-type events increases after dipolarization and the number of isotropic events decreases. These changes can be related to the ineffectiveness of Fermi acceleration below 1 keV (at those energies, dipolarization time becomes comparable to electron bounce time). Model-calculated pitch angle distributions after dipolarization with the effect of betatron and Fermi acceleration tested indicate that these adiabatic acceleration mechanisms can explain the observed patterns of event number changes over a large range of energies for cigar events and isotropic events. Other factors still need to be considered to assess the observed increase in cigar events around 2 keV. Indeed, preferential directional increase/loss of electron fluxes, which may contribute to the formation of cigar events, was observed. Nonadiabatic processes to accelerate electrons in a parallel direction may also be important for future study.
A cyber-event correlation framework and metrics
NASA Astrophysics Data System (ADS)
Kang, Myong H.; Mayfield, Terry
2003-08-01
In this paper, we propose a cyber-event fusion, correlation, and situation assessment framework that, when instantiated, will allow cyber defenders to better understand the local, regional, and global cyber-situation. This framework, with associated metrics, can be used to guide assessment of our existing cyber-defense capabilities, and to help evaluate the state of cyber-event correlation research and where we must focus our future cyber-event correlation research. The framework, based on the cyber-event gathering activities and analysis functions, consists of five operational steps, each of which provides a richer set of contextual information to support greater situational understanding. The first three steps are categorically depicted as increasingly richer and broader-scoped contexts achieved through correlation activity, while in the final two steps, these richer contexts are achieved through analytical activities (situation assessment, and threat analysis & prediction). Category 1 Correlation focuses on the detection of suspicious activities and the correlation of events from a single cyber-event source. Category 2 Correlation clusters the same or similar events from multiple detectors that are located at close proximity and prioritizes them. Finally, the events from different time periods and event sources at different location/regions are correlated at Category 3 to recognize the relationship among different events. This is the category that focuses on the detection of large-scale and coordinated attacks. The situation assessment step (Category 4) focuses on the assessment of cyber asset damage and the analysis of the impact on missions. The threat analysis and prediction step (Category 5) analyzes attacks based on attack traces and predicts the next steps. Metrics that can distinguish correlation and cyber-situation assessment tools for each category are also proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biesiada, Marek; Ding, Xuheng; Zhu, Zong-Hong
Gravitational wave (GW) experiments are entering their advanced stage which should soon open a new observational window on the Universe. Looking into this future, the Einstein Telescope (ET) was designed to have a fantastic sensitivity improving significantly over the advanced GW detectors. One of the most important astrophysical GW sources supposed to be detected by the ET in large numbers are double compact objects (DCO) and some of such events should be gravitationally lensed by intervening galaxies. We explore the prospects of observing gravitationally lensed inspiral DCO events in the ET. This analysis is a significant extension of our previousmore » paper [1]. We are using the intrinsic merger rates of the whole class of DCO (NS-NS,BH-NS,BH-BH) located at different redshifts as calculated by [2] by using StarTrack population synthesis evolutionary code. We discuss in details predictions from each evolutionary scenario. Our general conclusion is that ET would register about 50–100 strongly lensed inspiral events per year. Only the scenario in which nascent BHs receive strong kick gives the predictions of a few events per year. Such lensed events would be dominated by the BH-BH merging binary systems. Our results suggest that during a few years of successful operation ET will provide a considerable catalog of strongly lensed events.« less
[Attitudes of personnel monitoring intra-hospital adverse events in Colombia].
Gaitán-Duarte, Hernando; Gómez Sánchez, Pió I; Eslava-Schmalbach, Javier
2009-10-01
Detecting adverse events (AE) is part of managing hospitalised patients' safety. Suitable AE monitoring is affected by many factors regarding any particular institution and its workers. This article was aimed at describing the difficulties emerging from identifying and evaluating events and suggested interventions from the workers' viewpoint. Qualitative research. A focus group was formed with key informants from previous research entitled 'The incidence and avoidability of adverse events in three institutions in Colombia, 2006.' A conceptual framework was constructed based on publications pertaining to AEs and health-providing institutions; summaries were made by topic regarding the content of the focus group's work by systematising, categorising and readjusting the data. The triangulation method was used for guar-anteeing its credibility, transferability, reliability and that it could be confirmed. It is commonly thought that monitoring AE only consists of taking inventories related to negative work consequences into account; this opinion has been determined by prior organisational culture. Strategies used for increasing AE reporting were: intrapersonal work, raising awareness that nobody is exempt from being involved in an adverse event and encouraging administrative support for resolving deficiencies. The prospective monitoring method becomes hampered when applying it to services involving a large volume of information. A tendency was observed for specialist committees to underestimate an event's association. Heath workers, support personnel and management must have mutual confidence and adopt team-work so that future AE may be prevented.
The Impact of Future World Events on Iranians’ Social Health: A Qualitative Futurology
DAMARI, Behzad; HAJIAN, Maryam; MINAEE, Farima; RIAZI-ISFAHANI, Sahand
2016-01-01
Background: Social health is a dimension of health affected and interacts with other dimensions. Considering the rate of world changes, foresighting the influence of future events and possible trends on social health could bring about advantageous information for social policy makers. Methods: This is a qualitative study of futurology with cross impact analysis approach. After studying possible trends and events in future, they were categorized in four domains including population, resources, climate changes, and globalization and 12 groups of events; and they were used to design a questionnaire. It was given to experts and their opinions were collected through depth interviews between May 2013 and Sep 2013. Results: Analysis of experts’ opinions reveals that future trends in four main potential domains may have some positive and more negative impacts on Iranians’ social health. Conclusion: The global “resource challenge” is the most important incoming event, considering to the four domains of global events and its final and potential effects will be the increase of inequalities leading to social threat. Since inequalities are considered the most important risk factor of health in the societies, the solution for dispel the impact of world trends on Iranians’ social health is managing the crisis of inequalities which is started with fore sighting and adopting preventive strategies in all four domains. PMID:27648424
Are habitual overgeneral recollection and prospection maladaptive?
Robinaugh, Donald J; Lubin, Rebecca E; Babic, Luka; McNally, Richard J
2013-06-01
Individuals with depression exhibit difficulty retrieving specific memories and imagining specific future events when instructed to do so relative to non-clinical comparison groups. Instead of specific events, depressed individuals frequently retrieve or imagine "overgeneral" memories that span a long period of time or that denote a category of similar events. Recently, Raes, Hermans, Williams, and Eelen (2007) developed a sentence completion procedure (SCEPT) to assess the tendency to recall overgeneral autobiographical memories. They found that specificity on this measure was associated with depression and rumination. We aimed to replicate these findings and to examine the tendency to imagine overgeneral future events. We had 170 subjects complete past (SCEPT) and future-oriented (SCEFT) sentence completion tasks and measures of depression severity, PTSD severity, hopelessness, and repetitive negative thought. Although specificities of past and future events were correlated, neither SCEPT nor SCEFT specificity was negatively associated with depression severity, posttraumatic stress symptoms, repetitive negative thought (RNT), or hopelessness. Our data are cross-sectional, preventing any determination of causality and limiting our assessment of whether specificity is associated with psychological distress following a stressful life event. In addition, we observed poor internal consistency for both the SCEPT and SCEFT. These findings fail to support the hypothesis that overgeneral memory and prospection on these tasks are associated with psychological distress. Copyright © 2012. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Schindewolf, Marcus; Kaiser, Andreas; Buchholtz, Arno; Schmidt, Jürgen
2017-04-01
Extreme rainfall events and resulting flash floods led to massive devastations in Germany during spring 2016. The study presented aims on the development of a early warning system, which allows the simulation and assessment of negative effects on infrastructure by radar-based heavy rainfall predictions, serving as input data for the process-based soil loss and deposition model EROSION 3D. Our approach enables a detailed identification of runoff and sediment fluxes in agricultural used landscapes. In a first step, documented historical events were analyzed concerning the accordance of measured radar rainfall and large scale erosion risk maps. A second step focused on a small scale erosion monitoring via UAV of source areas of heavy flooding events and a model reconstruction of the processes involved. In all examples damages were caused to local infrastructure. Both analyses are promising in order to detect runoff and sediment delivering areas even in a high temporal and spatial resolution. Results prove the important role of late-covering crops such as maize, sugar beet or potatoes in runoff generation. While e.g. winter wheat positively affects extensive runoff generation on undulating landscapes, massive soil loss and thus muddy flows are observed and depicted in model results. Future research aims on large scale model parameterization and application in real time, uncertainty estimation of precipitation forecast and interface developments.
NASA Astrophysics Data System (ADS)
Fidani, Cristiano
2015-12-01
A study of statistical correlation between low L-shell electrons precipitating into the atmosphere and strong earthquakes is presented. More than 11 years of the Medium Energy Protons Electrons Detector data from the NOAA-15 Sun-synchronous polar orbiting satellite were analysed. Electron fluxes were analysed using a set of adiabatic coordinates. From this, significant electron counting rate fluctuations were evidenced during geomagnetic quiet periods. Electron counting rates were compared to earthquakes by defining a seismic event L-shell obtained radially projecting the epicentre geographical positions to a given altitude towards the zenith. Counting rates were grouped in every satellite semi-orbit together with strong seismic events and these were chosen with the L-shell coordinates close to each other. NOAA-15 electron data from July 1998 to December 2011 were compared for nearly 1800 earthquakes with magnitudes larger than or equal to 6, occurring worldwide. When considering 30-100 keV precipitating electrons detected by the vertical NOAA-15 telescope and earthquake epicentre projections at altitudes greater that 1300 km, a significant correlation appeared where a 2-3 h electron precipitation was detected prior to large events in the Sumatra and Philippine Regions. This was in physical agreement with different correlation times obtained from past studies that considered particles with greater energies. The Discussion below of satellite orbits and detectors is useful for future satellite missions for earthquake mitigation.
Uncertainties in Past and Future Global Water Availability
NASA Astrophysics Data System (ADS)
Sheffield, J.; Kam, J.
2014-12-01
Understanding how water availability changes on inter-annual to decadal time scales and how it may change in the future under climate change are a key part of understanding future stresses on water and food security. Historic evaluations of water availability on regional to global scales are generally based on large-scale model simulations with their associated uncertainties, in particular for long-term changes. Uncertainties are due to model errors and missing processes, parameter uncertainty, and errors in meteorological forcing data. Recent multi-model inter-comparisons and impact studies have highlighted large differences for past reconstructions, due to different simplifying assumptions in the models or the inclusion of physical processes such as CO2 fertilization. Modeling of direct anthropogenic factors such as water and land management also carry large uncertainties in their physical representation and from lack of socio-economic data. Furthermore, there is little understanding of the impact of uncertainties in the meteorological forcings that underpin these historic simulations. Similarly, future changes in water availability are highly uncertain due to climate model diversity, natural variability and scenario uncertainty, each of which dominates at different time scales. In particular, natural climate variability is expected to dominate any externally forced signal over the next several decades. We present results from multi-land surface model simulations of the historic global availability of water in the context of natural variability (droughts) and long-term changes (drying). The simulations take into account the impact of uncertainties in the meteorological forcings and the incorporation of water management in the form of reservoirs and irrigation. The results indicate that model uncertainty is important for short-term drought events, and forcing uncertainty is particularly important for long-term changes, especially uncertainty in precipitation due to reduced gauge density in recent years. We also discuss uncertainties in future projections from these models as driven by bias-corrected and downscaled CMIP5 climate projections, in the context of the balance between climate model robustness and climate model diversity.
NASA Astrophysics Data System (ADS)
Kawase, H.; Sasaki, H.; Murata, A.; Nosaka, M.; Ito, R.; Dairaku, K.; Sasai, T.; Yamazaki, T.; Sugimoto, S.; Watanabe, S.; Fujita, M.; Kawazoe, S.; Okada, Y.; Ishii, M.; Mizuta, R.; Takayabu, I.
2017-12-01
We performed large ensemble climate experiments to investigate future changes in extreme weather events using Meteorological Research Institute-Atmospheric General Circulation Model (MRI-AGCM) with about 60 km grid spacing and Non-Hydrostatic Regional Climate Model with 20 km grid spacing (NHRCM20). The global climate simulations are prescribed by the past and future sea surface temperature (SST). Two future climate simulations are conducted so that the global-mean surface air temperature rise 2 K and 4 K from the pre-industrial period. The non-warming simulations are also conducted by MRI-AGCM and NHRCM20. We focus on the future changes in snowfall in Japan. In winter, the Sea of Japan coast experiences heavy snowfall due to East Asian winter monsoon. The cold and dry air from the continent obtains abundant moisture from the warm Sea of Japan, causing enormous amount of snowfall especially in the mountainous area. The NHRCM20 showed winter total snowfall decreases in the most parts of Japan. In contrast, extremely heavy daily snowfall could increase at mountainous areas in the Central Japan and Northern parts of Japan when strong cold air outbreak occurs and the convergence zone appears over the Sea of Japan. The warmer Sea of Japan in the future climate could supply more moisture than that in the present climate, indicating that the cumulus convections could be enhanced around the convergence zone in the Sea of Japan. However, the horizontal resolution of 20 km is not enough to resolve Japan`s complex topography. Therefore, dynamical downscaling with 5 km grid spacing (NHRCM05) is also conducted using NHRCM20. The NHRCM05 does a better job simulating the regional boundary of snowfall and shows more detailed changes in future snowfall characteristics. The future changes in total and extremely heavy snowfall depend on the regions, elevations, and synoptic conditions around Japan.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Yang; Lu, Jian; Leung, Lai-Yung R.
This study examines the changes of landfalling atmospheric rivers (ARs) over the west coast of North America in response to future warming using model outputs from the Coupled Model Intercomparison Project phase 5 (CMIP5). The result reveals a strikingly large magnitude of increase of AR days by the end of the 21st century in the RCP8.5 climate change scenario, with fractional increases ranging between ~50% and 600%, depending on the seasons and the landfall locations. These increases are predominantly controlled by the super-Clausius-Clapeyron rate of increase of atmospheric water vapor with warming, while changes of winds that transport moisture inmore » the ARs, or dynamical effect, mostly counter the thermodynamical effect of increasing water vapor, limiting the increase of AR events in the future. The consistent negative effect of wind changes on AR days during spring and fall can be further linked to the robust poleward shift of the subtropical jet in the North Pacific basin.« less
Evidence for an implicit influence of memory on future thinking.
Szpunar, Karl K
2010-07-01
The capacity to think about specific events that one might encounter in the future--episodic future thought--involves the flexible (re)organization of memory. The present study demonstrates that implicit processes play an important role here. In two experiments (N = 180), participants were asked to generate a personal event that they expected to plausibly occur in the following week. The content of the participants' responses was biased (i.e., primed) by recent thoughts about a specific category of experiences. For instance, participants who had recently been induced to think about social experiences, in the context of an ostensibly unrelated task, were more likely than nonprimed participants to generate similar events occurring in their immediate future. Importantly, the participants were unaware of this unintentional influence of memory. The theoretical and practical implications of these findings for understanding episodic future thought and its relation to memory are discussed.
Climate modelling of mass-extinction events: a review
NASA Astrophysics Data System (ADS)
Feulner, Georg
2009-07-01
Despite tremendous interest in the topic and decades of research, the origins of the major losses of biodiversity in the history of life on Earth remain elusive. A variety of possible causes for these mass-extinction events have been investigated, including impacts of asteroids or comets, large-scale volcanic eruptions, effects from changes in the distribution of continents caused by plate tectonics, and biological factors, to name but a few. Many of these suggested drivers involve or indeed require changes of Earth's climate, which then affect the biosphere of our planet, causing a global reduction in the diversity of biological species. It can be argued, therefore, that a detailed understanding of these climatic variations and their effects on ecosystems are prerequisites for a solution to the enigma of biological extinctions. Apart from investigations of the paleoclimate data of the time periods of mass extinctions, climate-modelling experiments should be able to shed some light on these dramatic events. Somewhat surprisingly, however, only a few comprehensive modelling studies of the climate changes associated with extinction events have been undertaken. These studies will be reviewed in this paper. Furthermore, the role of modelling in extinction research in general and suggestions for future research are discussed.
NASA Astrophysics Data System (ADS)
Pelle, A.; Allen, M.; Fu, J. S.
2013-12-01
With rising population and increasing urban density, it is of pivotal importance for urban planners to plan for increasing extreme precipitation events. Climate models indicate that an increase in global mean temperature will lead to increased frequency and intensity of storms of a variety of types. Analysis of results from the Coupled Model Intercomparison Project, Phase 5 (CMIP5) has demonstrated that global climate models severely underestimate precipitation, however. Preliminary results from dynamical downscaling indicate that Philadelphia, Pennsylvania is expected to experience the greatest increase of precipitation due to an increase in annual extreme events in the US. New York City, New York and Chicago, Illinois are anticipated to have similarly large increases in annual extreme precipitation events. In order to produce more accurate results, we downscale Philadelphia, Chicago, and New York City using the Weather Research and Forecasting model (WRF). We analyze historical precipitation data and WRF output utilizing a Log Pearson Type III (LP3) distribution for frequency of extreme precipitation events. This study aims to determine the likelihood of extreme precipitation in future years and its effect on the of cost of stormwater management for these three cities.
Future Extreme Event Vulnerability in the Rural Northeastern United States
NASA Astrophysics Data System (ADS)
Winter, J.; Bowen, F. L.; Partridge, T.; Chipman, J. W.
2017-12-01
Future climate change impacts on humans will be determined by the convergence of evolving physical climate and socioeconomic systems. Of particular concern is the intersection of extreme events and vulnerable populations. Rural areas of the Northeastern United States have experienced increased temperature and precipitation extremes, especially over the past three decades, and face unique challenges due to their physical isolation, natural resources dependent economies, and high poverty rates. To explore the impacts of future extreme events on vulnerable, rural populations in the Northeast, we project extreme events and vulnerability indicators to identify where changes in extreme events and vulnerable populations coincide. Specifically, we analyze future (2046-2075) maximum annual daily temperature, minimum annual daily temperature, maximum annual daily precipitation, and maximum consecutive dry day length for Representative Concentration Pathways (RCP) 4.5 and 8.5 using four global climate models (GCM) and a gridded observational dataset. We then overlay those projections with estimates of county-level population and relative income for 2060 to calculate changes in person-events from historical (1976-2005), with a focus on Northeast counties that have less than 250,000 people and are in the bottom income quartile. We find that across the rural Northeast for RCP4.5, heat person-events per year increase tenfold, far exceeding decreases in cold person-events and relatively small changes in precipitation and drought person-events. Counties in the bottom income quartile have historically (1976-2005) experienced a disproportionate number of heat events, and counties in the bottom two income quartiles are projected to experience a greater heat event increase by 2046-2075 than counties in the top two income quartiles. We further explore the relative contributions of event frequency, population, and income changes to the total and geographic distribution of climate change impacts on rural, vulnerable areas of the Northeast.
A novel in situ trigger combination method
Buzatu, Adrian; Warburton, Andreas; Krumnack, Nils; ...
2013-01-30
Searches for rare physics processes using particle detectors in high-luminosity colliding hadronic beam environments require the use of multi-level trigger systems to reject colossal background rates in real time. In analyses like the search for the Higgs boson, there is a need to maximize the signal acceptance by combining multiple different trigger chains when forming the offline data sample. In such statistically limited searches, datasets are often amassed over periods of several years, during which the trigger characteristics evolve and system performance can vary significantly. Reliable production cross-section measurements and upper limits must take into account a detailed understanding ofmore » the effective trigger inefficiency for every selected candidate event. We present as an example the complex situation of three trigger chains, based on missing energy and jet energy, that were combined in the context of the search for the Higgs (H) boson produced in association with a $W$ boson at the Collider Detector at Fermilab (CDF). We briefly review the existing techniques for combining triggers, namely the inclusion, division, and exclusion methods. We introduce and describe a novel fourth in situ method whereby, for each candidate event, only the trigger chain with the highest a priori probability of selecting the event is considered. We compare the inclusion and novel in situ methods for signal event yields in the CDF $WH$ search. This new combination method, by virtue of its scalability to large numbers of differing trigger chains and insensitivity to correlations between triggers, will benefit future long-running collider experiments, including those currently operating on the Large Hadron Collider.« less
A novel in situ trigger combination method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buzatu, Adrian; Warburton, Andreas; Krumnack, Nils
Searches for rare physics processes using particle detectors in high-luminosity colliding hadronic beam environments require the use of multi-level trigger systems to reject colossal background rates in real time. In analyses like the search for the Higgs boson, there is a need to maximize the signal acceptance by combining multiple different trigger chains when forming the offline data sample. In such statistically limited searches, datasets are often amassed over periods of several years, during which the trigger characteristics evolve and system performance can vary significantly. Reliable production cross-section measurements and upper limits must take into account a detailed understanding ofmore » the effective trigger inefficiency for every selected candidate event. We present as an example the complex situation of three trigger chains, based on missing energy and jet energy, that were combined in the context of the search for the Higgs (H) boson produced in association with a $W$ boson at the Collider Detector at Fermilab (CDF). We briefly review the existing techniques for combining triggers, namely the inclusion, division, and exclusion methods. We introduce and describe a novel fourth in situ method whereby, for each candidate event, only the trigger chain with the highest a priori probability of selecting the event is considered. We compare the inclusion and novel in situ methods for signal event yields in the CDF $WH$ search. This new combination method, by virtue of its scalability to large numbers of differing trigger chains and insensitivity to correlations between triggers, will benefit future long-running collider experiments, including those currently operating on the Large Hadron Collider.« less
Determination of critical nucleation number for a single nucleation amyloid-β aggregation model.
Ghosh, Preetam; Vaidya, Ashwin; Kumar, Amit; Rangachari, Vijayaraghavan
2016-03-01
Aggregates of amyloid-β (Aβ) peptide are known to be the key pathological agents in Alzheimer disease (AD). Aβ aggregates to form large, insoluble fibrils that deposit as senile plaques in AD brains. The process of aggregation is nucleation-dependent in which the formation of a nucleus is the rate-limiting step, and controls the physiochemical fate of the aggregates formed. Therefore, understanding the properties of nucleus and pre-nucleation events will be significant in reducing the existing knowledge-gap in AD pathogenesis. In this report, we have determined the plausible range of critical nucleation number (n(*)), the number of monomers associated within the nucleus for a homogenous aggregation model with single unique nucleation event, by two independent methods: A reduced-order stability analysis and ordinary differential equation based numerical analysis, supported by experimental biophysics. The results establish that the most likely range of n(*) is between 7 and 14 and within, this range, n(*) = 12 closely supports the experimental data. These numbers are in agreement with those previously reported, and importantly, the report establishes a new modeling framework using two independent approaches towards a convergent solution in modeling complex aggregation reactions. Our model also suggests that the formation of large protofibrils is dependent on the nature of n(*), further supporting the idea that pre-nucleation events are significant in controlling the fate of larger aggregates formed. This report has re-opened an old problem with a new perspective and holds promise towards revealing the molecular events in amyloid pathologies in the future. Copyright © 2015 Elsevier Inc. All rights reserved.
De Brigard, Felipe; Giovanello, Kelly S; Stewart, Gregory W; Lockrow, Amber W; O'Brien, Margaret M; Spreng, R Nathan
2016-12-01
Recent evidence demonstrates remarkable overlap in the neural and cognitive mechanisms underlying episodic memory, episodic future thinking, and episodic counterfactual thinking. However, the extent to which the phenomenological characteristics associated with these mental simulations change as a result of ageing remains largely unexplored. The current study employs adapted versions of the Memory Characteristics Questionnaire and the Autobiographical Interview to compare the phenomenological characteristics associated with both positive and negative episodic past, future, and counterfactual simulations in younger and older adults. Additionally, it explores the influence of perceived likelihood in the experience of such simulations. The results indicate that, across all simulations, older adults generate more external details and report higher ratings of vividness, composition, and intensity than young adults. Conversely, younger adults generate more internal details across all conditions and rated positive and negative likely future events as more likely than did older adults. Additionally, both younger and older adults reported higher ratings for sensory, composition, and intensity factors during episodic memories relative to future and counterfactual thoughts. Finally, for both groups, ratings of spatial coherence and composition were higher for likely counterfactuals than for both unlikely counterfactuals and future simulations. Implications for the psychology of mental simulation and ageing are discussed.
The Immediacy of Arctic Change
NASA Astrophysics Data System (ADS)
Overland, J. E.; Wang, M.; Soreide, N. N.
2015-12-01
Ongoing temperature changes in the Arctic are large relative to lower latitudes; a process known as Arctic Amplification. Arctic temperatures have increased at least 3 times the rate of mid-latitude temperatures relative to the late 20th century, due to multiple interacting feedbacks driven by modest global change. Even if global temperature increases are contained to +2° C by 2040, Arctic (North of 60° N) monthly mean temperatures in fall will increase by +5° C. The Arctic is very likely to be sea ice free during summer before 2040, with the sea ice free duration limited to <5 months. Snow cover will be absent in May and June on most land masses. Whether these changes impact mid-latitude weather events is complex and controversial, as the time period for observing such linkages is short [<10 years] and involves understanding direct forcing by Arctic changes on a chaotic climatic system. Although chaotic internal variability dominates the dynamics of atmospheric circulation, Arctic thermodynamic influences can reinforce regional weather patterns. Extreme Arctic temperature events, as a combination of mean temperature increases combined with natural variability, will become common, nearing and exceeding previous thresholds. Such an event as an analog for the future was the +4° C anomalies for Alaska in November-December 2014 related to recent warm Pacific sea surface temperatures. Thus for the next few decades out to 2040, continuing rapid environmental changes in the Arctic are very likely, despite any mitigation activities, and the appropriate response is to plan for adaptation to meet these mean and extreme event changes. Mitigation is essential to forestall further disasters in the second half of the century. It is important to note such future rapid Arctic amplification, and the potential for environmental surprises, to support those making planning decisions and encourage action.
NASA Technical Reports Server (NTRS)
Johnson, Teresa A.
2006-01-01
Knowledge Management is a proactive pursuit for the future success of any large organization faced with the imminent possibility that their senior managers/engineers with gained experiences and lessons learned plan to retire in the near term. Safety and Mission Assurance (S&MA) is proactively pursuing unique mechanism to ensure knowledge learned is retained and lessons learned captured and documented. Knowledge Capture Event/Activities/Management helps to provide a gateway between future retirees and our next generation of managers/engineers. S&MA hosted two Knowledge Capture Events during 2005 featuring three of its retiring fellows (Axel Larsen, Dave Whittle and Gary Johnson). The first Knowledge Capture Event February 24, 2005 focused on two Safety and Mission Assurance Safety Panels (Space Shuttle System Safety Review Panel (SSRP); Payload Safety Review Panel (PSRP) and the latter event December 15, 2005 featured lessons learned during Apollo, Skylab, and Space Shuttle which could be applicable in the newly created Crew Exploration Vehicle (CEV)/Constellation development program. Gemini, Apollo, Skylab and the Space Shuttle promised and delivered exciting human advances in space and benefits of space in people s everyday lives on earth. Johnson Space Center's Safety & Mission Assurance team work over the last 20 years has been mostly focused on operations we are now beginning the Exploration development program. S&MA will promote an atmosphere of knowledge sharing in its formal and informal cultures and work processes, and reward the open dissemination and sharing of information; we are asking "Why embrace relearning the "lessons learned" in the past?" On the Exploration program the focus will be on Design, Development, Test, & Evaluation (DDT&E); therefore, it is critical to understand the lessons from these past programs during the DDT&E phase.
NASA Astrophysics Data System (ADS)
Papastefanou, P.; Fleischer, K.; Hickler, T.; Grams, T.; Lapola, D.; Quesada, C. A.; Zang, C.; Rammig, A.
2017-12-01
The Amazon basin was recently hit by severe drought events that were unprecedented in their severity and spatial extent, e.g. during 2005, 2010 and 2015/2016. Significant amounts of biomass were lost, turning large parts of the rainforest from a carbon sink into a carbon source. It is assumed that drought-induced tree mortality from hydraulic failure played an important role during these events and may become more frequent in the Amazon region in the future. Many state-of-the-art dynamic vegetation models do not include plant hydraulic processes and fail to reproduce observed rainforest responses to drought events, such as e.g. increased tree mortality. We address this research gap by developing a simple plant-hydraulic module for the dynamic vegetation model LPJ-GUESS. This plant-hydraulic module uses leaf water potential and cavitation as baseline processes to simulate tree mortality under drought stress. Furthermore, we introduce different plant strategies in the model, which describe e.g. differences in the stomatal regulation under drought stress. To parameterize and evaluate our hydraulic module, we use a set of available observational data from the Amazon region. We apply our model to the Amazon Basin and highlight similarities and differences across other measured and predicted drought responses, e.g. extrapolated observations and data derived from satellite measurements. Our results highlight the importance of including plant hydraulic processes in dynamic vegetation models to correctly predict vegetation dynamics under drought stress and show major differences on the vegetation dynamics depending on the selected plant strategies. We also identify gaps in process understanding of the triggering factors, the extent and the consequences of drought responses that hampers our ability to predict potential impact of future drought events on the Amazon rainforest.
Kleindorfer, Dawn; Judd, Suzanne; Howard, Virginia J.; McClure, Leslie; Safford, Monika M.; Cushman, Mary; Rhodes, David; Howard, George
2011-01-01
Background and Purpose Previously in the REasons for Geographic And Racial Differences in Stroke (REGARDS) cohort, we found 18% of the stroke/TIA-free study population reported ≥ 1 stroke symptom (SS) at baseline. We sought to evaluate the additional impact of these stroke symptoms (SS) on risk for subsequent stroke. Methods REGARDS recruited 30,239 U.S. blacks and whites, aged 45+ in 2003–7, who are being followed every 6 months for events. All stroke events are physician-verified; those with prior diagnosed stroke or TIA are excluded from this analysis. At baseline, participants were asked six questions regarding stroke symptoms. Measured stroke risk factors were components of the Framingham Stroke Risk Score (FSRS). Results After excluding those with prior stroke or missing data, there were 24,412 participants in this analysis, with a median follow-up of 4.4 years. Participants were 39% black, 55% female, and had median age of 64 years. There were 381 physician-verified stroke events. The FSRS explained 72.0% of stroke risk; individual components explained between 0.2% (LVH) and 5.7% (age + race) of stroke risk. After adjustment for FSRS factors, SS were significantly related to stroke risk: for each SS reported, the risk of stroke increased by 21% per symptom. Discussion Among participants without self-reported stroke or TIA, prior SS are highly predictive of future stroke events. Compared to FSRS factors, the impact of SS on the prediction of future stroke was almost as large as the impact of smoking and hypertension, and larger than the impact of diabetes and heart disease. PMID:21921283
Kleindorfer, Dawn; Judd, Suzanne; Howard, Virginia J; McClure, Leslie; Safford, Monika M; Cushman, Mary; Rhodes, David; Howard, George
2011-11-01
Previously in the REasons for Geographic And Racial Differences in Stroke (REGARDS) cohort, we found 18% of the stroke/transient ischemic attack-free study population reported ≥1 stroke symptom at baseline. We sought to evaluate the additional impact of these stroke symptoms on risk for subsequent stroke. REGARDS recruited 30,239 US blacks and whites, aged 45+ years in 2003 to 2007 who are being followed every 6 months for events. All stroke events are physician-verified; those with prior diagnosed stroke or transient ischemic attack are excluded from this analysis. At baseline, participants were asked 6 questions regarding stroke symptoms. Measured stroke risk factors were components of the Framingham Stroke Risk Score. After excluding those with prior stroke or missing data, there were 24,412 participants in this analysis with a median follow-up of 4.4 years. Participants were 39% black, 55% female, and had median age of 64 years. There were 381 physician-verified stroke events. The Framingham Stroke Risk Score explained 72.0% of stroke risk; individual components explained between 0.2% (left ventricular hypertrophy) and 5.7% (age+race) of stroke risk. After adjustment for Framingham Stroke Risk Score factors, stroke symptoms were significantly related to stroke risk: for each stroke symptom reported, the risk of stroke increased by 21% per symptom. Among participants without self-reported stroke or transient ischemic attack, prior stroke symptoms are highly predictive of future stroke events. Compared with Framingham Stroke Risk Score factors, the impact of stroke symptom on the prediction of future stroke was almost as large as the impact of smoking and hypertension and larger than the impact of diabetes and heart disease.
Detection Thresholds of Falling Snow From Satellite-Borne Active and Passive Sensors
NASA Technical Reports Server (NTRS)
Skofronick-Jackson, Gail M.; Johnson, Benjamin T.; Munchak, S. Joseph
2013-01-01
There is an increased interest in detecting and estimating the amount of falling snow reaching the Earths surface in order to fully capture the global atmospheric water cycle. An initial step toward global spaceborne falling snow algorithms for current and future missions includes determining the thresholds of detection for various active and passive sensor channel configurations and falling snow events over land surfaces and lakes. In this paper, cloud resolving model simulations of lake effect and synoptic snow events were used to determine the minimum amount of snow (threshold) that could be detected by the following instruments: the W-band radar of CloudSat, Global Precipitation Measurement (GPM) Dual-Frequency Precipitation Radar (DPR)Ku- and Ka-bands, and the GPM Microwave Imager. Eleven different nonspherical snowflake shapes were used in the analysis. Notable results include the following: 1) The W-band radar has detection thresholds more than an order of magnitude lower than the future GPM radars; 2) the cloud structure macrophysics influences the thresholds of detection for passive channels (e.g., snow events with larger ice water paths and thicker clouds are easier to detect); 3) the snowflake microphysics (mainly shape and density)plays a large role in the detection threshold for active and passive instruments; 4) with reasonable assumptions, the passive 166-GHz channel has detection threshold values comparable to those of the GPM DPR Ku- and Ka-band radars with approximately 0.05 g *m(exp -3) detected at the surface, or an approximately 0.5-1.0-mm * h(exp -1) melted snow rate. This paper provides information on the light snowfall events missed by the sensors and not captured in global estimates.
Pons, Wendy; Young, Ian; Truong, Jenifer; Jones-Bitton, Andria; McEwen, Scott; Pintar, Katarina; Papadopoulos, Andrew
2015-01-01
Reports of outbreaks in Canada and the United States (U.S.) indicate that approximately 50% of all waterborne diseases occur in small non-community drinking water systems (SDWSs). Summarizing these investigations to identify the factors and conditions contributing to outbreaks is needed in order to help prevent future outbreaks. The objectives of this study were to: 1) identify published reports of waterborne disease outbreaks involving SDWSs in Canada and the U.S. since 1970; 2) summarize reported factors contributing to outbreaks, including water system characteristics and events surrounding the outbreaks; and 3) identify terminology used to describe SDWSs in outbreak reports. Three electronic databases and grey literature sources were searched for outbreak reports involving SDWSs throughout Canada and the U.S. from 1970 to 2014. Two reviewers independently screened and extracted data related to water system characteristics and outbreak events. The data were analyzed descriptively with 'outbreak' as the unit of analysis. From a total of 1,995 citations, we identified 50 relevant articles reporting 293 unique outbreaks. Failure of an existing water treatment system (22.7%) and lack of water treatment (20.2%) were the leading causes of waterborne outbreaks in SDWSs. A seasonal trend was observed with 51% of outbreaks occurring in summer months (p<0.001). There was large variation in terminology used to describe SDWSs, and a large number of variables were not reported, including water source and whether water treatment was used (missing in 31% and 66% of reports, respectively). More consistent reporting and descriptions of SDWSs in future outbreak reports are needed to understand the epidemiology of these outbreaks and to inform the development of targeted interventions for SDWSs. Additional monitoring of water systems that are used on a seasonal or infrequent basis would be worthwhile to inform future protection efforts.
Jones-Bitton, Andria; McEwen, Scott; Pintar, Katarina; Papadopoulos, Andrew
2015-01-01
Background Reports of outbreaks in Canada and the United States (U.S.) indicate that approximately 50% of all waterborne diseases occur in small non-community drinking water systems (SDWSs). Summarizing these investigations to identify the factors and conditions contributing to outbreaks is needed in order to help prevent future outbreaks. Objectives The objectives of this study were to: 1) identify published reports of waterborne disease outbreaks involving SDWSs in Canada and the U.S. since 1970; 2) summarize reported factors contributing to outbreaks, including water system characteristics and events surrounding the outbreaks; and 3) identify terminology used to describe SDWSs in outbreak reports. Methods Three electronic databases and grey literature sources were searched for outbreak reports involving SDWSs throughout Canada and the U.S. from 1970 to 2014. Two reviewers independently screened and extracted data related to water system characteristics and outbreak events. The data were analyzed descriptively with ‘outbreak’ as the unit of analysis. Results From a total of 1,995 citations, we identified 50 relevant articles reporting 293 unique outbreaks. Failure of an existing water treatment system (22.7%) and lack of water treatment (20.2%) were the leading causes of waterborne outbreaks in SDWSs. A seasonal trend was observed with 51% of outbreaks occurring in summer months (p<0.001). There was large variation in terminology used to describe SDWSs, and a large number of variables were not reported, including water source and whether water treatment was used (missing in 31% and 66% of reports, respectively). Conclusions More consistent reporting and descriptions of SDWSs in future outbreak reports are needed to understand the epidemiology of these outbreaks and to inform the development of targeted interventions for SDWSs. Additional monitoring of water systems that are used on a seasonal or infrequent basis would be worthwhile to inform future protection efforts. PMID:26513152
Heat in the southeastern United States: Characteristics, trends, and potential health impact
2017-01-01
High summer temperatures in extratropical areas have an impact on the public’s health, mainly through heat stress, high air pollution concentrations, and the transmission of tropical diseases. The purpose of this study is to examine the current characteristics of heat events and future projections of summer apparent temperature (AT)–and associated health concerns–throughout the southeastern United States. Synoptic climatology was used to assess the atmospheric characteristics of extreme heat days (EHDs) from 1979–2015. Ozone concentrations also were examined during EHDs. Trends in summer-season AT over the 37-year period and correlations between AT and atmospheric circulation were determined. Mid-century estimates of summer AT were calculated using downscaled data from an ensemble of global climate models. EHDs throughout the Southeast were characterized by ridging and anticyclones over the Southeast and the presence of moist tropical air masses. Exceedingly high ozone concentrations occurred on EHDs in the Atlanta area and throughout central North Carolina. While summer ATs did not increase significantly from 1979–2015, summer ATs are projected to increase substantially by mid-century, with most the Southeast having ATs similar to that of present-day southern Florida (i.e., a tropical climate). High ozone concentrations should continue to occur during future heat events. Large urban areas are expected to be the most affected by the future warming, resulting from intensifying and expanding urban heat islands, a large increase in heat-vulnerable populations, and climate conditions that will be highly suitable for tropical-disease transmission by the Aedes aegypti mosquito. This nexus of vulnerability creates the potential for heat-related morbidity and mortality, as well as the appearance of disease not previously seen in the region. These effects can be attenuated by policies that reduce urban heat (e.g., cool roofs and green roofs) and that improve infrastructure (e.g. emergency services, conditioned space). PMID:28520817
Freud's 'thought-transference', repression, and the future of psychoanalysis.
Farrell, D
1983-01-01
Psychoanalysts since Freud have largely neglected his important, paradigmatic ideas on the possibility of 'thought-transference' (telepathy) as an influence in mental life. A chance recording of two dreams which proved to coincide in some detail with distant reality events again suggests evidence in favour of the telepathy hypothesis. On interpretation, one of these dreams reveals even greater correspondence with the reality event and shows the mechanism of transformation of the repressed wish from latent dream content into manifest dream, utilizing a number of elements of the dream instigator, an apparently telepathically received day residue. Working with this material proceeded against very strong resistance, most evident in repeated forgetting of one or another bit of the clinical data. This has been the fate of ideas pertaining to the occult since Freud's first formulations, as is documented here by references to the early history of psychoanalysis. The issue now and for the future is whether psychoanalysis will continue to ignore the crucial question of validity in regard to the telepathy hypothesis. The psychoanalytic method is uniquely qualified to investigate so-called parapsychological phenomena and has the same obligation to do so as with other mental events. We need to examine the evidence in spite of the threat posed to our conventional understanding of the limits of the mind by the very act of acknowledging the question. If we can overcome our resistance to undertaking this task, we may find that, once again, Freud pointed the way towards discovery of a new paradigm in science.
Catchment scale molecular composition of hydrologically mobilized dissolved organic matter
NASA Astrophysics Data System (ADS)
Raeke, Julia; Lechtenfeld, Oliver J.; Oosterwoud, Marieke R.; Bornmann, Katrin; Tittel, Jörg; Reemtsma, Thorsten
2016-04-01
Increasing concentrations of dissolved organic matter (DOM) in rivers of temperate catchments in Europe and North Amerika impose new technical challenges for drinking water production. The driving factors for this decadal increase in DOM concentration are not conclusive and changes in annual temperatures, precipitation and atmospheric deposition are intensely discussed. It is known that the majority of DOM is released by few but large hydrologic events, mobilizing DOM from riparian wetlands for export by rivers and streams. The mechanisms of this mobilization and the resulting molecular composition of the released DOM may be used to infer long-term changes in the biogeochemistry of the respective catchment. Event-based samples collected over two years from streams in three temperate catchments in the German mid-range mountains were analyzed after solid-phase extraction of DOM for their molecular composition by ultra-high resolution mass spectrometry (FT-ICR MS). Hydrologic conditions, land use and water chemistry parameters were used to complement the molecular analysis. The molecular composition of the riverine DOM was strongly dependent on the magnitude of the hydrologic events, with unsaturated, oxygen-enriched compounds being preferentially mobilized by large events. This pattern is consistent with an increase in dissolved iron and aluminum concentrations. In contrast, the relative proportions of nitrogen and sulfur bearing compounds increased with an increased agricultural land use but were less affected by the mobilization events. Co-precipitation experiments with colloidal aluminum showed that unsaturated and oxygen-rich compounds are preferentially removed from the dissolved phase. The precipitated compounds thus had similar chemical characteristics as compared to the mobilized DOM from heavy rain events. Radiocarbon analyses also indicated that this precipitated fraction of DOM was of comparably young radiocarbon age. DOM radiocarbon from field samples showed that also the event-mobilized DOM had higher radiocarbon content. Overall, hydrology not only controls the quantity of exported carbon from temperate catchments but also strongly influences the molecular composition by mobilizing distinct compound classes in conjunction with dissolved iron and aluminum. From these results future compositional changes in temperate river DOM can be assessed, given an expected increase in the magnitude of hydrologic events, and technical advice for drinking water production may be inferred.
NASA Astrophysics Data System (ADS)
Cabello, Angels; Velasco, Marc; Escaler, Isabel
2010-05-01
Floods, including flash floods and debris flow events, are one of the most important hazards in Europe regarding both economic and life loss. Moreover, changes in precipitation patterns and intensity are very likely to increase due to the observed and predicted global warming, rising the risk in areas that are already vulnerable to floods. Therefore, it is very important to carry out new strategies to improve flood protection, but it is also crucial to take into account historical data to identify high risk areas. The main objective of this paper is to show a comparative analysis of the flood risk management information compiled in four test-bed basins (Llobregat, Guadalhorce, Gardon d'Anduze and Linth basins) from three different European countries (Spain, France and Switzerland) and to identify which are the lessons learnt from their past experiences in order to propose future strategies on risk management. This work is part of the EU 7th FP project IMPRINTS which aims at reducing loss of life and economic damage through the improvement of the preparedness and the operational risk management of flash flood and debris flow (FF & DF) events. The methodology followed includes the following steps: o Specific survey on the effectivity of the implemented emergency plans and risk management procedures sent to the test-bed basin authorities that participate in the project o Analysis of the answers from the questionnaire and further research on their methodologies for risk evaluation o Compilation of available follow-up studies carried out after major flood events in the four test-bed basins analyzed o Collection of the lessons learnt through a comparative analysis of the previous information o Recommendations for future strategies on risk management based on lessons learnt and management gaps detected through the process As the Floods Directive (FD) already states, the flood risks associated to FF & DF events should be assessed through the elaboration of Flood Risk Management Plans (FRMP) with tailored solutions for each basin, evaluating their flood mitigation potential, promoting environmental objectives and increasing the efficiency of the already adopted measures. The FRMP should focus on prevention (and protection), preparedness and response, and these have been the three main risk management phases of a flood crisis that have been assessed when extracting the lessons learnt from past events. Lessons learnt concerning dissemination through the three previously mentioned phases and also related to education initiatives have also been included. A common response to most of the events described in this paper was to upgrade the meteorological and hydrological forecasting systems, making the forecasting lead-time as large as possible. Another common recommendation from the test-beds was the need to implement and accomplish the land use regulations. All the basins also detected that structural measures are necessary to increase the population's protection level, but replacing the traditional safety mentality by a risk culture based on a comprehensive analysis of the flood risk. The four basins studied have also highlighted the importance of collecting information when FF & DF events occur and creating historic databases that will provide extremely useful information in the future.
Climate projection of synoptic patterns forming extremely high wind speed over the Barents Sea
NASA Astrophysics Data System (ADS)
Surkova, Galina; Krylov, Aleksey
2017-04-01
Frequency of extreme weather events is not very high, but their consequences for the human well-being may be hazardous. These seldom events are not always well simulated by climate models directly. Sometimes it is more effective to analyze numerical projection of large-scale synoptic event generating extreme weather. For example, in mid-latitude surface wind speed depends mainly on the sea level pressure (SLP) field - its configuration and horizontal pressure gradient. This idea was implemented for analysis of extreme wind speed events over the Barents Sea. The calendar of high surface wind speed V (10 m above the surface) was prepared for events with V exceeding 99th percentile value in the central part of the Barents Sea. Analysis of probability distribution function of V was carried out on the base of ERA-Interim reanalysis data (6-hours, 0.75x0.75 degrees of latitude and longitude) for the period 1981-2010. Storm wind events number was found to be 240 days. Sea level pressure field over the sea and surrounding area was selected for each storm wind event. For the climate of the future (scenario RCP8.5), projections of SLP from CMIP5 numerical experiments were used. More than 20 climate models results of projected SLP (2006-2100) over the Barents Sea were correlated with modern storm wind SLP fields. Our calculations showed the positive tendency of annual frequency of storm SLP patterns over the Barents Sea by the end of 21st century.
Anthropogenic influences on the Preservation of Ancient Tsunami Deposits
NASA Astrophysics Data System (ADS)
Goodman-Tchernov, Beverly
2017-04-01
Deposits and damage on the landscape immediately following a tsunami event are subject to a range of post-depositional alterations driven by natural and anthropogenic processes, ultimately ending in extremely differential preservation that complicates efforts to find and interpret ancient and paleotsunami remains. Along the Israeli Mediterranean coastline, offshore tsunami sediment research has offered a reconstruction of multiple events, but the onshore record has proved challenging due to post-event clean-up, coastal development, and natural erosion. Archaeological excavations in the last half century have also removed a large portion of sediments that might have assisted in the effort. Archival photographs, field descriptions, and newly excavated areas were investigated in light of the offshore and historical evidence for tsunamis. Unique deposits from those records and from newly exposed areas present new information that illustrate circumstances in which a deposit is well-preserved and where it is not. A trend is apparent in which areas which are under heavy use at the time of the event are more likely to be renovated, rebuilt, or otherwise changed post-event; leaving less fingerprint behind, while better preservation of the deposit is present in already neglected or less functioning areas. Also, in some cases field evidence that is seemingly contradictory to the presence of a disaster is, in fact, an acute marker of the event. Worldwide, past tsunami deposit field evidence is a valuable database for better informing estimates and models of potential future events; and therefore such improvements in field identification are important.
"Heinrich events" (& sediments): A history of terminology and recommendations for future usage
NASA Astrophysics Data System (ADS)
Andrews, John T.; Voelker, Antje H. L.
2018-05-01
We document the history of terms used to describe Heinrich (H-) layers and events and which mark major glaciological iceberg discharge events in the North Atlantic. We argue that the usage "Heinrich layer," "Heinrich zone", or "Heinrich event" should be restricted to only those sediments that can be ascribed to an origin from the Hudson Strait Ice Stream and the Laurentide Ice Sheet. We also argue that the commonplace understanding of these events--as dominated by massive iceberg discharges --fails to include the earlier well-documented evidence that these events were also massive meltwater events linked to deposition along the North Atlantic Mid-Ocean Channel (NAMOC) in the Labrador Sea. We make five recommendations for future usage of "Heinrich events," which include: restricting the usage to those events that can be mineralogically/geochemically linked to Hudson Strait; abandoning the term "Heinrich stadial"; and promote local terminology for "ice rafted events" that may be correlated, or not, with Hudson Strait Heinrich events based on calibrated radiocarbon dates or other appropriate chronological markers.
NASA Astrophysics Data System (ADS)
Clare, Michael
2016-04-01
Large earthquakes and associated tsunamis pose a potential risk to coastal communities. Earthquakes may trigger submarine landslides that mix with surrounding water to produce turbidity currents. Recent studies offshore Algeria have shown that earthquake-triggered turbidity currents can break important communication cables. If large earthquakes reliably trigger landslides and turbidity currents, then their deposits can be used as a long-term record to understand temporal trends in earthquake activity. It is important to understand in which settings this approach can be applied. We provide some suggestions for future Mediterranean palaeoseismic studies, based on learnings from three sites. Two long piston cores from the Balearic Abyssal Plain provide long-term (<150 ka) records of large volume turbidites. The frequency distribution form of turbidite recurrence indicates a constant hazard rate through time and is similar to the Poisson distribution attributed to large earthquake recurrence on a regional basis. Turbidite thickness varies in response to sea level, which is attributed to proximity and availability of sediment. While mean turbidite recurrence is similar to the seismogenic El Asnam fault in Algeria, geochemical analysis reveals not all turbidites were sourced from the Algerian margin. The basin plain record is instead an amalgamation of flows from Algeria, Sardinia, and river fed systems further to the north, many of which were not earthquake-triggered. Thus, such distal basin plain settings are not ideal sites for turbidite palaoeseimology. Boxcores from the eastern Algerian slope reveal a thin silty turbidite dated to ~700 ya. Given its similar appearance across a widespread area and correlative age, the turbidite is inferred to have been earthquake-triggered. More recent earthquakes that have affected the Algerian slope are not recorded, however. Unlike the central and western Algerian slopes, the eastern part lacks canyons and had limited sediment input in the Holocene. This indicates the eastern part is less sensitive to earthquake-triggered slope failures and is less suitable for future palaeoseismology investigations. Landslide events identified from contourite drift and mound sequences in the Tyrrhenian Sea indicate a regular temporal spacing. No landslides are identified over the last 10,000 years, however, and the inferred recurrence between events is in the order of tens to hundreds of thousands of years. The preconditioning agents and triggers for failures are interpreted to be related to oversteepening of depositional mounds, current-related erosion and geotechnical properties of contourite sediments, rather than earthquake effects. Major hiatuses (up to 2 Myr) result in local incompleteness of the depositional record. Therefore this setting is also unlikely to yield useful palaeoseismological records. This is not intended as a pessimistic tale, however, but instead aims to provide guidance for the future. Efforts should focus on sites that ideally feature: sediments that can be dated accurately from proximal to distal sites; near-constant sediment accumulation rates through time, that provide high enough sensitivities to failure; limited modification by bottom-currents; and, known historical earthquake events to correlate with dated deposits from box or multicoring.
Guy, Joshua H; Deakin, Glen B; Edwards, Andrew M; Miller, Catherine M; Pyne, David B
2015-03-01
Extreme environmental conditions present athletes with diverse challenges; however, not all sporting events are limited by thermoregulatory parameters. The purpose of this leading article is to identify specific instances where hot environmental conditions either compromise or augment performance and, where heat acclimation appears justified, evaluate the effectiveness of pre-event acclimation processes. To identify events likely to be receptive to pre-competition heat adaptation protocols, we clustered and quantified the magnitude of difference in performance of elite athletes competing in International Association of Athletics Federations (IAAF) World Championships (1999-2011) in hot environments (>25 °C) with those in cooler temperate conditions (<25 °C). Athletes in endurance events performed worse in hot conditions (~3 % reduction in performance, Cohen's d > 0.8; large impairment), while in contrast, performance in short-duration sprint events was augmented in the heat compared with temperate conditions (~1 % improvement, Cohen's d > 0.8; large performance gain). As endurance events were identified as compromised by the heat, we evaluated common short-term heat acclimation (≤7 days, STHA) and medium-term heat acclimation (8-14 days, MTHA) protocols. This process identified beneficial effects of heat acclimation on performance using both STHA (2.4 ± 3.5 %) and MTHA protocols (10.2 ± 14.0 %). These effects were differentially greater for MTHA, which also demonstrated larger reductions in both endpoint exercise heart rate (STHA: -3.5 ± 1.8 % vs MTHA: -7.0 ± 1.9 %) and endpoint core temperature (STHA: -0.7 ± 0.7 % vs -0.8 ± 0.3 %). It appears that worthwhile acclimation is achievable for endurance athletes via both short-and medium-length protocols but more is gained using MTHA. Conversely, it is also conceivable that heat acclimation may be counterproductive for sprinters. As high-performance athletes are often time-poor, shorter duration protocols may be of practical preference for endurance athletes where satisfactory outcomes can be achieved.
Attribution of extreme rainfall from Hurricane Harvey, August 2017
NASA Astrophysics Data System (ADS)
van Oldenborgh, Geert Jan; van der Wiel, Karin; Sebastian, Antonia; Singh, Roop; Arrighi, Julie; Otto, Friederike; Haustein, Karsten; Li, Sihan; Vecchi, Gabriel; Cullen, Heidi
2017-12-01
During August 25-30, 2017, Hurricane Harvey stalled over Texas and caused extreme precipitation, particularly over Houston and the surrounding area on August 26-28. This resulted in extensive flooding with over 80 fatalities and large economic costs. It was an extremely rare event: the return period of the highest observed three-day precipitation amount, 1043.4 mm 3dy-1 at Baytown, is more than 9000 years (97.5% one-sided confidence interval) and return periods exceeded 1000 yr (750 mm 3dy-1) over a large area in the current climate. Observations since 1880 over the region show a clear positive trend in the intensity of extreme precipitation of between 12% and 22%, roughly two times the increase of the moisture holding capacity of the atmosphere expected for 1 °C warming according to the Clausius-Clapeyron (CC) relation. This would indicate that the moisture flux was increased by both the moisture content and stronger winds or updrafts driven by the heat of condensation of the moisture. We also analysed extreme rainfall in the Houston area in three ensembles of 25 km resolution models. The first also shows 2 × CC scaling, the second 1 × CC scaling and the third did not have a realistic representation of extreme rainfall on the Gulf Coast. Extrapolating these results to the 2017 event, we conclude that global warming made the precipitation about 15% (8%-19%) more intense, or equivalently made such an event three (1.5-5) times more likely. This analysis makes clear that extreme rainfall events along the Gulf Coast are on the rise. And while fortifying Houston to fully withstand the impact of an event as extreme as Hurricane Harvey may not be economically feasible, it is critical that information regarding the increasing risk of extreme rainfall events in general should be part of the discussion about future improvements to Houston’s flood protection system.
NASA Astrophysics Data System (ADS)
Shouquan Cheng, Chad; Li, Qian; Li, Guilong
2010-05-01
The synoptic weather typing approach has become popular in evaluating the impacts of climate change on a variety of environmental problems. One of the reasons is its ability to categorize a complex set of meteorological variables as a coherent index, which can facilitate analyses of local climate change impacts. The weather typing method has been successfully applied in Environment Canada for several research projects to analyze climatic change impacts on a number of extreme weather events, such as freezing rain, heavy rainfall, high-/low-flow events, air pollution, and human health. These studies comprise of three major parts: (1) historical simulation modeling to verify the extreme weather events, (2) statistical downscaling to provide station-scale future hourly/daily climate data, and (3) projections of changes in frequency and intensity of future extreme weather events in this century. To achieve these goals, in addition to synoptic weather typing, the modeling conceptualizations in meteorology and hydrology and a number of linear/nonlinear regression techniques were applied. Furthermore, a formal model result verification process has been built into each of the three parts of the projects. The results of the verification, based on historical observations of the outcome variables predicted by the models, showed very good agreement. The modeled results from these projects found that the frequency and intensity of future extreme weather events are projected to significantly increase under a changing climate in this century. This talk will introduce these research projects and outline the modeling exercise and result verification process. The major findings on future projections from the studies will be summarized in the presentation as well. One of the major conclusions from the studies is that the procedures (including synoptic weather typing) used in the studies are useful for climate change impact analysis on future extreme weather events. The implication of the significant increases in frequency and intensity of future extreme weather events would be useful to be considered when revising engineering infrastructure design standards and developing adaptation strategies and policies.
Strough, JoNell; de Bruin, Wändi Bruine; Parker, Andrew M.; Lemaster, Philip; Pichayayothin, Nipat; Delaney, Rebecca
2016-01-01
According to socioemotional selectivity theory, older adults' emotional well-being stems from having limited future time perspective that motivates them to maximize well-being in the “here and now.” Presumably, then, older adults' time horizons are associated with emotional competencies that boost positive affect and dampen negative affect, but little research has addressed this. Using a US national adult life-span sample (N= 3,933, 18-93 yrs), we found that a two-factor model of future time perspective (focus on future opportunities; focus on limited time) fit the data better than a one-factor model. Through middle age, people perceived the life-span hourglass as half full—they focused more on future opportunities than limited time. Around age 60, the balance changed to increasingly perceiving the life-span hourglass as half empty—they focused less on future opportunities and more on limited time. This pattern held even after accounting for perceived health, self-reported decision-making ability, and retirement status. At all ages, women's time horizons focused more on future opportunities compared to men's, and men's focused more on limited time. Focusing on future opportunities was associated with reporting less preoccupation with negative events, whereas focusing on limited time was associated with reporting more preoccupation. Older adults reported less preoccupation with negative events and this association was stronger after controlling for their perceptions of limited time and fewer future opportunities, suggesting that other pathways may explain older adults' reports of their ability to disengage from negative events. Insights gained and questions raised by measuring future time perspective as two dimensions are discussed. PMID:27267222
Strough, JoNell; Bruine de Bruin, Wändi; Parker, Andrew M; Lemaster, Philip; Pichayayothin, Nipat; Delaney, Rebecca
2016-09-01
According to socioemotional selectivity theory, older adults' emotional well-being stems from having a limited future time perspective that motivates them to maximize well-being in the "here and now." Presumably, then, older adults' time horizons are associated with emotional competencies that boost positive affect and dampen negative affect, but little research has addressed this. Using a U.S. adult life-span sample (N = 3,933; 18-93 years), we found that a 2-factor model of future time perspective (future opportunities; limited time) fit the data better than a 1-factor model. Through middle age, people perceived the life-span hourglass as half full-they focused more on future opportunities than limited time. Around Age 60, the balance changed to increasingly perceiving the life-span hourglass as half empty-they focused less on future opportunities and more on limited time, even after accounting for perceived health, self-reported decision-making ability, and retirement status. At all ages, women's time horizons focused more on future opportunities compared with men's, and men's focused more on limited time. Focusing on future opportunities was associated with reporting less preoccupation with negative events, whereas focusing on limited time was associated with reporting more preoccupation. Older adults reported less preoccupation with negative events, and this association was stronger after controlling for their perceptions of limited time and fewer future opportunities, suggesting that other pathways may explain older adults' reports of their ability to disengage from negative events. Insights gained and questions raised by measuring future time perspective as 2 dimensions are discussed. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Camargo, J. I. B.; Desmars, J.; Braga-Ribas, F.; Vieira-Martins, R.; Assafin, M.; Sicardy, B.; Bérard, D.; Benedetti-Rossi, G.
2018-05-01
Distant objects in the solar system are crucial to better understand the history and evolution of its outskirts. The stellar occultation technique allows the determination of their sizes and shapes with kilometric accuracy, a detailed investigation of their immediate vicinities, as well as the detection of tenuous atmospheres. The prediction of such events is a key point in this study, and yet accurate enough predictions are available to a handful of objects only. In this work, we briefly discuss the dramatic impact that both the astrometry from the Gaia space mission and the deep sky surveys - the Large Synoptic Survey Telescope in particular - will have on the prediction of stellar occultations and how they may influence the future of the study of distant small solar system bodies through this technique.
Extreme Weather and Climate: Workshop Report
NASA Technical Reports Server (NTRS)
Sobel, Adam; Camargo, Suzana; Debucquoy, Wim; Deodatis, George; Gerrard, Michael; Hall, Timothy; Hallman, Robert; Keenan, Jesse; Lall, Upmanu; Levy, Marc;
2016-01-01
Extreme events are the aspects of climate to which human society is most sensitive. Due to both their severity and their rarity, extreme events can challenge the capacity of physical, social, economic and political infrastructures, turning natural events into human disasters. Yet, because they are low frequency events, the science of extreme events is very challenging. Among the challenges is the difficulty of connecting extreme events to longer-term, large-scale variability and trends in the climate system, including anthropogenic climate change. How can we best quantify the risks posed by extreme weather events, both in the current climate and in the warmer and different climates to come? How can we better predict them? What can we do to reduce the harm done by such events? In response to these questions, the Initiative on Extreme Weather and Climate has been created at Columbia University in New York City (extreme weather.columbia.edu). This Initiative is a University-wide activity focused on understanding the risks to human life, property, infrastructure, communities, institutions, ecosystems, and landscapes from extreme weather events, both in the present and future climates, and on developing solutions to mitigate those risks. In May 2015,the Initiative held its first science workshop, entitled Extreme Weather and Climate: Hazards, Impacts, Actions. The purpose of the workshop was to define the scope of the Initiative and tremendously broad intellectual footprint of the topic indicated by the titles of the presentations (see Table 1). The intent of the workshop was to stimulate thought across disciplinary lines by juxtaposing talks whose subjects differed dramatically. Each session concluded with question and answer panel sessions. Approximately, 150 people were in attendance throughout the day. Below is a brief synopsis of each presentation. The synopses collectively reflect the variety and richness of the emerging extreme event research agenda.
Solar Tutorial and Annotation Resource (STAR)
NASA Astrophysics Data System (ADS)
Showalter, C.; Rex, R.; Hurlburt, N. E.; Zita, E. J.
2009-12-01
We have written a software suite designed to facilitate solar data analysis by scientists, students, and the public, anticipating enormous datasets from future instruments. Our “STAR" suite includes an interactive learning section explaining 15 classes of solar events. Users learn software tools that exploit humans’ superior ability (over computers) to identify many events. Annotation tools include time slice generation to quantify loop oscillations, the interpolation of event shapes using natural cubic splines (for loops, sigmoids, and filaments) and closed cubic splines (for coronal holes). Learning these tools in an environment where examples are provided prepares new users to comfortably utilize annotation software with new data. Upon completion of our tutorial, users are presented with media of various solar events and asked to identify and annotate the images, to test their mastery of the system. Goals of the project include public input into the data analysis of very large datasets from future solar satellites, and increased public interest and knowledge about the Sun. In 2010, the Solar Dynamics Observatory (SDO) will be launched into orbit. SDO’s advancements in solar telescope technology will generate a terabyte per day of high-quality data, requiring innovation in data management. While major projects develop automated feature recognition software, so that computers can complete much of the initial event tagging and analysis, still, that software cannot annotate features such as sigmoids, coronal magnetic loops, coronal dimming, etc., due to large amounts of data concentrated in relatively small areas. Previously, solar physicists manually annotated these features, but with the imminent influx of data it is unrealistic to expect specialized researchers to examine every image that computers cannot fully process. A new approach is needed to efficiently process these data. Providing analysis tools and data access to students and the public have proven efficient in similar astrophysical projects (e.g. the “Galaxy Zoo.”) For “crowdsourcing” to be effective for solar research, the public needs knowledge and skills to recognize and annotate key events on the Sun. Our tutorial can provide this training, with over 200 images and 18 movies showing examples of active regions, coronal dimmings, coronal holes, coronal jets, coronal waves, emerging flux, sigmoids, coronal magnetic loops, filaments, filament eruption, flares, loop oscillation, plage, surges, and sunspots. Annotation tools are provided for many of these events. Many features of the tutorial, such as mouse-over definitions and interactive annotation examples, are designed to assist people without previous experience in solar physics. After completing the tutorial, the user is presented with an interactive quiz: a series of movies and images to identify and annotate. The tutorial teaches the user, with feedback on correct and incorrect answers, until the user develops appropriate confidence and skill. This prepares users to annotate new data, based on their experience with event recognition and annotation tools. Trained users can contribute significantly to our data analysis tasks, even as our training tool contributes to public science literacy and interest in solar physics.
[Artificial pancreas for automated glucose control].
Blauw, Helga; van Bon, Arianne C; de Vries, J H Hans
2013-01-01
Strict glucose control is important for patients with diabetes mellitus in order to prevent complications. However, many patients find it difficult to achieve the recommended HbA1c level. The possibility of hypoglycaemia plays an important role in this. The artificial pancreas automates glucose control, improving glucose levels without increasing hypoglycaemic events. The required insulin dose is calculated and administered on the basis of continuous glucose measurements, taking over a large part of the treatment from the patient. Several research groups are working on making this technique suitable for home use. It is expected that the artificial pancreas will become available in the near future. However, effectiveness and safety will have to be investigated in long-term studies. A large number of insulin-dependent patients with diabetes could be eligible for this treatment.
[Japanese epidemiologic investigation for non-steroidal anti-inflammatory drugs-induced ulcers].
Miyake, Kazumasa; Sakamoto, Choitsu
2011-06-01
This review summaried epidemiologic investigation for non-steroidal anti-inflammatory drugs (NSAIDs)-induced ulcers to focus on the Japanese evidence. In Japan, national health insurance does not cover procedures that prevent or lower the risk for NSAIDs-induced ulcer. In NSAIDs treatment to patients with risk factors, it is desirable to administer antiulcer agents. However, in Japan, there are no large-scale studies on the efficacy of co-medication such as proton pump inhibitors, prostaglandin analogs (misoprostol) or histamine-H2 receptor antagonists or on the effectiveness of H. pylori eradication or selective COX-2 antagonists. In the future, large-scale clinical studies should be conducted to accumulate high quality evidence including cost-effectiveness and overall safety including cardiovascular events, because Japanese differ from Westerners in several genetical or acquired factors.
Volcano hazards in the Three Sisters region, Oregon
Scott, William E.; Iverson, R.M.; Schilling, S.P.; Fisher, B.J.
2001-01-01
Three Sisters is one of three potentially active volcanic centers that lie close to rapidly growing communities and resort areas in Central Oregon. Two types of volcanoes exist in the Three Sisters region and each poses distinct hazards to people and property. South Sister, Middle Sister, and Broken Top, major composite volcanoes clustered near the center of the region, have erupted repeatedly over tens of thousands of years and may erupt explosively in the future. In contrast, mafic volcanoes, which range from small cinder cones to large shield volcanoes like North Sister and Belknap Crater, are typically short-lived (weeks to centuries) and erupt less explosively than do composite volcanoes. Hundreds of mafic volcanoes scattered through the Three Sisters region are part of a much longer zone along the High Cascades of Oregon in which birth of new mafic volcanoes is possible. This report describes the types of hazardous events that can occur in the Three Sisters region and the accompanying volcano-hazard-zonation map outlines areas that could be at risk from such events. Hazardous events include landslides from the steep flanks of large volcanoes and floods, which need not be triggered by eruptions, as well as eruption-triggered events such as fallout of tephra (volcanic ash) and lava flows. A proximal hazard zone roughly 20 kilometers (12 miles) in diameter surrounding the Three Sisters and Broken Top could be affected within minutes of the onset of an eruption or large landslide. Distal hazard zones that follow river valleys downstream from the Three Sisters and Broken Top could be inundated by lahars (rapid flows of water-laden rock and mud) generated either by melting of snow and ice during eruptions or by large landslides. Slow-moving lava flows could issue from new mafic volcanoes almost anywhere within the region. Fallout of tephra from eruption clouds can affect areas hundreds of kilometers (miles) downwind, so eruptions at volcanoes elsewhere in the Cascade Range also contribute to volcano hazards in Central Oregon. This report is intended to aid scientists, government officials, and citizens as they work together to reduce the risk from volcano hazards through public education and emergency-response planning.
NASA Astrophysics Data System (ADS)
Victor, Pia; Ewiak, Oktawian; Thomas, Ziegenhagen; Monika, Sobiesiak; Bernd, Schurr; Gabriel, Gonzalez; Onno, Oncken
2016-04-01
The Atacama Fault System (AFS) is an active trench-parallel fault system, located in the forearc of N-Chile directly above the subduction zone interface. Due to its well-exposed position in the hyper arid forearc of N-Chile it is the perfect target to investigate the interaction between the deformation cycle in the overriding forearc and the subduction zone seismic cycle of the underlying megathrust. Although the AFS and large parts of the upper crust are devoid of any noteworthy seismicity, at least three M=7 earthquakes in the past 10 ky have been documented in the paleoseismological record, demonstrating the potential of large events in the future. We apply a two-fold approach to explore fault activation and reactivation patterns through time and to investigate the triggering potential of upper crustal faults. 1) A new methodology using high-resolution topographic data allows us to investigate the number of past earthquakes for any given segment of the fault system as well as the amount of vertical displacement of the last increment. This provides us with a detailed dataset of past earthquake rupture of upper plate faults which is potentially linked to large subduction zone earthquakes. 2) The IPOC Creepmeter array (http://www.ipoc-network.org/index.php/observatory/creepmeter.html) provides us with high-resolution time series of fault displacement accumulation for 11 stations along the 4 most active branches of the AFS. This array monitors the displacement across the fault with 2 samples/min with a resolution of 1μm. Collocated seismometers record the seismicity at two of the creepmeters, whereas the regional seismicity is provided by the IPOC Seismological Networks. Continuous time series of the creepmeter stations since 2009 show that the shallow segments of the fault do not creep permanently. Instead the accumulation of permanent deformation occurs by triggered slip caused by local or remote earthquakes. The 2014 Mw=8.2 Pisagua Earthquake, located close to the creepmeter array, triggered large displacement events on all stations. Another event recorded on all stations was the 2010 Mw=8.8 Maule earthquake located 1500km south of the array. Exploring observations from both datasets, we can clearly state that triggering of upper crustal faults is observed for small-scale displacements. These findings allow us to speculate that the observed larger events in the past are likely being triggered events that require a critically prestressed condition of the target fault that is unclamped by stress changes triggered by large or potentially even small subduction zone earthquakes.
Schacter, Daniel L; Madore, Kevin P
2016-01-01
Recent studies have shown that imagining or simulating future events relies on many of the same cognitive and neural processes as remembering past events. According to the constructive episodic simulation hypothesis (Schacter and Addis, 2007), such overlap indicates that both remembered past and imagined future events rely heavily on episodic memory: future simulations are built on retrieved details of specific past experiences that are recombined into novel events. An alternative possibility is that commonalities between remembering and imagining reflect the influence of more general, non-episodic factors such as narrative style or communicative goals that shape the expression of both memory and imagination. We consider recent studies that distinguish the contributions of episodic and non-episodic processes in remembering the past and imagining the future by using an episodic specificity induction – brief training in recollecting the details of a past experience – and also extend this approach to the domains of problem solving and creative thinking. We conclude by suggesting that the specificity induction may target a process of scene construction that contributes to episodic memory as well as to imagination, problem solving, and creative thinking. PMID:28163775
NASA Astrophysics Data System (ADS)
Quinn, Niall; Freer, Jim; Coxon, Gemma; Dunne, Toby; Neal, Jeff; Bates, Paul; Sampson, Chris; Smith, Andy; Parkin, Geoff
2017-04-01
Computationally efficient flood inundation modelling systems capable of representing important hydrological and hydrodynamic flood generating processes over relatively large regions are vital for those interested in flood preparation, response, and real time forecasting. However, such systems are currently not readily available. This can be particularly important where flood predictions from intense rainfall are considered as the processes leading to flooding often involve localised, non-linear spatially connected hillslope-catchment responses. Therefore, this research introduces a novel hydrological-hydraulic modelling framework for the provision of probabilistic flood inundation predictions across catchment to regional scales that explicitly account for spatial variability in rainfall-runoff and routing processes. Approaches have been developed to automate the provision of required input datasets and estimate essential catchment characteristics from freely available, national datasets. This is an essential component of the framework as when making predictions over multiple catchments or at relatively large scales, and where data is often scarce, obtaining local information and manually incorporating it into the model quickly becomes infeasible. An extreme flooding event in the town of Morpeth, NE England, in 2008 was used as a first case study evaluation of the modelling framework introduced. The results demonstrated a high degree of prediction accuracy when comparing modelled and reconstructed event characteristics for the event, while the efficiency of the modelling approach used enabled the generation of relatively large ensembles of realisations from which uncertainty within the prediction may be represented. This research supports previous literature highlighting the importance of probabilistic forecasting, particularly during extreme events, which can be often be poorly characterised or even missed by deterministic predictions due to the inherent uncertainty in any model application. Future research will aim to further evaluate the robustness of the approaches introduced by applying the modelling framework to a variety of historical flood events across UK catchments. Furthermore, the flexibility and efficiency of the framework is ideally suited to the examination of the propagation of errors through the model which will help gain a better understanding of the dominant sources of uncertainty currently impacting flood inundation predictions.
NASA Astrophysics Data System (ADS)
Inamdar, S. P.; Johnson, E. R.; Rowland, R. D.; Walter, R. C.; Merritts, D.
2017-12-01
Historic and contemporary anthropogenic soil erosion combined with early-American milldams resulted in large deposits of legacy sediments in the valley bottoms of Piedmont watersheds of the eastern US. Breaching of milldams subsequently yielded highly incised streams with exposed vertical streambanks that are vulnerable to erosion. Streambank erosion is attributed to fluvial scouring, freeze-thaw processes and mass wasting. While streambanks represent a large reservoir of fine sediments and nutrients, there is considerable uncertainty about the contribution of these sources to watershed nonpoint source pollution. Using high-frequency hydrologic, sediment, and turbidity data we show that freeze-thaw events followed by intense winter rainstorms can export unusually high concentrations of suspended sediment and particulate nutrients from watersheds. Data from a 12 ha forested, Piedmont, stream following an intense rain event (54 mm) on February 2016 yielded suspended sediment and particulate nutrient (organic carbon and nitrogen) concentrations and exports that exceeded those from tropical storms Irene, Lee, and Sandy that had much greater rainfall and discharge amounts, but which occurred later in the year. A similar response was also observed with regards to turbidity data for USGS stream monitoring locations at Brandywine Creek (813 km2) and White Clay Creek (153 km2). We hypothesize that much of the sediment export associated with winter storms is likely due to erosion of streambank sediments and was driven by the coupled occurrence of freeze-thaw conditions and intense rainfall events. We propose that freeze-thaw erosion represents an important and underappreciated mechanism in streams that "recharges" the sediment supply, which then is available for flushing by moderate to large storms. Future climate projections indicate increased intensification of storm events and increased variability of winter temperatures. Freeze-thaw cycles coupled with winter rain events could increase erosion and transport of streambank sediments with detrimental consequences for water quality and health of downstream aquatic ecosystems. This study underscores the need to better understand the mechanisms of legacy sediment erosion and transport along with appropriate restoration strategies.
Sveinsson, Saemundur; McDill, Joshua; Wong, Gane K S; Li, Juanjuan; Li, Xia; Deyholos, Michael K; Cronk, Quentin C B
2014-04-01
Cultivated flax (Linum usitatissimum) is known to have undergone a whole-genome duplication around 5-9 million years ago. The aim of this study was to investigate whether other whole-genome duplication events have occurred in the evolutionary history of cultivated flax. Knowledge of such whole-genome duplications will be important in understanding the biology and genomics of cultivated flax. Transcriptomes of 11 Linum species were sequenced using the Illumina platform. The short reads were assembled de novo and the DupPipe pipeline was used to look for signatures of polyploidy events from the age distribution of paralogues. In addition, phylogenies of all paralogues were assembled within an estimated age window of interest. These phylogenies were assessed for evidence of a paleopolyploidy event within the genus Linum. A previously unknown paleopolyploidy event that occurred 20-40 million years ago was discovered and shown to be specific to a clade within Linum containing cultivated flax (L. usitatissimum) and other mainly blue-flowered species. The finding was supported by two lines of evidence. First, a significant change of slope (peak) was shown in the age distribution of paralogues that was phylogenetically restricted to, and ubiquitous in, this clade. Second, a large number of paralogue phylogenies were retrieved that are consistent with a polyploidy event occurring within that clade. The results show the utility of multi-species transcriptomics for detecting whole-genome duplication events and demonstrate that that multiple rounds of polyploidy have been important in shaping the evolutionary history of flax. Understanding and characterizing these whole-genome duplication events will be important for future Linum research.
Climate change impacts on human health over Europe through its effect on air quality.
Doherty, Ruth M; Heal, Mathew R; O'Connor, Fiona M
2017-12-05
This review examines the current literature on the effects of future emissions and climate change on particulate matter (PM) and O 3 air quality and on the consequent health impacts, with a focus on Europe. There is considerable literature on the effects of climate change on O 3 but fewer studies on the effects of climate change on PM concentrations. Under the latest Intergovernmental Panel on Climate Change (IPCC) 5th assessment report (AR5) Representative Concentration Pathways (RCPs), background O 3 entering Europe is expected to decrease under most scenarios due to higher water vapour concentrations in a warmer climate. However, under the extreme pathway RCP8.5 higher (more than double) methane (CH 4 ) abundances lead to increases in background O 3 that offset the O 3 decrease due to climate change especially for the 2100 period. Regionally, in polluted areas with high levels of nitrogen oxides (NO x ), elevated surface temperatures and humidities yield increases in surface O 3 - termed the O 3 climate penalty - especially in southern Europe. The O 3 response is larger for metrics that represent the higher end of the O 3 distribution, such as daily maximum O 3 . Future changes in PM concentrations due to climate change are much less certain, although several recent studies also suggest a PM climate penalty due to high temperatures and humidity and reduced precipitation in northern mid-latitude land regions in 2100.A larger number of studies have examined both future climate and emissions changes under the RCP scenarios. Under these pathways the impact of emission changes on air quality out to the 2050s will be larger than that due to climate change, because of large reductions in emissions of O 3 and PM pollutant precursor emissions and the more limited climate change response itself. Climate change will also affect climate extreme events such as heatwaves. Air pollution episodes are associated with stagnation events and sometimes heat waves. Air quality during the 2003 heatwave over Europe has been examined in numerous studies and mechanisms for enhancing O 3 have been identified.There are few studies on health effects associated with climate change impacts alone on air quality, but these report higher O 3 -related health burdens in polluted populated regions and greater PM 2.5 health burdens in these emission regions. Studies that examine the combined impacts of climate change and anthropogenic emissions change under the RCP scenarios report reductions in global and European premature O 3 -respiratory related and PM mortalities arising from the large decreases in precursor emissions. Under RCP 8.5 the large increase in CH 4 leads to global and European excess O 3 -respiratory related mortalities in 2100. For future health effects, besides uncertainty in future O 3 and particularly PM concentrations, there is also uncertainty in risk estimates such as effect modification by temperature on pollutant-response relationships and potential future adaptation that would alter exposure risk.
NASA Astrophysics Data System (ADS)
Serafin, K.; Ruggiero, P.; Stockdon, H. F.; Barnard, P.; Long, J.
2014-12-01
Many coastal communities worldwide are vulnerable to flooding and erosion driven by extreme total water levels (TWL), potentially dangerous events produced by the combination of large waves, high tides, and high non-tidal residuals. The West coast of the United States provides an especially challenging environment to model these processes due to its complex geological setting combined with uncertain forecasts for sea level rise (SLR), changes in storminess, and possible changes in the frequency of major El Niños. Our research therefore aims to develop an appropriate methodology to assess present-day and future storm-induced coastal hazards along the entire U.S. West coast, filling this information gap. We present the application of this framework in a pilot study at Ocean Beach, California, a National Park site within the Golden Gate National Recreation Area where existing event-scale coastal change data can be used for model calibration and verification. We use a probabilistic, full simulation TWL model (TWL-FSM; Serafin and Ruggiero, in press) that captures the seasonal and interannual climatic variability in extremes using functions of regional climate indices, such as the Multivariate ENSO index (MEI), to represent atmospheric patterns related to the El Niño-Southern Oscillation (ENSO). In order to characterize the effect of climate variability on TWL components, we refine the TWL-FSM by splitting non-tidal residuals into low (monthly mean sea level anomalies) and high frequency (storm surge) components. We also develop synthetic climate indices using Markov sequences to reproduce the autocorrelated nature of ENSO behavior. With the refined TWL-FSM, we simulate each TWL component, resulting in synthetic TWL records providing robust estimates of extreme return level events (e.g., the 100-yr event) and the ability to examine the relative contribution of each TWL component to these extreme events. Extreme return levels are then used to drive storm impact models to examine the probability of coastal change (Stockdon et al., 2013) and thus, the vulnerability to storm-induced coastal hazards that Ocean Beach faces. Future climate variability is easily incorporated into this framework, allowing us to quantify how an evolving climate will alter future extreme TWLs and their related coastal impacts.
Investigation of Secondary Neutron Production in Large Space Vehicles for Deep Space
NASA Technical Reports Server (NTRS)
Rojdev, Kristina; Koontz, Steve; Reddell, Brandon; Atwell, William; Boeder, Paul
2016-01-01
Future NASA missions will focus on deep space and Mars surface operations with large structures necessary for transportation of crew and cargo. In addition to the challenges of manufacturing these large structures, there are added challenges from the space radiation environment and its impacts on the crew, electronics, and vehicle materials. Primary radiation from the sun (solar particle events) and from outside the solar system (galactic cosmic rays) interact with materials of the vehicle and the elements inside the vehicle. These interactions lead to the primary radiation being absorbed or producing secondary radiation (primarily neutrons). With all vehicles, the high-energy primary radiation is of most concern. However, with larger vehicles, there is more opportunity for secondary radiation production, which can be significant enough to cause concern. In a previous paper, we embarked upon our first steps toward studying neutron production from large vehicles by validating our radiation transport codes for neutron environments against flight data. The following paper will extend the previous work to focus on the deep space environment and the resulting neutron flux from large vehicles in this deep space environment.
Climate change, extreme weather events, and us health impacts: what can we say?
Mills, David M
2009-01-01
Address how climate change impacts on a group of extreme weather events could affect US public health. A literature review summarizes arguments for, and evidence of, a climate change signal in select extreme weather event categories, projections for future events, and potential trends in adaptive capacity and vulnerability in the United States. Western US wildfires already exhibit a climate change signal. The variability within hurricane and extreme precipitation/flood data complicates identifying a similar climate change signal. Health impacts of extreme events are not equally distributed and are very sensitive to a subset of exceptional extreme events. Cumulative uncertainty in forecasting climate change driven characteristics of extreme events and adaptation prevents confidently projecting the future health impacts from hurricanes, wildfires, and extreme precipitation/floods in the United States attributable to climate change.
NASA Astrophysics Data System (ADS)
Szoenyi, Michael; Mechler, Reinhard; McCallum, Ian
2015-04-01
In early June 2013, severe flooding hit Central and Eastern Europe, causing extensive damage, in particular along the Danube and Elbe main watersheds. The situation was particularly severe in Eastern Germany, Austria, Hungary and the Czech Republic. Based on the Post Event Review Capability (PERC) approach, developed by Zurich Insurance's Flood Resilience Program to provide independent review of large flood events, we examine what has worked well (best practice) and opportunities for further improvement. The PERC overall aims to thoroughly examine aspects of flood resilience, flood risk management and catastrophe intervention in order to help build back better after events and learn for future events. As our research from post event analyses shows a lot of losses are in fact avoidable by taking the right measures pre-event and these measures are economically - efficient with a return of 4 Euro on losses saved for every Euro invested in prevention on average (Wharton/IIASA flood resilience alliance paper on cost benefit analysis, Mechler et al. 2014) and up to 10 Euros for certain countries. For the 2013 flood events we provide analysis on the following aspects and in general identify a number of factors that worked in terms of reducing the loss and risk burden. 1. Understanding risk factors of the Central European Floods 2013 We review the precursors leading up to the floods in June, with an extremely wet May 2013 and an atypical V-b weather pattern that brought immense precipitation in a very short period to the watersheds of Elbe, Donau and partially the Rhine in the D-A-CH countries and researched what happened during the flood and why. Key questions we asked revolve around which protection and risk reduction approaches worked well and which did not, and why. 2. Insights and recommendations from the post event review The PERC identified a number of risk factors, which need attention if risk is to be reduced over time. • Yet another "100-year flood" - risk perception and understanding of risk in the population. • Residual risk and the levee shadow effect - why the population "felt safe." • What is the overload case and how to implement it in flood protection systems? • Decision-making for the future under uncertainty - how to design to acceptable flood protection levels if we haven't seen yet what's physically possible. 3. How to protect - practical examples Finally, we outline practical examples for reducing the loss burden and risk over time. • "Flood protection hierarchy" - from location choice under a hazard perspective to mobile flood protection. • Risk-based approach and identification of critical infrastructure. • Integrated flood risk management in theory and practical application. • Role of insurance.
No Great Earthquake in the Central Himalaya Since 1505: a Possible Future M>=8.2 event?
NASA Astrophysics Data System (ADS)
Bilham, R.; Ambraseys, N.
2002-12-01
The re-evaluation of the past several centuries of damaging Himalayan earthquakes has largely decreased their magnitudes and/or rupture areas, with one exception. An earthquake in 1505 that simultaneously destroyed Indian cities near Agra, and Tibetan monasteries between longitudes 78° and 84° appears to be larger than any known hitherto. It occurred exactly one month after a catastrophic earthquake in Kabul, and accounts from the two earthquakes have sometimes been confused. Although the data in Tibetan accounts are sparse the event appears to have had equal violence along the 600 km northern Himalaya and in the northern plains of India. From this we infer a rupture zone possibly twice as long as that associated with recent Himalayan earthquakes, corresponding to the segment that has hitherto been termed the Central Himalayan Gap. An enigmatic observation is that surface ruptures have been exhumed in trench investigations but have not been reported from the past two centuries of 7.8
Modelling the effectiveness of grass buffer strips in managing muddy floods under a changing climate
NASA Astrophysics Data System (ADS)
Mullan, Donal; Vandaele, Karel; Boardman, John; Meneely, John; Crossley, Laura H.
2016-10-01
Muddy floods occur when rainfall generates runoff on agricultural land, detaching and transporting sediment into the surrounding natural and built environment. In the Belgian Loess Belt, muddy floods occur regularly and lead to considerable economic costs associated with damage to property and infrastructure. Mitigation measures designed to manage the problem have been tested in a pilot area within Flanders and were found to be cost-effective within three years. This study assesses whether these mitigation measures will remain effective under a changing climate. To test this, the Water Erosion Prediction Project (WEPP) model was used to examine muddy flooding diagnostics (precipitation, runoff, soil loss and sediment yield) for a case study hillslope in Flanders where grass buffer strips are currently used as a mitigation measure. The model was run for present day conditions and then under 33 future site-specific climate scenarios. These future scenarios were generated from three earth system models driven by four representative concentration pathways and downscaled using quantile mapping and the weather generator CLIGEN. Results reveal that under the majority of future scenarios, muddy flooding diagnostics are projected to increase, mostly as a consequence of large scale precipitation events rather than mean changes. The magnitude of muddy flood events for a given return period is also generally projected to increase. These findings indicate that present day mitigation measures may have a reduced capacity to manage muddy flooding given the changes imposed by a warming climate with an enhanced hydrological cycle. Revisions to the design of existing mitigation measures within existing policy frameworks are considered the most effective way to account for the impacts of climate change in future mitigation planning.
NASA Astrophysics Data System (ADS)
Oglesby, R. J.; Erickson, D. J.; Hernandez, J. L.; Irwin, D.
2005-12-01
Central America covers a relatively small area, but is topographically very complex, has long coast-lines, large inland bodies of water, and very diverse land cover which is both natural and human-induced. As a result, Central America is plagued by hydrologic extremes, especially major flooding and drought events, in a region where many people still barely manage to eke out a living through subsistence. Therefore, considerable concern exists about whether these extreme events will change, either in magnitude or in number, as climate changes in the future. To address this concern, we have used global climate model simulations of future climate change to drive a regional climate model centered on Central America. We use the IPCC `business as usual' scenario 21st century run made with the NCAR CCSM3 global model to drive the regional model MM5 at 12 km resolution. We chose the `business as usual' scenario to focus on the largest possible changes that are likely to occur. Because we are most interested in near-term changes, our simulations are for the years 2010, 2015, and 2025. A long `present-day run (for 2005) allows us to distinguish between climate variability and any signal due to climate change. Furthermore, a multi-year run with MM5 forced by NCEP reanalyses allows an assessment of how well the coupled global-regional model performs over Central America. Our analyses suggest that the coupled model does a credible job simulating the current climate and hydrologic regime, though lack of sufficient observations strongly complicates this comparison. The suite of model runs for the future years is currently nearing completion, and key results will be presented at the meeting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldstein, A.; Cleveland, W. H.; Connaughton, V.
We present the Fermi Gamma-ray Burst Monitor (GBM) and Large Area Telescope (LAT) observations of the LIGO binary black hole merger (BBH) event GW170104. No candidate electromagnetic counterpart was detected by either GBM or LAT. A detailed analysis of the GBM and LAT data over timescales from seconds to days covering the Laser Interferometer Gravitational-wave Observatory (LIGO) localization region is presented. The resulting flux upper bound from the GBM is (5.2–9.4) × 10{sup −7} erg cm{sup −2} s{sup −1} in the 10–1000 keV range and from the LAT is (0.2–90) × 10{sup −9} erg cm{sup −2} s{sup −1} in themore » 0.1–1 GeV range. We also describe the improvements to our automated pipelines and analysis techniques for searching for and characterizing the potential electromagnetic counterparts for future gravitational-wave events from Advanced LIGO/Virgo.« less
Probing the neutrino mass ordering with KM3NeT-ORCA: analysis and perspectives
NASA Astrophysics Data System (ADS)
Capozzi, Francesco; Lisi, Eligio; Marrone, Antonio
2018-02-01
The discrimination of the two possible options for the neutrino mass ordering (normal or inverted) is a major goal for current and future neutrino oscillation experiments. Such a goal might be reached by observing high-statistics energy-angle spectra of events induced by atmospheric neutrinos and antineutrinos propagating in the Earth matter. Large volume water-Cherenkov detectors envisaged to this purpose include the so-called KM3NeT-ORCA project (in seawater) and the IceCube-PINGU project (in ice). Building upon a previous work focused on PINGU, we study in detail the effects of various systematic uncertainties on the ORCA sensitivity to the mass ordering, for the reference configuration with 9 m vertical spacing. We point out the need to control spectral shape uncertainties at the percent level, the effects of better priors on the {θ }23 mixing parameter, and the benefits of an improved flavor identification in reconstructed ORCA events.
Predicting adverse hemodynamic events in critically ill patients.
Yoon, Joo H; Pinsky, Michael R
2018-06-01
The art of predicting future hemodynamic instability in the critically ill has rapidly become a science with the advent of advanced analytical processed based on computer-driven machine learning techniques. How these methods have progressed beyond severity scoring systems to interface with decision-support is summarized. Data mining of large multidimensional clinical time-series databases using a variety of machine learning tools has led to our ability to identify alert artifact and filter it from bedside alarms, display real-time risk stratification at the bedside to aid in clinical decision-making and predict the subsequent development of cardiorespiratory insufficiency hours before these events occur. This fast evolving filed is primarily limited by linkage of high-quality granular to physiologic rationale across heterogeneous clinical care domains. Using advanced analytic tools to glean knowledge from clinical data streams is rapidly becoming a reality whose clinical impact potential is great.
Parallel discrete-event simulation of FCFS stochastic queueing networks
NASA Technical Reports Server (NTRS)
Nicol, David M.
1988-01-01
Physical systems are inherently parallel. Intuition suggests that simulations of these systems may be amenable to parallel execution. The parallel execution of a discrete-event simulation requires careful synchronization of processes in order to ensure the execution's correctness; this synchronization can degrade performance. Largely negative results were recently reported in a study which used a well-known synchronization method on queueing network simulations. Discussed here is a synchronization method (appointments), which has proven itself to be effective on simulations of FCFS queueing networks. The key concept behind appointments is the provision of lookahead. Lookahead is a prediction on a processor's future behavior, based on an analysis of the processor's simulation state. It is shown how lookahead can be computed for FCFS queueing network simulations, give performance data that demonstrates the method's effectiveness under moderate to heavy loads, and discuss performance tradeoffs between the quality of lookahead, and the cost of computing lookahead.
Shallow megathrust earthquake ruptures betrayed by their outer-trench aftershocks signature
NASA Astrophysics Data System (ADS)
Sladen, Anthony; Trevisan, Jenny
2018-02-01
For some megathrust earthquakes, the rupture extends to the solid Earth's surface, at the ocean floor. This unexpected behaviour holds strong implications for the tsunami potential of subduction zones and for the physical conditions governing earthquakes, but such ruptures occur in underwater areas which are hard to observe, even with current instrumentation and imaging techniques. Here, we evidence that aftershocks occurring ocean-ward from the trench are conditioned by near-surface rupture of the megathrust fault. Comparison to well constrained earthquake slip models further reveals that for each event the number of aftershocks is proportional to the amount of shallow slip, a link likely related to static stress transfer. Hence, the spatial distribution of these specific aftershock sequences could provide independent constrains on the coseismic shallow slip of future events. It also offers the prospect to be able to reassess the rupture of many large subduction earthquakes back to the beginning of the instrumental era.
NASA Astrophysics Data System (ADS)
Kaneko, Yoshihiro; Wallace, Laura M.; Hamling, Ian J.; Gerstenberger, Matthew C.
2018-05-01
Slow slip events (SSEs) have been documented in subduction zones worldwide, yet their implications for future earthquake occurrence are not well understood. Here we develop a relatively simple, simulation-based method for estimating the probability of megathrust earthquakes following tectonic events that induce any transient stress perturbations. This method has been applied to the locked Hikurangi megathrust (New Zealand) surrounded on all sides by the 2016 Kaikoura earthquake and SSEs. Our models indicate the annual probability of a M≥7.8 earthquake over 1 year after the Kaikoura earthquake increases by 1.3-18 times relative to the pre-Kaikoura probability, and the absolute probability is in the range of 0.6-7%. We find that probabilities of a large earthquake are mainly controlled by the ratio of the total stressing rate induced by all nearby tectonic sources to the mean stress drop of earthquakes. Our method can be applied to evaluate the potential for triggering a megathrust earthquake following SSEs in other subduction zones.
Byrnes, Hilary F; Miller, Brenda A; Johnson, Mark B; Voas, Robert B
2014-12-01
Electronic music and dance events in nightclubs attract patrons with heavy alcohol/drug use. Public health concerns are raised from risks related to these behaviors. Practices associated with increased risk in these club settings need to be identified. The relationship between club management practices and biological measures of patrons' alcohol/drug use is examined. Observational data from 25 events across six urban clubs were integrated with survey data (N = 738 patrons, 42.8% female) from patrons exiting these events, 2010-2012. Five indicators of club management practices were examined using mixed model regressions: club security, bar crowding, safety signs, serving intoxicated patrons, and isolation. Analyses revealed that serving intoxicated patrons and safety signs were related to substance use. Specifically, serving intoxicated patrons was related to heavy alcohol and drug use at exit, while safety signs were marginally related to less exit drug use. CONCLUSIONS/IMPORTANCE: Findings indicate observable measures in nightclubs provide important indicators for alcohol/drug use, suggesting practices to target. Study strengths include the use of biological measures of substance use on a relatively large scale. Limitations and future directions are discussed.
Evaluating multiepisode events: boundary conditions for the peak-end rule.
Miron-Shatz, Talya
2009-04-01
This study advances our understanding of how people arrive at retrospective evaluations of multiepisode experiences. Large samples from the United States, France, and Denmark (810, 820, and 805 participants, respectively) reported their feelings during each episode of the previous day using the Day Reconstruction Method. The duration-weighted average of these feelings represented the normative approach to evaluation, and, contrary to the predictions of the peak-end rule, the average was the best predictor of retrospective evaluations of the day. To capture participants' heuristic evaluation, they also reported having a wonderful (peak) and/or awful (low) moment during the previous day. The results indicate that retrospective evaluations of multiepisode events rely on the averaged ratings of emotions, ignore ends, and also consider the presence of lows, and occasionally peaks, as subjectively defined by those experiencing them. Peaks and lows contribute more to comparative, rather than absolute evaluations. Future research should examine whether these findings extend to other multiepisode events that, unlike days, form cohesive units in terms of their content, goal, and emotionality. (c) 2009 APA, all rights reserved.
Is Heavy Drinking Really Associated With Attrition From College? The Alcohol–Attrition Paradox
Martinez, Julia A.; Sher, Kenneth J.; Wood, Phillip K.
2009-01-01
Student attrition at colleges across the United States poses a significant problem for students and families, higher educational institutions, and the nation's workforce competing in the global economy. Heavy drinking is a highly plausible contributor to the problem. However, there is little evidence that it is a reliable predictor of attrition. Notably, few studies take into account indicators of collegiate engagement that are associated with both heavy drinking and persistence in college. Event-history analysis was used to estimate the effect of heavy drinking on attrition among 3,290 undergraduates at a large midwestern university during a 4-year period, and student attendance at a number of college events was included as covariates. Results showed that heavy drinking did not predict attrition bivariately or after controlling for precollege predictors of academic success. However, after controlling for event attendance (an important indicator of collegiate engagement), heavy drinking was found to predict attrition. These findings underscore the importance of the college context in showing that heavy drinking does in fact predict attrition and in considering future intervention efforts to decrease attrition and also heavy drinking. PMID:18778140
NASA Astrophysics Data System (ADS)
Cashman, K. V.; Giordano, G.
2008-10-01
The study of volcanic hazards leads inevitably to questions of how past cultures have lived in volcanically active regions of the world. Here we summarize linkages between volcanological, archaeological and anthropological studies of historic and prehistoric volcanic eruptions, with the goal of evaluating the impact of past eruptions on human populations to better prepare for future events. We use examples from papers collected in this volume to illustrate ways in which volcanological studies aid archaeological investigations by providing basic stratigraphic markers and information about the nature and timing of specific volcanic events. We then turn to archaeological perspectives, which provide physical evidence of the direct impacts of volcanic eruptions, such as site abandonment and human migration, as well as indirect impacts on local cultures as reflected in human artifacts. Finally we review anthropological studies of societal responses to past and recent volcanic eruptions. We pay particular attention to both the psychological impact of catastrophic events and records of these impacts encoded within oral traditions. Taken together these studies record drastic short-term eruption impacts but adaptation to volcanic activity over the longer term, largely through strategies of adaptive land use.
Radon background in liquid xenon detectors
NASA Astrophysics Data System (ADS)
Rupp, N.
2018-02-01
The radioactive daughters isotope of 222Rn are one of the highest risk contaminants in liquid xenon detectors aiming for a small signal rate. The noble gas is permanently emanated from the detector surfaces and mixed with the xenon target. Because of its long half-life 222Rn is homogeneously distributed in the target and its subsequent decays can mimic signal events. Since no shielding is possible this background source can be the dominant one in future large scale experiments. This article provides an overview of strategies used to mitigate this source of background by means of material selection and on-line radon removal techniques.
Which will Trump: human rights and professional ethics, or torture redux?
Marks, Jonathan H
2017-03-01
Recent political developments in the United States raise concerns about the potential return of aggressive interrogation strategies, particularly in the event of another large-scale terror attack on the U.S. mainland. This essay reviews various legal, ethical and policy responses to revelations of torture during the Bush administration. It asks whether they improve the prospect that, in future, human rights will trump torture, not vice versa. The essay argues that physicians could help prevent further abuses - especially given their access, social status and expertise - but that insufficient steps have been taken to empower them to do so.
Record Balkan floods of 2014 linked to planetary wave resonance.
Stadtherr, Lisa; Coumou, Dim; Petoukhov, Vladimir; Petri, Stefan; Rahmstorf, Stefan
2016-04-01
In May 2014, the Balkans were hit by a Vb-type cyclone that brought disastrous flooding and severe damage to Bosnia and Herzegovina, Serbia, and Croatia. Vb cyclones migrate from the Mediterranean, where they absorb warm and moist air, to the north, often causing flooding in central/eastern Europe. Extreme rainfall events are increasing on a global scale, and both thermodynamic and dynamical mechanisms play a role. Where thermodynamic aspects are generally well understood, there is large uncertainty associated with current and future changes in dynamics. We study the climatic and meteorological factors that influenced the catastrophic flooding in the Balkans, where we focus on large-scale circulation. We show that the Vb cyclone was unusually stationary, bringing extreme rainfall for several consecutive days, and that this situation was likely linked to a quasi-stationary circumglobal Rossby wave train. We provide evidence that this quasi-stationary wave was amplified by wave resonance. Statistical analysis of daily spring rainfall over the Balkan region reveals significant upward trends over 1950-2014, especially in the high quantiles relevant for flooding events. These changes cannot be explained by simple thermodynamic arguments, and we thus argue that dynamical processes likely played a role in increasing flood risks over the Balkans.
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee; Atwell, William; Tylka, Allan J.; Dietrich, William F.; Cucinotta, Francis A.
2010-01-01
For radiation dose assessments of major solar particle events (SPEs), spectral functional forms of SPEs have been made by fitting available satellite measurements up to approx.100 MeV. However, very high-energy protons (above 500 MeV) have been observed with neutron monitors (NMs) in ground level enhancements (GLEs), which generally present the most severe radiation hazards to astronauts. Due to technical difficulties in converting NM data into absolutely normalized fluence measurements, those functional forms were made with little or no use of NM data. A new analysis of NM data has found that a double power law in rigidity (the so-called Band function) generally provides a satisfactory representation of the combined satellite and NM data from approx.10 MeV to approx.10 GeV in major SPEs (Tylka & Dietrich 2009). We use the Band function fits to re-assess human exposures from large SPEs. Using different spectral representations of large SPEs, variations of exposure levels were compared. The results can be applied to the development of approaches of improved radiation protection for astronauts, as well as the optimization of mission planning and shielding for future space missions.
Hershkovitz, Eli; Loewenthal, Neta; Peretz, Asaf; Parvari, Ruti
2008-01-01
X-linked Kallmann syndrome (KS) is caused mainly by point mutations, in the KAL1 gene. Large deletions >1 Mb are rare events in the human population and commonly result in contiguous gene syndromes. A search for the mutation causing KS carried out on two pairs of first-degree cousins of 2 sisters. Two different apparently independent deletions were found. The deleted sequences encompass the KAL1 gene and four known additional genes exclusively expressed in testis. Two of these genes belong to the FAM9 gene family, which shares some homology with the SCYP3 gene, previously implicated in azoospermia. One of the events causing the deletion may have been mediated by an L1 transposition, the other by a non-homologous end joining. Such non-homologous recombinations have not yet been reported in the KAL genomic region and thus this area may be more prone to deletions than previously expected. This is the first report on genetic characterization of KS with a deletion of solely testis-expressed genes. The absence of these genes may have unfavorable implications for the patients regarding future fertility. (c) 2008 S. Karger AG, Basel
The 1748 Montesa (south-east Spain) earthquake, a singular event
NASA Astrophysics Data System (ADS)
Buforn, Elisa; Udías, Agustín; Sanz de Galdeano, Carlos
2015-04-01
The Montesa earthquakes of 1748 took place in the south-east region of the Iberian Peninsula. Its location falls somewhat outside the seismic active region of southern Spain. The main shock took place on the 23 of March and was followed by a series of aftershocks, the largest on the 2 of April. Despite of the large number of documents with descriptions of the damage produced by this earthquake it has not been the object of a detailed seismological study. Documents described the damage in about 100 towns and villages over a wide area and it was felt in Valencia, Alcoy and Cartagena. The castle of Montesa was totally destroyed and the town of Xàtiva suffered heavy damage. The source region with seismic intensity IX extends about 15 km from Sellent to Enguera, along a possible fault of NE-SW direction. This is a singular event because it occurred in an area with an assigned low seismic risk where in the past very few large earthquakes have happened. This earthquake shows that a destructive earthquake may happen in the future in this region. The area affected by the earthquake has today a high industrial and tourist development.
Helioviewer.org: Browsing Very Large Image Archives Online Using JPEG 2000
NASA Astrophysics Data System (ADS)
Hughitt, V. K.; Ireland, J.; Mueller, D.; Dimitoglou, G.; Garcia Ortiz, J.; Schmidt, L.; Wamsler, B.; Beck, J.; Alexanderian, A.; Fleck, B.
2009-12-01
As the amount of solar data available to scientists continues to increase at faster and faster rates, it is important that there exist simple tools for navigating this data quickly with a minimal amount of effort. By combining heterogeneous solar physics datatypes such as full-disk images and coronagraphs, along with feature and event information, Helioviewer offers a simple and intuitive way to browse multiple datasets simultaneously. Images are stored in a repository using the JPEG 2000 format and tiled dynamically upon a client's request. By tiling images and serving only the portions of the image requested, it is possible for the client to work with very large images without having to fetch all of the data at once. In addition to a focus on intercommunication with other virtual observatories and browsers (VSO, HEK, etc), Helioviewer will offer a number of externally-available application programming interfaces (APIs) to enable easy third party use, adoption and extension. Recent efforts have resulted in increased performance, dynamic movie generation, and improved support for mobile web browsers. Future functionality will include: support for additional data-sources including RHESSI, SDO, STEREO, and TRACE, a navigable timeline of recorded solar events, social annotation, and basic client-side image processing.
NASA Astrophysics Data System (ADS)
Arazi, L.; Coimbra, A. E. C.; Erdal, E.; Israelashvili, I.; Rappaport, M. L.; Shchemelinin, S.; Vartsky, D.; dos Santos, J. M. F.; A, Breskin
2015-11-01
Dual-phase noble-liquid TPCs are presently the most sensitive instruments for direct dark matter detection. Scaling up existing ton-scale designs to the multi-ton regime may prove to be technologically challenging. This includes both large-area coverage with affordable high-QE UV-photon detectors, and maintaining high precision in measuring the charge and light signals of rare events with keV-scale energy depositions. We present our recent advances in two complementary approaches to these problems: large-area cryogenic gaseous photomultipliers (GPM) for UV-photon detection, and liquid-hole multipliers (LHM) that provide electroluminescence light in response to ionization electrons and primary scintillation photons, using perforated electrodes immersed within the noble liquid. Results from a 10 cm diameter GPM coupled to a dual-phase liquid- xenon TPC demonstrate the feasibility of recording - for the first time - both primary (“S1”) and secondary (“S2”) scintillation signals, over a very broad dynamic range. The detector, comprising a triple-THGEM structure with CsI on the first element, has been operating stably at 180 K with gains larger than 105; it provided high single-photon detection efficiency - in the presence of massive alpha-particle induced S2 signals; S1 scintillation signals were recorded with time resolutions of 1.2 ns (RMS). Results with the LHM operated in liquid xenon yielded large photon gains, with a pulse-height resolution of 11% (RMS) for alpha-particle induced S2 signals. The detector response was stable over several months. The response of the S2 signals to rapid changes in pressure lead to the conclusion that the underlying mechanism for S2 light is electroluminescence in xenon bubbles trapped below the immersed THGEM electrode. Both studies have the potential of paving the way towards new designs of dual- and single-phase noble-liquid TPCs that could simplify the conception of future multi-ton detectors of dark matter and other rare events.
Large and unexpected runup events and their relation to the incident wave field
NASA Astrophysics Data System (ADS)
Li, C.; Ozkan-Haller, H. T.; Garcia-Medina, G.; Holman, R. A.; Ruggiero, P.
2016-12-01
Unusually large runup events are important for the prediction of dune erosion, inundation and coastal flooding during storms and lie at the tail of swash maxima probability distributions. We also distinguish a unique type of large runup event that is sudden and unexpected even if the landward reach of the runup is not a statistical extreme. These unusual runup events are anecdotally reported to be more prevalent on dissipative beaches and are the leading cause of death by drowning along the U.S. Pacific Northwest (northern California, Oregon, and Washington). Herein we examine the environmental conditions that are conducive to large and unexpected runup events and begin to forecast their potential occurrence, validating these predictions with ongoing observations. We explore and compare the statistics of large runup events on two beach types, a dissipative beach at Agate Beach, OR, and the intermediate/reflective site at Duck, NC. Video-based runup observations along with incident wave information from offshore instrumentation are used to assess how frequently large or unexpected runup events occur, how the statistics of these runup events relate to the incident wave characteristics (e.g. height, period, narrow-bandedness), and whether or not these events are indeed more prevalent on dissipative beaches.
NASA Astrophysics Data System (ADS)
Lee, Donghyun; Min, Seung-Ki; Jin, Jonghun; Lee, Ji-Woo; Cha, Dong-Hyun; Suh, Myoung-Seok; Ahn, Joong-Bae; Hong, Song-You; Kang, Hyun-Suk; Joh, Minsu
2017-12-01
This study examines future changes in precipitation over Northeast Asia and Korea using five regional climate model (RCM) simulations driven by single global climate model (GCM) under two representative concentration pathway (RCP) emission scenarios. Focusing on summer season (June-July-August) when heavy rains dominate in this region, future changes in precipitation and associated variables including temperature, moisture, and winds are analyzed by comparing future conditions (2071-2100) with a present climate (1981-2005). Physical mechanisms are examined by analyzing moisture flux convergence at 850 hPa level, which is found to have a close relationship to precipitation and by assessing contribution of thermodynamic effect (TH, moisture increase due to warming) and dynamic effect (DY, atmospheric circulation change) to changes in the moisture flux convergence. Overall background warming and moistening are projected over the Northeast Asia with a good inter-RCM agreement, indicating dominant influence of the driving GCM. Also, RCMs consistently project increases in the frequency of heavy rains and the intensification of extreme precipitation over South Korea. Analysis of moisture flux convergence reveals competing impacts between TH and DY. The TH effect contributes to the overall increases in mean precipitation over Northeast Asia and in extreme precipitation over South Korea, irrespective of models and scenarios. However, DY effect is found to induce local-scale precipitation decreases over the central part of the Korean Peninsula with large inter-RCM and inter-scenario differences. Composite analysis of daily anomaly synoptic patterns indicates that extreme precipitation events are mainly associated with the southwest to northeast evolution of large-scale low-pressure system in both present and future climates.