Sample records for future life detection

  1. Exoplanet Biosignatures: Future Directions.

    PubMed

    Walker, Sara I; Bains, William; Cronin, Leroy; DasSarma, Shiladitya; Danielache, Sebastian; Domagal-Goldman, Shawn; Kacar, Betul; Kiang, Nancy Y; Lenardic, Adrian; Reinhard, Christopher T; Moore, William; Schwieterman, Edward W; Shkolnik, Evgenya L; Smith, Harrison B

    2018-06-01

    We introduce a Bayesian method for guiding future directions for detection of life on exoplanets. We describe empirical and theoretical work necessary to place constraints on the relevant likelihoods, including those emerging from better understanding stellar environment, planetary climate and geophysics, geochemical cycling, the universalities of physics and chemistry, the contingencies of evolutionary history, the properties of life as an emergent complex system, and the mechanisms driving the emergence of life. We provide examples for how the Bayesian formalism could guide future search strategies, including determining observations to prioritize or deciding between targeted searches or larger lower resolution surveys to generate ensemble statistics and address how a Bayesian methodology could constrain the prior probability of life with or without a positive detection. Key Words: Exoplanets-Biosignatures-Life detection-Bayesian analysis. Astrobiology 18, 779-824.

  2. Raman Life Detection Instrument Development for Icy Worlds

    NASA Technical Reports Server (NTRS)

    Thomson, Seamus; Allen, A'Lester; Gutierrez, Daniel; Quinn, Richard C.; Chen, Bin; Koehne, Jessica E.

    2017-01-01

    The objective of this project is to develop a compact, high sensitivity Raman sensor for detection of life signatures in a flow cell configuration to enable bio-exploration and life detection during future mission to our Solar Systems Icy Worlds. The specific project objectives are the following: 1) Develop a Raman spectroscopy liquid analysis sensor for biosignatures; 2) Demonstrate applicability towards a future Enceladus or other Icy Worlds missions; 3) Establish key parameters for integration with the ARC Sample Processor for Life on Icy Worlds (SPLIce); 4) Position ARC for a successful response to upcoming Enceladus or other Icy World mission instrument opportunities.

  3. The future of spectroscopic life detection on exoplanets

    PubMed Central

    Seager, Sara

    2014-01-01

    The discovery and characterization of exoplanets have the potential to offer the world one of the most impactful findings ever in the history of astronomy—the identification of life beyond Earth. Life can be inferred by the presence of atmospheric biosignature gases—gases produced by life that can accumulate to detectable levels in an exoplanet atmosphere. Detection will be made by remote sensing by sophisticated space telescopes. The conviction that biosignature gases will actually be detected in the future is moderated by lessons learned from the dozens of exoplanet atmospheres studied in last decade, namely the difficulty in robustly identifying molecules, the possible interference of clouds, and the permanent limitations from a spectrum of spatially unresolved and globally mixed gases without direct surface observations. The vision for the path to assess the presence of life beyond Earth is being established. PMID:25092345

  4. The future of spectroscopic life detection on exoplanets.

    PubMed

    Seager, Sara

    2014-09-02

    The discovery and characterization of exoplanets have the potential to offer the world one of the most impactful findings ever in the history of astronomy--the identification of life beyond Earth. Life can be inferred by the presence of atmospheric biosignature gases--gases produced by life that can accumulate to detectable levels in an exoplanet atmosphere. Detection will be made by remote sensing by sophisticated space telescopes. The conviction that biosignature gases will actually be detected in the future is moderated by lessons learned from the dozens of exoplanet atmospheres studied in last decade, namely the difficulty in robustly identifying molecules, the possible interference of clouds, and the permanent limitations from a spectrum of spatially unresolved and globally mixed gases without direct surface observations. The vision for the path to assess the presence of life beyond Earth is being established.

  5. Exoplanet Biosignatures: Future Directions

    PubMed Central

    Bains, William; Cronin, Leroy; DasSarma, Shiladitya; Danielache, Sebastian; Domagal-Goldman, Shawn; Kacar, Betul; Kiang, Nancy Y.; Lenardic, Adrian; Reinhard, Christopher T.; Moore, William; Schwieterman, Edward W.; Shkolnik, Evgenya L.; Smith, Harrison B.

    2018-01-01

    Abstract We introduce a Bayesian method for guiding future directions for detection of life on exoplanets. We describe empirical and theoretical work necessary to place constraints on the relevant likelihoods, including those emerging from better understanding stellar environment, planetary climate and geophysics, geochemical cycling, the universalities of physics and chemistry, the contingencies of evolutionary history, the properties of life as an emergent complex system, and the mechanisms driving the emergence of life. We provide examples for how the Bayesian formalism could guide future search strategies, including determining observations to prioritize or deciding between targeted searches or larger lower resolution surveys to generate ensemble statistics and address how a Bayesian methodology could constrain the prior probability of life with or without a positive detection. Key Words: Exoplanets—Biosignatures—Life detection—Bayesian analysis. Astrobiology 18, 779–824. PMID:29938538

  6. Progress in Life Marker Chip Technology for Detection of Life on Mars

    NASA Astrophysics Data System (ADS)

    Sims, M. R.; Cullen, D. C.; Laan, E.; Borst, G.; Prak, A.; Richter, L.; Gaubert, F.; Steele, A.; Parnell, J.; Sephton, M.

    2007-12-01

    Detection of Life on Mars will rely on detection of biomarkers, physical or chemical structures that can be associated with Life. As a possible payload for the ESA ExoMars rover mission planned in 2013 and other future missions a Life Marker Chip instrument is being developed. This instrument uses immuno-assay techniques to detect the relevant biomarkers. This paper describes the typical targets it will search for, its operating principle and the status of development. 63 biomarker targets have been identified and assays have been developed for a limited subset. Assay development includes use of recombinant DNA techniques to generate the molecular receptors (antibodies). This type of instrument has applications in terrestrial research e.g. sub-glacial lakes as well as planetary exploration. Breadboard demonstrators have been built of the assay system and key components of the micro-fluidics. Results from these breadboards will be presented, along with plans for future development.

  7. Searching for Life in the Martian Subsurface: Results from the MARTE Astrobiological Drilling Experiment and Implications for Future Missions

    NASA Astrophysics Data System (ADS)

    Stoker, C. R.

    2007-07-01

    Drilling for subsurface life should be a goal of future Mars missions. The approach is illustrated by MARTE: A search for subsurface life in Rio Tinto, Spain explored a biosphere using reduced iron and sulfur minerals and demonstrated automated drilling, sample handling, and life detection.

  8. Perspectives on the Future Search for Life on Mars and Beyond

    NASA Technical Reports Server (NTRS)

    Nealson, K. H.

    1998-01-01

    One can view the search for life on Mars in two ways: first, as the initial step in the search for life elsewhere, and second, as the one place where in situ methods for life detection can be tested and proved via sample return. After Mars, most of the life detection will he done via in situ studies with data return. Mars offers us the opportunity to fine tune our methods - perhaps for a long time to come. Our group is involved in the development of methods for life detection that are independent of specific signals used for detection of life on Earth. These approaches include general indicators of metabolic activity and organismal structure and composition. Using such approaches, we hope to detect the signals of life (biosignatures) that are independent of preconceived notions and yet are convincing and unambiguous. The approaches we are focusing on include stable isotopic analyses of metals, mineral formation and disolution, and elemental analysis. These methods allow us to examine samples at a variety of scales, looking for nonequilibrium distribution of elements that serve as biosignatures. For futures studies of Mars and beyond, they, or some variation of them, should allow inference or proof of life in non-Earth locations.

  9. Analogies Among Current and Future Life Detection Missions and the Pharmaceutical/Biomedical Industries

    NASA Astrophysics Data System (ADS)

    Wainwright, N. R.; Steele, A.; Monaco, L.; Fries, M.

    2017-02-01

    Life detection goals and technologies are remarkably similar between several types of NASA missions and the pharmaceutical and biotechnology industries. Needs for sensitivity, specificity, speed have driven techniques and equipment to common ends.

  10. Searching for Life with Rovers: Exploration Methods & Science Results from the 2004 Field Campaign of the "Life in the Atacama" Project and Applications to Future Mars Missions

    NASA Technical Reports Server (NTRS)

    Cabrol, N. A.a; Wettergreen, D. S.; Whittaker, R.; Grin, E. A.; Moersch, J.; Diaz, G. Chong; Cockell, C.; Coppin, P.; Dohm, J. M.; Fisher, G.

    2005-01-01

    The Life In The Atacama (LITA) project develops and field tests a long-range, solarpowered, automated rover platform (Zo ) and a science payload assembled to search for microbial life in the Atacama desert. Life is barely detectable over most of the driest desert on Earth. Its unique geological, climatic, and biological evolution have created a unique training site for designing and testing exploration strategies and life detection methods for the robotic search for life on Mars.

  11. Forward Contamination of the Moon and Mars: Implications for Future Life Detection Missions

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Dworkin, Jason P.; Lupisella, Mark; Kminek, Gerhard; Rummel, John D.

    2004-01-01

    NASA and ESA have outlined new visions for solar system exploration that will include a series of lunar robotic missions to prepare for, and support a human return to the Moon, and future human exploration of Mars and other destinations. One of the guiding principles for exploration is to pursue compelling scientific questions about the origin and evolution of life. The search for life on objects such as Mars will require that all spacecraft and instrumentation be sufficiently cleaned and sterilized prior to launch to ensure that the scientific integrity of extraterrestrial samples is not jeopardized by terrestrial organic contamination. Under COSPAR's current planetary protection policy for the Moon, no sterilization procedures are required for outbound lunar spacecraft. Nonetheless, future in situ investigations of a variety of locations on the Moon by highly sensitive instruments designed to search for biologically derived organic compounds would help assess the contamination of the Moon by lunar spacecraft. These studies could also provide valuable "ground truth" data for Mars sample return missions and help define planetary protection requirements for future Mars bound spacecraft carrying life detection experiments. In addition, studies of the impact of terrestrial contamination of the lunar surface by the Apollo astronauts could provide valuable data to help refine future Mars surface exploration plans for a human mission to Mars.

  12. Life Finder Detectors: An Overview of Detector Technologies for Detecting Life on Other Worlds

    NASA Astrophysics Data System (ADS)

    Rauscher, Bernard J.; Domagal-Goldman, Shawn; Greenhouse, Matthew A.; Hsieh, Wen-Ting; McElwain, Michael W.; Moseley, Samuel H.; Noroozian, Omid; Norton, Tim; Kutyrev, Alexander; Rinehart, Stephen; stock, Joseph

    2015-01-01

    Future large space telescopes will seek evidence for life on other worlds by searching for spectroscopic biosignatures. Atmospheric biosignature gases include oxygen, ozone, water vapor, and methane. Non-biological gases, including carbon monoxide and carbon dioxide, are important for discriminating false positives. All of these gases imprint spectroscopic features in the UV through mid-IR that are potentially detectable using future space based coronagraphs or star shades for starlight suppression.Direct spectroscopic biosignature detection requires sensors capable of robustly measuring photon arrival rates on the order of 10 per resolution element per hour. Photon counting is required for some wavefront sensing and control approaches to achieve the requisite high contrast ratios. We review life finder detector technologies that either exist today, or are under development, that have the potential to meet these challenging requirements. We specifically highlight areas where more work or development is needed.Life finder detectors will be invaluable for a wide variety of other major science programs. Because of its cross cutting nature; UV, optical, and infrared (UVOIR) detector development features prominently in the 2010 National Research Council Decadal Survey, 'New Worlds, New Horizons in Astronomy and Astrophysics', and the NASA Cosmic Origins Program Technology Roadmap.

  13. Searching for Life: Early Earth, Mars and Beyond

    NASA Technical Reports Server (NTRS)

    DesMarais, David J.; Chang, Sherwood (Technical Monitor)

    1996-01-01

    We might be entering a golden age for exploring life throughout time and space. Rapid gene sequencing will better define our most distant ancestors. The earliest geologic evidence of life is now 3.8 billion years old. Organic matter and submicron-sized morphologies have been preserved in the martian crust for billions of years. Several new missions to Mars are planned, with a high priority on the search for life, past or present. The recent discovery of large extrasolar planets has heightened interest in spacecraft to detect small, earth-like planets. A recent workshop discussed strategies for life detection on such planets. There is much to anticipate in the near future.

  14. The Impact of the Temporal Distribution of Communicating Civilizations on Their Detectability.

    PubMed

    Balbi, Amedeo

    2018-01-01

    We used a statistical model to investigate the detectability (defined by the requirement that causal contact has been initiated with us) of communicating civilizations within a volume of the Universe surrounding our location. If the civilizations are located in our galaxy, the detectability requirement imposes a strict constraint on their epoch of appearance and their communicating life span. This, in turn, implies that our ability to gather empirical evidence of the fraction of civilizations within range of detection strongly depends on the specific features of their temporal distribution. Our approach illuminates aspects of the problem that can escape the standard treatment based on the Drake equation. Therefore, it might provide the appropriate framework for future studies dealing with the evolutionary aspects of the search for extraterrestrial intelligence (SETI). Key Words: Astrobiology-Extraterrestrial life-SETI-Complex life-Life detection-Intelligence. Astrobiology 18, 54-58.

  15. Proceedings of the Astrobiology Science Conference 2010. Evolution and Life: Surviving Catastrophes and Extremes on Earth and Beyond

    NASA Technical Reports Server (NTRS)

    2010-01-01

    The Program of the 2010 Astrobiology Science Conference: Evolution and Life: Surviving Catastrophes and Extremes on Earth and Beyond, included sessions on: 50 Years of Exobiology and Astrobiology: Greatest Hits; Extraterrestrial Molecular Evolution and Pre-Biological Chemistry: From the Interstellar Medium to the Solar System I; Human Exploration, Astronaut Health; Diversity in Astrobiology Research and Education; Titan: Past, Present, and Future; Energy Flow in Microbial Ecosystems; Extraterrestrial Molecular Evolution and Prebiological Chemistry: From the Interstellar Medium to the Solar System II; Astrobiology in Orbit; Astrobiology and Interdisciplinary Communication; Science from Rio Tinto: An Acidic Environment; Can We Rule Out Spontaneous Generation of RNA as the Key Step in the Origin of Life?; How Hellish Was the Hadean Earth?; Results from ASTEP and Other Astrobiology Field Campaigns I; Prebiotic Evolution: From Chemistry to Life I; Adaptation of Life in Hostile Space Environments; Extrasolar Terrestrial Planets I: Formation and Composition; Collaborative Tools and Technology for Astrobiology; Results from ASTEP and Other Astrobiology Field Campaigns II; Prebiotic Evolution: From Chemistry to Life II; Survival, Growth, and Evolution of Microrganisms in Model Extraterrestrial Environments; Extrasolar Terrestrial Planets II: Habitability and Life; Planetary Science Decadal Survey Update; Astrobiology Research Funding; Bioessential Elements Through Space and Time I; State of the Art in Life Detection; Terrestrial Evolution: Implications for the Past, Present, and Future of Life on Earth; Psychrophiles and Polar Environments; Life in Volcanic Environments: On Earth and Beyond; Geochronology and Astrobiology On and Off the Earth; Bioessential Elements Through Space and Time II; Origins and Evolution of Genetic Systems; Evolution of Advanced Life; Water-rich Asteroids and Moons: Composition and Astrobiological Potential; Impact Events and Evolution; A Warm, Wet Mars?; Titan Versus Europa - Potential for Astrobiology; Habitability Potential of Mars; Biosignatures: Tools and Development I; Origins of Molecular Asymmetry, Homochirality, and Life Detection; Deserts and Evaporite Basins and Associated Microbialite Systems; Ancient Life and Synthetic Biology: Crossroad of the Past and Future; Biosignatures: Tools and Development II; Free Oxygen: Proxies, Causes, and Consequences; Life in Modern Microbialite Systems - Function and Adaptation; Hydrothermal Systems and Organosynthesis Processes: Origin and Evolution of Life; Where Should We Go on Mars to Seek Signs of Life?; Search for Intelligent Life I. Innovative SETI Observing Programs and Future Directions; Integrating Astrobiology Research Across and Beyond the Community; Education in Astrobiology in K-12; Search for Intelligent Life II. Global Engagement and Interstellar Message Construction; Poster sessions included: Extraterrestrial Molecular Evolution and Pre-Biological Chemistry; Prebiotic Evolution: From Chemistry to Life; RNA World; Terrestrial Evolution: Implications for the Past, Present, and Future of Life on Earth; Hydrothermal Systems and Organosynthesis Processes: Origin and Evolution of Life; Virology and Astrobiology; Horizontal Genetic Transfer and Properties of Ancestral Organisms; Life in Volcanic Environments: On Earth and Beyond; Impact Events and Evolution; Evolution of Advanced Life; Evolution of Intelligent Life; Education in Astrobiology in K-12; Origins of Molecular Asymmetry, Homochirality, and Life Detection; Astrobiology and Interdisciplinary Communication; Diversity in Astrobiology Research and Education; Integrating Astrobiology Research Across and Beyond the Community; Policy and Societal Issues: Dealing with Potential Bumps in the Astrobiology Road Ahead; Results from ASTEP and Other Astrobiology Field Campaigns; Energy Flow in Microbial Ecosystems; Psychrophiles and Polar Environments; Deserts and Evaporite Basins and Associated Microbialite stems; Life in Modern Microbialite Systems - Function and Adaptation; Free Oxygen: Proxies, Causes, and Consequences; Bioessential Elements Through Space and Time; Water-rich Asteroids and Moons: Composition and Astrobiological Potential; Biosignatures: Tools and Developments; Robotics and Instrumentation for Astrobiology; State of the Art in Life Detection; Astrobiology in Orbit; Survival, Growth, and Evolution of Microrganisms in Model Extraterrestrial Evolution; Search for Intelligent Life; Habitability Potential of Mars; How and Where Should We Seek Signs of Life on Mars?; Titan: Past, Present, and Future; Extrasolar Terrestrial Planets: Formation, Composition, Diversity, Habitability and Life; Human Exploration, Astronaut Health; Science from Rio Tinto: An Acidic Environment and Adaptation of Life in Hostile Space Environments;

  16. In Situ Biological Contamination Studies of the Moon: Implications for Future Planetary Protection and Life Detection Missions

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Dworkin, Jason P.; Lupisella, Mark; Kminek, Gerhard; Rummel, John D.

    2010-01-01

    NASA and ESA have outlined visions for solar system exploration that will include a series of lunar robotic precursor missions to prepare for, and support a human return to the Moon, and future human exploration of Mars and other destinations. One of the guiding principles for exploration is to pursue compelling scientific questions about the origin and evolution of life. The search for life on objects such as Mars will require that all spacecraft and instrumentation be sufficiently cleaned and sterilized prior to launch to ensure that the scientific integrity of extraterrestrial samples is not jeopardized by terrestrial organic contamination. Under the Committee on Space Research's (COSPAR's) current planetary protection policy for the Moon, no sterilization procedures are required for outbound lunar spacecraft, nor is there yet a planetary protection category for human missions. Future in situ investigations of a variety of locations on the Moon by highly sensitive instruments designed to search for biologically derived organic compounds would help assess the contamination of the Moon by lunar spacecraft. These studies could also provide valuable "ground truth" data for Mars sample return missions and help define planetary protection requirements for future Mars bound spacecraft carrying life detection experiments. In addition, studies of the impact of terrestrial contamination of the lunar surface by the Apollo astronauts could provide valuable data to help refine future Mars surface exploration plans for a human mission to Mars.

  17. Evaluation of sample preservation methods for space mission

    NASA Technical Reports Server (NTRS)

    Schubert, W.; Rohatgi, N.; Kazarians, G.

    2002-01-01

    For interplanetary spacecraft that will travel to destinations where future life detection experiments may be conducted or samples are to be returned to earth, we should archive and preserve relevant samples from the spacecraft and cleanrooms for evaluation at a future date.

  18. Project Cyclops: a Design Study of a System for Detecting Extraterrestrial Intelligent Life

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The requirements in hardware, manpower, time and funding to conduct a realistic effort aimed at detecting the existence of extraterrestrial intelligent life are examined. The methods used are limited to present or near term future state-of-the-art techniques. Subjects discussed include: (1) possible methods of contact, (2) communication by electromagnetic waves, (3) antenna array and system facilities, (4) antenna elements, (5) signal processing, (6) search strategy, and (7) radio and radar astronomy.

  19. Science Goals, Objectives, and Investigations of the 2016 Europa Lander Science Definition Team Report

    NASA Astrophysics Data System (ADS)

    Hand, Kevin P.; Murray, Alison; Garvin, James; and the Europa Lander Science Definition Team, Project Science Team, and Project Engineering Team.

    2017-10-01

    In June of 2016 NASA convened a 21-person team of scientists to establish the science goals, objectives, investigations, measurement requirements, and model payload of a Europa lander mission concept. The NASA HQ Charter goals, in priority order, are as follows:1) Search for evidence of life on Europa, 2) Assess the habitability of Europa via in situ techniques uniquely available to a lander mission, 3) Characterize surface and subsurface properties at the scale of the lander to support future exploration of Europa.Within Goal 1, four Objectives were developed for seeking signs of life. These include the need to: a) detect and characterize any organic indicators of past or present life, b) identify and characterize morphological, textural, and other indicators of life, c) detect and characterize any inorganic indicators of past or present life, and d) determine the provenance of Lander-sampled material. Goal 2 focuses on Europa’s habitability and ensures that even in the absence of the detection of any potential biosignatures, significant ocean world science is still achieved. Goal 3 ensures that the landing site region is quantitatively characterized in the context needed for Goals 1 and 2, and that key measurements about Europa’s ice shell are made to enable future exploration.Critically, scientific success cannot be, and should never be, contingent on finding signs of life - such criteria would be levying requirements on how the universe works. Rather, scientific success is defined here as achieving a suite of measurements such that if convincing signs of life are present on Europa’s surface they could be detected at levels comparable to those found in benchmark environments on Earth, and, further, that even if no potential biosignatures are detected, the science return of the mission will significantly advance our fundamental understanding of Europa’s chemistry, geology, geophysics, and habitability.

  20. Searching for Extant Life on Mars - The ATP-Firefly LuciferinLuciferase Technique

    NASA Astrophysics Data System (ADS)

    Obousy, R. K.; Tziolas, A. C.; Kaltsas, K.; Sims, M. R.; Grant, W. D.

    We have investigated the use of the ATP-Firefly Luciferin/Luciferase (FFL) enzymic photoluminescent reaction as a possible means of detecting extant life in the Martian environment. Experiments carried out by the authors illustrate the capacity of the method to successfully detect extant forms of life on Mars assuming ATP is an intrinsic part of the biochemistry of such life-forms. A photodiode based apparatus, built to test the assumptions and applicability of the ATP-Firefly Luciferase/Luciferin technique to an exobiologically inclined mission to Mars, revealed the adequate resolution and reproducibility of the methodology plus areas of improvement. Also detailed are extraction, delivery and analysis system concepts, proposed for future Mars missions.

  1. Synchronous in-field application of life-detection techniques in planetary analog missions

    NASA Astrophysics Data System (ADS)

    Amador, Elena S.; Cable, Morgan L.; Chaudry, Nosheen; Cullen, Thomas; Gentry, Diana; Jacobsen, Malene B.; Murukesan, Gayathri; Schwieterman, Edward W.; Stevens, Adam H.; Stockton, Amanda; Yin, Chang; Cullen, David C.; Geppert, Wolf

    2015-02-01

    Field expeditions that simulate the operations of robotic planetary exploration missions at analog sites on Earth can help establish best practices and are therefore a positive contribution to the planetary exploration community. There are many sites in Iceland that possess heritage as planetary exploration analog locations and whose environmental extremes make them suitable for simulating scientific sampling and robotic operations. We conducted a planetary exploration analog mission at two recent lava fields in Iceland, Fimmvörðuháls (2010) and Eldfell (1973), using a specially developed field laboratory. We tested the utility of in-field site sampling down selection and tiered analysis operational capabilities with three life detection and characterization techniques: fluorescence microscopy (FM), adenine-triphosphate (ATP) bioluminescence assay, and quantitative polymerase chain reaction (qPCR) assay. The study made use of multiple cycles of sample collection at multiple distance scales and field laboratory analysis using the synchronous life-detection techniques to heuristically develop the continuing sampling and analysis strategy during the expedition. Here we report the operational lessons learned and provide brief summaries of scientific data. The full scientific data report will follow separately. We found that rapid in-field analysis to determine subsequent sampling decisions is operationally feasible, and that the chosen life detection and characterization techniques are suitable for a terrestrial life-detection field mission. In-field analysis enables the rapid obtainment of scientific data and thus facilitates the collection of the most scientifically relevant samples within a single field expedition, without the need for sample relocation to external laboratories. The operational lessons learned in this study could be applied to future terrestrial field expeditions employing other analytical techniques and to future robotic planetary exploration missions.

  2. Electrochemical Detection of the Molecules of Life

    NASA Technical Reports Server (NTRS)

    Thomson, Seamus; Quinn, Richard; Koehne, Jessica

    2017-01-01

    All forms of life on Earth contain cellular machinery that can transform and regulate chemical energy through metabolic pathways. These processes are oxidation-reduction reactions that are performed by four key classes of molecules: flavins, nicotinamaides, porphyrins, and quinones. By detecting the electrochemical interaction of these redox-active molecules with an electrode, a method of differentiating them by their class could be established and incorporated into future life-detecting missions. This body of work investigates the electrochemistry of ubiquitous molecules found in life and how they may be detected. Molecules can oxidise or reduce the surface of an electrode - giving or receiving electrons - and these interactions are represented by changes in current with respect to an applied voltage. This relationship varies with: electrolyte type and concentration, working electrode material, the redox-active molecule itself, and scan rate. Flavin adenine dinucleotide (FAD), riboflavin, nicotinamide adenine dinucleotide (NADH), and anthraquinone are all molecules found intracellularly in almost all living organisms. An organism-synthesised extracellular redox-active molecule, Plumbagin, was also selected as part of this study. The goal of this work is to detect these molecules in seawater and assess its application in searching for life on Ocean Worlds.

  3. Sherlock Holmes Meets the 21st Century.

    ERIC Educational Resources Information Center

    Flack, Jerry

    1991-01-01

    Mystery literature is proposed as a component of futures studies curriculum for gifted students. The article describes similarities between the behaviors of a detective and a critical thinker, the tools of futurists such as the futures wheel, and the use of such topics as computer crime and extraterrestrial life to challenge students' thinking…

  4. Mars, habitability, and scenarios for the search for life

    NASA Astrophysics Data System (ADS)

    Westall, F.; Foucher, F.; Bost, N.; Bertrand, M.; Loizeau, D.; Vago, J.; Kminek, G.

    2014-04-01

    The search for traces of life on Mars is one of the principal objectives of the present and future surface missions to Mars (MSL, ExoMars and Mars 2020). Central to this objective is the concept of habitability. The conditions conducive to the appearance of life on Mars varied both in space and time, as have conditions supporting flourishing or dormant life. At any one locality of Mars, this may have resulted in the (1) non-appearance of life, to (2) life emerging, flourishing and disappearing, or to (3) (re)colonisation at different times. This heterogeneity in habitable conditions will have important consequences for the evolution of Martian life, as well as for the presence of possible biosignatures at a specific landing site. On the other hand, the absence of important tectonics on Mars may have improved the preservation of potential microbial remains. We will describe the different scenarios for life on Mars and its present and future detection by in situ exploration.

  5. 50 Years of Exobiology and Astrobiology at NASA

    NASA Image and Video Library

    2010-10-13

    Dan Goldin, NASA's longest serving Administrator from 1992-2001 speaks during the "Seeking Signs of Life" Symposium, celebrating 50 Years of Exobiology and Astrobiology at NASA, Thursday, Oct. 14, 2010, at the Lockheed Martin Global Vision Center in Arlington, Va. NASA has been researching life in the universe since 1959, asking three fundamental questions: ‚"How does life begin and evolve?"‚ "Is there life beyond Earth and, if so, how can we detect it?‚" and "What is the future of life on Earth and in the universe?" Photo Credit: (NASA/Bill Ingalls)

  6. 50 Years of Exobiology and Astrobiology at NASA

    NASA Image and Video Library

    2010-10-13

    James Lovelock, Honorary Visiting Fellow of Green Templeton College, University of Oxford speaks during the "Seeking Signs of Life" Symposium, celebrating 50 Years of Exobiology and Astrobiology at NASA, Thursday, Oct. 14, 2010, at the Lockheed Martin Global Vision Center in Arlington, Va. NASA has been researching life in the universe since 1959, asking three fundamental questions: "How does life begin and evolve?"‚ "Is there life beyond Earth and, if so, how can we detect it?" and "What is the future of life on Earth and in the universe?" Photo Credit: (NASA/Bill Ingalls)

  7. Detecting Traces of Life in the Plume of Enceladus

    NASA Astrophysics Data System (ADS)

    Krolikowski, Daniel M.; Lunine, Jonathan I.

    2015-01-01

    Saturn's moon Enceladus presents one of the most promising bodies in the solar system on which to detect (at least traces of) extraterrestrial life. We present a study of biomarkers in the plume. A variety of potential biomarkers were considered and their applicability to the plume was assessed. Our study focused primarily on the relative abundances of hydrocarbons to methane, and amino acids. Concentrations of these biomarkers were estimated by combining data from studies of methanogenic and hydrothermal communities with a plume density model. We studied mass spectrometry as a possible means to detect these indicators of life. We performed a parameterized study by considering mass spectrometers with a sensitivity of 10, 100, and 1000 times that of Cassini's mass spectrometer. Promisingly, the concentration of biogenic hydrocarbons is around an order of magnitude higher than the detection threshold of the most sensitive mass spectrometer we considered. Therefore, analysis of such hydrocarbons on a future mission is a promising approach to detecting biochemical processes within Enceladus.

  8. In Situ Biological Contamination Studies of the Moon: Implications for Planetary Protection and Life Detection Missions

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Dworkin, Jason P.; Lupisella, Mark; Williams, David R.; Kminek, Gerhard; Rummel, John D.

    2010-01-01

    NASA and ESA have outlined visions for solar system exploration that will include a series of lunar robotic precursor missions to prepare for, and support a human return to the Moan, and future human exploration of Mars and other destinations, including possibly asteroids. One of the guiding principles for exploration is to pursue compelling scientific questions about the origin and evolution of life. The search for life on objects such as Mars will require careful operations, and that all systems be sufficiently cleaned and sterilized prior to launch to ensure that the scientific integrity of extraterrestrial samples is not jeopardized by terrestrial organic contamination. Under the Committee on Space Research's (COSPAR's) current planetary protection policy for the Moon, no sterilization procedures are required for outbound lunar spacecraft, nor is there a different planetary protection category for human missions, although preliminary C SPAR policy guidelines for human missions to Mars have been developed. Future in situ investigations of a variety of locations on the Moon by highly sensitive instruments designed to search for biologically derived organic compounds would help assess the contamination of the Moon by lunar spacecraft. These studies could also provide valuable "ground truth" data for Mars sample return missions and help define planetary protection requirements for future Mars bound spacecraft carrying life detection experiments. In addition, studies of the impact of terrestrial contamination of the lunar surface by the Apollo astronauts could provide valuable data to help refine future: Mars surface exploration plans for a human mission to Mars.

  9. Characterization of organics, microorganisms, desert soils, and Mars-like soils by thermal volatilization coupled to mass spectrometry and their implications for the search for organics on Mars by Phoenix and future space missions.

    PubMed

    Navarro-González, Rafael; Iñiguez, Enrique; de la Rosa, José; McKay, Christopher P

    2009-10-01

    A key goal for astrobiology is the search for evidence of life on Mars. Because liquid water is a fundamental environmental requirement for life, the recent set of missions to Mars have focused on a strategy known as "follow the water." Since life is made of organic molecules, a logical next step is "follow the organics." However, organics are expected to be present at very low levels on Mars, which would make their detection challenging. Viking was unable to detect organics at parts per billion (ppb), but the effective upper limit could be higher due to the low efficiency of the thermal volatilization (TV) step in releasing organics. Due to its ease of use, TV is still the method selected for current and future NASA and ESA missions. Here, we show that when organics are present in the soil at levels above 1500 parts per million (ppm), there are several characteristic organic fragments detected by TV-mass spectrometry; however, when the levels are below <150 ppm, TV oxidizes them, and no organic fragments are released. Instead, nitric oxide (NO) is produced and can be used to determine quantitatively the organic content if the C/N ratio is determined. Any atmospheric NO sorbed or mineral nitrogen (e.g., nitrates) present in the soil would release NO by TV at distinctive temperature regimes that would not overlap with the organic nitrogen source. Therefore, we suggest that monitoring NO provides the best chance for Phoenix and other future Mars missions to detect nitrogen-containing organics in the soil or ice.

  10. Subsurface ice and brine sampling using an ultrasonic/sonic gopher for life detection and characterization in the McMurdo Dry Valleys

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Y.; Sherrit, S.; Chang, Z.; Wessel, L.; Bao, X.; Doran, P. T.; Fritsen, C. H.; Kenig, F.; McKay, C. P.; Murray, A.; hide

    2004-01-01

    There is growing evidence for ice and fluids near the surface of Mars with potential discharge of brines, which may preserve a record of past life on the planet. Proven techniques to sample Mars subsurface will be critical for future NASA astrobiology missions that will search for such records.

  11. 50 Years of Exobiology and Astrobiology at NASA

    NASA Image and Video Library

    2010-10-13

    Lynn Margulis, Distinguished University Professor in the Department of Geosciences at the University of Massachusetts-Amherst speaks during the "Seeking Signs of Life" Symposium, celebrating 50 Years of Exobiology and Astrobiology at NASA, Thursday, Oct. 14, 2010, at the Lockheed Martin Global Vision Center in Arlington, Va. NASA has been researching life in the universe since 1959, asking three fundamental questions: "How does life begin and evolve?"‚ "Is there life beyond Earth and, if so, how can we detect it?" and "What is the future of life on Earth and in the universe?" Photo Credit: (NASA/Bill Ingalls)

  12. 50 Years of Exobiology and Astrobiology at NASA

    NASA Image and Video Library

    2010-10-13

    James L. Green, Director for Planetary Science in NASA's Science Mission Directorate, helps kick off the "Seeking Signs of Life" Symposium, celebrating 50 Years of Exobiology and Astrobiology at NASA, Thursday, Oct. 14, 2010, at the Lockheed Martin Global Vision Center in Arlington, Va. NASA has been researching life in the universe since 1959, asking three fundamental questions: "How does life begin and evolve?"‚ "Is there life beyond Earth and, if so, how can we detect it?" and "What is the future of life on Earth and in the universe?" Photo Credit: (NASA/Bill Ingalls)

  13. How far are extraterrestrial life and intelligence after Kepler?

    NASA Astrophysics Data System (ADS)

    Wandel, Amri

    2017-08-01

    The Kepler mission has shown that a significant fraction of all stars may have an Earth-size habitable planet. A dramatic support was the recent detection of Proxima Centauri b. Using a Drake-equation like formalism I derive an equation for the abundance of biotic planets as a function of the relatively modest uncertainty in the astronomical data and of the (yet unknown) probability for the evolution of biotic life, Fb. I suggest that Fb may be estimated by future spectral observations of exoplanet biomarkers. It follows that if Fb is not very small, then a biotic planet may be expected within about 10 light years from Earth. Extending this analyses to advanced life, I derive expressions for the distance to putative civilizations in terms of two additional Drake parameters - the probability for evolution of a civilization, Fc, and its average longevity. Assuming "optimistic" values for the Drake parameters, (Fb Fc 1), and a broadcasting duration of a few thousand years, the likely distance to the nearest civilizations detectable by SETI is of the order of a few thousand light years. Finally I calculate the distance and probability of detecting intelligent signals with present and future radio telescopes such as Arecibo and SKA and how it could constrain the Drake parameters.

  14. Evaluation of Raman spectroscopy for the trace analysis of biomolecules for Mars exobiology

    NASA Astrophysics Data System (ADS)

    Jehlicka, Jan; Edwards, Howell G. M.; Vitek, Petr; Culka, Adam

    2010-05-01

    Raman spectroscopy is an ideal technique for the identification of biomolecules and minerals for astrobiological applications. Raman spectroscopic instrumentation has been shown to be potentially valuable for the in-situ detection of spectral biomarkers originating from rock samples containing remnants of terrestrial endolithic colonisation. Within the future payloads designed by ESA and NASA for several missions focussing on life detection on Mars, Raman spectroscopy has been proposed as an important non-destructive analytical tool for the in-situ identification of organic compounds relevant to life detection on planetary and moon surfaces or near sub-surfaces. Portable Raman systems equipped with 785 nm lasers permit the detection of pure organic minerals, aminoacids, carboxylic acids, as well as NH-containing compounds outdoors at -20°C and at an altitude of 3300 m. A potential limitation for the use of Raman spectroscopic techniques is the detection of very low amounts of biomolecules in rock matrices. The detection of beta-carotene and aminoacids has been achieved in the field using a portable Raman system in admixture with crystalline powders of sulphates and halite. Relatively low detection limits less than 1 % for detecting beta-carotene, aminoacids using a portable Raman system were obtained analysing traces of these compounds in crystalline powders of sulphates and halite. Laboratory systems permit the detection of these biomolecules at even lower concentrations at sub-ppm level of the order of 0.1 to 1 mg kg-1. The comparative evaluation of laboratory versus field measurements permits the identification of critical issues for future field applications and directs attention to the improvements needed in the instrumentation . A comparison between systems using different laser excitation wavelengths shows excellent results for 785 nm laser excitation . The results of this study will inform the acquisition parameters necessary for the deployment of robotic miniaturised Raman spectrosocpic instrumentation intended for the detection of spectral signatures of extant or relict life on Mars.

  15. Novel approach to genetic analysis and results in 3000 hemophilia patients enrolled in the My Life, Our Future initiative

    PubMed Central

    Johnsen, Jill M.; Fletcher, Shelley N.; Huston, Haley; Roberge, Sarah; Martin, Beth K.; Kircher, Martin; Josephson, Neil C.; Shendure, Jay; Ruuska, Sarah; Koerper, Marion A.; Morales, Jaime; Pierce, Glenn F.; Aschman, Diane J.

    2017-01-01

    Hemophilia A and B are rare, X-linked bleeding disorders. My Life, Our Future (MLOF) is a collaborative project established to genotype and study hemophilia. Patients were enrolled at US hemophilia treatment centers (HTCs). Genotyping was performed centrally using next-generation sequencing (NGS) with an approach that detected common F8 gene inversions simultaneously with F8 and F9 gene sequencing followed by confirmation using standard genotyping methods. Sixty-nine HTCs enrolled the first 3000 patients in under 3 years. Clinically reportable DNA variants were detected in 98.1% (2357/2401) of hemophilia A and 99.3% (595/599) of hemophilia B patients. Of the 924 unique variants found, 285 were novel. Predicted gene-disrupting variants were common in severe disease; missense variants predominated in mild–moderate disease. Novel DNA variants accounted for ∼30% of variants found and were detected continuously throughout the project, indicating that additional variation likely remains undiscovered. The NGS approach detected >1 reportable variants in 36 patients (10 females), a finding with potential clinical implications. NGS also detected incidental variants unlikely to cause disease, including 11 variants previously reported in hemophilia. Although these genes are thought to be conserved, our findings support caution in interpretation of new variants. In summary, MLOF has contributed significantly toward variant annotation in the F8 and F9 genes. In the near future, investigators will be able to access MLOF data and repository samples for research to advance our understanding of hemophilia. PMID:29296726

  16. The Blue Dot Workshop: Spectroscopic Search for Life on Extrasolar Planets

    NASA Technical Reports Server (NTRS)

    Des Marais, David J. (Editor)

    1997-01-01

    This workshop explored the key questions and challenges associated with detecting life on an extrasolar planet. The final product will be a NASA Conference Publication which includes the abstracts from 21 talks, summaries of key findings, and recommendations for future research. The workshop included sessions on three related topics: the biogeochemistry of biogenic gases in the atmosphere, the chemistry and spectroscopy of planetary atmospheres, and the remote sensing of planetary atmospheres and surfaces. With the observation that planetary formation is probably a common phenomenon, together with the advent of the technical capability to locate and describe extrasolar planets, this research area indeed has an exciting future.

  17. The NASA SCI Files: The Case of the Galactic Vacation. [Videotape].

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Hampton, VA. Langley Research Center.

    The tree house detectives go galactic with their latest project by traveling to Mars and also seeing how the Moon affects the Earth. They visit the largest radio telescope in the world and help look for intelligent life in the universe. The tree house detectives prepare for an out-of-this-world vacation as they explore the future of space travel.…

  18. Biota and Biomolecules in Extreme Environments on Earth: Implications for Life Detection on Mars

    PubMed Central

    Aerts, Joost W.; Röling, Wilfred F.M.; Elsaesser, Andreas; Ehrenfreund, Pascale

    2014-01-01

    The three main requirements for life as we know it are the presence of organic compounds, liquid water, and free energy. Several groups of organic compounds (e.g., amino acids, nucleobases, lipids) occur in all life forms on Earth and are used as diagnostic molecules, i.e., biomarkers, for the characterization of extant or extinct life. Due to their indispensability for life on Earth, these biomarkers are also prime targets in the search for life on Mars. Biomarkers degrade over time; in situ environmental conditions influence the preservation of those molecules. Nonetheless, upon shielding (e.g., by mineral surfaces), particular biomarkers can persist for billions of years, making them of vital importance in answering questions about the origins and limits of life on early Earth and Mars. The search for organic material and biosignatures on Mars is particularly challenging due to the hostile environment and its effect on organic compounds near the surface. In support of life detection on Mars, it is crucial to investigate analogue environments on Earth that resemble best past and present Mars conditions. Terrestrial extreme environments offer a rich source of information allowing us to determine how extreme conditions affect life and molecules associated with it. Extremophilic organisms have adapted to the most stunning conditions on Earth in environments with often unique geological and chemical features. One challenge in detecting biomarkers is to optimize extraction, since organic molecules can be low in abundance and can strongly adsorb to mineral surfaces. Methods and analytical tools in the field of life science are continuously improving. Amplification methods are very useful for the detection of low concentrations of genomic material but most other organic molecules are not prone to amplification methods. Therefore, a great deal depends on the extraction efficiency. The questions “what to look for”, “where to look”, and “how to look for it” require more of our attention to ensure the success of future life detection missions on Mars. PMID:25370528

  19. Biota and biomolecules in extreme environments on Earth: implications for life detection on Mars.

    PubMed

    Aerts, Joost W; Röling, Wilfred F M; Elsaesser, Andreas; Ehrenfreund, Pascale

    2014-10-13

    The three main requirements for life as we know it are the presence of organic compounds, liquid water, and free energy. Several groups of organic compounds (e.g., amino acids, nucleobases, lipids) occur in all life forms on Earth and are used as diagnostic molecules, i.e., biomarkers, for the characterization of extant or extinct life. Due to their indispensability for life on Earth, these biomarkers are also prime targets in the search for life on Mars. Biomarkers degrade over time; in situ environmental conditions influence the preservation of those molecules. Nonetheless, upon shielding (e.g., by mineral surfaces), particular biomarkers can persist for billions of years, making them of vital importance in answering questions about the origins and limits of life on early Earth and Mars. The search for organic material and biosignatures on Mars is particularly challenging due to the hostile environment and its effect on organic compounds near the surface. In support of life detection on Mars, it is crucial to investigate analogue environments on Earth that resemble best past and present Mars conditions. Terrestrial extreme environments offer a rich source of information allowing us to determine how extreme conditions affect life and molecules associated with it. Extremophilic organisms have adapted to the most stunning conditions on Earth in environments with often unique geological and chemical features. One challenge in detecting biomarkers is to optimize extraction, since organic molecules can be low in abundance and can strongly adsorb to mineral surfaces. Methods and analytical tools in the field of life science are continuously improving. Amplification methods are very useful for the detection of low concentrations of genomic material but most other organic molecules are not prone to amplification methods. Therefore, a great deal depends on the extraction efficiency. The questions "what to look for", "where to look", and "how to look for it" require more of our attention to ensure the success of future life detection missions on Mars.

  20. Impact Crater Hydrothermal Niches for Life on Mars: Question of Scale

    NASA Technical Reports Server (NTRS)

    Pope, K. O.; Ames, D. E.; Kieffer, S. W.; Ocampo, A. C.

    2000-01-01

    A major focus in the search for fossil life on Mars is on ancient hydrothermal deposits. Nevertheless, remote sensing efforts have not found mineral assemblages characteristic of hydrothermal activity. Future remote sensing work, including missions with higher spatial resolution, may detect localized hydrothermal deposits, but it is possible that dust mantles will prohibit detection from orbit and lander missions will be required. In anticipation of such missions, it is critical to develop a strategy for selecting potential hydrothermal sites on Mars. Such a strategy is being developed for volcanogenic hydrothermal systems, and a similar strategy is needed for impact hydrothermal systems.

  1. Nanostructured materials with plasmonic nanobiosensors for early cancer detection: A past and future prospect.

    PubMed

    Sugumaran, Sathish; Jamlos, Mohd Faizal; Ahmad, Mohd Noor; Bellan, Chandar Shekar; Schreurs, Dominique

    2018-02-15

    Early cancer detection and treatment is an emerging and fascinating field of plasmonic nanobiosensor research. It paves to enrich a life without affecting living cells leading to a possible survival of the patient. This review describes a past and future prospect of an integrated research field on nanostructured metamaterials, microwave transmission, surface plasmonic resonance, nanoantennas, and their manifested versatile properties with nano-biosensors towards early cancer detection to preserve human health. Interestingly, (i) microwave transmission shows more advantages than other electromagnetic radiation in reacting with biological tissues, (ii) nanostructured metamaterial (Au) with special properties like size and shape can stimulate plasmonic effects, (iii) plasmonic based nanobiosensors are to explore the efficacy for early cancer tumour detection or single molecular detection and (iv) nanoantenna wireless communication by using microwave inverse scattering nanomesh (MISN) technique instead of conventional techniques can be adopted to characterize the microwave scattered signals from the biomarkers. It reveals that the nanostructured material with plasmonic nanobiosensor paves a fascinating platform towards early detection of cancer tumour and is anticipated to be exploited as a magnificent field in the future. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Recent advances in high-performance fluorescent and bioluminescent RNA imaging probes.

    PubMed

    Xia, Yuqiong; Zhang, Ruili; Wang, Zhongliang; Tian, Jie; Chen, Xiaoyuan

    2017-05-22

    RNA plays an important role in life processes. Imaging of messenger RNAs (mRNAs) and micro-RNAs (miRNAs) not only allows us to learn the formation and transcription of mRNAs and the biogenesis of miRNAs involved in various life processes, but also helps in detecting cancer. High-performance RNA imaging probes greatly expand our view of life processes and enhance the cancer detection accuracy. In this review, we summarize the state-of-the-art high-performance RNA imaging probes, including exogenous probes that can image RNA sequences with special modification and endogeneous probes that can directly image endogenous RNAs without special treatment. For each probe, we review its structure and imaging principle in detail. Finally, we summarize the application of mRNA and miRNA imaging probes in studying life processes as well as in detecting cancer. By correlating the structures and principles of various probes with their practical uses, we compare different RNA imaging probes and offer guidance for better utilization of the current imaging probes and the future design of higher-performance RNA imaging probes.

  3. On the abundance of extraterrestrial life after the Kepler mission

    NASA Astrophysics Data System (ADS)

    Wandel, Amri

    2015-07-01

    The data recently accumulated by the Kepler mission have demonstrated that small planets are quite common and that a significant fraction of all stars may have an Earth-like planet within their habitable zone. These results are combined with a Drake-equation formalism to derive the space density of biotic planets as a function of the relatively modest uncertainty in the astronomical data and of the (yet unknown) probability for the evolution of biotic life, F b. I suggest that F b may be estimated by future spectral observations of exoplanet biomarkers. If F b is in the range 0.001-1, then a biotic planet may be expected within 10-100 light years from Earth. Extending the biotic results to advanced life I derive expressions for the distance to putative civilizations in terms of two additional Drake parameters - the probability for evolution of a civilization, F c, and its average longevity. For instance, assuming optimistic probability values (F b~F c~1) and a broadcasting longevity of a few thousand years, the likely distance to the nearest civilizations detectable by searching for intelligent electromagnetic signals is of the order of a few thousand light years. The probability of detecting intelligent signals with present and future radio telescopes is calculated as a function of the Drake parameters. Finally, I describe how the detection of intelligent signals would constrain the Drake parameters.

  4. Determinants of felt stigma in epilepsy.

    PubMed

    Aydemir, N; Kaya, B; Yıldız, G; Öztura, I; Baklan, B

    2016-05-01

    The present study aimed to determine the level of felt stigma, overprotection, concealment, and concerns related to epilepsy in different life domains by using culturally-specific scales for Turkish individuals with epilepsy. Also, it aimed to detect relations among the study variables and to determine the variables which predict felt stigma. For this purpose, felt stigma scale, overprotection scale, concealment of epilepsy scale, and concerns of epilepsy scale were administered to two hundred adult persons with epilepsy (PWE). The results showed that almost half of the participants reported felt stigma, overprotection, concealment of epilepsy, concerns related to future occupation, and concerns related to social life. Almost all the study variables show correlations with each other. Concealment of epilepsy, concerns related to social life, and concerns related to future occupation were found as the predictors of felt stigma. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Seeking the Tricorder: Report on Workshops on Advanced Technologies for Life Detection

    NASA Astrophysics Data System (ADS)

    Reiss-Bubenheim, D.; Boston, P. J.; Partridge, H.; Lindensmith, C.; Nadeau, J. L.

    2017-12-01

    There's great excitement about life prospects on icy fluid-containing moons orbiting our Solar System's gas giant planets, newly discovered planet candidates and continuing long-term interest in possible Mars life. The astrobiology/planetary research communities require advanced technologies to explore and study both Solar System bodies and exoplanets for evidence of life. The Tricorder Workshop, held at Ames Research Center May 19-20, 2017, explored technology topics focused on non-invasive or minimally invasive methods for life detection. The workshop goal was to tease out promising ideas for low TRL concepts for advanced life detection technologies that could be applied to the surface and near-subsurface of Mars and Ocean Worlds (such as Europa and Enceladus) dominated by icy terrain. The workshop technology focus centered on mid-to-far term instrument concepts or other enabling technologies (e.g. robotics, machine learning, etc.) primarily for landed missions, which could detect evidence of extant, extinct and/or "weird" life including the notion of "universal biosignatures". Emphasis was placed on simultaneous and serial sample measurements using a suite of instruments and technological approaches with planetary protection in mind. A follow-on workshop, held July 24 at Caltech, sought to develop a generic flowchart of in situ observations and measurements to provide sufficient information to determine if extant life is present in an environment. The process didn't require participant agreement as to definition of extant life, but instead developed agreement on necessary observations and instruments. The flowchart of measurements was designed to maximize the number of simultaneous observations on a single sample where possible, serializing where necessary, and finally dividing it into parts for the most destructive analyses at the end. Selected concepts from the workshops outlined in this poster provide those technology areas necessary to solicit and develop for future life detection exploration via fly-by missions, orbiters, and landers.

  6. Laboratory insights into the detection of surface biosignatures by remote-sensing techniques

    NASA Astrophysics Data System (ADS)

    Poch, O.; Pommerol, A.; Jost, B.; Roditi, I.; Frey, J.; Thomas, N.

    2014-03-01

    With the progress of direct imaging techniques, it will be possible in the short or long-term future to retrieve more efficiently the information on the physical properties of the light reflected by rocky exoplanets (Traub et al., 2010). The search for visible-infrared absorption bands of peculiar gases (O2, CH4 etc.) in this light could give clues for the presence of life (Kaltenegger and Selsis, 2007). Even more uplifting would be the direct detection of life itself, on the surface of an exoplanet. Considering this latter possibility, what is the potential of optical remote-sensing methods to detect surface biosignatures? Reflected light from the surface of the Earth exhibits a strong surface biosignature in the form of an abrupt change of reflectance between the visible and infrared range of the spectrum (Seager et al., 2005). This spectral feature called "vegetation red-edge" is possibly the consequence of biological evolution selecting the right chemical structures enabling the plants to absorb the visible energy, while preventing them from overheating by reflecting more efficiently the infrared. Such red-edge is also found in primitive photosynthetic bacteria, cyanobacteria, that colonized the surface of the Earth ocean and continents billions of years before multicellular plants (Knacke, 2003). If life ever arose on an Earth-like exoplanet, one could hypothesize that some form of its surface-life evolves into similar photo-active organisms, also exhibiting a red-edge. In this paper, we will present our plan and preliminary results of a laboratory study aiming at precising the potentiality of remote sensing techniques in detecting such surface biosignatures. Using equipment that has been developed in our team for surface photometry studies (Pommerol 2011, Jost 2013, Pommerol 2013), we will investigate the reflectance spectra and bidirectional reflectance function of soils containing bacteria such as cyanobacteria, in various environmental conditions. We will also present our plan to incorporate polarization measurements, and particularly circular polarization, because it can be a marker of homochirality, which is supposed to be a universal property of life. Finally, the analyses of both biotic and abiotic materials will help to assess if (or in which peculiar conditions) remote sensing techniques can discriminate between false positive and strong biomarkers. Ultimately, these laboratory data can serve as reference data to guide and interpret future observations, paving the way for the detection of life on distant exoplanets.

  7. 50 Years of Exobiology and Astrobiology at NASA

    NASA Image and Video Library

    2010-10-13

    Stephen Price from Lockheed Martin Space Systems Company kicks off the ‚Äö√Ñ√∫Seeking Signs of Life‚Äö√Ñ√π Symposium, celebrating 50 Years of Exobiology and Astrobiology at NASA, Thursday, Oct. 14, 2010, at the Lockheed Martin Global Vision Center in Arlington, Va. NASA has been researching life in the universe since 1959, asking three fundamental questions: "How does life begin and evolve?"‚ "Is there life beyond Earth and, if so, how can we detect it?" and "What is the future of life on Earth and in the universe?" Photo Credit: (NASA/Bill Ingalls)

  8. The Search for Extraterrestrial Life

    NASA Astrophysics Data System (ADS)

    Peter, Ulmschneider

    Looking at the nature, origin, and evolution of life on Earth is one way of assessing whether extraterrestrial life exists on Earth-like planets elsewhere (see Chaps. 5 and 6). A more direct approach is to search for favorable conditions and traces of life on other celestial bodies, both in the solar system and beyond. Clearly, there is little chance of encountering nonhuman intelligent beings in the solar system. But there could well be primitive life on Mars, particularly as in the early history of the solar system the conditions on Mars were quite similar to those on Earth. In addition, surprisingly favorable conditions for life once existed on the moons of Jupiter. Yet even if extraterrestrial life is not encountered in forthcoming space missions, it would be of utmost importance to recover fossils of past organisms as such traces would greatly contribute to our basic understanding of the formation of life. In addition to the planned missions to Mars and Europa, there are extensive efforts to search for life outside the solar system. Rapid advances in the detection of extrasolar planets, outlined in Chap. 3, are expected to lead to the discovery of Earth-like planets in the near future. But how can we detect life on these distant bodies?

  9. Interstellar Travel and Galactic Colonization: Insights from Percolation Theory and the Yule Process.

    PubMed

    Lingam, Manasvi

    2016-06-01

    In this paper, percolation theory is employed to place tentative bounds on the probability p of interstellar travel and the emergence of a civilization (or panspermia) that colonizes the entire Galaxy. The ensuing ramifications with regard to the Fermi paradox are also explored. In particular, it is suggested that the correlation function of inhabited exoplanets can be used to observationally constrain p in the near future. It is shown, by using a mathematical evolution model known as the Yule process, that the probability distribution for civilizations with a given number of colonized worlds is likely to exhibit a power-law tail. Some of the dynamical aspects of this issue, including the question of timescales and generalizing percolation theory, were also studied. The limitations of these models, and other avenues for future inquiry, are also outlined. Complex life-Extraterrestrial life-Panspermia-Life detection-SETI. Astrobiology 16, 418-426.

  10. The Frontiers of Nanotechnology and Nanomedicine (SIG MED).

    ERIC Educational Resources Information Center

    Lei, Polin P.

    2000-01-01

    This abstract of a planned session on the future of medicine explains the use of nanotechnology in medicine to manipulate biomolecules that regulate life and death processes and to help improve health care delivery. Topics include nanodevices for drug delivery, cancer detection and cure, and repairing genes. (LRW)

  11. Detection of Extraterrestrial Ecology (Exoecology)

    NASA Technical Reports Server (NTRS)

    Jones, Harry; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Researchers in the Astrobiology Technology Branch at Ames Research Center have begun investigating alternate concepts for the detection of extraterrestrial life. We suggest searching for extraterrestrial ecology, exoecology, as well as for extraterrestrial biology, exobiology. Ecology describes the interactions of living things with their environment. All ecosystems are highly constrained by their environment and are constrained by well-known system design principles. Ecology could exist wherever there is an energy source and living I things have discovered some means to capture, store, and use the available energy. Terrestrial ecosystems use as energy sources, light, organic molecules, and in thermal vents and elsewhere, simple inorganic molecules. Ecosystem behavior is controlled by matter and energy conservation laws and can be described by linear and nonlinear dynamic systems theory. Typically in an ecosystem different molecules are not in chemical equilibrium and scarce material is conserved, stored, or recycled. Temporal cycles and spatial variations are often observed. These and other -eneral principles of exoecology can help guide the search for extraterrestrial life. The chemical structure observed in terrestrial biology may be highly contingent on evolutionary accidents. Oxygen was not always abundant on Earth. Primitive sulfur bacteria use hydrogen sulfide and sulfur to perform photosynthesis instead of water and oxygen. Astrobiologists have assumed, for the sake of narrowing and focusing our life detection strategies, that extraterrestrial life will have detailed chemical similarities with terrestrial life. Such assumptions appear very reasonable and they allow us to design specific and highly sensitive life detection experiments. But the fewer assumptions we make, the less chance we have of being entirely wrong The best strategy for the detection of extraterrestrial life could be a mixed strategy. We should use detailed assumptions based on terrestrial biology to guide some but not all future searches for alien life. The systems principles of exoecology seem much more fundamental and inescapable than the terrestrial biology analogies of exobiology. We should search for exoecology as well as exobiology.

  12. Long-Term Perspectives on Interstellar Flight

    NASA Astrophysics Data System (ADS)

    Michaud, M. A. G.

    Realizing interstellar travel by machines or living beings will require not only scientific and technological progress, but also a shared secular belief among a determined minority that this enterprise is important for the human future. Their efforts may have to extend beyond individual human lifetimes. Historical perspectives, on both the past and the future, are proposed. Interstellar probes could be a more thorough way of searching for alien forms of life and intelligence in nearby systems, particularly if there were intelligent beings there who did not employ technologies our astronomical observing devices can detect from here. Perspectives on the ethical, policy, and design issues of such close encounters with alien life and intelligence are presented. Ways of accelerating the coming of interstellar probes are suggested.

  13. Life Detection and Characterization of Subsurface Ice and Brine in the McMurdo Dry Valleys Using an Ultrasonic Gopher: A NASA ASTEP Project

    NASA Technical Reports Server (NTRS)

    Doran, P. T.; Bar-Cohen, Y.; Fritsen, C.; Kenig, F.; McKay, C. P.; Murray, A.; Sherrit, S.

    2003-01-01

    Evidence for the presence of ice and fluids near the surface of Mars in both the distant and recent past is growing with each new mission to the Planet. One explanation for fluids forming springlike features on Mars is the discharge of subsurface brines. Brines offer potential refugia for extant Martian life, and near surface ice could preserve a record of past life on the planet. Proven techniques to get underground to sample these environments, and get below the disruptive influence of the surface oxidant and radiation regime, will be critical for future astrobiology missions to Mars. Our Astrobiology for Science and Technology for Exploring Planets (ASTEP) project has the goal to develop and test a novel ultrasonic corer in a Mars analog environment, the McMurdo Dry valleys, Antarctica, and to detect and describe life in a previously unstudied extreme ecosystem; Lake Vida (Fig. 1), an ice-sealed lake.

  14. The provenance, formation, and implications of reduced carbon phases in Martian meteorites

    NASA Astrophysics Data System (ADS)

    Steele, Andrew; McCubbin, Francis M.; Fries, Marc D.

    2016-11-01

    This review is intended to summarize the current observations of reduced carbon in Martian meteorites, differentiating between terrestrial contamination and carbon that is indigenous to Mars. Indeed, the identification of Martian organic matter is among the highest priority targets for robotic spacecraft missions in the next decade, including the Mars Science Laboratory and Mars 2020. Organic carbon compounds are essential building blocks of terrestrial life, so the occurrence and origin (biotic or abiotic) of organic compounds on Mars is of great significance; however, not all forms of reduced carbon are conducive to biological systems. This paper discusses the significance of reduced organic carbon (including methane) in Martian geological and astrobiological systems. Specifically, it summarizes current thinking on the nature, sources, and sinks of Martian organic carbon, a key component to Martian habitability. Based on this compilation, reduced organic carbon on Mars, including detections of methane in the Martian atmosphere, is best described through a combination of abiotic organic synthesis on Mars and infall of extraterrestrial carbonaceous material. Although conclusive signs of Martian life have yet to be revealed, we have developed a strategy for life detection on Mars that can be utilized in future life-detection studies.

  15. The search for extraterrestrial life: Recent developments; Proceedings of the Symposium, Boston University, MA, June 18-21, 1984

    NASA Astrophysics Data System (ADS)

    Papagiannis, M. D.

    The conference presents papers on the history of the search for extraterrestrial life, the scientific rationale and methods used in the search for other planetary systems, the detection of distant planets with the Space Telescope, planetary searches using optical astrometric interferometers, and infrared spectral identification of complex organic molecules in interstellar grains. Also considered are universal protein ancestors from hydrogen cyanide and water, astronomical sources of polarized light and their role in determining molecular chirality on earth, the universal diagrams and life in the universe, the precambrian evolution of terrestrial life and a thermodynamic approach to the occurrance and appearance of galactic life forms. Papers are also presented on the Ohio Seti program, lunar reflections of terrestrial radio leakage, the multichannel spectrum analyzer, software implementation of detection algorithms for the MCSA, the Serendip II design, galactic colonization and competition in a young galactic disk, implications of ancient and future migrations, extraterrestrial intelligence, the inevitability and the possible structures of supercivilizations, planetary, interplanetary and interstellar organic matter, and universal aspects of biological evolution.

  16. The search for extraterrestrial life: Recent developments; Proceedings of the Symposium, Boston University, MA, June 18-21, 1984

    NASA Technical Reports Server (NTRS)

    Papagiannis, M. D. (Editor)

    1985-01-01

    The conference presents papers on the history of the search for extraterrestrial life, the scientific rationale and methods used in the search for other planetary systems, the detection of distant planets with the Space Telescope, planetary searches using optical astrometric interferometers, and infrared spectral identification of complex organic molecules in interstellar grains. Also considered are universal protein ancestors from hydrogen cyanide and water, astronomical sources of polarized light and their role in determining molecular chirality on earth, the universal diagrams and life in the universe, the precambrian evolution of terrestrial life and a thermodynamic approach to the occurrance and appearance of galactic life forms. Papers are also presented on the Ohio Seti program, lunar reflections of terrestrial radio leakage, the multichannel spectrum analyzer, software implementation of detection algorithms for the MCSA, the Serendip II design, galactic colonization and competition in a young galactic disk, implications of ancient and future migrations, extraterrestrial intelligence, the ineviability and the possible structures of supercivilizations, planetary, interplanetary and interstellar organic matter, and universal aspects of biological evolution.

  17. Swansong biospheres II: the final signs of life on terrestrial planets near the end of their habitable lifetimes

    NASA Astrophysics Data System (ADS)

    O'Malley-James, Jack T.; Cockell, Charles S.; Greaves, Jane S.; Raven, John A.

    2014-07-01

    The biosignatures of life on Earth do not remain static, but change considerably over the planet's habitable lifetime. Earth's future biosphere, much like that of the early Earth, will consist of predominantly unicellular microorganisms due to the increased hostility of environmental conditions caused by the Sun as it enters the late stage of its main sequence evolution. Building on previous work, the productivity of the biosphere is evaluated during different stages of biosphere decline between 1 and 2.8 Gyr from present. A simple atmosphere-biosphere interaction model is used to estimate the atmospheric biomarker gas abundances at each stage and to assess the likelihood of remotely detecting the presence of life in low-productivity, microbial biospheres, putting an upper limit on the lifetime of Earth's remotely detectable biosignatures. Other potential biosignatures such as leaf reflectance and cloud cover are discussed.

  18. Urey onboard Exomars: Searching for life on Mars

    NASA Astrophysics Data System (ADS)

    Bada, J.; Ehrenfreund, P.; Grunthaner, F.; Sephton, M.; Urey Team

    2009-04-01

    Exomars is currently under development as the flagship mission of ESA's exploration program Aurora. A fundamental challenge ahead for the Exomars mission is to search for extinct and extant life. The Urey instrument (Mars Organic and Oxidant Detector) has been selected for the Pasteur payload and is considered a key instrument to achieve the mission's scientific objectives. Urey can detect organic compounds at unprecedented sensitivity of part-per-trillions in the Martian regolith. The instrument will target several key classes of organic molecules such as amino acids, nucleobases, amines and amino sugars and polycyclic aromatic hydrocrabon (PAHs) using state-of-the-art analytical methods. Chemoresistor oxidant sensors will provide complementary measurements by simultaneously evaluating the survival potential of organic compounds in the environment. The Urey instrument concept has tremendous future applications in Mars and Moon exploration in the framework of life detection and planetary protection.

  19. Design of intelligent composites with life-cycle health management capabilities

    NASA Astrophysics Data System (ADS)

    Rosania, Colleen L.; Larrosa, Cecilia C.; Chang, Fu-Kuo

    2015-03-01

    Use of carbon fiber reinforced polymers (CFRPs) presents challenges because of their complex manufacturing processes and different damage mechanics in relation to legacy metal materials. New monitoring methods for manufacturing, quality verification, damage estimation, and prognosis are needed to use CFRPs safely and efficiently. This work evaluates the development of intelligent composite materials using integrated piezoelectric sensors to monitor the material during cure and throughout service life. These sensors are used to propagate ultrasonic waves through the structure for health monitoring. During manufacturing, data is collected at different stages during the cure cycle, detecting the changing material properties during cure and verifying quality and degree of cure. The same sensors can then be used with previously developed techniques to perform damage detection, such as impact detection and matrix crack density estimation. Real-time damage estimation can be combined with prognostic models to predict future propagation of damage in the material. In this work experimental results will be presented from composite coupons with embedded piezoelectric sensors. Cure monitoring and damage detection results derived from analysis of the ultrasonic sensor signal will be shown. Sensitive signal parameters to the different stimuli in both the time and frequency domains will be explored for this analysis. From these results, use of the same sensor networks from manufacturing throughout the life of the composite material will demonstrate the full life-cycle monitoring capability of these intelligent materials.

  20. Atmospheric Beacons of Life from Exoplanets Around G and K Stars

    NASA Technical Reports Server (NTRS)

    Airapetian, Vladimir S.; Jackman, Charles H.; Mlynczak, Martin; Danchi, William; Hunt, Linda

    2017-01-01

    The current explosion in detection and characterization of thousands of extrasolar planets from the Kepler mission, the Hubble Space Telescope, and large ground-based telescopes opens a new era in searches for Earth-analog exoplanets with conditions suitable for sustaining life. As more Earth-sized exoplanets are detected in the near future, we will soon have an opportunity to identify habitale worlds. Which atmospheric biosignature gases from habitable planets can be detected with our current capabilities? The detection of the common biosignatures from nitrogen-oxygen rich terrestrial-type exoplanets including molecular oxygen (O2), ozone (O3), water vapor (H2O), carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4) requires days of integration time with largest space telescopes, and thus are very challenging for current instruments. In this paper we propose to use the powerful emission from rotational-vibrational bands of nitric oxide, hydroxyl and molecular oxygen as signatures of nitrogen, oxygen, and water rich atmospheres of terrestrial type exoplanets "highlighted" by the magnetic activity from young G and K main-sequence stars. The signals from these fundamental chemical prerequisites of life we call atmospheric "beacons of life" create a unique opportunity to perform direct imaging observations of Earth-sized exoplanets with high signal-to-noise and low spectral resolution with the upcoming NASA missions.

  1. Atmospheric Beacons of Life from Exoplanets Around G and K Stars.

    PubMed

    Airapetian, Vladimir S; Jackman, Charles H; Mlynczak, Martin; Danchi, William; Hunt, Linda

    2017-11-02

    The current explosion in detection and characterization of thousands of extrasolar planets from the Kepler mission, the Hubble Space Telescope, and large ground-based telescopes opens a new era in searches for Earth-analog exoplanets with conditions suitable for sustaining life. As more Earth-sized exoplanets are detected in the near future, we will soon have an opportunity to identify habitale worlds. Which atmospheric biosignature gases from habitable planets can be detected with our current capabilities? The detection of the common biosignatures from nitrogen-oxygen rich terrestrial-type exoplanets including molecular oxygen (O 2 ), ozone (O 3 ), water vapor (H 2 O), carbon dioxide (CO 2 ), nitrous oxide (N 2 O), and methane (CH 4 ) requires days of integration time with largest space telescopes, and thus are very challenging for current instruments. In this paper we propose to use the powerful emission from rotational-vibrational bands of nitric oxide, hydroxyl and molecular oxygen as signatures of nitrogen, oxygen, and water rich atmospheres of terrestrial type exoplanets "highlighted" by the magnetic activity from young G and K main-sequence stars. The signals from these fundamental chemical prerequisites of life we call atmospheric "beacons of life" create a unique opportunity to perform direct imaging observations of Earth-sized exoplanets with high signal-to-noise and low spectral resolution with the upcoming NASA missions.

  2. Mars in the late Noachian: Evolution of a habitable surface environment

    NASA Astrophysics Data System (ADS)

    Johnson, Sarah Stewart

    2008-10-01

    This dissertation addresses whether simple life forms might have existed on Mars during the late Noachian epoch, and whether those life forms, or their traces, can be detected today. It begins by analyzing the ancient Martian climate in light of new evidence that sulfur chemistry played a prominent role in the planet's early evolution. It finds that sulfur-induced greenhouse warming could have periodically heated the planet enough to support liquid water, thereby creating warm, wet, clement conditions. Moreover, it finds that those warming pulses, while short-lived over geologic time, may have persisted for hundreds of years. If sulfur helped create environmental conditions capable of hosting life, however, it also created conditions that were adverse to sustaining it. In particular, dissipation of sulfur volatiles cooled the climate, and sulfur rainout contributed to the acidity of Martian surface waters. The dissertation therefore proceeds to analyze the potential for persistence and detection of life in terrestrial environments with Mars-like characteristics. It first investigates the potential for detecting ancient life by searching for lipid biomarkers in sulfur-rich acid salt lakes, concluding that a variety of biomarkers may be more resistant to decay than previously believed. It then analyzes soil samples from permafrost, discovering the oldest independently authenticated viable organisms ever found, and positing low-level metabolic activity and DNA repair as a survival mechanism in ancient cells. Finally, the dissertation uses deep sequencing to examine prokaryotic diversity in a terrestrial Mars-like river characterized by low pH and high concentrations of iron and sulfur, with results considered in light of the implications for life detection approaches incorporating new, in situ "PCR in a chip" technology. The dissertation concludes by proposing future work, including the ultimate goal of developing a life detection instrument for Mars. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)

  3. Imperfect asymmetry of life: earth microbial communities prefer D-lactate but can use L-lactate also.

    PubMed

    Moazeni, Faegheh; Zhang, Gaosen; Sun, Henry J

    2010-05-01

    Asymmetrical utilization of chiral compounds has been sought on Mars as evidence for biological activity. This method was recently validated in glucose. Earth organisms utilize D-glucose, not L-glucose, a perfect asymmetry. In this study, we tested the method in lactate and found utilization of both enantiomers. Soil-, sediment-, and lake-borne microbial communities prefer D-lactate but can consume L-lactate if given extra time to acclimate. This situation is termed imperfect asymmetry. Future life-detection mission investigators need to be aware of imperfect asymmetry so as not to miss relatively subtle signs of life.

  4. Impossible Predictions of the Unprecedented: Analogy, History, and the Work of Prognostication

    NASA Astrophysics Data System (ADS)

    Denning, Kathryn

    At the beginning of exobiology and SETI as research programs circa 1960, it was reasonable and responsible for scientists and others to consider the potential effects of a detection of other life, or contact with it, upon humanity. It is no coincidence that this was a time of reckoning with the power of science and technology. The Cold War was settling in, space programs were beginning, and the technologies of war and those of discovery were then, as now, intertwined, in a way that made Carl Sagan, Philip Morrison, Joshua Lederberg, and others, concerned for humanity's future, and the future of life. Those concerns are as well-founded as ever. However, 50 years on, after half a century of predictions and untested hypotheses, we still only know that a detection of extraterrestrial life could come tomorrow, in the next century, or never. Many potential scenarios have been identified and explored, planetary protection protocols have been implemented for astrobiology, policy concerning SETI detections has been created and debated, and some valuable empirical work has been done concerning potential cultural reactions. We might now reasonably ask: what are our real goals here? And do they match what we are actually accomplishing? Are these exercises still beneficial, or are they reaching the point of diminishing returns? Might there be undesirable effects of prognostications about detection and contact? Elsewhere, I have discussed at some length what I think can sensibly be done to prepare for a detection. This leaves me with a further argument to make here: first, that the use of historical analogies of intercultural contact on Earth to predict or explore the potential consequences of contact with ETI may now be essentially useless or perhaps worse than useless; second, that the longstanding practice of prediction about contact now also invites scrutiny in terms of its utility; and third, that turning our attention to pressing topics at the intersection of astrobiology, SETI, and society, could be worthwhile for scholars of humanity.

  5. Baseline requirements for detecting biosignatures with the HabEx and LUVOIR mission concepts

    NASA Astrophysics Data System (ADS)

    Wang, Ji; Mawet, Dimitri; Ruane, Garreth; Delorme, Jacques-Robert; Klimovich, Nikita; Hu, Renyu

    2017-09-01

    A milestone in understanding life in the universe is the detection of biosignature gases in the atmospheres of habitable exoplanets. Future mission concepts under study by the 2020 decadal survey, e.g., HabEx and LUVOIR, have the potential of achieving this goal. We investigate the baseline requirements for detecting four molecular species, H2O, O2, CH4, and CO2. These molecules are highly relevant to habitability and life activity on Earth and other planets. Through numerical simulations, we find the minimum requirement for spectral resolution (R) and starlight suppression level (C) for a given exposure time. We consider scenarios in which different molecules are detected. For example, R = 6400 (400) and C = 5 × 10-10 (2 × 10-9 ) are required for HabEx (LUVOIR) to detect O2 and H2O for an exposure time of 400 hours for an Earth analog around a solar-type star at a distance of 5 pc. The full results are given in Table 2. The impact of exo-zodiacal contamination and thermal background is also discussed

  6. Advances in the in-field detection of microorganisms in ice.

    PubMed

    Barnett, Megan J; Pearce, David A; Cullen, David C

    2012-01-01

    The historic view of ice-bound ecosystems has been one of a predominantly lifeless environment, where microorganisms certainly exist but are assumed to be either completely inactive or in a state of long-term dormancy. However, this standpoint has been progressively overturned in the past 20years as studies have started to reveal the importance of microbial life in the functioning of these environments. Our present knowledge of the distribution, taxonomy, and metabolic activity of such microbial life has been derived primarily from laboratory-based analyses of collected field samples. To date, only a restricted range of life detection and characterization techniques have been applied in the field. Specific examples include direct observation and DNA-based techniques (microscopy, specific stains, and community profiling based on PCR amplification), the detection of biomarkers (such as adenosine triphosphate), and measurements of metabolism [through the uptake and incorporation of radiolabeled isotopes or chemical alteration of fluorescent substrates (umbelliferones are also useful here)]. On-going improvements in technology mean that smaller and more robust life detection and characterization systems are continually being designed, manufactured, and adapted for in-field use. Adapting technology designed for other applications is the main source of new methodology, and the range of techniques is currently increasing rapidly. Here we review the current use of technology and techniques to detect and characterize microbial life within icy environments and specifically its deployment to in-field situations. We discuss the necessary considerations, limitations, and adaptations, review emerging technologies, and highlight the future potential. Successful application of these new techniques to in-field studies will certainly generate new insights into the way ice bound ecosystems function. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Educational Technology as a Video Cases in Teaching Psychology for Future Teachers

    ERIC Educational Resources Information Center

    Shen, Pingxia; Gromova, Chulpan R.; Zakirova, Venera G.; Yalalov, Farit G.

    2017-01-01

    Relevance of the article is caused by need to form the teacher's psychological competences on the basis of life and professional situations. This article is directed to detection of the main difficulties, which students have in the course of studying psychology and efficiency of use of video cases at classes of psychology. The leading research…

  8. Planetary Protection Plan for an Antibody based instrument proposed for Mars2020

    NASA Astrophysics Data System (ADS)

    Smith, Heather; Parro, Víctor

    The Signs Of Life Detector (SOLID) instrument is a high TRL level instrument proposed for the Mars 2020 instrument suite. In this presentation we describe the planetary protection instrument plan as if the instrument is classified as a life detection instrument compliant with Category IV(b) planetary protection mission requirements, NASA, ESA, and COSPAR policy. SOLID uses antibodies as a method for detecting organic and biomolecular components in soils. Due to the sensitive detection method, the scientific integrity of the instrument exceeds the planetary protection requirements. The instrument will be assembled and integrated in an ISO level 8 cleanroom or better (ISO 4 for the sample read out and fluidics components). Microbial reduction methods and assays employed are as follows: Wipe the outside and inside of the instrument with a mixture of isopropyl alcohol (70%) and water. Cell cultures will be the standard assay to determine enumeration of “viable” spores and other rapid assays such as LAL and ATP bioluminescence as secondary assays to verify the interior of the instrument is microbe free. SOLID’s design factors for contamination control include the following features: SOLID has the capability to heat the catchment tray to pyrolyze any Earth hitchhikers. There will also be an “air gap” of cm maintained between the sample acquisition device and the funnel inlet. This will prevent forward contamination of the sample collection device and reverse contamination of the detection unit. To mitigate false positives, SOLID will include anti-bodies for potential contaminants from organisms most commonly found in clean rooms. If selected for the Mars 2020 Rover, SOLID would be the first life detection instrument based on biomolecules sent by NASA, as such the planetary protection plan will set a precedence for future life detection instruments carrying biomolecules to other planetary bodies.

  9. Pharmaceuticals in tap water: human health risk assessment and proposed monitoring framework in China.

    PubMed

    Leung, Ho Wing; Jin, Ling; Wei, Si; Tsui, Mirabelle Mei Po; Zhou, Bingsheng; Jiao, Liping; Cheung, Pak Chuen; Chun, Yiu Kan; Murphy, Margaret Burkhardt; Lam, Paul Kwan Sing

    2013-07-01

    Pharmaceuticals are known to contaminate tap water worldwide, but the relevant human health risks have not been assessed in China. We monitored 32 pharmaceuticals in Chinese tap water and evaluated the life-long human health risks of exposure in order to provide information for future prioritization and risk management. We analyzed samples (n = 113) from 13 cities and compared detected concentrations with existing or newly-derived safety levels for assessing risk quotients (RQs) at different life stages, excluding the prenatal stage. We detected 17 pharmaceuticals in 89% of samples, with most detectable concentrations (92%) at < 50 ng/L. Caffeine (median-maximum, nanograms per liter: 24.4-564), metronidazole (1.8-19.3), salicylic acid (16.6-41.2), clofibric acid (1.2-3.3), carbamazepine (1.3-6.7), and dimetridazole (6.9-14.7) were found in ≥ 20% of samples. Cities within the Yangtze River region and Guangzhou were regarded as contamination hot spots because of elevated levels and frequent positive detections. Of the 17 pharmaceuticals detected, 13 showed very low risk levels, but 4 (i.e., dimetridazole, thiamphenicol, sulfamethazine, and clarithromycin) were found to have at least one life-stage RQ ≥ 0.01, especially for the infant and child life stages, and should be considered of high priority for management. We propose an indicator-based monitoring framework for providing information for source identification, water treatment effectiveness, and water safety management in China. Chinese tap water is an additional route of human exposure to pharmaceuticals, particularly for dimetridazole, although the risk to human health is low based on current toxicity data. Pharmaceutical detection and application of the proposed monitoring framework can be used for water source protection and risk management in China and elsewhere.

  10. Assessing Ozone Detectability on Weakly Oxygenated Terrestrial Exoplanets

    NASA Astrophysics Data System (ADS)

    Schwieterman, Edward; Olson, Stephanie; Reinhard, Christopher; Ridgwell, Andy; Kane, Stephen R.; Meadows, Victoria; Lyons, Timothy

    2018-06-01

    Space-based telescope mission concepts currently under development by NASA would be capable of directly imaging exoplanets within the habitable zones of their host stars. The spectroscopic data from such missions could provide an opportunity to detect biosignatures. The strongest remotely detectable signature of life on our planet today is the photosynthetically produced oxygen (O2) in our atmosphere. However, recent studies of Earth’s geochemical proxy record suggest that for all but the last ~500 million years, atmospheric O2 would have been undetectable to a remote observer, a potential false negative for life. During an extended period in Earth’s middle history (2.0 – 0.7 billion years ago, Ga), O2 was likely present but in low concentrations, with pO2 estimates of ~ 0.1 – 1% of present-day levels. Recent biogeochemical modeling results have suggested methane (CH4) was likewise undetectably low during this period. Although O2 has a weak spectral impact in reflected light at abundances consistent with Earth’s middle history, O3 in photochemical equilibrium with that O2 would produce notable spectral features in the UV Hartley-Huggins band (~0.25 µm), with a weaker impact in the mid-IR band near 9.7 µm. Thus, taking Earth history as an informative example, there likely exists a category of exoplanets for which conventional biosignatures can only be identified in the UV. We use simulated observations to emphasize the importance of UV capabilities in the design of future space-based direct imaging telescopes such as HabEx or LUVOIR to detect O3 on planets with weakly oxygenated states. We also show that under low-O2 conditions, seasonal variations in O2 production and consumption by the biosphere could manifest as time-variable O3. Such seasonality in the Hartley-Huggins band provides both an opportunity and a challenge for remote life-detection studies because this biosignature may only be detectable intermittently over a planet’s orbital period. These examples highlight the importance of UV capability for future direct-imaging telescopes and illustrate the broad implications of studying Earth history as a window into understanding potential exoplanet biosignatures.

  11. Extra-terrestrial life in the European Space Agency's Cosmic Vision plan and beyond.

    PubMed

    Fridlund, Malcolm

    2011-02-13

    Our exciting time allows us to contemplate the moment in the not-too-distant future when we can detect the presence of life on worlds orbiting stars other than our Sun. It will not be easy and will require the development and use of the very latest technologies. It also very probably demands deployment in space of relevant instrumentation in order to carry out these investigations. The European Space Agency has been involved in the studies and development of the required technologies for more than a decade and is currently formulating a roadmap for how to achieve the ultimate detection of signs of life as we know it on terrestrial exoplanets. The major elements of the roadmap consist of the following. First, the search for and detection of terrestrial exoplanets. Here, some progress has been made recently and is reported in this paper. Second, the more and more detailed study of the physical characteristics of such exoplanets. Finally, the search for biomarkers--indicators of biological activity--that can be observed at interstellar distances. The last is probably one of the most difficult problems ever contemplated by observational astronomy.

  12. Panel summary of recommendations

    NASA Technical Reports Server (NTRS)

    Dunbar, Bonnie J.; Coleman, Martin E.; Mitchell, Kenneth L.

    1990-01-01

    The following Space Station internal contamination topics were addressed: past flight experience (Skylab and Spacelab missions); present flight activities (Spacelabs and Soviet Space Station Mir); future activities (materials science and life science experiments); Space Station capabilities (PPMS, FMS, ECLSS, and U.S. Laboratory overview); manned systems/crew safety; internal contamination detection; contamination control - stowage and handling; and contamination control - waste gas processing. Space Station design assumptions are discussed. Issues and concerns are discussed as they relate to (1) policy and management, (2) subsystem design, (3) experiment design, and (4) internal contamination detection and control. The recommendations generated are summarized.

  13. Rough spacecraft surfaces -a threat to Planetary Protection issues

    NASA Astrophysics Data System (ADS)

    Probst, Alexander; Facius, Rainer; Wirth, Reinhard; Moissl-Eichinger, Christine

    Inadvertent introduction of terrestrial microorganisms to foreign solar bodies could compromise the integrity of present and future life detection missions. For Planetary Protection purposes space agencies measure the aerobic, mesophilic spore load of a spacecraft as a proxy indicator in order to determine its bioload. Emerging novel hardware in space science implicates novel surface structures and materials that need to be controlled with regard to contaminations. For instance (roughened) carbon fiber reinforced plastic and Vectran fabric for construction of landing platforms and airbags, respectively, have been used in some Mars exploration missions. These materials have different levels of roughness and their potential risk to retain spores for insufficient sampling success has never been in scope of investigation. In this comprehensive study we evaluated ESA's novel nylon flocked swab protocol on stainless steel and other tech-nical surfaces with regard to Bacillus spore recovery. Low recovery efficiencies of the ESA standard wipe assay for large surface sampling were demonstrated with regard to Bacillus at-rophaeus spore detection. Therefore another protocol designed for rough surface sampling was evaluated on Vectran fabric and (roughened) carbon fiber reinforced plastic. Moreover, scan-ning electron micrographs of the technical surfaces studied allowed a more detailed view on their properties. The evaluated sampling protocols and the corresponding results are of high interest for future life detection missions in order to preserve their scientific integrity throughout spacecraft assembly.

  14. Acetate: A better astrobiological indicator of life than methane?

    NASA Astrophysics Data System (ADS)

    Kanik, I.; Russell, M. J.; Hodyss, R. P.; Johnson, P. V.

    2009-12-01

    The emergence of life on the ocean floor of the early Earth has implications for life detection on other rocky planetary bodies having subsurface ocean or ground waters in our solar system. At bottom life hydrogenates carbon dioxide. This is true not only of oxygenic photosynthesis—a relatively late evolutionary invention—but also of autotrophic chemosynthesizers such as the acetogenic bacteria and the methanoarchaea; respectively probably the first and second organisms to have emerged on Earth. Both of these prokaryotes use the acetyl coenzyme-a pathway for biosynthesis, though the variant leading to methanogenesis is substantially more complicated and therefore more highly evolved. Yet serpentinization and volcanism can produce methane with facility—an ambiguity that confounds life detection. In contrast, hydrothermal vent experiments to date along with hot spring analyses have indicated that no significant concentrations of abiotic acetate were produced in spite of the simplicity of the biological pathway. It seems that the geochemical conditions that generate abiotic methane are generally too reducing to produce acetate. Thus, the generation of acetate is solely a biotic process. As there is every reason to believe that the same chemical and electrochemical tensions would occur on other wet rocky planets containing subsurface ocean or ground waters. This encourages us to look into chemical and spectroscopic methods of detecting of acetate (both remotely and in situ) which is a better indicator than methane for the past or present biological activity on planetary bodies such as Mars. We, at the Jet Propulsion Laboratory, have designed laboratory experiments to investigate the feasibility of detecting acetate using conventional chemical and spectroscopic methods. The results and applicability of these techniques for the future astrobiology missions will be discussed.

  15. New Assumptions to Guide SETI Research

    NASA Technical Reports Server (NTRS)

    Colombano, S. P.

    2018-01-01

    The recent Kepler discoveries of Earth-like planets offer the opportunity to focus our attention on detecting signs of life and technology in specific planetary systems, but I feel we need to become more flexible in our assumptions. The reason is that, while it is still reasonable and conservative to assume that life is most likely to have originated in conditions similar to ours, the vast time differences in potential evolutions render the likelihood of "matching" technologies very slim. In light of these challenges I propose a more "aggressive"� approach to future SETI exploration in directions that until now have received little consideration.

  16. Detection of Galba truncatula, Fasciola hepatica and Calicophoron daubneyi environmental DNA within water sources on pasture land, a future tool for fluke control?

    PubMed

    Jones, Rhys Aled; Brophy, Peter M; Davis, Chelsea N; Davies, Teri E; Emberson, Holly; Rees Stevens, Pauline; Williams, Hefin Wyn

    2018-06-08

    Increasing trematode prevalence and disease occurrence in livestock is a major concern. With the global spread of anthelmintic resistant trematodes, future control strategies must incorporate approaches focusing on avoidance of infection. The reliance of trematodes on intermediate snail hosts to successfully complete their life-cycle means livestock infections are linked to the availability of respective snail populations. By identifying intermediate snail host habitats, infection risk models may be strengthened whilst farmers may confidently apply pasture management strategies to disrupt the trematode life-cycle. However, accurately identifying and mapping these risk areas is challenging. In this study, environmental DNA (eDNA) assays were designed to reveal Galba truncatula, Fasciola hepatica and Calicophoron daubneyi presence within water sources on pasture land. eDNA was captured using a filter-based protocol, with DNA extracted using the DNeasy® PowerSoil® kit and amplified via PCR. In total, 19 potential G. truncatula habitats were analysed on four farms grazed by livestock infected with both F. hepatica and C. daubneyi. Galba truncatula eDNA was identified in 10/10 habitats where the snail was detected by eye. Galba truncatula eDNA was also identified in four further habitats where the snail was not physically detected. Fasciola hepatica and C. daubneyi eDNA was also identified in 5/19 and 8/19 habitats, respectively. This study demonstrated that eDNA assays have the capabilities of detecting G. truncatula, F. hepatica and C. daubneyi DNA in the environment. Further assay development will be required for a field test capable of identifying and quantifying F. hepatica and C. daubneyi infection risk areas, to support future control strategies. An eDNA test would also be a powerful new tool for epidemiological investigations of parasite infections on farms.

  17. Towards a rapid and comprehensive microbial detection and identification system for life support and planetary protection applications

    NASA Astrophysics Data System (ADS)

    Lasseur, Christophe

    Long term manned missions of our Russian colleagues have demonstrated the risks associated with microbial contamination. These risks concern both crew health via the metabolic consumables contamination (water, air,.) but and also the hardware degradation. In parallel to these life support issues, planetary protection experts have agreed to place clear specifications of the microbial quality of future hardware landing on extraterrestrial planets as well as elaborate the requirements of contamination for manned missions on surface. For these activities, it is necessary to have a better understanding of microbial activity, to create culture collections and to develop on-line detection tools. . In this respect, over the last 6 years , ESA has supported active scientific research on the choice of critical genes and functions, including those linked to horizontal gene pool of bacteria and its dissemination. In parallel, ESA and European industries have been developing an automated instrument for rapid microbial detection on air and surface samples. Within this paper, we first present the life support and planetary protection requirements, and the state of the art of the instrument development. Preliminary results at breadboard level, including a mock-up view of the final instrument are also presented. Finally, the remaining steps required to reach a functional instrument for planetary hardware integration and life support flight hardware are also presented.

  18. Super-long Anabiosis of Ancient Microorganisms in Ice and Terrestrial Models for Development of Methods to Search for Life on Mars, Europa and other Planetary Bodies

    NASA Technical Reports Server (NTRS)

    Abyzov, S. S.; Duxbury, N. S.; Bobin, N. E.; Fukuchi, M.; Hoover, R. B.; Kanda, H.; Mitskevich, I. N.; Mulyukin, A. L.; Naganuma, T.; Poglazova, M. N.; hide

    2007-01-01

    Successful missions to Mars, Europe and other bodies of the Solar system have created a prerequisite to search for extraterrestrial life. The first attempts of microbial life detection on the Martian surface by the Viking landed missions gave no biological results. Microbiological investigations of the Martian subsurface ground ice layers seem to be more promising. It is well substantiated to consider the Antarctic ice sheet and the Antarctic and Arctic permafrost as terrestrial analogues of Martian habitats. The results of our long-standing microbiological studies of the Antarctic ice would provide the basis for detection of viable microbial cells on Mars. Our microbiological investigations of the deepest and thus most ancient strata of the Antarctic ice sheet for the first time gave evidence for the natural phenomenon of long-term anabiosis (preservation of viability and vitality for millennia years). A combination of classical microbiological methods, epifluorescence microscopy, SEM, TEM, molecular diagnostics, radioisotope labeling and other techniques made it possible for us to obtain convincing proof of the presence of pro- and eukaryotes in the Antarctic ice sheet. In this communication, we will review and discuss some critical issues related to the detection of viable microorganisms in cold terrestrial environments with regard to future searches for microbial life and/or its biological signatures on extraterrestrial objects.

  19. Life detection at a Mars analogue site of present-day serpentinization in the Tablelands Ophiolite of Newfoundland (Invited)

    NASA Astrophysics Data System (ADS)

    Morrill, P. L.; Szponar, N.; Brazelton, W. J.; Woodruff, Q.; Schrenk, M. O.; Bower, D. M.; Steele, A.

    2010-12-01

    The Tableland Ophiolite was created during the collision of Laurentia and Gondwana continents ca. 470 million years ago. Ultramafic mantle rocks, from the ancient sea bed that once separated these continents, were thrusted westward onto the old continental margin, which is now Western Newfoundland. Weathering due to recent glaciations has left large areas of ultramafic rock at the surface and created fissures for fluid flow. As a result serpentinization is occurring as fresh water penetrates the unaltered ultramafic rock. Serpentinization is of particular interest because, through hydration of ultramafic rock, this reaction produces H2 and the reducing conditions necessary for abiogenic hydrocarbon synthesis, while also producing conditions amenable for chemolithotrophic life. Therefore sites of active serpentinization can be the source of either abiogenic or biogenic organics, or both. Serpentinization is a suspected (past or present) source of (detected or putative) hydrocarbons on Mars, Titan and Europa, hence these astrobodies may be potentially habitable or once habitable environments. The Tablelands Ophiolite is an analogue site that is ideal for testing methods of life detection in an extreme environment of high pH and low microbial biomass characteristic of sites of serpentinization. Multiple ultrabasic reducing springs characteristic of present-day serpentinization have been identified and characterized based on their geochemistry and microbiology. Field-based instruments were deployed for the detection of microbial activity (ATP), microbial cell wall material, and mineralogy, in yet untested high pH and low biomass environment. In this talk I will give an overview of the in situ measurements of life detection and put these measurements in context of geochemistry, microbiology, carbon source and reaction pathways, and I will discuss what we have learned that will help us plan for future mission measurements.

  20. An Organic Decontamination Method for Sampling Devices used in Life-detection Studies

    NASA Technical Reports Server (NTRS)

    Eigenbrode, Jennifer; Maule, Jake; Wainwright, Norm; Steele, Andrew; Amundsen, Hans E.F.

    2008-01-01

    Organic decontamination of sampling and storage devices are crucial steps for life-detection, habitability, and ecological investigations of extremophiles living in the most inhospitable niches of Earth, Mars and elsewhere. However, one of the main stumbling blocks for Mars-analogue life-detection studies in terrestrial remote field-sites is the capability to clean instruments and sampling devices to organic levels consistent with null values. Here we present a new seven-step, multi-reagent cleaning and decontamination protocol that was adapted and tested on a glacial ice-coring device and on a rover-guided scoop used for sediment sampling both deployed multiple times during two field seasons of the Arctic Mars Analog Svalbard Expedition AMASE). The effectiveness of the protocols for both devices was tested by (1)in situ metabolic measurements via APT, (2)in situ lipopolysacchride (LPS) quantifications via low-level endotoxin assays, and(3) laboratory-based molecular detection via gas chromatography-mass spectrometry. Our results show that the combination and step-wise application of disinfectants with oxidative and solvation properties for sterilization are effective at removing cellular remnants and other organic traces to levels necessary for molecular organic- and life-detection studies. The validation of this seven-step protocol - specifically for ice sampling - allows us to proceed with confidence in kmskia4 analogue investigations of icy environments. However, results from a rover scoop test showed that this protocol is also suitable for null-level decontamination of sample acquisition devices. Thus, this protocol may be applicable to a variety of sampling devices and analytical instrumentation used for future astrobiology missions to Enceladus, and Europa, as well as for sample-return missions.

  1. In Situ Field Sequencing and Life Detection in Remote (79°26'N) Canadian High Arctic Permafrost Ice Wedge Microbial Communities.

    PubMed

    Goordial, J; Altshuler, Ianina; Hindson, Katherine; Chan-Yam, Kelly; Marcolefas, Evangelos; Whyte, Lyle G

    2017-01-01

    Significant progress is being made in the development of the next generation of low cost life detection instrumentation with much smaller size, mass and energy requirements. Here, we describe in situ life detection and sequencing in the field in soils over laying ice wedges in polygonal permafrost terrain on Axel Heiberg Island, located in the Canadian high Arctic (79°26'N), an analog to the polygonal permafrost terrain observed on Mars. The life detection methods used here include (1) the cryo-iPlate for culturing microorganisms using diffusion of in situ nutrients into semi-solid media (2) a Microbial Activity Microassay (MAM) plate (BIOLOG Ecoplate) for detecting viable extant microorganisms through a colourimetric assay, and (3) the Oxford Nanopore MinION for nucleic acid detection and sequencing of environmental samples and the products of MAM plate and cryo-iPlate. We obtained 39 microbial isolates using the cryo-iPlate, which included several putatively novel strains based on the 16S rRNA gene, including a Pedobacter sp. (96% closest similarity in GenBank) which we partially genome sequenced using the MinION. The MAM plate successfully identified an active community capable of L-serine metabolism, which was used for metagenomic sequencing with the MinION to identify the active and enriched community. A metagenome on environmental ice wedge soil samples was completed, with base calling and uplink/downlink carried out via satellite internet. Validation of MinION sequencing using the Illumina MiSeq platform was consistent with the results obtained with the MinION. The instrumentation and technology utilized here is pre-existing, low cost, low mass, low volume, and offers the prospect of equipping micro-rovers and micro-penetrators with aggressive astrobiological capabilities. Since potentially habitable astrobiology targets have been identified (RSLs on Mars, near subsurface water ice on Mars, the plumes and oceans of Europa and Enceladus), future astrobiology missions will certainly target these areas and there is a need for direct life detection instrumentation.

  2. [Quality of life - methodology and clinical practice aspects with a focus on ocular medicine].

    PubMed

    Franke, G H; Gall, C

    2008-08-01

    Due to the demographic development in western industrialised countries, the proportion of visually impaired persons is likely to increase in the future. Currently there is a shift in scientific recognition from relative neglect of psychopathological distress in the visually impaired to better notice of disease-related subjective impairments that are detectable with specific questionnaire measures. Visual acuity primarily determines the subjective rating of visual functioning independent from the eye disease. Ophthalmic patients who show only mild symptoms from a medical point of view normally suffer considerably diminished vision-related quality of life with respect to physical, functional, mental, and social aspects. Treatment effects have been shown using vision-related quality-of-life measures for different ophthalmic diseases, particularly cataract surgery. Assessment of vision-related quality of life provides a meaningful complement to objective data.

  3. Biological Contamination of Mars: Issues and Recommendations

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The ad hoc Task Group on Planetary Protection formed by the Space Studies Board (SSB) of the National Research Council focused on making recommendations concerning the protection of Mars from forward contamination (i.e., Earth to Mars) during upcoming missions by both the United States and the former Soviet Union. In so doing, it distinguished between missions whose goals include reconnaissance and measurement and those that specifically include experiments to detect life. The task group also discussed what additional knowledge will be needed in order to assure that future recommendations regarding contamination of Earth from Mars might be made with a higher degree of certainty than is now possible. Following a short introduction to the rationale underlying planetary exploration (Chapter 1) is a brief summary of approved and contemplated missions to Mars (Chapter 2). Chapter 3 briefly reviews the state of knowledge in several areas pertinent to the problem of planetary protection, in the limits of life on Earth and the abilities of known terrestrial organisms to withstand extreme environment conditions, as well as new approaches to detecting life forms. Chapter 5 includes a review and comments (made in light of current knowledge)- on the recommendations made in 'Recommendations on Quarantine Policy for Mars, Jupiter, Saturn, Uranus, Neptune, and Titan'. Updates to the recommendations made in 1978 are also given in Chapter 5. Chapter 6 gives additional recommendations concerning collection of essential data, spacecraft sterilization and bioburden assessment, and future research, as well as legal and social issues and NASA's overall planetary protection program.

  4. Life detection at an Arctic analog to Europa

    NASA Astrophysics Data System (ADS)

    Gleeson, D. F.; Pappalardo, R. T.; Anderson, M. S.; Grasby, S. E.; Wright, K.; Templeton, A. S.

    2010-12-01

    Europa is a high priority for astrobiological investigations. Future missions to the icy surface of this moon will query the arguably sulfur-rich materials for potential indications of the presence of life carried to the surface by mobile ice or partial melt. Cold sulfur-rich environments are rare on the Earth, and the potential for the generation and preservation of biosignatures under these conditions remains largely unconstrained. Here we describe investigations into the biogenicity of analogous sulfur deposits from the surface of an Arctic glacier at Borup Fiord pass, Ellesmere Island. Optical and electron microscopy indicate that the sulfur in field samples is present in the form of clumps of mineral grains and spherical mineral aggregates, in close association with microbial sheaths. The morphologies of these materials are consistent with observations of the sulfur generated by sulfide-oxidizing bacteria cultivated from field samples in previous studies. X-ray diffraction measurements provide some evidence for the presence of rosickyite, a metastable form of sulfur previously recognized to be associated with the presence of life. Infrared spectroscopy reveals the presence of organics at parts per million levels, and organic functional groups diagnostic of proteins and fatty acids are identified. Organic components were below the detection limit for Raman spectra, which were dominated by sulfur peaks. These combined investigations indicate that sulfur minerals have the potential to contain identifiable biosignatures that low-temperature conditions help stabilize and preserve. Borup Fiord Pass represents a useful testing ground for instruments and techniques relevant to future astrobiological exploration at Europa.

  5. 1999 Bioastronomy Meeting

    NASA Technical Reports Server (NTRS)

    Meech, Karen J.; Caroff, Lawrence J. (Technical Monitor)

    2001-01-01

    The 6th Bioastronomy Conference, Bioastronomy '99: A New Era in Bioastronomy, was held at the Hapuna Prince Beach hotel on the Big Island of Hawaii from August 2-6, 1999. The series of previous Bioastronomy meetings have played an important role in integrating the broader interests and techniques of both astronomy and biology to understand the origin and evolution of living systems in the universe, and to generating a context for exploration in our solar system and in extrasolar planetary systems. The scope of these interdisciplinary fields is captured in the topics discussed at the meeting: organic molecules in interstellar and interplanetary space; origin and evolution of planetary systems; comets, asteroids, and other small bodies and their role in the origin and evolution of life; Earth as a living planet; extreme environments on Earth; origin of life; transport of life between planets; evolution of life and intelligence; detection and characterization of extrasolar planets; search for extraterrestrial technology and life; future missions; and public acceptance and support of scientific studies of life in the universe.

  6. The Impact of the Temporal Distribution of Communicating Civilizations on Their Detectability

    NASA Astrophysics Data System (ADS)

    Balbi, Amedeo

    2018-01-01

    We used a statistical model to investigate the detectability (defined by the requirement that causal contact has been initiated with us) of communicating civilizations within a volume of the Universe surrounding our location. If the civilizations are located in our galaxy, the detectability requirement imposes a strict constraint on their epoch of appearance and their communicating life span. This, in turn, implies that our ability to gather empirical evidence of the fraction of civilizations within range of detection strongly depends on the specific features of their temporal distribution. Our approach illuminates aspects of the problem that can escape the standard treatment based on the Drake equation. Therefore, it might provide the appropriate framework for future studies dealing with the evolutionary aspects of the search for extraterrestrial intelligence (SETI).

  7. Pain and sensory disturbances following surgical repair of pectus carinatum.

    PubMed

    Knudsen, Marie Veje; Pilegaard, Hans K; Grosen, Kasper

    2018-04-01

    The purpose of this study was to assess the characteristics of persistent postoperative pain and sensory disturbances following surgical repair of pectus carinatum. Using a prospective observational design, 28 patients were assessed before, 6 weeks and 6 months after a modified Ravitch operation for pectus carinatum. Postoperative pain was assessed using the Short Form McGill Pain Questionnaire. Sensory testing was conducted to detect brush-evoked allodynia and pinprick hyperalgesia. Additionally, generic and disease-specific quality of life was assessed using the Short Form-36 Health Survey and the Nuss Questionnaire Modified for Adults before and after surgery. Six weeks after surgery, ten patients reported mild pain or discomfort. Six months after surgery, four patients reported only mild pain. Allodynia was detected in two patients 6 weeks and 6 months after surgery. Hyperalgesia was detected in eight patients 6 weeks after surgery, and in six patients 6 months after surgery. Generic quality of life was significantly improved over time. The study showed no significant pain problems, a tendency to reduced sensory disturbances and significant improvements in quality of life 6 months after surgical repair of pectus carinatum. Future studies should include a longer follow-up period to determine if these positive results are persistent. 1 (Prognosis Study). Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Pharmaceuticals in Tap Water: Human Health Risk Assessment and Proposed Monitoring Framework in China

    PubMed Central

    Leung, Ho Wing; Jin, Ling; Wei, Si; Tsui, Mirabelle Mei Po; Zhou, Bingsheng; Jiao, Liping; Cheung, Pak Chuen; Chun, Yiu Kan

    2013-01-01

    Background: Pharmaceuticals are known to contaminate tap water worldwide, but the relevant human health risks have not been assessed in China. Objectives: We monitored 32 pharmaceuticals in Chinese tap water and evaluated the life-long human health risks of exposure in order to provide information for future prioritization and risk management. Methods: We analyzed samples (n = 113) from 13 cities and compared detected concentrations with existing or newly-derived safety levels for assessing risk quotients (RQs) at different life stages, excluding the prenatal stage. Results: We detected 17 pharmaceuticals in 89% of samples, with most detectable concentrations (92%) at < 50 ng/L. Caffeine (median–maximum, nanograms per liter: 24.4–564), metronidazole (1.8–19.3), salicylic acid (16.6–41.2), clofibric acid (1.2–3.3), carbamazepine (1.3–6.7), and dimetridazole (6.9–14.7) were found in ≥ 20% of samples. Cities within the Yangtze River region and Guangzhou were regarded as contamination hot spots because of elevated levels and frequent positive detections. Of the 17 pharmaceuticals detected, 13 showed very low risk levels, but 4 (i.e., dimetridazole, thiamphenicol, sulfamethazine, and clarithromycin) were found to have at least one life-stage RQ ≥ 0.01, especially for the infant and child life stages, and should be considered of high priority for management. We propose an indicator-based monitoring framework for providing information for source identification, water treatment effectiveness, and water safety management in China. Conclusion: Chinese tap water is an additional route of human exposure to pharmaceuticals, particularly for dimetridazole, although the risk to human health is low based on current toxicity data. Pharmaceutical detection and application of the proposed monitoring framework can be used for water source protection and risk management in China and elsewhere. PMID:23665928

  9. Looking for planetary moons in the spectra of distant Jupiters.

    PubMed

    Williams, D M; Knacke, R F

    2004-01-01

    More than 100 nearby stars are known to have at least one Jupiter-sized planet. Whether any of these giant gaseous planets has moons is unknown, but here we suggest a possible way of detecting Earth-sized moons with future technology. The planned Terrestrial Planet Finder observatory, for example, will be able to detect objects comparable in size to Earth. Such Earth-sized objects might orbit their stars either as isolated planets or as moons to giant planets. Moons of Jovian-sized planets near the habitable zones of main-sequence stars should be noticeably brighter than their host planets in the near-infrared (1-4 microm) if their atmospheres contain methane, water, and water vapor, because of efficient absorption of starlight by these atmospheric components. By taking advantage of this spectral contrast, future space observatories will be able to discern which extrasolar giant planets have Earth-like moons capable of supporting life.

  10. EEG seizure detection and prediction algorithms: a survey

    NASA Astrophysics Data System (ADS)

    Alotaiby, Turkey N.; Alshebeili, Saleh A.; Alshawi, Tariq; Ahmad, Ishtiaq; Abd El-Samie, Fathi E.

    2014-12-01

    Epilepsy patients experience challenges in daily life due to precautions they have to take in order to cope with this condition. When a seizure occurs, it might cause injuries or endanger the life of the patients or others, especially when they are using heavy machinery, e.g., deriving cars. Studies of epilepsy often rely on electroencephalogram (EEG) signals in order to analyze the behavior of the brain during seizures. Locating the seizure period in EEG recordings manually is difficult and time consuming; one often needs to skim through tens or even hundreds of hours of EEG recordings. Therefore, automatic detection of such an activity is of great importance. Another potential usage of EEG signal analysis is in the prediction of epileptic activities before they occur, as this will enable the patients (and caregivers) to take appropriate precautions. In this paper, we first present an overview of seizure detection and prediction problem and provide insights on the challenges in this area. Second, we cover some of the state-of-the-art seizure detection and prediction algorithms and provide comparison between these algorithms. Finally, we conclude with future research directions and open problems in this topic.

  11. The State, Potential Distribution, and Biological Implications of Methane in the Martian Crust

    NASA Technical Reports Server (NTRS)

    Max, Michael D.; Clifford, Stephen M.

    2000-01-01

    The search for life on Mars has recently focused on its potential survival in deep (>2 km) subpermafrost aquifers where anaerobic bacteria, similar to those found in deep subsurface ecosystems on Earth, may have survived in an environment that has remained stable for billions of years. An anticipated by-product of this biological activity is methane. The detection of large deposits of methane gas and hydrate in the Martian cryosphere, or as emissions from deep fracture zones, would provide persuasive evidence of indigenous life and confirm the presence of a valuable in situ resource for use by future human explorers.

  12. Planetary protection implementation on future Mars lander missions

    NASA Astrophysics Data System (ADS)

    Howell, Robert; Devincenzi, Donald L.

    1993-06-01

    A workshop was convened to discuss the subject of planetary protection implementation for Mars lander missions. It was sponsored and organized by the Exobiology Implementation Team of the U.S./Russian Joint Working Group on Space Biomedical and Life Support Systems. The objective of the workshop was to discuss planetary protection issues for the Russian Mars '94 mission, which is currently under development, as well as for additional future Mars lander missions including the planned Mars '96 and U.S. MESUR Pathfinder and Network missions. A series of invited presentations was made to ensure that workshop participants had access to information relevant to the planned discussions. The topics summarized in this report include exobiology science objectives for Mars exploration, current international policy on planetary protection, planetary protection requirements developed for earlier missions, mission plans and designs for future U.S. and Russian Mars landers, biological contamination of spacecraft components, and techniques for spacecraft bioload reduction. In addition, the recent recommendations of the U.S. Space Studies Board (SSB) on this subject were also summarized. Much of the discussion focused on the recommendations of the SSB. The SSB proposed relaxing the planetary protection requirements for those Mars lander missions that do not contain life detection experiments, but maintaining Viking-like requirements for those missions that do contain life detection experiments. The SSB recommendations were found to be acceptable as a guide for future missions, although many questions and concerns about interpretation were raised and are summarized. Significant among the concerns was the need for more quantitative guidelines to prevent misinterpretation by project offices and better access to and use of the Viking data base of bio-assays to specify microbial burden targets. Among the questions raised were how will the SSB recommendations be integrated with existing Committee on Space Research (COSPAR) policy and how will they apply to and affect Mars '94, Mars '96, MESUR Pathfinder, and MESUR Network missions? One additional topic briefly considered at the workshop was the identification of some issues related to planetary protection considerations for Mars sample return missions. These issues will form the basis for a follow-on joint U.S./Russian workshop on that subject.

  13. Planetary protection implementation on future Mars lander missions

    NASA Technical Reports Server (NTRS)

    Howell, Robert; Devincenzi, Donald L.

    1993-01-01

    A workshop was convened to discuss the subject of planetary protection implementation for Mars lander missions. It was sponsored and organized by the Exobiology Implementation Team of the U.S./Russian Joint Working Group on Space Biomedical and Life Support Systems. The objective of the workshop was to discuss planetary protection issues for the Russian Mars '94 mission, which is currently under development, as well as for additional future Mars lander missions including the planned Mars '96 and U.S. MESUR Pathfinder and Network missions. A series of invited presentations was made to ensure that workshop participants had access to information relevant to the planned discussions. The topics summarized in this report include exobiology science objectives for Mars exploration, current international policy on planetary protection, planetary protection requirements developed for earlier missions, mission plans and designs for future U.S. and Russian Mars landers, biological contamination of spacecraft components, and techniques for spacecraft bioload reduction. In addition, the recent recommendations of the U.S. Space Studies Board (SSB) on this subject were also summarized. Much of the discussion focused on the recommendations of the SSB. The SSB proposed relaxing the planetary protection requirements for those Mars lander missions that do not contain life detection experiments, but maintaining Viking-like requirements for those missions that do contain life detection experiments. The SSB recommendations were found to be acceptable as a guide for future missions, although many questions and concerns about interpretation were raised and are summarized. Significant among the concerns was the need for more quantitative guidelines to prevent misinterpretation by project offices and better access to and use of the Viking data base of bioassays to specify microbial burden targets. Among the questions raised were how will the SSB recommendations be integrated with existing Committee on Space Research (COSPAR) policy and how will they apply to and affect Mars '94, Mars '96, MESUR Pathfinder, and MESUR Network missions? One additional topic briefly considered at the workshop was the identification of some issues related to planetary protection considerations for Mars sample return missions. These issues will form the basis for a follow-on joint U.S./Russian workshop on that subject.

  14. Factors influencing health-related quality of life among Korean cancer survivors.

    PubMed

    Kim, KiSook; Kim, Ji-Su

    2017-01-01

    Early cancer detection and remarkable improvements in cancer treatment have seen the cancer survival rate grow steadily for the past 40 years. Despite expectations regarding treatment effectiveness, acceptable quality of life, and a comfortable death, patients with cancer generally have a decreased quality of life. The study aim was to examine the factors influencing health-related quality of life among South Korean cancer survivors for future development of an intervention to enhance their survivorship. Korea National Health and Nutrition Examination Survey 2008-2012 data regarding 1020 cancer survivors were used for analysis. Health-related quality of life was measured using the EuroQol 5-Dimension. The factors influencing health-related quality of life were age, educational status, employment status, income, smoking, time since diagnosis, subjective health status, stress, depression, and suicidal ideation. Individual-centered clinical interventions that consider dimensional-influencing factors, including subjective health status, are needed to improve cancer survivors' health-related quality of life. Subsequent systematic studies are needed regarding dimension-specific differences according to cancer types and time since diagnosis. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Engineering Rugged Field Assays to Detect Hazardous Chemicals Using Spore-Based Bacterial Biosensors.

    PubMed

    Wynn, Daniel; Deo, Sapna; Daunert, Sylvia

    2017-01-01

    Bacterial whole cell-based biosensors have been genetically engineered to achieve selective and reliable detection of a wide range of hazardous chemicals. Although whole-cell biosensors demonstrate many advantages for field-based detection of target analytes, there are still some challenges that need to be addressed. Most notably, their often modest shelf life and need for special handling and storage make them challenging to use in situations where access to reagents, instrumentation, and expertise are limited. These problems can be circumvented by developing biosensors in Bacillus spores, which can be engineered to address all of these concerns. In its sporulated state, a whole cell-based biosensor has a remarkably long life span and is exceptionally resistant to environmental insult. When these spores are germinated for use in analytical techniques, they show no loss in performance, even after long periods of storage under harsh conditions. In this chapter, we will discuss the development and use of whole cell-based sensors, their adaptation to spore-based biosensors, their current applications, and future directions in the field. © 2017 Elsevier Inc. All rights reserved.

  16. Life-centered ethics, and the human future in space.

    PubMed

    Mautner, Michael N

    2009-10-01

    In the future, human destiny may depend on our ethics. In particular, biotechnology and expansion in space can transform life, raising profound questions. Guidance may be found in Life-centered ethics, as biotic ethics that value the basic patterns of organic gene/protein life, and as panbiotic ethics that always seek to expand life. These life-centered principles can be based on scientific insights into the unique place of life in nature, and the biological unity of all life. Belonging to life then implies a human purpose: to safeguard and propagate life. Expansion in space will advance this purpose but will also raise basic questions. Should we expand all life or only intelligent life? Should we aim to create populations of trillions? Should we seed other solar systems? How far can we change but still preserve the human species, and life itself? The future of all life may be in our hands, and it can depend on our guiding ethics whether life will fulfil its full potentials. Given such profound powers, life-centered ethics can best secure future generations. Our descendants may then understand nature more deeply, and seek to extend life indefinitely. In that future, our human existence can find a cosmic purpose.

  17. A reduced organic carbon component in martian basalts.

    PubMed

    Steele, A; McCubbin, F M; Fries, M; Kater, L; Boctor, N Z; Fogel, M L; Conrad, P G; Glamoclija, M; Spencer, M; Morrow, A L; Hammond, M R; Zare, R N; Vicenzi, E P; Siljeström, S; Bowden, R; Herd, C D K; Mysen, B O; Shirey, S B; Amundsen, H E F; Treiman, A H; Bullock, E S; Jull, A J T

    2012-07-13

    The source and nature of carbon on Mars have been a subject of intense speculation. We report the results of confocal Raman imaging spectroscopy on 11 martian meteorites, spanning about 4.2 billion years of martian history. Ten of the meteorites contain abiotic macromolecular carbon (MMC) phases detected in association with small oxide grains included within high-temperature minerals. Polycyclic aromatic hydrocarbons were detected along with MMC phases in Dar al Gani 476. The association of organic carbon within magmatic minerals indicates that martian magmas favored precipitation of reduced carbon species during crystallization. The ubiquitous distribution of abiotic organic carbon in martian igneous rocks is important for understanding the martian carbon cycle and has implications for future missions to detect possible past martian life.

  18. The Ladder of Life Detection.

    PubMed

    Neveu, Marc; Hays, Lindsay E; Voytek, Mary A; New, Michael H; Schulte, Mitchell D

    2018-06-04

    We describe the history and features of the Ladder of Life Detection, a tool intended to guide the design of investigations to detect microbial life within the practical constraints of robotic space missions. To build the Ladder, we have drawn from lessons learned from previous attempts at detecting life and derived criteria for a measurement (or suite of measurements) to constitute convincing evidence for indigenous life. We summarize features of life as we know it, how specific they are to life, and how they can be measured, and sort these features in a general sense based on their likelihood of indicating life. Because indigenous life is the hypothesis of last resort in interpreting life-detection measurements, we propose a small but expandable set of decision rules determining whether the abiotic hypothesis is disproved. In light of these rules, we evaluate past and upcoming attempts at life detection. The Ladder of Life Detection is not intended to endorse specific biosignatures or instruments for life-detection measurements, and is by no means a definitive, final product. It is intended as a starting point to stimulate discussion, debate, and further research on the characteristics of life, what constitutes a biosignature, and the means to measure them. Key Words: Life detection-Life-detection instruments-Biosignatures-Biomarkers. Astrobiology 18, xxx-xxx.

  19. "1999 Bioastronomy Meeting"

    NASA Technical Reports Server (NTRS)

    Meech, Karen J. (Editor); Owen, Tobias C.

    2000-01-01

    The 6th Bioastronomy Conference, Bioastronomy '99: A New Era in Bioastronomy, was held at the Hapuna Prince Beach hotel on the Big Island of Hawaii from August 2-6, 1999. The series of previous Bioastronomy meetings have played an important role in integrating the broader interests and techniques of both astronomy and biology to understand the origin and evolution of living systems in the universe, and to generating a context for exploration in our solar system and in extrasolar planetary systems. The scope of these interdisciplinary fields is captured in the topics discussed at the meeting: organic molecules in interstellar and interplanetary space; origin and evolution of planetary systems; comets, asteroids, and other small bodies and their role in the origin and evolution of life; Earth as a living planet; extreme environments on Earth; origin of life; transport of life between planets; evolution of life and intelligence; detection and characterization of extrasolar planets; search for extraterrestrial technology and life; future missions; and public acceptance and support of scientific studies of life in the universe. This paper gives an overview summary of the conference and briefly highlights some of the themes discussed at the meeting.

  20. Recent advances in synthesis of three-dimensional porous graphene and its applications in construction of electrochemical (bio)sensors for small biomolecules detection.

    PubMed

    Lu, Lu

    2018-07-01

    Electrochemical (bio)sensors have attracted much attention due to their high sensitivity, fast response time, biocompatibility, low cost and easy miniaturization. Specially, ever-growing necessity and interest have given rise to the fast development of electrochemical (bio)sensors for the detection of small biomolecules. They play enormous roles in the life processes with various biological function, such as life signal transmission, genetic expression and metabolism. Moreover, their amount in body can be used as an indicator for diagnosis of many diseases. For example, an abnormal concentration of blood glucose can indicate hyperglycemia or hypoglycemia. Graphene (GR) shows great applications in electrochemical (bio)sensors. Compared with two-dimensional (2D) GR that is inclined to stack together due to the strong π-π interaction, monolithic 3D porous GR has larger specific area, superior mechanical strength, better stability, higher conductivity and electrocatalytic activity. So they attracted more and increasing attention as sensing materials for small biomolecules. This review focuses on the recent advances and strategies in the fabrication methods of 3D porous GR and the development of various electrochemical (bio)sensors based on porous GR and its nanocomposites for the detection of small biomolecules. The challenges and future efforts direction of high-performance electrochemical (bio)sensors based on 3D porous GR for more sensitive analysis of small biomolecules are discussed and proposed. It will give readers an overall understanding of their progress and provide some theoretical guidelines for their future efforts and development. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Fourier transform infrared spectral detection of life in polar subsurface environments and its application to Mars exploration.

    PubMed

    Preston, Louisa J; Johnson, Diane; Cockell, Charles S; Grady, Monica M

    2015-09-01

    Cryptoendolithic lichen communities of the Dry Valleys, Antarctica, survive in an extremely inhospitable environment, finding refuge in microscopic niches where conditions suitable for life exist. Such "within-rock" communities may have evolved on Mars when conditions for life on the surface deteriorated to such an extent that they could no longer survive. Fourier transform infrared spectroscopy of unprepared whole-rock Antarctic Beacon sandstones was used to vertically profile molecular vibrations of fatty acids, proteins, and carboxylic acids created by endolithic communities. Spectral biosignatures were found localized to lichen-rich areas and were absent in crustal regions and the bulk rock substrate. These cryptoendolithic profiles will aid similar spectroscopic investigations of organic biosignatures during future Martian subsurface studies and will help in the identification of similar communities in other localities across the Earth.

  2. Lipids as universal biomarkers of extraterrestrial life.

    PubMed

    Georgiou, Christos D; Deamer, David W

    2014-06-01

    In 1965, James Lovelock published a general statement, based on thermodynamic chemical equilibrium principles, about how to detect extant or extinct life on a planet other than Earth. Nearly 50 years later, it is possible to make such measurements with robotic missions such as current and future Mars rovers, and probes to sample icy plumes of Enceladus or Europa. We make a specific recommendation that certain characteristic patterns in the composition of lipid hydrocarbons can only result from a biological process, because the signal arises from a universal requirement related to lipid bilayer fluidity and membrane stability. Furthermore, the pattern can be preserved over millions of years, and instrumentation is already available to be incorporated into flight missions.

  3. The Search for Alien Life in Our Solar System: Strategies and Priorities

    NASA Astrophysics Data System (ADS)

    Shapiro, Robert; Schulze-Makuch, Dirk

    2009-05-01

    With the assumption that future attempts to explore our Solar System for life will be limited by economic constraints, we have formulated a series of principles to guide future searches: (1) the discovery of life that has originated independently of our own would have greater significance than evidence for panspermia; (2) an unambiguous identification of living beings (or the fully preserved, itact remains of such beings) is more desirable than the discovery of markers or fossils that would inform us of the presence of life but not its composition; (3) we should initially seek carbon-based life that employs a set of monomers and polymers substantially different than our own, which would effectively balance the need for ease of detection with that of establishing a separate origin; (4) a "follow-the-carbon" strategy appears optimal for locating such alternative carbon-based life. In following this agenda, we judge that an intensive investigation of a small number of bodies in our Solar System is more likely to succeed than a broad-based survey of a great number of worlds. Our priority for investigation is (1) Titan, (2) Mars, (3) Europa. Titan displays a rich organic chemistry and offers several alternative possibilities for the discovery of extant life or the early stages that lead to life. Mars has already been subjected to considerable study through landers and orbiters. Although only small amounts of methane testify to the inventory of reduced carbon on the planet, a number of other indicators suggest that the presence of microbial life is a possibility. Care will be needed, of course, to distinguish indigenous life from that which may have spread by panspermia. Europa appears to contain a subsurface ocean with the possibility of hydrothermal vents as an energy source. Its inventory of organic carbon is not yet known.

  4. The search for alien life in our solar system: strategies and priorities.

    PubMed

    Shapiro, Robert; Schulze-Makuch, Dirk

    2009-05-01

    With the assumption that future attempts to explore our Solar System for life will be limited by economic constraints, we have formulated a series of principles to guide future searches: (1) the discovery of life that has originated independently of our own would have greater significance than evidence for panspermia; (2) an unambiguous identification of living beings (or the fully preserved, intact remains of such beings) is more desirable than the discovery of markers or fossils that would inform us of the presence of life but not its composition; (3) we should initially seek carbon-based life that employs a set of monomers and polymers substantially different than our own, which would effectively balance the need for ease of detection with that of establishing a separate origin; (4) a "follow-the-carbon" strategy appears optimal for locating such alternative carbon-based life. In following this agenda, we judge that an intensive investigation of a small number of bodies in our Solar System is more likely to succeed than a broad-based survey of a great number of worlds. Our priority for investigation is (1) Titan, (2) Mars, (3) Europa. Titan displays a rich organic chemistry and offers several alternative possibilities for the discovery of extant life or the early stages that lead to life. Mars has already been subjected to considerable study through landers and orbiters. Although only small amounts of methane testify to the inventory of reduced carbon on the planet, a number of other indicators suggest that the presence of microbial life is a possibility. Care will be needed, of course, to distinguish indigenous life from that which may have spread by panspermia. Europa appears to contain a subsurface ocean with the possibility of hydrothermal vents as an energy source. Its inventory of organic carbon is not yet known.

  5. Discriminative detection and enumeration of microbial life in marine subsurface sediments.

    PubMed

    Morono, Yuki; Terada, Takeshi; Masui, Noriaki; Inagaki, Fumio

    2009-05-01

    Detection and enumeration of microbial life in natural environments provide fundamental information about the extent of the biosphere on Earth. However, it has long been difficult to evaluate the abundance of microbial cells in sedimentary habitats because non-specific binding of fluorescent dye and/or auto-fluorescence from sediment particles strongly hampers the recognition of cell-derived signals. Here, we show a highly efficient and discriminative detection and enumeration technique for microbial cells in sediments using hydrofluoric acid (HF) treatment and automated fluorescent image analysis. Washing of sediment slurries with HF significantly reduced non-biological fluorescent signals such as amorphous silica and enhanced the efficiency of cell detachment from the particles. We found that cell-derived SYBR Green I signals can be distinguished from non-biological backgrounds by dividing green fluorescence (band-pass filter: 528/38 nm (center-wavelength/bandwidth)) by red (617/73 nm) per image. A newly developed automated microscope system could take a wide range of high-resolution image in a short time, and subsequently enumerate the accurate number of cell-derived signals by the calculation of green to red fluorescence signals per image. Using our technique, we evaluated the microbial population in deep marine sediments offshore Peru and Japan down to 365 m below the seafloor, which provided objective digital images as evidence for the quantification of the prevailing microbial life. Our method is hence useful to explore the extent of sub-seafloor life in the future scientific drilling, and moreover widely applicable in the study of microbial ecology.

  6. Atmospheric Seasonality as an Exoplanet Biosignature

    NASA Astrophysics Data System (ADS)

    Olson, Stephanie L.; Schwieterman, Edward W.; Reinhard, Christopher T.; Ridgwell, Andy; Kane, Stephen R.; Meadows, Victoria S.; Lyons, Timothy W.

    2018-05-01

    Current investigations of exoplanet biosignatures have focused on static evidence of life, such as the presence of biogenic gases like O2 or CH4. However, the expected diversity of terrestrial planet atmospheres and the likelihood of both “false positives” and “false negatives” for conventional biosignatures motivate exploration of additional life detection strategies, including time-varying signals. Seasonal variation in atmospheric composition is a biologically modulated phenomenon on Earth that may occur elsewhere because it arises naturally from the interplay between the biosphere and time-variable insolation. The search for seasonality as a biosignature would avoid many assumptions about specific metabolisms and provide an opportunity to directly quantify biological fluxes—allowing us to characterize, rather than simply recognize, biospheres on exoplanets. Despite this potential, there have been no comprehensive studies of seasonality as an exoplanet biosignature. Here, we provide a foundation for further studies by reviewing both biological and abiological controls on the magnitude and detectability of seasonality of atmospheric CO2, CH4, O2, and O3 on Earth. We also consider an example of an inhabited world for which atmospheric seasonality may be the most notable expression of its biosphere. We show that life on a low O2 planet like the weakly oxygenated mid-Proterozoic Earth could be fingerprinted by seasonal variation in O3 as revealed in its UV Hartley–Huggins bands. This example highlights the need for UV capabilities in future direct-imaging telescope missions (e.g., LUVOIR/HabEx) and illustrates the diagnostic importance of studying temporal biosignatures for exoplanet life detection/characterization.

  7. Management of Abnormal Uterine Bleeding with Emphasis on Alternatives to Hysterectomy.

    PubMed

    Billow, Megan R; El-Nashar, Sherif A

    2016-09-01

    Abnormal uterine bleeding (AUB) is a common problem that negatively impacts a woman's health-related quality of life and activity. Initial medical treatment includes hormonal and nonhormonal medications. If bleeding persists and no structural abnormalities are present, a repeat trial of medical therapy, a levonorgestrel intrauterine system, or an endometrial ablation can be used dependent on future fertility wishes. The levonorgestrel intrauterine system and endometrial ablation are effective, less invasive, and safe alternatives to a hysterectomy in women with AUB. A hysterectomy is the definitive treatment of AUB irrespective of the suspected cause when alternative treatments fail. Future studies should focus on detection of predictors for treatment outcomes. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Potential Research and Development Synergies between Life support and Planetary protection

    NASA Astrophysics Data System (ADS)

    Lasseur, Ch.; Kminek, G.; Mergeay, M.

    Long term manned missions of our Russian colleagues have demonstrated the risks associated with microbial contamination These risks concern both crew health via the metabolic consumables contamination water air but and also the hardware degradation Over the last six years ESA and IBMP have developed a collaboration to elaborate and document these microbial contamination issues The collaboration involved the mutual exchanges of knowledge as well as microbial samples and leads up to the microbial survey of the Russian module of the ISS Based on these results and in addition to an external expert report commissioned by ESA the agency initiated the development of a rapid and automated microbial detection and identification tool for use in future space missions In parallel to these developments and via several international meetings planetary protection experts have agreed to place clear specification of the microbial quality of future hardware landing on virgin planets as well as elaborate the preliminary requirements of contamination for manned missions on surface For these activities its is necessary to have a better understanding of microbial activity to create culture collection and to develop on-line detection tools Within this paper we present more deeply the life support activities related to microbial issues we identify some potential synergies with Planetary protection developments and we propose some pathway for collaboration between these two communities

  9. Sharing the Past and Future among Adolescents and Their Parents

    ERIC Educational Resources Information Center

    Shirai, Toshiaki; Higata, Atsuko

    2016-01-01

    This study explored how sharing past and future life events among late adolescents and their parents influenced the quality of their own time perspectives. Triads (N =104) of female students and their parents described three important life events from their past and future. The results showed that adolescents who shared past and future life events…

  10. A Framework of Simple Event Detection in Surveillance Video

    NASA Astrophysics Data System (ADS)

    Xu, Weiguang; Zhang, Yafei; Lu, Jianjiang; Tian, Yulong; Wang, Jiabao

    Video surveillance is playing more and more important role in people's social life. Real-time alerting of threaten events and searching interesting content in stored large scale video footage needs human operator to pay full attention on monitor for long time. The labor intensive mode has limit the effectiveness and efficiency of the system. A framework of simple event detection is presented advance the automation of video surveillance. An improved inner key point matching approach is used to compensate motion of background in real-time; frame difference are used to detect foreground; HOG based classifiers are used to classify foreground object into people and car; mean-shift is used to tracking the recognized objects. Events are detected based on predefined rules. The maturity of the algorithms guarantee the robustness of the framework, and the improved approach and the easily checked rules enable the framework to work in real-time. Future works to be done are also discussed.

  11. Summary of intrinsic and extrinsic factors affecting detection probability of marsh birds

    USGS Publications Warehouse

    Conway, C.J.; Gibbs, J.P.

    2011-01-01

    Many species of marsh birds (rails, bitterns, grebes, etc.) rely exclusively on emergent marsh vegetation for all phases of their life cycle, and many organizations have become concerned about the status and persistence of this group of birds. Yet, marsh birds are notoriously difficult to monitor due to their secretive habits. We synthesized the published and unpublished literature and summarized the factors that influence detection probability of secretive marsh birds in North America. Marsh birds are more likely to respond to conspecific than heterospecific calls, and seasonal peak in vocalization probability varies among co-existing species. The effectiveness of morning versus evening surveys varies among species and locations. Vocalization probability appears to be positively correlated with density in breeding Virginia Rails (Rallus limicola), Soras (Porzana carolina), and Clapper Rails (Rallus longirostris). Movement of birds toward the broadcast source creates biases when using count data from callbroadcast surveys to estimate population density. Ambient temperature, wind speed, cloud cover, and moon phase affected detection probability in some, but not all, studies. Better estimates of detection probability are needed. We provide recommendations that would help improve future marsh bird survey efforts and a list of 14 priority information and research needs that represent gaps in our current knowledge where future resources are best directed. ?? Society of Wetland Scientists 2011.

  12. Genetic Inventory Task Final Report. Volume 2

    NASA Technical Reports Server (NTRS)

    Venkateswaran, Kasthuri; LaDuc, Myron T.; Vaishampayan, Parag

    2012-01-01

    Contaminant terrestrial microbiota could profoundly impact the scientific integrity of extraterrestrial life-detection experiments. It is therefore important to know what organisms persist on spacecraft surfaces so that their presence can be eliminated or discriminated from authentic extraterrestrial biosignatures. Although there is a growing understanding of the biodiversity associated with spacecraft and cleanroom surfaces, it remains challenging to assess the risk of these microbes confounding life-detection or sample-return experiments. A key challenge is to provide a comprehensive inventory of microbes present on spacecraft surfaces. To assess the phylogenetic breadth of microorganisms on spacecraft and associated surfaces, the Genetic Inventory team used three technologies: conventional cloning techniques, PhyloChip DNA microarrays, and 454 tag-encoded pyrosequencing, together with a methodology to systematically collect, process, and archive nucleic acids. These three analysis methods yielded considerably different results: Traditional approaches provided the least comprehensive assessment of microbial diversity, while PhyloChip and pyrosequencing illuminated more diverse microbial populations. The overall results stress the importance of selecting sample collection and processing approaches based on the desired target and required level of detection. The DNA archive generated in this study can be made available to future researchers as genetic-inventory-oriented technologies further mature.

  13. Darwin--a mission to detect and search for life on extrasolar planets.

    PubMed

    Cockell, C S; Léger, A; Fridlund, M; Herbst, T M; Kaltenegger, L; Absil, O; Beichman, C; Benz, W; Blanc, M; Brack, A; Chelli, A; Colangeli, L; Cottin, H; Coudé du Foresto, F; Danchi, W C; Defrère, D; den Herder, J-W; Eiroa, C; Greaves, J; Henning, T; Johnston, K J; Jones, H; Labadie, L; Lammer, H; Launhardt, R; Lawson, P; Lay, O P; LeDuigou, J-M; Liseau, R; Malbet, F; Martin, S R; Mawet, D; Mourard, D; Moutou, C; Mugnier, L M; Ollivier, M; Paresce, F; Quirrenbach, A; Rabbia, Y D; Raven, J A; Rottgering, H J A; Rouan, D; Santos, N C; Selsis, F; Serabyn, E; Shibai, H; Tamura, M; Thiébaut, E; Westall, F; White, G J

    2009-01-01

    The discovery of extrasolar planets is one of the greatest achievements of modern astronomy. The detection of planets that vary widely in mass demonstrates that extrasolar planets of low mass exist. In this paper, we describe a mission, called Darwin, whose primary goal is the search for, and characterization of, terrestrial extrasolar planets and the search for life. Accomplishing the mission objectives will require collaborative science across disciplines, including astrophysics, planetary sciences, chemistry, and microbiology. Darwin is designed to detect rocky planets similar to Earth and perform spectroscopic analysis at mid-infrared wavelengths (6-20 mum), where an advantageous contrast ratio between star and planet occurs. The baseline mission is projected to last 5 years and consists of approximately 200 individual target stars. Among these, 25-50 planetary systems can be studied spectroscopically, which will include the search for gases such as CO(2), H(2)O, CH(4), and O(3). Many of the key technologies required for the construction of Darwin have already been demonstrated, and the remainder are estimated to be mature in the near future. Darwin is a mission that will ignite intense interest in both the research community and the wider public.

  14. [The accidental detection of apical periodontitis].

    PubMed

    Wesselink, P R

    2011-04-01

    Accidental detection of an asymptomatic apical periodontitis raises the question whether this lesion should be treated or not. Arguments favouring treatment are that the inflammation may cause pain in the future, may enlarge or may negatively affect the host's resistance. Reasons for not treating may be that treatment weakens the tooth, may cause iatrogenic damage and that treatment is expensive and burdensome for the patient and does not lead in all cases to complete healing. Scientific evidence supporting either choice, whether treating the lesion or not, is lacking. In making such decisions, therefore, personal judgments by the patient and the dentist concerning the impact on the quality of life of the patient play an important role.

  15. The limitations on organic detection in Mars-like soils by thermal volatilization-gas chromatography-MS and their implications for the Viking results.

    PubMed

    Navarro-González, Rafael; Navarro, Karina F; de la Rosa, José; Iñiguez, Enrique; Molina, Paola; Miranda, Luis D; Morales, Pedro; Cienfuegos, Edith; Coll, Patrice; Raulin, François; Amils, Ricardo; McKay, Christopher P

    2006-10-31

    The failure of Viking Lander thermal volatilization (TV) (without or with thermal degradation)-gas chromatography (GC)-MS experiments to detect organics suggests chemical rather than biological interpretations for the reactivity of the martian soil. Here, we report that TV-GC-MS may be blind to low levels of organics on Mars. A comparison between TV-GC-MS and total organics has been conducted for a variety of Mars analog soils. In the Antarctic Dry Valleys and the Atacama and Libyan Deserts we find 10-90 mug of refractory or graphitic carbon per gram of soil, which would have been undetectable by the Viking TV-GC-MS. In iron-containing soils (jarosites from Rio Tinto and Panoche Valley) and the Mars simulant (palogonite), oxidation of the organic material to carbon dioxide (CO(2)) by iron oxides and/or their salts drastically attenuates the detection of organics. The release of 50-700 ppm of CO(2) by TV-GC-MS in the Viking analysis may indicate that an oxidation of organic material took place. Therefore, the martian surface could have several orders of magnitude more organics than the stated Viking detection limit. Because of the simplicity of sample handling, TV-GC-MS is still considered the standard method for organic detection on future Mars missions. We suggest that the design of future organic instruments for Mars should include other methods to be able to detect extinct and/or extant life.

  16. Exoplanets, Exo-Solar Life, and Human Significance

    NASA Technical Reports Server (NTRS)

    Wiseman, Jennifer

    2011-01-01

    With the recent detection of over 500 extrasolar planets, the existence of "other worlds", perhaps even other Earths, is no longer in the realm of science fiction. The study of exoplanets rapidly moved from an activity on the fringe of astronomy to one of the highest priorities of the world's astronomical programs. Actual images of extrasolar planets were revealed over the past two years for the first time. NASA's Hubble Space Telescope is already characterizing the atmospheres of Jupiter-like planets, in other systems. And the recent launch of the NASA Kepler space telescope is enabling the first statistical assessment of how common solar systems like our own really are. As we begin to characterize these "other worlds" and assess their habitability, the question of the significance and uniqueness of life on Earth will impact our society as never before. I will provide a comprehensive overview of the techniques and status of exoplanet detection, followed by reflections as to the societal impact of finding out that Earths are common, or rare. Will finding other potentially habitable planets create another "Copernican Revolution"? Will perceptions of the significance of life on Earth change when we find other Earth-like planets? I will discuss the plans of the scientific community for future telescopes that will be abe to survey our solar neighborhood for Earth-like planets, study their atmospheres, and search for biological signs of life.

  17. Aerial Vehicles to Detect Maximum Volume of Plume Material Associated with Habitable Areas in Extreme Environments

    NASA Technical Reports Server (NTRS)

    Gunasekara, Onalli; Wong, Uland Y.; Furlong, Michael P.; Dille, Michael

    2017-01-01

    Current technologies of exploring habitable areas of icy moons are limited to flybys of space probes. This research project addresses long-term navigation of icy moons by developing a MATLAB adjustable trajectory based on the volume of plume material observed. Plumes expose materials from the sub-surface without accessing the subsurface. Aerial vehicles capable of scouting vapor plumes and detecting maximum plume material volumes, which are considered potentially habitable in inhospitable environments, would enable future deep-space missions to search for extraterrestrial organisms on the surface of icy moons. Although this platform is still a prototype, it demonstrates the potential aerial vehicles can have in improving the capabilities of long-term space navigation and enabling technology for detecting life in extreme environments. Additionally, this work is developing the capabilities that could be utilized as a platform for space biology research. For example, aerial vehicles that are sent to map extreme environments of icy moons or the planet Mars, could also carry small payloads with automated cell-biology experiments, designed to probe the biological response of low-gravity and high-radiation planetary environments, serving as a pathfinder for future human missions.

  18. Well-being, life satisfaction and capabilities of flood disaster victims

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Ootegem, Luc, E-mail: Luc.VanOotegem@UGent.be; SHERPPA–Ghent University; Verhofstadt, Elsy

    The individual well-being of flood disaster victims is examined making use of two concepts: life satisfaction and perceived capabilities in life. These concepts are compared in two samples: a representative sample of Flemish respondents and a specific sample of people that have been the victim of a pluvial flood. Well-being as life satisfaction is found not to be related to past or expected future flooding, whereas well-being as capabilities in life is negatively related to both past and expected future flooding. - Highlights: • Well-being as life satisfaction is not related to past or expected future flooding. • Well-being asmore » capabilities in life is negatively related to flooding. • A disaster can scare people for the future because of the scars that it provokes. • Assess the impact of a disaster not only by monetary damage and life satisfaction.« less

  19. [Pulmonary arterial hypertension associated to human immunodeficiency virus].

    PubMed

    Sandoval-Gutiérrez, José Luis; Santos-Martínez, Luis Efren; Rodríguez-Silverio, Juan; Baranda-Tovar, Francisco Martín; Rivera-Rosales, Rosa María; Flores-Murrieta, Francisco Javier

    2015-01-01

    From the advent of the highly effective antiretroviral treatment, the life expectancy of patients with human immunodeficiency virus has increased significantly. At present, the causes of death are non-infectious complications. Between them, the pulmonary arterial hypertension has a special importance. It is important early detection to establish the therapeutic, with the objective of preventing a fatal outcome to future. Copyright © 2013 Instituto Nacional de Cardiología Ignacio Chávez. Published by Masson Doyma México S.A. All rights reserved.

  20. Integrated multisensor perimeter detection systems

    NASA Astrophysics Data System (ADS)

    Kent, P. J.; Fretwell, P.; Barrett, D. J.; Faulkner, D. A.

    2007-10-01

    The report describes the results of a multi-year programme of research aimed at the development of an integrated multi-sensor perimeter detection system capable of being deployed at an operational site. The research was driven by end user requirements in protective security, particularly in threat detection and assessment, where effective capability was either not available or prohibitively expensive. Novel video analytics have been designed to provide robust detection of pedestrians in clutter while new radar detection and tracking algorithms provide wide area day/night surveillance. A modular integrated architecture based on commercially available components has been developed. A graphical user interface allows intuitive interaction and visualisation with the sensors. The fusion of video, radar and other sensor data provides the basis of a threat detection capability for real life conditions. The system was designed to be modular and extendable in order to accommodate future and legacy surveillance sensors. The current sensor mix includes stereoscopic video cameras, mmWave ground movement radar, CCTV and a commercially available perimeter detection cable. The paper outlines the development of the system and describes the lessons learnt after deployment in a pilot trial.

  1. DNA Methylation Biomarkers: Cancer and Beyond

    PubMed Central

    Mikeska, Thomas; Craig, Jeffrey M.

    2014-01-01

    Biomarkers are naturally-occurring characteristics by which a particular pathological process or disease can be identified or monitored. They can reflect past environmental exposures, predict disease onset or course, or determine a patient’s response to therapy. Epigenetic changes are such characteristics, with most epigenetic biomarkers discovered to date based on the epigenetic mark of DNA methylation. Many tissue types are suitable for the discovery of DNA methylation biomarkers including cell-based samples such as blood and tumor material and cell-free DNA samples such as plasma. DNA methylation biomarkers with diagnostic, prognostic and predictive power are already in clinical trials or in a clinical setting for cancer. Outside cancer, strong evidence that complex disease originates in early life is opening up exciting new avenues for the detection of DNA methylation biomarkers for adverse early life environment and for estimation of future disease risk. However, there are a number of limitations to overcome before such biomarkers reach the clinic. Nevertheless, DNA methylation biomarkers have great potential to contribute to personalized medicine throughout life. We review the current state of play for DNA methylation biomarkers, discuss the barriers that must be crossed on the way to implementation in a clinical setting, and predict their future use for human disease. PMID:25229548

  2. Search for Signatures of Life in the Solar System

    NASA Astrophysics Data System (ADS)

    Race, M.; Schwehm, G.; Arnould, J.; Dawson, S.; Devore, E.; Evans, D.; Ferrazzani, M.; Shostak, S.

    The search for evidence of extraterrestrial life is an important scientific theme that fascinates the public and encourages interest in space exploration, both within the solar system and beyond. The rapid pace of mass media communication allows the public to share mission results and new discoveries almost simultaneously with the scientific community. The public can read about proposed sample return missions to Mars, listen as scientists debate about in situ exploration of the oceans on Europa, learn about the growing number of extrasolar planets, or use their personal computers to participate in searches for extraterrestrial intelligence (SETI). As the science community continues its multi-pronged efforts to detect evidence of extraterrestrial life, it must be mindful of more than just science and technology. It is important to understand public perceptions, misperceptions, beliefs, concerns and potential complications associated with the search for life beyond our home planet. This panel is designed to provide brief overviews of some important non-scientific areas with the potential to impact future astrobiological exploration. The presentations will be followed by open discussion and audience participation. Invited panelists and their topical areas include: SCIENCE FICTION AND MISPERCEPTIONS: Seth Shostak, Dylan EvansBattling Pseudo-Science, Hollywood and Alien Abductions LEGAL ISSUES: Marcus FerrazzaniLooming Complications for Future Missions and Exploration RISK COMMUNICATION: Sandra DawsonEngaging the Public, Explaining the Risks, and Encouraging Long-Term Interestin Mission Science EDUCATION: Edna DeVoreUsing the Search for Life as a Motivating Theme in Teaching Basic Science andCritical Thinking. ETHICAL ISSUES AND CONCERNS: Jacques ArnouldWhat Will it Mean if We Find "ET"? PANEL MODERATORS: Margaret Race, Gerhard Schwehm

  3. A non-earthcentric approach to life detection

    NASA Technical Reports Server (NTRS)

    Conrad, P. G.; Nealson, K. H.

    2001-01-01

    The ultimate goal of a comprehensive life detection strategy is never to miss life when we encounter it. To accomplish this goal, we must define life in universal, that is, non-Earthcentric, measurable terms. Next, we must understand the nature of biosignatures observed from the measured parameters of life. And finally, we must have a clear idea of the end-member states for the search--what does life, past life, or no life look like (in terms of the measured parameters) at multiple spatial and temporal scales? If we can approach these problems both in the laboratory and in the field on Earth, then we have a chance of being able to detect life elsewhere in our solar system. What are the required limits of detection at each of those scales? What spatial, spectral, and temporal resolutions are necessary to detect life? These questions are actively being investigated in our group, and in this report, we present our strategy and approach to non-Earthcentric life detection.

  4. How rare is complex life in the Milky Way?

    PubMed

    Bounama, Christine; von Bloh, Werner; Franck, Siegfried

    2007-10-01

    An integrated Earth system model was applied to calculate the number of habitable Earth-analog planets that are likely to have developed primitive (unicellular) and complex (multicellular) life in extrasolar planetary systems. The model is based on the global carbon cycle mediated by life and driven by increasing stellar luminosity and plate tectonics. We assumed that the hypothetical primitive and complex life forms differed in their temperature limits and CO(2) tolerances. Though complex life would be more vulnerable to environmental stress, its presence would amplify weathering processes on a terrestrial planet. The model allowed us to calculate the average number of Earth-analog planets that may harbor such life by using the formation rate of Earth-like planets in the Milky Way as well as the size of a habitable zone that could support primitive and complex life forms. The number of planets predicted to bear complex life was found to be approximately 2 orders of magnitude lower than the number predicted for primitive life forms. Our model predicted a maximum abundance of such planets around 1.8 Ga ago and allowed us to calculate the average distance between potentially habitable planets in the Milky Way. If the model predictions are accurate, the future missions DARWIN (up to a probability of 65%) and TPF (up to 20%) are likely to detect at least one planet with a biosphere composed of complex life.

  5. Micro- and nano-NDE systems for aircraft: great things in small packages

    NASA Astrophysics Data System (ADS)

    Malas, James C.; Kropas-Hughes, Claudia V.; Blackshire, James L.; Moran, Thomas; Peeler, Deborah; Frazier, W. G.; Parker, Danny

    2003-07-01

    Recent advancements in small, microscopic NDE sensor technologies will revolutionize how aircraft maintenance is done, and will significantly improve the reliability and airworthiness of current and future aircraft systems. A variety of micro/nano systems and concepts are being developed that will enable whole new capabilities for detecting and tracking structural integrity damage. For aging aircraft systems, the impact of micro-NDE sensor technologies will be felt immediately, with dramatic reductions in labor for maintenance, and extended useable life of critical components being two of the primary benefits. For the fleet management of future aircraft systems, a comprehensive evaluation and tracking of vehicle health throughout its entire life cycle will be needed. Indeed, micro/nano NDE systems will be instrumental in realizing this futuristic vision. Several major challenges will need to be addressed, however, before micro- and nano-NDE systems can effectively be implemented, and this will require interdisciplinary research approaches, and a systematic engineering integration of the new technologies into real systems. Future research will need to emphasize systems engineering approaches for designing materials and structures with in-situ inspection and prognostic capabilities. Recent advances in 1) embedded / add-on micro-sensors, 2) computer modeling of nondestructive evaluation responses, and 3) wireless communications are important steps toward this goal, and will ultimately provide previously unimagined opportunities for realizing whole new integrated vehicle health monitoring capabilities. The future use of micro/nano NDE technologies as vehicle health monitoring tools will have profound implications, and will provide a revolutionary way of doing NDE in the near and distant future.

  6. Identifying Life from Varying Atmospheres

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2018-06-01

    Theres no hiding changes in Earths atmosphere over the seasons are a dead giveaway to the fact that Earth hosts life. Now a new study explores whether we might use atmospheric seasonality like Earths to detect life on other planets.Looking for ChangeMost of the searches for life beyond our planet focus on identifying static biosignatures, like the presence of methane or large amounts of oxygen in an exoplanetary atmosphere. This approach suffers from many ambiguities, however including a high likelihood of false positives (processes that chemically mimic life signatures but arent life) and false negatives (non-detections despite the presence of life).Earths atmospheric carbon dioxide (top) and methane (bottom) levels vary seasonally, as seen in these data from NOAAs Earth System Research Laboratory. [Olson et al. 2018]In a new study led by Stephanie Olson (UC Riverside and NASA Astrobiology Institute Alternative Earths and Virtual Planetary Laboratory Teams), a team of scientists has proposed an alternative approach: to search for distinctive variability of exoplanet atmospheres that indicates the presence of life.Seasons and Lifeif youre like me, you probably havent spent a lot of time thinking about interactions between the Earths biosphere and its axial tilt. Nonetheless, this interplay is responsible for detectable and distinctive seasonal changes in our planets atmosphere!This schematic shows how oxygen and carbon dioxide levels in the atmosphere vary in opposing phase seasonally, with the increased sunlight in summer driving greater conversion of carbon dioxide into oxygen. [Olson et al. 2018]Since so much of our globe is covered by photosynthesizing life, the seasonal availability of sunlight regulates the conversion of carbon dioxide to oxygen, providing a signature in our atmosphere that varies over the course of the year. And photosynthesis isnt the only culprit! Other biological products evolve seasonally as well as the surface temperature on our globe changes throughout the year, biological rates, gas solubility, precipitation patterns, and more all respond accordingly.Olson and collaborators ask a simple question: if our atmosphere varies distinctively in a way that reveals the presence of life on Earth, can we search for similar variation on other planets?Gaseous SignaturesTo answer this question, Olson and collaborators examine the potential for seasonal variation of several atmospheric gases: carbon dioxide, methane, molecular oxygen, and ozone. For a weakly oxygenated planet (like early Earth), the authors find that a detectable indicator of life may be seasonal variations in the strength of ozone spectral bands at ultraviolet wavelengths. This variation serves as a tracer of the seasonality of molecular oxygen.On a planet with the right conditions, seasonal oxygen oscillations could create an observable difference in the depth of the ozone spectral line, as shown here. [Adapted from Olson et al. 2018]To discover such a signature in the atmospheres of distant planets, well likely need extended direct imaging; transit spectroscopy, such as that expected from the James Webb Space Telescope, will probe planets at only one point in their orbits, precluding the detection of seasonal changes. Olson and collaborators therefore advocate that upcoming direct-imaging missions, like LUVOIR and HabEx, include ultraviolet observing capabilities.What is the likelihood that well actually be able to detect seasonal changes in the atmospheric gases of distant exoplanets? More detailed modeling will need to be performed to say for certain but in the meantime, this study presents an interesting additional technique we can add to our arsenal and explore further in the future!CitationStephanie L. Olson et al 2018 ApJL 858 L14. doi:10.3847/2041-8213/aac171

  7. Health-related quality of life and hand eczema--a comparison of two instruments, including factor analysis.

    PubMed

    Wallenhammar, Lena-Marie; Nyfjäll, Mats; Lindberg, Magnus; Meding, Birgitta

    2004-06-01

    Hand eczema is a disease of long duration, affecting the individual and society. The purpose of this study of 100 patients (51 females and 49 males) at an occupational dermatology clinic was to investigate whether the generic questionnaire Short Form-36 (SF-36), and the dermatology-specific Dermatology Life Quality Index (DLQI) are appropriate for assessing health-related quality of life (HRQL) in patients with hand eczema, and whether gender differences in HRQL could be detected. HRQL was affected by hand eczema, measured with both SF-36 and DLQI. The SF-36 showed more impaired HRQL for females than for males, in the mental health dimension, whereas no gender-related differences were detected with the DLQI. To compare the instruments we used factor analysis, with a polychoric correlation matrix as input, thus taking the ordinal aspect of the data into account. There was a high correlation between the instruments for physical health, but lower for mental health. In this context our interpretation of the factor analysis is that the SF-36 measures mental health better than the DLQI. The SF-36 therefore appears suitable for use in future studies for measuring HRQL, and gender differences in HRQL, in persons with reported hand eczema.

  8. Characterizing extrasolar terrestrial planets with reflected, emitted and transmitted spectra.

    PubMed

    Tinetti, Giovanna

    2006-12-01

    NASA and ESA are planning missions to directly detect and characterize terrestrial planets outside our solar system (nominally NASA-Terrestrial Planet Finder and ESA-DARWIN missions). These missions will provide our first opportunity to spectroscopically study the global characteristics of those planets, and search for signs of habitability and life. We have used spatially and spectrally-resolved models to explore the observational sensitivity to changes in atmospheric and surface properties, and the detectability of surface biosignatures, in the globally averaged spectra and light-curves of the Earth. Atmospheric signatures of Earth-size exoplanets might be detected, in a near future, by stellar occultation as well. Detectability depends on planet's size, atmospheric composition, cloud cover and stellar type. According to our simulations, Earth's land vegetation signature (red-edge) is potentially visible in the disk-averaged spectra, even with cloud cover, and when the signal is averaged over the daily time scale. Marine vegetation is far more difficult to detect. We explored also the detectability of an exo-vegetation responsible for producing a signature that is red-shifted with respect to the Earth vegetation's one.

  9. Motivational Antecedents of Preventive Proactivity in Late Life: Linking Future Orientation and Exercise1

    PubMed Central

    Kahana, Eva; Kahana, Boaz; Zhang, Jianping

    2007-01-01

    Future orientation is considered as a motivational antecedent of late-life proactivity. In a panel study of 453 old-old adults, we linked future orientation to exercise, a key component of late-life proactivity. Findings based on hierarchical linear modeling reveal that future orientation at baseline predicts changes in exercise during the subsequent four years. Whereas exercise behavior generally declined over time, future orientation and female gender were associated with smaller decline. These results suggest that future-oriented thinking has a lasting impact on health promotion behavior. Future orientation thus represents a dispositional antecedent of preventive proactivity as proposed in our successful aging model. PMID:18080009

  10. Future orientation, impulsivity, and problem behaviors: a longitudinal moderation model.

    PubMed

    Chen, Pan; Vazsonyi, Alexander T

    2011-11-01

    In the current study, based on a sample of 1,873 adolescents between 11.4 and 20.9 years of age from the first 3 waves of the National Longitudinal Study of Adolescent Health, we investigated the longitudinal effects of future orientation on levels of and developmental changes in problem behaviors, while controlling for the effects by impulsivity; we also tested the moderating effects by future orientation on the impulsivity-problem behaviors link over time. Additionally, we examined future orientation operationalized by items measuring education, marriage, and life domains. Findings based on growth curve analyses provided evidence of longitudinal effects by education and life future orientation on both levels of and developmental changes in problem behaviors; the effect of marriage future orientation was not significant for either test. In addition, only life future orientation moderated the effect by impulsivity on levels of problem behaviors over time. More specifically, impulsivity had a weaker effect on levels of problem behaviors over time for adolescents who reported higher levels of life future orientation.

  11. The limitations on organic detection in Mars-like soils by thermal volatilization–gas chromatography–MS and their implications for the Viking results

    PubMed Central

    Navarro-González, Rafael; Navarro, Karina F.; de la Rosa, José; Iñiguez, Enrique; Molina, Paola; Miranda, Luis D.; Morales, Pedro; Cienfuegos, Edith; Coll, Patrice; Raulin, François; Amils, Ricardo; McKay, Christopher P.

    2006-01-01

    The failure of Viking Lander thermal volatilization (TV) (without or with thermal degradation)–gas chromatography (GC)–MS experiments to detect organics suggests chemical rather than biological interpretations for the reactivity of the martian soil. Here, we report that TV–GC–MS may be blind to low levels of organics on Mars. A comparison between TV–GC–MS and total organics has been conducted for a variety of Mars analog soils. In the Antarctic Dry Valleys and the Atacama and Libyan Deserts we find 10–90 μg of refractory or graphitic carbon per gram of soil, which would have been undetectable by the Viking TV–GC–MS. In iron-containing soils (jarosites from Rio Tinto and Panoche Valley) and the Mars simulant (palogonite), oxidation of the organic material to carbon dioxide (CO2) by iron oxides and/or their salts drastically attenuates the detection of organics. The release of 50–700 ppm of CO2 by TV–GC–MS in the Viking analysis may indicate that an oxidation of organic material took place. Therefore, the martian surface could have several orders of magnitude more organics than the stated Viking detection limit. Because of the simplicity of sample handling, TV–GC–MS is still considered the standard method for organic detection on future Mars missions. We suggest that the design of future organic instruments for Mars should include other methods to be able to detect extinct and/or extant life. PMID:17060639

  12. Moxie matters: associations of future orientation with active life expectancy.

    PubMed

    Laditka, Sarah B; Laditka, James N

    2017-10-01

    Being oriented toward the future has been associated with better future health. We studied associations of future orientation with life expectancy and the percentage of life with disability. We used the Panel Study of Income Dynamics (n = 5249). Participants' average age in 1968 was 33.0. Six questions repeatedly measured future orientation, 1968-1976. Seven waves (1999-2011, 33,331 person-years) measured disability in activities of daily living for the same individuals, whose average age in 1999 was 64.0. We estimated monthly probabilities of disability and death with multinomial logistic Markov models adjusted for age, sex, race/ethnicity, childhood health, and education. Using the probabilities, we created large populations with microsimulation, measuring disability in each month for each individual, age 55 through death. Life expectancy from age 55 for white men with high future orientation was age 77.6 (95% confidence interval 75.5-79.0), 6.9% (4.9-7.2) of those years with disability; results with low future orientation were 73.6 (72.2-75.4) and 9.6% (7.7-10.7). Comparable results for African American men were 74.8 (72.9-75.3), 8.1 (5.6-9.3), 71.0 (69.6-72.8), and 11.3 (9.1-11.7). For women, there were no significant differences associated with levels of future orientation for life expectancy. For white women with high future orientation 9.1% of remaining life from age 55 was disabled (6.3-9.9), compared to 12.4% (10.2-13.2) with low future orientation. Disability results for African American women were similar but statistically significant only at age 80 and over. High future orientation during early to middle adult ages may be associated with better health in older age.

  13. In situ, spatially resolved biosignature detection at the microbial scale

    NASA Astrophysics Data System (ADS)

    Williford, K. H.; Eigenbrode, J. L.; Hallmann, C.; Kitajima, K.; Kozdon, R.; Summons, R. E.; Kudryavstev, A.; Lepot, K.; Schopf, J.; Spicuzza, M.; Sugitani, K.; Ushikubo, T.; van Kranendonk, M.; Valley, J. W.

    2013-12-01

    Whether life has ever existed beyond Earth is one of the great human questions. The Science Definition Team (SDT) for the proposed NASA Mars 2020 rover mission recently announced a suggested approach for NASA to 'demonstrate significant technical progress towards the future return of scientifically selected, well-documented samples to Earth' in part 'to investigate whether Mars was ever inhabited by microbial life.' The SDT further recommended a per-sample volume of 8 cm3 [1] (e.g., a core with a diameter of 1 cm and length of 10 cm). Such samples would be the first available for scientific inquiry with the potential to definitively answer the fundamental question of astrobiology, and their small volume would necessitate analysis with non- or minimally destructive techniques. Potential biosignatures include 'chemical, isotopic, mineralogical, and morphological features that can be created by life and also appear to be inconsistent with nonbiological processes'[1]. Guidelines for biosignature detection in extraterrestrial samples derive in part from the search for evidence of life in the most ancient sedimentary rocks on Earth, wherein the most compelling case for biogenicity is made when these 'chemical, isotopic, mineralogical, and morphological features' occur in association. Sedimentary rocks deposited on Earth prior to ~3.5 billion years ago (i.e., when persistent surface water [e.g., 2] likely supported habitable environments on Mars) have only very rarely escaped severe alteration by metamorphism and metasomatism. Understanding how these processes have operated on Earth through strategic interrogation of biosignature alteration records in (meta)sedimentary rocks is thus a critical task in the search for extraterrestrial life. Here we present techniques for and results of in situ, spatially resolved, non- or minimally destructive detection of morphological, elemental, molecular, and light stable isotopic biosignatures, as well as records of alteration, in Precambrian sedimentary rocks from Earth in the context of the eventual analysis of samples returned from Mars. Sample acquisition and preparation, morphological analysis by conventional light, confocal laser, and electron microscopy, elemental analysis by energy and wavelength dispersive spectroscopy, molecular analysis by laser Raman microscopy, carbon isotope analysis of organic matter and carbonate minerals, and multiple sulfur isotope analysis of pyrite with secondary ion mass spectrometry will be discussed. New and recently published [3-5] results from the application of these methods towards detection of the signatures of life, environment, and alteration history in rocks containing putative and bona fide microfossils ranging in age from 0.6 to 3.5 billion years, and in rocks of similar age lacking morphological biosignatures, as well as our current understanding of key challenges and opportunities for future research will be reviewed. [1] Mustard, J.F. et al. 2013. Report of the Mars 2020 Science Definition Team, 154 pp., posted by MEPAG at http://mepag.jpl.nasa.gov/reports/MEP/Mars_2020_SDT_Report_Final.pdf. [2] Williams, R.M.E. et al. 2013. Science 340: 1068-1072. [3] Williford, K.H. et al. 2011. GCA 75: 5686-5705. [4] Williford, K.H. et al. 2013. GCA 104: 165-182. [5] Lepot, K. et al. 2013. GCA 112: 66-86.

  14. The Curious Case of NH_2OH: Hunting a Direct Amino Acid Precursor Species in the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    McGuire, Brett A.; Carroll, Brandon; Dollhopf, Niklaus M.; Crockett, Nathan; Blake, Geoffrey; Remijan, Anthony

    2015-06-01

    Despite the detection of amino acids, the building blocks of the proteins that support life, in cometary and meteoritic samples, we do not yet understand the conditions under which these life-essential species have formed. Hydroxylamine (NH_2OH) is potentially a direct precursor to the formation of the amino acids glycine and alanine in the ISM, through reaction with acetic and propionic acids. Recent laboratory and modeling work has shown that there are a variety of pathways to the formation of NH_2OH in interstellar ices both efficiently and in high abundance. Here, we present the result of a deep, multi-telescope search for NH_2OH in the shocked, complex molecular source L1157. We find no evidence suggesting the presence of this important precursor, and discuss the implications of this non-detection on the reactivity of NH_2OH both within the ices, and in the gas-phase ISM. We will also discuss how these observations should inform the direction of future studies, both in the laboratory and with state-of-the-art telescopes such as ALMA.

  15. Chemical reactivity of the Martian soil

    NASA Technical Reports Server (NTRS)

    Zent, A. P.; Mckay, C. P.

    1992-01-01

    The Viking life sciences experimental packages detected extraordinary chemical activity in the martian soil, probably the result of soil-surface chemistry. At least one very strong oxidant may exist in the martian soil. The electrochemical nature of the martian soil has figured prominently in discussions of future life sciences research on Mars. Putative oxidants in the martian soil may be responsible for the destruction of organic material to considerable depth, precluding the recovery of reducing material that may be relic of early biological forms. Also, there have been serious expressions of concern regarding the effect that soil oxidants may have on human health and safety. The concern here has centered on the possible irritation of the respiratory system due to dust carried into the martian habitat through the air locks.

  16. A roadmap for the detection and characterization of other Earths.

    PubMed

    Fridlund, Malcolm; Eiroa, Carlos; Henning, Thomas; Herbst, Tom; Kaltenegger, Lisa; Léger, Alain; Liseau, Réne; Lammer, Helmut; Selsis, Franck; Beichman, Charles; Danchi, William; Lunine, Jonathan; Paresce, Francesco; Penny, Alan; Quirrenbach, Andreas; Röttgering, Huub; Schneider, Jean; Stam, Daphne; Tinetti, Giovanna; White, Glenn J

    2010-01-01

    The European Space Agency and other space agencies such as NASA recognize that the question with regard to life beyond Earth in general, and the associated issue of the existence and study of exoplanets in particular, is of paramount importance for the 21(st) century. The new Cosmic Vision science plan, Cosmic Vision 2015-2025, which is built around four major themes, has as its first theme: "What are the conditions for planet formation and the emergence of life?" This main theme is addressed through further questions: 1) How do gas and dust give rise to stars and planets? 2) How will the search for and study of exoplanets eventually lead to the detection of life outside Earth (biomarkers)? 3) How did life in the Solar System arise and evolve? Although ESA has busied itself with these issues since the beginning of the Darwin study in 1996, it has become abundantly clear that, as these topics have evolved, only a very large effort, addressed from the ground and from space with the utilization of different instruments and space missions, can provide the empirical results required for a complete understanding. The good news is that the problems can be addressed and solved within a not-too-distant future. In this short essay, we present the present status of a roadmap related to projects that are related to the key long-term goal of understanding and characterizing exoplanets, in particular Earth-like planets.

  17. Hope, despair and hopelessness in living with HIV/AIDS: a grounded theory study.

    PubMed

    Kylmä, J; Vehviläinen-Julkunen, K; Lähdevirta, J

    2001-03-01

    Hope, despair or hopelessness have been detected in several research reports as important elements of the lives of persons living with human immunodeficiency virus (HIV) (PLWH) or acquired immunodeficiency syndrome (AIDS) (PLWA). However, there is an obvious gap in the literature suggesting a need to study the overall dynamics of hope (including both hope and despair or hopelessness) along the HIV spectrum from PLWHs' and PLWAs' perspective. The purpose of this study was to describe the dynamics of hope in living with HIV/AIDS. The data were collected through interviewing 10 PLWHs/PLWAs and analysed using a grounded theory method. The dynamics of hope is a multifaceted and complex combination of 'hope', 'despair' and 'hopelessness'. It comprises balancing between 'believing life to be worth living at the present and in the future', 'losing one's grip and sinking into narrowing existence vs. fighting against sinking' and 'giving up in the face of belief in nonexisting future'. A dynamic alternation between hope, despair and hopelessness takes place in the presence of factors that contribute to the 'folding' and 'unfolding' possibilities in everyday life. Factors contributing to the folding possibilities include 'losing', 'fear', 'uncertainty', 'problems in care', 'HIV/AIDS in close ones', 'difficulties in relationships' and 'negative public images and attitudes concerning HIV'. Factors contributing to the unfolding possibilities are 'constructive life experiences', 'wishing not to have HIV while uncertain', 'constructive relationships', 'ability to control one's life', 'finding the meaning of life and zest for life', 'caring', 'noticing one's improved health and the continuance of life', 'increasingly positive attitudes concerning HIV-positive people' and 'protection by law'. The dynamics of hope discovered in this study present new conceptualization, where hope, despair and hopelessness are viewed in relation to each other. The emerged definitions may be used in clinical practice to identify these phenomena in individuals with HIV/AIDS. The discovered factors contributing to the folding and unfolding possibilities can be used in clinical practice to help the individuals along the dynamics of hope.

  18. Characterization of extrasolar terrestrial planets from diurnal photometric variability.

    PubMed

    Ford, E B; Seager, S; Turner, E L

    2001-08-30

    The detection of massive planets orbiting nearby stars has become almost routine, but current techniques are as yet unable to detect terrestrial planets with masses comparable to the Earth's. Future space-based observatories to detect Earth-like planets are being planned. Terrestrial planets orbiting in the habitable zones of stars-where planetary surface conditions are compatible with the presence of liquid water-are of enormous interest because they might have global environments similar to Earth's and even harbour life. The light scattered by such a planet will vary in intensity and colour as the planet rotates; the resulting light curve will contain information about the planet's surface and atmospheric properties. Here we report a model that predicts features that should be discernible in the light curve obtained by low-precision photometry. For extrasolar planets similar to Earth, we expect daily flux variations of up to hundreds of per cent, depending sensitively on ice and cloud cover as well as seasonal variations. This suggests that the meteorological variability, composition of the surface (for example, ocean versus land fraction) and rotation period of an Earth-like planet could be derived from photometric observations. Even signatures of Earth-like plant life could be constrained or possibly, with further study, even uniquely determined.

  19. Modeling inter-signal arrival times for accurate detection of CAN bus signal injection attacks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, Michael Roy; Bridges, Robert A; Combs, Frank L

    Modern vehicles rely on hundreds of on-board electronic control units (ECUs) communicating over in-vehicle networks. As external interfaces to the car control networks (such as the on-board diagnostic (OBD) port, auxiliary media ports, etc.) become common, and vehicle-to-vehicle / vehicle-to-infrastructure technology is in the near future, the attack surface for vehicles grows, exposing control networks to potentially life-critical attacks. This paper addresses the need for securing the CAN bus by detecting anomalous traffic patterns via unusual refresh rates of certain commands. While previous works have identified signal frequency as an important feature for CAN bus intrusion detection, this paper providesmore » the first such algorithm with experiments on five attack scenarios. Our data-driven anomaly detection algorithm requires only five seconds of training time (on normal data) and achieves true positive / false discovery rates of 0.9998/0.00298, respectively (micro-averaged across the five experimental tests).« less

  20. What are the best ways to look for extinct or extant life on mars? Thinking outside the box

    NASA Astrophysics Data System (ADS)

    Bada, J. L.; Grunthaner, F.; Mathies, R.

    2003-12-01

    Although the Viking missions a quarter century ago performed a series of life detection experiments, the question of whether life ever existed or even still exists on Mars remains unanswered. The finding that the Martian surface is highly oxidizing seemed to preclude the presence of a robust surface biology, but the subsurface may be more compatible with respect to the survival of both viable organisms (1) and organic compounds. Moreover, it is now also known that the Viking GCMS would not have detected refractory organic compounds (2) or amino acids associated with over a million bacterial cells in a gram of soil (3). The entire Mars community now faces a major challenge as to what we should do next in our search for evidence of life on Mars. The option that is presently favored is to fly "safe" missions focused on characterizing the mineral and elemental makeup of the surface with little emphasis on state-of-the-art analyses for important biomarkers. A second, or perhaps parallel, bolder approach would be to fly payloads made up of highly sensitive instruments designed to search for a wide variety of key organic compounds. Instrumentation available to detect trace levels of key biological compounds have improved dramatically since the Viking missions and many of these methods can be miniaturized so they can be accommodated into a spacecraft. The critical issue is what suite of instruments would provide the most definitive results in answering the life on Mars question. To rigorously address this question, we propose that various organic detection systems be extensively tested in situ using a common and well controlled set of samples in an environment that is known to have low levels of both microbes and organic compounds. One locality that would be a strong candidate is the Yungay Station site in the Atacama desert of Chile, one of the driest and harshest places on Earth. Only those instruments that are able to detect at high sensitivity organic biomarkers in a natural field situation such as this should be considered for components for a future Mars mission payload package. If an instrument can not detect the presence of life's organic signature here on Earth, there is no justification for flying this instrument in a payload to Mars! NIH and DOE embarked upon a similar critical competition to development the best methodology to sequence the human genome and this process was dramically successful. NASA's search for possible signs of life on Mars deserves at the same level of critical and competitive decision-making where scientific capability rather than other factors determine what is included in payloads. 1. B. P. Weiss et al, Proc. Natl Acad. Sci USA 97, 1395 (2000). 2. S. A. Benner et al, Proc. Natl Acad. Sci USA 97, 2425 (2000). 3. D. P. Glavin et al, Earth Planet. Sci. Lettrs. 185, 1 (2001).

  1. Astrovirology: Viruses at Large in the Universe.

    PubMed

    Berliner, Aaron J; Mochizuki, Tomohiro; Stedman, Kenneth M

    2018-02-01

    Viruses are the most abundant biological entities on modern Earth. They are highly diverse both in structure and genomic sequence, play critical roles in evolution, strongly influence terran biogeochemistry, and are believed to have played important roles in the origin and evolution of life. However, there is yet very little focus on viruses in astrobiology. Viruses arguably have coexisted with cellular life-forms since the earliest stages of life, may have been directly involved therein, and have profoundly influenced cellular evolution. Viruses are the only entities on modern Earth to use either RNA or DNA in both single- and double-stranded forms for their genetic material and thus may provide a model for the putative RNA-protein world. With this review, we hope to inspire integration of virus research into astrobiology and also point out pressing unanswered questions in astrovirology, particularly regarding the detection of virus biosignatures and whether viruses could be spread extraterrestrially. We present basic virology principles, an inclusive definition of viruses, review current virology research pertinent to astrobiology, and propose ideas for future astrovirology research foci. Key Words: Astrobiology-Virology-Biosignatures-Origin of life-Roadmap. Astrobiology 18, 207-223.

  2. Vertical distribution of microphysical properties in radiation fogs - A case study

    NASA Astrophysics Data System (ADS)

    Egli, S.; Maier, F.; Bendix, J.; Thies, B.

    2015-01-01

    The present study investigates the validity of a theoretical liquid water content (LWC) profile in fog layers currently used for satellite based ground fog detection, with a special focus on the temporal dynamics during fog life cycle. For this purpose, LWC profiles recorded during two different fog events by means of a tethered balloon borne measurement system are presented and discussed. The results indicate a good agreement in trend and gradient between measured and theoretical LWC profiles during the mature stage of the fog life cycle. The profile obtained during the dissipation stage shows less accordance with the theoretical profile. To improve the agreement between theoretical and measured LWC profiles, the evolutionary stages during the fog life cycle should be incorporated. However, the variability within the prenoted measurements points out that more LWC profiles during a great variety of different fog events have to be collected for a well-justified adaptation of the theoretical LWC profile, considering fog life cycle phases in the future. In general, this underlines the existing knowledge gap regarding the vertical distribution of microphysical properties in natural fogs.

  3. Systemic Crisis of Civilization: In Search for Adequate Solution

    NASA Astrophysics Data System (ADS)

    Khozin, Grigori

    In December 1972 a jumbo jet crashed in the Florida Everglades with the loss of 101 lives. The pilot, distracted by a minor malfunction, failed to note until too late the warning signal that - correctly - indicated an impending disaster. His sudden, astonished cry of Hey, what happening here? were his last words 1. Three decades after this tragic episode, as the Humankind approaches the threshold of the third Millennium, the problem of adequate reaction to warning signals of different nature and of distinguishing minor malfunctions in everyday life of society, in economy and technology as well as in evolution of biosphere from grave threats to the world community and the phenomenon of life on our planet remains crucial to human survival and the future of Civilization. Rational use of knowledge and technology available to the world community remains in this context the corner stone of discussions on the destiny of the intelligent life both on the planet Earth and in the Universe (the fact of intelligent life in the Universe is to be detected by the Humankind)…

  4. Understanding the application of Raman spectroscopy to the detection of traces of life.

    PubMed

    Marshall, Craig P; Edwards, Howell G M; Jehlicka, Jan

    2010-03-01

    Investigating carbonaceous microstructures and material in Earth's oldest sedimentary rocks is an essential part of tracing the origins of life on our planet; furthermore, it is important for developing techniques to search for traces of life on other planets, for example, Mars. NASA and ESA are considering the adoption of miniaturized Raman spectrometers for inclusion in suites of analytical instrumentation to be placed on robotic landers on Mars in the near future to search for fossil or extant biomolecules. Recently, Raman spectroscopy has been used to infer a biological origin of putative carbonaceous microfossils in Early Archean rocks. However, it has been demonstrated that the spectral signature obtained from kerogen (of known biological origin) is similar to spectra obtained from many poorly ordered carbonaceous materials that arise through abiotic processes. Yet there is still confusion in the literature as to whether the Raman spectroscopy of carbonaceous materials can indeed delineate a signature of ancient life. Despite the similar nature in spectra, rigorous structural interrogation between the thermal alteration products of biological and nonbiological organic materials has not been undertaken. Therefore, we propose a new way forward by investigating the second derivative, deconvolution, and chemometrics of the carbon first-order spectra to build a database of structural parameters that may yield distinguishable characteristics between biogenic and abiogenic carbonaceous material. To place Raman spectroscopy as a technique to delineate a biological origin for samples in context, we will discuss what is currently accepted as a spectral signature for life; review Raman spectroscopy of carbonaceous material; and provide a historical overview of Raman spectroscopy applied to Archean carbonaceous materials, interpretations of the origin of the ancient carbonaceous material, and a future way forward for Raman spectroscopy.

  5. Disability pension and everyday life: a period of transition and subjective aspects of future occupational life.

    PubMed

    Johansson, Annica E M; Johansson, Ulla

    2011-01-01

    The purpose was to explore and describe the everyday life experiences among people with a disability pension and their expectations for future occupational life. A purposeful sample of 14 men and women were interviewed. Of these, ten people received full-time disability pension and four people were on partial disability pension while working part time. A content analysis approach revealed three themes: strategies for handling a changed life situation, adaptations to remaining functional capacity, and expectations on future occupational life. Initially, leaving the work market entailed a period of emotional discomfort. To help handle this discomfort, structures for participation and performance came to signify a balanced everyday life. The central conclusion drawn is that the informants with full-time disability pension reconciled themselves to their situation, changing their conception of what life on a disability pension means, while those informants who worked part-time saw their future role as that of worker. Thus, being employed constitutes one factor that promotes a future work career. Another factor related to work capacity is the need for balance between paid work and domestic work reported by disability pensioners working part-time. This area could serve as a point of departure for work rehabilitation.

  6. Exploring the Origin, Extent, and Future of Life

    NASA Astrophysics Data System (ADS)

    Bertka, Constance M.

    2009-09-01

    1. Astrobiology in societal context Constance Bertka; Part I. Origin of Life: 2. Emergence and the experimental pursuit of the origin of life Robert Hazen; 3. From Aristotle to Darwin, to Freeman Dyson: changing definitions of life viewed in historical context James Strick; 4. Philosophical aspects of the origin-of-life problem: the emergence of life and the nature of science Iris Fry; 5. The origin of terrestrial life: a Christian perspective Ernan McMullin; 6. The alpha and the omega: reflections on the origin and future of life from the perspective of Christian theology and ethics Celia Deane-Drummond; Part II. Extent of Life: 7. A biologist's guide to the Solar System Lynn Rothschild; 8. The quest for habitable worlds and life beyond the Solar System Carl Pilcher; 9. A historical perspective on the extent and search for life Steven J. Dick; 10. The search for extraterrestrial life: epistemology, ethics, and worldviews Mark Lupisella; 11. The implications of discovering extraterrestrial life: different searches, different issues Margaret S. Race; 12. God, evolution, and astrobiology Cynthia S. W. Crysdale; Part III. Future of Life: 13. Planetary ecosynthesis on Mars: restoration ecology and environmental ethics Christopher P. McKay; 14. The trouble with intrinsic value: an ethical primer for astrobiology Kelly C. Smith; 15. God's preferential option for life: a Christian perspective on astrobiology Richard O. Randolph; 16. Comparing stories about the origin, extent, and future of life: an Asian religious perspective Francisca Cho; Index.

  7. A Framework for Finding and Interpreting Stellar CMEs

    NASA Astrophysics Data System (ADS)

    Osten, Rachel A.; Wolk, Scott J.

    2017-10-01

    The astrophysical study of mass loss, both steady-state and transient, on the cool half of the HR diagram has implications both for the star itself and the conditions created around the star that can be hospitable or inimical to supporting life. Stellar coronal mass ejections (CMEs) have not been conclusively detected, despite the ubiquity with which their radiative counterparts in an eruptive event (flares) have been. I will review some of the different observational methods which have been used and possibly could be used in the future in the stellar case, emphasizing some of the difficulties inherent in such attempts. I will provide a framework for interpreting potential transient stellar mass loss in light of the properties of flares known to occur on magnetically active stars. This uses a physically motivated way to connect the properties of flares and coronal mass ejections and provides a testable hypothesis for observing or constraining transient stellar mass loss. Finally I will describe recent results using observations at low radio frequencies to detect stellar coronal mass ejections, and give updates on prospects using future facilities to make headway in this important area.

  8. SOLID2: An Antibody Array-Based Life-Detector Instrument in a Mars Drilling Simulation Experiment (MARTE)

    NASA Astrophysics Data System (ADS)

    Parro, Víctor; Fernández-Calvo, Patricia; Rodríguez Manfredi, José A.; Moreno-Paz, Mercedes; Rivas, Luis A.; García-Villadangos, Miriam; Bonaccorsi, Rosalba; González-Pastor, José Eduardo; Prieto-Ballesteros, Olga; Schuerger, Andrew C.; Davidson, Mark; Gómez-Elvira, Javier; Stoker, Carol R.

    2008-10-01

    A field prototype of an antibody array-based life-detector instrument, Signs Of LIfe Detector (SOLID2), has been tested in a Mars drilling mission simulation called MARTE (Mars Astrobiology Research and Technology Experiment). As one of the analytical instruments on the MARTE robotic drilling rig, SOLID2 performed automatic sample processing and analysis of ground core samples (0.5 g) with protein microarrays that contained 157 different antibodies. Core samples from different depths (down to 5.5 m) were analyzed, and positive reactions were obtained in antibodies raised against the Gram-negative bacterium Leptospirillum ferrooxidans, a species of the genus Acidithiobacillus (both common microorganisms in the Río Tinto area), and extracts from biofilms and other natural samples from the Río Tinto area. These positive reactions were absent when the samples were previously subjected to a high-temperature treatment, which indicates the biological origin and structural dependency of the antibody-antigen reactions. We conclude that an antibody array-based life-detector instrument like SOLID2 can detect complex biological material, and it should be considered as a potential analytical instrument for future planetary missions that search for life.

  9. SOLID2: an antibody array-based life-detector instrument in a Mars Drilling Simulation Experiment (MARTE).

    PubMed

    Parro, Víctor; Fernández-Calvo, Patricia; Rodríguez Manfredi, José A; Moreno-Paz, Mercedes; Rivas, Luis A; García-Villadangos, Miriam; Bonaccorsi, Rosalba; González-Pastor, José Eduardo; Prieto-Ballesteros, Olga; Schuerger, Andrew C; Davidson, Mark; Gómez-Elvira, Javier; Stoker, Carol R

    2008-10-01

    A field prototype of an antibody array-based life-detector instrument, Signs Of LIfe Detector (SOLID2), has been tested in a Mars drilling mission simulation called MARTE (Mars Astrobiology Research and Technology Experiment). As one of the analytical instruments on the MARTE robotic drilling rig, SOLID2 performed automatic sample processing and analysis of ground core samples (0.5 g) with protein microarrays that contained 157 different antibodies. Core samples from different depths (down to 5.5 m) were analyzed, and positive reactions were obtained in antibodies raised against the Gram-negative bacterium Leptospirillum ferrooxidans, a species of the genus Acidithiobacillus (both common microorganisms in the Río Tinto area), and extracts from biofilms and other natural samples from the Río Tinto area. These positive reactions were absent when the samples were previously subjected to a high-temperature treatment, which indicates the biological origin and structural dependency of the antibody-antigen reactions. We conclude that an antibody array-based life-detector instrument like SOLID2 can detect complex biological material, and it should be considered as a potential analytical instrument for future planetary missions that search for life.

  10. Looking for water related environments on Mars: analysis of reflectance spectra for present and future exploration

    NASA Astrophysics Data System (ADS)

    De Toffoli, B.; Carli, C.; Maturilli, A.; Sauro, F.; Massironi, M.; Helbert, J.

    2017-09-01

    Spectroscopic analyses of basalt epithermal alterations, clay minerals and samples representative of wet sedimentary environments in a broad wavelength range from the ultraviolet to the far-infrared provide new loads of information for present and future exploration of environments that could have been linked to water and gas emission. Specifically, methane emission centers on the Martian surface are high interest targets for Exo-Mars mission since they involve environments where life could have potentially arisen, grown and given a contribution to the degassing phenomenon. Such data will be applied to drive the analysis on remotely sensed hyperspectral images of Martian regions where surface expressions of water and sediments resurgences are recognisable, such as the mound fields detected in Utopia and Hellas basins and Vastitas Borealis.

  11. The Future Is Bright and Predictable: The Development of Prospective Life Stories across Childhood and Adolescence

    ERIC Educational Resources Information Center

    Bohn, Annette; Berntsen, Dorthe

    2013-01-01

    When do children develop the ability to imagine their future lives in terms of a coherent prospective life story? We investigated whether this ability develops in parallel with the ability to construct a life story for the past and narratives about single autobiographical events in the past and future. Four groups of school children aged 9 to 15…

  12. The search for extraterrestrial intelligence: Telecommunications technology

    NASA Technical Reports Server (NTRS)

    Edelson, R. E.; Levy, G. S.

    1980-01-01

    Efforts to discover evidence of intelligent extraterrestrial life have become not only feasible, but respectable. Fledgling observational projects have begun that will use state-of-the-art hardware to develop sophisticated receiving and data processing systems. The rationale behind the Search for Extraterrestrial Intelligence, the manner in which the program is taking shape, and the implications for telecommunications are described. It is concluded that the breadth of technological development required for the detection of signals from galactic brethren has particular relevance for the future of telecommunications in Earth oriented uses.

  13. Space life sciences: A status report

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The scientific research and supporting technology development conducted in the Space Life Sciences Program is described. Accomplishments of the past year are highlighted. Plans for future activities are outlined. Some specific areas of study include the following: Crew health and safety; What happens to humans in space; Gravity, life, and space; Sustenance in space; Life and planet Earth; Life in the Universe; Promoting good science and good will; Building a future for the space life sciences; and Benefits of space life sciences research.

  14. Microbiological Methodology in Astrobiology

    NASA Technical Reports Server (NTRS)

    Abyzov, S. S.; Gerasimenko, L. M.; Hoover, R. B.; Mitskevich, I. N.; Mulyukin, A. L.; Poglazova, M. N.; Rozanov, A. Y.

    2005-01-01

    Searching for life in astromaterials to be delivered from the future missions to extraterrestrial bodies is undoubtedly related to studies of the properties and signatures of living microbial cells and microfossils on Earth. As model terrestrial analogs of Martian polar subsurface layers are often regarded the Antarctic glacier and Earth permafrost habitats where alive microbial cells preserved viability for millennia years due to entering the anabiotic state. For the future findings of viable microorganisms in samples from extraterrestrial objects, it is important to use a combined methodology that includes classical microbiological methods, plating onto nutrient media, direct epifluorescence and electron microscopy examinations, detection of the elemental composition of cells, radiolabeling techniques, PCR and FISH methods. Of great importance is to ensure authenticity of microorganisms (if any in studied samples) and to standardize the protocols used to minimize a risk of external contamination. Although the convincing evidence of extraterrestrial microbial life will may come from the discovery of living cells in astromaterials, biomorphs and microfossils must also be regarded as a target in search of life evidence bearing in mind a scenario that alive microorganisms had not be preserved and underwent mineralization. Under the laboratory conditions, processes that accompanied fossilization of cyanobacteria were reconstructed, and artificially produced cyanobacterial stromatolites resembles by their morphological properties those found in natural Earth habitats. Regarding the vital importance of distinguishing between biogenic and abiogenic signatures and between living and fossil microorganisms in analyzed samples, it is worthwhile to use some previously developed approaches based on electron microscopy examinations and analysis of elemental composition of biomorphs in situ and comparison with the analogous data obtained for laboratory microbial cultures and fossilized microorganisms. This communication will be focused on the analysis of our experience in working with ancient microorganisms and fossils and discussion of some issues that are crucial for development of the program for future finding of extraterrestrial life and its evidence.

  15. Oxygen isotope ratios of PO4: An inorganic indicator of enzymatic activity and P metabolism and a new biomarker in the search for life

    PubMed Central

    Blake, Ruth E.; Alt, Jeffrey C.; Martini, Anna M.

    2001-01-01

    The distinctive relations between biological activity and isotopic effect recorded in biomarkers (e.g., carbon and sulfur isotope ratios) have allowed scientists to suggest that life originated on this planet nearly 3.8 billion years ago. The existence of life on other planets may be similarly identified by geochemical biomarkers, including the oxygen isotope ratio of phosphate (δ18Op) presented here. At low near-surface temperatures, the exchange of oxygen isotopes between phosphate and water requires enzymatic catalysis. Because enzymes are indicative of cellular activity, the demonstration of enzyme-catalyzed PO4–H2O exchange is indicative of the presence of life. Results of laboratory experiments are presented that clearly show that δ18OP values of inorganic phosphate can be used to detect enzymatic activity and microbial metabolism of phosphate. Applications of δ18Op as a biomarker are presented for two Earth environments relevant to the search for extraterrestrial life: a shallow groundwater reservoir and a marine hydrothermal vent system. With the development of in situ analytical techniques and future planned sample return strategies, δ18Op may provide an important biosignature of the presence of life in extraterrestrial systems such as that on Mars. PMID:11226207

  16. Oxygen isotope ratios of PO4: an inorganic indicator of enzymatic activity and P metabolism and a new biomarker in the search for life.

    PubMed

    Blake, R E; Alt, J C; Martini, A M

    2001-02-27

    The distinctive relations between biological activity and isotopic effect recorded in biomarkers (e.g., carbon and sulfur isotope ratios) have allowed scientists to suggest that life originated on this planet nearly 3.8 billion years ago. The existence of life on other planets may be similarly identified by geochemical biomarkers, including the oxygen isotope ratio of phosphate (delta(18)O(p)) presented here. At low near-surface temperatures, the exchange of oxygen isotopes between phosphate and water requires enzymatic catalysis. Because enzymes are indicative of cellular activity, the demonstration of enzyme-catalyzed PO(4)-H(2)O exchange is indicative of the presence of life. Results of laboratory experiments are presented that clearly show that delta(18)O(P) values of inorganic phosphate can be used to detect enzymatic activity and microbial metabolism of phosphate. Applications of delta(18)O(p) as a biomarker are presented for two Earth environments relevant to the search for extraterrestrial life: a shallow groundwater reservoir and a marine hydrothermal vent system. With the development of in situ analytical techniques and future planned sample return strategies, delta(18)O(p) may provide an important biosignature of the presence of life in extraterrestrial systems such as that on Mars.

  17. Current Pressure Transducer Application of Model-based Prognostics Using Steady State Conditions

    NASA Technical Reports Server (NTRS)

    Teubert, Christopher; Daigle, Matthew J.

    2014-01-01

    Prognostics is the process of predicting a system's future states, health degradation/wear, and remaining useful life (RUL). This information plays an important role in preventing failure, reducing downtime, scheduling maintenance, and improving system utility. Prognostics relies heavily on wear estimation. In some components, the sensors used to estimate wear may not be fast enough to capture brief transient states that are indicative of wear. For this reason it is beneficial to be capable of detecting and estimating the extent of component wear using steady-state measurements. This paper details a method for estimating component wear using steady-state measurements, describes how this is used to predict future states, and presents a case study of a current/pressure (I/P) Transducer. I/P Transducer nominal and off-nominal behaviors are characterized using a physics-based model, and validated against expected and observed component behavior. This model is used to map observed steady-state responses to corresponding fault parameter values in the form of a lookup table. This method was chosen because of its fast, efficient nature, and its ability to be applied to both linear and non-linear systems. Using measurements of the steady state output, and the lookup table, wear is estimated. A regression is used to estimate the wear propagation parameter and characterize the damage progression function, which are used to predict future states and the remaining useful life of the system.

  18. The perils and promises of microbial abundance: novel natures and model ecosystems, from artisanal cheese to alien seas.

    PubMed

    Paxson, Heather; Helmreich, Stefan

    2014-04-01

    Microbial life has been much in the news. From outbreaks of Escherichia coli to discussions of the benefits of raw and fermented foods to recent reports of life forms capable of living in extreme environments, the modest microbe has become a figure for thinking through the presents and possible futures of nature, writ large as well as small. Noting that dominant representations of microbial life have shifted from an idiom of peril to one of promise, we argue that microbes--especially when thriving as microbial communities--are being upheld as model ecosystems in a prescriptive sense, as tokens of how organisms and human ecological relations with them could, should, or might be. We do so in reference to two case studies: the regulatory politics of artisanal cheese and the speculative research of astrobiology. To think of and with microbial communities as model ecosystems offers a corrective to the scientific determinisms we detect in some recent calls to attend to the materiality of scientific objects.

  19. Assessment of anxiety in older adults: a review of self-report measures

    PubMed Central

    Balsamo, Michela; Cataldi, Fedele; Carlucci, Leonardo; Fairfield, Beth

    2018-01-01

    With increasing numbers of older adults in the general population, anxiety will become a widespread problem in late life and one of the major causes of health care access contributing to high societal and individual costs. Unfortunately, the detection of anxiety disorders in late life is complicated by a series of factors that make it different from assessment in younger cohorts, such as differential symptom presentation, high comorbidity with medical and mental disorders, the aging process, and newly emergent changes in life circumstances. This review covers commonly and currently used self-report inventories for assessing anxiety in older adults. For each tool, psychometric data is investigated in depth. In particular, information about reliability, validity evidence based on data from clinical and nonclinical samples of older adults, and availability of age-appropriate norms are provided. Finally, guidance for clinical evaluation and future research are proposed in an effort to highlight the importance of clinical assessment in the promotion of clinically relevant therapeutic choices. PMID:29670342

  20. Refining the Candidate Environment: Interpersonal Stress, the Serotonin Transporter Polymorphism, and Gene-Environment Interactions in Major Depression.

    PubMed

    Vrshek-Schallhorn, Suzanne; Mineka, Susan; Zinbarg, Richard E; Craske, Michelle G; Griffith, James W; Sutton, Jonathan; Redei, Eva E; Wolitzky-Taylor, Kate; Hammen, Constance; Adam, Emma K

    2014-05-01

    Meta-analytic evidence supports a gene-environment (G×E) interaction between life stress and the serotonin transporter polymorphism (5-HTTLPR) on depression, but few studies have examined factors that influence detection of this effect, despite years of inconsistent results. We propose that the "candidate environment" (akin to a candidate gene) is key. Theory and evidence implicate major stressful life events (SLEs)-particularly major interpersonal SLEs-as well as chronic family stress. Participants ( N = 400) from the Youth Emotion Project (which began with 627 high school juniors oversampled for high neuroticism) completed up to five annual diagnostic and life stress interviews and provided DNA samples. A significant G×E effect for major SLEs and S -carrier genotype was accounted for significantly by major interpersonal SLEs but not significantly by major non-interpersonal SLEs. S -carrier genotype and chronic family stress also significantly interacted. Identifying such candidate environments may facilitate future G×E research in depression and psychopathology more broadly.

  1. [Health related quality of life among patients with type 2 diabetes mellitus].

    PubMed

    Urzúa M, Alfonso; Chirino, Alejandra; Valladares, Geraldine

    2011-03-01

    Type 2 diabetes mellitus may affect profoundly the quality of life of patients. To assess health related quality of life among patients with Type 2 Diabetes Mellitus. The Diabetes Quality of Life (DQOL) questionnaire was applied to 296 patients with diabetes mellitus aged 63 ± lO years (201 women) seen in primary health care centers. The concern about the future effects of diabetes was the worst evaluated domain. Women perceived a lower health related quality of life than men. There was an inverse correlation between age and satisfaction with treatment, concern about vocational, social and future effects of the disease. Type 2 diabetes affects health related quality of life, especially in some specific domains such as perception of the future.

  2. Future orientation and health quality of life in primary care: vitality as a mediator.

    PubMed

    Hirsch, Jameson K; Molnar, Danielle; Chang, Edward C; Sirois, Fuschia M

    2015-07-01

    Temporal perspective, including views about future goals, may influence motivational processes related to health. An adaptive sense of future orientation is linked to better health, but little research has examined potential underlying factors, such as vitality. In a sample of 101 primary care patients, we examined whether belief in the changeability of the future was related to mental and physical energization and, in turn, to health-related quality of life. Participants were working, uninsured primary care patients, who completed self-report measures of future orientation, vitality, and health-related quality of life. Mediation models, covarying age, sex, and race/ethnicity indicated that vitality significantly mediated the association between future orientation and the outcomes of general health, mental health, social functioning, bodily pain, and role limitations due to emotional and physical reasons. Vitality exerted an indirect-only effect on the relation between future orientation and physical functioning. Our findings suggest that adaptive beliefs about the future may promote, or allow access to, physical and mental energy and, in turn, may result in better mental and physical health functioning. Individual-level and public health interventions designed to promote future orientation and vitality may beneficially influence quality of life and well-being.

  3. Detecting 3D Vegetation Structure with the Galileo Space Probe: Can a Distant Probe Detect Vegetation Structure on Earth?

    PubMed Central

    2016-01-01

    Sagan et al. (1993) used the Galileo space probe data and first principles to find evidence of life on Earth. Here we ask whether Sagan et al. (1993) could also have detected whether life on Earth had three-dimensional structure, based on the Galileo space probe data. We reanalyse the data from this probe to see if structured vegetation could have been detected in regions with abundant photosynthetic pigments through the anisotropy of reflected shortwave radiation. We compare changing brightness of the Amazon forest (a region where Sagan et al. (1993) noted a red edge in the reflectance spectrum, indicative of photosynthesis) as the planet rotates to a common model of reflectance anisotropy and found measured increase of surface reflectance of 0.019 ± 0.003 versus a 0.007 predicted from only anisotropic effects. We hypothesize the difference was due to minor cloud contamination. However, the Galileo dataset had only a small change in phase angle (sun-satellite position) which reduced the observed anisotropy signal and we demonstrate that theoretically if the probe had a variable phase angle between 0–20°, there would have been a much larger predicted change in surface reflectance of 0.1 and under such a scenario three-dimensional vegetation structure on Earth could possibly have been detected. These results suggest that anisotropic effects may be useful to help determine whether exoplanets have three-dimensional vegetation structure in the future, but that further comparisons between empirical and theoretical results are first necessary. PMID:27973530

  4. Detecting 3D Vegetation Structure with the Galileo Space Probe: Can a Distant Probe Detect Vegetation Structure on Earth?

    PubMed

    Doughty, Christopher E; Wolf, Adam

    2016-01-01

    Sagan et al. (1993) used the Galileo space probe data and first principles to find evidence of life on Earth. Here we ask whether Sagan et al. (1993) could also have detected whether life on Earth had three-dimensional structure, based on the Galileo space probe data. We reanalyse the data from this probe to see if structured vegetation could have been detected in regions with abundant photosynthetic pigments through the anisotropy of reflected shortwave radiation. We compare changing brightness of the Amazon forest (a region where Sagan et al. (1993) noted a red edge in the reflectance spectrum, indicative of photosynthesis) as the planet rotates to a common model of reflectance anisotropy and found measured increase of surface reflectance of 0.019 ± 0.003 versus a 0.007 predicted from only anisotropic effects. We hypothesize the difference was due to minor cloud contamination. However, the Galileo dataset had only a small change in phase angle (sun-satellite position) which reduced the observed anisotropy signal and we demonstrate that theoretically if the probe had a variable phase angle between 0-20°, there would have been a much larger predicted change in surface reflectance of 0.1 and under such a scenario three-dimensional vegetation structure on Earth could possibly have been detected. These results suggest that anisotropic effects may be useful to help determine whether exoplanets have three-dimensional vegetation structure in the future, but that further comparisons between empirical and theoretical results are first necessary.

  5. SNC Meteorites, Organic Matter and a New Look at Viking

    NASA Technical Reports Server (NTRS)

    Warmflash, David M.; Clemett, Simon J.; McKay, David S.

    2001-01-01

    Recently, evidence has begun to grow supporting the possibility that the Viking GC-MS would not have detected certain carboxylate salts that could have been present as metastable oxidation products of high molecular weight organic species. Additionally, despite the instrument's high sensitivity, the possibility had remained that very low levels of organic matter, below the instrument's detection limit, could have been present. In fact, a recent study indicates that the degradation products of several million microorganisms per gram of soil on Mars would not have been detected by the Viking GC-MS. Since the strength of the GC-MS findings was considered enough to dismiss the biology packet, particularly the LR results, any subsequent evidence suggesting that organic molecules may in fact be present on the Martian surface necessitates a re-evaluation of the Viking LR data. In addition to an advanced mass spectrometer to look for isotopic signatures of biogenic processes, future lander missions will include the ability to detect methane produced by methanogenic bacteria, as well as techniques based on biotechnology. Meanwhile, the identification of Mars samples already present on Earth in the form of the SNC meteorites has provided us with the ability to study samples of the Martian upper crust a decade or more in advance of any planned sample return missions. While contamination issues are of serious concern, the presence of indigenous organic matter in the form of polycyclic aromatic hydrocarbons has been detected in the Martian meteorites ALH84001 and Nakhla, while there is circumstantial evidence for carbonaceous material in Chassigny. The radiochronological ages of these meteorites are 4.5 Ga, 1.3 Ga, and 165 Ma respectively representing a span of time in Earth history from the earliest single-celled organisms to the present day. Given this perspective on organic material, a biological interpretation to the Viking LR results can no longer be ruled out. In the LR experiment, a solution containing C-14 labeled organic compounds was injected into soil samples. The detection of radioactivity in the overhead space would indicate that one or more of the substrates had been chemically converted into a carbon-containing gas. To serve as a control, some samples were heated enough to destroy most known terrestrial microbes so that an indication for life would be a positive response from unheated samples and a negative response from heated samples. On Mars, the LR results had met minimum criteria for a biological interpretation but due to the GC-MS results, the LR responses were later attributed to putative soil inorganic oxidants. Since the time of Viking, studies have been carried out with the objective of determining an oxidant or combination of oxidants that might exist on Mars and have produced the observed kinetics of the LR response. To date, no such agent has been found that produces all aspects of the LR results on Mars. While the above considerations in no way imply the existence of life forms at the two Viking landing sites, inorganic and biological explanations for the Viking LR data should now be considered equally plausible until more complete studies of the Martian surface are carried out. Therefore, in light of the SNC meteorites data and their implications for the possibility of organic matter near or on the Martian surface the Viking biology experiments should thus be seen, not as failures for their inability to provide unambiguous evidence for or against Martian life, but as a foundation for the development of future life-detection instruments. Additional information is contained in the original extended abstract.

  6. Antarctic analogs for Enceladus

    NASA Astrophysics Data System (ADS)

    Murray, A. E.; Andersen, D. T.; McKay, C. P.

    2014-12-01

    Enceladus is a new world for Astrobiology. The Cassini discovery of the icy plume emanating from the South Polar region indicates an active world, where detection of water, organics, sodium, and nano-particle silica in the plume strongly suggests that the source is a subsurface salty ocean reservoir. Recent gravity data from Cassini confirms the presence of a regional sea extending north to 50°S. An ocean habitat under a thick ice cover is perhaps a recurring theme in the Outer Solar System, but what makes Enceladus unique is that the plume jetting out into space is carrying samples of this ocean. Therefore, through the study of Enceladus' plumes we can gain new insights not only of a possible habitable world in the Solar Systems, but also about the formation and evolution of other icy-satellites. Cassini has been able to fly through this plume - effectively sampling the ocean. It is time to plan for future missions that do more detailed analyses, possibly return samples back to Earth and search for evidence of life. To help prepare for such missions, the need for earth-based analog environments is essential for logistical, methodological (life detection) and theoretical development. We have undertaken studies of two terrestrial environments that are close analogs to Enceladus' ocean: Lake Vida and Lake Untersee - two ice-sealed Antarctic lakes that represent physical, chemical and possibly biological analogs for Enceladus. By studying the diverse biology and physical and chemical constraints to life in these two unique lakes we will begin to understand the potential habitability of Enceladus and other icy moons, including possible sources of nutrients and energy, which together with liquid water are the key ingredients for life. Analog research such as this will also enable us to develop and test new strategies to search for evidence of life on Enceladus.

  7. Wearable technology and ECG processing for fall risk assessment, prevention and detection.

    PubMed

    Melillo, Paolo; Castaldo, Rossana; Sannino, Giovanna; Orrico, Ada; de Pietro, Giuseppe; Pecchia, Leandro

    2015-01-01

    Falls represent one of the most common causes of injury-related morbidity and mortality in later life. Subjects with cardiovascular disorders (e.g., related to autonomic dysfunctions and postural hypotension) are at higher risk of falling. Autonomic dysfunctions increasing the risk of falling in the short and mid-term could be assessed by Heart Rate Variability (HRV) extracted by electrocardiograph (ECG). We developed three trials for assessing the usefulness of ECG monitoring using wearable devices for: risk assessment of falling in the next few weeks; prevention of imminent falls due to standing hypotension; and fall detection. Statistical and data-mining methods are adopted to develop classification and regression models, validated with the cross-validation approach. The first classifier based on HRV features enabled to identify future fallers among hypertensive patients with an accuracy of 72% (sensitivity: 51.1%, specificity: 80.2%). The regression model to predict falls due to orthostatic dropdown from HRV recorded before standing achieved an overall accuracy of 80% (sensitivity: 92%, specificity: 90%). Finally, the classifier to detect simulated falls using ECG achieved an accuracy of 77.3% (sensitivity: 81.8%, specificity: 72.7%). The evidence from these three studies showed that ECG monitoring and processing could achieve satisfactory performances compared to other system for risk assessment, fall prevention and detection. This is interesting as differently from other technologies actually employed to prevent falls, ECG is recommended for many other pathologies of later life and is more accepted by senior citizens.

  8. Sulfate Minerals: A Problem for the Detection of Organic Compounds on Mars?

    PubMed Central

    Watson, Jonathan S.; Najorka, Jens; Luong, Duy; Sephton, Mark A.

    2015-01-01

    Abstract The search for in situ organic matter on Mars involves encounters with minerals and requires an understanding of their influence on lander and rover experiments. Inorganic host materials can be helpful by aiding the preservation of organic compounds or unhelpful by causing the destruction of organic matter during thermal extraction steps. Perchlorates are recognized as confounding minerals for thermal degradation studies. On heating, perchlorates can decompose to produce oxygen, which then oxidizes organic matter. Other common minerals on Mars, such as sulfates, may also produce oxygen upon thermal decay, presenting an additional complication. Different sulfate species decompose within a large range of temperatures. We performed a series of experiments on a sample containing the ferric sulfate jarosite. The sulfate ions within jarosite break down from 500°C. Carbon dioxide detected during heating of the sample was attributed to oxidation of organic matter. A laboratory standard of ferric sulfate hydrate released sulfur dioxide from 550°C, and an oxygen peak was detected in the products. Calcium sulfate did not decompose below 1000°C. Oxygen released from sulfate minerals may have already affected organic compound detection during in situ thermal experiments on Mars missions. A combination of preliminary mineralogical analyses and suitably selected pyrolysis temperatures may increase future success in the search for past or present life on Mars. Key Words: Mars—Life detection—Geochemistry—Organic matter—Jarosite. Astrobiology 15, 247–258. PMID:25695727

  9. Understanding Prebiotic Chemistry Through the Analysis of Extraterrestrial Amino Acids and Nucleobases in Meteorites

    NASA Technical Reports Server (NTRS)

    Burton, Aaron S.; Stern, Jennifer C.; Elsila, Jamie E.; Glavin, Daniel P.; Dworkin, Jason P.

    2012-01-01

    The discoveries of amino acids of extraterrestrial origin in many meteorites over the last 50 years have revolutionized the Astrobiology field. A variety of non-terrestrial amino acids similar to those found in life on Earth have been detected in meteorites. A few amino acids have even been found with chiral excesses, suggesting that meteorites could have contributed to the origin of homochirality in life on Earth. In addition to amino acids, which have been productively studied for years, sugar-like molecules, activated phosphates, and nucleobases have also been determined to be indigenous to numerous meteorites. Because these molecules are essential for life as we know it, and meteorites have been delivering them to the Earth since accretion, it is plausible that the origines) of life on Earth were aided by extrataterrestrially-synthesized molecules. Understanding the origins of life on Earth guides our search for life elsewhere, helping to answer the question of whether biology is unique to Earth. This tutorial focuses on meteoritic amino acids and nucleobases, exploring modern analytical methods and possible formation mechanisms. We will also discuss the unique window that meteorites provide into the chemistry that preceded life on Earth, a chemical record we do not have access to on Earth due to geologic recycling of rocks and the pervasiveness of biology across the planet. Finally. we will address the future of meteorite research, including asteroid sample return missions.

  10. Living with an inborn error of metabolism detected by newborn screening-parents' perspectives on child development and impact on family life.

    PubMed

    Gramer, Gwendolyn; Haege, Gisela; Glahn, Esther M; Hoffmann, Georg F; Lindner, Martin; Burgard, Peter

    2014-03-01

    Newborn screening for inborn errors of metabolism is regarded as highly successful by health professionals. Little is known about parents' perspectives on child development and social impact on families. Parents of 187 patients with metabolic disorders detected by newborn screening rated child development, perceived burdens on child and family, and future expectations on a questionnaire with standardized answers. Parental ratings were compared with standardized psychometric test results. Regression analysis was performed to identify factors associated with extent of perceived burden. In 26.2% of patients, parents perceived delays in global development and/or specific developmental domains (physical, social, intellectual, language). Parents expected normal future development in 95.7%, and an independent adult life for their child in 94.6%. Comparison with psychometric test results showed that parents of children with cognitive impairments tended to overrate their child's abilities. Mild/medium burden posed on the family (child) by the metabolic disorder was stated by 56.1% (48.9%) of parents, severe/very severe burden by 19.3% (8.6%). One third of families reported financial burden due to the metabolic disorder. Dietary treatment and diagnoses with risk for metabolic decompensation despite treatment were associated with higher perceived burden for the family. Disorders rated as potentially very burdensome by experts were not rated accordingly by parents, demonstrating different perspectives of professionals and parents. Although newborn screening leads to favourable physical and cognitive outcome, living with a metabolic disorder may cause considerable stress on patients and families, emphasizing the need for comprehensive multidisciplinary care including psychological and social support.

  11. Model-Based Diagnosis and Prognosis of a Water Recycling System

    NASA Technical Reports Server (NTRS)

    Roychoudhury, Indranil; Hafiychuk, Vasyl; Goebel, Kai Frank

    2013-01-01

    A water recycling system (WRS) deployed at NASA Ames Research Center s Sustainability Base (an energy efficient office building that integrates some novel technologies developed for space applications) will serve as a testbed for long duration testing of next generation spacecraft water recycling systems for future human spaceflight missions. This system cleans graywater (waste water collected from sinks and showers) and recycles it into clean water. Like all engineered systems, the WRS is prone to standard degradation due to regular use, as well as other faults. Diagnostic and prognostic applications will be deployed on the WRS to ensure its safe, efficient, and correct operation. The diagnostic and prognostic results can be used to enable condition-based maintenance to avoid unplanned outages, and perhaps extend the useful life of the WRS. Diagnosis involves detecting when a fault occurs, isolating the root cause of the fault, and identifying the extent of damage. Prognosis involves predicting when the system will reach its end of life irrespective of whether an abnormal condition is present or not. In this paper, first, we develop a physics model of both nominal and faulty system behavior of the WRS. Then, we apply an integrated model-based diagnosis and prognosis framework to the simulation model of the WRS for several different fault scenarios to detect, isolate, and identify faults, and predict the end of life in each fault scenario, and present the experimental results.

  12. Cultural variation in the use of current life satisfaction to predict the future.

    PubMed

    Oishi, S; Wyer, R S; Colcombe, S J

    2000-03-01

    Three studies examined cultural and situational influences on the tendency for people to use their current life satisfaction to predict future life events. On the basis of the self-enhancement literature, it was predicted that either writing about a positive personal experience or reading about another's negative experience would lead European Americans to focus their attention on internal attributes and thus would lead them to use their current life satisfaction in predicting the future. Conversely, on the basis of the self-criticism literature, it was predicted that these same conditions would lead Asian Americans to focus their attention on external factors and, therefore, would decrease their likelihood of using their current life satisfaction to predict the future. Studies 1 and 2 supported these hypotheses. Study 3 showed that these patterns could be obtained by subliminally priming concepts associated with individualism and collectivism.

  13. Carbon nanomaterials in biosensors: should you use nanotubes or graphene?

    PubMed

    Yang, Wenrong; Ratinac, Kyle R; Ringer, Simon P; Thordarson, Pall; Gooding, J Justin; Braet, Filip

    2010-03-15

    From diagnosis of life-threatening diseases to detection of biological agents in warfare or terrorist attacks, biosensors are becoming a critical part of modern life. Many recent biosensors have incorporated carbon nanotubes as sensing elements, while a growing body of work has begun to do the same with the emergent nanomaterial graphene, which is effectively an unrolled nanotube. With this widespread use of carbon nanomaterials in biosensors, it is timely to assess how this trend is contributing to the science and applications of biosensors. This Review explores these issues by presenting the latest advances in electrochemical, electrical, and optical biosensors that use carbon nanotubes and graphene, and critically compares the performance of the two carbon allotropes in this application. Ultimately, carbon nanomaterials, although still to meet key challenges in fabrication and handling, have a bright future as biosensors.

  14. Raman spectroscopy in astrobiology.

    PubMed

    Jorge Villar, Susana E; Edwards, Howell G M

    2006-01-01

    Raman spectroscopy is proposed as a valuable analytical technique for planetary exploration because it is sensitive to organic and inorganic compounds and able to unambiguously identify key spectral markers in a mixture of biological and geological components; furthermore, sample manipulation is not required and any size of sample can be studied without chemical or mechanical pretreatment. NASA and ESA are considering the adoption of miniaturised Raman spectrometers for inclusion in suites of analytical instrumentation to be placed on robotic landers on Mars in the near future to search for extinct or extant life signals. In this paper we review the advantages and limitations of Raman spectroscopy for the analysis of complex specimens with relevance to the detection of bio- and geomarkers in extremophilic organisms which are considered to be terrestrial analogues of possible extraterrestial life that could have developed on planetary surfaces.

  15. A happier and less sinister past, a more hedonistic and less fatalistic present and a more structured future: time perspective and well-being.

    PubMed

    Sailer, Uta; Rosenberg, Patricia; Nima, Ali Al; Gamble, Amelie; Gärling, Tommy; Archer, Trevor; Garcia, Danilo

    2014-01-01

    Background. Previous studies have established a link between how people relate to their past, present, and future (i.e., time perspective) and subjective well-being (i.e., life satisfaction, positive and negative affect). Time perspective comprises five dimensions: Past Positive, Past Negative, Present Hedonistic, Present Fatalistic, and Future. Life satisfaction can also be evaluated in relation to different time frames. Moreover, approach related positive affect is associated to a different concept of well-being labeled psychological well-being. In the present study we extend previous findings by investigating the effect of time perspective on the time frame of evaluations of life satisfaction (past, present, future) and by investigating the relationship between time perspective and psychological well-being. Method. Questionnaires on time perspective (Zimbardo's Time Perspective Inventory), temporal life satisfaction (Temporal Satisfaction with Life Scale), affect (Positive Affect and Negative Affect Schedule), and psychological well-being (Scales of Psychological Well-Being-short version) were answered by 453 individuals. Two different structural equation models were tested, one of the relationship between time perspective and temporal life satisfaction, and the other of the relationship between time perspective, affect and psychological well-being. Results. Time perspective affected life satisfaction depending on the time scale on which it was evaluated-memory of a negative past influenced life satisfaction in all time frames, and a positive view of the past influenced both past and future life satisfaction. Moreover, less rumination about past negative events (i.e., low score on Past Negative), the tendency to take risks in the present to achieve happy feelings and/or avoid boredom (i.e., high scores on Present Hedonistic), and a less hopeless and pessimistic view about the present (low scores on Present Fatalistic) were associated with higher levels of psychological well-being and positive affect. These same time perspective dimensions were associated with lower levels of negative affect. The Future time perspective dimension (i.e., approaching life with self-control, punctuality, and planning for the future) was associated with both psychological well-being and positive affect. Conclusions. High levels of both subjective and psychological well-being are related to a happier and a less sinister past, a more hedonistic and less fatalistic present, as well as to a more structured future.

  16. A happier and less sinister past, a more hedonistic and less fatalistic present and a more structured future: time perspective and well-being

    PubMed Central

    Sailer, Uta; Rosenberg, Patricia; Nima, Ali Al; Gamble, Amelie; Gärling, Tommy; Archer, Trevor

    2014-01-01

    Background. Previous studies have established a link between how people relate to their past, present, and future (i.e., time perspective) and subjective well-being (i.e., life satisfaction, positive and negative affect). Time perspective comprises five dimensions: Past Positive, Past Negative, Present Hedonistic, Present Fatalistic, and Future. Life satisfaction can also be evaluated in relation to different time frames. Moreover, approach related positive affect is associated to a different concept of well-being labeled psychological well-being. In the present study we extend previous findings by investigating the effect of time perspective on the time frame of evaluations of life satisfaction (past, present, future) and by investigating the relationship between time perspective and psychological well-being. Method. Questionnaires on time perspective (Zimbardo’s Time Perspective Inventory), temporal life satisfaction (Temporal Satisfaction with Life Scale), affect (Positive Affect and Negative Affect Schedule), and psychological well-being (Scales of Psychological Well-Being—short version) were answered by 453 individuals. Two different structural equation models were tested, one of the relationship between time perspective and temporal life satisfaction, and the other of the relationship between time perspective, affect and psychological well-being. Results. Time perspective affected life satisfaction depending on the time scale on which it was evaluated—memory of a negative past influenced life satisfaction in all time frames, and a positive view of the past influenced both past and future life satisfaction. Moreover, less rumination about past negative events (i.e., low score on Past Negative), the tendency to take risks in the present to achieve happy feelings and/or avoid boredom (i.e., high scores on Present Hedonistic), and a less hopeless and pessimistic view about the present (low scores on Present Fatalistic) were associated with higher levels of psychological well-being and positive affect. These same time perspective dimensions were associated with lower levels of negative affect. The Future time perspective dimension (i.e., approaching life with self-control, punctuality, and planning for the future) was associated with both psychological well-being and positive affect. Conclusions. High levels of both subjective and psychological well-being are related to a happier and a less sinister past, a more hedonistic and less fatalistic present, as well as to a more structured future. PMID:24688878

  17. How Do Future Life Perspective and Present Action Work in Japanese Youth Development?

    ERIC Educational Resources Information Center

    Kawai, Toru; Moran, Seana

    2017-01-01

    "Future life perspective" and "present action," whose interaction affects how one's current activity affects later life, offer a critical crossroads for young adults in Japan as stable career paths have become more uncertain. Past generations benefited from stable institutional pathways, but recent generations must forge their…

  18. Eight Skills in Future Work

    ERIC Educational Resources Information Center

    Weng, Wenting

    2015-01-01

    This article elaborates eight skills in future work which are based on three main changes and are available to different domains of professions. The first change is an increasing technological world for the future. Technology becomes a part of human being's life and affects people's daily life. Mastering relevant competences is necessary to boost…

  19. Meteoritic Input of Amino Acids and Nucleobases: Methodology and Implications for the Origins of Life

    NASA Technical Reports Server (NTRS)

    Burton, Aaron S.; Stern, Jennifer C.; Elsila, Jamie E.; Glavin, Daniel P.; Dworkin, Jason P.

    2012-01-01

    The discoveries of amino acids of extraterrestrial origin in many meteorites over the last 40 years have revolutionized the Astrobiology field. A variety of non-terrestrial amino acids similar to those found in life on Earth have been detected in meteorites. A few amino acids have even been found with chiral excesses, suggesting that meteorites could have contributed to the origin of homochirality in life on Earth. In addition to amino acids, which have been productively studied for years, sugar-like molecules, activated phosphates, and nucleobases have also been determined to be indigenous to numerous meteorites. Because these molecules are essential for life as we know it, and meteorites have been delivering them to the Earth since accretion, it is plausible that the origin(s) of life on Earth were aided by extraterrestrially-synthesized molecules. Understanding the origins of life on Earth guides our search for life elsewhere, helping to answer the question of whether biology is unique to Earth. This tutorial review focuses on meteoritic amino acids and nucleobases, exploring modern analytical methods and possible formation mechanisms. We will also discuss the unique window that meteorites provide into the chemistry that preceded life on Earth, a chemical record we do not have access to on Earth due to geologic recycling of rocks and the pervasiveness of biology across the planet. Finally, we will address the future of meteorite research, including asteroid sample return mIssIons.

  20. Stealth life detection instruments aboard Curiosity

    NASA Astrophysics Data System (ADS)

    Levin, Gilbert V.

    2012-10-01

    NASA has often stated (e.g. MSL Science Corner1) that it's Mars Science Laboratory (MSL), "Curiosity," Mission to Mars carries no life detection experiments. This is in keeping with NASA's 36-year explicit ban on such, imposed immediately after the 1976 Viking Mission to Mars. The space agency attributes the ban to the "ambiguity" of that Mission's Labeled Release (LR) life detection experiment, fearing an adverse effect on the space program should a similar "inconclusive" result come from a new robotic quest. Yet, despite the NASA ban, this author, the Viking LR Experimenter, contends there are "stealth life detection instruments" aboard Curiosity. These are life detection instruments in the sense that they can free the Viking LR from the pall of ambiguity that has held it prisoner so long. Curiosity's stealth instruments are those seeking organic compounds, and the mission's high-resolution camera system. Results from any or all of these devices, coupled with the Viking LR data, can confirm the LR's life detection claim. In one possible scenario, Curiosity can, of itself, completely corroborate the finding of life on Mars. MSL has just successfully landed on Mars. Hopefully, its stealth confirmations of life will be reported shortly.

  1. Physiotherapy for human T-lymphotropic virus 1-associated myelopathy: review of the literature and future perspectives.

    PubMed

    Sá, Katia N; Macêdo, Maíra C; Andrade, Rosana P; Mendes, Selena D; Martins, José V; Baptista, Abrahão F

    2015-01-01

    Human T-lymphotropic virus 1 (HTLV-1) infection may be associated with damage to the spinal cord - HTLV-associated myelopathy/tropical spastic paraparesis - and other neurological symptoms that compromise everyday life activities. There is no cure for this disease, but recent evidence suggests that physiotherapy may help individuals with the infection, although, as far as we are aware, no systematic review has approached this topic. Therefore, the objective of this review is to address the core problems associated with HTLV-1 infection that can be detected and treated by physiotherapy, present the results of clinical trials, and discuss perspectives on the development of knowledge in this area. Major problems for individuals with HTLV-1 are pain, sensory-motor dysfunction, and urinary symptoms. All of these have high impact on quality of life, and recent clinical trials involving exercises, electrotherapeutic modalities, and massage have shown promising effects. Although not influencing the basic pathologic disturbances, a physiotherapeutic approach seems to be useful to detect specific problems related to body structures, activity, and participation related to movement in HTLV-1 infection, as well as to treat these conditions.

  2. Physiotherapy for human T-lymphotropic virus 1-associated myelopathy: review of the literature and future perspectives

    PubMed Central

    Sá, Katia N; Macêdo, Maíra C; Andrade, Rosana P; Mendes, Selena D; Martins, José V; Baptista, Abrahão F

    2015-01-01

    Human T-lymphotropic virus 1 (HTLV-1) infection may be associated with damage to the spinal cord – HTLV-associated myelopathy/tropical spastic paraparesis – and other neurological symptoms that compromise everyday life activities. There is no cure for this disease, but recent evidence suggests that physiotherapy may help individuals with the infection, although, as far as we are aware, no systematic review has approached this topic. Therefore, the objective of this review is to address the core problems associated with HTLV-1 infection that can be detected and treated by physiotherapy, present the results of clinical trials, and discuss perspectives on the development of knowledge in this area. Major problems for individuals with HTLV-1 are pain, sensory-motor dysfunction, and urinary symptoms. All of these have high impact on quality of life, and recent clinical trials involving exercises, electrotherapeutic modalities, and massage have shown promising effects. Although not influencing the basic pathologic disturbances, a physiotherapeutic approach seems to be useful to detect specific problems related to body structures, activity, and participation related to movement in HTLV-1 infection, as well as to treat these conditions. PMID:25759588

  3. NExSS/NAI Joint ExoPAG SAG 16 Report on Remote Biosignatures for Exoplanets

    NASA Technical Reports Server (NTRS)

    Kiang, Nancy Y.; Parenteau, Mary Nicole; Domagal-Goldman, Shawn

    2017-01-01

    Future exoplanet observations will soon focus on the search for life beyond the Solar System. Exoplanet biosignatures to be sought are those with global, potentially detectable, impacts on a planet. Biosignatures occur in an environmental context in which geological, atmospheric, and stellar processes and interactions may work to enhance, suppress or mimic these biosignatures. Thus biosignature scienceis inherently interdisciplinary. Its advance is necessary to inform the design of the next flagship missions that will obtain spectra of habitable extrasolar planets. The NExSS NAI Joint Exoplanet Biosignatures Workshop Without Walls brought together the astrobiology, exoplanet, and mission concept communities to review, discuss, debate, and advance the science of remote detection of planetary biosignatures. The multi-meeting workshop began in June 2016, and was a process that engaged a broad range of experts across the interdisciplinary reaches of NASA's Nexus for Exoplanet System Science (NExSS) program, the NASA Astrobiology Institute (NAI), NASAs Exoplanet Exploration Program (ExEP), and international partners, such as the European Astrobiology Network Association (EANA) and Japans Earth Life Science Institute (ELSI). These groups spanned expertise in astronomy, planetary science, Earth sciences, heliophysics, biology, instrument mission development, and engineering.

  4. Zebrafish as a possible bioindicator of organic pollutants with effects on reproduction in drinking waters.

    PubMed

    Martínez-Sales, M; García-Ximénez, F; Espinós, F J

    2015-07-01

    Organic contaminants can be detected at low concentrations in drinking water, raising concerns for human health, particularly in reproduction. In this respect, we attempted to use the zebrafish as a bioindicator to detect the possible presence of these substances in drinking water, aiming to define the most relevant parameters to detect these substances, which particularly affect the development and reproduction of zebrafish. To this end, batches of 30 embryos with the chorion intact were cultured in drinking waters from different sources, throughout their full life-cycle up to 5 months, in 20 L tanks. Six replicates were performed in all water groups, with a total of 24 aquariums. Two generations (F0 and F1) were studied and the following parameters were tested: in the F0 generation, survival and abnormality rates evaluated at 5 dpf (days post-fertilization) and at 5 mpf (months post-fertilization), the onset of spawning and the fertility rate from 3 mpf to 5 mpf, and the sex ratio and underdeveloped specimens at 5 mpf. Furthermore, in the F0 offspring (F1), survival and abnormality rates were evaluated at 5 dpf and the hatching rate at 72 hpf. These results revealed that the hatching rate is the most sensitive parameter to distinguish different levels of effects between waters during the early life stages, whereas the rate of underdeveloped specimens is more suitable at later life stages. Regarding adult reproduction, fertility rate was the most sensitive parameter. The possible reversibility or accumulative nature of such effects will be studied in future work. Copyright © 2015. Published by Elsevier B.V.

  5. An introductory study using impedance spectroscopy technique with polarizable microelectrode for amino acids characterization

    NASA Astrophysics Data System (ADS)

    Chin, K. B.; Chi, I.; Pasalic, J.; Huang, C.-K.; Barge, Laura M.

    2018-04-01

    Portable, low power, yet ultra-sensitive life detection instrumentations are vital to future astrobiology flight programs at NASA. In this study, initial attempts to characterize amino acids in an aqueous environment by electrochemical impedance spectroscopy (EIS) using polarizable (blocking) electrodes in order to establish a means of detection via their electrical properties. Seven amino acids were chosen due to their scientific importance in demonstrating sensitivity levels in the range of part per billion concentration. Albeit more challenging in real systems of analyst mixtures, we found individual amino acids in aqueous environment do exhibit some degree of chemical and physical uniqueness to warrant characterization by EIS. The polar amino acids (Asp, Glu, and His) exhibited higher electrochemical activity than the non-polar amino acids (Ala, Gly, Val, and Leu). The non-polar amino acids (Gly and Ala) also exhibited unique electrical properties which appeared to be more dependent on physical characteristics such as molecular weight and structure. At concentrations above 1 mM where the amino acids play a more dominant transport role within the water, the conductivity was found to be more sensitive to concentrations. At lower concentrations <1 mM, however, the polar amino acid solution conductivity remained constant, suggesting poor chemical activity with water. As revealed by equivalent circuit modeling, the relaxation times showed a 1-2 order of magnitude difference between polar and non-polar amino acids. The pseudo-capacitance from EIS measurements on sample mixtures containing salt water and individual amino acids revealed the possibility for improvement in amino acid selectivity using gold nanoporous surface enhanced electrodes. This work establishes important methodologies for characterizing amino acids using EIS combined with microscale electrodes, supporting the case for instrumentation development for life detection and origin of life programs.

  6. An introductory study using impedance spectroscopy technique with polarizable microelectrode for amino acids characterization.

    PubMed

    Chin, K B; Chi, I; Pasalic, J; Huang, C-K; Barge, Laura M

    2018-04-01

    Portable, low power, yet ultra-sensitive life detection instrumentations are vital to future astrobiology flight programs at NASA. In this study, initial attempts to characterize amino acids in an aqueous environment by electrochemical impedance spectroscopy (EIS) using polarizable (blocking) electrodes in order to establish a means of detection via their electrical properties. Seven amino acids were chosen due to their scientific importance in demonstrating sensitivity levels in the range of part per billion concentration. Albeit more challenging in real systems of analyst mixtures, we found individual amino acids in aqueous environment do exhibit some degree of chemical and physical uniqueness to warrant characterization by EIS. The polar amino acids (Asp, Glu, and His) exhibited higher electrochemical activity than the non-polar amino acids (Ala, Gly, Val, and Leu). The non-polar amino acids (Gly and Ala) also exhibited unique electrical properties which appeared to be more dependent on physical characteristics such as molecular weight and structure. At concentrations above 1 mM where the amino acids play a more dominant transport role within the water, the conductivity was found to be more sensitive to concentrations. At lower concentrations <1 mM, however, the polar amino acid solution conductivity remained constant, suggesting poor chemical activity with water. As revealed by equivalent circuit modeling, the relaxation times showed a 1-2 order of magnitude difference between polar and non-polar amino acids. The pseudo-capacitance from EIS measurements on sample mixtures containing salt water and individual amino acids revealed the possibility for improvement in amino acid selectivity using gold nanoporous surface enhanced electrodes. This work establishes important methodologies for characterizing amino acids using EIS combined with microscale electrodes, supporting the case for instrumentation development for life detection and origin of life programs.

  7. Beyond DNA Sequencing in Space: Current and Future Omics Capabilities of the Biomolecule Sequencer Payload

    NASA Technical Reports Server (NTRS)

    Wallace, Sarah

    2017-01-01

    Why do we need a DNA sequencer to support the human exploration of space? (A) Operational environmental monitoring; (1) Identification of contaminating microbes, (2) Infectious disease diagnosis, (3) Reduce down mass (sample return for environmental monitoring, crew health, etc.). (B) Research; (1) Human, (2) Animal, (3) Microbes/Cell lines, (4) Plant. (C) Med Ops; (1) Response to countermeasures, (2) Radiation, (3) Real-time analysis can influence medical intervention. (C) Support astrobiology science investigations; (1) Technology superiorly suited to in situ nucleic acid-based life detection, (2) Functional testing for integration into robotics for extraplanetary exploration mission.

  8. Terahertz imaging for early screening of diabetic foot syndrome: A proof of concept

    NASA Astrophysics Data System (ADS)

    Hernandez-Cardoso, G. G.; Rojas-Landeros, S. C.; Alfaro-Gomez, M.; Hernandez-Serrano, A. I.; Salas-Gutierrez, I.; Lemus-Bedolla, E.; Castillo-Guzman, A. R.; Lopez-Lemus, H. L.; Castro-Camus, E.

    2017-02-01

    Most people with diabetes suffer some deterioration of the feet. Diabetic foot syndrome causes ulceration in about 15% of cases and such deterioration leads to amputation in about 2.5% of diabetic patients, diminishing their quality of life and generating extraordinary costs for patients and public health systems. Currently, there is no objective method for the detection of diabetic foot syndrome in its early stages. We propose terahertz imaging as a method for the evaluation of such deterioration. This screening method could aid the prevention and medical treatment of this condition in the future.

  9. Swedish medical students' expectations of their future life

    PubMed Central

    Andersson, Jenny; Johansson, Eva E.; Verdonk, Petra; Lagro-Janssen, Antoine; Hamberg, Katarina

    2011-01-01

    Objectives: To investigate future life expectations among male and female medical students in their first and final year. Methods The study was cross-sectional and conducted at a Swedish medical school. Out of 600 invited students, 507 (85%) answered an open-ended question about their future life, 298 (59%) first-year students and 209 (41%) last-year students. Women constituted 60% of the respondents. A mixed model design was applied; qualitative content analysis was utilized to create statistically comparable themes and categories. Results Students’ written answers were coded, categorized and clustered into four themes: “Work”, “Family”, “Leisure” and “Quality of personal life”. Almost all students included aspects of work in their answers. Female students were more detailed than male ones in their family concerns. Almost a third of all students reflected on a future work-life balance, but considerations regarding quality of personal life and leisure were more common among last-year students. Conclusions Today’s medical students expect more of life than work, especially those standing on the doorstep of working life. They intend to balance work not only with a family but also with leisure activities. Our results reflect work attitudes that challenge the health care system for more adaptive working conditions. We suggest that discussions about work-life balance should be included in medical curricula.

  10. Introducing Life Events in Preschool Education: Future Educators' Attitudes and Perceptions

    ERIC Educational Resources Information Center

    Brouskeli, Vasiliki

    2014-01-01

    In this study, we aimed to clarify future preschool teachers' attitudes and perceptions about introducing life events, such as chronic illness, hospitalisation, divorce and death to their pupils. We used semi-structured interviews for two different groups who had and had not attended relative to life events courses. Results indicated that future…

  11. Initial Sample Analyses inside a Capsule: A Strategy of Life Detection and Planetary Protection for Ocean World Sample Return Missions

    NASA Astrophysics Data System (ADS)

    Yano, Hajime; Takano, Yoshinori; Sekine, Yasuhito; Takai, Ken; Funase, Ryu; Fujishima, Kosuke; Shibuya, Takazo

    2016-07-01

    Planetary protection is considered to be one of the most crucial challenges to enable sample return missions from "Ocean Worlds", internal oceans of icy satellites as potential deep habitat such as Enceladus and Europa, due to the risk of backward contamination of bringing back potential biology-related matters or at most, possible extraterrestrial living signatures to the Earth. Here we propose an innovative technological solution for both life detection and planetary protection of such returned samples, namely by conducting all major life signature searches, which are also a critical path of quarantine processes of planetary protection, inside the Earth return capsule, prior to open the canister and expose to the terrestrial environment. We plan to test the latest sample capture and recovery methods of preparing multiple aliquot chambers in the sample return capsule. Each aliquot chamber will trap, for instance, plume particles and ambient volatiles during the spacecraft flying through Enceladus plumes so that respective analyses can be performed focusing on volatiles and minerals (i.e., habitability for life), organics (i.e., ingredients for life), biosignatures (i.e., activity of life) and for archiving the samples for future investigations at the same time. In-situ analysis will be conducted under complete containment through an optical interface port that allows pre-installed fiber optic cables to perform non-contact measurements and capillary tubing for extraction/injection of gas and liquids through metal barriers to be punctuated inside a controlled environment. Once primary investigations are completed, the interior of the capsule will be sterilized by gamma rays and UV irradiation. Post-sterilized aliquot chambers will be further analyzed under enclosed and ultraclean environment at BAL 2-3 facilities, rather than BSL4. We consider that this is an unique solution that can cope with severe requirements set for the Category-V sample returns for astrobiology-driven missions.

  12. What shall I do now? State-dependent variations of life-history traits with aging in Wandering Albatrosses.

    PubMed

    Pardo, Deborah; Barbraud, Christophe; Weimerskirch, Henri

    2014-02-01

    Allocation decisions depend on an organism's condition which can change with age. Two opposite changes in life-history traits are predicted in the presence of senescence: either an increase in breeding performance in late age associated with terminal investment or a decrease due to either life-history trade-offs between current breeding and future survival or decreased efficiency at old age. Age variation in several life-history traits has been detected in a number of species, and demographic performances of individuals in a given year are influenced by their reproductive state the previous year. Few studies have, however, examined state-dependent variation in life-history traits with aging, and they focused mainly on a dichotomy of successful versus failed breeding and non-breeding birds. Using a 50-year dataset on the long-lived quasi-biennial breeding wandering albatross, we investigated variations in life-history traits with aging according to a gradient of states corresponding to potential costs of reproduction the previous year (in ascending order): non-breeding birds staying at sea or present at breeding grounds, breeding birds that failed early, late or were successful. We used multistate models to study survival and decompose reproduction into four components (probabilities of return, breeding, hatching, and fledging), while accounting for imperfect detection. Our results suggest the possible existence of two strategies in the population: strict biennial breeders that exhibited almost no reproductive senescence and quasi-biennial breeders that showed an increased breeding frequency with a strong and moderate senescence on hatching and fledging probabilities, respectively. The patterns observed on survival were contrary to our predictions, suggesting an influence of individual quality rather than trade-offs between reproduction and survival at late ages. This work represents a step further into understanding the evolutionary ecology of senescence and its relationship with costs of reproduction at the population level. It paves the way for individual-based studies that could show the importance of intra-population heterogeneity in those processes.

  13. [Qualitative analysis of topics related to the quality of life of people with disabilities].

    PubMed

    Cilleros, María Victoria Martín; Gómez, Maria Cruz Sánchez

    2016-08-01

    Quality of life is a concept that reflects the subjective perception of individuals in relation to their degree of satisfaction with their living conditions. It is a concept that involves putting the individual at the forefront, talking about the quality of the professionals involved and influencing the development of programs and the provision of services. The article reflects the opinions that different agents have in relation to disability on given topics related to the model of quality of life such as: the relationship between different agents; the necessary training of professionals in the field of health and/or disability; and the existence of the presence of the participation in society of people with disabilities. Using qualitative methodology, the arguments of the participants in these three issues are discussed. The verbiage, the conceptual map and the analysis of content, performed after the encoding of information, made it possible to detect the perceived needs and satisfaction with the care of the different services. The profile of the qualified professional within the scope of disability is outlined. Proposals for the future are contained in the conclusions, ensuring the improvement of the quality of life of people with disabilities.

  14. Comet/Asteroid Protection System (CAPS): Preliminary Space-Based Concept and Study Results

    NASA Technical Reports Server (NTRS)

    Mazanek, Daniel D.; Roithmayr, Carlos M.; Antol, Jeffrey; Park, Sang-Young; Koons, Robert H.; Bremer, James C.; Murphy, Douglas G.; Hoffman, James A.; Kumar, Renjith R.; Seywald, Hans

    2005-01-01

    There exists an infrequent, but significant hazard to life and property due to impacting asteroids and comets. There is currently no specific search for long-period comets, smaller near-Earth asteroids, or smaller short-period comets. These objects represent a threat with potentially little or no warning time using conventional ground-based telescopes. These planetary bodies also represent a significant resource for commercial exploitation, long-term sustained space exploration, and scientific research. The Comet/Asteroid Protection System (CAPS) is a future space-based system concept that provides permanent, continuous asteroid and comet monitoring, and rapid, controlled modification of the orbital trajectories of selected bodies. CAPS would expand the current detection effort to include long-period comets, as well as small asteroids and short-period comets capable of regional destruction. A space-based detection system, despite being more costly and complex than Earth-based initiatives, is the most promising way of expanding the range of detectable objects, and surveying the entire celestial sky on a regular basis. CAPS would provide an orbit modification system capable of diverting kilometer class objects, and modifying the orbits of smaller asteroids for impact defense and resource utilization. This Technical Memorandum provides a compilation of key related topics and analyses performed during the CAPS study, which was performed under the Revolutionary Aerospace Systems Concepts (RASC) program, and discusses technologies that could enable the implementation of this future system.

  15. Bed bug detection: Current technologies and future directions

    USDA-ARS?s Scientific Manuscript database

    This study evaluates current technologies used to detect bed bug infestations, and presents new information regarding the underlying chemical basis of canines scent detection. The manuscript also reports new and future devices that may play a part in bed bug detection in the future....

  16. Habitable worlds with no signs of life.

    PubMed

    Cockell, Charles S

    2014-04-28

    'Most habitable worlds in the cosmos will have no remotely detectable signs of life' is proposed as a biological hypothesis to be tested in the study of exoplanets. Habitable planets could be discovered elsewhere in the Universe, yet there are many hypothetical scenarios whereby the search for life on them could yield negative results. Scenarios for habitable worlds with no remotely detectable signatures of life include: planets that are habitable, but have no biosphere (Uninhabited Habitable Worlds); planets with life, but lacking any detectable surface signatures of that life (laboratory examples are provided); and planets with life, where the concentrations of atmospheric gases produced or removed by biota are impossible to disentangle from abiotic processes because of the lack of detailed knowledge of planetary conditions (the 'problem of exoplanet thermodynamic uncertainty'). A rejection of the hypothesis would require that the origin of life usually occurs on habitable planets, that spectrally detectable pigments and/or metabolisms that produce unequivocal biosignature gases (e.g. oxygenic photosynthesis) usually evolve and that the organisms that harbour them usually achieve a sufficient biomass to produce biosignatures detectable to alien astronomers.

  17. Abiotic ozone and oxygen in atmospheres similar to prebiotic Earth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Domagal-Goldman, Shawn D.; Segura, Antígona; Claire, Mark W.

    The search for life on planets outside our solar system will use spectroscopic identification of atmospheric biosignatures. The most robust remotely detectable potential biosignature is considered to be the detection of oxygen (O{sub 2}) or ozone (O{sub 3}) simultaneous to methane (CH{sub 4}) at levels indicating fluxes from the planetary surface in excess of those that could be produced abiotically. Here we use an altitude-dependent photochemical model with the enhanced lower boundary conditions necessary to carefully explore abiotic O{sub 2} and O{sub 3} production on lifeless planets with a wide variety of volcanic gas fluxes and stellar energy distributions. Onmore » some of these worlds, we predict limited O{sub 2} and O{sub 3} buildup, caused by fast chemical production of these gases. This results in detectable abiotic O{sub 3} and CH{sub 4} features in the UV-visible, but no detectable abiotic O{sub 2} features. Thus, simultaneous detection of O{sub 3} and CH{sub 4} by a UV-visible mission is not a strong biosignature without proper contextual information. Discrimination between biological and abiotic sources of O{sub 2} and O{sub 3} is possible through analysis of the stellar and atmospheric context—particularly redox state and O atom inventory—of the planet in question. Specifically, understanding the spectral characteristics of the star and obtaining a broad wavelength range for planetary spectra should allow more robust identification of false positives for life. This highlights the importance of wide spectral coverage for future exoplanet characterization missions. Specifically, discrimination between true and false positives may require spectral observations that extend into infrared wavelengths and provide contextual information on the planet's atmospheric chemistry.« less

  18. Habitability of the Paleo-Earth as a Model for Earth-like Exoplanets

    NASA Astrophysics Data System (ADS)

    Mendez, A.

    2013-05-01

    The Phanerozoic is the current eon of Earth's geological history, from 542 million years ago to today, when large and complex life started to populate the ocean and land areas. Our planet became more hospitable and life took the opportunity to evolve and spread globally, especially on land. This had an impact on surface and atmospheric bio-signatures. Future observations of exoplanets might be able to detect similar changes on nearby exoplanets. Therefore, the application of the evolution of terrestrial habitability might help to determine the potential for life on Earth-like exoplanets. Here we evaluated the habitability of Earth during the Phanerozoic as a model for comparison with future observations of Earth-like exoplanets. Vegetation was used as a global indicator of habitability because as a primary producer it provides the energy for many other simple to complex life forms in the trophic scale. Our first proxy for habitability was the Relative Vegetation Density (RVD) derived from our vegetation datasets of the Visible Paleo-Earth. The RVD is a measure similar to vegetation indices, such as the Normalized Difference Vegetation Index (NDVI), that gives a general idea of the global area-weighted fraction of vegetation cover. Our second habitability proxy was the Standard Primary Habitability (SPH) derived from mean global surface temperatures and relative humidity. The RVD is a more direct measure of the habitability of a planet but the SPH is easier to measure by remote sensors. Our analysis shows that terrestrial habitability has been greater than today for most of the Phanerozoic as demonstrated by both the RVD and SPH, with the Devonian and Cretaceous particularly more habitable. The RVD and SPH are generally correlated except around the Permian-Triassic, matching the P-Tr extinction. There has been a marked decrease in terrestrial habitability during the last 100 million years, even superseding the K-Pg extinction. Additional metrics were used to examine the habitability of Earth for more extended periods. The evolution of terrestrial habitability may be used to recognize and characterize similar features on future observations of Earth-like exoplanets. Habitability of Earth during the Phanerozoic as measured by two methods, the Relative Vegetation Density (RVD) and the Standard Primary Habitability (SPH). Future observations of exoplanets might provide estimates of the SPH that could be compared to Earth.

  19. Gas chromatography: Possible application of advanced instrumentation developed for solar system exploration to space station cabin atmospheres

    NASA Technical Reports Server (NTRS)

    Carle, G. C.

    1985-01-01

    Gas chromatography (GC) technology was developed for flight experiments in solar system exploration. The GC is a powerful analytical technique with simple devices separating individual components from complex mixtures to make very sensitive quantitative and qualitative measurements. It monitors samples containing mixtures of fixed gases and volatile organic molecules. The GC was used on the Viking mission in support of life detection experiments and on the Pioneer Venus Large Probe to determine the composition of the venusian atmosphere. A flight GC is under development to study the progress and extent of STS astronaut denitrogenation prior to extravehicular activity. Advanced flight GC concepts and systems for future solar system exploration are also studied. Studies include miniature ionization detectors and associated control systems capable of detecting from ppb up to 100% concentration levels. Further miniaturization is investigated using photolithography and controlled chemical etching in silicon wafers. Novel concepts such as ion mobility drift spectroscopy and multiplex gas chromatography are also developed for future flight experiments. These powerful analytical concepts and associated hardware are ideal for the monitoring of cabin atmospheres containing potentially dangerous volatile compounds.

  20. Near-infrared tunable laser diode spectroscopy: an easy way for gas sensing

    NASA Astrophysics Data System (ADS)

    Larive, Marc; Henriot, V.

    1997-05-01

    A gas sensor using optical spectrometry and dedicated to a specific gas is studied. It should be able to operate out of laboratories with a very long life and a low maintenance requirement. It is based on TLDS (tunable laser diode spectroscopy) and uses a standard Perot-Fabry laser diode already developed for telecommunications. The mode selection is realized by a passband filter and the wavelength tuning is performed via the diode temperature or its injection current. A PIN photodiode is used for detection, however a rough photoacoustic solution is intended for the future. Absorptions as low as 3.10-3 are detected with this rough system and a limit detection of 10-3 is available with a signal to noise ratio of unity. Experiments have shown that this system is strongly selective for the specified gas (currently the methane). A simulation has been performed which very well fits the experiment and allows us to extrapolate the performances of the system for other gases.

  1. A Diabetes Self-Management Prototype in an AAL-Environment to Detect Remarkable Health States.

    PubMed

    Schindelboeck, Denise; Praus, Friedrich; Gall, Walter

    2016-01-01

    Every year life span is increasing and simultaneously the proportion of people with one or more chronic diseases. This paper presents an implementation of a prototype with a decision tree to detect dangerous health conditions for Diabetes Type 1 and Diabetes Type 2. With the information we collect from Personal Health Devices and data from the Active-Assisted-Living environment, we are in the position to customize thresholds and to get individual results. With the help of a modified Glucose-Insulin Model (based on the minimal model of Stolwijk & Hardy) we predicted the future glucose concentration of the patient. We validated our model with an intention-to-treat pilot study including 8 subjects and obtained a significantly better (p < 2.2-16) result than the original model.

  2. MEMS-Based Micro Instruments for In-Situ Planetary Exploration

    NASA Technical Reports Server (NTRS)

    George, Thomas; Urgiles, Eduardo R; Toda, Risaku; Wilcox, Jaroslava Z.; Douglas, Susanne; Lee, C-S.; Son, Kyung-Ah; Miller, D.; Myung, N.; Madsen, L.; hide

    2005-01-01

    NASA's planetary exploration strategy is primarily targeted to the detection of extant or extinct signs of life. Thus, the agency is moving towards more in-situ landed missions as evidenced by the recent, successful demonstration of twin Mars Exploration Rovers. Also, future robotic exploration platforms are expected to evolve towards sophisticated analytical laboratories composed of multi-instrument suites. MEMS technology is very attractive for in-situ planetary exploration because of the promise of a diverse and capable set of advanced, low mass and low-power devices and instruments. At JPL, we are exploiting this diversity of MEMS for the development of a new class of miniaturized instruments for planetary exploration. In particular, two examples of this approach are the development of an Electron Luminescence X-ray Spectrometer (ELXS), and a Force-Detected Nuclear Magnetic Resonance (FDNMR) Spectrometer.

  3. Prospective associations between adolescent mental health problems and positive mental wellbeing in early old age.

    PubMed

    Nishida, Atsushi; Richards, Marcus; Stafford, Mai

    2016-01-01

    Mental health problems in adolescence are predictive of future mental distress and psychopathology; however, few studies investigated adolescent mental health problems in relation to future mental wellbeing and none with follow-up to older age. To test prospective associations between adolescent mental health problems and mental wellbeing and life satisfaction in early old age. A total of 1561 men and women were drawn from the Medical Research Council National Survey of Health and Development (the British 1946 birth cohort). Teachers had previously completed rating scales to assess emotional adjustment and behaviours, which allowed us to extract factors of mental health problems measuring self-organisation, behavioural problems, and emotional problems during adolescence. Between the ages of 60-64 years, mental wellbeing was assessed using the Warwick-Edinburgh Mental Well-being Scale (WEMWBS) and life satisfaction was self-reported using the Satisfaction with Life Scale (SWLS). After controlling for gender, social class of origin, childhood cognitive ability, and educational attainment, adolescent emotional problems were independently inversely associated with mental wellbeing and with life satisfaction. Symptoms of anxiety/depression at 60-64 years explained the association with life satisfaction but not with mental wellbeing. Associations between adolescent self-organisation and conduct problems and mental wellbeing and life satisfaction were of negligible magnitude, but higher childhood cognitive ability significantly predicted poor life satisfaction in early old age. Adolescent self-organisation and conduct problems may not be predictive of future mental wellbeing and life satisfaction. Adolescent emotional problems may be inversely associated with future wellbeing, and may be associated with lower levels of future life satisfaction through symptoms of anxiety/depression in early old age. Initiatives to prevent and treat emotional problems in adolescence may have long-term benefits which extend into older age.

  4. The common cold: potential for future prevention or cure.

    PubMed

    Passioti, Maria; Maggina, Paraskevi; Megremis, Spyridon; Papadopoulos, Nikolaos G

    2014-02-01

    The common cold is the most frequent, although generally mild, human disease. Human Rhinoviruses are the prevalent causative agents, but other viruses are also implicated. Being so common, viral colds, have significant implications on public health and quality of life, but may also be life-threatening for vulnerable groups of patients. Specific diagnosis and treatment of the common cold still remain unmet needs. Molecular diagnostic techniques allow specific detection of known pathogens as well as the identification of newly emerging viruses. Although a number of medications or natural treatments have been shown to have some effect, either on the number or on the severity of common colds, no single agent is considerably effective. Virus-specific management remains in most cases a challenging potential as many factors have to be taken into account, including the diversity of the viral genomes, the heterogeneity of affected individuals, as well as the complexity of this long standing host-virus relationship.

  5. Summary of Resources for the International Space Station Environmental Control and Life Support System For Core Complete Modules

    NASA Technical Reports Server (NTRS)

    Williams, David E.

    2004-01-01

    The Core Complete Environmental Control and Life Support (ECLS) System for the International Space Station (ISS) will consist of components and subsystems in both the United States (U.S.) and International Partner elements which together will perform the functions of Temperature and Humidity Control (THC), Atmosphere Control and Supply (ACS), Atmosphere Revitalization (AR), Water Recovery and Management (WRM), Fire Detection and Suppression (FDS), and Vacuum System (VS) for the station. Due to limited resources available on ISS, detailed attention is given to minimizing and tracking all resources associated with all systems, beginning with estimates during the hardware development phase through measured actuals when flight hardware is built and delivered. A summary of resources consumed by the addition of future U.S. ECLS system hardware to get to Core Complete is presented, including launch weight, average continuous and peak power loads, on-orbit volume and resupply logistics.

  6. Fiber Optic Sensors for Structural Health Monitoring of Air Platforms

    PubMed Central

    Guo, Honglei; Xiao, Gaozhi; Mrad, Nezih; Yao, Jianping

    2011-01-01

    Aircraft operators are faced with increasing requirements to extend the service life of air platforms beyond their designed life cycles, resulting in heavy maintenance and inspection burdens as well as economic pressure. Structural health monitoring (SHM) based on advanced sensor technology is potentially a cost-effective approach to meet operational requirements, and to reduce maintenance costs. Fiber optic sensor technology is being developed to provide existing and future aircrafts with SHM capability due to its unique superior characteristics. This review paper covers the aerospace SHM requirements and an overview of the fiber optic sensor technologies. In particular, fiber Bragg grating (FBG) sensor technology is evaluated as the most promising tool for load monitoring and damage detection, the two critical SHM aspects of air platforms. At last, recommendations on the implementation and integration of FBG sensors into an SHM system are provided. PMID:22163816

  7. Be-7 as a tracer for short-term soil surface changes - opportunities and limitations

    NASA Astrophysics Data System (ADS)

    Baumgart, Philipp

    2013-04-01

    Within the last 20 years the cosmogenic nuclide Beryllium-7 was successfully established as a suitable tracer element to detect soil surface changes with a high accuracy. Particularly soil erosion rates from single precipitation events are in the focus of different studies due to the short radioactive half-life of the Be-7 isotope. High sorption at topmost soil particles and immobility at given pH-values enable fine-scaled erosion modelling down to 2 mm increments. But some important challenging limitations require particular attention, starting from sampling up to the final data evaluation. E.g. these are the realisation of the fine increment soil collection, the limiting amount of measurable samples per campaign due to the short radioactive half-life and the specific requirements for the detector measurements. Both, the high potential and the challenging limitations are presented as well as future perspectives of that tracer method.

  8. Capillary Structures for Exploration Life Support (Capillary Structures)

    NASA Image and Video Library

    2017-07-10

    iss052e013081 (7/10/2017) --- The Capillary Structures for Exploration Life Support (Capillary Structures) investigation studies a new method using structures of specific shapes to manage fluid and gas mixtures. The investigation studies water recycling and carbon dioxide removal, benefiting future efforts to design lightweight, more reliable life support systems for future space missions.

  9. Young People's Life-Skills and the Future. Research Report Series.

    ERIC Educational Resources Information Center

    Powney, Janet; Lowden, Kevin; Hall, Stuart

    A study investigated what Scottish and English young people consider important life skills, how they believe they develop them, and how necessary they see them to their future lives. More than 200 16-21-year-olds examined photographs of events related to basic life tasks, family, close relationships, work or school and leisure activities and then…

  10. Protostellar and cometary detections of organohalogens

    NASA Astrophysics Data System (ADS)

    Fayolle, Edith C.; Öberg, Karin I.; Jørgensen, Jes K.; Altwegg, Kathrin; Calcutt, Hannah; Müller, Holger S. P.; Rubin, Martin; van der Wiel, Matthijs H. D.; Bjerkeli, Per; Bourke, Tyler L.; Coutens, Audrey; van Dishoeck, Ewine F.; Drozdovskaya, Maria N.; Garrod, Robin T.; Ligterink, Niels F. W.; Persson, Magnus V.; Wampfler, Susanne F.; Rosina Team

    2017-10-01

    Organohalogens, a class of molecules that contain at least one halogen atom bonded to carbon, are abundant on the Earth where they are mainly produced through industrial and biological processes1. Consequently, they have been proposed as biomarkers in the search for life on exoplanets2. Simple halogen hydrides have been detected in interstellar sources and in comets, but the presence and possible incorporation of more complex halogen-containing molecules such as organohalogens into planet-forming regions is uncertain3,4. Here we report the interstellar detection of two isotopologues of the organohalogen CH3Cl and put some constraints on CH3F in the gas surrounding the low-mass protostar IRAS 16293-2422, using the Atacama Large Millimeter/submillimeter Array (ALMA). We also find CH3Cl in the coma of comet 67P/Churyumov-Gerasimenko (67P/C-G) by using the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) instrument. The detections reveal an efficient pre-planetary formation pathway of organohalogens. Cometary impacts may deliver these species to young planets and should thus be included as a potential abiotical production source when interpreting future organohalogen detections in atmospheres of rocky planets.

  11. Revisiting QRS detection methodologies for portable, wearable, battery-operated, and wireless ECG systems.

    PubMed

    Elgendi, Mohamed; Eskofier, Björn; Dokos, Socrates; Abbott, Derek

    2014-01-01

    Cardiovascular diseases are the number one cause of death worldwide. Currently, portable battery-operated systems such as mobile phones with wireless ECG sensors have the potential to be used in continuous cardiac function assessment that can be easily integrated into daily life. These portable point-of-care diagnostic systems can therefore help unveil and treat cardiovascular diseases. The basis for ECG analysis is a robust detection of the prominent QRS complex, as well as other ECG signal characteristics. However, it is not clear from the literature which ECG analysis algorithms are suited for an implementation on a mobile device. We investigate current QRS detection algorithms based on three assessment criteria: 1) robustness to noise, 2) parameter choice, and 3) numerical efficiency, in order to target a universal fast-robust detector. Furthermore, existing QRS detection algorithms may provide an acceptable solution only on small segments of ECG signals, within a certain amplitude range, or amid particular types of arrhythmia and/or noise. These issues are discussed in the context of a comparison with the most conventional algorithms, followed by future recommendations for developing reliable QRS detection schemes suitable for implementation on battery-operated mobile devices.

  12. A review of damage detection methods for wind turbine blades

    NASA Astrophysics Data System (ADS)

    Li, Dongsheng; Ho, Siu-Chun M.; Song, Gangbing; Ren, Liang; Li, Hongnan

    2015-03-01

    Wind energy is one of the most important renewable energy sources and many countries are predicted to increase wind energy portion of their whole national energy supply to about twenty percent in the next decade. One potential obstacle in the use of wind turbines to harvest wind energy is the maintenance of the wind turbine blades. The blades are a crucial and costly part of a wind turbine and over their service life can suffer from factors such as material degradation and fatigue, which can limit their effectiveness and safety. Thus, the ability to detect damage in wind turbine blades is of great significance for planning maintenance and continued operation of the wind turbine. This paper presents a review of recent research and development in the field of damage detection for wind turbine blades. Specifically, this paper reviews frequently employed sensors including fiber optic and piezoelectric sensors, and four promising damage detection methods, namely, transmittance function, wave propagation, impedance and vibration based methods. As a note towards the future development trend for wind turbine sensing systems, the necessity for wireless sensing and energy harvesting is briefly presented. Finally, existing problems and promising research efforts for online damage detection of turbine blades are discussed.

  13. Revisiting QRS Detection Methodologies for Portable, Wearable, Battery-Operated, and Wireless ECG Systems

    PubMed Central

    Elgendi, Mohamed; Eskofier, Björn; Dokos, Socrates; Abbott, Derek

    2014-01-01

    Cardiovascular diseases are the number one cause of death worldwide. Currently, portable battery-operated systems such as mobile phones with wireless ECG sensors have the potential to be used in continuous cardiac function assessment that can be easily integrated into daily life. These portable point-of-care diagnostic systems can therefore help unveil and treat cardiovascular diseases. The basis for ECG analysis is a robust detection of the prominent QRS complex, as well as other ECG signal characteristics. However, it is not clear from the literature which ECG analysis algorithms are suited for an implementation on a mobile device. We investigate current QRS detection algorithms based on three assessment criteria: 1) robustness to noise, 2) parameter choice, and 3) numerical efficiency, in order to target a universal fast-robust detector. Furthermore, existing QRS detection algorithms may provide an acceptable solution only on small segments of ECG signals, within a certain amplitude range, or amid particular types of arrhythmia and/or noise. These issues are discussed in the context of a comparison with the most conventional algorithms, followed by future recommendations for developing reliable QRS detection schemes suitable for implementation on battery-operated mobile devices. PMID:24409290

  14. Possibilities for the detection of microbial life on extrasolar planets.

    PubMed

    Knacke, Roger F

    2003-01-01

    We consider possibilities for the remote detection of microbial life on extrasolar planets. The Darwin/Terrestrial Planet Finder (TPF) telescope concepts for observations of terrestrial planets focus on indirect searches for life through the detection of atmospheric gases related to life processes. Direct detection of extraterrestrial life may also be possible through well-designed searches for microbial life forms. Satellites in Earth orbit routinely monitor colonies of terrestrial algae in oceans and lakes by analysis of reflected ocean light in the visible region of the spectrum. These remote sensing techniques suggest strategies for extrasolar searches for signatures of chlorophylls and related photosynthetic compounds associated with life. However, identification of such life-related compounds on extrasolar planets would require observations through strong, interfering absorptions and scattering radiances from the remote atmospheres and landmasses. Techniques for removal of interfering radiances have been extensively developed for remote sensing from Earth orbit. Comparable techniques would have to be developed for extrasolar planet observations also, but doing so would be challenging for a remote planet. Darwin/TPF coronagraph concepts operating in the visible seem to be best suited for searches for extrasolar microbial life forms with instruments that can be projected for the 2010-2020 decades, although resolution and signal-to-noise ratio constraints severely limit detection possibilities on terrestrial-type planets. The generation of telescopes with large apertures and extremely high spatial resolutions that will follow Darwin/TPF could offer striking possibilities for the direct detection of extrasolar microbial life.

  15. Planning for Future Care and the End of Life: A Qualitative Analysis of Gay, Lesbian, and Heterosexual Couples.

    PubMed

    Thomeer, Mieke Beth; Donnelly, Rachel; Reczek, Corinne; Umberson, Debra

    2017-12-01

    Two key components of end-of-life planning are (1) informal discussions about future care and other end-of-life preferences and (2) formal planning via living wills and other legal documents. We leverage previous work on the institutional aspects of marriage and on sexual-minority discrimination to theorize why and how heterosexual, gay, and lesbian married couples engage in informal and formal end-of-life planning. We analyze qualitative dyadic in-depth interviews with 45 midlife gay, lesbian, and heterosexual married couples ( N = 90 spouses). Findings suggest that same-sex spouses devote considerable attention to informal planning conversations and formal end-of-life plans, while heterosexual spouses report minimal formal or informal planning. The primary reasons same-sex spouses give for making end-of-life preparations are related to the absence of legal protections and concerns about discrimination from families. These findings raise questions about future end-of-life planning for same- and different-sex couples given a rapidly shifting legal and social landscape.

  16. Defining the Scope of Prognosis: Primary Care Clinicians' Perspectives on Predicting the Future Health of Older Adults.

    PubMed

    Thomas, John M; Fried, Terri R

    2018-05-01

    Studies examining the attitudes of clinicians toward prognostication for older adults have focused on life expectancy prediction. Little is known about whether clinicians approach prognostication in other ways. To describe how clinicians approach prognostication for older adults, defined broadly as making projections about patients' future health. In five focus groups, 30 primary care clinicians from community-based, academic-affiliated, and Veterans Affairs primary care practices were given open-ended questions about how they make projections about their patients' future health and how this informs the approach to care. Content analysis was used to organize responses into themes. Clinicians spoke about future health in terms of a variety of health outcomes in addition to life expectancy, including independence in activities and decision making, quality of life, avoiding hospitalization, and symptom burden. They described approaches in predicting these health outcomes, including making observations about the overall trajectory of patients to predict health outcomes and recognizing increased risk for adverse health outcomes. Clinicians expressed reservations about using estimates of mortality risk and life expectancy to think about and communicate patients' future health. They discussed ways in which future research might help them in thinking about and discussing patients' future health to guide care decisions, including identifying when and whether interventions might impact future health. The perspectives of primary care clinicians in this study confirm that prognostic considerations can go beyond precise estimates of mortality risk and life expectancy to include a number of outcomes and approaches to predicting those outcomes. Published by Elsevier Inc.

  17. The Quality-of-Life (QOL) Research Movement: Past, Present, and Future

    ERIC Educational Resources Information Center

    Sirgy, M. Joseph; Michalos, Alex C.; Ferriss, Abbott L.; Easterlin, Richard A.; Pavot, William; Patrick, Donald

    2006-01-01

    The purpose of this paper is to trace the history of the social indicators or quality-of-life (QOL) research movement up to today, forecast future developments, and pave the way for future growth. Broadly speaking, we tried to review historical antecedents from the point of view of different disciplines, with specialists in each discipline…

  18. Understanding prebiotic chemistry through the analysis of extraterrestrial amino acids and nucleobases in meteorites.

    PubMed

    Burton, Aaron S; Stern, Jennifer C; Elsila, Jamie E; Glavin, Daniel P; Dworkin, Jason P

    2012-08-21

    The discoveries of amino acids of extraterrestrial origin in many meteorites over the last 50 years have revolutionized the Astrobiology field. A variety of non-terrestrial amino acids similar to those found in life on Earth have been detected in meteorites. A few amino acids have even been found with chiral excesses, suggesting that meteorites could have contributed to the origin of homochirality in life on Earth. In addition to amino acids, which have been productively studied for years, sugar-like molecules, activated phosphates, and nucleobases have also been determined to be indigenous to numerous meteorites. Because these molecules are essential for life as we know it, and meteorites have been delivering them to the Earth since accretion, it is plausible that the origin(s) of life on Earth were aided by extraterrestrially-synthesized molecules. Understanding the origins of life on Earth guides our search for life elsewhere, helping to answer the question of whether biology is unique to Earth. This tutorial review focuses on meteoritic amino acids and nucleobases, exploring modern analytical methods and possible formation mechanisms. We will also discuss the unique window that meteorites provide into the chemistry that preceded life on Earth, a chemical record we do not have access to on Earth due to geologic recycling of rocks and the pervasiveness of biology across the planet. Finally, we will address the future of meteorite research, including asteroid sample return missions.

  19. [Current recommendations for basic/advanced life support : Addressing unanswered questions and future prospects].

    PubMed

    Fink, K; Schmid, B; Busch, H-J

    2016-11-01

    The revised guidelines for cardiopulmonary resuscitation were implemented by the European Resuscitation Council (ERC) in October 2015. There were few changes concerning basic and advanced life support; however, some issues were clarified compared to the ERC recommendations from 2010. The present paper summarizes the procedures of basic and advanced life support according to the current guidelines and highlights the updates of 2015. Furthermore, the article depicts future prospects of cardiopulmonary resuscitation that may improve outcome of patients after cardiac arrest in the future.

  20. Predictors of future anabolic androgenic steroid use.

    PubMed

    Wichstrøm, Lars

    2006-09-01

    To prospectively study the stability of anabolic androgenic steroid (AAS) use and predictors of AAS use, and to investigate whether AAS use alters the risk of later emotional and behavioral problems. Survey of a national sample of Norwegian high school students (age 15-19) in 1994 followed up in 1999 (N = 2924). Measures of frequent alcohol intoxication (50+ times per 12 months), cannabis use (12 months), hard drug use (12 months), being offered cannabis, eating problems, conduct problems, sexual debut before age 15, BMI, involvement in power sports, perceived physical appearance, and satisfaction with body parts were obtained. Life-time prevalence of AAS use were 1.9 and 0.8% in the follow-up period. Multivariate logistic regression revealed that future AAS use was predicted by young age, male gender, previous AAS use, involvement in power sports, and frequent alcohol intoxication. AAS use did not predict future emotional or behavioral problems other than reducing the risk of future frequent alcohol intoxication. Frequent alcohol intoxication and involvement in power sports appear to predict future AAS use. At the population level there was little stability in individual AAS use from adolescence to early adulthood. No detrimental effects of AAS use could be detected in this study, but low statistical power limits this conclusion.

  1. "Hoping to see the future I prefer": an element of life-world for older women living alone.

    PubMed

    Porter, Eileen J; Oyesanya, Tolu O; Johnson, Kathy A

    2013-01-01

    We interact with Dorcy's earlier work in Advances in Nursing Science on hope, noting that scholars have emphasized hope in suffering rather than exploring hoping in everyday life. We did a secondary analysis of 4 descriptive phenomenological studies with older women (N = 81, aged 75-98). Findings included a 4-level taxonomy of life-world. Four future-related subelements (such as, having a future I cannot see, down the road) intersected with the element hoping to see the future I prefer. Five of its subelements were common across the sample, including hoping that I do not get to that point. Findings have implications for expanding scholarship pertaining to hoping.

  2. Standoff Time-Resolved Laser-Based Spectroscopy Tools for Sample Characterization and Biosignature Detection

    NASA Astrophysics Data System (ADS)

    Gasda, P. J.; Acosta-Maeda, T.; Lucey, P. G.; Misra, A. K.; Sharma, S. K.; Taylor, J.

    2014-12-01

    The NASA Mars2020 rover will be searching for signs of past habitability and past life on Mars. Additionally, the rover mission will prepare a cache of highly significant samples for a future sample return mission. NASA requires these samples to be well characterized; the instruments on the rover must be capable of fine-scale in situ mineralogical or elemental analysis with emphasis on biosignature detection or characterization. We have been developing multiple standoff laser-based instruments at the University of Hawaii, Manoa that are capable of fine-scale in situ chemical analysis and biosignatures detection. By employing a time-resolved spectroscopy, we can perform elemental analysis with Laser-Induced Breakdown Spectroscopy (LIBS), mineral and organic analysis with Raman spectroscopy, and biosignature detection with Laser-Induced Fluorescence (LIF). Each of these techniques share the same optics and detection equipment, allowing us to integrate them into a single, compact instrument. High time-resolution (~100 ns/pulse) is the key to this instrument; with it, the detector only records data when the signal is the brightest. Spectra can be taken during the day, LIBS can be measured without a plasma light background, and the Raman signal can be separated from the mineral fluorescence signal. Since bio-organics have very short fluorescence lifetimes, the new instrument can be used to unambiguously detect bio-organics. The prototype uses a low power (0.5 mJ/pulse) 532 nm laser with a detection limit of < 30 ppm of organics in a sample of Antarctica Dry Valley soil measured from 8 m. Another LIF instrument under development in our lab, called the Biofinder, takes advantage of the extremely intense fluorescence signal produced by organics by using a wide laser spot and a camera to produce LIF images of wide area (25 cm area from 2 m distance with 2 mm/pixel resolution). The Biofinder can quickly assess the area around the rover (at 10 frames/s) by imaging sample cores, drill holes, or outcrops, and then allow the slower but more precise instruments on the rover to characterize the regions of interest. Either of these prototypes would be ideally suited for future NASA missions, including human exploration missions. The next iterations of the instruments will be designed specifically for future astronaut explorers.

  3. Controlling a human-computer interface system with a novel classification method that uses electrooculography signals.

    PubMed

    Wu, Shang-Lin; Liao, Lun-De; Lu, Shao-Wei; Jiang, Wei-Ling; Chen, Shi-An; Lin, Chin-Teng

    2013-08-01

    Electrooculography (EOG) signals can be used to control human-computer interface (HCI) systems, if properly classified. The ability to measure and process these signals may help HCI users to overcome many of the physical limitations and inconveniences in daily life. However, there are currently no effective multidirectional classification methods for monitoring eye movements. Here, we describe a classification method used in a wireless EOG-based HCI device for detecting eye movements in eight directions. This device includes wireless EOG signal acquisition components, wet electrodes and an EOG signal classification algorithm. The EOG classification algorithm is based on extracting features from the electrical signals corresponding to eight directions of eye movement (up, down, left, right, up-left, down-left, up-right, and down-right) and blinking. The recognition and processing of these eight different features were achieved in real-life conditions, demonstrating that this device can reliably measure the features of EOG signals. This system and its classification procedure provide an effective method for identifying eye movements. Additionally, it may be applied to study eye functions in real-life conditions in the near future.

  4. Characterizing Exoplanet Habitability with Emission Spectroscopy

    NASA Astrophysics Data System (ADS)

    Robinson, Tyler

    2018-01-01

    Results from NASA’s Kepler mission and other recent exoplanet surveys have demonstrated that potentially habitable exoplanets are relatively common, especially in the case of low-mass stellar hosts. The next key question that must be addressed for such planets is whether or not these worlds are actually habitable, implying they could sustain surface liquid water. Only through investigations of the potential habitability of exoplanets and through searches for biosignatures from these planets will we be able to understand if the emergence of life is a common phenomenon in our galaxy. Emission spectroscopy for transiting exoplanets (sometimes called secondary eclipse spectroscopy) is a powerful technique that future missions will use to study the atmospheres and surfaces of worlds orbiting in the habitable zones of nearby, low-mass stars. Emission observations that span the mid-infrared wavelength range for potentially habitable exoplanets provide opportunities to detect key habitability and life signatures, and also allow observers to probe atmospheric and surface temperatures. This presentation will outline the case for using emission spectroscopy to understand if an exoplanet can sustain surface liquid water, which is believed to be a critical precursor to the origin of life.

  5. Life in the sabkha: Raman spectroscopy of halotrophic extremophiles of relevance to planetary exploration.

    PubMed

    Edwards, Howell G M; Mohsin, Mahmood A; Sadooni, Fadhil N; Nik Hassan, Nik F; Munshi, Tasnim

    2006-05-01

    The Raman spectroscopic biosignatures of halotrophic cyanobacterial extremophiles from sabkha evaporitic saltpans are reported for the first time and ideas about the possible survival strategies in operation have been forthcoming. The biochemicals produced by the cyanobacteria which colonise the interfaces between large plates of clear selenitic gypsum, halite, and dolomitized calcium carbonates in the centre of the salt pans are identifiably different from those which are produced by benthic cyanobacterial mats colonising the surface of the salt pan edges in the intertidal zone. The prediction that similar geological formations would have been present on early Mars and which could now be underlying the highly peroxidised regolith on the surface of the planet has been confirmed by recent satellite observations from Mars orbit and by localised traverses by robotic surface rovers. The successful adoption of miniaturised Raman spectroscopic instrumentation as part of a scientific package for detection of extant life or biomolecular traces of extinct life on proposed future Mars missions will depend critically on interpretation of data from terrestrial Mars analogues such as sabkhas, of which the current study is an example.

  6. Artificial intelligence in healthcare: past, present and future.

    PubMed

    Jiang, Fei; Jiang, Yong; Zhi, Hui; Dong, Yi; Li, Hao; Ma, Sufeng; Wang, Yilong; Dong, Qiang; Shen, Haipeng; Wang, Yongjun

    2017-12-01

    Artificial intelligence (AI) aims to mimic human cognitive functions. It is bringing a paradigm shift to healthcare, powered by increasing availability of healthcare data and rapid progress of analytics techniques. We survey the current status of AI applications in healthcare and discuss its future. AI can be applied to various types of healthcare data (structured and unstructured). Popular AI techniques include machine learning methods for structured data, such as the classical support vector machine and neural network, and the modern deep learning, as well as natural language processing for unstructured data. Major disease areas that use AI tools include cancer, neurology and cardiology. We then review in more details the AI applications in stroke, in the three major areas of early detection and diagnosis, treatment, as well as outcome prediction and prognosis evaluation. We conclude with discussion about pioneer AI systems, such as IBM Watson, and hurdles for real-life deployment of AI.

  7. Classification of Ion Mobility Data Using the Neural Network Approach

    NASA Technical Reports Server (NTRS)

    Duong, T. A.; Kanik, I.

    2005-01-01

    Determination of atmospheric and surface elemental and molecular composition of various solar system bodies is essential to the development of a firm understanding of the origin and evolution of the solar system. Furthermore, such data is needed to address the intriguing question of whether or not life exists or once existed elsewhere in the Solar System. As such, these measurements are among the primary scientific goals of NASA s current and future planetary missions. In recent years, significant progress toward both miniaturization and field portability of in situ analytical separation and detection devices have been made with future planetary explorations in mind. However, despite all these advances, accurate in situ identification of atmospheric and surface compounds remains a big challenge. In response to that we are developing various hardware and software tools which would enable us to uniquely identify species of interest in a complex chemical environment.

  8. Extracting organic matter on Mars: A comparison of methods involving subcritical water, surfactant solutions and organic solvents

    NASA Astrophysics Data System (ADS)

    Luong, Duy; Court, Richard W.; Sims, Mark R.; Cullen, David C.; Sephton, Mark A.

    2014-09-01

    The first step in many life detection protocols on Mars involves attempts to extract or isolate organic matter from its mineral matrix. A number of extraction options are available and include heat and solvent assisted methods. Recent operations on Mars indicate that heating samples can cause the loss or obfuscation of organic signals from target materials, raising the importance of solvent-based systems for future missions. Several solvent types are available (e.g. organic solvents, surfactant based solvents and subcritical water extraction) but a comparison of their efficiencies in Mars relevant materials is missing. We have spiked the well characterised Mars analogue material JSC Mars-1 with a number of representative organic standards. Extraction of the spiked JSC Mars-1 with the three solvent methods provides insights into the relative efficiency of these methods and indicates how they may be used on future Mars missions.

  9. Artificial intelligence in healthcare: past, present and future

    PubMed Central

    Jiang, Fei; Jiang, Yong; Zhi, Hui; Dong, Yi; Li, Hao; Ma, Sufeng; Wang, Yilong; Dong, Qiang; Shen, Haipeng; Wang, Yongjun

    2017-01-01

    Artificial intelligence (AI) aims to mimic human cognitive functions. It is bringing a paradigm shift to healthcare, powered by increasing availability of healthcare data and rapid progress of analytics techniques. We survey the current status of AI applications in healthcare and discuss its future. AI can be applied to various types of healthcare data (structured and unstructured). Popular AI techniques include machine learning methods for structured data, such as the classical support vector machine and neural network, and the modern deep learning, as well as natural language processing for unstructured data. Major disease areas that use AI tools include cancer, neurology and cardiology. We then review in more details the AI applications in stroke, in the three major areas of early detection and diagnosis, treatment, as well as outcome prediction and prognosis evaluation. We conclude with discussion about pioneer AI systems, such as IBM Watson, and hurdles for real-life deployment of AI. PMID:29507784

  10. Ten years of the international review meetings on Communication with Extraterrestrial Intelligence /CETI/

    NASA Technical Reports Server (NTRS)

    Pesek, R.; Billingham, J.

    1981-01-01

    The development of ideas on CETI within the international community over the past five years is reviewed, and the outlook for future CETI activities is discussed. The growth of review sessions on CETI held annually by the International Academy of Astronautics (IAA) is considered, with particular attention given to the issue of radio frequency allocation for the search for extraterrestrial intelligence. CETI activities outside the IAA are then examined, including the Viking search for life on Mars, Project Orion for the detection of extrasolar planetary systems, SETI programs undertaken in the U.S. and Soviet Union, and the development of multispectral spectrum analyzers and signal processors. The expected future development of CETI strategies, techniques and instrumentation as well as popular and scientific interest in SETI are discussed, and it is noted that the IAA sessions remain the only regular international forum for the exchange of data on all aspects of CETI.

  11. Purification, biochemical characterization, and implications of an alkali-tolerant catalase from the spacecraft-associated and oxidation-resistant Acinetobacter gyllenbergii 2P01AA.

    PubMed

    Muster, N; Derecho, I; Dallal, F; Alvarez, R; McCoy, K B; Mogul, R

    2015-04-01

    Herein, we report on the purification, characterization, and sequencing of catalase from Acinetobacter gyllenbergii 2P01AA, an extremely oxidation-resistant bacterium that was isolated from the Mars Phoenix spacecraft assembly facility. The Acinetobacter are dominant members of the microbial communities that inhabit spacecraft assembly facilities and consequently may serve as forward contaminants that could impact the integrity of future life-detection missions. Catalase was purified by using a 3-step chromatographic procedure, where mass spectrometry provided respective subunit and intact masses of 57.8 and 234.6 kDa, which were consistent with a small-subunit tetrameric catalase. Kinetics revealed an extreme pH stability with no loss in activity between pH 5 and 11.5 and provided respective kcat/Km and kcat values of ∼10(7) s(-1) M(-1) and 10(6) s(-1), which are among the highest reported for bacterial catalases. The amino acid sequence was deduced by in-depth peptide mapping, and structural homology suggested that the catalases from differing strains of A. gyllenbergii differ only at residues near the subunit interfaces, which may impact catalytic stability. Together, the kinetic, alkali-tolerant, and halotolerant properties of the catalase from A. gyllenbergii 2P01AA are significant, as they are consistent with molecular adaptations toward the alkaline, low-humidity, and potentially oxidizing conditions of spacecraft assembly facilities. Therefore, these results support the hypothesis that the selective pressures of the assembly facilities impact the microbial communities at the molecular level, which may have broad implications for future life-detection missions.

  12. Capillary Structures for Exploration Life Support (Capillary Structures)

    NASA Image and Video Library

    2017-07-10

    iss052e013146 (July 10, 2017) --- Astronaut Jack Fischer is photographed during setup of hardware for the Capillary Structures for Exploration Life Support (Capillary Structures) two sorbent demonstrations. The Capillary Structures for Exploration Life Support (Capillary Structures) investigation studies a new method using structures of specific shapes to manage fluid and gas mixtures. The investigation studies water recycling and carbon dioxide removal, benefiting future efforts to design lightweight, more reliable life support systems for future space missions.

  13. Getting What You Expect? Future Self-Views Predict the Valence of Life Events

    ERIC Educational Resources Information Center

    Voss, Peggy; Kornadt, Anna E.; Rothermund, Klaus

    2017-01-01

    Views on aging have been shown to predict the occurrence of events related to physical health in previous studies. Extending these findings, we investigated the relation between aging-related future self-views and life events in a longitudinal study across a range of different life domains. Participants (N = 593, age range 30-80 years at…

  14. 76 FR 47596 - Notice of Scientific Summit; The Science of Compassion-Future Directions in End-of-Life and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-05

    ...; The Science of Compassion--Future Directions in End-of-Life and Palliative Care SUMMARY: Notice is... science at the end-of-life. On August 11-12, the summit will feature keynote presentations, three plenary...), Department of Health and Human Services, will convene a scientific summit titled ``The Science of Compassion...

  15. Types of Meaningfulness of Life and Values of Future Teachers

    ERIC Educational Resources Information Center

    Salikhova, Nailia R.

    2016-01-01

    The leading role of meaning of life in regulation of human's activity of all types provides the relevance of the research. The goal of the paper is to identify and describe types of meaningfulness of life in future teachers, and to reveal the specificity of values hierarchy indicative of each type. The leading approach applied in the research was…

  16. Habitable worlds with no signs of life

    PubMed Central

    Cockell, Charles S.

    2014-01-01

    ‘Most habitable worlds in the cosmos will have no remotely detectable signs of life’ is proposed as a biological hypothesis to be tested in the study of exoplanets. Habitable planets could be discovered elsewhere in the Universe, yet there are many hypothetical scenarios whereby the search for life on them could yield negative results. Scenarios for habitable worlds with no remotely detectable signatures of life include: planets that are habitable, but have no biosphere (Uninhabited Habitable Worlds); planets with life, but lacking any detectable surface signatures of that life (laboratory examples are provided); and planets with life, where the concentrations of atmospheric gases produced or removed by biota are impossible to disentangle from abiotic processes because of the lack of detailed knowledge of planetary conditions (the ‘problem of exoplanet thermodynamic uncertainty’). A rejection of the hypothesis would require that the origin of life usually occurs on habitable planets, that spectrally detectable pigments and/or metabolisms that produce unequivocal biosignature gases (e.g. oxygenic photosynthesis) usually evolve and that the organisms that harbour them usually achieve a sufficient biomass to produce biosignatures detectable to alien astronomers. PMID:24664917

  17. A Field-Based Cleaning Protocol for Sampling Devices Used in Life-Detection Studies

    NASA Astrophysics Data System (ADS)

    Eigenbrode, Jennifer; Benning, Liane G.; Maule, Jake; Wainwright, Norm; Steele, Andrew; Amundsen, Hans E. F.

    2009-06-01

    Analytical approaches to extant and extinct life detection involve molecular detection often at trace levels. Thus, removal of biological materials and other organic molecules from the surfaces of devices used for sampling is essential for ascertaining meaningful results. Organic decontamination to levels consistent with null values on life-detection instruments is particularly challenging at remote field locations where Mars analog field investigations are carried out. Here, we present a seven-step, multi-reagent decontamination method that can be applied to sampling devices while in the field. In situ lipopolysaccharide detection via low-level endotoxin assays and molecular detection via gas chromatography-mass spectrometry were used to test the effectiveness of the decontamination protocol for sampling of glacial ice with a coring device and for sampling of sediments with a rover scoop during deployment at Arctic Mars-analog sites in Svalbard, Norway. Our results indicate that the protocols and detection technique sufficiently remove and detect low levels of molecular constituents necessary for life-detection tests.

  18. A field-based cleaning protocol for sampling devices used in life-detection studies.

    PubMed

    Eigenbrode, Jennifer; Benning, Liane G; Maule, Jake; Wainwright, Norm; Steele, Andrew; Amundsen, Hans E F

    2009-06-01

    Analytical approaches to extant and extinct life detection involve molecular detection often at trace levels. Thus, removal of biological materials and other organic molecules from the surfaces of devices used for sampling is essential for ascertaining meaningful results. Organic decontamination to levels consistent with null values on life-detection instruments is particularly challenging at remote field locations where Mars analog field investigations are carried out. Here, we present a seven-step, multi-reagent decontamination method that can be applied to sampling devices while in the field. In situ lipopolysaccharide detection via low-level endotoxin assays and molecular detection via gas chromatography-mass spectrometry were used to test the effectiveness of the decontamination protocol for sampling of glacial ice with a coring device and for sampling of sediments with a rover scoop during deployment at Arctic Mars-analog sites in Svalbard, Norway. Our results indicate that the protocols and detection technique sufficiently remove and detect low levels of molecular constituents necessary for life-detection tests.

  19. End-of-life decisions in Dutch neonatal intensive care units.

    PubMed

    Verhagen, A A Eduard; Dorscheidt, Jozef H H M; Engels, Bernadette; Hubben, Joep H; Sauer, Pieter J

    2009-10-01

    To clarify the practice of end-of-life decision making in severely ill newborns. Retrospective descriptive study with face-to-face interviews. The 10 neonatal intensive care units in the Netherlands from October 2005 to September 2006. All 367 newborn infants who died in the first 2 months of life in Dutch neonatal intensive care units. Adequate documentation was available in 359 deaths. Presence of end-of-life decisions, classification of deaths in 3 groups, and physicians' considerations leading to end-of-life decisions. An end-of-life decision preceded death in 95% of cases, and in 5% treatment was continued until death. Of all of the deaths, 58% were classified as having no chance of survival and 42% were stabilized newborns with poor prognoses. Withdrawal of life-sustaining therapy was the main mode of death in both groups. One case of deliberate ending of life was found. In 92% of newborns with poor prognoses, end-of-life decisions were based on patients' future quality of life and mainly concerned future suffering. Considerations regarding the infant's present state were made in 44% of infants. Virtually all deaths in Dutch neonatal intensive care units are preceded by the decision to withdraw life-sustaining treatment and many decisions are based on future quality of life. The decision to deliberately end the life of a newborn may occur less frequently than was previously assumed.

  20. The Detection of Extraterrestrial Life: Are We Ready?

    NASA Astrophysics Data System (ADS)

    Capova, Klara Anna

    This chapter offers a sociocultural perspective on the scientific search for life beyond Earth. It sheds light on the ways in which alien life is imagined and theorized in order to assess the possible societal response to the detection of other life. This chapter is based on the findings of research conducted over two years in the UK, which conceptualizes the extraterrestrial life hypothesis as a significant part of the general worldview, constantly shaped by the work and discoveries of science. Based on these data, the chapter offers insights into the current Western concepts of other life as understood, perceived, and interpreted by the scientific community and popular culture. The post-detection scenarios currently discussed deal mostly with a profound cultural shock following discovery of a superior extraterrestrial civilization. In contrast, the most recent scientific quest for other life now operates with a distinctly different concept of extraterrestrial life that ushers in other possible reactions to a detection or a contact. To establish current concepts of other life then seems to be crucial for predicting the societal response to a first contact. The chapter presents an overview of multiple conceptions of other life in science and science fiction to outline the potential variety of responses. The aim of this chapter is to suggest that the societal readiness and overall acceptance of the other life hypothesis needs to be taken into account and that the actual response to the discovery of other life will be determined by the actual form or type of life detected. This chapter will present examples from science fiction and other ethnographic material collected during fieldwork to demonstrate how popular culture has adapted the other life idea and how the presupposed other life is perceived.

  1. The Theory of Everything and the future of life

    NASA Astrophysics Data System (ADS)

    Karthik, Trishank

    2004-10-01

    This paper is a philosophical essay on metaphysics, in which we develop a justification for Algorithmic Communication with Extraterrestrial Intelligence by considering the relationship between the Theory of Everything and the future of life or physical eschatology.

  2. Early-Life Obesity Prevention: Critique of Intervention Trials During the First One Thousand Days.

    PubMed

    Reilly, John J; Martin, Anne; Hughes, Adrienne R

    2017-06-01

    To critique the evidence from recent and ongoing obesity prevention interventions in the first 1000 days in order to identify evidence gaps and weaknesses, and to make suggestions for more informative future intervention trials. Completed and ongoing intervention trials have had fairly modest effects, have been limited largely to high-income countries, and have used relatively short-term interventions and outcomes. Comparison of the evidence from completed prevention trials with the evidence from systematic reviews of behavioral risk factors shows that some life-course stages have been neglected (pre-conception and toddlerhood), and that interventions have neglected to target some important behavioral risk factors (maternal smoking during pregnancy, infant and child sleep). Finally, while obesity prevention interventions aim to modify body composition, few intervention trials have used body composition measures as outcomes, and this has limited their sensitivity to detect intervention effects. The new WHO Healthy Lifestyles Trajectory (HeLTI) initiative should address some of these weaknesses. Future early obesity prevention trials should be much more ambitious. They should, ideally: extend their interventions over the first 1000 days; have longer-term (childhood) outcomes, and improved outcome measures (body composition measures in addition to proxies for body composition such as the BMI for age); have greater emphasis on maternal smoking and child sleep; be global.

  3. Development of Solid-State Nanopore Technology for Life Detection

    NASA Technical Reports Server (NTRS)

    Bywaters, K. B.; Schmidt, H.; Vercoutere, W.; Deamer, D.; Hawkins, A. R.; Quinn, R. C.; Burton, A. S.; Mckay, C. P.

    2017-01-01

    Biomarkers for life on Earth are an important starting point to guide the search for life elsewhere. However, the search for life beyond Earth should incorporate technologies capable of recognizing an array of potential biomarkers beyond what we see on Earth, in order to minimize the risk of false negatives from life detection missions. With this in mind, charged linear polymers may be a universal signature for life, due to their ability to store information while also inherently reducing the tendency of complex tertiary structure formation that significantly inhibit replication. Thus, these molecules are attractive targets for biosignature detection as potential "self-sustaining chemical signatures." Examples of charged linear polymers, or polyelectrolytes, include deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) as well as synthetic polyelectrolytes that could potentially support life, including threose nucleic acid (TNA) and other xenonucleic acids (XNAs). Nanopore analysis is a novel technology that has been developed for singlemolecule sequencing with exquisite single nucleotide resolution which is also well-suited for analysis of polyelectrolyte molecules. Nanopore analysis has the ability to detect repeating sequences of electrical charges in organic linear polymers, and it is not molecule- specific (i.e. it is not restricted to only DNA or RNA). In this sense, it is a better life detection technique than approaches that are based on specific molecules, such as the polymerase chain reaction (PCR), which requires that the molecule being detected be composed of DNA.

  4. The Development of Future Orientation is Associated with Faster Decline in Hopelessness during Adolescence.

    PubMed

    Mac Giollabhui, Naoise; Nielsen, Johanna; Seidman, Sam; Olino, Thomas M; Abramson, Lyn Y; Alloy, Lauren B

    2018-01-05

    Hopelessness is implicated in multiple psychological disorders. Little is known, however, about the trajectory of hopelessness during adolescence or how emergent future orientation may influence its trajectory. Parallel process latent growth curve modelling tested whether (i) trajectories of future orientation and hopelessness and (ii) within-individual change in future orientation and hopelessness were related. The study was comprised of 472 adolescents [52% female, 47% Caucasian, 47% received free lunch] recruited at ages 12-13 who completed measures of future orientation and hopelessness at five annual assessments. The results indicate that a general decline in hopelessness across adolescence occurs quicker for those experiencing faster development of future orientation, when controlling for age, sex, low socio-economic status in addition to stressful life events in childhood and adolescence. Stressful childhood life events were associated with worse future orientation at baseline and negative life events experienced during adolescence were associated with both an increase in the trajectory of hopelessness as well as a decrease in the trajectory of future orientation. This study provides compelling evidence that the development of future orientation during adolescence is associated with a faster decline in hopelessness.

  5. Future perspective and healthy lifestyle choices in adulthood.

    PubMed

    Tasdemir-Ozdes, Aylin; Strickland-Hughes, Carla M; Bluck, Susan; Ebner, Natalie C

    2016-09-01

    Regardless of age, making healthy lifestyle choices is prudent. Despite that, individuals of all ages sometimes have difficulty choosing the healthy option. We argue that individuals' view of the future and position in the life span affects their current lifestyle choices. We capture the multidimensionality of future thinking by assessing 3 types of future perspective. Younger and older men and women (N = 127) reported global future time perspective, future health perspective, and perceived importance of future health-related events. They also rated their likelihood of making healthy lifestyle choices. As predicted, older participants indicated greater intention to make healthy choices in their current life than did younger participants. Compared to younger participants, older participants reported shorter global future time perspective and anticipated worse future health but perceived future health-related events as more important. Having a positive view of one's future health and seeing future health-related events as important were related to greater intention to make healthy lifestyle choices, but greater global future time perspective was not directly related to healthy choices. However, follow-up analyses suggested that greater global future time perspective indirectly affected healthy choices via a more positive view of future health. None of these relations were moderated by age. Individuals' perspective on the future is shown to be an important multidimensional construct affecting everyday healthy lifestyle choices for both younger and older adults. Implications for encouraging healthy choices across the adult life span are discussed. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  6. Structural health management of aerospace hotspots under fatigue loading

    NASA Astrophysics Data System (ADS)

    Soni, Sunilkumar

    Sustainability and life-cycle assessments of aerospace systems, such as aircraft structures and propulsion systems, represent growing challenges in engineering. Hence, there has been an increasing demand in using structural health monitoring (SHM) techniques for continuous monitoring of these systems in an effort to improve safety and reduce maintenance costs. The current research is part of an ongoing multidisciplinary effort to develop a robust SHM framework resulting in improved models for damage-state awareness and life prediction, and enhancing capability of future aircraft systems. Lug joints, a typical structural hotspot, were chosen as the test article for the current study. The thesis focuses on integrated SHM techniques for damage detection and characterization in lug joints. Piezoelectric wafer sensors (PZTs) are used to generate guided Lamb waves as they can be easily used for onboard applications. Sensor placement in certain regions of a structural component is not feasible due to the inaccessibility of the area to be monitored. Therefore, a virtual sensing concept is introduced to acquire sensor data from finite element (FE) models. A full three dimensional FE analysis of lug joints with piezoelectric transducers, accounting for piezoelectrical-mechanical coupling, was performed in Abaqus and the sensor signals were simulated. These modeled sensors are called virtual sensors. A combination of real data from PZTs and virtual sensing data from FE analysis is used to monitor and detect fatigue damage in aluminum lug joints. Experiments were conducted on lug joints under fatigue loads and sensor signals collected were used to validate the simulated sensor response. An optimal sensor placement methodology for lug joints is developed based on a detection theory framework to maximize the detection rate and minimize the false alarm rate. The placement technique is such that the sensor features can be directly correlated to damage. The technique accounts for a number of factors, such as actuation frequency and strength, minimum damage size, damage detection scheme, material damping, signal to noise ratio and sensing radius. Advanced information processing methodologies are discussed for damage diagnosis. A new, instantaneous approach for damage detection, localization and quantification is proposed for applications to practical problems associated with changes in reference states under different environmental and operational conditions. Such an approach improves feature extraction for state awareness, resulting in robust life prediction capabilities.

  7. Identification of microbial pigments in evaporitic matrices using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Vítek, Petr; Jehlička, Jan; Edwards, Howell G. M.; Wierzchos, Jacek

    2010-05-01

    An evaporitic environment is considered as one of the possible habitats for life on Mars. From terrestrial geological scenarios we know that microorganisms inhabiting such an extreme environment (halophiles) are rich in protective pigments, depending on the metabolic pathways and specific adaptation to the harsh environmental conditions. Carotenoids typically occur within the cells of halophiles (bacteria, archaea as well as eukaryotic algae) in large amounts as part of their photosystem and protective adaptation to high doses of UV radiation that are typical for most recent evaporitic environments. Chlorophyll occurs in halophilic cyanobacteria together with carotenoids and possibly other pigments which are synthetised in response to the high UV radiation insolation. Here we present the results of Raman spectroscopic investigations of a) beta-carotene in experimentally prepared mixtures with halite, gypsum and epsomite; and b) cyanobacterial colonies inhabiting real halite and gypsum matrices in the Atacama Desert. Our results demonstrate the possibility of detection of beta-carotene - a typical carotenoid - in relatively low concentrations within the evaporitic powdered mixtures; the lowest concentration of carotenoid signal detected was 0,1 mg kg-1, which represents 100 ppb. Raman spectroscopic analyses of natural specimens (endolithic cyanobacteria) from the Atacama desert revealed the presence of scytonemin, an extremely efficient UV protective pigment, carotenoids of various types and chlorophyll. The detection potential as well as limitations of Raman spectroscopy as a part of a payload within future robotic space missions focused on the search for life on Mars is discussed.

  8. Feasibility of Functional Near-Infrared Spectroscopy (fNIRS) to Investigate the Mirror Neuron System: An Experimental Study in a Real-Life Situation

    PubMed Central

    Sun, Pei-Pei; Tan, Fu-Lun; Zhang, Zong; Jiang, Yi-Han; Zhao, Yang; Zhu, Chao-Zhe

    2018-01-01

    The mirror neuron system (MNS), mainly including the premotor cortex (PMC), inferior frontal gyrus (IFG), superior parietal lobule (SPL), and rostral inferior parietal lobule (IPL), has attracted extensive attention as a possible neural mechanism of social interaction. Owing to high ecological validity, functional near-infrared spectroscopy (fNIRS) has become an ideal approach for exploring the MNS. Unfortunately, for the feasibility of fNIRS to detect the MNS, none of the four dominant regions were found in previous studies, implying a very limited capacity of fNIRS to investigate the MNS. Here, we adopted an experimental paradigm in a real-life situation to evaluate whether the MNS activity, including four dominant regions, can be detected by using fNIRS. Specifically, 30 right-handed subjects were asked to complete a table-setting task that included action execution and action observation. A double density probe configuration covered the four regions of the MNS in the left hemisphere. We used a traditional channel-based group analysis and also a ROI-based group analysis to find which regions are activated during both action execution and action observation. The results showed that the IFG, adjacent PMC, SPL, and IPL were involved in both conditions, indicating the feasibility of fNIRS to detect the MNS. Our findings provide a foundation for future research to explore the functional role of the MNS in social interaction and various disorders using fNIRS. PMID:29556185

  9. Detection of Apoptosis in Early Life Stages as a Tool to Evaluate Chemical Control of Invasive Species

    DTIC Science & Technology

    2007-08-01

    ERDC/TN ANSRP-07-2 August 2007 Detection of Apoptosis in Early Life Stages as a Tool to Evaluate Chemical Control of Invasive Species by J...4. TITLE AND SUBTITLE Detection of Apoptosis in Early Life Stages as a Tool to Evaluate Chemical Control of Invasive Species 5a. CONTRACT NUMBER 5b...heralding apoptosis . Data analysis. An apoptotic index (API) was established by calculating the percentage of embryos in each life stage with

  10. Development of a remote vital signs sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ladd, M.D.; Pacheco, M.S.; Rivas, R.R.

    1997-06-01

    This paper describes the work at Sandia National Laboratories to develop sensors that remotely detect unique life-form characteristics, such as breathing patterns or heartbeat patterns. This paper will address the Technical Support Working Group`s (TSWG) objective: to develop a remote vital signs detector which can be used to assess someone`s malevolent intent. The basic concept of operations for the projects, system development issues, and the preliminary results for a radar device currently in-house and the implications for implementation are described. A survey that identified the in-house technology currently being evaluated is reviewed, as well as ideas for other potential technologiesmore » to explore. A radar unit for breathing and heartbeat detection is being tested, and the applicability of infrared technology is being explored. The desire for rapid prototyping is driving the need for off-the-shelf technology. As a conclusion, current status and future directions of the effort are reviewed.« less

  11. Graphene-based nanoprobes for molecular diagnostics.

    PubMed

    Chen, Shixing; Li, Fuwu; Fan, Chunhai; Song, Shiping

    2015-10-07

    In recent years, graphene has received widespread attention owing to its extraordinary electrical, chemical, optical, mechanical and structural properties. Lately, considerable interest has been focused on exploring the potential applications of graphene in life sciences, particularly in disease-related molecular diagnostics. In particular, the coupling of functional molecules with graphene as a nanoprobe offers an excellent platform to realize the detection of biomarkers, such as nucleic acids, proteins and other bioactive molecules, with high performance. This article reviews emerging graphene-based nanoprobes in electrical, optical and other assay methods and their application in various strategies of molecular diagnostics. In particular, this review focuses on the construction of graphene-based nanoprobes and their special advantages for the detection of various bioactive molecules. Properties of graphene-based materials and their functionalization are also comprehensively discussed in view of the development of nanoprobes. Finally, future challenges and perspectives of graphene-based nanoprobes are discussed.

  12. A Method for Choosing the Best Samples for Mars Sample Return

    PubMed Central

    Gordon, Peter R.

    2018-01-01

    Abstract Success of a future Mars Sample Return mission will depend on the correct choice of samples. Pyrolysis-FTIR can be employed as a triage instrument for Mars Sample Return. The technique can thermally dissociate minerals and organic matter for detection. Identification of certain mineral types can determine the habitability of the depositional environment, past or present, while detection of organic matter may suggest past or present habitation. In Mars' history, the Theiikian era represents an attractive target for life search missions and the acquisition of samples. The acidic and increasingly dry Theiikian may have been habitable and followed a lengthy neutral and wet period in Mars' history during which life could have originated and proliferated to achieve relatively abundant levels of biomass with a wide distribution. Moreover, the sulfate minerals produced in the Theiikian are also known to be good preservers of organic matter. We have used pyrolysis-FTIR and samples from a Mars analog ferrous acid stream with a thriving ecosystem to test the triage concept. Pyrolysis-FTIR identified those samples with the greatest probability of habitability and habitation. A three-tier scoring system was developed based on the detection of (i) organic signals, (ii) carbon dioxide and water, and (iii) sulfur dioxide. The presence of each component was given a score of A, B, or C depending on whether the substance had been detected, tentatively detected, or not detected, respectively. Single-step (for greatest possible sensitivity) or multistep (for more diagnostic data) pyrolysis-FTIR methods informed the assignments. The system allowed the highest-priority samples to be categorized as AAA (or A*AA if the organic signal was complex), while the lowest-priority samples could be categorized as CCC. Our methods provide a mechanism with which to rank samples and identify those that should take the highest priority for return to Earth during a Mars Sample Return mission. Key Words: Mars—Astrobiology—Search for Mars' organics—Infrared spectroscopy—Planetary habitability and biosignatures. Astrobiology 18, 556–570. PMID:29443541

  13. A Method for Choosing the Best Samples for Mars Sample Return.

    PubMed

    Gordon, Peter R; Sephton, Mark A

    2018-05-01

    Success of a future Mars Sample Return mission will depend on the correct choice of samples. Pyrolysis-FTIR can be employed as a triage instrument for Mars Sample Return. The technique can thermally dissociate minerals and organic matter for detection. Identification of certain mineral types can determine the habitability of the depositional environment, past or present, while detection of organic matter may suggest past or present habitation. In Mars' history, the Theiikian era represents an attractive target for life search missions and the acquisition of samples. The acidic and increasingly dry Theiikian may have been habitable and followed a lengthy neutral and wet period in Mars' history during which life could have originated and proliferated to achieve relatively abundant levels of biomass with a wide distribution. Moreover, the sulfate minerals produced in the Theiikian are also known to be good preservers of organic matter. We have used pyrolysis-FTIR and samples from a Mars analog ferrous acid stream with a thriving ecosystem to test the triage concept. Pyrolysis-FTIR identified those samples with the greatest probability of habitability and habitation. A three-tier scoring system was developed based on the detection of (i) organic signals, (ii) carbon dioxide and water, and (iii) sulfur dioxide. The presence of each component was given a score of A, B, or C depending on whether the substance had been detected, tentatively detected, or not detected, respectively. Single-step (for greatest possible sensitivity) or multistep (for more diagnostic data) pyrolysis-FTIR methods informed the assignments. The system allowed the highest-priority samples to be categorized as AAA (or A*AA if the organic signal was complex), while the lowest-priority samples could be categorized as CCC. Our methods provide a mechanism with which to rank samples and identify those that should take the highest priority for return to Earth during a Mars Sample Return mission. Key Words: Mars-Astrobiology-Search for Mars' organics-Infrared spectroscopy-Planetary habitability and biosignatures. Astrobiology 18, 556-570.

  14. Spouses' reflections on implantable cardioverter defibrillator treatment with focus on the future and the end-of-life: a qualitative content analysis.

    PubMed

    Fluur, Christina; Bolse, Kärstin; Strömberg, Anna; Thylén, Ingela

    2014-08-01

    To explore future reflections of spouses living with an implantable cardioverter defibrillator recipient with focus on the end-of-life phase in an anticipated palliative phase. A history of or risk for life-threatening arrhythmias may require an implantable cardioverter defibrillator. Despite the life-saving capacity of the device, eventually life will come to an end. As discussion about preferences of shock therapy at end-of-life phase seldom takes place in advance, the implantable cardioverter defibrillator recipients may face defibrillating shocks in the final weeks of their lives, adding to stress and anxiety in patients and their families. Qualitative study with in-depth interviews analysed with a content analysis. Interviews were performed with 18 spouses of medically stable implantable cardioverter defibrillator recipients during 2011-2012. The spouses described how they dealt with changes in life and an uncertain future following the implantable cardioverter defibrillator implantation. Six subcategories conceptualized the spouses' concerns: Aspiring for involvement; Managing an altered relationship; Being attentive to warning signs; Worries for deterioration in the partner's health; Waiting for the defibrillating shock; and Death is veiled in silence. Despite the partner's serious state of health; terminal illness or death and the role of the device was seldom discussed with healthcare professionals or the implantable cardioverter defibrillator recipient. Open and honest communication was requested as important to support coping with an unpredictable life situation and to reduce worries and uncertainty about the future and end-of-life. © 2013 John Wiley & Sons Ltd.

  15. Neutrinos from colliding wind binaries: future prospects for PINGU and ORCA

    NASA Astrophysics Data System (ADS)

    Becker Tjus, J.

    2014-05-01

    Massive stars play an important role in explaining the cosmic ray spectrum below the knee, possibly even up to the ankle, i.e. up to energies of 1015 or 1018.5 eV, respectively. In particular, Supernova Remnants are discussed as one of the main candidates to explain the cosmic ray spectrum. Even before their violent deaths, during the stars' regular life times, cosmic rays can be accelerated in wind environments. High-energy gamma-ray measurements indicate hadronic acceleration binary systems, leading to both periodic gamma-ray emission from binaries like LSI + 60 303 and continuous emission from colliding wind environments like η-Carinae. The detection of neutrinos and photons from hadronic interactions are one of the most promising methods to identify particle acceleration sites. In this paper, future prospects to detect neutrinos from colliding wind environments in massive stars are investigated. In particular, the seven most promising candidates for emission from colliding wind binaries are investigated to provide an estimate of the signal strength. The expected signal of a single source is about a factor of 5-10 below the current IceCube sensitivity and it is therefore not accessible at the moment. What is discussed in addition is future the possibility to measure low-energy neutrino sources with detectors like PINGU and ORCA: the minimum of the atmospheric neutrino flux at around 25 GeV from neutrino oscillations provides an opportunity to reduce the background and increase the significance to searches for GeV-TeV neutrino sources. This paper presents the first idea, detailed studies including the detector's effective areas will be necessary in the future to test the feasibility of such an approach.

  16. Robotic Astrobiology: Searching for Life with Rovers

    NASA Astrophysics Data System (ADS)

    Cabrol, N. A.; Wettergreen, D. S.; Team, L.

    2006-05-01

    The Life In The Atacama (LITA) project has developed and field tested a long-range, solar-powered, automated rover platform (Zoe) and a science payload assembled to search for microbial life in the Atacama desert. Life is hardly detectable over most of the extent of the driest desert on Earth. Its geological, climatic, and biological evolution provides a unique training ground for designing and testing exploration strategies and life detection methods for the robotic search for life on Mars. LITA opens the path to a new generation of rover missions that will transition from the current study of habitability (MER) to the upcoming search for, and study of, habitats and life on Mars. Zoe's science payload reflects this transition by combining complementary elements, some directed towards the remote sensing of the environment (geology, morphology, mineralogy, weather/climate) for the detection of conditions favorable to microbial habitats and oases along survey traverses, others directed toward the in situ detection of life' signatures (biological and physical, such as biological constructs and patterns). New exploration strategies specifically adapted to the search for microbial life were designed and successfully tested in the Atacama between 2003-2005. They required the development and implementation in the field of new technological capabilities, including navigation beyond the horizon, obstacle avoidance, and "science-on-the-fly" (automated detection of targets of science value), and that of new rover planning tools in the remote science operation center.

  17. Understanding future emissions from low-carbon power systems by integration of life-cycle assessment and integrated energy modelling

    NASA Astrophysics Data System (ADS)

    Pehl, Michaja; Arvesen, Anders; Humpenöder, Florian; Popp, Alexander; Hertwich, Edgar G.; Luderer, Gunnar

    2017-12-01

    Both fossil-fuel and non-fossil-fuel power technologies induce life-cycle greenhouse gas emissions, mainly due to their embodied energy requirements for construction and operation, and upstream CH4 emissions. Here, we integrate prospective life-cycle assessment with global integrated energy-economy-land-use-climate modelling to explore life-cycle emissions of future low-carbon power supply systems and implications for technology choice. Future per-unit life-cycle emissions differ substantially across technologies. For a climate protection scenario, we project life-cycle emissions from fossil fuel carbon capture and sequestration plants of 78-110 gCO2eq kWh-1, compared with 3.5-12 gCO2eq kWh-1 for nuclear, wind and solar power for 2050. Life-cycle emissions from hydropower and bioenergy are substantial (˜100 gCO2eq kWh-1), but highly uncertain. We find that cumulative emissions attributable to upscaling low-carbon power other than hydropower are small compared with direct sectoral fossil fuel emissions and the total carbon budget. Fully considering life-cycle greenhouse gas emissions has only modest effects on the scale and structure of power production in cost-optimal mitigation scenarios.

  18. Future prospects for space life sciences from a NASA perspective

    NASA Technical Reports Server (NTRS)

    White, Ronald J.; Lujan, Barbara F.

    1989-01-01

    Plans for future NASA research programs in the life sciences are reviewed. Consideration is given to international cooperation in space life science research, the NASA approach to funding life science research, and research opportunities using the Space Shuttle, the Space Station, and Biological Satellites. Several specific programs are described, including the Centrifuge Project to provide a controlled acceleration environment for microgravity studies, the Rhesus Project to conduct biomedical research using rhesus monkeys, and the LifeSat international biosatellite project. Also, the Space Biology Initiative to design and develop life sciences laboratory facilities for the Space Shuttle and the Space Station and the Extended Duration Crew Operations program to study crew adaptation needs are discussed.

  19. The fertility quality of life (FertiQoL) tool: development and general psychometric properties†

    PubMed Central

    Boivin, Jacky; Takefman, Janet; Braverman, Andrea

    2011-01-01

    BACKGROUND To develop the first international instrument to measure fertility quality of life (FertiQoL) in men and women experiencing fertility problems, to evaluate the preliminary psychometric properties of this new tool and to translate FertiQoL into multiple languages. METHOD We conducted a survey, both online and in fertility clinics in USA, Australia/New Zealand, Canada and UK. A total of 1414 people with fertility problems participated. The main outcome measure was the FertiQoL tool. RESULTS FertiQoL consists of 36 items that assess core (24 items) and treatment-related quality of life (QoL) (10 items) and overall life and physical health (2 items). Cronbach reliability statistics for the Core and Treatment FertiQoL (and subscales) were satisfactory and in the range of 0.72 and 0.92. Sensitivity analyses showed that FertiQoL detected expected relations between QoL and gender, parity and support-seeking. FertiQoL was translated into 20 languages by the same translation team with each translation verified by local bilingual fertility experts. CONCLUSIONS FertiQoL is a reliable measure of the impact of fertility problems and its treatment on QoL. Future research should establish its use in cross-cultural research and clinical work. PMID:21665875

  20. Insights into the extremotolerance of Acinetobacter radioresistens 50v1, a gram-negative bacterium isolated from the Mars Odyssey spacecraft.

    PubMed

    McCoy, K B; Derecho, I; Wong, T; Tran, H M; Huynh, T D; La Duc, M T; Venkateswaran, K; Mogul, R

    2012-09-01

    The microbiology of the spacecraft assembly process is of paramount importance to planetary exploration, as the biological contamination that can result from remote-enabled spacecraft carries the potential to impact both life-detection experiments and extraterrestrial evolution. Accordingly, insights into the mechanisms and range of extremotolerance of Acinetobacter radioresistens 50v1, a Gram-negative bacterium isolated from the surface of the preflight Mars Odyssey orbiter, were gained by using a combination of microbiological, enzymatic, and proteomic methods. In summary, A. radioresistens 50v1 displayed a remarkable range of survival against hydrogen peroxide and the sequential exposures of desiccation, vapor and plasma phase hydrogen peroxide, and ultraviolet irradiation. The survival is among the highest reported for non-spore-forming and Gram-negative bacteria and is based upon contributions from the enzyme-based degradation of H(2)O(2) (catalase and alkyl hydroperoxide reductase), energy management (ATP synthase and alcohol dehydrogenase), and modulation of the membrane composition. Together, the biochemical and survival features of A. radioresistens 50v1 support a potential persistence on Mars (given an unintended or planned surface landing of the Mars Odyssey orbiter), which in turn may compromise the scientific integrity of future life-detection missions.

  1. Functional Polymers in Protein Detection Platforms: Optical, Electrochemical, Electrical, Mass-Sensitive, and Magnetic Biosensors

    PubMed Central

    Hahm, Jong-in

    2011-01-01

    The rapidly growing field of proteomics and related applied sectors in the life sciences demands convenient methodologies for detecting and measuring the levels of specific proteins as well as for screening and analyzing for interacting protein systems. Materials utilized for such protein detection and measurement platforms should meet particular specifications which include ease-of-mass manufacture, biological stability, chemical functionality, cost effectiveness, and portability. Polymers can satisfy many of these requirements and are often considered as choice materials in various biological detection platforms. Therefore, tremendous research efforts have been made for developing new polymers both in macroscopic and nanoscopic length scales as well as applying existing polymeric materials for protein measurements. In this review article, both conventional and alternative techniques for protein detection are overviewed while focusing on the use of various polymeric materials in different protein sensing technologies. Among many available detection mechanisms, most common approaches such as optical, electrochemical, electrical, mass-sensitive, and magnetic methods are comprehensively discussed in this article. Desired properties of polymers exploited for each type of protein detection approach are summarized. Current challenges associated with the application of polymeric materials are examined in each protein detection category. Difficulties facing both quantitative and qualitative protein measurements are also identified. The latest efforts on the development and evaluation of nanoscale polymeric systems for improved protein detection are also discussed from the standpoint of quantitative and qualitative measurements. Finally, future research directions towards further advancements in the field are considered. PMID:21691441

  2. Search for evidence of life in space: analysis of enantiomeric organic molecules by N,N-dimethylformamide dimethylacetal derivative dependant Gas Chromatography-Mass Spectrometry.

    PubMed

    Freissinet, C; Buch, A; Sternberg, R; Szopa, C; Geffroy-Rodier, C; Jelinek, C; Stambouli, M

    2010-01-29

    Within the context of the future space missions to Mars (MSL 2011 and Exomars 2016), which aim at searching for traces of life at the surface, the detection and quantitation of enantiomeric organic molecules is of major importance. In this work, we have developed and optimized a method to derivatize and analyze chiral organic molecules suitable for space experiments, using N,N-dimethylformamide dimethylacetal (DMF-DMA) as the derivatization agent. The temperature, duration of the derivatization reaction, and chromatographic separation parameters have been optimized to meet instrument design constraints imposed upon space experiment devices. This work demonstrates that, in addition to its intrinsic qualities, such as production of light-weight derivatives and a great resistance to drastic operating conditions, DMF-DMA facilitates simple and fast derivatization of organic compounds (three minutes at 140 degrees C in a single-step) that is suitable for an in situ analysis in space. By using DMF-DMA as the derivatization agent, we have successfully identified 19 of the 20 proteinic amino acids and been able to enantiomerically separate ten of the potential 19 (glycine being non-chiral). Additionally, we have minimized the percentage of racemized amino acid compounds produced by optimizing the conditions of the derivatization reaction itself. Quantitative linearity studies and the determination of the limit of detection show that the proposed method is also suitable for the quantitative determination of both enantiomeric forms of most of the tested amino acids, as limits of detection obtained are lower than the ppb level of organic molecules already detected in Martian meteorites. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  3. Hour Glass Half-Full or Half-Empty? Future Time Perspective and Preoccupation with Negative Events Across the Life Span

    PubMed Central

    Strough, JoNell; de Bruin, Wändi Bruine; Parker, Andrew M.; Lemaster, Philip; Pichayayothin, Nipat; Delaney, Rebecca

    2016-01-01

    According to socioemotional selectivity theory, older adults' emotional well-being stems from having limited future time perspective that motivates them to maximize well-being in the “here and now.” Presumably, then, older adults' time horizons are associated with emotional competencies that boost positive affect and dampen negative affect, but little research has addressed this. Using a US national adult life-span sample (N= 3,933, 18-93 yrs), we found that a two-factor model of future time perspective (focus on future opportunities; focus on limited time) fit the data better than a one-factor model. Through middle age, people perceived the life-span hourglass as half full—they focused more on future opportunities than limited time. Around age 60, the balance changed to increasingly perceiving the life-span hourglass as half empty—they focused less on future opportunities and more on limited time. This pattern held even after accounting for perceived health, self-reported decision-making ability, and retirement status. At all ages, women's time horizons focused more on future opportunities compared to men's, and men's focused more on limited time. Focusing on future opportunities was associated with reporting less preoccupation with negative events, whereas focusing on limited time was associated with reporting more preoccupation. Older adults reported less preoccupation with negative events and this association was stronger after controlling for their perceptions of limited time and fewer future opportunities, suggesting that other pathways may explain older adults' reports of their ability to disengage from negative events. Insights gained and questions raised by measuring future time perspective as two dimensions are discussed. PMID:27267222

  4. Hour glass half full or half empty? Future time perspective and preoccupation with negative events across the life span.

    PubMed

    Strough, JoNell; Bruine de Bruin, Wändi; Parker, Andrew M; Lemaster, Philip; Pichayayothin, Nipat; Delaney, Rebecca

    2016-09-01

    According to socioemotional selectivity theory, older adults' emotional well-being stems from having a limited future time perspective that motivates them to maximize well-being in the "here and now." Presumably, then, older adults' time horizons are associated with emotional competencies that boost positive affect and dampen negative affect, but little research has addressed this. Using a U.S. adult life-span sample (N = 3,933; 18-93 years), we found that a 2-factor model of future time perspective (future opportunities; limited time) fit the data better than a 1-factor model. Through middle age, people perceived the life-span hourglass as half full-they focused more on future opportunities than limited time. Around Age 60, the balance changed to increasingly perceiving the life-span hourglass as half empty-they focused less on future opportunities and more on limited time, even after accounting for perceived health, self-reported decision-making ability, and retirement status. At all ages, women's time horizons focused more on future opportunities compared with men's, and men's focused more on limited time. Focusing on future opportunities was associated with reporting less preoccupation with negative events, whereas focusing on limited time was associated with reporting more preoccupation. Older adults reported less preoccupation with negative events, and this association was stronger after controlling for their perceptions of limited time and fewer future opportunities, suggesting that other pathways may explain older adults' reports of their ability to disengage from negative events. Insights gained and questions raised by measuring future time perspective as 2 dimensions are discussed. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  5. Nano-materials for use in sensing of salmonella infections: Recent advances.

    PubMed

    Pashazadeh, Paria; Mokhtarzadeh, Ahad; Hasanzadeh, Mohammad; Hejazi, Maryam; Hashemi, Maryam; de la Guardia, Miguel

    2017-01-15

    Salmonella infectious diseases spreading every day through food have become a life-threatening problem for millions of people and growing menace to society. Health expert's estimate that the yearly cost of all the food borne diseases is approximately $5-6 billion. Traditional methodologies for salmonella analysis provide high reliability and very low limits of detection. Among them immunoassays and Nucleic acid-based assays provide results within 24h, but they are expensive, tedious and time consuming. So, there is an urgent need for development of rapid, robust and cost-effective alternative technologies for real-time monitoring of salmonella. Several biosensors have been designed and commercialized for detection of this pathogen in food and water. In this overview, we have updated the literature concerning novel biosensing methods such as various optical and electrochemical biosensors and newly developed nano- and micro-scaled and aptamers based biosensors for detection of salmonella pathogen. Furthermore, attention has been focused on the principal concepts, applications, and examples that have been achieved up to diagnose salmonella. In addition, commercial biosensors and foreseeable future trends for onsite detecting salmonella have been summarized. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. State-of-the-art Instruments for Detecting Extraterrestrial Life

    NASA Technical Reports Server (NTRS)

    Bada, Jeffrey L.

    2003-01-01

    In the coming decades, state-of-the-art spacecraft-based instruments that can detect key components associated with life as we know it on Earth will directly search for extinct or extant extraterrestrial life in our solar system. Advances in our analytical and detection capabilities, especially those based on microscale technologies, will be important in enhancing the abilities of these instruments. Remote sensing investigations of the atmospheres of extrasolar planets could provide evidence of photosynthetic-based life outside our solar system, although less advanced life will remain undetectable by these methods. Finding evidence of extraterrestrial life would have profound consequences both with respect to our understanding of chemical and biological evolution, and whether the biochemistry on Earth is unique in the universe.

  7. Introducing Students to Career Exploration

    ERIC Educational Resources Information Center

    Beutler, Steve

    2008-01-01

    Using a Web-based program he developed, one educator is helping students understand how their career and lifestyle choices are linked. MyLife, a Web-based life-planning program for young people, offers comprehensive budget activity in which participants develop simulations of their fantasy futures and calculate their future monthly…

  8. Research on detecting heterogeneous fibre from cotton based on linear CCD camera

    NASA Astrophysics Data System (ADS)

    Zhang, Xian-bin; Cao, Bing; Zhang, Xin-peng; Shi, Wei

    2009-07-01

    The heterogeneous fibre in cotton make a great impact on production of cotton textile, it will have a bad effect on the quality of product, thereby affect economic benefits and market competitive ability of corporation. So the detecting and eliminating of heterogeneous fibre is particular important to improve machining technics of cotton, advance the quality of cotton textile and reduce production cost. There are favorable market value and future development for this technology. An optical detecting system obtains the widespread application. In this system, we use a linear CCD camera to scan the running cotton, then the video signals are put into computer and processed according to the difference of grayscale, if there is heterogeneous fibre in cotton, the computer will send an order to drive the gas nozzle to eliminate the heterogeneous fibre. In the paper, we adopt monochrome LED array as the new detecting light source, it's lamp flicker, stability of luminous intensity, lumens depreciation and useful life are all superior to fluorescence light. We analyse the reflection spectrum of cotton and various heterogeneous fibre first, then select appropriate frequency of the light source, we finally adopt violet LED array as the new detecting light source. The whole hardware structure and software design are introduced in this paper.

  9. Detecting Life and Biology-Related Parameters on Mars

    NASA Technical Reports Server (NTRS)

    Levin, Gilbet V.; Miller, Joseph D.; Straat, Patricia A.; Lodder, Robert; Hoover, Richard B.

    2007-01-01

    An integrated, miniaturized, low-power instrument capable of the detection and early characterization of microbial life in the soil of Mars is proposed. Based on the detection apd monitoring of on-going metabolism as being the surest evidence for extant life, the experiments will probe for chirality in metabolism, for circadian rhythm, and for photosynthesis. However, the instrument package will also be able to detect biosignatures and a variety of other physical and chemical parameters of the Martian surface that have significance for life. These include the presence and the physical state of water, the existence of an oxidant, the pH and the penetrability of the soil. Using the legacy of the 1976 Viking Labeled Release (LR) life detection experiment in conjunction with state-of-the-art laser diode spectral analysis, the instrument can be flown stand-alone, with or without a rover, or as part of an MSL-type mission. Sterility for experiment integrity and for planetary protection is provided.

  10. Life Cycle Costing in Government Procurement.

    DTIC Science & Technology

    1985-05-01

    in many areas continue to do so today. However, as business decisions grow in complexity the "gut" reaction approach to minimizing the total costs of...predictors of future events) in 0 determining the most cost effectiv- approach to future - operations. Under "classic" life cycle costing the concepts of... in the FAR and occasional references appear to include life cycle costs within price.8 However in practice , use of the word

  11. The Radiation Assessment Detector (RAD) Investigation

    NASA Astrophysics Data System (ADS)

    Hassler, D. M.; Zeitlin, C.; Wimmer-Schweingruber, R. F.; Böttcher, S.; Martin, C.; Andrews, J.; Böhm, E.; Brinza, D. E.; Bullock, M. A.; Burmeister, S.; Ehresmann, B.; Epperly, M.; Grinspoon, D.; Köhler, J.; Kortmann, O.; Neal, K.; Peterson, J.; Posner, A.; Rafkin, S.; Seimetz, L.; Smith, K. D.; Tyler, Y.; Weigle, G.; Reitz, G.; Cucinotta, F. A.

    2012-09-01

    The Radiation Assessment Detector (RAD) on the Mars Science Laboratory (MSL) is an energetic particle detector designed to measure a broad spectrum of energetic particle radiation. It will make the first-ever direct radiation measurements on the surface of Mars, detecting galactic cosmic rays, solar energetic particles, secondary neutrons, and other secondary particles created both in the atmosphere and in the Martian regolith. The radiation environment on Mars, both past and present, may have implications for habitability and the ability to sustain life. Radiation exposure is also a major concern for future human missions. The RAD instrument combines charged- and neutral-particle detection capability over a wide dynamic range in a compact, low-mass, low-power instrument. These capabilities are required in order to measure all the important components of the radiation environment. RAD consists of the RAD Sensor Head (RSH) and the RAD Electronics Box (REB) integrated together in a small, compact volume. The RSH contains a solid-state detector telescope with three silicon PIN diodes for charged particle detection, a thallium doped Cesium Iodide scintillator, plastic scintillators for neutron detection and anti-coincidence shielding, and the front-end electronics. The REB contains three circuit boards, one with a novel mixed-signal ASIC for processing analog signals and an associated control FPGA, another with a second FPGA to communicate with the rover and perform onboard analysis of science data, and a third board with power supplies and power cycling or "sleep"-control electronics. The latter enables autonomous operation, independent of commands from the rover. RAD is a highly capable and highly configurable instrument that paves the way for future compact energetic particle detectors in space.

  12. Forest Fire Finder - DOAS application to long-range forest fire detection

    NASA Astrophysics Data System (ADS)

    Valente de Almeida, Rui; Vieira, Pedro

    2017-06-01

    Fires are an important factor in shaping Earth's ecosystems. Plant and animal life, in almost every land habitat, are at least partially dependent on the effects of fire. However, their destructive force, which has often proven uncontrollable, is one of our greatest concerns, effectively resulting in several policies in the most important industrialised regions of the globe. This paper aims to comprehensively characterise the Forest Fire Finder (FFF), a forest fire detection system based mainly upon a spectroscopic technique called differential optical absorption spectroscopy (DOAS). The system is designed and configured with the goal of detecting higher-than-the-horizon smoke columns by measuring and comparing scattered sunlight spectra. The article covers hardware and software, as well as their interactions and specific algorithms for day mode operation. An analysis of data retrieved from several installations deployed in the course of the last 5 years is also presented. Finally, this paper features a discussion on the most prominent future improvements planned for the system, as well as its ramifications and adaptations, such as a thermal imaging system for short-range fire seeking or environmental quality control.

  13. Collective intelligence of the artificial life community on its own successes, failures, and future.

    PubMed

    Rasmussen, Steen; Raven, Michael J; Keating, Gordon N; Bedau, Mark A

    2003-01-01

    We describe a novel Internet-based method for building consensus and clarifying conflicts in large stakeholder groups facing complex issues, and we use the method to survey and map the scientific and organizational perspectives of the artificial life community during the Seventh International Conference on Artificial Life (summer 2000). The issues addressed in this survey included artificial life's main successes, main failures, main open scientific questions, and main strategies for the future, as well as the benefits and pitfalls of creating a professional society for artificial life. By illuminating the artificial life community's collective perspective on these issues, this survey illustrates the value of such methods of harnessing the collective intelligence of large stakeholder groups.

  14. Power systems for future missions

    NASA Technical Reports Server (NTRS)

    Gill, S. P.; Frye, P. E.; Littman, Franklin D.; Meisl, C. J.

    1994-01-01

    A comprehensive scenario of future missions was developed and applicability of different power technologies to these missions was assessed. Detailed technology development roadmaps for selected power technologies were generated. A simple methodology to evaluate economic benefits of current and future power system technologies by comparing Life Cycle Costs of potential missions was developed. The methodology was demonstrated by comparing Life Cycle Costs for different implementation strategies of DIPS/CBC technology to a selected set of missions.

  15. Colonization and Succession within the Human Gut Microbiome by Archaea, Bacteria, and Microeukaryotes during the First Year of Life.

    PubMed

    Wampach, Linda; Heintz-Buschart, Anna; Hogan, Angela; Muller, Emilie E L; Narayanasamy, Shaman; Laczny, Cedric C; Hugerth, Luisa W; Bindl, Lutz; Bottu, Jean; Andersson, Anders F; de Beaufort, Carine; Wilmes, Paul

    2017-01-01

    Perturbations to the colonization process of the human gastrointestinal tract have been suggested to result in adverse health effects later in life. Although much research has been performed on bacterial colonization and succession, much less is known about the other two domains of life, archaea, and eukaryotes. Here we describe colonization and succession by bacteria, archaea and microeukaryotes during the first year of life (samples collected around days 1, 3, 5, 28, 150, and 365) within the gastrointestinal tract of infants delivered either vaginally or by cesarean section and using a combination of quantitative real-time PCR as well as 16S and 18S rRNA gene amplicon sequencing. Sequences from organisms belonging to all three domains of life were detectable in all of the collected meconium samples. The microeukaryotic community composition fluctuated strongly over time and early diversification was delayed in infants receiving formula milk. Cesarean section-delivered (CSD) infants experienced a delay in colonization and succession, which was observed for all three domains of life. Shifts in prokaryotic succession in CSD infants compared to vaginally delivered (VD) infants were apparent as early as days 3 and 5, which were characterized by increased relative abundances of the genera Streptococcus and Staphylococcus , and a decrease in relative abundance for the genera Bifidobacterium and Bacteroides . Generally, a depletion in Bacteroidetes was detected as early as day 5 postpartum in CSD infants, causing a significantly increased Firmicutes/Bacteroidetes ratio between days 5 and 150 when compared to VD infants. Although the delivery mode appeared to have the strongest influence on differences between the infants, other factors such as a younger gestational age or maternal antibiotics intake likely contributed to the observed patterns as well. Our findings complement previous observations of a delay in colonization and succession of CSD infants, which affects not only bacteria but also archaea and microeukaryotes. This further highlights the need for resolving bacterial, archaeal, and microeukaryotic dynamics in future longitudinal studies of microbial colonization and succession within the neonatal gastrointestinal tract.

  16. Colonization and Succession within the Human Gut Microbiome by Archaea, Bacteria, and Microeukaryotes during the First Year of Life

    PubMed Central

    Wampach, Linda; Heintz-Buschart, Anna; Hogan, Angela; Muller, Emilie E. L.; Narayanasamy, Shaman; Laczny, Cedric C.; Hugerth, Luisa W.; Bindl, Lutz; Bottu, Jean; Andersson, Anders F.; de Beaufort, Carine; Wilmes, Paul

    2017-01-01

    Perturbations to the colonization process of the human gastrointestinal tract have been suggested to result in adverse health effects later in life. Although much research has been performed on bacterial colonization and succession, much less is known about the other two domains of life, archaea, and eukaryotes. Here we describe colonization and succession by bacteria, archaea and microeukaryotes during the first year of life (samples collected around days 1, 3, 5, 28, 150, and 365) within the gastrointestinal tract of infants delivered either vaginally or by cesarean section and using a combination of quantitative real-time PCR as well as 16S and 18S rRNA gene amplicon sequencing. Sequences from organisms belonging to all three domains of life were detectable in all of the collected meconium samples. The microeukaryotic community composition fluctuated strongly over time and early diversification was delayed in infants receiving formula milk. Cesarean section-delivered (CSD) infants experienced a delay in colonization and succession, which was observed for all three domains of life. Shifts in prokaryotic succession in CSD infants compared to vaginally delivered (VD) infants were apparent as early as days 3 and 5, which were characterized by increased relative abundances of the genera Streptococcus and Staphylococcus, and a decrease in relative abundance for the genera Bifidobacterium and Bacteroides. Generally, a depletion in Bacteroidetes was detected as early as day 5 postpartum in CSD infants, causing a significantly increased Firmicutes/Bacteroidetes ratio between days 5 and 150 when compared to VD infants. Although the delivery mode appeared to have the strongest influence on differences between the infants, other factors such as a younger gestational age or maternal antibiotics intake likely contributed to the observed patterns as well. Our findings complement previous observations of a delay in colonization and succession of CSD infants, which affects not only bacteria but also archaea and microeukaryotes. This further highlights the need for resolving bacterial, archaeal, and microeukaryotic dynamics in future longitudinal studies of microbial colonization and succession within the neonatal gastrointestinal tract. PMID:28512451

  17. 25 CFR 179.1 - What is the purpose of this part?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER LIFE ESTATES AND FUTURE..., and procedures governing the administration of life estates and future interests in trust and restricted property by the Secretary of Interior. This part does not apply to any use rights assigned to...

  18. 25 CFR 179.1 - What is the purpose of this part?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER LIFE ESTATES AND FUTURE..., and procedures governing the administration of life estates and future interests in trust and restricted property by the Secretary of Interior. This part does not apply to any use rights assigned to...

  19. 25 CFR 179.1 - What is the purpose of this part?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER LIFE ESTATES AND FUTURE..., and procedures governing the administration of life estates and future interests in trust and restricted property by the Secretary of Interior. This part does not apply to any use rights assigned to...

  20. 25 CFR 179.1 - What is the purpose of this part?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER LIFE ESTATES AND FUTURE..., and procedures governing the administration of life estates and future interests in trust and restricted property by the Secretary of Interior. This part does not apply to any use rights assigned to...

  1. 25 CFR 179.1 - What is the purpose of this part?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER LIFE ESTATES AND FUTURE..., and procedures governing the administration of life estates and future interests in trust and restricted property by the Secretary of Interior. This part does not apply to any use rights assigned to...

  2. A dark past, a restrained present, and an apocalyptic future: time perspective, personality, and life satisfaction among anorexia nervosa patients.

    PubMed

    Garcia, Danilo; Granjard, Alexandre; Lundblad, Suzanna; Archer, Trevor

    2017-01-01

    Despite reporting low levels of well-being, anorexia nervosa patients express temperament traits (e.g., extraversion and persistence) necessary for high levels of life satisfaction. Nevertheless, among individuals without eating disorders, a balanced organization of the flow of time, influences life satisfaction beyond temperamental dispositions. A balanced time perspective is defined as: high past positive, low past negative, high present hedonistic, low present fatalistic, and high future. We investigated differences in time perspective dimensions, personality traits, and life satisfaction between anorexia nervosa patients and matched controls. We also investigated if the personality traits and the outlook on time associated to positive levels of life satisfaction among controls also predicted anorexia patients' life satisfaction. Additionally, we investigated if time perspective dimensions predicted life satisfaction beyond personality traits among both patients and controls. A total of 88 anorexia nervosa patients from a clinic in the West of Sweden and 111 gender-age matched controls from a university in the West of Sweden participated in the Study. All participants responded to the Zimbardo Time Perspective Inventory, the Ten Item Personality Inventory, and the Temporal Satisfaction with Life Scale. A t -test showed that patients scored higher in the past negative, the present fatalistic, and the future dimensions, lower in the past positive and the present hedonistic dimensions, higher in conscientiousness, extraversion, and agreeableness, and lower in life satisfaction. Regression analyses showed that life satisfaction was predicted by openness to experience and emotional stability for controls and by emotional stability among patients. When time dimensions were entered in the regression, emotional stability and the past negative and past positive time dimensions predicted life satisfaction among controls, but only the past positive and present hedonistic time dimensions predicted life satisfaction among patients. Anorexia patients were less satisfied with life despite being more conscientious, social, and agreeable than controls. Moreover, compared to controls, patients had an unbalanced time perspective: a dark view of the past (i.e., high past negative), a restrained present (i.e., low present hedonistic) and an apocalyptic view of the future (i.e., high present fatalistic). It is plausible to suggest that, therapeutic interventions should focus on empowering patients to cultivate a sentimental and positive view of the past (i.e., high past positive) and the desire to experience pleasure without concern for future consequences (i.e., high present hedonistic) so that they can make self-directed and flexible choices for their own well-being. Such interventions might have effects on life satisfaction beyond the patients' temperamental disposition.

  3. Searching for life in the Universe: unconventional methods for an unconventional problem.

    PubMed

    Nealson, K H; Tsapin, A; Storrie-Lombardi, M

    2002-12-01

    The search for life, on and off our planet, can be done by conventional methods with which we are all familiar. These methods are sensitive and specific, and are often capable of detecting even single cells. However, if the search broadens to include life that may be different (even subtly different) in composition, the methods and even the approach must be altered. Here we discuss the development of what we call non-earthcentric life detection--detecting life with methods that could detect life no matter what its form or composition. To develop these methods, we simply ask, can we define life in terms of its general properties and particularly those that can be measured and quantified? Taking such an approach we can search for life using physics and chemistry to ask questions about structure, chemical composition, thermodynamics, and kinetics. Structural complexity can be searched for using computer algorithms that recognize complex structures. Once identified, these structures can be examined for a variety of chemical traits, including elemental composition, chirality, and complex chemistry. A second approach involves defining our environment in terms of energy sources (i.e., reductants), and oxidants (e.g. what is available to eat and breathe), and then looking for areas in which such phenomena are inexplicably out of chemical equilibrium. These disequilibria, when found, can then be examined in detail for the presence of the structural and chemical complexity that presumably characterizes any living systems. By this approach, we move the search for life to one that should facilitate the detection of any earthly life it encountered, as well as any non-conventional life forms that have structure, complex chemistry, and live via some form of redox chemistry.

  4. How are compassion fatigue, burnout, and compassion satisfaction affected by quality of working life? Findings from a survey of mental health staff in Italy.

    PubMed

    Cetrano, Gaia; Tedeschi, Federico; Rabbi, Laura; Gosetti, Giorgio; Lora, Antonio; Lamonaca, Dario; Manthorpe, Jill; Amaddeo, Francesco

    2017-11-21

    Quality of working life includes elements such as autonomy, trust, ergonomics, participation, job complexity, and work-life balance. The overarching aim of this study was to investigate if and how quality of working life affects Compassion Fatigue, Burnout, and Compassion Satisfaction among mental health practitioners. Staff working in three Italian Mental Health Departments completed the Professional Quality of Life Scale, measuring Compassion Fatigue, Burnout, and Compassion Satisfaction, and the Quality of Working Life Questionnaire. The latter was used to collect socio-demographics, occupational characteristics and 13 indicators of quality of working life. Multiple regressions controlling for other variables were undertaken to predict Compassion Fatigue, Burnout, and Compassion Satisfaction. Four hundred questionnaires were completed. In bivariate analyses, experiencing more ergonomic problems, perceiving risks for the future, a higher impact of work on life, and lower levels of trust and of perceived quality of meetings were associated with poorer outcomes. Multivariate analysis showed that (a) ergonomic problems and impact of work on life predicted higher levels of both Compassion Fatigue and Burnout; (b) impact of life on work was associated with Compassion Fatigue and lower levels of trust and perceiving more risks for the future with Burnout only; (c) perceived quality of meetings, need of training, and perceiving no risks for the future predicted higher levels of Compassion Satisfaction. In order to provide adequate mental health services, service providers need to give their employees adequate ergonomic conditions, giving special attention to time pressures. Building trustful relationships with management and within the teams is also crucial. Training and meetings are other important targets for potential improvement. Additionally, insecurity about the future should be addressed as it can affect both Burnout and Compassion Satisfaction. Finally, strategies to reduce possible work-life conflicts need to be considered.

  5. Smart LED lighting for major reductions in power and energy use for plant lighting in space

    NASA Astrophysics Data System (ADS)

    Poulet, Lucie

    Launching or resupplying food, oxygen, and water into space for long-duration, crewed missions to distant destinations, such as Mars, is currently impossible. Bioregenerative life-support systems under development worldwide involving photoautotrophic organisms offer a solution to the food dilemma. However, using traditional Earth-based lighting methods, growth of food crops consumes copious energy, and since sunlight will not always be available at different space destinations, efficient electric lighting solutions are badly needed to reduce the Equivalent System Mass (ESM) of life-support infrastructure to be launched and transported to future space destinations with sustainable human habitats. The scope of the present study was to demonstrate that using LEDs coupled to plant detection, and optimizing spectral and irradiance parameters of LED light, the model crop lettuce (Lactuca sativa L. cv. Waldmann's Green) can be grown with significantly lower electrical energy for plant lighting than using traditional lighting sources. Initial experiments aimed at adapting and troubleshooting a first-generation "smart" plant-detection system coupled to LED arrays resulted in optimizing the detection process for plant position and size to the limits of its current design. Lettuce crops were grown hydroponically in a growth chamber, where temperature, relative humidity, and CO2 level are controlled. Optimal irradiance and red/blue ratio of LED lighting were determined for plant growth during both lag and exponential phases of crop growth. Under optimizing conditions, the efficiency of the automatic detection system was integrated with LED switching and compared to a system in which all LEDs were energized throughout a crop-production cycle. At the end of each cropping cycle, plant fresh and dry weights and leaf area were measured and correlated with the amount of electrical energy (kWh) consumed. Preliminary results indicated that lettuce plants grown under optimizing conditions with red and blue LED lighting required 12 times less energy than with a traditional high-intensity discharge lighting system. This study paves the way for refinement of the smart lighting system and further, major reductions in ESM for space life-support systems and for ground-based controlled-environment agriculture. Project supported by NASA grant number NNX09AL99G.

  6. A Life Worth Giving? The Threshold for Permissible Withdrawal of Life Support From Disabled Newborn Infants

    PubMed Central

    Wilkinson, Dominic James

    2011-01-01

    When is it permissible to allow a newborn infant to die on the basis of their future quality of life? The prevailing official view is that treatment may be withdrawn only if the burdens in an infant's future life outweigh the benefits. In this paper I outline and defend an alternative view. On the Threshold View, treatment may be withdrawn from infants if their future well-being is below a threshold that is close to, but above the zero-point of well-being. I present four arguments in favor of the Threshold View, and identify and respond to several counterarguments. I conclude that it is justifiable in some circumstances for parents and doctors to decide to allow an infant to die even though the infant's life would be worth living. The Threshold View provides a justification for treatment decisions that is more consistent, more robust, and potentially more practical than the standard view. PMID:21337273

  7. 1991 NASA Life Support Systems Analysis workshop

    NASA Technical Reports Server (NTRS)

    Evanich, Peggy L.; Crabb, Thomas M.; Gartrell, Charles F.

    1992-01-01

    The 1991 Life Support Systems Analysis Workshop was sponsored by NASA Headquarters' Office of Aeronautics and Space Technology (OAST) to foster communication among NASA, industrial, and academic specialists, and to integrate their inputs and disseminate information to them. The overall objective of systems analysis within the Life Support Technology Program of OAST is to identify, guide the development of, and verify designs which will increase the performance of the life support systems on component, subsystem, and system levels for future human space missions. The specific goals of this workshop were to report on the status of systems analysis capabilities, to integrate the chemical processing industry technologies, and to integrate recommendations for future technology developments related to systems analysis for life support systems. The workshop included technical presentations, discussions, and interactive planning, with time allocated for discussion of both technology status and time-phased technology development recommendations. Key personnel from NASA, industry, and academia delivered inputs and presentations on the status and priorities of current and future systems analysis methods and requirements.

  8. Recurrent bottlenecks in the malaria life cycle obscure signals of positive selection.

    PubMed

    Chang, Hsiao-Han; Hartl, Daniel L

    2015-02-01

    Detecting signals of selection in the genome of malaria parasites is a key to identify targets for drug and vaccine development. Malaria parasites have a unique life cycle alternating between vector and host organism with a population bottleneck at each transition. These recurrent bottlenecks could influence the patterns of genetic diversity and the power of existing population genetic tools to identify sites under positive selection. We therefore simulated the site-frequency spectrum of a beneficial mutant allele through time under the malaria life cycle. We investigated the power of current population genetic methods to detect positive selection based on the site-frequency spectrum as well as temporal changes in allele frequency. We found that a within-host selective advantage is difficult to detect using these methods. Although a between-host transmission advantage could be detected, the power is decreased when compared with the classical Wright-Fisher (WF) population model. Using an adjusted null site-frequency spectrum that takes the malaria life cycle into account, the power of tests based on the site-frequency spectrum to detect positive selection is greatly improved. Our study demonstrates the importance of considering the life cycle in genetic analysis, especially in parasites with complex life cycles.

  9. Development of Health-Related Quality of Life Instruments for Young Children With Disorders of Sex Development (DSD) and Their Parents.

    PubMed

    Alpern, Adrianne N; Gardner, Melissa; Kogan, Barry; Sandberg, David E; Quittner, Alexandra L

    2017-06-01

    Research in disorders of sex development (DSD) is hindered by a lack of standardized measures sensitive to the experiences of affected children and families. We developed and evaluated parent proxy (children 2-6 years) and parent self-report (children ≤6 years) health-related quality of life (HRQoL) instruments for DSD. Items were derived from focus groups and open-ended interviews. Clarity and comprehensiveness were assessed with cognitive interviews. Psychometric properties were examined in a field survey of 94 families. Measures demonstrated adequate to good psychometrics, including internal consistency, test-retest reliability, convergent validity, and ability to detect known-group differences. Parents reported greatest stress on Early Experiences , Surgery , and Future Concerns scales. These instruments identify patients' and families' needs, monitor health and quality of life status, and can evaluate clinical interventions. Findings highlight the need for improved psychosocial support during the diagnostic period, better parent-provider communication, and shared decision-making. HRQoL measures are needed for older youth. © The Author 2016. Published by Oxford University Press on behalf of the Society of Pediatric Psychology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  10. MEDUSA (Martian Environmental DUst Systematic Analyser) for the monitoring of the Martian atmospheric dust and water vapour

    NASA Astrophysics Data System (ADS)

    Colangeli, L.; Battaglia, R.; della Corte, V.; Esposito, F.; Ferrini, G.; Mazzotta Epifani, E.; Palomba, E.; Palumbo, P.; Panizza, A.; Rotundi, A.

    2004-03-01

    The knowledge of Martian airborne dust properties and about mechanisms of dust settling/raising to/from the surface are important to determine climate and surface evolution on Mars. Water is an important tracer of climatic changes on long time-scales and is strictly related to the presence of life forms. The study in situ of dust and water vapour properties and evolution in Martian atmosphere is useful to trace back the planet climate, also in function of life form development. This investigation is also appropriate in preparation to future manned exploration of the planet (in relation to hazardous conditions). In this work we discuss the concept of the MEDUSA (Martian Environmental Dust Analyser) experiment that is designed to provide data on grain size and mass distribution, number density, velocity and scattering properties and on water vapour concentration. The instrument is a multisensor system based on optical and impact detection of grains, coupled with cumulative deposition sensors.

  11. Conduct Problem Trajectories Between Age 4 and 17 and Their Association with Behavioral Adjustment in Emerging Adulthood.

    PubMed

    Sentse, Miranda; Kretschmer, Tina; de Haan, Amaranta; Prinzie, Peter

    2017-08-01

    Individual heterogeneity exists in the onset and development of conduct problems, but theoretical claims about predictors and prognosis are often not consistent with the empirical findings. This study examined shape and outcomes of conduct problem trajectories in a Belgian population-based sample (N = 682; 49.5 % boys). Mothers reported on children's conduct problems across six waves (age 4-17) and emerging adults reported on their behavioral adjustment (age 17-20). Applying mixture modeling, we found four gender-invariant trajectories (labeled life-course-persistent, adolescence-onset, childhood-limited, and low). The life-course-persistent group was least favorably adjusted, but the adolescence-onset group was similarly maladjusted in externalizing problems and may be less normative (15 % of the sample) than previously believed. The childhood-limited group was at heightened risk for specifically internalizing problems, being more worrisome than its label suggests. Interventions should not only be aimed at early detection of conduct problems, but also at adolescents to avoid future maladjustment.

  12. Designing for human presence in space: An introduction to environmental control and life support systems

    NASA Technical Reports Server (NTRS)

    Wieland, Paul

    1994-01-01

    Human exploration and utilization of space requires habitats to provide appropriate conditions for working and living. These conditions are provided by environmental control and life support systems (ECLSS) that ensure appropriate atmosphere composition, pressure, and temperature; manage and distribute water, process waste matter, provide fire detection and suppression; and other functions as necessary. The functions that are performed by ECLSS are described and basic information necessary to design an ECLSS is provided. Technical and programmatic aspects of designing and developing ECLSS for space habitats are described including descriptions of technologies, analysis methods, test requirements, program organization, documentation requirements, and the requirements imposed by medical, mission, safety, and system needs. The design and development process is described from initial trade studies through system-level analyses to support operation. ECLSS needs for future space habitats are also described. Extensive listings of references and related works provide sources for more detailed information on each aspect of ECLSS design and development.

  13. Aging prisoners' treatment selection: does prospect theory enhance understanding of end-of-life medical decisions?

    PubMed

    Phillips, Laura L; Allen, Rebecca S; Harris, Grant M; Presnell, Andrew H; Decoster, Jamie; Cavanaugh, Ronald

    2011-10-01

    With the rapid growth in the older inmate population and the economic impact of end-of-life treatments within the cash-strapped prison system, consideration should be given to inmate treatment preferences. We examined end-of-life treatment preferences and days of desired life for several health scenarios among male inmates incarcerated primarily for murder. Inmates over the age of 45 who passed a cognitive screening completed face-to-face interviews (N = 94; mean age = 57.7; SD = 10.68). We found a 3-way interaction indicating that the effect of parole expectation on desire for life-sustaining treatment varied by race/ethnicity and treatment. Minority inmates desired cardiopulmonary resuscitation or feeding tubes only if they believed that they would be paroled. The model predicting desire for palliative care was not significant. Future days of desired life were related to prospective health condition, fear of death, negative affect, and trust in prison health care. Caucasian inmates expressed a desire for more days of life out of prison, whereas minority inmates did not differ in days of desired life either in or out of prison. Minorities wanted more days of life than Caucasians but only if they believed that they would be paroled. End-of-life care for the burgeoning inmate population is costly, and active life-sustaining treatments may not be desired under certain conditions. Specifically, expectation of parole but not current functional ability interacts with future illness condition in explaining inmates' desire for active treatment or days of desired life in the future.

  14. Age aspects of habitability

    NASA Astrophysics Data System (ADS)

    Safonova, M.; Murthy, J.; Shchekinov, Yu. A.

    2016-04-01

    A `habitable zone' of a star is defined as a range of orbits within which a rocky planet can support liquid water on its surface. The most intriguing question driving the search for habitable planets is whether they host life. But is the age of the planet important for its habitability? If we define habitability as the ability of a planet to beget life, then probably it is not. After all, life on Earth has developed within only ~800 Myr after its formation - the carbon isotope change detected in the oldest rocks indicates the existence of already active life at least 3.8 Gyr ago. If, however, we define habitability as our ability to detect life on the surface of exoplanets, then age becomes a crucial parameter. Only after life had evolved sufficiently complex to change its environment on a planetary scale, can we detect it remotely through its imprint on the atmosphere - the so-called biosignatures, out of which the photosynthetic oxygen is the most prominent indicator of developed (complex) life as we know it. Thus, photosynthesis is a powerful biogenic engine that is known to have changed our planet's global atmospheric properties. The importance of planetary age for the detectability of life as we know it follows from the fact that this primary process, photosynthesis, is endothermic with an activation energy higher than temperatures in habitable zones, and is sensitive to the particular thermal conditions of the planet. Therefore, the onset of photosynthesis on planets in habitable zones may take much longer time than the planetary age. The knowledge of the age of a planet is necessary for developing a strategy to search for exoplanets carrying complex (developed) life - many confirmed potentially habitable planets are too young (orbiting Population I stars) and may not have had enough time to develop and/or sustain detectable life. In the last decade, many planets orbiting old (9-13 Gyr) metal-poor Population II stars have been discovered. Such planets had had enough time to develop necessary chains of chemical reactions and may carry detectable life if located in a habitable zone. These old planets should be primary targets in search for the extraterrestrial life.

  15. Gastrointestinal symptoms and quality of life in screen-detected celiac disease.

    PubMed

    Paavola, Aku; Kurppa, Kalle; Ukkola, Anniina; Collin, Pekka; Lähdeaho, Marja-Leena; Huhtala, Heini; Mäki, Markku; Kaukinen, Katri

    2012-10-01

    Active serological screening has proved an effective means of increasing the diagnostic rate in celiac disease. The effects of a long-term gluten-free diet on possible gastrointestinal symptoms and psychological well-being in screen-detected patients have nevertheless remained obscure. Abdominal symptoms and quality of life were measured in a large cohort of treated screen-detected celiac adults. Comparisons were made with corresponding symptom-detected patients and with non-celiac controls. Dietary adherence was assessed both by structured interview and by serological testing. In both screen- and symptom-detected celiac groups, 88% of the patients were adherent. On a diet, both screen- and symptom-detected patients reported significantly more gastrointestinal symptoms than non-celiac controls. Those screen-detected patients who reported having no symptoms at the time of diagnosis, also remained asymptomatic during the diet. Despite persistent symptoms, psychological well-being in screen-detected patients was comparable with that in non-celiac controls, whereas the symptom-detected patients showed lower quality of life. Long-term treated screen-detected celiac patients, especially women, suffer from gastrointestinal symptoms on a gluten free diet similarly to symptom-detected patients. However, despite a similar frequency of persistent symptoms, the quality of life was unimpaired in the screen found, but remained low in the symptom-detected group. Copyright © 2012 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  16. Fire-setting performed in adolescence or early adulthood predicts schizophrenia: a register-based follow-up study of pre-trial offenders.

    PubMed

    Thomson, Annika; Tiihonen, Jari; Miettunen, Jouko; Virkkunen, Matti; Lindberg, Nina

    2017-02-01

    Aggressive and disruptive behaviours often precede the onset of serious mental illnesses. Fire-setting is a type of crime that is associated with psychotic disorders. The aim of this prospective follow-up study was to investigate if fire-setting performed in adolescence or early adulthood was associated with future diagnoses of schizophrenia or schizoaffective disorder. The consecutive sample consisted of 111 Finnish 15-25-year old males with fire-setting crimes, decreed to a pre-trial forensic psychiatric examination in 1973-1998, and showing no past nor current psychosis at the time of examination. For each firesetter, four age-, gender-, and place of birth-matched controls were randomly selected from the Central Population Register. The subjects were followed until the death of the individual, until they moved abroad, or until the end of 2012. Fourteen firesetters (12.6%) and five controls (1.1%) were diagnosed with either schizophrenia or schizoaffective disorder later in life, corresponding to a hazard ratio of 12.5. The delay between the fire-setting offense and the future diagnosis was on average nearly 10 years. Young male offenders undergoing a forensic psychiatric examination because of fire-setting crimes had a significant propensity for schizophrenia and schizoaffective disorder. Accurate assessments should be made both during imprisonment and later in life to detect possible psychotic signs in these individuals.

  17. High fractional exhaled nitric oxide and sputum eosinophils are associated with an increased risk of future virus-induced exacerbations: A prospective cohort study.

    PubMed

    Bjerregaard, A; Laing, I A; Backer, V; Sverrild, A; Khoo, S-K; Chidlow, G; Sikazwe, C; Smith, D W; Le Souëf, P; Porsbjerg, C

    2017-08-01

    The major trigger of asthma exacerbations is infection with a respiratory virus, most commonly rhinovirus. Type 2 inflammation is known to be associated with an increased risk of exacerbations in general. Whether type 2 inflammation at baseline increases the risk of future virus-induced exacerbations is unknown. To assess whether type 2 inflammation is associated with an increased risk of virus-induced exacerbations of asthma. Stable asthmatics had spirometry, skin prick test, measurement of FeNO and sputum induced for differential cell counts. Patients were followed up for 18 months, during which they were assessed at the research unit when they had symptoms of an exacerbation. Nasal swabs collected at these assessments underwent viral detection by PCR. A total of 81 asthma patients were recruited, of which 22 (27%) experienced an exacerbation during the follow-up period. Of these, 15 (68%) had a respiratory virus detected at exacerbation. Sputum eosinophils >1% at baseline increased the risk of having a subsequent virus-induced exacerbation (HR 7.6 95% CI: 1.6-35.2, P=.010) as did having FeNO >25 ppb (HR 3.4 95% CI: 1.1-10.4, P=.033). Established type 2 inflammation during stable disease is a risk factor for virus-induced exacerbations in a real-life setting. Measures of type 2 inflammation, such as sputum eosinophils and FeNO, could be included in the risk assessment of patients with asthma in future studies. © 2017 John Wiley & Sons Ltd.

  18. 26 CFR 1.803-1 - Life insurance reserves.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 8 2011-04-01 2011-04-01 false Life insurance reserves. 1.803-1 Section 1.803-1...) INCOME TAXES (CONTINUED) Life Insurance Companies § 1.803-1 Life insurance reserves. (a) The term “life... life insurance, are held to supplement the future premium receipts when the latter, alone, are...

  19. Specialists and the Future of Rural Life in Russia

    ERIC Educational Resources Information Center

    Shirokalova, G. S.; Deriabina, O. N.

    2012-01-01

    The future of Russian agriculture and rural community depends on the willingness of skilled workers to accept conditions of village life and the demands of agricultural work. Surveys of potential rural specialists indicate that they are concerned about the lack of up-to-date technologies, the difficult working conditions and low prestige of…

  20. Choosing the Future: College Students' Projections of Their Personal Life Patterns [machine-readable data file].

    ERIC Educational Resources Information Center

    Thomas, Joan

    "Choosing the Future: College Students' Projections of Their Personal Life Patterns" is a machine-readable data file (MRDF) prepared by the principal investigator in connection with her doctoral program studies and her 1986 unpublished doctoral dissertation prepared in the Department of Psychology at the University of Cincinnati. The…

  1. Future Life Goals of HIV-Positive Gay and Bisexual Male Emerging Adults

    ERIC Educational Resources Information Center

    Bruce, Douglas; Harper, Gary W.

    2012-01-01

    This qualitative study explores the future life goals reported by a sample of HIV-positive gay/bisexual male emerging adults. Semi-structured interviews were conducted with 54 participants ages 17-24 at four geographically and demographically diverse adolescent HIV medicine programs to explore the content of participants' goals, perceived…

  2. A survey of life support system automation and control

    NASA Technical Reports Server (NTRS)

    Finn, Cory K.

    1993-01-01

    The level of automation and control necessary to support advanced life support systems for use in the manned space program is steadily increasing. As the length and complexity of manned missions increase, life support systems must be able to meet new space challenges. Longer, more complex missions create new demands for increased automation, improved sensors, and improved control systems. It is imperative that research in these key areas keep pace with current and future developments in regenerative life support technology. This paper provides an overview of past and present research in the areas of sensor development, automation, and control of life support systems for the manned space program, and it discusses the impact continued research in several key areas will have on the feasibility, operation, and design of future life support systems.

  3. ISHM Implementation for Constellation Systems

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando; Holland, Randy; Schmalzel, John; Duncavage, Dan; Crocker, Alan; Alena, Rick

    2006-01-01

    Integrated System Health Management (ISHM) is a capability that focuses on determining the condition (health) of every element in a complex System (detect anomalies, diagnose causes, prognosis of future anomalies), and provide data, information, and knowledge (DIaK) "not just data" to control systems for safe and effective operation. This capability is currently done by large teams of people, primarily from ground, but needs to be embedded on-board systems to a higher degree to enable NASA's new Exploration Mission (long term travel and stay in space), while increasing safety and decreasing life cycle costs of systems (vehicles; platforms; bases or outposts; and ground test, launch, and processing operations). This viewgraph presentation reviews the use of ISHM for the Constellation system.

  4. 2014 Summer Series - Jill Tarter - Searching for ET: An Investment In Our Long Future

    NASA Image and Video Library

    2014-07-31

    SETI marked it's semi-centennial as a scientific exploration in 2010. Now that exoplanets have been discovered in such abundance and diversity, and Earth 2.0 is a reasonable expectation, it seems more relevant than ever to ask the 'Are we alone?' question. What should we be doing to improve our capability to detect intelligent life beyond Earth? There are lots of technical questions about how to move forward, but the most difficult question of all may be how do we integrate and support this vast, and potentially long-term endeavor into a world of short-term thinking? How do we justify continued investment in SETI?

  5. Design of smart home terminal controller based on ZigBee

    NASA Astrophysics Data System (ADS)

    Li, Biqing; Li, Zhao; Zhang, Hongyan

    2018-04-01

    With the development in scienc and technology, and the improvement of living conditions, people pay more and more attention to the comfort of household life. Therefore, smart home has become the development trend of the future furniture. This design is composed of three blocks: transmitting module, receiving module and data acquisition module. ZigBee and STC89C52 belong to launch module as well as belong to receive module. Launch module contains ZigBee, serial communication module and monolithic STC89C52. The receiving module contains light control parts, curtain control part, ZigBee and microcontroller STC89C52. Data acquisition module includes temperature and humidity detection.

  6. Reaction-based small-molecule fluorescent probes for chemoselective bioimaging

    PubMed Central

    Chan, Jefferson; Dodani, Sheel C.; Chang, Christopher J.

    2014-01-01

    The dynamic chemical diversity of elements, ions and molecules that form the basis of life offers both a challenge and an opportunity for study. Small-molecule fluorescent probes can make use of selective, bioorthogonal chemistries to report on specific analytes in cells and in more complex biological specimens. These probes offer powerful reagents to interrogate the physiology and pathology of reactive chemical species in their native environments with minimal perturbation to living systems. This Review presents a survey of tools and tactics for using such probes to detect biologically important chemical analytes. We highlight design criteria for effective chemical tools for use in biological applications as well as gaps for future exploration. PMID:23174976

  7. Diversity of Holocene life forms in fossil glacier ice

    PubMed Central

    Willerslev, Eske; Hansen, Anders J.; Christensen, Bent; Steffensen, Jørgen Peder; Arctander, Peter

    1999-01-01

    Studies of biotic remains of polar ice caps have been limited to morphological identification of plant pollen and spores. By using sensitive molecular techniques, we now demonstrate a much greater range of detectable organisms; from 2000- and 4000-year-old ice-core samples, we obtained and characterized 120 clones that represent at least 57 distinct taxa and reveal a diversity of fungi, plants, algae, and protists. The organisms derive from distant sources as well as from the local arctic environment. Our results suggest that additional taxa may soon be readily identified, providing a plank for future studies of deep ice cores and yielding valuable information about ancient communities and their change over time. PMID:10393940

  8. Introduction to Mars Sampling Handling Workshop Series. Workshop on Life Detection: Issues and Topics

    NASA Technical Reports Server (NTRS)

    Rummel, John D.

    2001-01-01

    Before martian soil and rock samples can be distributed to the research community, the returned materials will initially be quarantined and examined in a proposed BSL-4 containment facility to assure that no putative martian microorganisms or attendant potential biohazards exist. During the initial quarantine, state-of-the-art life detection and biohazard testing of the returned martian samples will be conducted. Life detection, as defined here in regard to Mars sample return missions, is the detection of living organisms and/or materials that have been derived from living organisms that may be present in the sample.

  9. Bridging the gap between real-life data and simulated data by providing a highly realistic fall dataset for evaluating camera-based fall detection algorithms.

    PubMed

    Baldewijns, Greet; Debard, Glen; Mertes, Gert; Vanrumste, Bart; Croonenborghs, Tom

    2016-03-01

    Fall incidents are an important health hazard for older adults. Automatic fall detection systems can reduce the consequences of a fall incident by assuring that timely aid is given. The development of these systems is therefore getting a lot of research attention. Real-life data which can help evaluate the results of this research is however sparse. Moreover, research groups that have this type of data are not at liberty to share it. Most research groups thus use simulated datasets. These simulation datasets, however, often do not incorporate the challenges the fall detection system will face when implemented in real-life. In this Letter, a more realistic simulation dataset is presented to fill this gap between real-life data and currently available datasets. It was recorded while re-enacting real-life falls recorded during previous studies. It incorporates the challenges faced by fall detection algorithms in real life. A fall detection algorithm from Debard et al. was evaluated on this dataset. This evaluation showed that the dataset possesses extra challenges compared with other publicly available datasets. In this Letter, the dataset is discussed as well as the results of this preliminary evaluation of the fall detection algorithm. The dataset can be downloaded from www.kuleuven.be/advise/datasets.

  10. Correlations Between Life-Detection Techniques and Implications for Sampling Site Selection in Planetary Analog Missions

    NASA Astrophysics Data System (ADS)

    Gentry, Diana M.; Amador, Elena S.; Cable, Morgan L.; Chaudry, Nosheen; Cullen, Thomas; Jacobsen, Malene B.; Murukesan, Gayathri; Schwieterman, Edward W.; Stevens, Adam H.; Stockton, Amanda; Tan, George; Yin, Chang; Cullen, David C.; Geppert, Wolf

    2017-10-01

    We conducted an analog sampling expedition under simulated mission constraints to areas dominated by basaltic tephra of the Eldfell and Fimmvörðuháls lava fields (Iceland). Sites were selected to be "homogeneous" at a coarse remote sensing resolution (10-100 m) in apparent color, morphology, moisture, and grain size, with best-effort realism in numbers of locations and replicates. Three different biomarker assays (counting of nucleic-acid-stained cells via fluorescent microscopy, a luciferin/luciferase assay for adenosine triphosphate, and quantitative polymerase chain reaction (qPCR) to detect DNA associated with bacteria, archaea, and fungi) were characterized at four nested spatial scales (1 m, 10 m, 100 m, and >1 km) by using five common metrics for sample site representativeness (sample mean variance, group F tests, pairwise t tests, and the distribution-free rank sum H and u tests). Correlations between all assays were characterized with Spearman's rank test. The bioluminescence assay showed the most variance across the sites, followed by qPCR for bacterial and archaeal DNA; these results could not be considered representative at the finest resolution tested (1 m). Cell concentration and fungal DNA also had significant local variation, but they were homogeneous over scales of >1 km. These results show that the selection of life detection assays and the number, distribution, and location of sampling sites in a low biomass environment with limited a priori characterization can yield both contrasting and complementary results, and that their interdependence must be given due consideration to maximize science return in future biomarker sampling expeditions.

  11. Olfactory Function in Wave 2 of the National Social Life, Health, and Aging Project

    PubMed Central

    Wroblewski, Kristen E.; Schumm, L. Philip; Pinto, Jayant M.; Chen, Rachel C.; McClintock, Martha K.

    2014-01-01

    Objective. To investigate the sense of smell, including sensitivity and odor identification, and characterize the U.S. national prevalence of olfactory dysfunction in older adults, thereby facilitating further investigation of the substantial risks for older adults associated with this basic sensory ability. Method. The sense of smell was evaluated using the Olfactory Function Field Exam (OFFE), a measure designed specifically for field research, which assesses 3 components of olfaction: sensitivity to n-butanol (a standard testing odorant) and androstadienone (AND, a key social odor produced by humans), as well as the ability to identify odors. Respondents were randomly selected from the National Social Life, Health, and Aging Project Wave 2 sample to receive the OFFE (n = 2,304), and 2,212 consented to participate. Results. In the U.S. population aged 62–90, n-butanol detection ability was significantly worse at older ages (ordinal logistic regression, p < .001); however, there was no difference in detection ability between genders (p = .60). AND detection ability was also significantly worse at older ages (p = .003), but in contrast to n-butanol, women outperformed men (p = .001). As expected, odor identification ability was worse in older people than in younger (p < .001), and women were more accurate than men (p = .001). Discussion. We report for the first time 3 facets of olfactory function and its association with age and gender in a representative sample of U.S. older adults. Future analyses of these data are needed to elucidate the sense of smell’s role in physical, social, and mental health with aging. PMID:25360014

  12. Associations Among Individuals' Perceptions of Future Time, Individual Resources, and Subjective Well-Being in Old Age.

    PubMed

    Hoppmann, Christiane A; Infurna, Frank J; Ram, Nilam; Gerstorf, Denis

    2017-05-01

    Perceptions of future time are of key interest to aging research because of their implications for subjective well-being. Interestingly, perceptions about future time are only moderately associated with age when looking at the second half of life, pointing to a vast heterogeneity in future time perceptions among older adults. We examine associations between future time perceptions, age, and subjective well-being across two studies, including moderations by individual resources. Using data from the Berlin Aging Study (N = 516; Mage = 85 years), we link one operationalization (subjective nearness to death) and age to subjective well-being. Using Health and Retirement Study data (N = 2,596; Mage = 77 years), we examine associations of another future time perception indicator (subjective future life expectancy) and age with subjective well-being. Consistent across studies, perceptions of limited time left were associated with poorer subjective well-being (lower life satisfaction and positive affect; more negative affect and depressive symptoms). Importantly, individual resources moderated future time perception-subjective well-being associations with those of better health exhibiting reduced future time perception-subjective well-being associations. We discuss our findings in the context of the Model of Strength and Vulnerability Integration. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. A search for life on earth at 100 meter resolution

    NASA Technical Reports Server (NTRS)

    Sagan, C.; Wallace, D.

    1970-01-01

    A study of several thousand photos indicated approximately 1% of Gemini and Apollo photographs of the earth at 100 m resolution revealed signs of life; rectangular arrays due to human agricultural and urban territoriality, roads, canals, jet contrails, and industrial pollution. Potential false positives such as dunes, sand bars, and jet stream clouds abound. A curve was derived for the detectivity of contemporary life on earth, in a plot of ground resolution versus global coverage. A comparable biology on Mars would not have been detected by all observations of Mars through Mariner 7. Forthcoming Mars orbiter and lander imaging experiments hold significant promise of detecting life on Mars of contemporary terrestrial extent and advancement, should such life exist.

  14. Asteroids and Aliens

    NASA Technical Reports Server (NTRS)

    Ostro, S.

    1999-01-01

    Discussion of extraterrestrial life (ETL) and extraterrestrial intelligent life (ETI) is extraordinarily complex and mulitidisciplinary, in part because relevant questions involve both the origin/evolution of terrestrial life and the future of human civilization.

  15. Subsurface Feature Mapping of Mars using a High Resolution Ground Penetrating Radar System

    NASA Astrophysics Data System (ADS)

    Wu, T. S.; Persaud, D. M.; Preudhomme, M. A.; Jurg, M.; Smith, M. K.; Buckley, H.; Tarnas, J.; Chalumeau, C.; Lombard-Poirot, N.; Mann, B.

    2015-12-01

    As the closest Earth-like, potentially life-sustaining planet in the solar system, Mars' future of human exploration is more a question of timing than possibility. The Martian surface remains hostile, but its subsurface geology holds promise for present or ancient astrobiology and future habitation, specifically lava tube (pyroduct) systems, whose presence has been confirmed by HiRISE imagery.The location and characterization of these systems could provide a basis for understanding the evolution of the red planet and long-term shelters for future manned missions on Mars. To detect and analyze the subsurface geology of terrestrial bodies from orbit, a novel compact (smallsat-scale) and cost-effective approach called the High-resolution Orbiter for Mapping gEology by Radar (HOMER) has been proposed. Adapting interferometry techniques with synthetic aperture radar (SAR) to a ground penetrating radar system, a small satellite constellation is able to achieve a theoretical resolution of 50m from low-Mars orbit (LMO). Alongside this initial prototype design of HOMER, proposed data processing methodology and software and a Mars mission design are presented. This project was developed as part of the 2015 NASA Ames Academy for Space Exploration.

  16. Parametric Analysis of Life Support Systems for Future Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Swickrath, Michael J.; Anderson, Molly S.; Bagdigian, Bob M.

    2011-01-01

    The National Aeronautics and Space Administration is in a process of evaluating future targets for space exploration. In order to maintain the welfare of a crew during future missions, a suite of life support technology is responsible for oxygen and water generation, carbon dioxide control, the removal of trace concentrations of organic contaminants, processing and recovery of water, and the storage and reclamation of solid waste. For each particular life support subsystem, a variety competing technologies either exist or are under aggressive development efforts. Each individual technology has strengths and weaknesses with regard to launch mass, power and cooling requirements, volume of hardware and consumables, and crew time requirements for operation. However, from a system level perspective, the favorability of each life support architecture is better assessed when the sub-system technologies are analyzed in aggregate. In order to evaluate each specific life support system architecture, the measure of equivalent system mass (ESM) was employed to benchmark system favorability. Moreover, the results discussed herein will be from the context of loop-closure with respect to the air, water, and waste sub-systems. Specifically, closure relates to the amount of consumables mass that crosses the boundary of the vehicle over the lifetime of a mission. As will be demonstrated in this manuscript, the optimal level of loop closure is heavily dependent upon mission requirements such as duration and the level of extra-vehicular activity (EVA) performed. Sub-system level trades were also considered as a function of mission duration to assess when increased loop closure is practical. Although many additional factors will likely merit consideration in designing life support systems for future missions, the ESM results described herein provide a context for future architecture design decisions toward a flexible path program.

  17. Organics on Mars?

    NASA Astrophysics Data System (ADS)

    ten Kate, Inge L.

    2010-08-01

    Organics are expected to exist on Mars based on meteorite infall, in situ production, and any possible biological sources. Yet they have not been detected on the martian surface; are they there, or are we not capable enough to detect them? The Viking gas chromatograph-mass spectrometer did not detect organics in the headspace of heated soil samples with a detection limit of parts per billion. This null result strongly influenced the interpretation of the reactivity seen in the Viking biology experiments and led to the conclusion that life was not present and, instead, that there was some chemical reactivity in the soil. The detection of perchlorates in the martian soil by instruments on the Phoenix lander and the reports of methane in the martian atmosphere suggest that it may be time to reconsider the question of organics. The high-temperature oxidizing properties of perchlorate will promote combustion of organics in pyrolytic experiments and may have affected the ability of both Phoenix's organic analysis experiment and the Viking mass spectrometer experiments to detect organics. So the question of organics on Mars remains open. A primary focus of the upcoming Mars Science Laboratory will be the detection and identification of organic molecules by means of thermal volatilization, followed by gas chromatography - mass spectrometry - as was done on Viking. However, to enhance organic detectability, some of the samples will be processed with liquid derivatization agents that will dissolve organics from the soil before pyrolysis, which may separate them from the soil perchlorates. Nonetheless, the problem of organics on Mars is not solved, and for future missions other organic detection techniques should therefore be considered as well.

  18. Classification methods to detect sleep apnea in adults based on respiratory and oximetry signals: a systematic review.

    PubMed

    Uddin, M B; Chow, C M; Su, S W

    2018-03-26

    Sleep apnea (SA), a common sleep disorder, can significantly decrease the quality of life, and is closely associated with major health risks such as cardiovascular disease, sudden death, depression, and hypertension. The normal diagnostic process of SA using polysomnography is costly and time consuming. In addition, the accuracy of different classification methods to detect SA varies with the use of different physiological signals. If an effective, reliable, and accurate classification method is developed, then the diagnosis of SA and its associated treatment will be time-efficient and economical. This study aims to systematically review the literature and present an overview of classification methods to detect SA using respiratory and oximetry signals and address the automated detection approach. Sixty-two included studies revealed the application of single and multiple signals (respiratory and oximetry) for the diagnosis of SA. Both airflow and oxygen saturation signals alone were effective in detecting SA in the case of binary decision-making, whereas multiple signals were good for multi-class detection. In addition, some machine learning methods were superior to the other classification methods for SA detection using respiratory and oximetry signals. To deal with the respiratory and oximetry signals, a good choice of classification method as well as the consideration of associated factors would result in high accuracy in the detection of SA. An accurate classification method should provide a high detection rate with an automated (independent of human action) analysis of respiratory and oximetry signals. Future high-quality automated studies using large samples of data from multiple patient groups or record batches are recommended.

  19. Organics on Mars?

    PubMed

    ten Kate, Inge L

    2010-01-01

    Organics are expected to exist on Mars based on meteorite infall, in situ production, and any possible biological sources. Yet they have not been detected on the martian surface; are they there, or are we not capable enough to detect them? The Viking gas chromatograph-mass spectrometer did not detect organics in the headspace of heated soil samples with a detection limit of parts per billion. This null result strongly influenced the interpretation of the reactivity seen in the Viking biology experiments and led to the conclusion that life was not present and, instead, that there was some chemical reactivity in the soil. The detection of perchlorates in the martian soil by instruments on the Phoenix lander and the reports of methane in the martian atmosphere suggest that it may be time to reconsider the question of organics. The high-temperature oxidizing properties of perchlorate will promote combustion of organics in pyrolytic experiments and may have affected the ability of both Phoenix's organic analysis experiment and the Viking mass spectrometer experiments to detect organics. So the question of organics on Mars remains open. A primary focus of the upcoming Mars Science Laboratory will be the detection and identification of organic molecules by means of thermal volatilization, followed by gas chromatography-mass spectrometry--as was done on Viking. However, to enhance organic detectability, some of the samples will be processed with liquid derivatization agents that will dissolve organics from the soil before pyrolysis, which may separate them from the soil perchlorates. Nonetheless, the problem of organics on Mars is not solved, and for future missions other organic detection techniques should therefore be considered as well.

  20. NASA Space Technology Draft Roadmap Area 13: Ground and Launch Systems Processing

    NASA Technical Reports Server (NTRS)

    Clements, Greg

    2011-01-01

    This slide presentation reviews the technology development roadmap for the area of ground and launch systems processing. The scope of this technology area includes: (1) Assembly, integration, and processing of the launch vehicle, spacecraft, and payload hardware (2) Supply chain management (3) Transportation of hardware to the launch site (4) Transportation to and operations at the launch pad (5) Launch processing infrastructure and its ability to support future operations (6) Range, personnel, and facility safety capabilities (7) Launch and landing weather (8) Environmental impact mitigations for ground and launch operations (9) Launch control center operations and infrastructure (10) Mission integration and planning (11) Mission training for both ground and flight crew personnel (12) Mission control center operations and infrastructure (13) Telemetry and command processing and archiving (14) Recovery operations for flight crews, flight hardware, and returned samples. This technology roadmap also identifies ground, launch and mission technologies that will: (1) Dramatically transform future space operations, with significant improvement in life-cycle costs (2) Improve the quality of life on earth, while exploring in co-existence with the environment (3) Increase reliability and mission availability using low/zero maintenance materials and systems, comprehensive capabilities to ascertain and forecast system health/configuration, data integration, and the use of advanced/expert software systems (4) Enhance methods to assess safety and mission risk posture, which would allow for timely and better decision making. Several key technologies are identified, with a couple of slides devoted to one of these technologies (i.e., corrosion detection and prevention). Development of these technologies can enhance life on earth and have a major impact on how we can access space, eventually making routine commercial space access and improve building and manufacturing, and weather forecasting for example for the effect of these process improvements on our daily lives.

  1. A Novel Method for Satellite Maneuver Prediction

    NASA Astrophysics Data System (ADS)

    Shabarekh, C.; Kent-Bryant, J.; Keselman, G.; Mitidis, A.

    2016-09-01

    A space operations tradecraft consisting of detect-track-characterize-catalog is insufficient for maintaining Space Situational Awareness (SSA) as space becomes increasingly congested and contested. In this paper, we apply analytical methodology from the Geospatial-Intelligence (GEOINT) community to a key challenge in SSA: predicting where and when a satellite may maneuver in the future. We developed a machine learning approach to probabilistically characterize Patterns of Life (PoL) for geosynchronous (GEO) satellites. PoL are repeatable, predictable behaviors that an object exhibits within a context and is driven by spatio-temporal, relational, environmental and physical constraints. An example of PoL are station-keeping maneuvers in GEO which become generally predictable as the satellite re-positions itself to account for orbital perturbations. In an earlier publication, we demonstrated the ability to probabilistically predict maneuvers of the Galaxy 15 (NORAD ID: 28884) satellite with high confidence eight days in advance of the actual maneuver. Additionally, we were able to detect deviations from expected PoL within hours of the predicted maneuver [6]. This was done with a custom unsupervised machine learning algorithm, the Interval Similarity Model (ISM), which learns repeating intervals of maneuver patterns from unlabeled historical observations and then predicts future maneuvers. In this paper, we introduce a supervised machine learning algorithm that works in conjunction with the ISM to produce a probabilistic distribution of when future maneuvers will occur. The supervised approach uses a Support Vector Machine (SVM) to process the orbit state whereas the ISM processes the temporal intervals between maneuvers and the physics-based characteristics of the maneuvers. This multiple model approach capitalizes on the mathematical strengths of each respective algorithm while incorporating multiple features and inputs. Initial findings indicate that the combined approach can predict 70% of maneuver times within 3 days of a true maneuver time and 22% of maneuver times within 24 hours of a maneuver. We have also been able to detect deviations from expected maneuver patterns up to a week in advance.

  2. Impact of Multimorbidity on Disability and Quality of Life in the Spanish Older Population

    PubMed Central

    Garin, Noe; Olaya, Beatriz; Moneta, Maria Victoria; Miret, Marta; Lobo, Antonio; Ayuso-Mateos, Jose Luis; Haro, Josep Maria

    2014-01-01

    Background Population aging is closely related to high prevalence of chronic conditions in developed countries. In this context, health care policies aim to increase life span cost-effectively while maintaining quality of life and functional ability. There is still, however, a need for further understanding of how chronic conditions affect these health aspects. The aim of this paper is to assess the individual and combined impact of chronic physical and mental conditions on quality of life and disability in Spain, and secondly to show gender trends. Methods Cross-sectional data were collected from the COURAGE study. A total of 3,625 participants over 50 years old from Spain were included. Crude and adjusted multiple linear regressions were conducted to detect associations between individual chronic conditions and disability, and between chronic conditions and quality of life. Separate models were used to assess the influence of the number of diseases on the same variables. Additional analogous regressions were performed for males and females. Results All chronic conditions except hypertension were statistically associated with poor results in quality of life and disability. Depression, anxiety and stroke were found to have the greatest impact on outcomes. The number of chronic conditions was associated with substantially lower quality of life [β for 4+ diseases: −18.10 (−20.95,−15.25)] and greater disability [β for 4+ diseases: 27.64 (24.99,30.29]. In general, women suffered from higher rates of multimorbidity and poorer results in quality of life and disability. Conclusions Chronic conditions impact greatly on quality of life and disability in the older Spanish population, especially when co-occurring diseases are added. Multimorbidity considerations should be a priority in the development of future health policies focused on quality of life and disability. Further studies would benefit from an expanded selection of diseases. Policies should also deal with gender idiosyncrasy in certain cases. PMID:25375890

  3. NDE: A key to engine rotor life prediction

    NASA Technical Reports Server (NTRS)

    Doherty, J. E.

    1977-01-01

    A key ingredient in the establishment of safe life times for critical components is the means of reliably detecting flaws which may potentially exist. Currently used nondestructive evaluation procedures are successful in detecting life limiting defects; however, the development of automated and computer aided NDE technology permits even greater assurance of flight safety.

  4. An ESA roadmap for geobiology in space exploration

    NASA Astrophysics Data System (ADS)

    Cousins, Claire R.; Cockell, Charles S.

    2016-01-01

    Geobiology, and in particular mineral-microbe interactions, has a significant role to play in current and future space exploration. This includes the search for biosignatures in extraterrestrial environments, and the human exploration of space. Microorganisms can be exploited to advance such exploration, such as through biomining, maintenance of life-support systems, and testing of life-detection instrumentation. In view of these potential applications, a European Space Agency (ESA) Topical Team "Geobiology in Space Exploration" was developed to explore these applications, and identify research avenues to be investigated to support this endeavour. Through community workshops, a roadmap was produced, with which to define future research directions via a set of 15 recommendations spanning three key areas: Science, Technology, and Community. These roadmap recommendations identify the need for research into: (1) new terrestrial space-analogue environments; (2) community level microbial-mineral interactions; (3) response of biofilms to the space environment; (4) enzymatic and biochemical mineral interaction; (5) technical refinement of instrumentation for space-based microbiology experiments, including precursor flight tests; (6) integration of existing ground-based planetary simulation facilities; (7) integration of fieldsite biogeography with laboratory- and field-based research; (8) modification of existing planetary instruments for new geobiological investigations; (9) development of in situ sample preparation techniques; (10) miniaturisation of existing analytical methods, such as DNA sequencing technology; (11) new sensor technology to analyse chemical interaction in small volume samples; (12) development of reusable Lunar and Near Earth Object experimental platforms; (13) utility of Earth-based research to enable the realistic pursuit of extraterrestrial biosignatures; (14) terrestrial benefits and technological spin-off from existing and future space-based geobiology investigations; and (15) new communication avenues between space agencies and terrestrial research organisations to enable this impact to be developed.

  5. Introduction to Life Support Systems

    NASA Technical Reports Server (NTRS)

    Perry, Jay

    2017-01-01

    This course provides an introduction to the design and development of life support systems to sustain humankind in the harsh environment of space. The life support technologies necessary to provide a respirable atmosphere and clean drinking water are emphasized in the course. A historical perspective, beginning with open loop systems employed aboard the earliest crewed spacecraft through the state-of-the-art life support technology utilized aboard the International Space Station today, will provide a framework for students to consider applications to possible future exploration missions and destinations which may vary greatly in duration and scope. Development of future technologies as well as guiding requirements for designing life support systems for crewed exploration missions beyond low-Earth orbit are also considered in the course.

  6. Identity, prudential concern, and extended lives.

    PubMed

    Glannon, Walter

    2002-06-01

    Recent advances in human genetics suggest that it may become possible to genetically manipulate telomerase and embryonic stem cells to alter the mechanisms of aging and extend the human life span. But a life span significantly longer than the present norm would be undesirable because it would severely weaken the connections between past- and future-oriented mental states and turn the psychological grounds for personal identity and prudential concern for our future selves. In addition, the collective effects of longer lives might lower the quality of life for all people. These two problems provide reasons against genetic manipulation of cells to alter the length of the human life span.

  7. Children of Misfortune: Early Adversity and Cumulative Inequality in Perceived Life Trajectories1

    PubMed Central

    Schafer, Markus H.; Ferraro, Kenneth F.; Mustillo, Sarah A.

    2011-01-01

    Adversity early in life may alter pathways of aging, but what interpretive processes can soften the blow of early insults? Drawing from cumulative inequality theory, the authors analyze trajectories of life evaluations and then consider whether early adversity offsets favorable expectations for the future. Results reveal that early adversity contributes to more negative views of the past but rising expectations for the future. Early adversity also has enduring effects on life evaluations, offsetting the influence of buoyant expectations. The findings draw attention to the limits of human agency under the constraints of early adversity—a process described as biographical structuration. PMID:21648247

  8. Vital signs of life on distant worlds

    NASA Astrophysics Data System (ADS)

    2003-01-01

    Ozone in a planet's spectrum may indicate the presence of life hi-res Size hi-res: 673 kb Credits: ESA 2001. Illustration by Medialab Ozone in a planet's spectrum may indicate the presence of life Darwin will most probably look for the spectral signature of ozone, which is unlikely to exist in any quantity for any length of time in the atmosphere of a planet that is not home to life. The background image is a view of Earth seen by the Apollo 17 crew as they traveled toward the Moon. The white patch at the bottom is Antarctica. Unobscured by clouds, Africa and the Arabian Peninsula are visible at the top of this image. The large island off the coast of Africa is the Malagasy Republic. Looking for Earth-like planets hi-res Size hi-res: 2106 Kb Credits: ESA 2002. Illustration by Medialab Looking for Earth-like planets Darwin has six telescopes that analyse the atmospheres of Earth-like planets Darwin's flotilla hi-res Size hi-res: 902 Kb Credits: ESA 2002. Illustration by Medialab Darwin's flotilla Darwin's six telescopes, a central view-combining spacecraft, and communication satellite (shown bottom left) Our radio and television broadcasts have been leaking into space since the 1930s, when the first powerful emitters were constructed. However, you can do things the other way around as well. The Search for Extraterrestrial Intelligence (SETI) has used radio telescopes to listen to the cosmos for similar signals. Nowadays, astrobiologists are pinpointing more subtle signs that all life, not just intelligent life, might radiate into space. They call these telltale signatures 'biomarkers'. When ESA's Darwin mission begins sending back data in the next decade, biomarkers will help indicate whether neighbouring planets are inhabited. If we only used radio waves as markers of life, this would exclude all forms of life that have not yet developed the means to emit radio waves. Life has been around for thousands of millions of years, but human beings have used radio waves for less than a century. Malcolm Fridlund, Project Scientist for ESA's Darwin mission says, "If other planets follow the Earth's pattern, it is much more likely that they will be inhabited by dinosaurs or even bacteria than by something that can count." In the 1970s, the British scientist James Lovelock pointed out that, just by breathing, life affects the composition of the Earth's atmosphere. He suggested looking for similar effects as a way to search with telescopes for life on other planets. You can study the composition of an atmosphere by splitting a planet's light into a rainbow of colours. This 'spectrum' will contain dark lines made by various chemicals in the planet's atmosphere. Darwin's strategy is to look for oxygen because oxygen is used by some life forms and produced as waste by others. Scientists believe that without life, all free oxygen in a planet's atmosphere would disappear within just four million years, because it reacts so easily with other chemicals. "The best estimates suggest that Darwin will be able to detect the build-up of oxygen caused within a few hundred million years of life's origin," says Fridlund. Although Darwin will not detect oxygen directly, it will 'see' ozone, a form of oxygen. It will also see carbon dioxide, water, and, in certain cases, methane. Fridlund says, "The general consensus is that if we find ozone, liquid water, and carbon dioxide simultaneously, it will be a very strong indicator of life's presence." The work will not stop once Darwin completes its survey of the nearest several thousand star-planet systems. Once it finds a living planet, the race will be on to understand the nature of its life forms. That means searching for more specific biomarkers. In future space missions, for example, scientists may use chlorophyll as a biomarker. This molecule allows plants and certain bacteria to use light as an energy source. "Finding the next generation of biomarkers is a very active field of research at the moment," says Fridlund. He can see a future in which space telescopes look for intelligent civilisations by searching for industrial pollution in a planet's atmosphere. This may sound like science fiction but for now, oxygen, carbon dioxide, and water will be good enough as indicators of life.

  9. The Meaning of the Future for the Oldest Old

    ERIC Educational Resources Information Center

    Nilsson, Margareta; Sarvimaki, Anneli; Ekman, Sirkka-Liisa

    2003-01-01

    The aim of the study was to highlight the oldest old people's view of their future from a perspective of philosophy of life. Data was collected by means of life story interviews with 15 persons. The analysis was performed by utilizing a phenomenological hermeneutic method and the interpretation was guided by the conceptual framework of philosophy…

  10. Spectroscopy and viability of Bacillus subtilis spores after ultraviolet irradiation: implications for the detection of potential bacterial life on Europa.

    PubMed

    Noell, Aaron C; Ely, Tucker; Bolser, Diana K; Darrach, Halley; Hodyss, Robert; Johnson, Paul V; Hein, Jeffrey D; Ponce, Adrian

    2015-01-01

    One of the most habitable environments in the Solar System outside of Earth may exist underneath the ice on Europa. In the near future, our best chance to look for chemical signatures of a habitable environment (or life itself) will likely be at the inhospitable icy surface. Therefore, it is important to understand the ability of organic signatures of life and life itself to persist under simulated europan surface conditions. Toward that end, this work examined the UV photolysis of Bacillus subtilis spores and their chemical marker dipicolinic acid (DPA) at temperatures and pressures relevant to Europa. In addition, inactivation curves for the spores at 100 K, 100 K covered in one micron of ice, and 298 K were measured to determine the probability for spore survival at the surface. Fourier transform infrared spectra of irradiated DPA showed a loss of carboxyl groups to CO2 as expected but unexpectedly showed significant opening of the heterocyclic ring, even for wavelengths>200 nm. Both DPA and B. subtilis spores showed identical unknown spectral bands of photoproducts after irradiation, further highlighting the importance of DPA in the photochemistry of spores. Spore survival was enhanced at 100 K by ∼5× relative to 298 K, but 99.9% of spores were still inactivated after the equivalent of ∼25 h of exposure on the europan surface.

  11. Reward and punishment learning in daily life: A replication study.

    PubMed

    Heininga, Vera E; van Roekel, Eeske; Wichers, Marieke; Oldehinkel, Albertine J

    2017-01-01

    Day-to-day experiences are accompanied by feelings of Positive Affect (PA) and Negative Affect (NA). Implicitly, without conscious processing, individuals learn about the reward and punishment value of each context and activity. These associative learning processes, in turn, affect the probability that individuals will re-engage in such activities or seek out that context. So far, implicit learning processes are almost exclusively investigated in controlled laboratory settings and not in daily life. Here we aimed to replicate the first study that investigated implicit learning processes in real life, by means of the Experience Sampling Method (ESM). That is, using an experience-sampling study with 90 time points (three measurements over 30 days), we prospectively measured time spent in social company and amount of physical activity as well as PA and NA in the daily lives of 18-24-year-old young adults (n = 69 with anhedonia, n = 69 without anhedonia). Multilevel analyses showed a punishment learning effect with regard to time spent in company of friends, but not a reward learning effect. Neither reward nor punishment learning effects were found with regard to physical activity. Our study shows promising results for future research on implicit learning processes in daily life, with the proviso of careful consideration of the timescale used. Short-term retrospective ESM design with beeps approximately six hours apart may suffer from mismatch noise that hampers accurate detection of associative learning effects over time.

  12. A dark past, a restrained present, and an apocalyptic future: time perspective, personality, and life satisfaction among anorexia nervosa patients

    PubMed Central

    Granjard, Alexandre; Lundblad, Suzanna; Archer, Trevor

    2017-01-01

    Background Despite reporting low levels of well-being, anorexia nervosa patients express temperament traits (e.g., extraversion and persistence) necessary for high levels of life satisfaction. Nevertheless, among individuals without eating disorders, a balanced organization of the flow of time, influences life satisfaction beyond temperamental dispositions. A balanced time perspective is defined as: high past positive, low past negative, high present hedonistic, low present fatalistic, and high future. We investigated differences in time perspective dimensions, personality traits, and life satisfaction between anorexia nervosa patients and matched controls. We also investigated if the personality traits and the outlook on time associated to positive levels of life satisfaction among controls also predicted anorexia patients’ life satisfaction. Additionally, we investigated if time perspective dimensions predicted life satisfaction beyond personality traits among both patients and controls. Method A total of 88 anorexia nervosa patients from a clinic in the West of Sweden and 111 gender-age matched controls from a university in the West of Sweden participated in the Study. All participants responded to the Zimbardo Time Perspective Inventory, the Ten Item Personality Inventory, and the Temporal Satisfaction with Life Scale. Results A t-test showed that patients scored higher in the past negative, the present fatalistic, and the future dimensions, lower in the past positive and the present hedonistic dimensions, higher in conscientiousness, extraversion, and agreeableness, and lower in life satisfaction. Regression analyses showed that life satisfaction was predicted by openness to experience and emotional stability for controls and by emotional stability among patients. When time dimensions were entered in the regression, emotional stability and the past negative and past positive time dimensions predicted life satisfaction among controls, but only the past positive and present hedonistic time dimensions predicted life satisfaction among patients. Conclusion Anorexia patients were less satisfied with life despite being more conscientious, social, and agreeable than controls. Moreover, compared to controls, patients had an unbalanced time perspective: a dark view of the past (i.e., high past negative), a restrained present (i.e., low present hedonistic) and an apocalyptic view of the future (i.e., high present fatalistic). It is plausible to suggest that, therapeutic interventions should focus on empowering patients to cultivate a sentimental and positive view of the past (i.e., high past positive) and the desire to experience pleasure without concern for future consequences (i.e., high present hedonistic) so that they can make self-directed and flexible choices for their own well-being. Such interventions might have effects on life satisfaction beyond the patients’ temperamental disposition. PMID:28929023

  13. Aging Prisoners’ Treatment Selection: Does Prospect Theory Enhance Understanding of End-of-Life Medical Decisions?

    PubMed Central

    Phillips, Laura L.; Allen, Rebecca S.; Harris, Grant M.; Presnell, Andrew H.; DeCoster, Jamie; Cavanaugh, Ronald

    2011-01-01

    Purpose: With the rapid growth in the older inmate population and the economic impact of end-of-life treatments within the cash-strapped prison system, consideration should be given to inmate treatment preferences. We examined end-of-life treatment preferences and days of desired life for several health scenarios among male inmates incarcerated primarily for murder. Design and Methods: Inmates over the age of 45 who passed a cognitive screening completed face-to-face interviews (N = 94; mean age = 57.7; SD = 10.68). Results: We found a 3-way interaction indicating that the effect of parole expectation on desire for life-sustaining treatment varied by race/ethnicity and treatment. Minority inmates desired cardiopulmonary resuscitation or feeding tubes only if they believed that they would be paroled. The model predicting desire for palliative care was not significant. Future days of desired life were related to prospective health condition, fear of death, negative affect, and trust in prison health care. Caucasian inmates expressed a desire for more days of life out of prison, whereas minority inmates did not differ in days of desired life either in or out of prison. Minorities wanted more days of life than Caucasians but only if they believed that they would be paroled. Implications: End-of-life care for the burgeoning inmate population is costly, and active life-sustaining treatments may not be desired under certain conditions. Specifically, expectation of parole but not current functional ability interacts with future illness condition in explaining inmates’ desire for active treatment or days of desired life in the future. PMID:21593007

  14. Heritability and social brood effects on personality in juvenile and adult life-history stages in a wild passerine.

    PubMed

    Winney, I S; Schroeder, J; Nakagawa, S; Hsu, Y-H; Simons, M J P; Sánchez-Tójar, A; Mannarelli, M-E; Burke, T

    2018-01-01

    How has evolution led to the variation in behavioural phenotypes (personalities) in a population? Knowledge of whether personality is heritable, and to what degree it is influenced by the social environment, is crucial to understanding its evolutionary significance, yet few estimates are available from natural populations. We tracked three behavioural traits during different life-history stages in a pedigreed population of wild house sparrows. Using a quantitative genetic approach, we demonstrated heritability in adult exploration, and in nestling activity after accounting for fixed effects, but not in adult boldness. We did not detect maternal effects on any traits, but we did detect a social brood effect on nestling activity. Boldness, exploration and nestling activity in this population did not form a behavioural syndrome, suggesting that selection could act independently on these behavioural traits in this species, although we found no consistent support for phenotypic selection on these traits. Our work shows that repeatable behaviours can vary in their heritability and that social context influences personality traits. Future efforts could separate whether personality traits differ in heritability because they have served specific functional roles in the evolution of the phenotype or because our concept of personality and the stability of behaviour needs to be revised. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  15. Prescribed journeys through life: Cultural differences in mental time travel between Middle Easterners and Scandinavians.

    PubMed

    Ottsen, Christina Lundsgaard; Berntsen, Dorthe

    2015-12-01

    Mental time travel is the ability to remember past events and imagine future events. Here, 124 Middle Easterners and 128 Scandinavians generated important past and future events. These different societies present a unique opportunity to examine effects of culture. Findings indicate stronger influence of normative schemas and greater use of mental time travel to teach, inform and direct behaviour in the Middle East compared with Scandinavia. The Middle Easterners generated more events that corresponded to their cultural life script and that contained religious words, whereas the Scandinavians reported events with a more positive mood impact. Effects of gender were mainly found in the Middle East. Main effects of time orientation largely replicated recent findings showing that simulation of future and past events are not necessarily parallel processes. In accordance with the notion that future simulations rely on schema-based construction, important future events showed a higher overlap with life script events than past events in both cultures. In general, cross-cultural discrepancies were larger in future compared with past events. Notably, the high focus in the Middle East on sharing future events to give cultural guidance is consistent with the increased adherence to normative scripts found in this culture. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Extended Survival of Several Microorganisms and Relevant Amino Acid Biomarkers under Simulated Martian Surface Conditions as a Function of Burial Depth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Adam; Pratt, L.M.; Vishnivetskaya, Tatiana A

    2011-01-01

    Recent orbital and landed missions have provided substantial evidence for ancient liquid water on the martian surface as well as evidence of more recent sedimentary deposits formed by water and/or ice. These observations raise serious questions regarding an independent origin and evolution of life on Mars. Future missions seek to identify signs of extinct martian biota in the form of biomarkers or morphological characteristics, but the inherent danger of spacecraft-borne terrestrial life makes the possibility of forward contamination a serious threat not only to the life detection experiments, but also to any extant martian ecosystem. A variety of cold andmore » desiccation-tolerant organisms were exposed to 40 days of simulated martian surface conditions while embedded within several centimeters of regolith simulant in order to ascertain the plausibility of such organisms survival as a function of environmental parameters and burial depth. Relevant amino acid biomarkers associated with terrestrial life were also analyzed in order to understand the feasibility of detecting chemical evidence for previous biological activity. Results indicate that stresses due to desiccation and oxidation were the primary deterrent to organism survival, and that the effects of UV-associated damage, diurnal temperature variations, and reactive atmospheric species were minimal. Organisms with resistance to desiccation and radiation environments showed increased levels of survival after the experiment compared to organisms characterized as psychrotolerant. Amino acid analysis indicated the presence of an oxidation mechanism that migrated downward through the samples during the course of the experiment and likely represents the formation of various oxidizing species at mineral surfaces as water vapor diffused through the regolith. Current sterilization protocols may specifically select for organisms best adapted to survival at the martian surface, namely species that show tolerance to radical-induced oxidative damage and low water activity environments. Additionally, any hypothetical martian ecosystems may have evolved similar physiological traits that allow sporadic metabolism during periods of increased water activity.« less

  17. Biotechnology Approaches to Life Detection

    NASA Technical Reports Server (NTRS)

    Steele, Andrew; McKay, David; Schweitzer, Mary

    2001-01-01

    The direct detection of organic biomarkers for living or fossil microbes on Mars by an in situ instrument is a worthy goal for future lander missions. Several new and innovative biotechnology approaches are being explored. Firstly we have proposed an instrument based on immunological reactions to specific antibodies to cause activation of fluorescent stains. Antibodies are raised or acquired to a variety of general and specific substances that might be in Mars soil. These antibodies are then combined with various fluorescent stains and applied to micron sized numbered spots on a small (2-3 cm) test plate where they become firmly attached after freeze drying. Using technology that has been developed for gene mining in DNA technology up to 10,000 tests per square inch can now be applied to a test plate. On Mars or the planet/moon of interest, a sample of soil from a trench or drill core is extracted with water and/or an organic solvent and ultrasonication and then applied to the test plate. Any substance, which has an antibody on the test plate, will react with its antibody and activate its fluorescent stain. At the moment a small UV light source will illuminate the test plate, which is observed with a small CCD camera, although other detection systems will be applied. The numbered spots that fluoresce indicate the presence of the tested-for substance, and the intensity indicates relative amounts. Furthermore with up to a thousand test plates available false positives and several variations of antibody can also be screened for. The entire instrument can be quite small and light, on the order of 10 cm in each dimension. A possible choice for light source may be small UV lasers at several wavelengths. Some of the wells or spots can contain simply standard fluorescent stains used to detect live cells, dead cells, DNA, etc. The stains in these spots may be directly activated, with no antibodies being necessary. The proposed system will look for three classes of biomarkers: those from extant life, such as DNA, those from extinct life such as hopanes, and those from organic compounds not necessarily associated with life such as PAHs, rocket exhaust contamination and other a/pre-biotic chemicals. Both monoclonal and polyclonal antibodies can be used. Monoclonal antibodies react with a very specific compound, but polyclonal antibodies may react to any of a whole family of compounds. Furthermore the technique of phage display to raise antibodies against classically non-antigenic molecules is also being considered. Additional information is contained in the original extended abstract.

  18. The impact of neighborhood factors on the well-being of survivors of intimate partner violence over time.

    PubMed

    Beeble, Marisa L; Sullivan, Cris M; Bybee, Deborah

    2011-06-01

    Intimate partner violence (IPV) is a pervasive social problem impacting the psychological well-being of millions of US women annually. The extant literature draws our attention to the devastating mental health effects of IPV, but largely overlooks how ecological factors may further explain survivors' well-being. This study examined how neighborhood disadvantage may contribute to survivors' compromised well-being, in addition to the abuse women experienced. Neighborhood disorder and fear of victimization significantly impacted survivors' well-being, over and above abuse. Although between-women effects of neighborhood disorder and fear were unrelated to change in women's depression or quality of life (QOL), significant within-woman effects were detected. Change in neighborhood disorder was negatively associated with change in QOL, and this relationship was fully mediated by fear. While no direct relationship between change in neighborhood disorder and depression was detected, an indirect effect through survivors' fear was revealed. Implications for future research and practice are discussed.

  19. Multimodality Imaging in Cardiooncology

    PubMed Central

    Pizzino, Fausto; Vizzari, Giampiero; Qamar, Rubina; Bomzer, Charles; Carerj, Scipione; Khandheria, Bijoy K.

    2015-01-01

    Cardiotoxicity represents a rising problem influencing prognosis and quality of life of chemotherapy-treated patients. Anthracyclines and trastuzumab are the drugs most commonly associated with development of a cardiotoxic effect. Heart failure, myocardial ischemia, hypertension, myocarditis, and thrombosis are typical manifestation of cardiotoxicity by chemotherapeutic agents. Diagnosis and monitoring of cardiac side-effects of cancer treatment is of paramount importance. Echocardiography and nuclear medicine methods are widely used in clinical practice and left ventricular ejection fraction is the most important parameter to asses myocardial damage secondary to chemotherapy. However, left ventricular ejection decrease is a delayed phenomenon, occurring after a long stage of silent myocardial damage that classic imaging methods are not able to detect. New imaging techniques including three-dimensional echocardiography, speckle tracking echocardiography, and cardiac magnetic resonance have demonstrated high sensitivity in detecting the earliest alteration of left ventricular function associated with future development of chemotherapy-induced cardiomyopathy. Early diagnosis of cardiac involvement in cancer patients can allow for timely and adequate treatment management and the introduction of cardioprotective strategies. PMID:26300915

  20. A randomized controlled trial of a telehealth parenting intervention: A mixed-disability trial.

    PubMed

    Hinton, Sharon; Sheffield, Jeanie; Sanders, Matthew R; Sofronoff, Kate

    2017-06-01

    The quality of parenting a child receives has a major impact on development, wellbeing and future life opportunities. This study examined the efficacy of Triple P Online - Disability (TPOL-D) a telehealth intervention for parents of children with a disability. Ninety-eight parents and carers of children aged 2-12 years diagnosed with a range of developmental, intellectual and physical disabilities were randomly assigned to either the intervention (51) or treatment-as-usual (47) control group. At post-intervention parents receiving the TPOL-D intervention demonstrated significant improvements in parenting practices and parenting self-efficacy, however a significant change in parent-reported child behavioral and emotional problems was not detected. At 3-month follow up intervention gains were maintained and/or enhanced. A significant decrease in parent-reported child behavioral and emotional problems was also detected at this time. The results indicate that TPOL-D is a promising telehealth intervention for a mixed-disability group. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Detection of martian amino acids by chemical derivatization coupled to gas chromatography: in situ and laboratory analysis.

    PubMed

    Rodier, C; Vandenabeele-Trambouze, O; Sternberg, R; Coscia, D; Coll, P; Szopa, C; Raulin, F; Vidal-Madjar, C; Cabane, M; Israel, G; Grenier-Loustalot, M F; Dobrijevic, M; Despois, D

    2001-01-01

    If there is, or ever was, life in our solar system beyond the Earth, Mars is the most likely place to search for. Future space missions will have then to take into account the detection of prebiotic molecules or molecules of biological significance such as amino acids. Techniques of analysis used for returned samples have to be very sensitive and avoid any chemical or biological contamination whereas in situ techniques have to be automated, fast and low energy consuming. Several possible methods could be used for in situ amino acid analyses on Mars, but gas chromatography would likely be the most suitable. Returned samples could be analyzed by any method in routine laboratory use such as gas chromatography, already successfully performed for analyses of organic matter including amino acids from martian meteorites. The derivatization step, which volatilizes amino acids to perform both in situ and laboratory analysis by gas chromatography, is discussed here. c2001 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  2. Possible complex organic compounds on Mars.

    PubMed

    Kobayashi, K; Sato, T; Kajishima, S; Kaneko, T; Ishikawa, Y; Saito, T

    1997-01-01

    It is suggested that primitive Mars had somehow similar environments as primitive Earth. If life was born on the primitive earth using organic compounds which were produced from the early Earth environment, the same types of organic compounds were also formed on primitive Mars. Such organic compounds might have been preserved on Mars still now. We are studying possible organic formation on primitive and present Mars. A gaseous mixture of CO2, CO, N2 and H2O with various mixing ratios were irradiated with high energy protons (major components of cosmic rays). Hydrogen cyanide and formaldehyde were detected among volatile products, and yellow-brown-colored water-soluble non-volatile substances were produced, which gave amino acids after acid-hydrolysis. Major part of "amino acid precursors" were not simple molecules like aminonitriles, but complex compounds which eluted earlier than free amino acids in cation-exchange HPLC. These organic compounds should be major targets in the future Mars mission. Strategy for the detection of the complex organics on Mars will be discussed.

  3. Hybridization-based detection of Helicobacter pylori at human body temperature using advanced locked nucleic acid (LNA) probes.

    PubMed

    Fontenete, Sílvia; Guimarães, Nuno; Leite, Marina; Figueiredo, Céu; Wengel, Jesper; Filipe Azevedo, Nuno

    2013-01-01

    The understanding of the human microbiome and its influence upon human life has long been a subject of study. Hence, methods that allow the direct detection and visualization of microorganisms and microbial consortia (e.g. biofilms) within the human body would be invaluable. In here, we assessed the possibility of developing a variant of fluorescence in situ hybridization (FISH), named fluorescence in vivo hybridization (FIVH), for the detection of Helicobacter pylori. Using oligonucleotide variations comprising locked nucleic acids (LNA) and 2'-O-methyl RNAs (2'OMe) with two types of backbone linkages (phosphate or phosphorothioate), we were able to successfully identify two probes that hybridize at 37 °C with high specificity and sensitivity for H. pylori, both in pure cultures and in gastric biopsies. Furthermore, the use of this type of probes implied that toxic compounds typically used in FISH were either found to be unnecessary or could be replaced by a non-toxic substitute. We show here for the first time that the use of advanced LNA probes in FIVH conditions provides an accurate, simple and fast method for H. pylori detection and location, which could be used in the future for potential in vivo applications either for this microorganism or for others.

  4. Hybridization-Based Detection of Helicobacter pylori at Human Body Temperature Using Advanced Locked Nucleic Acid (LNA) Probes

    PubMed Central

    Fontenete, Sílvia; Guimarães, Nuno; Leite, Marina; Figueiredo, Céu; Wengel, Jesper; Filipe Azevedo, Nuno

    2013-01-01

    The understanding of the human microbiome and its influence upon human life has long been a subject of study. Hence, methods that allow the direct detection and visualization of microorganisms and microbial consortia (e.g. biofilms) within the human body would be invaluable. In here, we assessed the possibility of developing a variant of fluorescence in situ hybridization (FISH), named fluorescence in vivo hybridization (FIVH), for the detection of Helicobacter pylori. Using oligonucleotide variations comprising locked nucleic acids (LNA) and 2’-O-methyl RNAs (2’OMe) with two types of backbone linkages (phosphate or phosphorothioate), we were able to successfully identify two probes that hybridize at 37 °C with high specificity and sensitivity for H. pylori, both in pure cultures and in gastric biopsies. Furthermore, the use of this type of probes implied that toxic compounds typically used in FISH were either found to be unnecessary or could be replaced by a non-toxic substitute. We show here for the first time that the use of advanced LNA probes in FIVH conditions provides an accurate, simple and fast method for H. pylori detection and location, which could be used in the future for potential in vivo applications either for this microorganism or for others. PMID:24278398

  5. Raman spectroscopic detection of peripheral nerves towards nerve-sparing surgery

    NASA Astrophysics Data System (ADS)

    Minamikawa, Takeo; Harada, Yoshinori; Takamatsu, Tetsuro

    2017-02-01

    The peripheral nervous system plays an important role in motility, sensory, and autonomic functions of the human body. Preservation of peripheral nerves in surgery, namely nerve-sparing surgery, is now promising technique to avoid functional deficits of the limbs and organs following surgery as an aspect of the improvement of quality of life of patients. Detection of peripheral nerves including myelinated and unmyelinated nerves is required for the nerve-sparing surgery; however, conventional nerve identification scheme is sometimes difficult to identify peripheral nerves due to similarity of shape and color to non-nerve tissues or its limited application to only motor peripheral nerves. To overcome these issues, we proposed a label-free detection technique of peripheral nerves by means of Raman spectroscopy. We found several fingerprints of peripheral myelinated and unmyelinated nerves by employing a modified principal component analysis of typical spectra including myelinated nerve, unmyelinated nerve, and adjacent tissues. We finally realized the sensitivity of 94.2% and the selectivity of 92.0% for peripheral nerves including myelinated and unmyelinated nerves against adjacent tissues. Although further development of an intraoperative Raman spectroscopy system is required for clinical use, our proposed approach will serve as a unique and powerful tool for peripheral nerve detection for nerve-sparing surgery in the future.

  6. A brief review on recent developments of electrochemical sensors in environmental application for PGMs.

    PubMed

    Silwana, Bongiwe; Van Der Horst, Charlton; Iwuoha, Emmanuel; Somerset, Vernon

    2016-12-05

    This study offers a brief review of the latest developments and applications of electrochemical sensors for the detection of Platinum Group Metals (PGMs) using electrochemical sensors. In particular, significant advances in electrochemical sensors made over the past decade and sensing methodologies associated with the introduction of nanostructures are highlighted. Amongst a variety of detection methods that have been developed for PGMs, nanoparticles offer the unrivaled merits of high sensitivity. Rapid detection of PGMs is a key step to promote improvement of the public health and individual quality of life. Conventional methods to detect PGMs rely on time-consuming and labor intensive procedures such as extraction, isolation, enrichment, counting, etc., prior to measurement. This results in laborious sample preparation and testing over several days. This study reviewed the state-of-the-art application of nanoparticles (NPs) in electrochemical analysis of environmental pollutants. This review is intended to provide environmental scientists and engineers an overview of current rapid detection methods, a close look at the nanoparticles based electrodes and identification of knowledge gaps and future research needs. We summarize electrodes that have been used in the past for detection of PGMs. We describe several examples of applications in environmental electrochemical sensors and performance in terms of sensitivity and selectivity for all the sensors utilized for PGMs detection. NPs have promising potential to increase competitiveness of electrochemical sensors in environmental monitoring, though this review has focused mainly on sensors used in the past decade for PGMs detection. This review therefore provides a synthesis of outstanding performances in recent advances in the nanosensor application for PGMs determination.

  7. Mechanisms underlying cognitive conspicuity in the detection of cyclists by car drivers.

    PubMed

    Rogé, Joceline; Ndiaye, Daniel; Aillerie, Isabelle; Aillerie, Stéphane; Navarro, Jordan; Vienne, Fabrice

    2017-07-01

    The aim of this study was to evaluate the visibility of cyclists for motorists in a simulated car driving task. In several cases involving collisions between cars and cyclists, car drivers failed to detect the latter in time to avoid collision because of their low conspicuity. 2 groups of motorists (29.2 years old), including 12 cyclist-motorists and 13 non-cyclist-motorists, performed a vulnerable road user detection task in a car-driving simulator. They had to detect cyclists and pedestrians in an urban setting and evaluate the realism of the cyclists, the traffic, the city, the infrastructure, the car driven and the situations. Cyclists appeared in critical situations derived from previous accounts given by injured cyclists and from cyclists' observations in real-life situations. Cyclist's levels of visibility for car drivers were either high or low in these situations according to the cyclists. Realism scores were similar and high in both groups. Cyclist-motorists had fewer collisions with cyclists and detected cyclists at a greater distance in all situations, irrespective of cyclist visibility. Several mechanisms underlying the cognitive conspicuity of cyclists for car drivers were considered. The attentional selection of a cyclist in the road environment during car driving depends on top-down processing. We consider the practical implications of these results for the safety of vulnerable road users and future directions of research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Inertial Gait Phase Detection for control of a drop foot stimulator Inertial sensing for gait phase detection.

    PubMed

    Kotiadis, D; Hermens, H J; Veltink, P H

    2010-05-01

    An Inertial Gait Phase Detection system was developed to replace heel switches and footswitches currently being used for the triggering of drop foot stimulators. A series of four algorithms utilising accelerometers and gyroscopes individually and in combination were tested and initial results are shown. Sensors were positioned on the outside of the upper shank. Tests were performed on data gathered from a subject, sufferer of stroke, implanted with a drop foot stimulator and triggered with the current trigger, the heel switch. Data tested includes a variety of activities representing everyday life. Flat surface walking, rough terrain and carpet walking show 100% detection and the ability of the algorithms to ignore non-gait events such as weight shifts. Timing analysis is performed against the current triggering method, the heel switch. After evaluating the heel switch timing against a reference system, namely the Vicon 370 marker and force plates system. Initial results show a close correlation between the current trigger detection and the inertial sensor based triggering algorithms. Algorithms were tested for stairs up and stairs down. Best results are observed for algorithms using gyroscope data. Algorithms were designed using threshold techniques for lowest possible computational load and with least possible sensor components to minimize power requirements and to allow for potential future implantation of sensor system.

  9. Testing and Oxygen Assessment Results for a Next Generation Extravehicular Activity Portable Life Support System Fan

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.; Jennings, Mallory A.; Rivera, Fatonia L.; Martin, Devin

    2011-01-01

    NASA is designing a next generation Extravehicular Activity (EVA) Portable Life Support System (PLSS) for use in future surface exploration endeavors. To meet the new requirements for ventilation flow at nominal and buddy modes, a fan has been developed and tested. This paper summarizes the results of the performance and life cycle testing efforts conducted at the NASA Johnson Space Center. Additionally, oxygen compatibility assessment results from an evaluation conducted at White Sands Test Facility (WSTF) are provided, and lessons learned and future recommendations are outlined.

  10. The LUCIFER Project: Achievements and Near Future Prospects

    NASA Astrophysics Data System (ADS)

    Beeman, J. W.; Bellini, F.; Benetti, P.; Cardani, L.; Casali, N.; Chiesa, D.; Clemenza, M.; Dafinei, I.; Di Domizio, S.; Ferroni, F.; Gironi, L.; Giuliani, A.; Gotti, C.; Maino, M.; Nagorny, S. S.; Nisi, S.; Nones, C.; Pagnanini, L.; Pattavina, L.; Pessina, G.; Piperno, G.; Pirro, S.; Previtali, E.; Rusconi, C.; Schäffner, K.; Tomei, C.; Vignati, M.

    2016-08-01

    In the view of exploring the inverted hierarchy region future experiments investigating the neutrinoless double beta decay have to demand for detectors with excellent energy resolution and zero background in the energy region of interest. Cryogenic scintillating bolometers are very suitable detectors for this task since they provide particle discrimination: the simultaneous detection of the phonon and light signal allows us to identify the interacting type of particle and thus guarantees a suppression of α -induced backgrounds, the key-issue for next-generation tonne-scale bolometric experiments. The LUCIFER project aims at running the first array of enriched scintillating Zn^{ {82}}Se bolometers (total mass of about 8kg of ^{ {82}}Se) with a background level as low as 10^{ {-3}} counts/(keV kg y) in the energy region of interest. The main effort is currently focused on the finalization of the crystal growth procedure in order to achieve high quality Zn^{ {82}}Se crystals both in terms of radiopurity and bolometric properties. We present results from tests of such crystals operated at mK temperatures which demonstrate the excellent background rejection capabilities of this detection approach towards a background-free demonstrator experiment. Besides, the high purity of the enriched ^{ {82}}Se material allows us to establish the most stringent limits on the half-life of the double beta decay of ^{ {82}}Se on excited levels.

  11. Enzymatic Activity Detection via Electrochemistry for Enceladus

    NASA Technical Reports Server (NTRS)

    Studemeister, Lucy; Koehne, Jessica; Quinn, Richard

    2017-01-01

    Electrochemical detection of biological molecules is a pertinent topic and application in many fields such as medicine, environmental spills, and life detection in space. Proteases, a class of molecules of interest in the search for life, catalyze the hydrolysis of peptides. Trypsin, a specific protease, was chosen to investigate an optimized enzyme detection system using electrochemistry. This study aims at providing the ideal functionalization of an electrode that can reliably detect a signal indicative of an enzymatic reaction from an Enceladus sample.

  12. Early life thermal stress: Impact on future thermotolerance, stress response, behavior, and intestinal morphology in piglets exposed to a heat stress challenge during simulated transport

    USDA-ARS?s Scientific Manuscript database

    Study objectives were to evaluate the impact of early life thermal stress (ELTS) on thermoregulation, stress, and intestinal health of piglets subjected to a future heat stress (HS) challenge during simulated transport. Approximately 7 d after farrowing, 12 first parity gilts and their litters were ...

  13. Effects of halogenated aromatics/aliphatics and nitrogen(N)-heterocyclic aromatics on estimating the persistence of future pharmaceutical compounds using a modified QSAR model.

    PubMed

    Lim, Seung Joo; Fox, Peter

    2014-02-01

    The effects of halogenated aromatics/aliphatics and nitrogen(N)-heterocyclic aromatics on estimating the persistence of future pharmaceutical compounds were investigated using a modified half life equation. The potential future pharmaceutical compounds investigated were approximately 2000 pharmaceutical drugs currently undergoing the United States Food and Drug Administration (US FDA) testing. EPI Suite (BIOWIN) model estimates the fates of compounds based on the biodegradability under aerobic conditions. While BIOWIN considered the biodegradability of a compound only, the half life equation used in this study was modified by biodegradability, sorption and cometabolic oxidation. It was possible that the potential future pharmaceutical compounds were more accurately estimated using the modified half life equation. The modified half life equation considered sorption and cometabolic oxidation of halogenated aromatic/aliphatics and nitrogen(N)-heterocyclic aromatics in the sub-surface, while EPI Suite (BIOWIN) did not. Halogenated aliphatics in chemicals were more persistent than halogenated aromatics in the sub-surface. In addition, in the sub-surface environment, the fates of organic chemicals were much more affected by halogenation in chemicals than by nitrogen(N)-heterocyclic aromatics. © 2013.

  14. The Importance of In Situ Measurements and Sample Return in the Search for Chemical Biosignatures on Mars or other Solar System Bodies (Invited)

    NASA Astrophysics Data System (ADS)

    Glavin, D. P.; Brinckerhoff, W. B.; Conrad, P. G.; Dworkin, J. P.; Eigenbrode, J. L.; Getty, S.; Mahaffy, P. R.

    2013-12-01

    The search for evidence of life on Mars and elsewhere will continue to be one of the primary goals of NASA's robotic exploration program for decades to come. NASA and ESA are currently planning a series of robotic missions to Mars with the goal of understanding its climate, resources, and potential for harboring past or present life. One key goal will be the search for chemical biomarkers including organic compounds important in life on Earth and their geological forms. These compounds include amino acids, the monomer building blocks of proteins and enzymes, nucleobases and sugars which form the backbone of DNA and RNA, and lipids, the structural components of cell membranes. Many of these organic compounds can also be formed abiotically as demonstrated by their prevalence in carbonaceous meteorites [1], though, their molecular characteristics may distinguish a biological source [2]. It is possible that in situ instruments may reveal such characteristics, however, return of the right samples to Earth (i.e. samples containing chemical biosignatures or having a high probability of biosignature preservation) would enable more intensive laboratory studies using a broad array of powerful instrumentation for bulk characterization, molecular detection, isotopic and enantiomeric compositions, and spatially resolved chemistry that may be required for confirmation of extant or extinct life on Mars or elsewhere. In this presentation we will review the current in situ analytical capabilities and strategies for the detection of organics on the Mars Science Laboratory (MSL) rover using the Sample Analysis at Mars (SAM) instrument suite [3] and discuss how both future advanced in situ instrumentation [4] and laboratory measurements of samples returned from Mars and other targets of astrobiological interest including the icy moons of Jupiter and Saturn will help advance our understanding of chemical biosignatures in the Solar System. References: [1] Cronin, J. R and Chang S. (1993) In The Chemistry of Life's Origin, pp. 209-258. [2] Summons et al. (2008) Space Sci. Rev. 135, 133. [3] Mahaffy, P. R. et al. (2012) Space Sci. Rev. 170, 401. [4] Getty, S. A. et al. (2013) IEEE Aerospace Conf. Proc. 10.1109/AERO.2013.6497391.

  15. The use of biochemical methods in extraterrestrial life detection

    NASA Astrophysics Data System (ADS)

    McDonald, Gene

    2006-08-01

    Instrument development for in situ extraterrestrial life detection focuses primarily on the ability to distinguish between biological and non-biological material, mostly through chemical analysis for potential biosignatures (e.g., biogenic minerals, enantiomeric excesses). In constrast, biochemical analysis techniques commonly applied to Earth life focus primarily on the exploration of cellular and molecular processes, not on the classification of a given system as biological or non-biological. This focus has developed because of the relatively large functional gap between life and non-life on Earth today. Life on Earth is very diverse from an environmental and physiological point of view, but is highly conserved from a molecular point of view. Biochemical analysis techniques take advantage of this similarity of all terrestrial life at the molecular level, particularly through the use of biologically-derived reagents (e.g., DNA polymerases, antibodies), to enable analytical methods with enormous sensitivity and selectivity. These capabilities encourage consideration of such reagents and methods for use in extraterrestrial life detection instruments. The utility of this approach depends in large part on the (unknown at this time) degree of molecular compositional differences between extraterrestrial and terrestrial life. The greater these differences, the less useful laboratory biochemical techniques will be without significant modification. Biochemistry and molecular biology methods may need to be "de-focused" in order to produce instruments capable of unambiguously detecting a sufficiently wide range of extraterrestrial biochemical systems. Modern biotechnology tools may make that possible in some cases.

  16. Measurement of microbial activity in soil by colorimetric observation of in situ dye reduction: an approach to detection of extraterrestrial life

    PubMed Central

    Crawford, Ronald L; Paszczynski, Andrzej; Lang, Qingyong; Erwin, Daniel P; Allenbach, Lisa; Corti, Giancarlo; Anderson, Tony J; Cheng, I Francis; Wai, Chien; Barnes, Bruce; Wells, Richard; Assefi, Touraj; Mojarradi, Mohammad

    2002-01-01

    Background Detecting microbial life in extraterrestrial locations is a goal of space exploration because of ecological and health concerns about possible contamination of other planets with earthly organisms, and vice versa. Previously we suggested a method for life detection based on the fact that living entities require a continual input of energy accessed through coupled oxidations and reductions (an electron transport chain). We demonstrated using earthly soils that the identification of extracted components of electron transport chains is useful for remote detection of a chemical signature of life. The instrument package developed used supercritical carbon dioxide for soil extraction, followed by chromatography or electrophoresis to separate extracted compounds, with final detection by voltammetry and tandem mass-spectrometry. Results Here we used Earth-derived soils to develop a related life detection system based on direct observation of a biological redox signature. We measured the ability of soil microbial communities to reduce artificial electron acceptors. Living organisms in pure culture and those naturally found in soil were shown to reduce 2,3-dichlorophenol indophenol (DCIP) and the tetrazolium dye 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide inner salt (XTT). Uninoculated or sterilized controls did not reduce the dyes. A soil from Antarctica that was determined by chemical signature and DNA analysis to be sterile also did not reduce the dyes. Conclusion Observation of dye reduction, supplemented with extraction and identification of only a few specific signature redox-active biochemicals such as porphyrins or quinones, provides a simplified means to detect a signature of life in the soils of other planets or their moons. PMID:12150716

  17. Nano-enabled bioanalytical approaches to ultrasensitive detection of low abundance single nucleotide polymorphisms

    PubMed Central

    Lapitan Jr., Lorico D. S.; Guo, Yuan

    2015-01-01

    Single nucleotide polymorphisms (SNPs) constitute the most common types of genetic variations in the human genome. A number of SNPs have been linked to the development of life threatening diseases including cancer, cardiovascular diseases and neurodegenerative diseases. The ability for ultrasensitive and accurate detection of low abundant disease-related SNPs in bodily fluids (e.g. blood, serum, etc.) holds a significant value in the development of non-invasive future biodiagnostic tools. Over the past two decades, nanomaterials have been utilized in a myriad of biosensing applications due to their ability of detecting extremely low quantities of biologically important biomarkers with high sensitivity and accuracy. Of particular interest is the application of such technologies in the detection of SNPs. The use of various nanomaterials, coupled with different powerful signal amplification strategies, has paved the way for a new generation of ultrasensitive SNP biodiagnostic assays. Over the past few years, several ultrasensitive SNP biosensors capable of detecting specific targets down to the ultra-low regimes (ca. aM and below) and therefore holding great promises for early clinical diagnosis of diseases have been developed. This mini review will highlight some of the most recent, significant advances in nanomaterial-based ultrasensitive SNP sensing technologies capable of detecting specific targets on the attomolar (10–18 M) regime or below. In particular, the design of novel, powerful signal amplification strategies that hold the key to the ultrasensitivity is highlighted. PMID:25785914

  18. Perceived Leadership Life Skills Developed through Participation at the Arkansas FFA Leadership Conference: A Program Evaluation

    ERIC Educational Resources Information Center

    Ahrens, Chelsey Ann; Cox, Casandra Kay; Burris, Scott; Dykes, Mollie

    2015-01-01

    Youth leadership life skills are the "development of life skills necessary to perform leadership functions in real life" (Miller, 1976, p.2). A model developed by Kapostasy indicates life skills should be taught through FFA [formerly Future Farmers of America] (Staller, 2001). Thus, it is important to evaluate youth leadership life…

  19. Geothermal Water Use: Life Cycle Water Consumption, Water Resource Assessment, and Water Policy Framework

    DOE Data Explorer

    Schroeder, Jenna N.

    2014-06-10

    This report examines life cycle water consumption for various geothermal technologies to better understand factors that affect water consumption across the life cycle (e.g., power plant cooling, belowground fluid losses) and to assess the potential water challenges that future geothermal power generation projects may face. Previous reports in this series quantified the life cycle freshwater requirements of geothermal power-generating systems, explored operational and environmental concerns related to the geochemical composition of geothermal fluids, and assessed future water demand by geothermal power plants according to growth projections for the industry. This report seeks to extend those analyses by including EGS flash, both as part of the life cycle analysis and water resource assessment. A regional water resource assessment based upon the life cycle results is also presented. Finally, the legal framework of water with respect to geothermal resources in the states with active geothermal development is also analyzed.

  20. An Introduction to Educational Futures.

    ERIC Educational Resources Information Center

    Beane, James; And Others

    The purpose of this paper is to provide an introduction to the field of educational futures. It describes a framework for educational futures that moves from the understanding of global futures data to action planning for dealing with the understanding those data have for education. The paper discusses the future of government, life styles, and…

  1. The NASA Astrobiology Roadmap

    NASA Technical Reports Server (NTRS)

    Des Marais, David J.; Allamandola, Louis J.; Benner, Steven A.; Boss, Alan P.; Deamer, David; Falkowski, Paul G.; Farmer, Jack D.; Hedges, S. Blair; Jakosky, Bruce M.; Knoll, Andrew H.; hide

    2003-01-01

    The NASA Astrobiology Roadmap provides guidance for research and technology development across the NASA enterprises that encompass the space, Earth, and biological sciences. The ongoing development of astrobiology roadmaps embodies the contributions of diverse scientists and technologists from government, universities, and private institutions. The Roadmap addresses three basic questions: How does life begin and evolve, does life exist elsewhere in the universe, and what is the future of life on Earth and beyond? Seven Science Goals outline the following key domains of investigation: understanding the nature and distribution of habitable environments in the universe, exploring for habitable environments and life in our own solar system, understanding the emergence of life, determining how early life on Earth interacted and evolved with its changing environment, understanding the evolutionary mechanisms and environmental limits of life, determining the principles that will shape life in the future, and recognizing signatures of life on other worlds and on early Earth. For each of these goals, Science Objectives outline more specific high-priority efforts for the next 3-5 years. These 18 objectives are being integrated with NASA strategic planning.

  2. The NASA Astrobiology Roadmap.

    PubMed

    Des Marais, David J; Allamandola, Louis J; Benner, Steven A; Boss, Alan P; Deamer, David; Falkowski, Paul G; Farmer, Jack D; Hedges, S Blair; Jakosky, Bruce M; Knoll, Andrew H; Liskowsky, David R; Meadows, Victoria S; Meyer, Michael A; Pilcher, Carl B; Nealson, Kenneth H; Spormann, Alfred M; Trent, Jonathan D; Turner, William W; Woolf, Neville J; Yorke, Harold W

    2003-01-01

    The NASA Astrobiology Roadmap provides guidance for research and technology development across the NASA enterprises that encompass the space, Earth, and biological sciences. The ongoing development of astrobiology roadmaps embodies the contributions of diverse scientists and technologists from government, universities, and private institutions. The Roadmap addresses three basic questions: How does life begin and evolve, does life exist elsewhere in the universe, and what is the future of life on Earth and beyond? Seven Science Goals outline the following key domains of investigation: understanding the nature and distribution of habitable environments in the universe, exploring for habitable environments and life in our own solar system, understanding the emergence of life, determining how early life on Earth interacted and evolved with its changing environment, understanding the evolutionary mechanisms and environmental limits of life, determining the principles that will shape life in the future, and recognizing signatures of life on other worlds and on early Earth. For each of these goals, Science Objectives outline more specific high-priority efforts for the next 3-5 years. These 18 objectives are being integrated with NASA strategic planning.

  3. The NASA Astrobiology Roadmap.

    PubMed

    Des Marais, David J; Nuth, Joseph A; Allamandola, Louis J; Boss, Alan P; Farmer, Jack D; Hoehler, Tori M; Jakosky, Bruce M; Meadows, Victoria S; Pohorille, Andrew; Runnegar, Bruce; Spormann, Alfred M

    2008-08-01

    The NASA Astrobiology Roadmap provides guidance for research and technology development across the NASA enterprises that encompass the space, Earth, and biological sciences. The ongoing development of astrobiology roadmaps embodies the contributions of diverse scientists and technologists from government, universities, and private institutions. The Roadmap addresses three basic questions: how does life begin and evolve, does life exist elsewhere in the universe, and what is the future of life on Earth and beyond? Seven Science Goals outline the following key domains of investigation: understanding the nature and distribution of habitable environments in the universe, exploring for habitable environments and life in our own Solar System, understanding the emergence of life, determining how early life on Earth interacted and evolved with its changing environment, understanding the evolutionary mechanisms and environmental limits of life, determining the principles that will shape life in the future, and recognizing signatures of life on other worlds and on early Earth. For each of these goals, Science Objectives outline more specific high priority efforts for the next three to five years. These eighteen objectives are being integrated with NASA strategic planning.

  4. Supporting Students' Pedagogical Working Life Horizon in Higher Education

    ERIC Educational Resources Information Center

    Penttinen, Leena; Skaniakos, Terhi; Lairio, Marjatta

    2013-01-01

    In this article, we introduce a model of a pedagogical working life horizon. It encompasses questions posed by individual students concerning their future and incorporates the idea of a working life orientation to the pedagogical possibilities within education. Working life orientation consists of three elements: individual relationship, knowledge…

  5. Exploration Life Support Critical Questions for Future Human Space Missions

    NASA Technical Reports Server (NTRS)

    Kwert, Michael K.; Barta, Daniel J.; McQuillan, Jeff

    2010-01-01

    Exploration Life Support (ELS) is a current project under NASA's Exploration Systems Mission Directorate. The ELS Project plans, coordinates and implements the development of advanced life support technologies for human exploration missions in space. Recent work has focused on closed loop atmosphere and water systems for long duration missions, including habitats and pressurized rovers. But, what are the critical questions facing life support system developers for these and other future human missions? This paper explores those questions and how progress in the development of ELS technologies can help answer them. The ELS Project includes the following Elements: Atmosphere Revitalization Systems, Water Recovery Systems, Waste Management Systems, Habitation Engineering, Systems Integration, Modeling and Analysis, and Validation and Testing, which includes the Sub-Elements Flight Experiments and Integrated Testing. Systems engineering analysis by ELS seeks to optimize overall mission architectures by considering all the internal and external interfaces of the life support system and the potential for reduction or reuse of commodities. In particular, various sources and sinks of water and oxygen are considered along with the implications on loop closure and the resulting launch mass requirements. Systems analysis will be validated through the data gathered from integrated testing, which will demonstrate the interfaces of a closed loop life support system. By applying a systematic process for defining, sorting and answering critical life support questions, the ELS project is preparing for a variety of future human space missions

  6. Post-secondary maternal education buffers against neural risk for psychological vulnerability to future life stress.

    PubMed

    Swartz, Johnna R; Knodt, Annchen R; Radtke, Spenser R; Hariri, Ahmad R

    2018-01-31

    We have previously reported that threat-related amygdala activity measured during a baseline fMRI scan predicts the experience of depression and anxiety associated with stressful life events years later. Here, we examine whether two broad measures of childhood environmental enrichment, namely parental educational achievement and subjective parental socioeconomic status, buffer against the effects of amygdala activity on future vulnerability to stress. Analyses of data available from 579 young adults revealed that maternal, but not paternal, educational achievement moderates the association between amygdala activity, recent life stress, and changes in mood and anxiety symptoms, even when controlling for participants' current subjective socioeconomic status. Specifically, only participants reporting lower maternal educational achievement exhibited our previously observed interaction between amygdala activity and future life stress predicting increases in depression and anxiety. These results suggest that higher maternal educational achievement may help buffer stress sensitivity associated with heightened threat-related amygdala activity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Detection of thiol-based redox switch processes in parasites - facts and future.

    PubMed

    Rahbari, Mahsa; Diederich, Kathrin; Becker, Katja; Krauth-Siegel, R Luise; Jortzik, Esther

    2015-05-01

    Malaria and African trypanosomiasis are tropical diseases caused by the protozoa Plasmodium and Trypanosoma, respectively. The parasites undergo complex life cycles in the mammalian host and insect vector, during which they are exposed to oxidative and nitrosative challenges induced by the host immune system and endogenous processes. Attacking the parasite's redox metabolism is a target mechanism of several known antiparasitic drugs and a promising approach to novel drug development. Apart from this aspect, oxidation of cysteine residues plays a key role in protein-protein interaction, metabolic responses to redox events, and signaling. Understanding the role and dynamics of reactive oxygen species and thiol switches in regulating cellular redox homeostasis is crucial for both basic and applied biomedical approaches. Numerous techniques have therefore been established to detect redox changes in parasites including biochemical methods, fluorescent dyes, and genetically encoded probes. In this review, we aim to give an insight into the characteristics of redox networks in the pathogens Plasmodium and Trypanosoma, including a comprehensive overview of the consequences of specific deletions of redox-associated genes. Furthermore, we summarize mechanisms and detection methods of thiol switches in both parasites and discuss their specificity and sensitivity.

  8. Family members and health professionals' perspectives on future life planning of ageing people with Down syndrome: a qualitative study.

    PubMed

    Covelli, Venusia; Raggi, Alberto; Paganelli, Chiara; Leonardi, Matilde

    2017-08-08

    To address the way in which primary caregivers of people over 45 with Down syndrome describe daily life activities and context and foresee their future. Thirteen family members and 15 health professionals participated to four focus groups. Meaningful concepts were identified and linked to the International Classification of Functioning, Disability and Health using established linking rules. A total of 258 relevant concepts were identified and linked to 75 categories of the classification: 38 were from activity and participation and 17 from environmental factors domains. The most commonly reported issues were mental functions (b117-intellectual functions and b152-emotional functions), community life activities (d910-community life and d920-recreation and leisure) and environmental factors (e310-support of immediate family, e355-support from health professionals and e555-associations and organizational services). Information on the daily life and health of ageing people with Down syndrome is important to plan social and health care interventions tailored to deal with problems that they may encounter in older age. Considering the interaction between health and environment and maintaining a continuity of daily routines were reported as the most relevant topics for managing daily lives of persons with Down syndrome in older ages. Implications for rehabilitation Pay more attention to the interaction between environmental factors and health condition in ageing people with Down syndrome. Information about the life contest are important in order to plan present and future social-health care interventions. Future planning for people with Down syndrome is a great concern for family members.

  9. Carbon Nanotube-Based Chemiresistive Sensors

    PubMed Central

    Tang, Ruixian; Shi, Yongji; Hou, Zhongyu; Wei, Liangming

    2017-01-01

    The development of simple and low-cost chemical sensors is critically important for improving human life. Many types of chemical sensors have been developed. Among them, the chemiresistive sensors receive particular attention because of their simple structure, the ease of high precise measurement and the low cost. This review mainly focuses on carbon nanotube (CNT)-based chemiresistive sensors. We first describe the properties of CNTs and the structure of CNT chemiresistive sensors. Next, the sensing mechanism and the performance parameters of the sensors are discussed. Then, we detail the status of the CNT chemiresistive sensors for detection of different analytes. Lastly, we put forward the remaining challenges for CNT chemiresistive sensors and outlook the possible opportunity for CNT chemiresistive sensors in the future. PMID:28420195

  10. Carbon Nanotube-Based Chemiresistive Sensors.

    PubMed

    Tang, Ruixian; Shi, Yongji; Hou, Zhongyu; Wei, Liangming

    2017-04-18

    The development of simple and low-cost chemical sensors is critically important for improving human life. Many types of chemical sensors have been developed. Among them, the chemiresistive sensors receive particular attention because of their simple structure, the ease of high precise measurement and the low cost. This review mainly focuses on carbon nanotube (CNT)-based chemiresistive sensors. We first describe the properties of CNTs and the structure of CNT chemiresistive sensors. Next, the sensing mechanism and the performance parameters of the sensors are discussed. Then, we detail the status of the CNT chemiresistive sensors for detection of different analytes. Lastly, we put forward the remaining challenges for CNT chemiresistive sensors and outlook the possible opportunity for CNT chemiresistive sensors in the future.

  11. Extremely halophilic archaea and the issue of long-term microbial survival

    PubMed Central

    2011-01-01

    Halophilic archaebacteria (haloarchaea) thrive in environments with salt concentrations approaching saturation, such as natural brines, the Dead Sea, alkaline salt lakes and marine solar salterns; they have also been isolated from rock salt of great geological age (195–250 million years). An overview of their taxonomy, including novel isolates from rock salt, is presented here; in addition, some of their unique characteristics and physiological adaptations to environments of low water activity are reviewed. The issue of extreme long-term microbial survival is considered and its implications for the search for extraterrestrial life. The development of detection methods for subterranean haloarchaea, which might also be applicable to samples from future missions to space, is presented. PMID:21984879

  12. Microbial fuel cells applied to the metabolically based detection of extraterrestrial life.

    PubMed

    Abrevaya, Ximena C; Mauas, Pablo J D; Cortón, Eduardo

    2010-12-01

    Since the 1970s, when the Viking spacecrafts carried out experiments to detect microbial metabolism on the surface of Mars, the search for nonspecific methods to detect life in situ has been one of the goals of astrobiology. It is usually required that a methodology detect life independently from its composition or form and that the chosen biological signature point to a feature common to all living systems, such as the presence of metabolism. In this paper, we evaluate the use of microbial fuel cells (MFCs) for the detection of microbial life in situ. MFCs are electrochemical devices originally developed as power electrical sources and can be described as fuel cells in which the anode is submerged in a medium that contains microorganisms. These microorganisms, as part of their metabolic process, oxidize organic material, releasing electrons that contribute to the electric current, which is therefore proportional to metabolic and other redox processes. We show that power and current density values measured in MFCs that use microorganism cultures or soil samples in the anode are much larger than those obtained with a medium free of microorganisms or sterilized soil samples, respectively. In particular, we found that this is true for extremophiles, which have been proposed as potential inhabitants of extraterrestrial environments. Therefore, our results show that MFCs have the potential to be used for in situ detection of microbial life.

  13. Microbial Fuel Cells Applied to the Metabolically Based Detection of Extraterrestrial Life

    NASA Astrophysics Data System (ADS)

    Abrevaya, Ximena C.; Mauas, Pablo J. D.; Cortón, Eduardo

    2010-12-01

    Since the 1970s, when the Viking spacecrafts carried out experiments to detect microbial metabolism on the surface of Mars, the search for nonspecific methods to detect life in situ has been one of the goals of astrobiology. It is usually required that a methodology detect life independently from its composition or form and that the chosen biological signature point to a feature common to all living systems, such as the presence of metabolism. In this paper, we evaluate the use of microbial fuel cells (MFCs) for the detection of microbial life in situ. MFCs are electrochemical devices originally developed as power electrical sources and can be described as fuel cells in which the anode is submerged in a medium that contains microorganisms. These microorganisms, as part of their metabolic process, oxidize organic material, releasing electrons that contribute to the electric current, which is therefore proportional to metabolic and other redox processes. We show that power and current density values measured in MFCs that use microorganism cultures or soil samples in the anode are much larger than those obtained with a medium free of microorganisms or sterilized soil samples, respectively. In particular, we found that this is true for extremophiles, which have been proposed as potential inhabitants of extraterrestrial environments. Therefore, our results show that MFCs have the potential to be used for in situ detection of microbial life.

  14. Reanalysis of the Viking results suggests perchlorate and organics at mid-latitudes on Mars

    NASA Astrophysics Data System (ADS)

    Navarro-Gonzalez, R.; Vargas, E.; de La Rosa, J.; Raga, A. C.; McKay, C.

    2010-12-01

    The most comprehensive search for organics in the Martian soil was performed by the Viking Landers. Martian soil was subjected to a thermal volatilization process in order to vaporize and break organic molecules, and the resultant gases and volatiles were analyzed by gas chromatography-mass spectrometry. Only water at 0.1-1.0 wt% was detected with traces of chloromethane at 15 ppb in the Viking Landing site 1, and water at 0.05-1.0 wt% and carbon dioxide at 50-700 ppm with traces of dichloromethane at 0.04-40 ppb in the Viking Landing site 2. The abundance ratio of the 35Cl and 37Cl isotopes in these chlorohydrocarbons was 3:1, corresponding to the terrestrial isotopic abundance. Therefore, these chlorohydrocarbons were considered to be terrestrial contaminants although they had not been detected at those levels in the blank runs. Recently, perchlorate was discovered in the Martian Arctic soil by the Phoenix Lander. Here we show that when Mars-like soils from the Atacama Desert with 32±6 ppm of organic carbon are mixed with 1 wt% magnesium perchlorate and heated nearly all the organics present are decomposed to water and carbon dioxide, but a small amount are chlorinated forming 1.6 ppm of chloromethane and 0.02 ppm of dichloromethane at 500○C. A chemical kinetics model was developed to predict the degree of oxidation and chlorination of organics in the Viking oven. The isotopic distribution of 35Cl and 37Cl for Mars is not known. Studies on Earth indicate that there is no isotopic fractionation of chlorine in the mantle or crust, despite the fact that it is significantly depleted on the planet as compare to solar abundances. The 37Cl/35Cl isotopic ratio in carbonaceous chondrites is similar to the Earth’s value, which suggests that the terrestrial planets, including Mars, were all formed from a similar reservoir of chlorine species in the presolar nebulae and that there was no further isotopic fractionation during the Earth’s differentiation or late accretion of volatiles. Consequently, 37Cl/35Cl ratio should be the same on Mars as well as on the Earth. Re-interpretation of the Viking results therefore suggests ≤0.1% perchlorate and 1.5-6.5 ppm organic carbon at the landing site 1, and ≤0.1% perchlorate and 0.7-2.6 ppm organic carbon at the landing site 2. The detection of organics on Mars is important to assess locations for future experiments to detect life itself. We suggest that future missions to Mars should include life detection experiments.

  15. Are There Any Differences in Personality Traits and Life Satisfaction between Future Preschool and Primary School Teachers?

    ERIC Educational Resources Information Center

    Vorkapic, Sanja Tatalovic; Cepic, Renata; Šekulja, Ivana

    2016-01-01

    The main aim of this study was to examine personality traits and life satisfaction of future preschool and primary school teachers and to examine if there are differences between these two groups of students. The study was conducted on a sample of 290 students of the University of Rijeka attending Early and Preschool Education and Teacher…

  16. Relations between the Development of Future Time Perspective in Three Life Domains, Investment in Learning, and Academic Achievement

    ERIC Educational Resources Information Center

    Peetsma, Thea; van der Veen, Ineke

    2011-01-01

    Relations between the development of future time perspectives in three life domains (i.e., school and professional career, social relations, and leisure time) and changes in students' investment in learning and academic achievement were examined in this study. Participants were 584 students in the first and 584 in the second year of the lower…

  17. Recreation trends - a future look

    Treesearch

    Roger A. Lancaster

    1980-01-01

    The art of "crystal-ball gazing" is not an exact science. While it is very useful to discuss what life will be like in the future, and rather fun, I might add, a review of the multitude of materials prepared 20 to 30 years ago about life in the 1980's found little that was all that accurate. The projections that were most on target tended to be those...

  18. Thinking Ahead: Improving Support for People with Learning Disabilities and Their Families to Plan for the Future

    ERIC Educational Resources Information Center

    Towers, Christine

    2013-01-01

    The increasing life expectancy of people with learning disabilities makes it imperative that families plan for the future. The number of people with learning disabilities over the age of 65 is predicted to double over the next two decades. The greatest increase in life expectancy will be amongst people with mild learning disabilities who will have…

  19. Current review of the SarQoL®: a health-related quality of life questionnaire specific to sarcopenia.

    PubMed

    Beaudart, Charlotte; Reginster, Jean-Yves; Geerinck, Anton; Locquet, Médéa; Bruyère, Olivier

    2017-08-01

    Sarcopenia, defined by a progressive and generalized loss of muscle mass and muscle function, is associated with many harmful clinical consequences. Several studies have reported the impact of sarcopenia on health-related quality of life (HRQoL) using generic quality of life (QoL) questionnaires. The results of these observational studies are quite heterogenous. Indeed, generic tools may not be able to detect subtle effects of sarcopenia on QoL. Recently, a sarcopenia-specific HRQoL questionnaire was developed and validated in a population of sarcopenic subjects to more accurately assess the impact of sarcopenia on QoL. Areas covered: The purpose of this review is to present evidence regarding the impact of sarcopenia on QoL and to introduce a new specific HRQoL questionnaire, the SarQoL®. Expert commentary: The self-administered SarQoL®, initially developed in French, comprises 55 items translated into 22 questions. The questionnaire has been shown to be understandable, valid, consistent, and reliable and can therefore be recommended for clinical and research purposes. The questionnaire is now available in 11 different languages with another 20 translations in progress. The instrument's sensitivity to change still needs to be assessed in future longitudinal studies.

  20. Correlations Between Life-Detection Techniques and Implications for Sampling Site Selection in Planetary Analog Missions.

    PubMed

    Gentry, Diana M; Amador, Elena S; Cable, Morgan L; Chaudry, Nosheen; Cullen, Thomas; Jacobsen, Malene B; Murukesan, Gayathri; Schwieterman, Edward W; Stevens, Adam H; Stockton, Amanda; Tan, George; Yin, Chang; Cullen, David C; Geppert, Wolf

    2017-10-01

    We conducted an analog sampling expedition under simulated mission constraints to areas dominated by basaltic tephra of the Eldfell and Fimmvörðuháls lava fields (Iceland). Sites were selected to be "homogeneous" at a coarse remote sensing resolution (10-100 m) in apparent color, morphology, moisture, and grain size, with best-effort realism in numbers of locations and replicates. Three different biomarker assays (counting of nucleic-acid-stained cells via fluorescent microscopy, a luciferin/luciferase assay for adenosine triphosphate, and quantitative polymerase chain reaction (qPCR) to detect DNA associated with bacteria, archaea, and fungi) were characterized at four nested spatial scales (1 m, 10 m, 100 m, and >1 km) by using five common metrics for sample site representativeness (sample mean variance, group F tests, pairwise t tests, and the distribution-free rank sum H and u tests). Correlations between all assays were characterized with Spearman's rank test. The bioluminescence assay showed the most variance across the sites, followed by qPCR for bacterial and archaeal DNA; these results could not be considered representative at the finest resolution tested (1 m). Cell concentration and fungal DNA also had significant local variation, but they were homogeneous over scales of >1 km. These results show that the selection of life detection assays and the number, distribution, and location of sampling sites in a low biomass environment with limited a priori characterization can yield both contrasting and complementary results, and that their interdependence must be given due consideration to maximize science return in future biomarker sampling expeditions. Key Words: Astrobiology-Biodiversity-Microbiology-Iceland-Planetary exploration-Mars mission simulation-Biomarker. Astrobiology 17, 1009-1021.

  1. Fiber-based optic sensor for detecting human blood clot: present and future revival

    NASA Astrophysics Data System (ADS)

    Elshikeri, Nada; Bakhtiar, Hazri

    2018-05-01

    Sustaining human’s life-frame away from being impeded by the clot - ghost term, we attempt to approach a mobile fiber-based optical sensor (f-s) for detecting blood clot in a blood vessel (intra-arteries/veins). Blood vessels are the part of the circulatory system that transport blood throughout the human body, thus their significance of being protected arise to the monograph focus. MRI (magnetic resonance imaging), X-rays and other medical instruments are diagnostic immobility techniques with a slackest interval. The corer causation of fiber-based optical sensor is to detect a clump of blood in the bloodstream by providing a prompt mobile diagnostic intervals preserving last-minutes-breath of human’s life. The detector (f-s) has been etched by diluting sulphuric acid ~10% at certain zone to sensate its function. The in-vitro monograph peaks its maximal monitoring when the sensor is attached to Raman Spectroscopy (RS) setup. RS quantifies the relative intensities of fibrinogen bond, which is the first type of blood coagulation elements of blood plasma. Blood coagulation parameters are the major concern of the monograph investigation, such as total haemoglobin (tHb), clotting reaction time (t), clot progression time (t2), maximum clot amplitude (ma) and mean refractive index (r). A blood sample will be drawn from the patient and after centrifugation to separate blood plasma from its constituents, then an immediate sloshing of blood plasma in the (f-s) packet which has its plug-in to RS. Estimating the quantitative analysis of blood sample concentration, RS will determine the presence of coagulation in terms of intensity and medical procedures will dominate the treatment process. Thus, the suggestive monograph provides a definite instrument for investigating blood coagulation intra-arteries/veins promptly.

  2. Evolution of Requirements and Assumptions for Future Exploration Missions

    NASA Technical Reports Server (NTRS)

    Anderson, Molly; Sargusingh, Miriam; Perry, Jay

    2017-01-01

    NASA programs are maturing technologies, systems, and architectures to enabling future exploration missions. To increase fidelity as technologies mature, developers must make assumptions that represent the requirements of a future program. Multiple efforts have begun to define these requirements, including team internal assumptions, planning system integration for early demonstrations, and discussions between international partners planning future collaborations. For many detailed life support system requirements, existing NASA documents set limits of acceptable values, but a future vehicle may be constrained in other ways, and select a limited range of conditions. Other requirements are effectively set by interfaces or operations, and may be different for the same technology depending on whether the hard-ware is a demonstration system on the International Space Station, or a critical component of a future vehicle. This paper highlights key assumptions representing potential life support requirements and explanations of the driving scenarios, constraints, or other issues that drive them.

  3. Remembering and forecasting: The relation between autobiographical memory and episodic future thinking.

    PubMed

    Berntsen, Dorthe; Bohn, Annette

    2010-04-01

    Episodic future thinking is a projection of the self into the future to mentally preexperience an event. Previous work has shown striking similarities between autobiographical memory and episodic future thinking in response to various experimental manipulations. This has nurtured the idea of a shared neurocognitive system underlying both processes. Here, undergraduates generated autobiographical memories and future event representations in response to cue words and requests for important events and rated their characteristics. Important and word-cued events differed markedly on almost all measures. Past, as compared with future, events were rated as more sensorially vivid and less relevant to life story and identity. However, in contrast to previous work, these main effects were qualified by a number of interactions, suggesting important functional differences between the two temporal directions. For both temporal directions, sensory imagery dropped, whereas self-narrative importance and reference to normative cultural life script events increased with increasing temporal distance.

  4. Protecting the Planets from Biological Contamination: The Strange Case of Mars Exploration

    NASA Astrophysics Data System (ADS)

    Rummel, J. D.; Conley, C. A.

    2015-12-01

    Beyond the Earth's Moon, Mars is the most studied and to some the most compelling target in the solar system. Mars has the potential to have its own native life, and it has environments that appear quite capable of supporting Earth life. As such, Mars is subject to policies intended to keep Earth organisms from growing on Mars, and missions to Mars are controlled to ensure that we know that no Mars life gets to Earth onboard a returning spacecraft. It seems odd, then, that Mars is also the planet on which we have crashed the most (the Moon still owns the overall title), and is still the only body that has had positive results from a life-detection experiment soft-landed on its surface. Mars has very little water, yet it snows on Mars and we have seen regular night-time frosts and near-surface ice on more than half of the planet. Despite strong UV insolation, Mars also has regular dust storms and winds that can cover spacecraft surfaces with dust that itself may be poisonous, but also can protect microbial life from death by UV light. In spite of surface features and minerals that provide ample evidence of surface water in the past, on today's Mars only relatively short, thin lines that lengthen and retract with the seasons provide a hint that there may be water near the surface of Mars today, but the subsurface is almost totally unexplored by instruments needed to detect water, itself. In the face of these contradictions, the implementation of planetary protection requirements to prevent cross contamination has to proceed with the best available knowledge, and in spite of sometimes substantial costs to spacecraft development and operations. In this paper we will review the status of Mars as a potential (hopefully not inadvertent) abode for life, and describe the measures taken in the past and the present to safeguard the astrobiological study of Mars, and project the requirements for Mars planetary protection in a possible future that involves both sample return and human exploration. Such measures are needed to comply with what is a scientific, legal, and even moral requirement as we move forward to understand the place of Mars in our solar system, and our relationship to both.

  5. A Statistical Approach to Illustrate the Challenge of Astrobiology for Public Outreach.

    PubMed

    Foucher, Frédéric; Hickman-Lewis, Keyron; Westall, Frances; Brack, André

    2017-10-26

    In this study, we attempt to illustrate the competition that constitutes the main challenge of astrobiology, namely the competition between the probability of extraterrestrial life and its detectability. To illustrate this fact, we propose a simple statistical approach based on our knowledge of the Universe and the Milky Way, the Solar System, and the evolution of life on Earth permitting us to obtain the order of magnitude of the distance between Earth and bodies inhabited by more or less evolved past or present life forms, and the consequences of this probability for the detection of associated biosignatures. We thus show that the probability of the existence of evolved extraterrestrial forms of life increases with distance from the Earth while, at the same time, the number of detectable biosignatures decreases due to technical and physical limitations. This approach allows us to easily explain to the general public why it is very improbable to detect a signal of extraterrestrial intelligence while it is justified to launch space probes dedicated to the search for microbial life in the Solar System.

  6. A Statistical Approach to Illustrate the Challenge of Astrobiology for Public Outreach

    PubMed Central

    Westall, Frances; Brack, André

    2017-01-01

    In this study, we attempt to illustrate the competition that constitutes the main challenge of astrobiology, namely the competition between the probability of extraterrestrial life and its detectability. To illustrate this fact, we propose a simple statistical approach based on our knowledge of the Universe and the Milky Way, the Solar System, and the evolution of life on Earth permitting us to obtain the order of magnitude of the distance between Earth and bodies inhabited by more or less evolved past or present life forms, and the consequences of this probability for the detection of associated biosignatures. We thus show that the probability of the existence of evolved extraterrestrial forms of life increases with distance from the Earth while, at the same time, the number of detectable biosignatures decreases due to technical and physical limitations. This approach allows us to easily explain to the general public why it is very improbable to detect a signal of extraterrestrial intelligence while it is justified to launch space probes dedicated to the search for microbial life in the Solar System. PMID:29072614

  7. Controlled biological and biomimetic systems for landmine detection.

    PubMed

    Habib, Maki K

    2007-08-30

    Humanitarian demining requires to accurately detect, locate and deactivate every single landmine and other buried mine-like objects as safely and as quickly as possible, and in the most non-invasive manner. The quality of landmine detection affects directly the efficiency and safety of this process. Most of the available methods to detect explosives and landmines are limited by their sensitivity and/or operational complexities. All landmines leak with time small amounts of their explosives that can be found on surrounding ground and plant life. Hence, explosive signatures represent the robust primary indicator of landmines. Accordingly, developing innovative technologies and efficient techniques to identify in real-time explosives residue in mined areas represents an attractive and promising approach. Biological and biologically inspired detection technology has the potential to compete with or be used in conjunction with other artificial technology to complement performance strengths. Biological systems are sensitive to many different scents concurrently, a property that has proven difficult to replicate artificially. Understanding biological systems presents unique opportunities for developing new capabilities through direct use of trained bio-systems, integration of living and non-living components, or inspiring new design by mimicking biological capabilities. It is expected that controlled bio-systems, biotechnology and microbial techniques will contribute to the advancement of mine detection and other application domains. This paper provides directions, evaluation and analysis on the progress of controlled biological and biomimetic systems for landmine detection. It introduces and discusses different approaches developed, underlining their relative advantages and limitations, and highlighting trends, safety and ecology concern, and possible future directions.

  8. Chiral Determination of Amino Acids Using X-Ray Diffraction of Thin Films

    NASA Technical Reports Server (NTRS)

    Dragoi, D.; Kulleck, J.; Kanik, I.; Beegle, L. W.

    2003-01-01

    The astrobiological search for life, both extinct and extant, on other solar system bodies will take place via several planned lander missions to Mars Europa and Titan. The detection and identification of organic molecules that have been associated with life is a major technical challenge. Terrestrial life utilizes organic molecules, such as amino acids, as its basic building block. Amino acids can be synthesized by natural processes as is demonstrated by their detection in meteoritic material. In this process, the organic molecules are produced roughly in a even mixture of D and L forms. Biological process, however, can utilize almost uniquely one form or the other. In terrestrial biology, only the L-amino acids is common in biological processes. If signature of life existed elsewhere in the D form it then be concluded that life had evolutionary beginning on that body. Detection of an enantiomeric excess of L over D would also be a powerful sign that life had existed on that body at one time.

  9. A novel approach to simulate chest wall micro-motion for bio-radar life detection purpose

    NASA Astrophysics Data System (ADS)

    An, Qiang; Li, Zhao; Liang, Fulai; Chen, Fuming; Wang, Jianqi

    2016-10-01

    Volunteers are often recruited to serve as the detection targets during the research process of bio-radar life detection technology, in which the experiment results are highly susceptible to the physical status of different individuals (shape, posture, etc.). In order to objectively evaluate the radar system performance and life detection algorithms, a standard detection target is urgently needed. The paper first proposed a parameter quantitatively controllable system to simulate the chest wall micro-motion caused mainly by breathing and heart beating. Then, the paper continued to analyze the material and size selection of the scattering body mounted on the simulation system from the perspective of back scattering energy. The computational electromagnetic method was employed to determine the exact scattering body. Finally, on-site experiments were carried out to verify the reliability of the simulation platform utilizing an IR UWB bioradar. Experimental result shows that the proposed system can simulate a real human target from three aspects: respiration frequency, amplitude and body surface scattering energy. Thus, it can be utilized as a substitute for a human target in radar based non-contact life detection research in various scenarios.

  10. 25 CFR 179.101 - How does the Secretary distribute principal and income to the holder of a life estate?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) This section applies to the following cases: (1) Where the document creating the life estate does not... the holder of a life estate? 179.101 Section 179.101 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER LIFE ESTATES AND FUTURE INTERESTS Life Estates Not Created Under AIPRA...

  11. 25 CFR 179.101 - How does the Secretary distribute principal and income to the holder of a life estate?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) This section applies to the following cases: (1) Where the document creating the life estate does not... the holder of a life estate? 179.101 Section 179.101 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER LIFE ESTATES AND FUTURE INTERESTS Life Estates Not Created Under AIPRA...

  12. Life detection systems.

    NASA Technical Reports Server (NTRS)

    Mitz, M. A.

    1972-01-01

    Some promising newer approaches for detecting microorganisms are discussed, giving particular attention to the integration of different methods into a single instrument. Life detection methods may be divided into biological, chemical, and cytological methods. Biological methods are based on the biological properties of assimilation, metabolism, and growth. Devices for the detection of organic materials are considered, taking into account an instrument which volatilizes, separates, and analyzes a sample sequentially. Other instrumental systems described make use of a microscope and the cytochemical staining principle.

  13. Critical review of Ames Life Science participation in Spacelab Mission Development Test 3: The SMD 3 management study

    NASA Technical Reports Server (NTRS)

    Helmreich, R.; Wilhelm, J.; Tanner, T. A.; Sieber, J. E.; Burgenbauch, S.

    1978-01-01

    A management study was conducted to specify activities and problems encountered during the development of procedures for documentation and crew training on experiments, as well as during the design, integration, and delivery of a life sciences experiment payload to Johnson Space Center for a 7 day simulation of a Spacelab mission. Conclusions and recommendations to project management for current and future Ames' life sciences projects are included. Broader issues relevant to the conduct of future scientific missions under the constraints imposed by the environment of space are also addressed.

  14. Life course approach in social epidemiology: an overview, application and future implications.

    PubMed

    Cable, Noriko

    2014-01-01

    The application of the life course approach to social epidemiology has helped epidemiologists theoretically examine social gradients in population health. Longitudinal data with rich contextual information collected repeatedly and advanced statistical approaches have made this challenging task easier. This review paper provides an overview of the life course approach in epidemiology, its research application, and future challenges. In summary, a systematic approach to methods, including theoretically guided measurement of socioeconomic position, would assist researchers in gathering evidence for reducing social gradients in health, and collaboration across individual disciplines will make this task achievable.

  15. The impact of extended half-life versus conventional factor product on hemophilia caregiver burden.

    PubMed

    Schwartz, Carolyn E; Powell, Victoria E; Su, Jun; Zhang, Jie; Eldar-Lissai, Adi

    2018-05-01

    Extended half-life factor products have reduced annualized bleeding rates in hemophilia patients. The impact of extended half-life versus conventional factor products on hemophilia caregiver burden has not been investigated. This study aimed to evaluate caregiver burden in extended half-life versus conventional factor products for hemophilia A and B. This cross-sectional web-based study of caregivers of people with hemophilia A or B was recruited from a panel research company and by word of mouth. Participants completed the Hemophilia Caregiver Impact measure, the PedsQL Family Impact Module (PedsQL), and the Work Productivity and Activity Impairment Questionnaire (WPAI). We also collected demographic, insurance coverage, and medical information related to the hemophilia patient(s). Burden differences were assessed using linear regression and matched cohort analyses. The sample (n = 448) included 49 people who were caring for people on extended half-life factor products. Worse caregiver burden was associated with more infusions per week and more bleeds in the past 6 months. Regression analyses suggested that caring for someone who is on a extended half-life factor product is associated with lower emotional impact (β = - 0.11, p < 0.05, Adjusted R 2  = 0.06), and shows a trend association with lower practical impact (β = - 0.09, p < 0.10, Adjusted R 2  = 0.05). The matched cohort analysis also revealed that people on extended half-life factor product had lower Emotional Impact and Practical Impact scores (t = - 2.95 and - 2.94, respectively, p < 0.05 in both cases). No differences were detected on the PedsQL or the WPAI. The reduced required frequency of factor product infusions of extended half-life factor products appears to reduce the emotional distress and practical burden of caregiving. Future work should evaluate the longitudinal impact.

  16. Coaching "Callings" throughout the Adult Life Cycle.

    ERIC Educational Resources Information Center

    Hudson, Frederic M.

    2001-01-01

    The process of "callings" continues throughout life. Coaching can connect the present to the future in a meaningful way. Callings represent a value shift requiring revision of the nature and scope of one's central purpose in life and meaningful activities. (JOW)

  17. Marilou Awiakta: Reweaving the Future.

    ERIC Educational Resources Information Center

    Crowe, Thomas Rain, Ed.

    1990-01-01

    Taped interview in which Appalachian Indian poet Marilou Awiakta examines her own life and work. Discusses effects of rural upbringing, Cherokee culture, modern science, and life abroad on writing. Examines themes of feminism and technology in life and work. Includes six poems. (TES)

  18. The Future Prospects of Modern Adolescents in the Life Course Perspective

    ERIC Educational Resources Information Center

    Bochaver, A. A.; Zhilinskaya, A. V.; Khlomov, K. D.

    2017-01-01

    The article examines trends in theoretical and applied concepts about the adolescent period and in particular about how adolescents develop life goals. We discuss the blurring of the boundaries of adolescence, the postponement of life decisions, and the difficult process of separating from parents as trends in modern adolescent life. Certain…

  19. The detection of extra-terrestrial life and the consequences for science and society.

    PubMed

    Dominik, Martin; Zarnecki, John C

    2011-02-13

    Astronomers are now able to detect planets orbiting stars other than the Sun where life may exist, and living generations could see the signatures of extra-terrestrial life being detected. Should it turn out that we are not alone in the Universe, it will fundamentally affect how humanity understands itself--and we need to be prepared for the consequences. A Discussion Meeting held at the Royal Society in London, 6-9 Carlton House Terrace, on 25-26 January 2010, addressed not only the scientific but also the societal agenda, with presentations covering a large diversity of topics.

  20. The Drake Equation

    NASA Astrophysics Data System (ADS)

    Vakoch, Douglas A.; Dowd, Matthew F.; Drake, Frank

    2015-07-01

    List of contributors; Foreword Frank Drake; Preface; Acknowledgements; Introduction Steven Dick; 1. Rate of formation of stars suitable for the development of intelligent life, R*, pre-1961 David DeVorkin; 2. Rate of formation of stars suitable for the development of intelligent life, R*, 1961 to the present Patrick François and Danielle Briot; 3. Fraction of stars with planetary systems, fp, pre-1961 Matthew F. Dowd; 4. Fraction of stars with planetary systems, fp, 1961 to the present Chris Impey; 5. Number of planets, per solar system, with an environment suitable for life, ne, pre-1961 Florence Raulin Cerceau; 6. Number of planets, per solar system, with an environment suitable for life, ne, 1961 to the present Danielle Briot and Jean Schneider; 7. Fraction of suitable planets on which life actually appears, fl, pre-1961 Stephané Tirard; 8. Fraction of suitable planets on which life actually appears, fl, 1961 to the present David J. Des Marais; 9. Fraction of life-bearing planets on which intelligent life emerges, fl, pre-1961 Michael Crowe; 10. Fraction of life-bearing planets on which intelligent life emerges, fl, 1961 to the present Lori Marino; 11. Fraction of civilizations that develop a technology that releases detectable signs of their existence into space, fc, pre-1961 Florence Raulin Cerceau; 12. Fraction of civilizations that develop a technology that releases detectable signs of their existence into space, fc, 1961 to the present Seth Shostak; 13. Length of time such civilizations release detectable signals into space, L, pre-1961 David Dunér; 14. Length of time such civilizations release detectable signals into space, L, 1961 to the present Garry Chick; Afterword Paul Davies; Index.

  1. Romantic ideals, mate preferences, and anticipation of future difficulties in marital life: a comparative study of young adults in India and America

    PubMed Central

    Bejanyan, Kathrine; Marshall, Tara C.; Ferenczi, Nelli

    2014-01-01

    Previous studies have established that Indians tend to be greater in collectivism and gender role traditionalism than Americans. The purpose of the present study was to examine whether these differences explained further cultural differences in romantic beliefs, traditional mate preferences, and anticipation of future difficulties in marital life. Results revealed that Indians reported greater collectivism than Americans and, in turn, held stronger romantic beliefs. Additionally, Indians' greater collectivism and endorsement of more traditional gender roles in part predicted their preferences for a marital partner possessing traditional characteristics, and fully accounted for their heightened concerns about encountering future difficulties in marital life. These results shed light on the processes underlying cultural differences in relationship attitudes and preferences, and point to culture-specific therapies to enhance marital functioning. PMID:25520681

  2. Searching for Biosignatures in Exoplanetary Impact Ejecta

    NASA Astrophysics Data System (ADS)

    Cataldi, Gianni; Brandeker, Alexis; Thébault, Philippe; Singer, Kelsi; Ahmed, Engy; de Vries, Bernard L.; Neubeck, Anna; Olofsson, Göran

    2017-08-01

    With the number of confirmed rocky exoplanets increasing steadily, their characterization and the search for exoplanetary biospheres are becoming increasingly urgent issues in astrobiology. To date, most efforts have concentrated on the study of exoplanetary atmospheres. Instead, we aim to investigate the possibility of characterizing an exoplanet (in terms of habitability, geology, presence of life, etc.) by studying material ejected from the surface during an impact event. For a number of impact scenarios, we estimate the escaping mass and assess its subsequent collisional evolution in a circumstellar orbit, assuming a Sun-like host star. We calculate the fractional luminosity of the dust as a function of time after the impact event and study its detectability with current and future instrumentation. We consider the possibility to constrain the dust composition, giving information on the geology or the presence of a biosphere. As examples, we investigate whether calcite, silica, or ejected microorganisms could be detected. For a 20 km diameter impactor, we find that the dust mass escaping the exoplanet is roughly comparable to the zodiacal dust, depending on the exoplanet's size. The collisional evolution is best modeled by considering two independent dust populations, a spalled population consisting of nonmelted ejecta evolving on timescales of millions of years, and dust recondensed from melt or vapor evolving on much shorter timescales. While the presence of dust can potentially be inferred with current telescopes, studying its composition requires advanced instrumentation not yet available. The direct detection of biological matter turns out to be extremely challenging. Despite considerable difficulties (small dust masses, noise such as exozodiacal dust, etc.), studying dusty material ejected from an exoplanetary surface might become an interesting complement to atmospheric studies in the future.

  3. Searching for Biosignatures in Exoplanetary Impact Ejecta.

    PubMed

    Cataldi, Gianni; Brandeker, Alexis; Thébault, Philippe; Singer, Kelsi; Ahmed, Engy; de Vries, Bernard L; Neubeck, Anna; Olofsson, Göran

    2017-08-01

    With the number of confirmed rocky exoplanets increasing steadily, their characterization and the search for exoplanetary biospheres are becoming increasingly urgent issues in astrobiology. To date, most efforts have concentrated on the study of exoplanetary atmospheres. Instead, we aim to investigate the possibility of characterizing an exoplanet (in terms of habitability, geology, presence of life, etc.) by studying material ejected from the surface during an impact event. For a number of impact scenarios, we estimate the escaping mass and assess its subsequent collisional evolution in a circumstellar orbit, assuming a Sun-like host star. We calculate the fractional luminosity of the dust as a function of time after the impact event and study its detectability with current and future instrumentation. We consider the possibility to constrain the dust composition, giving information on the geology or the presence of a biosphere. As examples, we investigate whether calcite, silica, or ejected microorganisms could be detected. For a 20 km diameter impactor, we find that the dust mass escaping the exoplanet is roughly comparable to the zodiacal dust, depending on the exoplanet's size. The collisional evolution is best modeled by considering two independent dust populations, a spalled population consisting of nonmelted ejecta evolving on timescales of millions of years, and dust recondensed from melt or vapor evolving on much shorter timescales. While the presence of dust can potentially be inferred with current telescopes, studying its composition requires advanced instrumentation not yet available. The direct detection of biological matter turns out to be extremely challenging. Despite considerable difficulties (small dust masses, noise such as exozodiacal dust, etc.), studying dusty material ejected from an exoplanetary surface might become an interesting complement to atmospheric studies in the future. Key Words: Biosignatures-Exoplanets-Impacts-Interplanetary dust-Remote sensing. Astrobiology 17, 721-746.

  4. A Detection Device for the Signs of Human Life in Accident

    NASA Astrophysics Data System (ADS)

    Ning, Li; Ruilan, Zhang; Jian, Liu; Ruirui, Cheng; Yuhong, Diao

    2017-12-01

    A detection device for the signs of human life in accidents is a device used in emergency situations, such as the crash site. the scene of natural disasters, the battlefield ruins. it designed to detect the life signs of the distress under the injured ambulance vital signs devices. The device can on human vital signs, including pulse, respiration physiological signals to make rapid and accurate response. After some calculations, and after contrast to normal human physiological parameters given warning signals, in order for them to make timely ambulance judgment. In this case the device is required to do gymnastics convenience, ease of movement, power and detection of small flexible easy realization. This device has the maximum protection of the wounded safety significance.

  5. Frequency, characteristics, and perceived functions of emotional future thinking in daily life.

    PubMed

    Barsics, Catherine; Van der Linden, Martial; D'Argembeau, Arnaud

    2016-01-01

    While many thoughts and mental images that people form about their personal future refer to emotionally significant events, there is still little empirical data on the frequency and nature of emotional future-oriented thoughts (EmoFTs) that occur in natural settings. In the present study, participants recorded EmoFTs occurring in daily life and rated their characteristics, emotional properties, and perceived functions. The results showed that EmoFTs are frequent, occur in various contexts, and are perceived to fulfil important functions, mostly related to goal pursuit and emotion regulation. When distinguishing between anticipatory and anticipated emotions (i.e., emotions experienced in the present versus emotions expected to occur in the future), a positivity bias in the frequency of EmoFTs was found to be restricted to anticipated emotions. The representational format and perceived function of EmoFTs varied according to their affective valence, and the intensity of anticipatory and anticipated emotions were influenced by the personal importance and amount of visual imagery of EmoFTs. Mood states preceding EmoFTs influenced their emotional components, which, in turn, impacted ensuing mood states. Overall, these findings shed further light on the emotional properties of future-oriented thoughts that are experienced in daily life.

  6. Where is the Phosphorus in Cometary Volatiles?

    NASA Astrophysics Data System (ADS)

    Boice, Daniel C.; de Almeida, Amaury

    2015-08-01

    Phosphorus is a key element in all living organisms but its role in life's origin is not well understood. Phosphorus-bearing compounds have been observed in space, are ubiquitous in meteorites in small quantities, and have been detected as part of the dust component in comets Halley and Wild 2. However, searches for P-bearing species in the gas phase in cometary comae have been unsuccessful. We present results of the first quantitative study of P-bearing molecules in comets to identify likely species containing phosphorus. We found reaction pathways of gas-phase and photolytic chemistry for simple P-bearing molecules likely to be found in comets and important for prebiotic chemistry. We hope to aid future searches for this important element, especially the Rosetta Mission to Comet 67P/Churyumov-Gerasimenko, possibly shedding light on issues of comet formation (time and place) and understanding prebiotic to biotic evolution of life.Acknowledgements: We greatly appreciate support from the NSF Planetary Astronomy Program under Grant No. 0908529 and the Instituto de Astronomia, Geofísica e Ciências Atmosféricas at the University of São Paulo.

  7. The enduring effects of smoking in Latin America.

    PubMed

    Palloni, Alberto; Novak, Beatriz; Pinto-Aguirre, Guido

    2015-06-01

    We estimated smoking-attributable mortality, assessed the impact of past smoking on recent mortality, and computed expected future losses in life expectancy caused by past and current smoking behavior in Latin America and the Caribbean. We used a regression-based procedure to estimate smoking-attributable mortality and information for 6 countries (Argentina, Brazil, Chile, Cuba, Mexico, and Uruguay) for the years 1980 through 2009 contained in the Latin American Mortality Database (LAMBdA). These countries jointly comprise more than two thirds of the adult population in Latin America and the Caribbean and have the region's highest rates of smoking prevalence. During the last 10 years, the impact of smoking was equivalent to losses in male (aged ≥ 50 years) life expectancy of about 2 to 6 years. These effects are likely to increase, particularly for females, both in the study countries and in those that joined the epidemic at later dates. Unless innovations in the detection and treatment of chronic diseases are introduced soon, continued gains in adult survival in Latin America and the Caribbean region may slow down considerably.

  8. Energetic cost of communication.

    PubMed

    Stoddard, Philip K; Salazar, Vielka L

    2011-01-15

    Communication signals may be energetically expensive or inexpensive to produce, depending on the function of the signal and the competitive nature of the communication system. Males of sexually selected species may produce high-energy advertisement signals, both to enhance detectability and to signal their size and body condition. Accordingly, the proportion of the energy budget allocated to signal production ranges from almost nothing for many signals to somewhere in excess of 50% for acoustic signals in short-lived sexually selected species. Recent data from gymnotiform electric fish reveal mechanisms that regulate energy allocated to sexual advertisement signals through dynamical remodeling of the excitable membranes in the electric organ. Further, males of the short-lived sexually selected species, Brachyhypopomus gauderio, trade off among different metabolic compartments, allocating energy to signal production while reducing energy used in other metabolic functions. Female B. gauderio, by contrast, do not trade off energy between signaling and other functions. To fuel energetically expensive signal production, we expect a continuum of strategies to be adopted by animals of different life history strategies. Future studies should explore the relation between life history and energy allocation trade-offs.

  9. Energetic cost of communication

    PubMed Central

    Stoddard, Philip K.; Salazar, Vielka L.

    2011-01-01

    Communication signals may be energetically expensive or inexpensive to produce, depending on the function of the signal and the competitive nature of the communication system. Males of sexually selected species may produce high-energy advertisement signals, both to enhance detectability and to signal their size and body condition. Accordingly, the proportion of the energy budget allocated to signal production ranges from almost nothing for many signals to somewhere in excess of 50% for acoustic signals in short-lived sexually selected species. Recent data from gymnotiform electric fish reveal mechanisms that regulate energy allocated to sexual advertisement signals through dynamical remodeling of the excitable membranes in the electric organ. Further, males of the short-lived sexually selected species, Brachyhypopomus gauderio, trade off among different metabolic compartments, allocating energy to signal production while reducing energy used in other metabolic functions. Female B. gauderio, by contrast, do not trade off energy between signaling and other functions. To fuel energetically expensive signal production, we expect a continuum of strategies to be adopted by animals of different life history strategies. Future studies should explore the relation between life history and energy allocation trade-offs. PMID:21177941

  10. Patients' experiences of physical limitations in daily life activities when suffering from chronic heart failure; a phenomenographic analysis.

    PubMed

    Pihl, Emma; Fridlund, Bengt; Mårtensson, Jan

    2011-03-01

    The aim of the study was to describe how patients suffering from chronic heart failure conceived their physical limitations in daily life activities. An explorative and qualitative design with a phenomenographic approach was chosen, a total of 15 patients were interviewed. The findings indicate that participants perceived a variety of structural aspects pertaining to physical limitations in activities of daily life which resulted in four referential aspects. Need of finding practical solutions in daily life focused on how life had to be changed and other ways of performing activities of daily life had to be invented. Having realistic expectations about the future was characterised by belief that the future itself would be marked by change in physical functioning, but an incentive to maintain functions and activities ensured good quality of or even increased capacity in daily life. Not believing in one's own ability included the perception of having no opportunity to improve ability to perform activities of daily life. There were perceptions of undesired passivity, undefined fear of straining themselves or performing activities that could endanger their health in addition to uncertainty about the future. In Losing one's social role in daily life, participants described losing their social network and their position in society and family because of limited physical capacity. A lack of important issues, mental and physical, occurred when physical capacity was lost. In conclusion, patients suffering from chronic heart failure found new solutions to manage activities in daily life, including willingness to change focus and identify other ways of doing important things. Patients had an incentive to maintain functions and activities to ensure a good quality of and strengthen their physical capacity in daily life. Inability to trust in their physical capacity in combination with experienced limitations in daily life prevented patients from attempting to increase activities. © 2010 The Authors. Scandinavian Journal of Caring Sciences © 2010 Nordic College of Caring Science.

  11. Preschool life skills: Recent advancements and future directions.

    PubMed

    Fahmie, Tara A; Luczynski, Kevin C

    2018-01-01

    Over the past decade, researchers have replicated and extended research on the preschool life skills (PLS) program developed by Hanley, Heal, Tiger, and Ingvarsson (2007). This review summarizes recent research with respect to maximizing skill acquisition, improving generality, evaluating feasibility and acceptability, and testing predictions of the initial PLS study. For each area, we suggest directions for future research. © 2018 Society for the Experimental Analysis of Behavior.

  12. New Designs for the Comprehensive High School. Executive Summary Report. A New Vision for the Comprehensive High School: Preparing Students for a Changing World.

    ERIC Educational Resources Information Center

    Copa, George H.; Pease, Virginia H.

    A 2-year project to specify new designs for the comprehensive high school of the future identified the following important features: (1) a guaranteed set of learner outcomes closely linked to present and future life roles and responsibilities for all students; (2) learning applied to life situations, using authentic assessment; (3) multiple ways…

  13. Planets and Life

    NASA Astrophysics Data System (ADS)

    Sullivan, Woodruff T., III; Baross, John

    2007-09-01

    Foreword; Preface; Contributors; Prologue; Part I. History: 1. History of astrobiological ideas W. T. Sullivan and D. Carney; 2. From exobiology to astrobiology S. J. Dick; Part II. The Physical Stage: 3. Formation of Earth-like habitable planets D. E. Brownlee and M. Kress; 4. Planetary atmospheres and life D. Catling and J. F. Kasting; Part III. The Origin of Life on Earth: 5. Does 'life' have a definition? C.E. Cleland and C. F. Chyba; 6. Origin of life: crucial issues R. Shapiro; 7. Origin of proteins and nucleic acids A. Ricardo and S. A. Benner; 8. The roots of metabolism G.D. Cody and J. H. Scott; 9. Origin of cellular life D. W. Deamer; Part IV. Life on Earth: 10. Evolution: a defining feature of life J. A. Baross; 11. Evolution of metabolism and early microbial communities J. A. Leigh, D. A. Stahl and J. T. Staley; 12. The earliest records of life on Earth R. Buick; 13. The origin and diversification of eukaryotes M. L. Sogin, D. J. Patterson and A. McArthur; 14. Limits of carbon life on Earth and elsewhere J. A. Baross, J. Huber and M. Schrenk; 15. Life in ice J. W. Deming and H. Eicken; 16. The evolution and diversification of life S. Awramik and K. J. McNamara; 17. Mass extinctions P. D. Ward; Part V. Potentially Habitable Worlds: 18. Mars B. M. Jakosky, F. Westall and A. Brack; 19. Europa C. F. Chyba and C. B. Phillips; 20. Titan J. I. Lunine and B. Rizk; 21. Extrasolar planets P. Butler; Part VI. Searching for Extraterrestrial Life: 22. How to search for life on other worlds C. P. McKay; 23. Instruments and strategies for detecting extraterrestrial life P. G. Conrad; 24. Societial and ethical concerns M. S. Race; 25. Planetary protection J. D. Rummel; 26. Searching for extraterrestrial intelligence J. C. Tarter; 27. Alien biochemistries P. D. Ward and S. A. Benner; Part VII. Future of the Field: 28. Disciplinary and educational opportunities L. Wells, J. Armstrong and J. Huber; Epilogue C. F. Chyba; Appendixes: A. Units and usages; B. Planetary properties; C. The geological time scale S. Awramik and K. J. McNamara; D. Astrobiological destinations on planet Earth J. Harnmeijer; E. Micro*scope web tool D. J. Patterson and M. L. Sogin; Index.

  14. Reward and punishment learning in daily life: A replication study

    PubMed Central

    van Roekel, Eeske; Wichers, Marieke; Oldehinkel, Albertine J.

    2017-01-01

    Day-to-day experiences are accompanied by feelings of Positive Affect (PA) and Negative Affect (NA). Implicitly, without conscious processing, individuals learn about the reward and punishment value of each context and activity. These associative learning processes, in turn, affect the probability that individuals will re-engage in such activities or seek out that context. So far, implicit learning processes are almost exclusively investigated in controlled laboratory settings and not in daily life. Here we aimed to replicate the first study that investigated implicit learning processes in real life, by means of the Experience Sampling Method (ESM). That is, using an experience-sampling study with 90 time points (three measurements over 30 days), we prospectively measured time spent in social company and amount of physical activity as well as PA and NA in the daily lives of 18-24-year-old young adults (n = 69 with anhedonia, n = 69 without anhedonia). Multilevel analyses showed a punishment learning effect with regard to time spent in company of friends, but not a reward learning effect. Neither reward nor punishment learning effects were found with regard to physical activity. Our study shows promising results for future research on implicit learning processes in daily life, with the proviso of careful consideration of the timescale used. Short-term retrospective ESM design with beeps approximately six hours apart may suffer from mismatch noise that hampers accurate detection of associative learning effects over time. PMID:28976985

  15. Amino acid chiral recognition using X-ray diffraction of thin films

    NASA Technical Reports Server (NTRS)

    Dragoi, D.; Kulleck, J.; Kanik, I.; Beegle, L. W.

    2003-01-01

    The astrobiological search for life, both extinct and extant, on other solar system bodies will take place via several planned lander missions to Mars, Europa and Titan. The detection and identification of organic molecules that have been associated with life is a major technical achievement. Terrestrial life utilizes organic molecules, such as amino acids, as its basic building block. Detection of an entometeric excess of L over D forms of amino acids would be a powerful sign that life had existed on Mars at one time.

  16. Microwave life detector for buried victims using neutrodyning loop based system

    NASA Astrophysics Data System (ADS)

    Tahar J., Bel Hadj

    2009-07-01

    This paper describes a new design of an electromagnetic life detector for the detection of buried victims. The principle of the microwave life sensor is based on the detection of the modulated part of a scattered wave which is generated by the breathing activity of the victim. Those movements generate a spectral component located in the low frequency range, which for most of the cases, is located in a spectrum extending from 0.18 Hz to 0.34 Hz. The detection process requires high sensitivity with respect to breathing movements and, simultaneously, a relative insensitivity for other non-modulated or modulated parasitic signals. Developed microwave system, generating a frequency adjustable between 500 MHz and 1 GHz, is based on a neutrodyning loop required to cancel any non-modulated background and reflected signals in order to get better receiver sensitivity without introducing supplementary distortions on the received signal. Life signal is considered practically periodic that facilitates the extraction of this spectral component using several processing techniques, such as adaptive filtering and correlation permitting to ameliorate the detection range to be more than 15 m in low-loss medium. Detection range is a fundamental parameter for a microwave life detector. A range around 1 m doesn't have a large interest for this application. To attain a range more than 15 m, while guaranteeing professional performances, the technology has to optimize the system parameters as well as the involved signal processing for the purpose of overcoming the presence of obstacles, attenuation, and noise perturbation. This constitutes the main contribution of the present work. Experimental measurements have confirmed the potentiality of this microwave technique for life detector with best space covering detection.

  17. Common or multiple futures for end of life care around the world? Ideas from the 'waiting room of history'.

    PubMed

    Zaman, Shahaduz; Inbadas, Hamilton; Whitelaw, Alexander; Clark, David

    2017-01-01

    Around the world there is growing interest in the manner in which care is delivered to people at the end of life. However, there is little unanimity on what constitutes a 'good death' and the appropriate societal responses to the issue of delivering culturally relevant and sustainable forms of end of life care in different settings are not subjects of broad agreement. In this critical conceptual paper we focus on the emerging narratives of global palliative care and offer an assessment of their implications. We relate this to calls to improve end of life care across jurisdictions and settings, attempts to map and grade the development of palliative care provision, and to the emergence of a widely recognised global 'quality of death index'. We consider an alternative approach to framing this debate, drawn from a subaltern and post-colonial studies perspective and suggest that adopting a truly global perspective will require acceptance of the plurality of past and present local problems and issues relating to end of life care, as well as the plural possibilities of how they might be overcome. In that context, we would not aim to universalise or privilege one particular global future for end of life care. Instead of homogenising end of life interventions, we seek to be open to multiple futures for the care of the dying. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Life satisfaction of Swedish pediatric oncologists: The role of personality, work-related aspects, and emotional distress.

    PubMed

    Stenmarker, Margaretha; Palmérus, Kerstin; Márky, Ildikó

    2009-12-15

    The first nationwide, population-based study of Swedish pediatric oncologists was conducted in 2006 and it revealed that various aspects of their life satisfaction obviously influenced their stress-resilience. This second part of the study, with a response rate of 89% in the target group, therefore, focused on their life satisfaction and the role of personality, work-related aspects, and emotional distress related to type of medical center and gender. This descriptive study was based on a cross-sectional mail survey with questionnaires involving 90 pediatric oncologists. Using hierarchical regression models, their total, present, past, and future life satisfaction was analyzed. The vast majority (76.7%) stated that working in this medical field was very stimulating for their personal development. Male pediatricians were more satisfied with their present lives and physicians working at academic medical centers were more confident about the future. Some oncologists (13.4%), in particular females at non-academic medical centers, needed professional help dealing with work-related psychological problems. Personality trait (Hedonic Capacity) and low levels of depression contributed to every aspect of overall life satisfaction. Work-related aspects influenced present and future life satisfaction. The models explained between 5% and 43% of the variance in life satisfaction in the whole group. Pediatric oncologists face life-threatening conditions and psychosocial issues factors that may negatively influence their life satisfaction. This study group, a single population of physicians, is characterized by an optimistic attitude and stable emotional status pointing to a high level of satisfaction, which is probably a main basic condition when meeting seriously ill children. (c) 2009 Wiley-Liss, Inc.

  19. Life Support Goals Including High Closure and Low Mass Should Be Reconsidered Using Systems Analysis

    NASA Technical Reports Server (NTRS)

    Jones, Harry W.

    2017-01-01

    Recycling space life support systems have been built and tested since the 1960s and have operated on the International Space Station (ISS) since the mid 2000s. The development of space life support has been guided by a general consensus focused on two important related goals, increasing system closure and reducing launch mass. High closure is achieved by recycling crew waste products such as carbon dioxide and condensed humidity. Recycling directly reduces the mass of oxygen and water for the crew that must be launched from Earth. The launch mass of life support can be further reduced by developing recycling systems with lower hardware mass and reduced power. The life support consensus has also favored using biological systems. The goal of increasing closure using biological systems suggests that food should be grown in space and that biological processors be used for air, water, and waste recycling. The goal of reducing launch mass led to use of Equivalent System Mass (ESM) in life support advocacy and technology selection. The recent consensus assumes that the recycling systems architecture developed in the 1960s and implemented on ISS will be used on all future long missions. NASA and other project organizations use the standard systems engineering process to guide hardware development. The systems process was used to develop ISS life support, but it has been less emphasized in planning future systems for the moon and Mars. Since such missions are far in the future, there has been less immediate need for systems engineering analysis to consider trade-offs, reliability, and Life Cycle Cost (LCC). Preliminary systems analysis suggests that the life support consensus concepts should be revised to reflect systems engineering requirements.

  20. Adolescents’ expectations for the future predict health behaviors in early adulthood

    PubMed Central

    McDade, Thomas W.; Chyu, Laura; Duncan, Greg J.; Hoyt, Lindsay T.; Doane, Leah D.; Adam, Emma K.

    2011-01-01

    Health-related behaviors in adolescence establish trajectories of risk for obesity and chronic degenerative diseases, and they represent an important pathway through which socio-economic environments shape patterns of morbidity and mortality. Most behaviors that promote health involve making choices that may not pay off until the future, but the factors that predict an individual's investment in future health are not known. In this paper we consider whether expectations for the future in two domains relevant to adolescents in the U.S.—perceived chances of living to middle age and perceived chances of attending college—are associated with an individual's engagement in behaviors that protect health in the long run. We focus on adolescence as an important life stage during which habits formed may shape trajectories of disease risk later in life. We use data from a large, nationally representative sample of American youth (the US National Longitudinal Study of Adolescent Health) to predict levels of physical activity, fast food consumption, and cigarette smoking in young adulthood in relation to perceived life chances in adolescence, controlling for baseline health behaviors and a wide range of potentially confounding factors. We found that adolescents who rated their chances of attending college more highly exercised more frequently and smoked fewer cigarettes in young adulthood. Adolescents with higher expectations of living to age 35 smoked fewer cigarettes as young adults. Parental education was a significant predictor of perceived life chances, as well as health behaviors, but for each outcome the effects of perceived life chances were independent of, and often stronger than, parental education. Perceived life chances in adolescence may therefore play an important role in establishing individual trajectories of health, and in contributing to social gradients in population health. PMID:21764487

  1. Adolescents' expectations for the future predict health behaviors in early adulthood.

    PubMed

    McDade, Thomas W; Chyu, Laura; Duncan, Greg J; Hoyt, Lindsay T; Doane, Leah D; Adam, Emma K

    2011-08-01

    Health-related behaviors in adolescence establish trajectories of risk for obesity and chronic degenerative diseases, and they represent an important pathway through which socio-economic environments shape patterns of morbidity and mortality. Most behaviors that promote health involve making choices that may not pay off until the future, but the factors that predict an individual's investment in future health are not known. In this paper we consider whether expectations for the future in two domains relevant to adolescents in the U.S.-perceived chances of living to middle age and perceived chances of attending college-are associated with an individual's engagement in behaviors that protect health in the long run. We focus on adolescence as an important life stage during which habits formed may shape trajectories of disease risk later in life. We use data from a large, nationally representative sample of American youth (the US National Longitudinal Study of Adolescent Health) to predict levels of physical activity, fast food consumption, and cigarette smoking in young adulthood in relation to perceived life chances in adolescence, controlling for baseline health behaviors and a wide range of potentially confounding factors. We found that adolescents who rated their chances of attending college more highly exercised more frequently and smoked fewer cigarettes in young adulthood. Adolescents with higher expectations of living to age 35 smoked fewer cigarettes as young adults. Parental education was a significant predictor of perceived life chances, as well as health behaviors, but for each outcome the effects of perceived life chances were independent of, and often stronger than, parental education. Perceived life chances in adolescence may therefore play an important role in establishing individual trajectories of health, and in contributing to social gradients in population health. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Astrobiology, space and the future age of discovery.

    PubMed

    Blumberg, Baruch S

    2011-02-13

    Astrobiology is the study of the origins, evolution, distribution and future of life in the Universe, and specifically seeks to understand the origin of life and to test the hypothesis that life exists elsewhere than on Earth. There is a general mathematics, physics and chemistry; that is, scientific laws that obtain on Earth also do so elsewhere. Is there a general biology? Is the Universe life-rich or is Earth an isolated island of biology? Exploration in the Age of Enlightenment required the collection of data in unexplored regions and the use of induction and empiricism to derive models and natural laws. The current search for extra-terrestrial life has a similar goal, but with a much greater amount of data and with computers to help with management, correlations, pattern recognition and analysis. There are 60 active space missions, many of them aiding in the search for life. There is not a universally accepted definition of life, but there are a series of characteristics that can aid in the identification of life elsewhere. The study of locations on Earth with similarities to early Mars and other space objects could provide a model that can be used in the search for extra-terrestrial life.

  3. Effects of life-state on detectability in a demographic study of the terrestrial orchid Cleistes bifaria

    USGS Publications Warehouse

    Kery, M.; Gregg, K.B.

    2003-01-01

    1. Most plant demographic studies follow marked individuals in permanent plots. Plots tend to be small, so detectability is assumed to be one for every individual. However, detectability could be affected by factors such as plant traits, time, space, observer, previous detection, biotic interactions, and especially by life-state. 2. We used a double-observer survey and closed population capture-recapture modelling to estimate state-specific detectability of the orchid Cleistes bifaria in a long-term study plot of 41.2 m2. Based on AICc model selection, detectability was different for each life-state and for tagged vs. previously untagged plants. There were no differences in detectability between the two observers. 3. Detectability estimates (SE) for one-leaf vegetative, two-leaf vegetative, and flowering/fruiting states correlated with mean size of these states and were 0.76 (0.05), 0.92 (0.06), and 1 (0.00), respectively, for previously tagged plants, and 0.84 (0.08), 0.75 (0.22), and 0 (0.00), respectively, for previously untagged plants. (We had insufficient data to obtain a satisfactory estimate of previously untagged flowering plants). 4. Our estimates are for a medium-sized plant in a small and intensively surveyed plot. It is possible that detectability is even lower for larger plots and smaller plants or smaller life-states (e.g. seedlings) and that detectabilities < 1 are widespread in plant demographic studies. 5. State-dependent detectabilities are especially worrying since they will lead to a size- or state-biased sample from the study plot. Failure to incorporate detectability into demographic estimation methods introduces a bias into most estimates of population parameters such as fecundity, recruitment, mortality, and transition rates between life-states. We illustrate this by a simple example using a matrix model, where a hypothetical population was stable but, due to imperfect detection, wrongly projected to be declining at a rate of 8% per year. 6. Almost all plant demographic studies are based on models for discrete states. State and size are important predictors both for demographic rates and detectability. We suggest that even in studies based on small plots, state- or size-specific detectability should be estimated at least at some point to avoid biased inference about the dynamics of the population sampled.

  4. How Adolescents Construct Their Future: The Effect of Loneliness on Future Orientation

    ERIC Educational Resources Information Center

    Seginer, Rachel; Lilach, Efrat

    2004-01-01

    This study examined the effect of loneliness, gender, and two dimensions of prospective life domains on adolescent future orientation. Future orientation was studied in four prospective domains: social relations, marriage and family, higher education and work and career. These domains are described in terms of two dimensions: theme (relational vs.…

  5. Dystopia and Disutopia: Hope and Hopelessness in German Pupils' Future Narratives

    ERIC Educational Resources Information Center

    Nordensvard, Johan

    2014-01-01

    Within the academic field of futures in education there has been concern that pupils' negative and pessimistic future scenarios could be deleterious to their minds. Eckersley ("Futures" 31:73-90, 1999) argues that pessimism among young people can produce cynicism, mistrust, anger, apathy and an approach to life based on instant…

  6. Integration of High-Resolution Laser Displacement Sensors and 3D Printing for Structural Health Monitoring

    PubMed Central

    Chang, Shu-Wei; Kuo, Shih-Yu; Huang, Ting-Hsuan

    2017-01-01

    This paper presents a novel experimental design for complex structural health monitoring (SHM) studies achieved by integrating 3D printing technologies, high-resolution laser displacement sensors, and multiscale entropy SHM theory. A seven-story structure with a variety of composite bracing systems was constructed using a dual-material 3D printer. A wireless Bluetooth vibration speaker was used to excite the ground floor of the structure, and high-resolution laser displacement sensors (1-μm resolution) were used to monitor the displacement history on different floors. Our results showed that the multiscale entropy SHM method could detect damage on the 3D-printed structures. The results of this study demonstrate that integrating 3D printing technologies and high-resolution laser displacement sensors enables the design of cheap, fast processing, complex, small-scale civil structures for future SHM studies. The novel experimental design proposed in this study provides a suitable platform for investigating the validity and sensitivity of SHM in different composite structures and damage conditions for real life applications in the future. PMID:29271937

  7. Integration of High-Resolution Laser Displacement Sensors and 3D Printing for Structural Health Monitoring.

    PubMed

    Chang, Shu-Wei; Lin, Tzu-Kang; Kuo, Shih-Yu; Huang, Ting-Hsuan

    2017-12-22

    This paper presents a novel experimental design for complex structural health monitoring (SHM) studies achieved by integrating 3D printing technologies, high-resolution laser displacement sensors, and multiscale entropy SHM theory. A seven-story structure with a variety of composite bracing systems was constructed using a dual-material 3D printer. A wireless Bluetooth vibration speaker was used to excite the ground floor of the structure, and high-resolution laser displacement sensors (1-μm resolution) were used to monitor the displacement history on different floors. Our results showed that the multiscale entropy SHM method could detect damage on the 3D-printed structures. The results of this study demonstrate that integrating 3D printing technologies and high-resolution laser displacement sensors enables the design of cheap, fast processing, complex, small-scale civil structures for future SHM studies. The novel experimental design proposed in this study provides a suitable platform for investigating the validity and sensitivity of SHM in different composite structures and damage conditions for real life applications in the future.

  8. New Therapeutic Approaches for Waldenstrom Macroglobulinemia

    PubMed Central

    Stedman, Jennifer; Roccaro, Aldo; Leleu, Xavier; Ghobrial, Irene M.

    2011-01-01

    Waldenstrom Macroglobulinemia (WM) is a B-cell disorder characterized by the infiltration of the bone marrow (BM) with lymphoplasmacytic cells, as well as detection of an IgM monoclonal gammopathy in the serum. WM is an incurable disease, with an overall medial survival of only 5-6 years. First-line therapy of WM has been based on single-agent or combination therapy with alkylator agents (e.g. chlorambucil or cyclophasphamide), nucleoside analogues (cladribine or fludarabine), and the monoclonal antibody rituximab. Novel therapeutic agents that have demonstrated efficacy in WM include thalidomide, lenalidomide, bortezomib, everolimus, Atacicept, and perifosine. The range of the ORR to these agents is between 25-80%. Ongoing and planned future clinical trials include those using PKC inhibitors such as enzastaurin, new proteasome inhibitors such as carfilzomib, histone deacetylase inhibitors such as panobinostat, humanized CD20 antibodies such as Ofatumumab, and additional alkylating agents such as bendamustine. These agents, when compared to traditional chemotherapeutic agents, may lead in the future to higher responses, longer remissions and better quality of life for patients with WM. PMID:21869855

  9. Advances in primate stable isotope ecology-Achievements and future prospects.

    PubMed

    Crowley, Brooke E; Reitsema, Laurie J; Oelze, Vicky M; Sponheimer, Matt

    2016-10-01

    Stable isotope biogeochemistry has been used to investigate foraging ecology in non-human primates for nearly 30 years. Whereas early studies focused on diet, more recently, isotopic analysis has been used to address a diversity of ecological questions ranging from niche partitioning to nutritional status to variability in life history traits. With this increasing array of applications, stable isotope analysis stands to make major contributions to our understanding of primate behavior and biology. Most notably, isotopic data provide novel insights into primate feeding behaviors that may not otherwise be detectable. This special issue brings together some of the recent advances in this relatively new field. In this introduction to the special issue, we review the state of isotopic applications in primatology and its origins and describe some developing methodological issues, including techniques for analyzing different tissue types, statistical approaches, and isotopic baselines. We then discuss the future directions we envision for the field of primate isotope ecology. Am. J. Primatol. 78:995-1003, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  10. Spectrometry: photon sorting at the speed of light

    NASA Astrophysics Data System (ADS)

    Vink, H. J. P.; Day, J. P. R.; Volatier, J. B. C.; Nijkerk, M. D.

    2015-09-01

    The fact that every spectrometer can sort light by wavelength at the speed of light is intriguing. The field of spectrometry is a long-existing and ever-changing one. The application areas extend from optical communication to possible extraterrestrial life detection, health monitoring, environmental monitoring and quite a long list of other topics. TNO has played a role in several of these areas, always using state of the art designs and components. Some of the recent developments are described, as well as a possible path for (near) future developments. Any spectrometer consists of a telescope, slit, collimator, disperser and an imager. Each of these functions is discussed using and even pushing progress in the manufacturing and design capabilities of the industry. The progress from a two-mirror spherical telescope for a pushbroom space-based daily global coverage spectroscopy instrument OMI to a two-mirror freeform telescope for TROPOMI is described, the design and manufacturing of supergratings showing very little straylight, freeform mirrors and the use of deliberately decentered lenses is shown. A near-future small-satellite system is shown that is being built and tested as this paper was written.

  11. Analyzing and Identifying Teens' Stressful Periods and Stressor Events From a Microblog.

    PubMed

    Li, Qi; Xue, Yuanyuan; Zhao, Liang; Jia, Jia; Feng, Ling

    2017-09-01

    Increased health problems among adolescents caused by psychological stress have aroused worldwide attention. Long-standing stress without targeted assistance and guidance negatively impacts the healthy growth of adolescents, threatening the future development of our society. So far, research focused on detecting adolescent psychological stress revealed from each individual post on microblogs. However, beyond stressful moments, identifying teens' stressful periods and stressor events that trigger each stressful period is more desirable to understand the stress from appearance to essence. In this paper, we define the problem of identifying teens' stressful periods and stressor events from the open social media microblog. Starting from a case study of adolescents' posting behaviors during stressful school events, we build a Poisson-based probability model for the correlation between stressor events and stressful posting behaviors through a series of posts on Tencent Weibo (referred to as the microblog throughout the paper). With the model, we discover teens' maximal stressful periods and further extract details of possible stressor events that cause the stressful periods. We generalize and present the extracted stressor events in a hierarchy based on common stress dimensions and event types. Taking 122 scheduled stressful study-related events in a high school as the ground truth, we test the approach on 124 students' posts from January 1, 2012 to February 1, 2015 and obtain some promising experimental results: (stressful periods: recall 0.761, precision 0.737, and F 1 -measure 0.734) and (top-3 stressor events: recall 0.763, precision 0.756, and F 1 -measure 0.759). The most prominent stressor events extracted are in the self-cognition domain, followed by the school life domain. This conforms to the adolescent psychological investigation result that problems in school life usually accompanied with teens' inner cognition problems. Compared with the state-of-the-art top-1 personal life event detection approach, our stressor event detection method is 13.72% higher in precision, 19.18% higher in recall, and 16.50% higher in F 1 -measure, demonstrating the effectiveness of our proposed framework.

  12. Expert Panel Recommendations on Lower Urinary Tract Health of Women Across Their Life Span

    PubMed Central

    Losada, Liliana; Amundsen, Cindy L.; Ashton-Miller, James; Chai, Toby; Close, Clare; Damaser, Margot; DiSanto, Michael; Dmochowski, Roger; Fraser, Matthew O.; Kielb, Stephanie J.; Kuchel, George; Mueller, Elizabeth R.; Parker-Autry, Candace; Wolfe, Alan J.

    2016-01-01

    Abstract Urologic and kidney problems are common in women across their life span and affect their daily life, including physical activity, sexual relations, social life, and future health. Urological health in women is still understudied and the underlying mechanisms of female urological dysfunctions are not fully understood. The Society for Women's Health Research (SWHR®) recognized the need to have a roundtable discussion where researchers and clinicians would define the current state of knowledge, gaps, and recommendations for future research directions to transform women's urological health. This report summarizes the discussions, which focused on epidemiology, clinical presentation, basic science, prevention strategies, and efficacy of current therapies. Experts around the table agreed on a set of research, education, and policy recommendations that have the potential to dramatically increase awareness and improve women's urological health at all stages of life. PMID:27285829

  13. Characterization of hydrogen peroxide-resistant Acinetobacter species isolated during the Mars Phoenix spacecraft assembly.

    PubMed

    Derecho, I; McCoy, K B; Vaishampayan, P; Venkateswaran, K; Mogul, R

    2014-10-01

    The microbiological inventory of spacecraft and the associated assembly facility surfaces represent the primary pool of forward contaminants that may impact the integrity of life-detection missions. Herein, we report on the characterization of several strains of hydrogen peroxide-resistant Acinetobacter, which were isolated during the Mars Phoenix lander assembly. All Phoenix-associated Acinetobacter strains possessed very high catalase specific activities, and the specific strain, A. gyllenbergii 2P01AA, displayed a survival against hydrogen peroxide (no loss in 100 mM H2O2 for 1 h) that is perhaps the highest known among Gram-negative and non-spore-forming bacteria. Proteomic characterizations reveal a survival mechanism inclusive of proteins coupled to peroxide degradation (catalase and alkyl hydroperoxide reductase), energy/redox management (dihydrolipoamide dehydrogenase), protein synthesis/folding (EF-G, EF-Ts, peptidyl-tRNA hydrolase, DnaK), membrane functions (OmpA-like protein and ABC transporter-related protein), and nucleotide metabolism (HIT family hydrolase). Together, these survivability and biochemical parameters support the hypothesis that oxidative tolerance and the related biochemical features are the measurable phenotypes or outcomes for microbial survival in the spacecraft assembly facilities, where the low-humidity (desiccation) and clean (low-nutrient) conditions may serve as selective pressures. Hence, the spacecraft-associated Acinetobacter, due to the conferred oxidative tolerances, may ultimately hinder efforts to reduce spacecraft bioburden when using chemical sterilants, thus suggesting that non-spore-forming bacteria may need to be included in the bioburden accounting for future life-detection missions.

  14. 25 CFR 179.202 - May the holder of a life estate without regard to waste deplete the resources?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... INTERIOR LAND AND WATER LIFE ESTATES AND FUTURE INTERESTS Life Estates Created Under AIPRA § 179.202 May... estate without regard to waste may cause lawful depletion or benefit from the lawful depletion of the...

  15. 25 CFR 179.202 - May the holder of a life estate without regard to waste deplete the resources?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... INTERIOR LAND AND WATER LIFE ESTATES AND FUTURE INTERESTS Life Estates Created Under AIPRA § 179.202 May... estate without regard to waste may cause lawful depletion or benefit from the lawful depletion of the...

  16. The development of the temporal macrostructure of life narratives across adolescence: beginnings, linear narrative form, and endings.

    PubMed

    Habermas, Tilmann; Ehlert-Lerche, Silvia; de Silveira, Cybèle

    2009-04-01

    The ontogeny of the ability to describe people culminates in adolescence in the development of the life story. An overarching temporal macrostructure and framing by a prehistory and a future-oriented global evaluation of life helps integrate disparate autobiographical memories into a coherent story. Two life narratives each of 8-, 12-, 16-, and 20-year-olds (N=102) were analyzed in terms of how well-formed their beginnings and endings are and how much they follow a linear temporal order. By age 12, the majority of life narratives began with birth, ended in the present, and followed a chronological order. In late adolescence and early adulthood, more elaborate birth narratives and retrospective evaluations of life and outlooks into the future were added. These formal characteristics were related to biographical practices, biographical knowledge, and fluid intelligence. Text-analytical methods are proposed as a method for the analysis of biographical and autobiographical reasoning and understanding.

  17. Involving healthcare professionals and family carers in setting research priorities for end-of-life care.

    PubMed

    Diffin, Janet; Spence, Michael; Spencer, Rebecca; Mellor, Peter; Grande, Gunn

    2017-02-02

    It is important to ensure regional variances are considered when setting future end-of-life research priorities, given the differing demographics and service provision. This project sought to identify end-of-life research priorities within Greater Manchester (United Kingdom). Following an initial scoping exercise, six topics within the 10 national priorities outlined by The Palliative and end-of-life care Priority Setting Partnership were selected for exploration. A workshop involving 32 healthcare professionals and a consultation process with 26 family carers was conducted. Healthcare professionals and carers selected and discussed the topics important to them. The topics selected most frequently by both healthcare professionals and carers were 'Access to 24 hour care', 'Planning end-of-life care in advance' and 'Staff and carer education'. Healthcare professionals also developed research questions for their topics of choice which were refined to incorporate carers' views. These questions are an important starting point for future end-of-life research within Greater Manchester.

  18. Development of a fire detection algorithm for the COMS (Communication Ocean and Meteorological Satellite)

    NASA Astrophysics Data System (ADS)

    Kim, Goo; Kim, Dae Sun; Lee, Yang-Won

    2013-10-01

    The forest fires do much damage to our life in ecological and economic aspects. South Korea is probably more liable to suffer from the forest fire because mountain area occupies more than half of land in South Korea. They have recently launched the COMS(Communication Ocean and Meteorological Satellite) which is a geostationary satellite. In this paper, we developed forest fire detection algorithm using COMS data. Generally, forest fire detection algorithm uses characteristics of 4 and 11 micrometer brightness temperature. Our algorithm additionally uses LST(Land Surface Temperature). We confirmed the result of our fire detection algorithm using statistical data of Korea Forest Service and ASTER(Advanced Spaceborne Thermal Emission and Reflection Radiometer) images. We used the data in South Korea On April 1 and 2, 2011 because there are small and big forest fires at that time. The detection rate was 80% in terms of the frequency of the forest fires and was 99% in terms of the damaged area. Considering the number of COMS's channels and its low resolution, this result is a remarkable outcome. To provide users with the result of our algorithm, we developed a smartphone application for users JSP(Java Server Page). This application can work regardless of the smartphone's operating system. This study can be unsuitable for other areas and days because we used just two days data. To improve the accuracy of our algorithm, we need analysis using long-term data as future work.

  19. Detecting Molecular Signatures of Life on Mars: the Life Marker Chip (lmc) Instrument

    NASA Astrophysics Data System (ADS)

    Derveni, Mariliza

    In recent years, the rise of interest in planetary exploration and the emergence of Astrobiology as a promising field of research have lead to a number of programmes aiming to develop sensitive instruments for the detection of the molecular signatures of life in extreme environments. An antibody assay-based life detection instrument, the Life Marker Chip (LMC), is currently under development by a UK-lead international consortium for the European Space Agency's (ESA) ExoMars rover. This forms part of the joint ESA/NASA Mars exploration programme with the ExoMars Rover currently scheduled for launch in 2018. The organic molecules targeted for Life detection by the LMC are based on an assumption of "Earth-like" Life on Mars -extinct and/or extant. The molecular targets for the LMC have been chosen to represent markers of extinct Life, extant Life, abiotic chemistry (e.g. of meteoritic origin) and mission-borne Earth contamination. The LMC incorporates integrated liquid sample extraction and processing for dry Martian samples, which will be collected from up to 2m below the surface of Mars, where organic molecules, if present, are expected to be better preserved. The core technology of the LMC is a combination of optical evanescent waveguides, micro-fluidics, immuno-microarrays with fluorescent labels and CCD detector readout. Phage display recombinant antibody technology has been employed in order to acquire antibodies against a number of the LMC target molecules. The LMC hardware is currently in a breadboard phase of development. The recombinant antibody development for LMC targets is an on-going project, and testing of Earth-analogue Martian samples has been initiated

  20. NHQ_2018_0627_E56_NASM Inflight

    NASA Image and Video Library

    2018-06-27

    SPACE STATION CREW MEMBER DISCUSSES LIFE IN SPACE WITH FUTURE ENGINEERS----- Aboard the International Space Station, Expedition 56 Flight Engineer Serena Aunon-Chancellor discussed life and research onboard the orbital complex with future engineers gathered at the Smithsonian Air and Space Museum in Washington, D.C. during an in-flight educational event June 27. Aunon-Chancellor arrived at the complex on June 8 at the start of a six and a half month mission.

  1. News in Brief; Herschel family papers available online; VLT detects convincing signs of life — on Earth

    NASA Astrophysics Data System (ADS)

    2012-04-01

    A collection of archive materials from the family of Sir John F W Herschel (1792-1871) is now available for study at Harry Ransom Center at the University of Texas at Austin. The collection includes much of John Herschel's correspondence as well as examples of his cyanotypes. European Southern Observatory data from the Very Large Telescope have enabled astronomers to say with confidence that they can detect signs of life on Earth using spectropolarimetry of earthshine: light from the Earth's atmosphere reflected from the Moon. This is an important step towards detecting life on exoplanets.

  2. Major Natural Disasters in China, 1985-2014: Occurrence and Damages.

    PubMed

    Han, Weixiao; Liang, Chen; Jiang, Baofa; Ma, Wei; Zhang, Ying

    2016-11-10

    This study aimed to describe the characteristics of natural disasters and associated losses from 1985 to 2014. The Mann-Kendall method was used to detect any long-term trends and abrupt changes. Hotspot analysis was conducted to detect the spatial clusters of disasters. We found an increasing trend in the occurrence of integrated natural disasters ( tau = 0.594 , p < 0.001 ), particularly for floods ( tau = 0.507, p < 0.001), landslides ( tau = 0.365, p = 0.009) and storms ( tau = 0.289, p = 0.032). Besides, there was an abrupt increase of natural disasters in 1998-2000. Hotspots of droughts, floods, landslides and storms were identified in central, southern, southwest and southeast areas of China, respectively. Annual deaths from integrated natural disasters were decreasing (tau = -0.237, p = 0.068) at about 32 persons/year, decreasing at 17 persons/year for floods ( tau = -0.154, p = 0.239), and decreasing at approximately 12 persons/year for storms ( tau = -0.338, p = 0.009). No significant trend was detected in inflation-adjusted damages while a declining trend was detected in the ratio of year damage against GDP (gross domestic product). In conclusion, there has been an increasing trend in occurrence of natural disasters in China with the absence of an increase in life and economic losses. Despite the progress in the disaster adaption, there will be great challenges in disaster control for China in the future.

  3. A proposal for teaching undergraduate chemistry students carbohydrate biochemistry by problem-based learning activities.

    PubMed

    Figueira, Angela C M; Rocha, Joao B T

    2014-01-01

    This article presents a problem-based learning (PBL) approach to teaching elementary biochemistry to undergraduate students. The activity was based on "the foods we eat." It was used to engage students' curiosity and to initiate learning about a subject that could be used by the future teachers in the high school. The experimental activities (8-12 hours) were related to the questions: (i) what does the Benedict's Reagent detect? and (ii) What is determined by glucose oxidase (GOD)? We also ask the students to compare the results with those obtained with the Lugol reagent, which detects starch. Usually, students inferred that the Benedict reagent detects reducing sugars, while GOD could be used to detect glucose. However, in GOD assay, an open question was left, because the results could be due to contamination of the sugars (particularly galactose) with glucose. Though not stressed, GOD does not oxidize the carbohydrates tested and all the positive results are due to contamination. The activities presented here can be easily done in the high school, because they are simple and non-expensive. Furthermore, in the case of Benedict reaction, it is possible to follow the reduction of Cu (II) "macroscopically" by following the formation of the brick-orange precipitate. The concrete observation of a chemical reaction can motivate and facilitate students understanding about chemistry of life. Copyright © 2013 by The International Union of Biochemistry and Molecular Biology.

  4. Sulfate minerals: a problem for the detection of organic compounds on Mars?

    PubMed

    Lewis, James M T; Watson, Jonathan S; Najorka, Jens; Luong, Duy; Sephton, Mark A

    2015-03-01

    The search for in situ organic matter on Mars involves encounters with minerals and requires an understanding of their influence on lander and rover experiments. Inorganic host materials can be helpful by aiding the preservation of organic compounds or unhelpful by causing the destruction of organic matter during thermal extraction steps. Perchlorates are recognized as confounding minerals for thermal degradation studies. On heating, perchlorates can decompose to produce oxygen, which then oxidizes organic matter. Other common minerals on Mars, such as sulfates, may also produce oxygen upon thermal decay, presenting an additional complication. Different sulfate species decompose within a large range of temperatures. We performed a series of experiments on a sample containing the ferric sulfate jarosite. The sulfate ions within jarosite break down from 500 °C. Carbon dioxide detected during heating of the sample was attributed to oxidation of organic matter. A laboratory standard of ferric sulfate hydrate released sulfur dioxide from 550 °C, and an oxygen peak was detected in the products. Calcium sulfate did not decompose below 1000 °C. Oxygen released from sulfate minerals may have already affected organic compound detection during in situ thermal experiments on Mars missions. A combination of preliminary mineralogical analyses and suitably selected pyrolysis temperatures may increase future success in the search for past or present life on Mars.

  5. Fabrication of SERS swab for direct detection of trace explosives in fingerprints.

    PubMed

    Gong, Zhengjun; Du, Hongjie; Cheng, Fansheng; Wang, Cong; Wang, Canchen; Fan, Meikun

    2014-12-24

    Swab sampling is of great importance in surface contamination analysis. A cotton swab (cotton Q-tip) was successfully transformed into surface-enhanced Raman scattering (SERS) substrate (SERS Q-tip) through a bottom-up strategy, where Ag NPs were first self-assembled onto the Q-tip followed by in situ growing. The capability for direct swab detection of Raman probe Nile Blue A (NBA) and a primary explosive marker 2,4-dinitrotoluene (2,4-DNT) using the SERS Q-tip was explored. It was found that at optimum conditions, a femotogram of NBA on glass surface could be swab-detected. The lowest detectable amount for 2,4-DNT is only ∼1.2 ng/cm(2) (total amount of 5 ng) on glass surface, 2 orders of magnitude more sensitive than similar surface analysis achieved with infrared technique, and comparable even with that obtained by ion mobility spectrometry-mass spectrometry. Finally, 2,4-DNT left on fingerprints was also analyzed. It was found that SERS signal of 2,4-DNT from 27th fingerprint after touching 2,4-DNT powder can still be clearly identified by swabbing with the SERS Q-tip. We believe this is the first direct SERS swabbing test of explosives on fingerprint on glass. Considering its relative long shelf life (>30 d), the SERS Q-tip may find great potential in future homeland security applications when combined with portable Raman spectrometers.

  6. Raman spectroscopy as a potentialmethod for the detection of extremely halophilic archaea embedded in halite in terrestrial and possibly extraterrestrial samples

    PubMed Central

    Fendrihan, Sergiu; Musso, Maurizio; Stan-Lotter, Helga

    2011-01-01

    Evidence for the widespread occurrence of extraterrestrial halite, particularly on Mars, has led to speculations on the possibility of halophilic microbial forms of life; these ideas have been strengthened by reports of viable haloarchaea from sediments of geological age (millions of years). Raman spectroscopy, being a sensitive detection method for future astrobiological investigations onsite, has been used in the current study for the detection of nine different extremely halophilic archaeal strains which had been embedded in laboratory-made halite crystals in order to simulate evaporitic conditions. The cells accumulated preferentially in tiny fluid inclusions, in simulation of the precipitation of salt in natural brines. FT-Raman spectroscopy using laser excitation at 1064 nm and dispersive micro Raman spectroscopy at 514.5 nm were applied. The spectra showed prominent peaks at 1507, 1152 and 1002 cm−1 which are attributed to haloarchaeal C50 carotenoid compounds (mainly bacterioruberins). Their intensity varied from strain to strain at 1064-nm laser excitation. Other distinguishable features were peaks due to peptide bonds (amide I, amide III) and to nucleic acids. No evidence for fatty acids was detected, consistent with their general absence in all archaea. These results contribute to a growing database on Raman spectra of terrestrial microorganisms from hypersaline environments and highlight the influence of the different macromolecular composition of diverse strains on these spectra. PMID:22058585

  7. Raman spectroscopy as a potentialmethod for the detection of extremely halophilic archaea embedded in halite in terrestrial and possibly extraterrestrial samples.

    PubMed

    Fendrihan, Sergiu; Musso, Maurizio; Stan-Lotter, Helga

    2009-12-01

    Evidence for the widespread occurrence of extraterrestrial halite, particularly on Mars, has led to speculations on the possibility of halophilic microbial forms of life; these ideas have been strengthened by reports of viable haloarchaea from sediments of geological age (millions of years). Raman spectroscopy, being a sensitive detection method for future astrobiological investigations onsite, has been used in the current study for the detection of nine different extremely halophilic archaeal strains which had been embedded in laboratory-made halite crystals in order to simulate evaporitic conditions. The cells accumulated preferentially in tiny fluid inclusions, in simulation of the precipitation of salt in natural brines. FT-Raman spectroscopy using laser excitation at 1064 nm and dispersive micro Raman spectroscopy at 514.5 nm were applied. The spectra showed prominent peaks at 1507, 1152 and 1002 cm(-1) which are attributed to haloarchaeal C(50) carotenoid compounds (mainly bacterioruberins). Their intensity varied from strain to strain at 1064-nm laser excitation. Other distinguishable features were peaks due to peptide bonds (amide I, amide III) and to nucleic acids. No evidence for fatty acids was detected, consistent with their general absence in all archaea.These results contribute to a growing database on Raman spectra of terrestrial microorganisms from hypersaline environments and highlight the influence of the different macromolecular composition of diverse strains on these spectra.

  8. Low on the London Scale

    NASA Astrophysics Data System (ADS)

    Webb, S.

    2013-09-01

    Until relatively recently, many authors have assumed that if extraterrestrial life is discovered it will be via the discovery of extraterrestrial intelligence: we can best try to detect life by adopting the SETI approach of trying to detect beacons or artefacts. The Rio Scale, proposed by Almár and Tarter in 2000, is a tool for quantifying the potential significance for society of any such reported detection. However, improvements in technology and advances in astrobiology raise the possibility that the discovery of extraterrestrial life will instead be via the detection of atmospheric biosignatures. The London Scale, proposed by Almár in 2010, attempts to quantify the potential significance of the discovery of extraterrestrial life rather than extraterrestrial intelligence. What might be the consequences of the announcement of a discovery that ranks low on the London Scale? In other words, what might be society's reaction if 'first contact' is via the remote sensing of the byproducts of unicellular organisms rather than with the products of high intelligence? Here, I examine some possible reactions to that question; in particular, I discuss how such an announcement might affect our views of life here on Earth and of humanity's place in the universe.

  9. Is life what we make of it?

    PubMed

    Denning, Kathryn

    2011-02-13

    Although astrobiological or SETI detections are possible, actual invasions of sentient extra-terrestrials or plagues of escaped alien microbes are unlikely. Therefore, an anthropological perspective on the question suggests that in the event of a detection, the vast majority of humanity will be dealing not with extra-terrestrial life itself (whether intelligent or not, local or distant), but with human perceptions and representations of that alien life. These will, inevitably, derive from the powerful influences of culture and individual psychology, as well as from science. It may even be argued that in most detection scenarios, the scientific data (and debates about their interpretation) will be nigh-irrelevant to the unfolding of international public reaction. 'Extra-terrestrial life' will, in short, go wild. From this premise, some key questions emerge, including: what can scientists reasonably do to prepare, and what should their responsibilities be, particularly with respect to information dissemination and public discussions about policy? Then, moving beyond the level of immediate practicalities, we might also ask some more anthropological questions: what are the cultural substrates underneath the inquiries of Western science into extra-terrestrial life? In particular, what are the stories we have been told about discovery of rare life, and about contact with other beings, and do these stories really mean what we think they do? Might a closer look at those narratives help us gain perspective on the quest to find extra-terrestrial life, and on our quest to prepare for the consequences of detection?

  10. The Process of Life Cycle Cost Analysis: Projecting Economic Consequences of Design Decisions

    ERIC Educational Resources Information Center

    AIA Journal, 1976

    1976-01-01

    Life-cycle cost analysis deals with both present and future costs and attempts to relate the two as a basis for making decisions. This article lays the groundwork for a better understanding of the techniques of life-cycle cost analysis. (Author/MLF)

  11. A Submersible, Off-Axis Holographic Microscope for Detection of Microbial Motility and Morphology in Aqueous and Icy Environments

    PubMed Central

    Lindensmith, Christian A.; Rider, Stephanie; Bedrossian, Manuel; Wallace, J. Kent; Serabyn, Eugene; Showalter, G. Max; Deming, Jody W.; Nadeau, Jay L.

    2016-01-01

    Sea ice is an analog environment for several of astrobiology’s near-term targets: Mars, Europa, Enceladus, and perhaps other Jovian or Saturnian moons. Microorganisms, both eukaryotic and prokaryotic, remain active within brine channels inside the ice, making it unnecessary to penetrate through to liquid water below in order to detect life. We have developed a submersible digital holographic microscope (DHM) that is capable of resolving individual bacterial cells, and demonstrated its utility for immediately imaging samples taken directly from sea ice at several locations near Nuuk, Greenland. In all samples, the appearance and motility of eukaryotes were conclusive signs of life. The appearance of prokaryotic cells alone was not sufficient to confirm life, but when prokaryotic motility occurred, it was rapid and conclusive. Warming the samples to above-freezing temperatures or supplementing with serine increased the number of motile cells and the speed of motility; supplementing with serine also stimulated chemotaxis. These results show that DHM is a useful technique for detection of active organisms in extreme environments, and that motility may be used as a biosignature in the liquid brines that persist in ice. These findings have important implications for the design of missions to icy environments and suggest ways in which DHM imaging may be integrated with chemical life-detection suites in order to create more conclusive life detection packages. PMID:26812683

  12. A Submersible, Off-Axis Holographic Microscope for Detection of Microbial Motility and Morphology in Aqueous and Icy Environments.

    PubMed

    Lindensmith, Christian A; Rider, Stephanie; Bedrossian, Manuel; Wallace, J Kent; Serabyn, Eugene; Showalter, G Max; Deming, Jody W; Nadeau, Jay L

    2016-01-01

    Sea ice is an analog environment for several of astrobiology's near-term targets: Mars, Europa, Enceladus, and perhaps other Jovian or Saturnian moons. Microorganisms, both eukaryotic and prokaryotic, remain active within brine channels inside the ice, making it unnecessary to penetrate through to liquid water below in order to detect life. We have developed a submersible digital holographic microscope (DHM) that is capable of resolving individual bacterial cells, and demonstrated its utility for immediately imaging samples taken directly from sea ice at several locations near Nuuk, Greenland. In all samples, the appearance and motility of eukaryotes were conclusive signs of life. The appearance of prokaryotic cells alone was not sufficient to confirm life, but when prokaryotic motility occurred, it was rapid and conclusive. Warming the samples to above-freezing temperatures or supplementing with serine increased the number of motile cells and the speed of motility; supplementing with serine also stimulated chemotaxis. These results show that DHM is a useful technique for detection of active organisms in extreme environments, and that motility may be used as a biosignature in the liquid brines that persist in ice. These findings have important implications for the design of missions to icy environments and suggest ways in which DHM imaging may be integrated with chemical life-detection suites in order to create more conclusive life detection packages.

  13. The MAGNEX spectrometer: Results and perspectives

    NASA Astrophysics Data System (ADS)

    Cappuzzello, F.; Agodi, C.; Carbone, D.; Cavallaro, M.

    2016-06-01

    This review discusses the main achievements and future perspectives of the MAGNEX spectrometer at the INFN-LNS laboratory in Catania (Italy). MAGNEX is a large-acceptance magnetic spectrometer for the detection of the ions emitted in nuclear collisions below Fermi energy. In the first part of the paper an overview of the MAGNEX features is presented. The successful application to the precise reconstruction of the momentum vector, to the identification of the ion masses and to the determination of the transport efficiency is demonstrated by in-beam tests. In the second part, an overview of the most relevant scientific achievements is given. Results from nuclear elastic and inelastic scattering as well as from transfer and charge-exchange reactions in a wide range of masses of the colliding systems and incident energies are shown. The role of MAGNEX in solving old and new puzzles in nuclear structure and direct reaction mechanisms is emphasized. One example is the recently observed signature of the long searched Giant Pairing Vibration. Finally, the new challenging opportunities to use MAGNEX for future experiments are briefly reported. In particular, the use of double charge-exchange reactions toward the determination of the nuclear matrix elements entering in the expression of the half-life of neutrinoless double beta decay is discussed. The new NUMEN project of INFN, aiming at these investigations, is introduced. The challenges connected to the major technical upgrade required by the project in order to investigate rare processes under high fluxes of detected heavy ions are outlined.

  14. A Serendipitous MWA Search for Narrowband Signals from ‘Oumuamua

    NASA Astrophysics Data System (ADS)

    Tingay, S. J.; Kaplan, D. L.; Lenc, E.; Croft, S.; McKinley, B.; Beardsley, A.; Crosse, B.; Emrich, D.; Franzen, T. M. O.; Gaensler, B. M.; Horsley, L.; Johnston-Hollitt, M.; Kenney, D.; Morales, M. F.; Pallot, D.; Steele, K.; Trott, C. M.; Walker, M.; Wayth, R. B.; Williams, A.; Wu, C.

    2018-04-01

    We examine data from the Murchison Widefield Array (MWA) in the frequency range 72–102 MHz for a field of view that serendipitously contained the interstellar object ‘Oumuamua on 2017 November 28. Observations took place with a time resolution of 0.5 s and a frequency resolution of 10 kHz. Based on the interesting but highly unlikely suggestion that ‘Oumuamua is an interstellar spacecraft, due to some unusual orbital and morphological characteristics, we examine our data for signals that might indicate the presence of intelligent life associated with ‘Oumuamua. We searched our radio data for (1) impulsive narrowband signals, (2) persistent narrowband signals, and (3) impulsive broadband signals. We found no such signals with nonterrestrial origins and make estimates of the upper limits on equivalent isotropic radiated power (EIRP) for these three cases of approximately 7 kW, 840 W, and 100 kW, respectively. These transmitter powers are well within the capabilities of human technologies, and are therefore plausible for alien civilizations. While the chances of positive detection in any given search for extraterrestrial intelligence (SETI) experiment are vanishingly small, the characteristics of new generation telescopes such as the MWA (and, in the future, the Square Kilometre Array) make certain classes of SETI experiments easy, or even a trivial by-product of astrophysical observations. This means that the future costs of SETI experiments are very low, allowing large target lists to partially balance the low probability of a positive detection.

  15. Associations Among Individuals’ Perceptions of Future Time, Individual Resources, and Subjective Well-Being in Old Age

    PubMed Central

    Hoppmann, Christiane A.; Infurna, Frank J.; Ram, Nilam; Gerstorf, Denis

    2015-01-01

    Objectives Perceptions of future time are of key interest to aging research because of their implications for subjective well-being. Interestingly, perceptions about future time are only moderately associated with age, pointing to a vast heterogeneity in future time perceptions among older adults. We examine associations between future time perceptions, age, and subjective well-being across two studies, including moderations by individual resources. Method Using data from the Berlin Aging Study (N = 516; Mage = 85 years), we link one operationalization (subjective nearness to death) and age to subjective well-being. Using Health and Retirement Study data (N = 2,596; Mage = 77 years), we examine associations of another future time perception indicator (subjective future life expectancy) and age with subjective well-being. Results Consistent across studies, perceptions of limited time left were associated with poorer subjective well-being (lower life satisfaction and positive affect; more negative affect and depressive symptoms). Importantly, individual resources moderated future time perception–subjective well-being associations with those of better health exhibiting reduced future time perception–subjective well-being associations. Discussion We discuss our findings in the context of the Model of Strength and Vulnerability Integration. PMID:26437862

  16. Navy/Marine Corps innovative science and technology developments for future enhanced mine detection capabilities

    NASA Astrophysics Data System (ADS)

    Holloway, John H., Jr.; Witherspoon, Ned H.; Miller, Richard E.; Davis, Kenn S.; Suiter, Harold R.; Hilton, Russell J.

    2000-08-01

    JMDT is a Navy/Marine Corps 6.2 Exploratory Development program that is closely coordinated with the 6.4 COBRA acquisition program. The objective of the program is to develop innovative science and technology to enhance future mine detection capabilities. The objective of the program is to develop innovative science and technology to enhance future mine detection capabilities. Prior to transition to acquisition, the COBRA ATD was extremely successful in demonstrating a passive airborne multispectral video sensor system operating in the tactical Pioneer unmanned aerial vehicle (UAV), combined with an integrated ground station subsystem to detect and locate minefields from surf zone to inland areas. JMDT is investigating advanced technology solutions for future enhancements in mine field detection capability beyond the current COBRA ATD demonstrated capabilities. JMDT has recently been delivered next- generation, innovative hardware which was specified by the Coastal System Station and developed under contract. This hardware includes an agile-tuning multispectral, polarimetric, digital video camera and advanced multi wavelength laser illumination technologies to extend the same sorts of multispectral detections from a UAV into the night and over shallow water and other difficult littoral regions. One of these illumination devices is an ultra- compact, highly-efficient near-IR laser diode array. The other is a multi-wavelength range-gateable laser. Additionally, in conjunction with this new technology, algorithm enhancements are being developed in JMDT for future naval capabilities which will outperform the already impressive record of automatic detection of minefields demonstrated by the COBAR ATD.

  17. Future Costs, Fixed Healthcare Budgets, and the Decision Rules of Cost-Effectiveness Analysis.

    PubMed

    van Baal, Pieter; Meltzer, David; Brouwer, Werner

    2016-02-01

    Life-saving medical technologies result in additional demand for health care due to increased life expectancy. However, most economic evaluations do not include all medical costs that may result from this additional demand in health care and include only future costs of related illnesses. Although there has been much debate regarding the question to which extent future costs should be included from a societal perspective, the appropriate role of future medical costs in the widely adopted but more narrow healthcare perspective has been neglected. Using a theoretical model, we demonstrate that optimal decision rules for cost-effectiveness analyses assuming fixed healthcare budgets dictate that future costs of both related and unrelated medical care should be included. Practical relevance of including the costs of future unrelated medical care is illustrated using the example of transcatheter aortic valve implantation. Our findings suggest that guidelines should prescribe inclusion of these costs. Copyright © 2014 John Wiley & Sons, Ltd.

  18. An Investigation of Senior Vocational School Students' Perceptions of the Future through Their Drawings

    ERIC Educational Resources Information Center

    Yukay Yuksel, Muge; Aksak, Meryem; Arican, Tugce; Bakan, Muhsin

    2016-01-01

    Problem Statement: Expectations/perceptions of the future are important concepts at every stage of life. However, these concepts become more important in adolescence, during which critical decisions about the future are made. Adolescents' expectations/perceptions of the future are vital from the perspectives of the families they live with, their…

  19. Cooperative Robotics and the Search for Extraterrestrial Life

    NASA Technical Reports Server (NTRS)

    Lupisella, M. L.

    2000-01-01

    If we think tenuous abodes of life may be hiding in remote extraterrestrial environmental niches, and if we want to assess the biological status of a given locale or entire planet before sending humans (perhaps because of contamination concerns or other motivations) then we face the challenge of robotically exploring a large space efficiently and in enough detail to have confidence in our assessment of the biological status of the environment in question. On our present schedule of perhaps two or so missions per opportunity, we will likely need a different exploratory approach than singular stationary landers or singular rover missions or sample return, because there appear to be fundamental limitations in these mission profiles to obtain the many samples we will likely need if we want to have confidence in assessing the biological status of an environment in which life could be hiding in remote environmental niches. Singular rover missions can potentially accommodate sampling over a fairly large area, but are still limited by range and can be a single point of failure. More importantly, such mission profiles have limited payload capabilities which are unlikely to meet the demanding requirements of life-detection. Sample return has the advantage of allowing sophisticated analysis of the sample, but also has the severe limitations associated with only being able to bring back a few samples. This presentation will suggest two cooperative robotic approaches for exploration that have the potential to overcome these difficulties and facilitate efficient and thorough life-detecting exploration of a large space. Given the two premises stated above, it appears at least two fundamental challenges have to be met simultaneously: (1) coverage of a large space and (2) bringing to bear a sophisticated suite of detection and experimental payloads on any specific location in order to address a major challenge in looking for extraterrestrial life: namely, executing a wide variety of detection scenarios and in situ experiments in order to gather the required data for a confident assessment that life has been detected and to, more generally, cover a wide range of extraterrestrial life possibilities. Cooperative robotics lends itself to this kind of problem because cooperation among the combined capabilities of a variety of simple single function agents can give rise to fairly complex task execution such as the search for and detection of extraterrestrial life.

  20. Cooperative Robotics and the Search for Extraterrestrial Life

    NASA Technical Reports Server (NTRS)

    Lupisella, Mark L.

    2000-01-01

    If we think tenuous abodes of life may be hiding in remote extraterrestrial environmental niches, and if we want to assess the biological status of a given locale or entire planet before sending humans (perhaps because of contamination concerns or other motivations) then we face the challenge of robotically exploring a large space efficiently and in enough detail to have confidence in our assessment of the biological status of the environment in question. On our present schedule of perhaps two or so missions per opportunity, we will likely need a different exploratory approach than singular stationary landers or singular rover missions or sample return, because there appear to be fundamental limitations in these mission profiles to-obtain the many samples we will likely need if we want to have confidence in assessing the biological status of an environment in which life could be hiding in remote environmental niches. Singular rover missions can potentially accommodate sampling over a fairly large area, but are still limited by range and can be a single point of failure. More importantly, such mission profiles have limited payload capabilities which are unlikely to meet the demanding requirements of life-detection. Sample return has the advantage of allowing sophisticated analysis of the sample, but also has the severe limitations associated with only being able to bring back a few samples. This presentation will suggest two cooperative robotic approaches for exploration that have the potential to overcome these difficulties and facilitate efficient and thorough life-detecting exploration of a large space. Given the two premises state above, it appears at least two fundamental challenges have to be met simultaneously: coverage of a large space and bringing to bear a sophisticated suite of detection and experimental payloads on any specific location in order to address a major challenge in looking for extraterrestrial life: namely, executing a wide variety of detection scenarios and in situ experiments in order to gather the required data for a confident assessment that life has been detected and to, more generally, cover a wide range of extraterrestrial life possibilities. Cooperative robotics ]ends itself to this kind of problem because cooperation among the combined capabilities of a variety of simple single function agents can give rise to fairly complex task execution such as the search for and detection of extraterrestrial life.

  1. Main Vacuum Technical Issues of Evacuated Tube Transportation

    NASA Astrophysics Data System (ADS)

    Zhang, Y. P.; Li, S. S.; Wang, M. X.

    In the future, Evacuated Tube Transportation (ETT) would be built and faster than jets. ETT tube with diameter 2∼4m and length over 1000 km will be the largest scale vacuum equipment on earth. This paper listed some main vacuum technical issues to be solved in ETT as follow. How to build ultra-large-scale vacuum chamber like ETT tube with low cost and high reliability? How to pump gas out off the ETT tube in short time? How to release heat or reduce temperature in the vacuum tube? Hot to avoid vacuum electricity discharge? How to manufacture vehicles with airproof shells and equip the life support system? How to detect leakage and find leakage position efficiently and fast as possible? Some relative solutions and suggestions are put up.

  2. Mining Health-Related Issues in Consumer Product Reviews by Using Scalable Text Analytics

    PubMed Central

    Torii, Manabu; Tilak, Sameer S.; Doan, Son; Zisook, Daniel S.; Fan, Jung-wei

    2016-01-01

    In an era when most of our life activities are digitized and recorded, opportunities abound to gain insights about population health. Online product reviews present a unique data source that is currently underexplored. Health-related information, although scarce, can be systematically mined in online product reviews. Leveraging natural language processing and machine learning tools, we were able to mine 1.3 million grocery product reviews for health-related information. The objectives of the study were as follows: (1) conduct quantitative and qualitative analysis on the types of health issues found in consumer product reviews; (2) develop a machine learning classifier to detect reviews that contain health-related issues; and (3) gain insights about the task characteristics and challenges for text analytics to guide future research. PMID:27375358

  3. Mining Health-Related Issues in Consumer Product Reviews by Using Scalable Text Analytics.

    PubMed

    Torii, Manabu; Tilak, Sameer S; Doan, Son; Zisook, Daniel S; Fan, Jung-Wei

    2016-01-01

    In an era when most of our life activities are digitized and recorded, opportunities abound to gain insights about population health. Online product reviews present a unique data source that is currently underexplored. Health-related information, although scarce, can be systematically mined in online product reviews. Leveraging natural language processing and machine learning tools, we were able to mine 1.3 million grocery product reviews for health-related information. The objectives of the study were as follows: (1) conduct quantitative and qualitative analysis on the types of health issues found in consumer product reviews; (2) develop a machine learning classifier to detect reviews that contain health-related issues; and (3) gain insights about the task characteristics and challenges for text analytics to guide future research.

  4. A PCR Based Microbial Monitoring Alternative Method of Detection and Identification of Microbes Aboard ISS

    NASA Technical Reports Server (NTRS)

    Khodadad, Christina; Oubre, Cherie; Castro, Victoria; Flint, Stephanie; Ott, Mark; Roman, Monserrate; Wheeler, Ray; Melendez, Orlando

    2017-01-01

    Previous research has shown that microorganisms and potential human pathogens have been detected on the International Space Station (ISS) with additional introduction of new microflora occurring with every exchange of crew or addition of equipment and supplies. These microbes are readily transferred between crew and subsystems (i.e. ECLSS, environmental control and life support systems). As this can be detrimental to astronaut health and optimal performance of ISS systems, monitoring of systems such as ECLSS to include identification of microbial contaminants could prevent adverse effects on human health and life support systems. Current monitoring on ISS is laborious and utilizes culture based methods followed by sample return to Earth for complete analysis. Future, long-distance spaceflight missions will require real-time monitoring capabilities that enable efficient and rapid assessments of the microbial environment allowing for expedited decisions and more targeted response to cope with anomalies. Polymerase chain reaction (PCR), a molecular microbial monitoring method was chosen and numerous PCR instruments investigated for their potential to perform in microgravity conditions. Using ISS as a test bed for PCR verification in microgravity will enable NASA to assess whether molecular based microbiological sensors may be components of reliable, closed-loop life support and habitation systems in spacecraft, enhancing infrastructure capabilities through increased efficiency, reliability, and time savings by enabling sample analysis on orbit. NASA selected the Water Monitoring Suite as one of the rapid spaceflight hardware demonstration activities utilizing a streamlined process to minimize the time required to fly experimental flight hardware. The RAZOR EX (BioFire Defense, Salt Lake City, UT) system was part of the water monitoring suite and is a commercial off-the-shelf (COTS) real-time PCR instrument designed for field work. The RAZOR EX was originally designed for Department of Defense (DoD) under a small business innovative research (SBIR) grant and is ruggedized, compact and provides a rapid, sample to answer in less than an hour. PCR assays using a fluorescent probe were optimized and spiked with known concentrations of DNA (Pseudomonas aeruginosa) ranging from 0.002 to 20 ng. PCR reagents were lyophilized and configured in customized pouches and tested for flight readiness. Three types of water were used to rehydrate the reagents and demonstrate the fidelity of the PCR reaction in microgravity. Molecular grade deionized water served as a control while filtered and unfiltered ISS potable water served to test for chemical or biological inhibitors. All three types were compared to parallel ground test results. Nine tests were run on ISS (3 of each water type) and the critical threshold cycle (Ct) was compared to parallel ground tests completed at Kennedy Space Center, FL and Johnson Space Center, TX. All concentrations of Pseudomonas aeruginosa DNA were detected. A comparison of the Ct produced in real time PCR indicated similarity between flight and ground samples. There appeared to be no significant difference between flight or ground PCR reactions or between any of the three water types. This testing demonstrated the ability to perform molecular testing during spaceflight operations with similar sensitivity. It will allow for future ground development of molecular protocols and minimize the need for spaceflight testing. Future testing will include development of additional targets including environmental and health related organisms.

  5. Analyzing the Effects of Iranian EFL Textbooks on Developing Learners' Life Skills

    ERIC Educational Resources Information Center

    Khosravani, Mahboobeh; Khosravani, Mahmood; Khorashadyzadeh, Abbas

    2014-01-01

    Education is not an end, but a means to an end. The ultimate goal of education is to prepare students for their future life. Regarding this fact, English language classes and textbooks can be used as tools for improving learners' life skills. Meanwhile, informative textbooks with rich socio-cultural constructs that foster learners' life skills are…

  6. Impact of Planetary Protection and Contamination Control on a Life Detection or Sample Return Mission

    NASA Astrophysics Data System (ADS)

    Steininger, H.

    2018-04-01

    ExoMars as one of the few life detection missions can be an example of how planetary protection and contamination control influence of the development of flight hardware. A few lessons learned can be drawn from the mission even before launch.

  7. Optimism for the Future in Younger and Older Adults.

    PubMed

    Durbin, Kelly A; Barber, Sarah J; Brown, Maddalena; Mather, Mara

    2018-01-09

    Research has suggested that older adults are less optimistic about their future than younger adults; however, a limitation of prior studies is that younger and older adults were forecasting to different ages and stages of life. To address this, we investigated whether there are age differences in future optimism when people project to the exact same age. We also tested whether optimism differs when projecting one's own future versus another person's future. Participants were 285 younger and 292 older adults recruited from Amazon Mechanical Turk. Participants completed writing and word-rating tasks in which they imagined their own future in 15 years, their own future at age 85, or the average person's future at age 85. Younger adults were more optimistic than older adults about their own future in 15 years. In contrast, both age groups were similarly optimistic about their future at age 85 and expected it to be more positive than others' future at age 85. Contrary to previous research, younger and older adults had comparable future forecasts when projecting to the exact same age. These findings emphasize the need to consider age and stage of life when examining age differences in future optimism. © The Author(s) 2018. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Frequently Asked Questions (Palliative Care: Conversations Matter)

    MedlinePlus

    ... ninr.nih.gov/researchandfunding/spotlight-on-end-of-life-research. A summary of The Science of Compassion: Future Directions in End-of-Life & Palliative Care Summit is available at http://www. ...

  9. 7 CFR 624.4 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... occurrence that could cause significant damage to property or threaten human life in the near future. (e)(1...) Exigency means those situations that demand immediate action to avoid potential loss of life or property..., cause new damages or the potential loss of life if action to remedy the situation is not taken...

  10. 7 CFR 624.4 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... occurrence that could cause significant damage to property or threaten human life in the near future. (e)(1...) Exigency means those situations that demand immediate action to avoid potential loss of life or property..., cause new damages or the potential loss of life if action to remedy the situation is not taken...

  11. Life Cycle Cost Analysis Handbook. First Edition.

    ERIC Educational Resources Information Center

    Alaska State Dept. of Education and Early Development, Juneau.

    This handbook presents guidelines on the Life Cycle Cost Analysis (LCCA) of building operations over the life of a building to assist school districts and consultants with evaluating proposed educational facility construction projects. It defines the terminology found in an LCCA, such as initial and future expenses, residual value, real discount…

  12. Perceived Life Expectancy Is Associated with Colorectal Cancer Screening in England.

    PubMed

    Kobayashi, Lindsay C; von Wagner, Christian; Wardle, Jane

    2017-06-01

    Cancer screening is a behavior that represents investment in future health. Such investment may depend on how much 'future' a person expects. The purpose of this study was to investigate the prospective association between perceived personal life expectancy and participation in fecal occult blood test screening for colorectal cancer (CRC) in a national program. Data were from interviews with 3975 men and women in the English Longitudinal Study of Ageing (ELSA) within the eligible age range for the national screening program (60 to 74 years). Perceived life expectancy was indexed as the individual's estimate of their chance of living another 10-15 years (exact time varied by age), assessed in 2008/2009. Participation in CRC screening from 2010 to 2012/2013 was assessed in 2012/2013. Logistic regression was used to estimate the association between perceived life expectancy and screening participation, adjusted for numeracy and known mortality risk factors. Overall, 71% of respondents (2817/3975) reported completing at least one fecal occult blood test (FOBt) during the follow-up. Screening uptake was 76% (1272/1683) among those who estimated their 10-15-year life expectancy as 75-100%, compared with 52% (126/243) among those who estimated theirs as 0-25% (adjusted OR 1.74, 95% CI 1.29-2.34). A longer perceived life expectancy is associated with greater likelihood of participating in CRC screening in England. However, half of people with a low perceived life expectancy still participated in screening. Given that CRC screening is recommended for adults with a remaining life expectancy of ≥10 years, future research should investigate how to communicate the aims of screening more effectively.

  13. Future Achievements, Passion and Motivation in the Transition from Junior-to-Senior Sport in Spanish Young Elite Soccer Players.

    PubMed

    Chamorro, José L; Torregrosa, Miquel; Sánchez Oliva, David; García Calvo, Tomás; León, Benito

    2016-10-20

    Within the context of the transition from junior-to-senior sport, this study aims in first place to explore differences in young Spanish elite soccer players based on the importance given to getting different achievements in their future (including sport, studies and private life) and, in second place, to explore differences among those players in levels of passion, motivation and basic psychological need. 478 elite youth soccer filled out a questionnaire based on the presented theoretical models. A cluster analysis shows a sport oriented group (N = 98) only interested in becoming a professional, a life spheres balance group (N = 288) characterized by balancing the importance of achievements in the sport sphere, as well as in education and a private life and a group (N = 91) only interested in private life achievements. The life spheres balance group shows higher levels of harmonious passion (η2 = .06, F(2, 475) = 9.990, p < .001) than the players of the other groups. The life spheres balance group shows higher levels of autonomous motivation (η2 = .10, F(2, 475) = 13.597, p < .001), autonomy (η2 = .07, F(2, 475) = 6.592, p < .01) and relatedness satisfaction (η2 = .07, F(2, 475) = 5.603, p < .01) than the sport oriented group as well as lower levels of amotivation (η2 = .04, F(2, 475) = 6.665, p < .01) than the private life oriented group. This study suggests players who perceive equal future importance in their life spheres appear to be more resourceful than the other two groups regarding athletes' internal resources, such as passion and motivation, to cope with the transition to professional soccer.

  14. Ethical Considerations and Planetary Protection for Future Space Exploration - Starting with the Basics

    NASA Astrophysics Data System (ADS)

    Race, Margaret

    2012-07-01

    As COSPAR scientists deliberate what types of frameworks and policy approaches may be applicable to future activities by various sectors in space exploration, it also needs to consider the challenging question of what ethical values and foundations should be used in dealing with life, objects and activities in outer space. A 2010 COSPAR Workshop Report on Ethical Considerations for Planetary Protection in Space Exploration recommended that it is appropriate to maintain the existing PP policy aimed at scientific concerns even as we begin to explore various practical approaches to future contamination avoidance policies. It is also appropriate to examine in parallel the ethical considerations applicable to potential indigenous extraterrestrial life, non-living extraterrestrial features and environments, and planned uses and activities involving diverse life from Earth. Since numerous sectors have begun to propose activities raising varied ethical concerns (e.g., protection and management on the moon, strip mining, space synthetic biology, space code of conduct, and commercial space transport), it is timely to initiate serious international discussions about the appropriate ethical foundations and questions applicable to future space exploration. Plans are underway for convening interdisciplinary work groups to explore and deliberate on the values (e.g., intrinsic and instrumental) and ethical foundations that are appropriate for use in deliberations involving potential indigenous extraterrestrial life and the different classes of target objects and environments in our solar system. More than ever, information on bioethics, environmental ethics and geoethics will provide helpful guidance and foundational approaches of relevance to future policy deliberations that seek to go beyond science protection per se.

  15. Current versus future reproduction and longevity: a re-evaluation of predictions and mechanisms.

    PubMed

    Zhang, Yufeng; Hood, Wendy R

    2016-10-15

    Oxidative damage is predicted to be a mediator of trade-offs between current reproduction and future reproduction or survival, but most studies fail to support such predictions. We suggest that two factors underlie the equivocal nature of these findings: (1) investigators typically assume a negative linear relationship between current reproduction and future reproduction or survival, even though this is not consistently shown by empirical studies; and (2) studies often fail to target mechanisms that could link interactions between sequential life-history events. Here, we review common patterns of reproduction, focusing on the relationships between reproductive performance, survival and parity in females. Observations in a range of species show that performance between sequential reproductive events can decline, remain consistent or increase. We describe likely bioenergetic consequences of reproduction that could underlie these changes in fitness, including mechanisms that could be responsible for negative effects being ephemeral, persistent or delayed. Finally, we make recommendations for designing future studies. We encourage investigators to carefully consider additional or alternative measures of bioenergetic function in studies of life-history trade-offs. Such measures include reactive oxygen species production, oxidative repair, mitochondrial biogenesis, cell proliferation, mitochondrial DNA mutation and replication error and, importantly, a measure of the respiratory function to determine whether measured differences in bioenergetic state are associated with a change in the energetic capacity of tissues that could feasibly affect future reproduction or lifespan. More careful consideration of the life-history context and bioenergetic variables will improve our understanding of the mechanisms that underlie the life-history patterns of animals. © 2016. Published by The Company of Biologists Ltd.

  16. Current versus future reproduction and longevity: a re-evaluation of predictions and mechanisms

    PubMed Central

    Zhang, Yufeng

    2016-01-01

    ABSTRACT Oxidative damage is predicted to be a mediator of trade-offs between current reproduction and future reproduction or survival, but most studies fail to support such predictions. We suggest that two factors underlie the equivocal nature of these findings: (1) investigators typically assume a negative linear relationship between current reproduction and future reproduction or survival, even though this is not consistently shown by empirical studies; and (2) studies often fail to target mechanisms that could link interactions between sequential life-history events. Here, we review common patterns of reproduction, focusing on the relationships between reproductive performance, survival and parity in females. Observations in a range of species show that performance between sequential reproductive events can decline, remain consistent or increase. We describe likely bioenergetic consequences of reproduction that could underlie these changes in fitness, including mechanisms that could be responsible for negative effects being ephemeral, persistent or delayed. Finally, we make recommendations for designing future studies. We encourage investigators to carefully consider additional or alternative measures of bioenergetic function in studies of life-history trade-offs. Such measures include reactive oxygen species production, oxidative repair, mitochondrial biogenesis, cell proliferation, mitochondrial DNA mutation and replication error and, importantly, a measure of the respiratory function to determine whether measured differences in bioenergetic state are associated with a change in the energetic capacity of tissues that could feasibly affect future reproduction or lifespan. More careful consideration of the life-history context and bioenergetic variables will improve our understanding of the mechanisms that underlie the life-history patterns of animals. PMID:27802148

  17. Method for photon activation positron annihilation analysis

    DOEpatents

    Akers, Douglas W.

    2006-06-06

    A non-destructive testing method comprises providing a specimen having at least one positron emitter therein; determining a threshold energy for activating the positron emitter; and determining whether a half-life of the positron emitter is less than a selected half-life. If the half-life of the positron emitter is greater than or equal to the selected half-life, then activating the positron emitter by bombarding the specimen with photons having energies greater than the threshold energy and detecting gamma rays produced by annihilation of positrons in the specimen. If the half-life of the positron emitter is less then the selected half-life, then alternately activating the positron emitter by bombarding the specimen with photons having energies greater then the threshold energy and detecting gamma rays produced by positron annihilation within the specimen.

  18. Development and Pilot Evaluation of a Novel Dignity-Conserving End-of-Life (EoL) Care Model for Nursing Homes in Chinese Societies.

    PubMed

    Ho, Andy H Y; Dai, Annie A N; Lam, Shu-Hang; Wong, Sandy W P; Tsui, Amy L M; Tang, Jervis C S; Lou, Vivian W Q

    2016-06-01

    The provision of end-of-life (EoL) care in long-term-care settings remains largely underdeveloped in most Chinese societies, and nursing home residents often fail to obtain good care as they approach death. This paper systematically describes the development and implementation mechanisms of a novel Dignity-Conserving EoL Care model that has been successfully adopted by three nursing homes in Hong Kong and presents preliminary evidence of its effectiveness on enhancing dignity and quality of life (QoL) of terminally ill residents. Nine terminally ill nursing home residents completed the McGill Quality of Life Questionnaire and the Nursing Facilities Quality of Life Questionnaire at baseline and 6 months post-EoL program enrollment. Wilcoxon signed rank test was used to detect significance changes in each QoL domains across time. Although significant deterioration was recorded for physical QoL, significant improvement was observed for social QoL. Moreover, a clear trend toward significant improvements was identified for the QoL domains of individuality and relationships. A holistic and compassionate caring environment, together with the core principles of family-centered care, interagency and interdisciplinary teamwork, as well as cultural-specific psycho-socio-spiritual support, are all essential elements for optimizing QoL and promoting death with dignity for nursing home residents facing morality. This study provides a useful framework to facilitate the future development of EoL care in long-term-care settings in the Chinese context. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. The Use of Ritual in the Pastoral Care and Support of Families

    DTIC Science & Technology

    1993-05-26

    no future, so we have them come to the synagogue on that anniversary and say a prayer for life, God, and future (Freidman 1993). Prehn , the pastor of...powerful ( Prehn , 1993). I Other Transitional Events SIn addition to the conmnonly acknowledged and sometimes commemorated transitions in the life of...I As with any ritual, the formality and details of the ceremony vary greatly with each family. Prehn has experienced that variation In the blessing

  20. The Future Impact of the Internet on Higher Education: Experts Expect More Efficient Collaborative Environments and New Grading Schemes; They Worry about Massive Online Courses, the Shift Away from On-Campus Life

    ERIC Educational Resources Information Center

    Anderson, Janna Quitney; Boyles, Jan Lauren; Rainie, Lee

    2012-01-01

    The material presented in this paper was gathered in the fifth "Future of the Internet" survey conducted by the Pew Research Center's Internet & American Life Project and Elon University's Imagining the Internet Center. The surveys are conducted through an online questionnaire sent to selected experts who are encouraged to share the link with…

  1. Brain Tumor Image Segmentation in MRI Image

    NASA Astrophysics Data System (ADS)

    Peni Agustin Tjahyaningtijas, Hapsari

    2018-04-01

    Brain tumor segmentation plays an important role in medical image processing. Treatment of patients with brain tumors is highly dependent on early detection of these tumors. Early detection of brain tumors will improve the patient’s life chances. Diagnosis of brain tumors by experts usually use a manual segmentation that is difficult and time consuming because of the necessary automatic segmentation. Nowadays automatic segmentation is very populer and can be a solution to the problem of tumor brain segmentation with better performance. The purpose of this paper is to provide a review of MRI-based brain tumor segmentation methods. There are number of existing review papers, focusing on traditional methods for MRI-based brain tumor image segmentation. this paper, we focus on the recent trend of automatic segmentation in this field. First, an introduction to brain tumors and methods for brain tumor segmentation is given. Then, the state-of-the-art algorithms with a focus on recent trend of full automatic segmentaion are discussed. Finally, an assessment of the current state is presented and future developments to standardize MRI-based brain tumor segmentation methods into daily clinical routine are addressed.

  2. Proposed biomimetic molecular sensor array for astrobiology applications

    NASA Astrophysics Data System (ADS)

    Cullen, D. C.; Grant, W. D.; Piletsky, S.; Sims, M. R.

    2001-08-01

    A key objective of future astrobiology lander missions, e.g. to Mars and Europa, is the detection of biomarkers - molecules whose presence indicates the existence of either current or extinct life. To address limitations of current analytical methods for biomarker detection, we describe the methodology of a new project for demonstration of a robust molecular-recognition sensor array for astrobiology biomarkers. The sensor array will be realised by assembling components that have been demonstrated individually in previous or current research projects. The major components are (1) robust artificial molecular receptors comprised of molecular imprinted polymer (MIP) recognition systems and (2) a sensor array comprised of both optical and electrochemical sensor elements. These components will be integrated together using ink-jet printing technology coupled with in situ photo-polymerisation of MIPs. For demonstration, four model biomarkers are chosen as targets and represent various classes of potential biomarkers. Objectives of the proposed work include (1) demonstration of practical proof-of-concept, (2) identify areas for further development and (3) provide performance and design data for follow-up projects leading to astrobiology missions.

  3. Proposal for a new definition of congenital complete atrioventricular block.

    PubMed

    Brucato, A; Jonzon, A; Friedman, D; Allan, L D; Vignati, G; Gasparini, M; Stein, J I; Montella, S; Michaelsson, M; Buyon, J

    2003-01-01

    The classic old definition of congenital heart block by Yater (1929) is still generally accepted: 'Heart block established in a young patient. There must be some evidence of the existence of the slow pulse at a fairly early age and absence of a history of any infection which might cause the condition after birth: notably diphtheria, rheumatic fever, chorea and congenital syphilis'. However, other definitions are used. We systematically reviewed 1825 cases from 38 separate studies. We conclude that complete AV blocks detected in utero in the absence of structural abnormalities differ from blocks detected later in life with respect to pathogenesis (they are generally associated with maternal anti-Ro/SSA antibodies), poorer childhood prognosis, increased risk of developing late-onset dilated cardiomyopathy, different maternal clinical features and increased risk of recurrence in future pregnancies. For these reasons we propose a new modern definition of congenital complete AV block which might be acceptable to cardiologists, rheumatologists, pediatricians and obstetricians: 'an AV block is defined as congenital if it is diagnosed in utero, at birth or within the neonatal period (0-27 days after birth)'.

  4. Lifelong education for older adults in Malta: Current trends and future visions

    NASA Astrophysics Data System (ADS)

    Formosa, Marvin

    2012-04-01

    With European demographic developments causing a decline of the available workforce in the foreseeable future and the unsustainability of dominant pay-as-you-go pension systems (where contributions from the current workforce sustain pensioners), governments need to come up with strategies to deal with this upcoming challenge and to adjust their policies. Based on a study carried out between September 2009 and May 2010, this article evaluates the policies guiding late-life education in Malta, as well as the local plethora of learning opportunities for older adult education, and participation rates. The Maltese government is committed to supporting the inclusion of older persons (aged 60+) in lifelong education policies and programmes, to the extent that local studies have uncovered a recent rise in the overall participation of older adults in formal, non-formal and informal areas of learning. While the present and future prospects for late-life education in Malta seem promising, a critical scrutiny of present ideologies and trends finds the field to be no more than seductive rhetoric. Though the coordination of late-life education in Malta does result in various social benefits to older learners and Maltese society in general, it also occurs within five intersecting lines of inequality - namely an economic rationale, elitism, gender bias, the urban-rural divide and third ageism. This article ends by proposing policy recommendations for the future of late-life education.

  5. Aspirations and the subjective future of migration: comparing views and desires of the "time ahead" through the narratives of immigrant domestic workers.

    PubMed

    Boccagni, Paolo

    2017-01-01

    Migrants' aspirations are a meaningful and under-appreciated research subject. My paper investigates their development and implications over the life course, building on an archive of life stories of immigrant domestic workers in Italy. It dissects the biographical bases of aspirations as ways of cultivating open representations of the future; hence, as a window on migrants' potential to shape the future itself, given their assets, the external structure of opportunities and the relational fields in which they are embedded. Migrants' views and desires about the future, as individuals and members of families and broader communities, evolve in parallel with their biographies. Over time, they face "reality checks" which may make them elusive, opening up to unintended social consequences. Immigrant domestic workers in Italy are a case in point. What these interviewees reportedly aspired then , while leaving home, may significantly differ from what they do aspire now ; a gap which is telling of their often limited scope to negotiate a way across local and transnational life milieus. I reconceptualise this gap in aspirations, and in their accomplishment, in terms of "contents", "references" and "horizons". How and why migrant aspirations are transformed over time, and how different kinds of aspirations impinge on their life trajectories, are questions that generate fruitful insights for migration studies.

  6. End-of-Life Nursing Care and Education: End-of-Life Nursing Education: Past and Present.

    PubMed

    DʼAntonio, Jocelyn

    The dying experience is forever carried in the life story of those for whom the nurse cares. A goal of end-of-life nursing education is to produce nurses who are comfortable with death and dying and who have had the opportunity to reflect on their thoughts and feelings about end-of-life care. This article reviews the history, development, and teaching methods of end-of-life care, offering recommendations for future education.

  7. Projecting changes in the distribution and productivity of living marine resources: A critical review of the suite of modelling approaches used in the large European project VECTORS

    NASA Astrophysics Data System (ADS)

    Peck, Myron A.; Arvanitidis, Christos; Butenschön, Momme; Canu, Donata Melaku; Chatzinikolaou, Eva; Cucco, Andrea; Domenici, Paolo; Fernandes, Jose A.; Gasche, Loic; Huebert, Klaus B.; Hufnagl, Marc; Jones, Miranda C.; Kempf, Alexander; Keyl, Friedemann; Maar, Marie; Mahévas, Stéphanie; Marchal, Paul; Nicolas, Delphine; Pinnegar, John K.; Rivot, Etienne; Rochette, Sébastien; Sell, Anne F.; Sinerchia, Matteo; Solidoro, Cosimo; Somerfield, Paul J.; Teal, Lorna R.; Travers-Trolet, Morgan; van de Wolfshaar, Karen E.

    2018-02-01

    We review and compare four broad categories of spatially-explicit modelling approaches currently used to understand and project changes in the distribution and productivity of living marine resources including: 1) statistical species distribution models, 2) physiology-based, biophysical models of single life stages or the whole life cycle of species, 3) food web models, and 4) end-to-end models. Single pressures are rare and, in the future, models must be able to examine multiple factors affecting living marine resources such as interactions between: i) climate-driven changes in temperature regimes and acidification, ii) reductions in water quality due to eutrophication, iii) the introduction of alien invasive species, and/or iv) (over-)exploitation by fisheries. Statistical (correlative) approaches can be used to detect historical patterns which may not be relevant in the future. Advancing predictive capacity of changes in distribution and productivity of living marine resources requires explicit modelling of biological and physical mechanisms. New formulations are needed which (depending on the question) will need to strive for more realism in ecophysiology and behaviour of individuals, life history strategies of species, as well as trophodynamic interactions occurring at different spatial scales. Coupling existing models (e.g. physical, biological, economic) is one avenue that has proven successful. However, fundamental advancements are needed to address key issues such as the adaptive capacity of species/groups and ecosystems. The continued development of end-to-end models (e.g., physics to fish to human sectors) will be critical if we hope to assess how multiple pressures may interact to cause changes in living marine resources including the ecological and economic costs and trade-offs of different spatial management strategies. Given the strengths and weaknesses of the various types of models reviewed here, confidence in projections of changes in the distribution and productivity of living marine resources will be increased by assessing model structural uncertainty through biological ensemble modelling.

  8. Exoplanet Biosignatures: Understanding Oxygen as a Biosignature in the Context of Its Environment.

    PubMed

    Meadows, Victoria S; Reinhard, Christopher T; Arney, Giada N; Parenteau, Mary N; Schwieterman, Edward W; Domagal-Goldman, Shawn D; Lincowski, Andrew P; Stapelfeldt, Karl R; Rauer, Heike; DasSarma, Shiladitya; Hegde, Siddharth; Narita, Norio; Deitrick, Russell; Lustig-Yaeger, Jacob; Lyons, Timothy W; Siegler, Nicholas; Grenfell, J Lee

    2018-06-01

    We describe how environmental context can help determine whether oxygen (O 2 ) detected in extrasolar planetary observations is more likely to have a biological source. Here we provide an in-depth, interdisciplinary example of O 2 biosignature identification and observation, which serves as the prototype for the development of a general framework for biosignature assessment. Photosynthetically generated O 2 is a potentially strong biosignature, and at high abundance, it was originally thought to be an unambiguous indicator for life. However, as a biosignature, O 2 faces two major challenges: (1) it was only present at high abundance for a relatively short period of Earth's history and (2) we now know of several potential planetary mechanisms that can generate abundant O 2 without life being present. Consequently, our ability to interpret both the presence and absence of O 2 in an exoplanetary spectrum relies on understanding the environmental context. Here we examine the coevolution of life with the early Earth's environment to identify how the interplay of sources and sinks may have suppressed O 2 release into the atmosphere for several billion years, producing a false negative for biologically generated O 2 . These studies suggest that planetary characteristics that may enhance false negatives should be considered when selecting targets for biosignature searches. We review the most recent knowledge of false positives for O 2 , planetary processes that may generate abundant atmospheric O 2 without a biosphere. We provide examples of how future photometric, spectroscopic, and time-dependent observations of O 2 and other aspects of the planetary environment can be used to rule out false positives and thereby increase our confidence that any observed O 2 is indeed a biosignature. These insights will guide and inform the development of future exoplanet characterization missions. Key Words: Biosignatures-Oxygenic photosynthesis-Exoplanets-Planetary atmospheres. Astrobiology 18, 630-662.

  9. Exoplanet Biosignatures: Understanding Oxygen as a Biosignature in the Context of Its Environment

    PubMed Central

    Reinhard, Christopher T.; Arney, Giada N.; Parenteau, Mary N.; Schwieterman, Edward W.; Domagal-Goldman, Shawn D.; Lincowski, Andrew P.; Stapelfeldt, Karl R.; Rauer, Heike; DasSarma, Shiladitya; Hegde, Siddharth; Narita, Norio; Deitrick, Russell; Lustig-Yaeger, Jacob; Lyons, Timothy W.; Siegler, Nicholas; Grenfell, J. Lee

    2018-01-01

    Abstract We describe how environmental context can help determine whether oxygen (O2) detected in extrasolar planetary observations is more likely to have a biological source. Here we provide an in-depth, interdisciplinary example of O2 biosignature identification and observation, which serves as the prototype for the development of a general framework for biosignature assessment. Photosynthetically generated O2 is a potentially strong biosignature, and at high abundance, it was originally thought to be an unambiguous indicator for life. However, as a biosignature, O2 faces two major challenges: (1) it was only present at high abundance for a relatively short period of Earth's history and (2) we now know of several potential planetary mechanisms that can generate abundant O2 without life being present. Consequently, our ability to interpret both the presence and absence of O2 in an exoplanetary spectrum relies on understanding the environmental context. Here we examine the coevolution of life with the early Earth's environment to identify how the interplay of sources and sinks may have suppressed O2 release into the atmosphere for several billion years, producing a false negative for biologically generated O2. These studies suggest that planetary characteristics that may enhance false negatives should be considered when selecting targets for biosignature searches. We review the most recent knowledge of false positives for O2, planetary processes that may generate abundant atmospheric O2 without a biosphere. We provide examples of how future photometric, spectroscopic, and time-dependent observations of O2 and other aspects of the planetary environment can be used to rule out false positives and thereby increase our confidence that any observed O2 is indeed a biosignature. These insights will guide and inform the development of future exoplanet characterization missions. Key Words: Biosignatures—Oxygenic photosynthesis—Exoplanets—Planetary atmospheres. Astrobiology 18, 630–662. PMID:29746149

  10. At what age is hydrocephalus detected, and what is the role of head circumference measurements?

    PubMed

    Breuning-Broers, Jacqueline M; Deurloo, Jacqueline A; Gooskens, Rob H; Verkerk, Paul H

    2014-02-01

    To investigate at what age hydrocephalus is detected and to assess the role of head circumference measurements in detecting hydrocephalus, we performed a retrospective chart review in children with hydrocephalus treated in a tertiary paediatric hospital in the Netherlands. The study group contained 146 patients; 38 patients (31%) were referred because of abnormalities in head circumference. Eighty-nine per cent of the patients were detected in the first year of life. After this period, no patients were referred because of an abnormal head circumference. Therefore, head circumference measurements seem to have little value for detecting hydrocephalus after the first year of life.

  11. The most conserved genome segments for life detection on Earth and other planets.

    PubMed

    Isenbarger, Thomas A; Carr, Christopher E; Johnson, Sarah Stewart; Finney, Michael; Church, George M; Gilbert, Walter; Zuber, Maria T; Ruvkun, Gary

    2008-12-01

    On Earth, very simple but powerful methods to detect and classify broad taxa of life by the polymerase chain reaction (PCR) are now standard practice. Using DNA primers corresponding to the 16S ribosomal RNA gene, one can survey a sample from any environment for its microbial inhabitants. Due to massive meteoritic exchange between Earth and Mars (as well as other planets), a reasonable case can be made for life on Mars or other planets to be related to life on Earth. In this case, the supremely sensitive technologies used to study life on Earth, including in extreme environments, can be applied to the search for life on other planets. Though the 16S gene has become the standard for life detection on Earth, no genome comparisons have established that the ribosomal genes are, in fact, the most conserved DNA segments across the kingdoms of life. We present here a computational comparison of full genomes from 13 diverse organisms from the Archaea, Bacteria, and Eucarya to identify genetic sequences conserved across the widest divisions of life. Our results identify the 16S and 23S ribosomal RNA genes as well as other universally conserved nucleotide sequences in genes encoding particular classes of transfer RNAs and within the nucleotide binding domains of ABC transporters as the most conserved DNA sequence segments across phylogeny. This set of sequences defines a core set of DNA regions that have changed the least over billions of years of evolution and provides a means to identify and classify divergent life, including ancestrally related life on other planets.

  12. A noninvasive technique for real-time detection of bruises in apple surface based on machine vision

    NASA Astrophysics Data System (ADS)

    Zhao, Juan; Peng, Yankun; Dhakal, Sagar; Zhang, Leilei; Sasao, Akira

    2013-05-01

    Apple is one of the highly consumed fruit item in daily life. However, due to its high damage potential and massive influence on taste and export, the quality of apple has to be detected before it reaches the consumer's hand. This study was aimed to develop a hardware and software unit for real-time detection of apple bruises based on machine vision technology. The hardware unit consisted of a light shield installed two monochrome cameras at different angles, LED light source to illuminate the sample, and sensors at the entrance of box to signal the positioning of sample. Graphical Users Interface (GUI) was developed in VS2010 platform to control the overall hardware and display the image processing result. The hardware-software system was developed to acquire the images of 3 samples from each camera and display the image processing result in real time basis. An image processing algorithm was developed in Opencv and C++ platform. The software is able to control the hardware system to classify the apple into two grades based on presence/absence of surface bruises with the size of 5mm. The experimental result is promising and the system with further modification can be applicable for industrial production in near future.

  13. Advances in sensing and biosensing of bisphenols: A review.

    PubMed

    Dhanjai; Sinha, Ankita; Wu, Lingxia; Lu, Xianbo; Chen, Jiping; Jain, Rajeev

    2018-01-15

    Bisphenols (BPs) are well known endocrine disrupting chemicals (EDCs) that cause adverse effects on the environment, biotic life and human health. BPs have been studied extensively because of an increasing concern for the safety of the environment and for human health. They are major raw materials for manufacturing polycarbonates, thermal papers and epoxy resins and are considered hazardous environmental contaminants. A vast array of sensors and biosensors have been developed for the sensitive screening of BPs based on carbon nanomaterials (carbon nanotubes, fullerenes, graphene and graphene oxide), quantum dots, metal and metal oxide nanocomposites, polymer nanocomposites, metal organic frameworks, ionic liquids and molecularly imprinted polymers. This review is devoted mainly to a variety of sensitive, selective and reliable sensing and biosensing methods for the detection of BPs using electrochemistry, fluorescence, colorimetry, surface plasmon resonance, luminescence, ELISAs, circular dichroism, resonance Rayleigh scattering and adsorption techniques in plastic products, food samples, food packaging, industrial wastes, pharmaceutical products, human body fluids and many other matrices. It summarizes the advances in sensing and biosensing methods for the detection of BPs since 2010. Furthermore, the article discusses challenges and future perspectives in the development of novel sensing methods for the detection of BP analogs. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Exoplanet atmosphere highlights

    NASA Astrophysics Data System (ADS)

    García Muñoz, A.

    2017-03-01

    In only two decades since the first identification of a planet outside the Solar System,and about one since the pioneering detection of an atmosphere, exoplanet science has established itself as a mature field of astrophysics. As the search of as-of-yet undiscovered planets goes on, the field is steadily expanding its focus from detection only to detection and characterization. The information to be grasped from exoplanet atmospheres provides valuable insight into the formation and evolution of the planets and, in turn, into how unique our Solar System is. Ultimately, a dedicated search for life in these distant worlds will have to deal with the information encoded in their atmospheres. In recent years there has been rapid progress on both the theoretical and observational fronts in the investigation of exoplanet atmospheres. Theorists are predicting the prevailing conditions (temperature, chemical composition, cloud occurrence, energy transport) in these objects' envelopes, and are building the frameworks with which to approach the interpretation of observables. In parallel, observers have consolidated the remote sensing techniques that were utilized during the early years, and are now venturing into techniques that hold great promise for the future. With a number of space missions soon to fly and ground-based telescopes and instruments to be commissioned, all of them conceived during the exoplanet era, the field is set to experience unprecedented progress.

  15. Binaural unmasking of multi-channel stimuli in bilateral cochlear implant users.

    PubMed

    Van Deun, Lieselot; van Wieringen, Astrid; Francart, Tom; Büchner, Andreas; Lenarz, Thomas; Wouters, Jan

    2011-10-01

    Previous work suggests that bilateral cochlear implant users are sensitive to interaural cues if experimental speech processors are used to preserve accurate interaural information in the electrical stimulation pattern. Binaural unmasking occurs in adults and children when an interaural delay is applied to the envelope of a high-rate pulse train. Nevertheless, for speech perception, binaural unmasking benefits have not been demonstrated consistently, even with coordinated stimulation at both ears. The present study aimed at bridging the gap between basic psychophysical performance on binaural signal detection tasks on the one hand and binaural perception of speech in noise on the other hand. Therefore, binaural signal detection was expanded to multi-channel stimulation and biologically relevant interaural delays. A harmonic complex, consisting of three sinusoids (125, 250, and 375 Hz), was added to three 125-Hz-wide noise bands centered on the sinusoids. When an interaural delay of 700 μs was introduced, an average BMLD of 3 dB was established. Outcomes are promising in view of real-life benefits. Future research should investigate the generalization of the observed benefits for signal detection to speech perception in everyday listening situations and determine the importance of coordination of bilateral speech processors and accentuation of envelope cues.

  16. Nondestructive Examination (NDE) Detection and Characterization of Degradation Precursors, Technical Progress Report for FY 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramuhalli, P.; Meyer, R.M.; Fricke, J.M.

    2012-09-01

    The overall objective of this project was to investigate the effectiveness of nondestructive examination (NDE) technology in detecting material degradation precursors by initiating and growing cracks in selected materials and using NDE methods to measure crack precursors prior to the onset of cracking. Nuclear reactor components are subject to stresses over time that are not precisely known and that make the life expectancy of components difficult to determine. To prevent future issues with the operation of these plants because of unforeseen failure of components, NDE technology is needed that can be used to identify and quantify precursors to macroscopic degradationmore » of materials. Some of the NDE methods being researched as possible solutions to the precursor detection problem are magnetic Barkhausen noise, nonlinear ultrasonics, acoustic emission, eddy current measurements, and guided wave technology. In FY12, the objective was to complete preliminary assessment of advanced NDE techniques for sensitivity to degradation precursors, using prototypical degradation mechanisms in laboratory-scale measurements. This present document reports on the deliverable that meets the following milestone: M3LW-12OR0402143 – Report detailing an initial demonstration on samples from the crack-initiation tests will be provided (demonstrating acceleration of the work).« less

  17. Comet/Asteroid Protection System (CAPS): A Space-Based System Concept for Revolutionizing Earth Protection and Utilization of Near-Earth Objects

    NASA Technical Reports Server (NTRS)

    Mazanek, Daniel D.; Roithmayr, Carlos M.; Antol, Jeffrey; Kay-Bunnell, Linda; Werner, Martin R.; Park, Sang-Young; Kumar, Renjith R.

    2002-01-01

    There exists an infrequent, but significant hazard to life and property due to impacting asteroids and comets. There is currently no specific search for long-period comets, smaller near-Earth asteroids, or smaller short-period comets. These objects represent a threat with potentially little or no warning time using conventional ground-based telescopes. These planetary bodies also represent a significant resource for commercial exploitation, long-term sustained space exploration, and scientific research. The Comet/Asteroid Protection System (CAPS) would expand the current detection effort to include long-period comets, as well as small asteroids and short-period comets capable of regional destruction. A space-based detection system, despite being more costly and complex than Earth-based initiatives, is the most promising way of expanding the range of detectable objects, and surveying the entire celestial sky on a regular basis. CAPS is a future spacebased system concept that provides permanent, continuous asteroid and comet monitoring, and rapid, controlled modification of the orbital trajectories of selected bodies. CAPS would provide an orbit modification system capable of diverting kilometer class objects, and modifying the orbits of smaller asteroids for impact defense and resource utilization. This paper provides a summary of CAPS and discusses several key areas and technologies that are being investigated.

  18. Accurate Differentiation of Carotenoid Pigments Using Flight Representative Raman Spectrometers

    NASA Astrophysics Data System (ADS)

    Malherbe, Cedric; Hutchinson, Ian B.; McHugh, Melissa; Ingley, Richard; Jehlička, Jan; Edwards, Howell G. M.

    2017-04-01

    Raman spectrometers will be utilized on two Mars rover missions, ExoMars and Mars 2020, in the near future, to search for evidence of life and habitable geological niches on Mars. Carotenoid pigments are recognized target biomarkers, and as they are highly active in Raman spectroscopy, they can be readily used to characterize the capabilities of space representative instrumentation. As part of the preparatory work being performed for the ExoMars mission, a gypsum crust colonized by microorganisms was interrogated with commercial portable Raman instruments and a flight representative Raman laser spectrometer. Four separate layers, each exhibiting different coloration resulting from specific halophilic microorganism activities within the gypsum crust, were studied by using two excitation wavelengths: 532 and 785 nm. Raman or fluorescence data were readily obtained during the present study. Gypsum, the main constituent of the crust, was detected with both excitation wavelengths, while the resonance Raman signal associated with carotenoid pigments was only detected with a 532 nm excitation wavelength. The fluorescence originating from bacteriochlorophyll a was found to overwhelm the Raman signal for the layer colonized by sulfur bacteria when interrogated with a 785 nm excitation wavelength. Finally, it was demonstrated that portable instruments and the prototype were capable of detecting a statistically significant difference in band positions of carotenoid signals between the sample layers.

  19. Improved In vivo Assessment of Pulmonary Fibrosis in Mice using X-Ray Dark-Field Radiography

    NASA Astrophysics Data System (ADS)

    Yaroshenko, Andre; Hellbach, Katharina; Yildirim, Ali Önder; Conlon, Thomas M.; Fernandez, Isis Enlil; Bech, Martin; Velroyen, Astrid; Meinel, Felix G.; Auweter, Sigrid; Reiser, Maximilian; Eickelberg, Oliver; Pfeiffer, Franz

    2015-12-01

    Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive lung disease with a median life expectancy of 4-5 years after initial diagnosis. Early diagnosis and accurate monitoring of IPF are limited by a lack of sensitive imaging techniques that are able to visualize early fibrotic changes at the epithelial-mesenchymal interface. Here, we report a new x-ray imaging approach that directly visualizes the air-tissue interfaces in mice in vivo. This imaging method is based on the detection of small-angle x-ray scattering that occurs at the air-tissue interfaces in the lung. Small-angle scattering is detected with a Talbot-Lau interferometer, which provides the so-called x-ray dark-field signal. Using this imaging modality, we demonstrate-for the first time-the quantification of early pathogenic changes and their correlation with histological changes, as assessed by stereological morphometry. The presented radiography method is significantly more sensitive in detecting morphological changes compared with conventional x-ray imaging, and exhibits a significantly lower radiation dose than conventional x-ray CT. As a result of the improved imaging sensitivity, this new imaging modality could be used in future to reduce the number of animals required for pulmonary research studies.

  20. Recommended Immunological Strategies to Screen for Botulinum Neurotoxin-Containing Samples.

    PubMed

    Simon, Stéphanie; Fiebig, Uwe; Liu, Yvonne; Tierney, Rob; Dano, Julie; Worbs, Sylvia; Endermann, Tanja; Nevers, Marie-Claire; Volland, Hervé; Sesardic, Dorothea; Dorner, Martin B

    2015-11-26

    Botulinum neurotoxins (BoNTs) cause the life-threatening neurological illness botulism in humans and animals and are divided into seven serotypes (BoNT/A-G), of which serotypes A, B, E, and F cause the disease in humans. BoNTs are classified as "category A" bioterrorism threat agents and are relevant in the context of the Biological Weapons Convention. An international proficiency test (PT) was conducted to evaluate detection, quantification and discrimination capabilities of 23 expert laboratories from the health, food and security areas. Here we describe three immunological strategies that proved to be successful for the detection and quantification of BoNT/A, B, and E considering the restricted sample volume (1 mL) distributed. To analyze the samples qualitatively and quantitatively, the first strategy was based on sensitive immunoenzymatic and immunochromatographic assays for fast qualitative and quantitative analyses. In the second approach, a bead-based suspension array was used for screening followed by conventional ELISA for quantification. In the third approach, an ELISA plate format assay was used for serotype specific immunodetection of BoNT-cleaved substrates, detecting the activity of the light chain, rather than the toxin protein. The results provide guidance for further steps in quality assurance and highlight problems to address in the future.

Top