Sample records for future managing supply

  1. Study of China green supply chain management policies and standard

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoxin; Huang, Jin; Lin, Ling

    2017-11-01

    With the highlight of the environment issues, manufacturing industry needs to be environmentally managed with integrated methods in system aspect. Green supply chain management, integrating the environment aspect into each step of the implement of supply chain management, is the key measure to improve the efficiency of environmental management and to remit the pollution. It also helps to make best use and configuration of the resources and has been attracting much attention from our government, enterprises and academia in recent years. This paper introduced the definition and content of green supply chain management, concluded the research progress of green supply chain management by domestic scholars, stated the characteristic and achievement of the implement of green supply chain management in China as well as analyzed the current existing problems and suggestions in the future.

  2. Optimizing the DoD Supply Chain for the Future Joint Force

    DTIC Science & Technology

    2013-05-01

    4 Sunil Chopra and Peter Meindl, Supply Chain Management: Strategy, Planning, and Operation, 5th ed. (Boston: Pearson Education, Inc., 2013), 339...Arlington, VA: Lexington Institute, 2005. Chopra, Sunil and Peter Meindl. Supply Chain Management: Strategy, Planning, and Operation. 5th ed. Boston

  3. Increasing Awareness of Sustainable Water Management for Future Civil Engineers

    NASA Astrophysics Data System (ADS)

    Ilic, Suzana; Karleusa, Barbara; Deluka-Tibljas, Aleksandra

    2010-05-01

    There are more than 1.2 billion people around the world that do not have access to drinking water. While there are plans under the United Nations Millennium Development Goals to halve this number by 2015, there are a number of regions that will be exposed to water scarcity in the coming future. Providing sufficient water for future development is a great challenge for planners and designers of water supply systems. In order to design sustainable water supplies for the future, it is important to learn how people consume water and how water consumption can be reduced. The education of future civil engineers should take into account not only technical aspects of the water supply but also the accompanying social and economical issues, and appreciated the strengths and weaknesses of traditional solutions. The Faculty of Civil Engineering, at the University of Rijeka, has begun incorporating a series of activities that engage undergraduate students and the local community to develop a mutual understanding of the future needs for sustainable management. We present one of the activities, collaboration with the Lancaster Environment Centre at Lancaster University in the UK through the field course Water and environmental management in Mediterranean context. The course, which is designed for the Lancaster University geography students, features a combination of field trips and visits to provide an understanding of the socio-economic and environmental context of water management in two counties (Istra and Primorsko-Goranska). Students from Lancaster visit the Croatian water authority and a regional water company, where they learn about current management practices and problems in managing water supplies and demand through the year. They make their own observations of current management practices in the field and learn about water consumption from the end users. One day field visit to a village in the area that is still not connected to the main water supply system is organised together with civil engineering students from the University of Rijeka. The aims of this field visit are: to learn about traditional water supply from an underground storage of rain water called cisterna; and to find out from inhabitants about their current water usage habits and expectations, and how these might change when they get water from the main water supply system. This joint activity has been beneficial for both groups of students. The engineering students become aware of the importance of the social aspects in designing the water supply system, while the geography students learn about the engineering challenges entailed. Both groups learn that water consumption increases with the provision of water through pipeline systems and that this needs to be taken into account in the design of water supply and management of water resources. Importantly, they learn the benefits of traditional sustainable water supply methods, which could be implemented as primary or additional sources of water supply in other areas.In summary, both groups of students develop their professional knowledge and skills as well as generic and transferable skills, which are very important for those who will continue to a career in the design and management of water systems.

  4. A System Dynamics Modeling of Water Supply and Demand in Las Vegas Valley

    NASA Astrophysics Data System (ADS)

    Parajuli, R.; Kalra, A.; Mastino, L.; Velotta, M.; Ahmad, S.

    2017-12-01

    The rise in population and change in climate have posed the uncertainties in the balance between supply and demand of water. The current study deals with the water management issues in Las Vegas Valley (LVV) using Stella, a system dynamics modeling software, to model the feedback based relationship between supply and demand parameters. Population parameters were obtained from Center for Business and Economic Research while historical water demand and conservation practices were modeled as per the information provided by local authorities. The water surface elevation of Lake Mead, which is the prime source of water supply to the region, was modeled as the supply side whereas the water demand in LVV was modeled as the demand side. The study was done from the period of 1989 to 2049 with 1989 to 2012 as the historical one and the period from 2013 to 2049 as the future period. This study utilizes Coupled Model Intercomparison Project data sets (2013-2049) (CMIP3&5) to model different future climatic scenarios. The model simulates the past dynamics of supply and demand, and then forecasts the future water budget for the forecasted future population and future climatic conditions. The results can be utilized by the water authorities in understanding the future water status and hence plan suitable conservation policies to allocate future water budget and achieve sustainable water management.

  5. Identifying research advancements in supply chain risk management for Agri-food Industries: Literature review

    NASA Astrophysics Data System (ADS)

    Septiani, W.; Astuti, P.

    2017-12-01

    Agri-food supply chain has different characteristics related to the raw materials it uses. Food supply chain has a high risk of damage, thus drawing a lot of attention from researchers in supply chain management. This research aimed to investigate the development of supply chain risk management research on agri-food industries. These reviews were arranged in steps systematically, ranging from searching related to the review of SCRM paper, reviewing the general framework of SCRM and the framework of agri-food SCRM. Selection of literature review papers in the period 2005-2017, and obtained 45 papers. The results of the identification research were illustrated in a supply chain risk management framework model. This provided insight toward future research directions and needs.

  6. The evolving role of supply chain management technology in healthcare.

    PubMed

    Langabeer, Jim

    2005-01-01

    The healthcare supply chain is a vast, disintegrated network of products and players, loosely held together by manual and people-intensive processes. Managing the flow of information, supplies, equipment, and services from manufacturers to distributors to providers of care is especially difficult in clinical supply chains, compared with more technology-intense industries like consumer goods or industrial manufacturing. As supplies move downstream towards hospitals and clinics, the quality and robustness of accompanying management and information systems used to manage these products deteriorates significantly. Technology that provides advanced planning, synchronization, and collaboration upstream at the large supply manufacturers and distributors rarely is used at even the world's larger and more sophisticated hospitals. This article outlines the current state of healthcare supply chain management technologies, addresses potential reasons for the lack of adoption of technologies and provides a roadmap for the evolution of technology for the future. This piece is based on both quantitative and qualitative research assessments of the healthcare supply chain conducted during the last two years.

  7. The Future of Asset Management for Human Space Exploration: Supply Classification and an Integrated Database

    NASA Technical Reports Server (NTRS)

    Shull, Sarah A.; Gralla, Erica L.; deWeck, Olivier L.; Shishko, Robert

    2006-01-01

    One of the major logistical challenges in human space exploration is asset management. This paper presents observations on the practice of asset management in support of human space flight to date and discusses a functional-based supply classification and a framework for an integrated database that could be used to improve asset management and logistics for human missions to the Moon, Mars and beyond.

  8. Compounding Impacts of Human-Induced Water Stress and Climate Change on Water Availability

    NASA Technical Reports Server (NTRS)

    Mehran, Ali; AghaKouchak, Amir; Nakhjiri, Navid; Stewardson, Michael J.; Peel, Murray C.; Phillips, Thomas J.; Wada, Yoshihide; Ravalico, Jakin K.

    2017-01-01

    The terrestrial phase of the water cycle can be seriously impacted by water management and human water use behavior (e.g., reservoir operation, and irrigation withdrawals). Here we outline a method for assessing water availability in a changing climate, while explicitly considering anthropogenic water demand scenarios and water supply infrastructure designed to cope with climatic extremes. The framework brings a top-down and bottom-up approach to provide localized water assessment based on local water supply infrastructure and projected water demands. When our framework is applied to southeastern Australia we find that, for some combinations of climatic change and water demand, the region could experience water stress similar or worse than the epic Millennium Drought. We show considering only the influence of future climate on water supply, and neglecting future changes in water demand and water storage augmentation might lead to opposing perspectives on future water availability. While human water use can significantly exacerbate climate change impacts on water availability, if managed well, it allows societies to react and adapt to a changing climate. The methodology we present offers a unique avenue for linking climatic and hydrologic processes to water resource supply and demand management and other human interactions.

  9. Compounding Impacts of Human-Induced Water Stress and Climate Change on Water Availability.

    PubMed

    Mehran, Ali; AghaKouchak, Amir; Nakhjiri, Navid; Stewardson, Michael J; Peel, Murray C; Phillips, Thomas J; Wada, Yoshihide; Ravalico, Jakin K

    2017-07-24

    The terrestrial phase of the water cycle can be seriously impacted by water management and human water use behavior (e.g., reservoir operation, and irrigation withdrawals). Here we outline a method for assessing water availability in a changing climate, while explicitly considering anthropogenic water demand scenarios and water supply infrastructure designed to cope with climatic extremes. The framework brings a top-down and bottom-up approach to provide localized water assessment based on local water supply infrastructure and projected water demands. When our framework is applied to southeastern Australia we find that, for some combinations of climatic change and water demand, the region could experience water stress similar or worse than the epic Millennium Drought. We show considering only the influence of future climate on water supply, and neglecting future changes in water demand and water storage augmentation might lead to opposing perspectives on future water availability. While human water use can significantly exacerbate climate change impacts on water availability, if managed well, it allows societies to react and adapt to a changing climate. The methodology we present offers a unique avenue for linking climatic and hydrologic processes to water resource supply and demand management and other human interactions.

  10. Efficacy of adaptation measures to future water scarcity on a global scale

    NASA Astrophysics Data System (ADS)

    Yoshikawa, S.; Kanae, S.

    2015-12-01

    Water supply sources for all sector are critically important for agricultural and industrial productivity. The current rapid increase in water use is considered unsustainable and threatens human life. In our previous study (Yoshikawa et al., 2014 in HESS), we estimated the time-varying dependence of water requirements from water supply sources during past and future periods using the global water resources model, H08. The sources of water requirements were specified using four categories: rivers, large reservoirs, medium-size reservoirs, and non-local non-renewable blue water (NNBW). We also estimated ΔNNBW which is defined as an increase in NNBW from the past to the future. From the results, we could require the further development of water supply sources in order to sustain future water use. For coping with water scarcity using ΔNNBW, there is need for adaptation measure. To address adaptation measures, we need to set adaptation options which can be divided between 'Supply enhancement' and 'Demand management'. The supply enhancement includes increased storage, groundwater development, inter-basin transfer, desalination and re-use urban waste water. Demand management is defined as a set of actions controlling water demand by reducing water loss, increasing water productivity, and water re-allocation. In this study, we focus on estimating further future water demand under taking into account of several adaptation measures using H08 model.

  11. Predicting regime shifts in flow of the Colorado River

    USGS Publications Warehouse

    Gangopadhyay, Subhrendu; McCabe, Gregory J.

    2010-01-01

    The effects of continued global warming on water resources are a concern for water managers and stake holders. In the western United States, where the combined climatic demand and consumptive use of water is equal to or greater than the natural supply of water for some locations, there is growing concern regarding the sustainability of future water supplies. In addition to the adverse effects of warming on water supply, another issue for water managers is accounting for, and managing, the effects of natural climatic variability, particularly persistently dry and wet periods. Analyses of paleo-reconstructions of Upper Colorado River basin (UCRB) flow demonstrate that severe sustained droughts, and persistent pluvial periods, are a recurring characteristic of hydroclimate in the Colorado River basin. Shifts between persistently dry and wet regimes (e.g., decadal to multi-decadal variability (D2M)) have important implications for water supply and water management. In this study paleo-reconstructions of UCRB flow are used to compute the risks of shifts between persistently wet and dry regimes given the length of time in a specific regime. Results indicate that low frequency variability of hydro-climatic conditions and the statistics that describe this low frequency variability can be useful to water managers by providing information about the risk of shifting from one hydrologic regime to another. To manage water resources in the future water managers will have to understand the joint hydrologic effects of natural climate variability and global warming. These joint effects may produce future hydrologic conditions that are unprecedented in both the instrumental and paleoclimatic records.

  12. Financial Risk Reduction and Management of Water Reservoirs Using Forecasts: A Case for Pernambuco, Brazil

    NASA Astrophysics Data System (ADS)

    Kumar, I.; Josset, L.; e Silva, E. C.; Possas, J. M. C.; Asfora, M. C.; Lall, U.

    2017-12-01

    The financial health and sustainability, ensuring adequate supply, and adapting to climate are fundamental challenges faced by water managers. These challenges are worsened in semi-arid regions with socio-economic pressures, seasonal supply of water, and projected increase in intensity and frequency of droughts. Over time, probabilistic rainfall forecasts are improving and for water managers, it could be key in addressing the above challenges. Using forecasts can also help make informed decisions about future infrastructure. The study proposes a model to minimize cost of water supply (including cost of deficit) given ensemble forecasts. The model can be applied to seasonal to annual ensemble forecasts, to determine the least cost solution. The objective of the model is to evaluate the resiliency and cost associated to supplying water. A case study is conducted in one of the largest reservoirs (Jucazinho) in Pernambuco state, Brazil, and four other reservoirs, which provide water to nineteen municipalities in the Jucazinho system. The state has been in drought since 2011, and the Jucazinho reservoir, has been empty since January 2017. The importance of climate adaptation along with risk management and financial sustainability are important to the state as it is extremely vulnerable to droughts, and has seasonal streamflow. The objectives of the case study are first, to check if streamflow forecasts help reduce future supply costs by comparing k-nearest neighbor ensemble forecasts with a fixed release policy. Second, to determine the value of future infrastructure, a new source of supply from Rio São Francisco, considered to mitigate drought conditions. The study concludes that using forecasts improve the supply and financial sustainability of water, by reducing cost of failure. It also concludes that additional infrastructure can help reduce the risks of failure significantly, but does not guarantee supply during prolonged droughts like the one experienced currently.

  13. Formulation of advanced consumables management models: Executive summary. [modeling spacecraft environmental control, life support, and electric power supply systems

    NASA Technical Reports Server (NTRS)

    Daly, J. K.; Torian, J. G.

    1979-01-01

    An overview of studies conducted to establish the requirements for advanced subsystem analytical tools is presented. Modifications are defined for updating current computer programs used to analyze environmental control, life support, and electric power supply systems so that consumables for future advanced spacecraft may be managed.

  14. Compounding Impacts of Human-Induced Water Stress and Climate Change on Water Availability

    DOE PAGES

    Mehran, Ali; AghaKouchak, Amir; Nakhjiri, Navid; ...

    2017-07-24

    The terrestrial phase of the water cycle can be seriously impacted by water management and human water use behavior (e.g., reservoir operation, and irrigation withdrawals). Here we outline a method for assessing water availability in a changing climate, while explicitly considering anthropogenic water demand scenarios and water supply infrastructure designed to cope with climatic extremes. The framework brings a top-down and bottom-up approach to provide localized water assessment based on local water supply infrastructure and projected water demands. When our framework is applied to southeastern Australia we find that, for some combinations of climatic change and water demand, the regionmore » could experience water stress similar or worse than the epic Millennium Drought. We show considering only the influence of future climate on water supply, and neglecting future changes in water demand and water storage augmentation might lead to opposing perspectives on future water availability. While human water use can significantly exacerbate climate change impacts on water availability, if managed well, it allows societies to react and adapt to a changing climate. The methodology we present offers a unique avenue for linking climatic and hydrologic processes to water resource supply and demand management and other human interactions.« less

  15. Compounding Impacts of Human-Induced Water Stress and Climate Change on Water Availability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehran, Ali; AghaKouchak, Amir; Nakhjiri, Navid

    The terrestrial phase of the water cycle can be seriously impacted by water management and human water use behavior (e.g., reservoir operation, and irrigation withdrawals). Here we outline a method for assessing water availability in a changing climate, while explicitly considering anthropogenic water demand scenarios and water supply infrastructure designed to cope with climatic extremes. The framework brings a top-down and bottom-up approach to provide localized water assessment based on local water supply infrastructure and projected water demands. When our framework is applied to southeastern Australia we find that, for some combinations of climatic change and water demand, the regionmore » could experience water stress similar or worse than the epic Millennium Drought. We show considering only the influence of future climate on water supply, and neglecting future changes in water demand and water storage augmentation might lead to opposing perspectives on future water availability. While human water use can significantly exacerbate climate change impacts on water availability, if managed well, it allows societies to react and adapt to a changing climate. The methodology we present offers a unique avenue for linking climatic and hydrologic processes to water resource supply and demand management and other human interactions.« less

  16. Uncertainty in future water supplies from forests: hydrologic effects of a changing forest landscape

    NASA Astrophysics Data System (ADS)

    Jones, J. A.; Achterman, G. L.; Alexander, L. E.; Brooks, K. N.; Creed, I. F.; Ffolliott, P. F.; MacDonald, L.; Wemple, B. C.

    2008-12-01

    Forests account for 33 percent of the U.S. land area, process nearly two-thirds of the fresh water supply, and provide water to 40 percent of all municipalities or about 180 million people. Water supply management is becoming more difficult given the increasing demand for water, climate change, increasing development, changing forest ownership, and increasingly fragmented laws governing forest and watershed management. In 2006, the US National Research Council convened a study on the present understanding of forest hydrology, the hydrologic effects of a changing forest landscape, and research and management needs for sustaining water resources from forested landscapes. The committee concluded that while it is possible to generate short-term water yield increases by timber harvesting, there are a variety of reasons why active forest management has only limited potential to sustainably increase water supplies. These include the short-term nature of the increases in most environments, the timing of the increases, the need for downstream storage, and that continuing ground- based timber harvest can reduce water quality. At the same time, past and continuing changes in forest structure and management may be altering water supplies at the larger time and space scales that are of most interest to forest and water managers. These changes include the legacy of past forest management practices, particularly fire suppression and clearcutting; exurban sprawl, which permanently converts forest land to nonforest uses; effects of climate change on wildfires, insect outbreaks, forest structure, forest species composition, snowpack depth and snowmelt; road networks; and changes in forest land ownership. All of these changes have the potential to alter water quantity and quality from forests. Hence, the baseline conditions that have been used to estimate sustained water yields from forested watersheds may no longer be applicable. Stationarity also can no longer be assumed for the long-term control watersheds that have served as the cornerstone for most watershed-scale forest hydrology studies. The net result is that forest and water managers are facing greater uncertainty about future water supplies, water quality, and aquatic ecosystems, and their planning must consider a broader range of future scenarios than in the past. In this presentation, we outline a way forward for the research community to address the challenging questions of the future related to forests and water, and we chart a path for the involvement of various stakeholder groups to engage in water resources research, monitoring and policy formation.

  17. Impact of Stream Management Zones and Road Beautifying Buffers on Long-Term Fiber Supply in Georgia

    Treesearch

    Michal Zasada; Chris J. Cieszewski; Roger C. Lowe

    2005-01-01

    Streamside management zones (SMZs) and road beautifying buffers (RBBs) in Georgia have had an unknown impact on the available wood supply in the state. We used Forest Inventory and Analysis data, Landsat Thematic Mapper imagery, Gap Analysis Program and other geographic information system data to estimate the potential impact of SMZs and RBBs in the current and future...

  18. Perspectives for geographically oriented management of fusarium mycotoxins in the cereal supply chain.

    PubMed

    van der Fels-Klerx, H J; Booij, C J H

    2010-06-01

    This article provides an overview of available systems for management of Fusarium mycotoxins in the cereal grain supply chain, with an emphasis on the use of predictive mathematical modeling. From the state of the art, it proposes future developments in modeling and management and their challenges. Mycotoxin contamination in cereal grain-based feed and food products is currently managed and controlled by good agricultural practices, good manufacturing practices, hazard analysis critical control points, and by checking and more recently by notification systems and predictive mathematical models. Most of the predictive models for Fusarium mycotoxins in cereal grains focus on deoxynivalenol in wheat and aim to help growers make decisions about the application of fungicides during cultivation. Future developments in managing Fusarium mycotoxins should include the linkage between predictive mathematical models and geographical information systems, resulting into region-specific predictions for mycotoxin occurrence. The envisioned geographically oriented decision support system may incorporate various underlying models for specific users' demands and regions and various related databases to feed the particular models with (geographically oriented) input data. Depending on the user requirements, the system selects the best fitting model and available input information. Future research areas include organizing data management in the cereal grain supply chain, developing predictive models for other stakeholders (taking into account the period up to harvest), other Fusarium mycotoxins, and cereal grain types, and understanding the underlying effects of the regional component in the models.

  19. Analysing the external supply chain risk driver competitiveness: a risk mitigation framework and business continuity plan.

    PubMed

    Blos, Mauricio F; Wee, Hui-Ming; Yang, Joshua

    2010-11-01

    Innovation challenges for handling supply chain risks have become one of the most important drivers in business competitiveness and differentiation. This study analyses competitiveness at the external supply chain level as a driver of risks and provides a framework for mitigating these risks. The mitigation framework, also called the supply chain continuity framework, provides insight into six stages of the business continuity planning (BCP) process life cycle (risk mitigation management, business impact analysis, supply continuity strategy development, supply continuity plan development, supply continuity plan testing and supply continuity plan maintenance), together with the operational constructs: customer service, inventory management, flexibility, time to market, ordering cycle time and quality. The purpose of the BCP process life cycle and operational constructs working together is to emphasise the way in which a supply chain can deal with disruption risks and, consequently, bring competitive advantage. Future research will consider the new risk scenarios and analyse the consequences to promote the improvement of supply chain resilience.

  20. Managing risks in the fisheries supply chain using House of Risk Framework (HOR) and Interpretive Structural Modeling (ISM)

    NASA Astrophysics Data System (ADS)

    Nguyen, T. L. T.; Tran, T. T.; Huynh, T. P.; Ho, T. K. D.; Le, A. T.; Do, T. K. H.

    2018-04-01

    One of the sectors which contributes importantly to the development of Vietnam economy is fishery industry. However, during recent year, it has been witnessed many difficulties on managing the performance of the fishery supply chain operations as a whole. In this paper, a framework for supply chain risk management (SCRM) is proposed. Initially, all the activities are mapped by using Supply Chain Operations Reference (SCOR) model. Next, the risk ranking is analyzed in House of Risk. Furthermore, interpretive structural modeling (ISM) is used to identify inter-relationships among supply chain risks and to visualize the risks according to their levels. For illustration, the model has been tested in several case studies with fishery companies in Can Tho, Mekong Delta. This study identifies 22 risk events and 20 risk agents through the supply chain. Also, the risk priority could be used for further House of Risk with proactive actions in future studies.

  1. Forecasting Ontario's blood supply and demand.

    PubMed

    Drackley, Adam; Newbold, K Bruce; Paez, Antonio; Heddle, Nancy

    2012-02-01

    Given an aging population that requires increased medical care, an increasing number of deferrals from the donor pool, and a growing immigrant population that typically has lower donation rates, the purpose of this article is to forecast Ontario's blood supply and demand. We calculate age- and sex-specific donation and demand rates for blood supply based on 2008 data and project demand between 2008 and 2036 based on these rates and using population data from the Ontario Ministry of Finance. Results indicate that blood demand will outpace supply as early as 2012. For instance, while the total number of donations made by older cohorts is expected to increase in the coming years, the number of red blood cell (RBC) transfusions in the 70+ age group is forecasted grow from approximately 53% of all RBC transfusions in 2008 (209,515) in 2008 to 68% (546,996) by 2036. A series of alternate scenarios, including projections based on a 2% increase in supply per year and increased use of apheresis technology, delays supply shortfalls, but does not eliminate them without active management and/or multiple methods to increase supply and decrease demand. Predictions show that demand for blood products will outpace supply in the near future given current age- and sex-specific supply and demand rates. However, we note that the careful management of the blood supply by Canadian Blood Services, along with new medical techniques and the recruitment of new donors to the system, will remove future concerns. © 2012 American Association of Blood Banks.

  2. Scheduling Future Water Supply Investments Under Uncertainty

    NASA Astrophysics Data System (ADS)

    Huskova, I.; Matrosov, E. S.; Harou, J. J.; Kasprzyk, J. R.; Reed, P. M.

    2014-12-01

    Uncertain hydrological impacts of climate change, population growth and institutional changes pose a major challenge to planning of water supply systems. Planners seek optimal portfolios of supply and demand management schemes but also when to activate assets whilst considering many system goals and plausible futures. Incorporation of scheduling into the planning under uncertainty problem strongly increases its complexity. We investigate some approaches to scheduling with many-objective heuristic search. We apply a multi-scenario many-objective scheduling approach to the Thames River basin water supply system planning problem in the UK. Decisions include which new supply and demand schemes to implement, at what capacity and when. The impact of different system uncertainties on scheme implementation schedules are explored, i.e. how the choice of future scenarios affects the search process and its outcomes. The activation of schemes is influenced by the occurrence of extreme hydrological events in the ensemble of plausible scenarios and other factors. The approach and results are compared with a previous study where only the portfolio problem is addressed (without scheduling).

  3. Petroleum and Health Care: Evaluating and Managing Health Care's Vulnerability to Petroleum Supply Shifts

    PubMed Central

    Bednarz, Daniel; Bae, Jaeyong; Pierce, Jessica

    2011-01-01

    Petroleum is used widely in health care—primarily as a transport fuel and feedstock for pharmaceuticals, plastics, and medical supplies—and few substitutes for it are available. This dependence theoretically makes health care vulnerable to petroleum supply shifts, but this vulnerability has not been empirically assessed. We quantify key aspects of petroleum use in health care and explore historical associations between petroleum supply shocks and health care prices. These analyses confirm that petroleum products are intrinsic to modern health care and that petroleum supply shifts can affect health care prices. In anticipation of future supply contractions lasting longer than previous shifts and potentially disrupting health care delivery, we propose an adaptive management approach and outline its application to the example of emergency medical services. PMID:21778473

  4. Climate Forecasts and Water Resource Management: Applications for a Developing Country

    NASA Astrophysics Data System (ADS)

    Brown, C.; Rogers, P.

    2002-05-01

    While the quantity of water on the planet earth is relatively constant, the demand for water is continuously increasing. Population growth leads to linear increases in water demand, and economic growth leads to further demand growth. Strzepek et al. calculate that with a United Nations mean population estimate of 8.5 billion people by 2025 and globally balanced economic growth, water use could increase by 70% over that time (Strzepek et al., 1995). For developing nations especially, supplying water for this growing demand requires the construction of new water supply infrastructure. The prospect of designing and constructing long life-span infrastructure is clouded by the uncertainty of future climate. The availability of future water resources is highly dependent on future climate. With realization of the nonstationarity of climate, responsible design emphasizes resiliency and robustness of water resource systems (IPCC, 1995; Gleick et al., 1999). Resilient systems feature multiple sources and complex transport and distribution systems, and so come at a high economic and environmental price. A less capital-intense alternative to creating resilient and robust water resource systems is the use of seasonal climate forecasts. Such forecasts provide adequate lead time and accuracy to allow water managers and water-based sectors such as agriculture or hydropower to optimize decisions for the expected water supply. This study will assess the use of seasonal climate forecasts from regional climate models as a method to improve water resource management in systems with limited water supply infrastructure

  5. The role of minimum supply and social vulnerability assessment for governing critical infrastructure failure: current gaps and future agenda

    NASA Astrophysics Data System (ADS)

    Garschagen, Matthias; Sandholz, Simone

    2018-04-01

    Increased attention has lately been given to the resilience of critical infrastructure in the context of natural hazards and disasters. The major focus therein is on the sensitivity of critical infrastructure technologies and their management contingencies. However, strikingly little attention has been given to assessing and mitigating social vulnerabilities towards the failure of critical infrastructure and to the development, design and implementation of minimum supply standards in situations of major infrastructure failure. Addressing this gap and contributing to a more integrative perspective on critical infrastructure resilience is the objective of this paper. It asks which role social vulnerability assessments and minimum supply considerations can, should and do - or do not - play for the management and governance of critical infrastructure failure. In its first part, the paper provides a structured review on achievements and remaining gaps in the management of critical infrastructure and the understanding of social vulnerabilities towards disaster-related infrastructure failures. Special attention is given to the current state of minimum supply concepts with a regional focus on policies in Germany and the EU. In its second part, the paper then responds to the identified gaps by developing a heuristic model on the linkages of critical infrastructure management, social vulnerability and minimum supply. This framework helps to inform a vision of a future research agenda, which is presented in the paper's third part. Overall, the analysis suggests that the assessment of socially differentiated vulnerabilities towards critical infrastructure failure needs to be undertaken more stringently to inform the scientifically and politically difficult debate about minimum supply standards and the shared responsibilities for securing them.

  6. Scenarios reveal pathways to sustain future ecosystem services in an agricultural landscape.

    PubMed

    Qiu, Jiangxiao; Carpenter, Stephen R; Booth, Eric G; Motew, Melissa; Zipper, Samuel C; Kucharik, Christopher J; Chen, Xi; Loheide, Steven P; Seifert, Jenny; Turner, Monica G

    2018-01-01

    Sustaining food production, water quality, soil retention, flood, and climate regulation in agricultural landscapes is a pressing global challenge given accelerating environmental changes. Scenarios are stories about plausible futures, and scenarios can be integrated with biophysical simulation models to explore quantitatively how the future might unfold. However, few studies have incorporated a wide range of drivers (e.g., climate, land-use, management, population, human diet) in spatially explicit, process-based models to investigate spatial-temporal dynamics and relationships of a portfolio of ecosystem services. Here, we simulated nine ecosystem services (three provisioning and six regulating services) at 220 × 220 m from 2010 to 2070 under four contrasting scenarios in the 1,345-km 2 Yahara Watershed (Wisconsin, USA) using Agro-IBIS, a dynamic model of terrestrial ecosystem processes, biogeochemistry, water, and energy balance. We asked (1) How does ecosystem service supply vary among alternative future scenarios? (2) Where on the landscape is the provision of ecosystem services most susceptible to future social-ecological changes? (3) Among alternative future scenarios, are relationships (i.e., trade-offs, synergies) among food production, water, and biogeochemical services consistent over time? Our results showed that food production varied substantially with future land-use choices and management, and its trade-offs with water quality and soil retention persisted under most scenarios. However, pathways to mitigate or even reverse such trade-offs through technological advances and sustainable agricultural practices were apparent. Consistent relationships among regulating services were identified across scenarios (e.g., trade-offs of freshwater supply vs. flood and climate regulation, and synergies among water quality, soil retention, and climate regulation), suggesting opportunities and challenges to sustaining these services. In particular, proactive land-use changes and management may buffer water quality against undesirable future climate changes, but changing climate may overwhelm management efforts to sustain freshwater supply and flood regulation. Spatially, changes in ecosystem services were heterogeneous across the landscape, underscoring the power of local actions and fine-scale management. Our research highlights the value of embracing spatial and temporal perspectives in managing ecosystem services and their complex interactions, and provides a system-level understanding for achieving sustainability of the food-water-climate nexus in agricultural landscapes. © 2017 by the Ecological Society of America.

  7. 41 CFR 109-28.5000 - Scope of subpart.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false Scope of subpart. 109-28... Regulations System (Continued) DEPARTMENT OF ENERGY PROPERTY MANAGEMENT REGULATIONS SUPPLY AND PROCUREMENT 28-STORAGE AND DISTRIBUTION 28.50-Management of Equipment Held for Future Projects § 109-28.5000 Scope of...

  8. 41 CFR 109-28.5000 - Scope of subpart.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false Scope of subpart. 109-28... Regulations System (Continued) DEPARTMENT OF ENERGY PROPERTY MANAGEMENT REGULATIONS SUPPLY AND PROCUREMENT 28-STORAGE AND DISTRIBUTION 28.50-Management of Equipment Held for Future Projects § 109-28.5000 Scope of...

  9. 41 CFR 109-28.5000 - Scope of subpart.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false Scope of subpart. 109-28... Regulations System (Continued) DEPARTMENT OF ENERGY PROPERTY MANAGEMENT REGULATIONS SUPPLY AND PROCUREMENT 28-STORAGE AND DISTRIBUTION 28.50-Management of Equipment Held for Future Projects § 109-28.5000 Scope of...

  10. 41 CFR 109-28.5000 - Scope of subpart.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false Scope of subpart. 109-28... Regulations System (Continued) DEPARTMENT OF ENERGY PROPERTY MANAGEMENT REGULATIONS SUPPLY AND PROCUREMENT 28-STORAGE AND DISTRIBUTION 28.50-Management of Equipment Held for Future Projects § 109-28.5000 Scope of...

  11. An Integrated Modeling System for Water Resource Management Under Climate Change, Socio-Economic Development and Irrigation Management

    NASA Astrophysics Data System (ADS)

    SU, Q.; Karthikeyan, R.; Lin, Y.

    2017-12-01

    Water resources across the world have been increasingly stressed in the past few decades due to the population and economic growth and climate change. Consequently, the competing use of water among agricultural, domestic and industrial sectors is expected to be increasing. In this study, the water stresses under various climate change, socio-economic development and irrigation management scenarios are predicted over the period of 2015-2050 using an integrated model, in which the changes in water supply and demand induced by climate change, socio-economic development and irrigation management are dynamically parameterized. Simulations on the case of Texas, Southwest U.S. were performed using the newly developed integrated model, showing that the water stress is projected to be elevated in 2050 over most areas of Texas, particularly at Northern and Southern Plain and metropolitan areas. Climate change represents the most pronounce factor affecting the water supply and irrigation water demand in Texas. The water supply over East Texas is largely reduced in future because of the less precipitation and higher temperature under the climate change scenario, resulting in an elevated irrigation water demand and thus a higher water stress in this region. In contrast, the severity of water shortage in West Texas would be alleviated in future because of climate change. The water shortage index over metropolitan areas would increase by 50-90% under 1.0% migration scenario, suggesting that the population growth in future could also greatly stress the water supply, especially megacities like Dallas, Houston, Austin and San Antonio. The projected increase in manufacturing water demand shows little effects on the water stress. Increasing irrigation rate exacerbates the water stress over irrigated agricultural areas of Texas.

  12. A Survery of Timberland Investment Management Organizations Forestland Management in the South

    Treesearch

    Jacek Siry; Frederick W. Cubbage

    2001-01-01

    The assets of Timberland Investment Management Organizations (TIMOS) have rapidly grown over the past two decades. indicating their increasing importance for timber supply in the South. A TIMOS survey was conducted to assess their current and future investments and forest management approaches. The results indicate that TIMOS currently hold about 4.2 million acres of...

  13. RESOURCE MANAGEMENT AMONG INTENSIVE CARE NURSES: AN ETHNOGRAPHIC STUDY.

    PubMed

    Heydari, Abbas; Najar, Ali Vafaee; Bakhshi, Mahmoud

    2015-12-01

    Nurses are the main users of supplies and equipment applied in the Intensive Care Units (ICUs) which are high-priced and costly. Therefore, understanding ICU nurses' experiences about resource management contributes to the better control of the costs. This study aimed to investigate the culture of nurses' working environment regarding the resource management in the ICUs in Iran. In this study, a focused ethnographic method was used. Twenty-eight informants among ICU nurses and other professional individuals were purposively selected and interviewed. As well, 400 hours of ethnographic observations as a participant observer was used for data gathering. Data analysis was performed using the methods described by Miles and Huberman (1994). Two main themes describing the culture of ICU nurses regarding resource management included (a) consumption monitoring and auditing, and (b) prudent use. The results revealed that the efforts for resource management are conducted in the conditions of scarcity and uncertainty in supply. ICU nurses had a sense of futurism in the supply and use of resources in the unit and do the planning through taking the rules and guidelines as well as the available resources and their values into account. Improper storage of some supplies and equipment was a reaction to this uncertain condition among nurses. To manage the resources effectively, improvement of supply chain management in hospital seems essential. It is also necessary to hold educational classes in order to enhance the nurses' awareness on effective supply chain and storage of the items in the unit stock.

  14. A Scenario Based Assessment of Future Groundwater Resources in the Phoenix Active Management Area

    NASA Astrophysics Data System (ADS)

    Escobar, V. M.; Lant, T. W.

    2007-12-01

    The availability of future water supplies in central Arizona depends on the interaction of multiple physical and human systems: climate, hydrology, water and land-use policy, urbanization, and regulation. The problem in assessing future water supplies requires untangling these drivers and recasting the issue in a way that acknowledges the inherent uncertainties in climate and population growth predictions while offering meaningful metrics for outcomes under alternative scenarios. Further, the drivers, policy options, and outcomes are spatially heterogeneous - surface water supplies, new urban developments and changes in land-use will not be shared uniformly across the region. Consequently, different geographic regions of the Phoenix metropolitan area will be more vulnerable to shortages in water availability, and these potential vulnerabilities will be more or less severe depending on which factors cause the shortage. The results of this research will make several contributions to existing literature and research products for groundwater conservation and future urban planning. It will provide location specific metrics of water vulnerability and offer a novel approach to groundwater analysis; it will demonstrate the XLRM framework with an application to central Arizona Water resources. Lastly, it will add to the WaterSim climate model by spatializing the groundwater component for the Phoenix Active Management Area.

  15. A modeling framework for evaluating the drought resilience of a surface water supply system under non-stationarity

    DOE PAGES

    Zhao, Gang; Gao, Huilin; Kao, Shih -Chieh; ...

    2018-05-23

    Here, the future resilience of water supply systems is unprecedentedly challenged by non-stationary processes, such as fast population growth and a changing climate. A thorough understanding of how these non-stationarities impact water supply resilience is vital to support sustainable decision making, particularly for large cities in arid and/or semi-arid regions. In this study, a novel modeling framework, which integrates hydrological processes and water management, was established over a representative water limited metropolitan area to evaluate the impacts of water availability and water demand on reservoir storage and water supply reliability. In this framework, climate change induced drought events were selectedmore » from statistically downscaled Coupled Model Intercomparison Project Phase 5 outputs under the Representative Concentration Pathway 8.5 scenario, while future water demand was estimated by the product of projected future population and per capita water use. Compared with the first half of the 21st century (2000–2049), reservoir storage and water supply reliability during the second half century (2050–2099) are projected to reduce by 16.1% and 14.2%, respectively. While both future multi-year droughts and population growth will lower water supply resilience, the uncertainty associated with future climate projection is larger than that associated with urbanization. To reduce the drought risks, a combination of mitigation strategies (e.g., additional conservation, integrating new water sources, and water use redistribution) was found to be the most efficient approach and can significantly improve water supply reliability by as much as 15.9%.« less

  16. A modeling framework for evaluating the drought resilience of a surface water supply system under non-stationarity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Gang; Gao, Huilin; Kao, Shih -Chieh

    Here, the future resilience of water supply systems is unprecedentedly challenged by non-stationary processes, such as fast population growth and a changing climate. A thorough understanding of how these non-stationarities impact water supply resilience is vital to support sustainable decision making, particularly for large cities in arid and/or semi-arid regions. In this study, a novel modeling framework, which integrates hydrological processes and water management, was established over a representative water limited metropolitan area to evaluate the impacts of water availability and water demand on reservoir storage and water supply reliability. In this framework, climate change induced drought events were selectedmore » from statistically downscaled Coupled Model Intercomparison Project Phase 5 outputs under the Representative Concentration Pathway 8.5 scenario, while future water demand was estimated by the product of projected future population and per capita water use. Compared with the first half of the 21st century (2000–2049), reservoir storage and water supply reliability during the second half century (2050–2099) are projected to reduce by 16.1% and 14.2%, respectively. While both future multi-year droughts and population growth will lower water supply resilience, the uncertainty associated with future climate projection is larger than that associated with urbanization. To reduce the drought risks, a combination of mitigation strategies (e.g., additional conservation, integrating new water sources, and water use redistribution) was found to be the most efficient approach and can significantly improve water supply reliability by as much as 15.9%.« less

  17. Tools and Techniques for Basin-Scale Climate Change Assessment

    NASA Astrophysics Data System (ADS)

    Zagona, E.; Rajagopalan, B.; Oakley, W.; Wilson, N.; Weinstein, P.; Verdin, A.; Jerla, C.; Prairie, J. R.

    2012-12-01

    The Department of Interior's WaterSMART Program seeks to secure and stretch water supplies to benefit future generations and identify adaptive measures to address climate change. Under WaterSMART, Basin Studies are comprehensive water studies to explore options for meeting projected imbalances in water supply and demand in specific basins. Such studies could be most beneficial with application of recent scientific advances in climate projections, stochastic simulation, operational modeling and robust decision-making, as well as computational techniques to organize and analyze many alternatives. A new integrated set of tools and techniques to facilitate these studies includes the following components: Future supply scenarios are produced by the Hydrology Simulator, which uses non-parametric K-nearest neighbor resampling techniques to generate ensembles of hydrologic traces based on historical data, optionally conditioned on long paleo reconstructed data using various Markov Chain techniuqes. Resampling can also be conditioned on climate change projections from e.g., downscaled GCM projections to capture increased variability; spatial and temporal disaggregation is also provided. The simulations produced are ensembles of hydrologic inputs to the RiverWare operations/infrastucture decision modeling software. Alternative demand scenarios can be produced with the Demand Input Tool (DIT), an Excel-based tool that allows modifying future demands by groups such as states; sectors, e.g., agriculture, municipal, energy; and hydrologic basins. The demands can be scaled at future dates or changes ramped over specified time periods. Resulting data is imported directly into the decision model. Different model files can represent infrastructure alternatives and different Policy Sets represent alternative operating policies, including options for noticing when conditions point to unacceptable vulnerabilities, which trigger dynamically executing changes in operations or other options. The over-arching Study Manager provides a graphical tool to create combinations of future supply scenarios, demand scenarios, infrastructure and operating policy alternatives; each scenario is executed as an ensemble of RiverWare runs, driven by the hydrologic supply. The Study Manager sets up and manages multiple executions on multi-core hardware. The sizeable are typically direct model outputs, or post-processed indicators of performance based on model outputs. Post processing statistical analysis of the outputs are possible using the Graphical Policy Analysis Tool or other statistical packages. Several Basin Studies undertaken have used RiverWare to evaluate future scenarios. The Colorado River Basin Study, the most complex and extensive to date, has taken advantage of these tools and techniques to generate supply scenarios, produce alternative demand scenarios and to set up and execute the many combinations of supplies, demands, policies, and infrastructure alternatives. The tools and techniques will be described with example applications.

  18. The future of irrigation on the High Plains

    USDA-ARS?s Scientific Manuscript database

    The future of irrigation on the U.S. High Plains was examined through the lens of past changes in water supply and innovations in irrigation technology, management and agronomy. The innovations have greatly increased the efficiency of water application and use, and the agricultural productivity of t...

  19. Two projections of timber supply in the Pacific coast states.

    Treesearch

    Donald R. Gedney; Daniel D. Oswald; Roger D. Fight

    1975-01-01

    Two projections of softwood timber supply for 1970-2020 for California, western Oregon, eastern Oregon, western Washington, eastern Washington, and coastal Alaska are presented. One projection shows how much timber will likely be available in the future if forest management continues at recent levels. The second projection shows the impact of one program of intensified...

  20. Financial Management in School Administration.

    ERIC Educational Resources Information Center

    Tronc, Keith, Ed.

    Because Australian school principals are being given increasing autonomy, knowledge of basic accounting principles and skill in elementary financial management are becoming more necessary. This book attempts to supply school administrators with information needed to handle new accounting duties and to lay a foundation for future fuller involvement…

  1. Adaptation strategies for water supply management in a drought prone Mediterranean river basin: Application of outranking method.

    PubMed

    Kumar, Vikas; Del Vasto-Terrientes, Luis; Valls, Aida; Schuhmacher, Marta

    2016-01-01

    The regional water allocation planning is one of those complex decision problems where holistic approach to water supply management considering different criteria would be valuable. However, multi-criteria decision making with diverse indicators measured on different scales and uncertainty levels is difficult to solve. Objective of this paper is to develop scenarios for the future imbalances in water supply and demand for a water stressed Mediterranean area of Northern Spain (Tarragona) and to test the applicability and suitability of an outranking method ELECTRE-III-H for evaluating sectoral water allocation policies. This study is focused on the use of alternative water supply scenarios to fulfil the demand of water from three major sectors: domestic, industrial and agricultural. A detail scenario planning for regional water demand and supply has been discussed. For each future scenario of climate change, the goal is to obtain a ranking of a set of possible actions with regards to different types of indicators (costs, water stress and environmental impact). The analytical method used is based on outranking models for decision aid with hierarchical structures of criteria and ranking alternatives using partial preorders based on pairwise preference relations. We compare several adaptation measures including alternative water sources (reclaimed water and desalination); inter basin water transfer and sectoral demand management coming from industry, agriculture and domestic sectors and tested the sustainability of management actions for different climate change scenarios. Results have shown use of alternative water resources as the most reliable alternative with medium reclaimed water reuse in industry and agriculture and low to medium use of desalination water in domestic and industrial sectors as the best alternative. The proposed method has several advantages such as the management of heterogeneous scales of measurement without requiring any artificial transformation and the management of uncertainty by means of comparisons at a qualitative level in terms of the decision maker preferences. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Challenges in the management of the blood supply.

    PubMed

    Williamson, Lorna M; Devine, Dana V

    2013-05-25

    Although blood suppliers are seeing short-term reductions in blood demand as a result of initiatives in patient blood management, modelling suggests that during the next 5-10 years, blood availability in developed countries will need to increase again to meet the demands of ageing populations. Increasing of the blood supply raises many challenges; new approaches to recruitment and retainment of future generations of blood donors will be needed, and care will be necessary to avoid taking too much blood from these donors. Integrated approaches in blood stock management between transfusion services and hospitals will be important to minimise wastage--eg, by use of supply chain solutions from industry. Cross-disciplinary systems for patient blood management need to be developed to lessen the need for transfusion--eg, by early identification and reversal of anaemia with haematinics or by reversal of the underlying cause. Personalised medicine could be applied to match donors to patients, not only with extended blood typing, but also by using genetically determined storage characteristics of blood components. Growing of red cells or platelets in large quantities from stem cells is a possibility in the future, but challenges of cost, scaling up, and reproducibility remain to be solved. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Tree planting in the south: what does the future hold.

    Treesearch

    Jeffrey D. Kline; Brett J. Butler; Ralph J. Alig

    2002-01-01

    Projected increasing demands for timber coupled with reduced harvests on public lands have led to concern among some forest policymakers regarding the adequacy of future U.S. timber supplies. One question concerns the likelihood that prevailing market incentives will induce industrial and nonindustrial private landowners to intensify forest management.

  4. Development of an Assessment Model for Sustainable Supply Chain Management in Batik Industry

    NASA Astrophysics Data System (ADS)

    Mubiena, G. F.; Ma’ruf, A.

    2018-03-01

    This research proposes a dynamic assessment model for sustainable supply chain management in batik industry. The proposed model identifies the dynamic relationship between economic aspect, environment aspect and social aspect. The economic aspect refers to the supply chain operation reference model. The environment aspect uses carbon emissions and liquid waste as the attribute assessment, while the social aspect focus on employee’s welfare. Lean manufacturing concept was implemented as an alternative approach to sustainability. The simulation result shows that the average of sustainability score for 5 years increased from 65,3% to 70%. Future experiments will be conducted on design improvements to reach the company target on sustainability score.

  5. Assessment of climate change impact on water diversion strategies of Melamchi Water Supply Project in Nepal

    NASA Astrophysics Data System (ADS)

    Shrestha, Sangam; Shrestha, Manish; Babel, Mukand S.

    2017-04-01

    This paper analyzes the climate change impact on water diversion plan of Melamchi Water Supply Project (MWSP) in Nepal. The MWSP is an interbasin water transfer project aimed at diverting water from the Melamchi River of the Indrawati River basin to Kathmandu Valley for drinking water purpose. Future temperature and precipitation of the basin were predicted using the outputs of two regional climate models (RCMs) and two general circulation models (GCMs) under two representative concentration pathway (RCP) scenarios which were then used as inputs to Soil and Water Assessment Tool (SWAT) to predict the water availability and evaluate the water diversion strategies in the future. The average temperature of the basin is projected to increase by 2.35 to 4.25 °C under RCP 4.5 and RCP 8.5, respectively, by 2085s. The average precipitation in the basin is projected to increase by 6-18 % in the future. The annual water availability is projected to increase in the future; however, the variability is observed in monthly water availability in the basin. The water supply and demand scenarios of Kathmandu Valley was also examined by considering the population increase, unaccounted for water and water diversion from MWSP in the future. It is observed that even with the additional supply of water from MWSP and reduction of unaccounted for water, the Kathmandu Valley will be still under water scarcity in the future. The findings of this study can be helpful to formulate water supply and demand management strategies in Kathmandu Valley in the context of climate change in the future.

  6. Many-objective optimization and visual analytics reveal key trade-offs for London's water supply

    NASA Astrophysics Data System (ADS)

    Matrosov, Evgenii S.; Huskova, Ivana; Kasprzyk, Joseph R.; Harou, Julien J.; Lambert, Chris; Reed, Patrick M.

    2015-12-01

    In this study, we link a water resource management simulator to multi-objective search to reveal the key trade-offs inherent in planning a real-world water resource system. We consider new supplies and demand management (conservation) options while seeking to elucidate the trade-offs between the best portfolios of schemes to satisfy projected water demands. Alternative system designs are evaluated using performance measures that minimize capital and operating costs and energy use while maximizing resilience, engineering and environmental metrics, subject to supply reliability constraints. Our analysis shows many-objective evolutionary optimization coupled with state-of-the art visual analytics can help planners discover more diverse water supply system designs and better understand their inherent trade-offs. The approach is used to explore future water supply options for the Thames water resource system (including London's water supply). New supply options include a new reservoir, water transfers, artificial recharge, wastewater reuse and brackish groundwater desalination. Demand management options include leakage reduction, compulsory metering and seasonal tariffs. The Thames system's Pareto approximate portfolios cluster into distinct groups of water supply options; for example implementing a pipe refurbishment program leads to higher capital costs but greater reliability. This study highlights that traditional least-cost reliability constrained design of water supply systems masks asset combinations whose benefits only become apparent when more planning objectives are considered.

  7. RESOURCE MANAGEMENT AMONG INTENSIVE CARE NURSES: AN ETHNOGRAPHIC STUDY

    PubMed Central

    Heydari, Abbas; Najar, Ali Vafaee; Bakhshi, Mahmoud

    2015-01-01

    Background: Nurses are the main users of supplies and equipment applied in the Intensive Care Units (ICUs) which are high-priced and costly. Therefore, understanding ICU nurses’ experiences about resource management contributes to the better control of the costs. Objectives: This study aimed to investigate the culture of nurses’ working environment regarding the resource management in the ICUs in Iran. Patients and Methods: In this study, a focused ethnographic method was used. Twenty-eight informants among ICU nurses and other professional individuals were purposively selected and interviewed. As well, 400 hours of ethnographic observations as a participant observer was used for data gathering. Data analysis was performed using the methods described by Miles and Huberman (1994). Results: Two main themes describing the culture of ICU nurses regarding resource management included (a) consumption monitoring and auditing, and (b) prudent use. The results revealed that the efforts for resource management are conducted in the conditions of scarcity and uncertainty in supply. ICU nurses had a sense of futurism in the supply and use of resources in the unit and do the planning through taking the rules and guidelines as well as the available resources and their values into account. Improper storage of some supplies and equipment was a reaction to this uncertain condition among nurses. Conclusions: To manage the resources effectively, improvement of supply chain management in hospital seems essential. It is also necessary to hold educational classes in order to enhance the nurses’ awareness on effective supply chain and storage of the items in the unit stock. PMID:26889097

  8. 7 CFR 14.6 - Criteria for determining the pri- mary purpose of payments with respect to potential exclusion...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... conservation includes actions that, for a given level of water supply, reduce the demand for or use of water by... reuse of water, thereby making existing supplies available for other current or future uses; or (iv) Improving land management practices for the purpose of reducing water use, loss, waste, increasing the...

  9. Human deforestation outweighs future climate change impacts of sedimentation on coral reefs

    PubMed Central

    Maina, Joseph; de Moel, Hans; Zinke, Jens; Madin, Joshua; McClanahan, Tim; Vermaat, Jan E.

    2013-01-01

    Near-shore coral reef systems are experiencing increased sediment supply due to conversion of forests to other land uses. Counteracting increased sediment loads requires an understanding of the relationship between forest cover and sediment supply, and how this relationship might change in the future. Here we study this relationship by simulating river flow and sediment supply in four watersheds that are adjacent to Madagascar’s major coral reef ecosystems for a range of future climate change projections and land-use change scenarios. We show that by 2090, all four watersheds are predicted to experience temperature increases and/or precipitation declines that, when combined, result in decreases in river flow and sediment load. However, these climate change-driven declines are outweighed by the impact of deforestation. Consequently, our analyses suggest that regional land-use management is more important than mediating climate change for influencing sedimentation of Malagasy coral reefs. PMID:23736941

  10. Human deforestation outweighs future climate change impacts of sedimentation on coral reefs.

    PubMed

    Maina, Joseph; de Moel, Hans; Zinke, Jens; Madin, Joshua; McClanahan, Tim; Vermaat, Jan E

    2013-01-01

    Near-shore coral reef systems are experiencing increased sediment supply due to conversion of forests to other land uses. Counteracting increased sediment loads requires an understanding of the relationship between forest cover and sediment supply, and how this relationship might change in the future. Here we study this relationship by simulating river flow and sediment supply in four watersheds that are adjacent to Madagascar's major coral reef ecosystems for a range of future climate change projections and land-use change scenarios. We show that by 2090, all four watersheds are predicted to experience temperature increases and/or precipitation declines that, when combined, result in decreases in river flow and sediment load. However, these climate change-driven declines are outweighed by the impact of deforestation. Consequently, our analyses suggest that regional land-use management is more important than mediating climate change for influencing sedimentation of Malagasy coral reefs.

  11. Innovative Tools for Water Quality/Quantity Management: New York City's Operations Support Tool

    NASA Astrophysics Data System (ADS)

    Wang, L.; Schaake, J. C.; Day, G. N.; Porter, J.; Sheer, D. P.; Pyke, G.

    2011-12-01

    The New York City Department of Environmental Protection (DEP) manages New York City's water supply, which is comprised of over 20 reservoirs and supplies more than 1 billion gallons of water per day to over 9 million customers. Recently, DEP has initiated design of an Operations Support Tool (OST), a state-of-the-art decision support system to provide computational and predictive support for water supply operations and planning. This presentation describes the technical structure of OST, including the underlying water supply and water quality models, data sources and database management, reservoir inflow forecasts, and the functionalities required to meet the needs of a diverse group of end users. OST is a major upgrade of DEP's current water supply - water quality model, developed to evaluate alternatives for controlling turbidity in NYC's Catskill reservoirs. While the current model relies on historical hydrologic and meteorological data, OST can be driven by forecasted future conditions. It will receive a variety of near-real-time data from a number of sources. OST will support two major types of simulations: long-term, for evaluating policy or infrastructure changes over an extended period of time; and short-term "position analysis" (PA) simulations, consisting of multiple short simulations, all starting from the same initial conditions. Typically, the starting conditions for a PA run will represent those for the current day and traces of forecasted hydrology will drive the model for the duration of the simulation period. The result of these simulations will be a distribution of future system states based on system operating rules and the range of input ensemble streamflow predictions. DEP managers will analyze the output distributions and make operation decisions using risk-based metrics such as probability of refill. Currently, in the developmental stages of OST, forecasts are based on antecedent hydrologic conditions and are statistical in nature. The statistical algorithm is a relatively simple and versatile, but lacks short-term skill critical for water quality and spill management. To improve short-term skill, OST will ultimately operate with meteorologically driven hydrologic forecasts provided by the National Weather Service (NWS). OST functionalities will support a wide range of DEP uses, including short term operational projections, outage planning and emergency management, operating rule development, and water supply planning. A core use of OST will be to inform reservoir management strategies to control and mitigate turbidity events while ensuring water supply reliability. OST will also allow DEP to manage its complex reservoir system to meet multiple objectives, including ecological flows, tailwater fisheries and recreational releases, and peak flow mitigation for downstream communities.

  12. Drivers of Change in Managed Water Resources: Modeling the Impacts of Climate and Socioeconomic Changes Using the US Midwest as a Case Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voisin, Nathalie; Leung, Lai-Yung R.; Hejazi, Mohamad I.

    A global integrated assessment model including a water-demand model driven by socio-economics, is coupled in a one-way fashion with a land surface hydrology – routing – water resources management model. The integrated modeling framework is applied to the U.S. Upper Midwest (Missouri, Upper Mississippi, and Ohio) to advance understanding of the regional impacts of climate and socio-economic changes on integrated water resources. Implications for future flow regulation, water supply, and supply deficit are investigated using climate change projections with the B1 and A2 emission scenarios, which affect both natural flow and water demand. Changes in water demand are driven bymore » socio-economic factors, energy and food demands, global markets and prices. The framework identifies the multiple spatial scales of interactions between the drivers of changes (natural flow and water demand) and the managed water resources (regulated flow, supply and supply deficit). The contribution of the different drivers of change are quantified regionally, and also evaluated locally, using covariances. The integrated framework shows that water supply deficit is more predictable over the Missouri than the other regions in the Midwest. The predictability of the supply deficit mostly comes from long term changes in water demand although changes in runoff has a greater contribution, comparable to the contribution of changes in demand, over shorter time periods. The integrated framework also shows that spatially, water demand drives local supply deficit. Using elasticity, the sensitivity of supply deficit to drivers of change is established. The supply deficit is found to be more sensitive to changes in runoff than to changes in demand regionally. It contrasts with the covariance analysis that shows that water demand is the dominant driver of supply deficit over the analysed periods. The elasticity indicates the level of mitigation needed to control the demand in order to reduce the vulnerability of the integrated system in future periods. The elasticity analyses also emphasize the need to address uncertainty with respect to changes in natural flow in integrated assessment.« less

  13. Risk-based water resources planning: Incorporating probabilistic nonstationary climate uncertainties

    NASA Astrophysics Data System (ADS)

    Borgomeo, Edoardo; Hall, Jim W.; Fung, Fai; Watts, Glenn; Colquhoun, Keith; Lambert, Chris

    2014-08-01

    We present a risk-based approach for incorporating nonstationary probabilistic climate projections into long-term water resources planning. The proposed methodology uses nonstationary synthetic time series of future climates obtained via a stochastic weather generator based on the UK Climate Projections (UKCP09) to construct a probability distribution of the frequency of water shortages in the future. The UKCP09 projections extend well beyond the range of current hydrological variability, providing the basis for testing the robustness of water resources management plans to future climate-related uncertainties. The nonstationary nature of the projections combined with the stochastic simulation approach allows for extensive sampling of climatic variability conditioned on climate model outputs. The probability of exceeding planned frequencies of water shortages of varying severity (defined as Levels of Service for the water supply utility company) is used as a risk metric for water resources planning. Different sources of uncertainty, including demand-side uncertainties, are considered simultaneously and their impact on the risk metric is evaluated. Supply-side and demand-side management strategies can be compared based on how cost-effective they are at reducing risks to acceptable levels. A case study based on a water supply system in London (UK) is presented to illustrate the methodology. Results indicate an increase in the probability of exceeding the planned Levels of Service across the planning horizon. Under a 1% per annum population growth scenario, the probability of exceeding the planned Levels of Service is as high as 0.5 by 2040. The case study also illustrates how a combination of supply and demand management options may be required to reduce the risk of water shortages.

  14. Current and Future Parts Management at NASA

    NASA Technical Reports Server (NTRS)

    Sampson, Michael J.

    2011-01-01

    This presentation provides a high level view of current and future electronic parts management at NASA. It describes a current perspective of the new human space flight direction that NASA is beginning to take and how that could influence parts management in the future. It provides an overview of current NASA electronic parts policy and how that is implemented at the NASA flight Centers. It also describes some of the technical challenges that lie ahead and suggests approaches for their mitigation. These challenges include: advanced packaging, obsolescence and counterfeits, the global supply chain and Commercial Crew, a new direction by which NASA will utilize commercial launch vehicles to get astronauts to the International Space Station.

  15. Urban water sustainability: an integrative framework for regional water management

    NASA Astrophysics Data System (ADS)

    Gonzales, P.; Ajami, N. K.

    2015-11-01

    Traditional urban water supply portfolios have proven to be unsustainable under the uncertainties associated with growth and long-term climate variability. Introducing alternative water supplies such as recycled water, captured runoff, desalination, as well as demand management strategies such as conservation and efficiency measures, has been widely proposed to address the long-term sustainability of urban water resources. Collaborative efforts have the potential to achieve this goal through more efficient use of common pool resources and access to funding opportunities for supply diversification projects. However, this requires a paradigm shift towards holistic solutions that address the complexity of hydrologic, socio-economic and governance dynamics surrounding water management issues. The objective of this work is to develop a regional integrative framework for the assessment of water resource sustainability under current management practices, as well as to identify opportunities for sustainability improvement in coupled socio-hydrologic systems. We define the sustainability of a water utility as the ability to access reliable supplies to consistently satisfy current needs, make responsible use of supplies, and have the capacity to adapt to future scenarios. To compute a quantitative measure of sustainability, we develop a numerical index comprised of supply, demand, and adaptive capacity indicators, including an innovative way to account for the importance of having diverse supply sources. We demonstrate the application of this framework to the Hetch Hetchy Regional Water System in the San Francisco Bay Area of California. Our analyses demonstrate that water agencies that share common water supplies are in a good position to establish integrative regional management partnerships in order to achieve individual and collective short-term and long-term benefits.

  16. Using scenario analysis to determine managed care strategy.

    PubMed

    Krentz, S E; Gish, R S

    2000-09-01

    In today's volatile healthcare environment, traditional planning tools are inadequate to guide financial managers of provider organizations in developing managed care strategies. These tools often disregard the uncertainty surrounding market forces such as employee benefit structure, the future of Medicare managed care, and the impact of consumer behavior. Scenario analysis overcomes this limitation by acknowledging the uncertain healthcare environment and articulating a set of plausible alternative futures, thus supplying financial executives with the perspective to craft strategies that can improve the market position of their organizations. By being alert for trigger points that might signal the rise of a specific scenario, financial managers can increase their preparedness for changes in market forces.

  17. Implementing Lean Six Sigma to achieve inventory control in supply chain management

    NASA Astrophysics Data System (ADS)

    Hong, Chen

    2017-11-01

    The inventory cost has important impact on the production cost. In order to get the maximum circulation of funds of enterprise with minimum inventory cost, the inventory control with Lean Six Sigma is presented in supply chain management. The inventory includes both the raw material and the semi-finished parts in manufacturing process. Though the inventory is often studied, the inventory control in manufacturing process is seldom mentioned. This paper reports the inventory control from the perspective of manufacturing process by using statistical techniques including DMAIC, Control Chart, and Statistical Process Control. The process stability is evaluated and the process capability is verified with Lean Six Sigma philosophy. The demonstration in power meter production shows the inventory is decreased from 25% to 0.4%, which indicates the inventory control can be achieved with Lean Six Sigma philosophy and the inventory cost in production can be saved for future sustainable development in supply chain management.

  18. Supply and demand: negotiating the prescription drug labyrinth to reduce costs.

    PubMed

    DeStefino, Kevin

    2003-01-01

    Prescription drug costs are increasing at a rate of 15% to 17% a year and a look into the future does not bring much better news. Employers can expect to see more numbers like these as doctors more aggressively treat diseases using drug therapy, the population continues to age and pharmaceutical companies continue to spend billions of dollars on direct-to-consumer advertising aimed at consumers who are desensitized to the true costs of their prescriptions. In this environment, it is unlikely that companies can realistically expect to reverse costs of even to avoid cost increases. However, this article provides employers with a prudent approach to managing both the supply and demand sides of the prescription drug equation in order to reduce their level of increase. Supply-side management focuses on negotiations with vendors, while the demand side focuses on managing employee utilization.

  19. Is EDI dead? The future of the Internet in supply chain management.

    PubMed

    Peters, L R

    2000-08-01

    I have been involved in materials management for about 30 years (that is not something many of us really want to admit--it says we are getting old), and over that time I have seen many methods of communication come and go. In the 1960s, we used seven-part carbon forms to generate orders. We also used the keypunch card or IBM card to send our request for materials to our supplier. The supplier would acknowledge our order and provide us with a promise date. This could be done by mail using these cards or by forwarding the information to us electronically for conversion to cards. I could trace the history of communication in painful detail, but that is not important. What is important is that the only thing that has remained constant in those past 30 years has been change. We have all heard that before, but we seem to forget it. This presentation will look at the future of EDI and the Internet in supply chain management.

  20. Proactive Supply Chain Performance Management with Predictive Analytics

    PubMed Central

    Stefanovic, Nenad

    2014-01-01

    Today's business climate requires supply chains to be proactive rather than reactive, which demands a new approach that incorporates data mining predictive analytics. This paper introduces a predictive supply chain performance management model which combines process modelling, performance measurement, data mining models, and web portal technologies into a unique model. It presents the supply chain modelling approach based on the specialized metamodel which allows modelling of any supply chain configuration and at different level of details. The paper also presents the supply chain semantic business intelligence (BI) model which encapsulates data sources and business rules and includes the data warehouse model with specific supply chain dimensions, measures, and KPIs (key performance indicators). Next, the paper describes two generic approaches for designing the KPI predictive data mining models based on the BI semantic model. KPI predictive models were trained and tested with a real-world data set. Finally, a specialized analytical web portal which offers collaborative performance monitoring and decision making is presented. The results show that these models give very accurate KPI projections and provide valuable insights into newly emerging trends, opportunities, and problems. This should lead to more intelligent, predictive, and responsive supply chains capable of adapting to future business environment. PMID:25386605

  1. Proactive supply chain performance management with predictive analytics.

    PubMed

    Stefanovic, Nenad

    2014-01-01

    Today's business climate requires supply chains to be proactive rather than reactive, which demands a new approach that incorporates data mining predictive analytics. This paper introduces a predictive supply chain performance management model which combines process modelling, performance measurement, data mining models, and web portal technologies into a unique model. It presents the supply chain modelling approach based on the specialized metamodel which allows modelling of any supply chain configuration and at different level of details. The paper also presents the supply chain semantic business intelligence (BI) model which encapsulates data sources and business rules and includes the data warehouse model with specific supply chain dimensions, measures, and KPIs (key performance indicators). Next, the paper describes two generic approaches for designing the KPI predictive data mining models based on the BI semantic model. KPI predictive models were trained and tested with a real-world data set. Finally, a specialized analytical web portal which offers collaborative performance monitoring and decision making is presented. The results show that these models give very accurate KPI projections and provide valuable insights into newly emerging trends, opportunities, and problems. This should lead to more intelligent, predictive, and responsive supply chains capable of adapting to future business environment.

  2. Cryogenic Fluid Management Facility

    NASA Technical Reports Server (NTRS)

    Eberhardt, R. N.; Bailey, W. J.

    1985-01-01

    The Cryogenic Fluid Management Facility is a reusable test bed which is designed to be carried within the Shuttle cargo bay to investigate the systems and technologies associated with the efficient management of cryogens in space. Cryogenic fluid management consists of the systems and technologies for: (1) liquid storage and supply, including capillary acquisition/expulsion systems which provide single-phase liquid to the user system, (2) both passive and active thermal control systems, and (3) fluid transfer/resupply systems, including transfer lines and receiver tanks. The facility contains a storage and supply tank, a transfer line and a receiver tank, configured to provide low-g verification of fluid and thermal models of cryogenic storage and transfer processes. The facility will provide design data and criteria for future subcritical cryogenic storage and transfer system applications, such as Space Station life support, attitude control, power and fuel depot supply, resupply tankers, external tank (ET) propellant scavenging, and ground-based and space-based orbit transfer vehicles (OTV).

  3. Integrated modelling to assess long-term water supply capacity of a meso-scale Mediterranean catchment.

    PubMed

    Collet, Lila; Ruelland, Denis; Borrell-Estupina, Valérie; Dezetter, Alain; Servat, Eric

    2013-09-01

    Assessing water supply capacity is crucial to meet stakeholders' needs, notably in the Mediterranean region. This region has been identified as a climate change hot spot, and as a region where water demand is continuously increasing due to population growth and the expansion of irrigated areas. The Hérault River catchment (2500 km(2), France) is a typical example and a negative trend in discharge has been observed since the 1960s. In this context, local stakeholders need first to understand the processes controlling the evolution of water resources and demands in the past to latter evaluate future water supply capacity and anticipate the tensions users could be confronted to in the future. A modelling framework is proposed at a 10-day time step to assess whether water resources have been able to meet water demands over the last 50 years. Water supply was evaluated using hydrological modelling and a dam management model. Water demand dynamics were estimated for the domestic and agricultural sectors. A water supply capacity index is computed to assess the extent and the frequency to which water demand has been satisfied at the sub-basin scale. Simulated runoff dynamics were in good agreement with observations over the calibration and validation periods. Domestic water demand has increased considerably since the 1980s and is characterized by a seasonal peak in summer. Agricultural demand has increased in the downstream sub-basins and decreased upstream where irrigated areas have decreased. As a result, although most water demands were satisfied between 1961 and 1980, irrigation requirements in summer have sometimes not been satisfied since the 1980s. This work is the first step toward evaluating possible future changes in water allocation capacity in the catchment, using future climate change, dam management and water use scenarios. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Conjunctive management of surface and groundwater resources under projected future climate change scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mani, Amir; Tsai, Frank T. -C.; Kao, Shih-Chieh

    Our study introduces a mixed integer linear fractional programming (MILFP) method to optimize conjunctive use of future surface water and groundwater resources under projected climate change scenarios. The conjunctive management model maximizes the ratio of groundwater usage to reservoir water usage. Future inflows to the reservoirs were estimated from the future runoffs projected through hydroclimate modeling considering the Variable Infiltration Capacity model, and 11 sets of downscaled Coupled Model Intercomparison Project phase 5 global climate model projections. Bayesian model averaging was adopted to quantify uncertainty in future runoff projections and reservoir inflow projections due to uncertain future climate projections. Optimizedmore » conjunctive management solutions were investigated for a water supply network in northern Louisiana which includes the Sparta aquifer. Runoff projections under climate change scenarios indicate that runoff will likely decrease in winter and increase in other seasons. Ultimately, results from the developed conjunctive management model with MILFP indicate that the future reservoir water, even at 2.5% low inflow cumulative probability level, could counterbalance groundwater pumping reduction to satisfy demands while improving the Sparta aquifer through conditional groundwater head constraint.« less

  5. Conjunctive management of surface and groundwater resources under projected future climate change scenarios

    DOE PAGES

    Mani, Amir; Tsai, Frank T. -C.; Kao, Shih-Chieh; ...

    2016-06-16

    Our study introduces a mixed integer linear fractional programming (MILFP) method to optimize conjunctive use of future surface water and groundwater resources under projected climate change scenarios. The conjunctive management model maximizes the ratio of groundwater usage to reservoir water usage. Future inflows to the reservoirs were estimated from the future runoffs projected through hydroclimate modeling considering the Variable Infiltration Capacity model, and 11 sets of downscaled Coupled Model Intercomparison Project phase 5 global climate model projections. Bayesian model averaging was adopted to quantify uncertainty in future runoff projections and reservoir inflow projections due to uncertain future climate projections. Optimizedmore » conjunctive management solutions were investigated for a water supply network in northern Louisiana which includes the Sparta aquifer. Runoff projections under climate change scenarios indicate that runoff will likely decrease in winter and increase in other seasons. Ultimately, results from the developed conjunctive management model with MILFP indicate that the future reservoir water, even at 2.5% low inflow cumulative probability level, could counterbalance groundwater pumping reduction to satisfy demands while improving the Sparta aquifer through conditional groundwater head constraint.« less

  6. Are we running out of water?

    USGS Publications Warehouse

    Nace, Raymond L.

    1967-01-01

    Water supplies are not running out, but time is getting short to stem waste of water and destructive exploitation of the environment before harm is done that may be irreparable. Most of the world's water is oceanic brine. Of the waters on the land, most is frozen in Antarctica and Greenland. Only a small part of continental water is available for use and management. The discharge of rivers to the sea is a close measure of the availability of liquid water, but ground-water reservoirs have important functions as inexpensive equalizers of water supply. Soil moisture is a major factor in the water economy, and its function usually is overlooked in assessments of water use and future water demand. Despite outcries of water shortage, the principal use of water in advanced countries is as a medium for waste disposal. In reality, despite regional maldistribution of water, United States supplies are adequate, given rational management. Also, contrary to common belief, water pollution is primarily a problem of economics, not of health. A paramount problem in most parts of the world is the shortage of water development and management facilities, not a shortage of water. The International Hydrological Decade is a program to awaken people everywhere to the crucial importance of water in man's future and to promote rational approach to water problems.

  7. Water resources vulnerability assessment in the Adriatic Sea region: the case of Corfu Island.

    PubMed

    Kanakoudis, Vasilis; Tsitsifli, Stavroula; Papadopoulou, Anastasia; Cencur Curk, Barbara; Karleusa, Barbara

    2017-09-01

    Cross-border water resources management and protection is a complicated task to achieve, lacking a common methodological framework. Especially in the Adriatic region, water used for drinking water supply purposes pass from many different countries, turning its management into a hard task to achieve. During the DRINKADRIA project, a common methodological framework has been developed, for efficient and effective cross-border water supply and resources management, taking into consideration different resources types (surface and groundwater) emphasizing in drinking water supply intake. The common methodology for water resources management is based on four pillars: climate characteristics and climate change, water resources availability, quality, and security. The present paper assesses both present and future vulnerability of water resources in the Adriatic region, with special focus on Corfu Island, Greece. The results showed that climate change is expected to impact negatively on water resources availability while at the same time, water demand is expected to increase. Water quality problems will be intensified especially due to land use changes and salt water intrusion. The analysis identified areas where water resources are more vulnerable, allowing decision makers develop management strategies.

  8. Towards risk-based drought management in the Netherlands: making water supply levels transparent to water users

    NASA Astrophysics Data System (ADS)

    Maat Judith, Ter; Marjolein, Mens; Vuren Saskia, Van; der Vat Marnix, Van

    2016-04-01

    To prepare the Dutch Delta for future droughts and water scarcity, a nation-wide 4-year project, called Delta Programme, assessed the impact of climate change and socio-economic development, and explored strategies to deal with these impacts. The Programme initiated a joint approach to water supply management with stakeholders and developed a national adaptation plan that is able to adapt to future uncertain conditions. The adaptation plan consists of a set of preferred policy pathways - sequences of possible actions and measures through time - to achieve targets while responding in a flexible manner to uncertain developments over time, allowing room to respond to new opportunities and insights. With regard to fresh water allocation, the Delta Programme stated that supplying water of sufficient quality is a shared responsibility that requires cohesive efforts among users in the main and regional water system. The national and local authorities and water users involved agreed that the water availability and, where relevant, the water quality should be as transparent and predictable as possible under normal, dry and extremely dry conditions. They therefore introduced the concept of "water supply service levels", which should describe water availability and quality that can be delivered with a certain return period, for all regions and all relevant water users in the Netherlands. The service levels form an addition to the present policy and should be decided on by 2021. At present water allocation during periods of (expected) water shortage occurs according to a prearranged ranking system (a water hierarchy scheme based on a list of priorities), if water availability drops below a critical low level. The aim is to have supply levels available that are based on the probability of occurrence and economic impact of water shortage, and that are transparent for all water users in the regional water systems and the main water system. As part of the European project Improving Predictions and Management of Hydrological Extremes (IMPREX), running from 2016-2019, a consortium of the Dutch research institute Deltares and the Dutch water management consultant HKV will design and build a tool to support quantitative risk-informed decision-making for fresh water management for the Netherlands, in particular the decision on water supply service levels. The research will be conducted in collaboration with the Dutch Ministry for Infrastructure and Environment, the Freshwater Supply Programme Office, the Dutch governmental organisation responsible for water management (Rijkswaterstaat), the Foundation for Applied Water Research, (STOWA, knowledge centre of the water boards) and a number of water boards. In the session we will present the conceptual framework for a risk-based approach for water shortage management and share thoughts on how the proposed tool can be applied in the Dutch water management context.

  9. Reconstructing European forest management from 1600 to 2010

    NASA Astrophysics Data System (ADS)

    McGrath, M. J.; Luyssaert, S.; Meyfroidt, P.; Kaplan, J. O.; Bürgi, M.; Chen, Y.; Erb, K.; Gimmi, U.; McInerney, D.; Naudts, K.; Otto, J.; Pasztor, F.; Ryder, J.; Schelhaas, M.-J.; Valade, A.

    2015-07-01

    Because of the slow accumulation and long residence time of carbon in biomass and soils, the present state and future dynamics of temperate forests are influenced by management that took place centuries to millennia ago. Humans have exploited the forests of Europe for fuel, construction materials and fodder for the entire Holocene. In recent centuries, economic and demographic trends led to increases in both forest area and management intensity across much of Europe. In order to quantify the effects of these changes in forests and to provide a baseline for studies on future land-cover-climate interactions and biogeochemical cycling, we created a temporally and spatially resolved reconstruction of European forest management from 1600 to 2010. For the period 1600-1828, we took a supply-demand approach, in which supply was estimated on the basis of historical annual wood increment and land cover reconstructions. We made demand estimates by multiplying population with consumption factors for construction materials, household fuelwood, industrial food processing and brewing, metallurgy, and salt production. For the period 1829-2010, we used a supply-driven backcasting method based on national and regional statistics of forest age structure from the second half of the 20th century. Our reconstruction reproduces the most important changes in forest management between 1600 and 2010: (1) an increase of 593 000 km2 in conifers at the expense of deciduous forest (decreasing by 538 000 km2); (2) a 612 000 km2 decrease in unmanaged forest; (3) a 152 000 km2 decrease in coppice management; (4) a 818 000 km2 increase in high-stand management; and (5) the rise and fall of litter raking, which at its peak in 1853 resulted in the removal of 50 Tg dry litter per year.

  10. Chinese plasma-derived products supply under the lot release management system in 2007-2011.

    PubMed

    Zhang, Xuejun; Ye, Shengliang; Du, Xi; Yuan, Jing; Zhao, Chaoming; Li, Changqing

    2013-11-01

    In 2007, the Chinese State Food and Drug Administration (SFDA) implemented a management system for lot release of all plasma-derived products. Since then, there have been only a few systematic studies of the blood supply, which is a concern when considering the small amount of plasma collected per capita (approximately 3 L/1000 people). As a result, there may be a threat to the safety of the available blood supply. In this study, we examined the characteristics of the supply of Chinese plasma-derived products. We investigated the reports of lot-released biological products derived from all 8 national or regional regulatory authorities in China from 2007 to 2011. The market supply characteristics of Chinese plasma-derived products were analyzed by reviewing the changes in supply varieties, the batches of lot-released plasma-derived products and the actual supply. As a result, the national regulatory authorities can more accurately develop a specific understanding of the production and quality management information provided by Chinese plasma product manufacturers. The implementation of the lot release system further ensures the clinical validity of the plasma-derived products in China and improves the safety of using plasma-derived products. This work provides an assessment of the future Chinese market supply of plasma-derived products and can function as a theoretical basis for the establishment of hemovigilance. Copyright © 2013 The International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  11. Supply Chain Engineering and the Use of a Supporting Knowledge Management Application

    NASA Astrophysics Data System (ADS)

    Laakmann, Frank

    The future competition in markets will happen between logistics networks and no longer between enterprises. A new approach for supporting the engineering of logistics networks is developed by this research as a part of the Collaborative Research Centre (SFB) 559: "Modeling of Large Networks in Logistics" at the University of Dortmund together with the Fraunhofer-Institute of Material Flow and Logistics founded by Deutsche Forschungsgemeinschaft (DFG). Based on a reference model for logistics processes, the process chain model, a guideline for logistics engineers is developed to manage the different types of design tasks of logistics networks. The technical background of this solution is a collaborative knowledge management application. This paper will introduce how new Internet-based technologies support supply chain design projects.

  12. A risk-based framework to assess long-term effects of policy and water supply changes on water resources systems

    NASA Astrophysics Data System (ADS)

    Hassanzadeh, Elmira; Elshorbagy, Amin; Wheater, Howard; Gober, Patricia

    2015-04-01

    Climate uncertainty can affect water resources availability and management decisions. Sustainable water resources management therefore requires evaluation of policy and management decisions under a wide range of possible future water supply conditions. This study proposes a risk-based framework to integrate water supply uncertainty into a forward-looking decision making context. To apply this framework, a stochastic reconstruction scheme is used to generate a large ensemble of flow series. For the Rocky Mountain basins considered here, two key characteristics of the annual hydrograph are its annual flow volume and the timing of the seasonal flood peak. These are perturbed to represent natural randomness and potential changes due to future climate. 30-year series of perturbed flows are used as input to the SWAMP model - an integrated water resources model that simulates regional water supply-demand system and estimates economic productivity of water and other sustainability indicators, including system vulnerability and resilience. The simulation results are used to construct 2D-maps of net revenue of a particular water sector; e.g., hydropower, or for all sectors combined. Each map cell represents a risk scenario of net revenue based on a particular annual flow volume, timing of the peak flow, and 200 stochastic realizations of flow series. This framework is demonstrated for a water resources system in the Saskatchewan River Basin (SaskRB) in Saskatchewan, Canada. Critical historical drought sequences, derived from tree-ring reconstructions of several hundred years of annual river flows, are used to evaluate the system's performance (net revenue risk) under extremely low flow conditions and also to locate them on the previously produced 2D risk maps. This simulation and analysis framework is repeated under various reservoir operation strategies (e.g., maximizing flood protection or maximizing water supply security); development proposals, such as irrigation expansion; and change in energy prices. Such risk-based analysis demonstrates relative reduction/increase of risk associated with management and policy decisions and allow decision makers to explore the relative importance of policy versus natural water supply change in a water resources system.

  13. Impacts on groundwater recharge areas of megacity pumping: analysis of potential contamination of Kolkata, India, water supply

    USGS Publications Warehouse

    Sahu, Paulami; Michael, Holly A.; Voss, Clifford I.; Sikdar, Pradip K.

    2013-01-01

    Water supply to the world's megacities is a problem of quantity and quality that will be a priority in the coming decades. Heavy pumping of groundwater beneath these urban centres, particularly in regions with low natural topographic gradients, such as deltas and floodplains, can fundamentally alter the hydrological system. These changes affect recharge area locations, which may shift closer to the city centre than before development, thereby increasing the potential for contamination. Hydrogeological simulation analysis allows evaluation of the impact on past, present and future pumping for the region of Kolkata, India, on recharge area locations in an aquifer that supplies water to over 13 million people. Relocated recharge areas are compared with known surface contamination sources, with a focus on sustainable management of this urban groundwater resource. The study highlights the impacts of pumping on water sources for long-term development of stressed city aquifers and for future water supply in deltaic and floodplain regions of the world.

  14. Stability analysis and stabilization strategies for linear supply chains

    NASA Astrophysics Data System (ADS)

    Nagatani, Takashi; Helbing, Dirk

    2004-04-01

    Due to delays in the adaptation of production or delivery rates, supply chains can be dynamically unstable with respect to perturbations in the consumption rate, which is known as “bull-whip effect”. Here, we study several conceivable production strategies to stabilize supply chains, which is expressed by different specifications of the management function controlling the production speed in dependence of the stock levels. In particular, we will investigate, whether the reaction to stock levels of other producers or suppliers has a stabilizing effect. We will also demonstrate that the anticipation of future stock levels can stabilize the supply system, given the forecast horizon τ is long enough. To show this, we derive linear stability conditions and carry out simulations for different control strategies. The results indicate that the linear stability analysis is a helpful tool for the judgement of the stabilization effect, although unexpected deviations can occur in the non-linear regime. There are also signs of phase transitions and chaotic behavior, but this remains to be investigated more thoroughly in the future.

  15. Best Practice Irrigation Management and Extension in Peri-Urban Landscapes--Experiences and Insights from the Hawkesbury-Nepean Catchment, Australia

    ERIC Educational Resources Information Center

    Maheshwari, B. L.; Plunkett, M.

    2015-01-01

    Purpose: The aim of this article to examine key irrigation management issues and their implications for future research and extension developments. Design/Methodology/Approach: Peri-urban landscapes are important as they supply fresh fruit, vegetables, turf, ornamental plants and other farm products to the cities. In this study, the…

  16. "Endovascular embolic hemispherectomy": a strategy for the initial management of catastrophic holohemispheric epilepsy in the neonate.

    PubMed

    Oluigbo, Chima; Pearl, Monica S; Tsuchida, Tammy N; Chang, Taeun; Ho, Cheng-Ying; Gaillard, William D

    2017-03-01

    Conflicting challenges abound in the management of the newborn with intractable epilepsy related to hemimegalencephaly. Early hemispherectomy to stop seizures and prevent deleterious consequences to future neurocognitive development must be weighed against the technical and anesthetic challenges of performing major hemispheric surgery in the neonate. We hereby present our experience with two neonates with hemimegalencephaly and intractable seizures who were managed using a strategy of initial minimally invasive embolization of the cerebral blood supply to the involved hemisphere. Immediate significant seizure control was achieved after embolization of the cerebral blood supply to the involved hemisphere followed by delayed ipsilateral hemispheric resection at a later optimal age. The considerations and challenges encountered in the course of the management of these patients are discussed, and a literature review is presented.

  17. Facing Water Scarcity in Jordan: Reuse, Demand Reduction, Energy and Transboundary Approaches to Assure Future Water Supplies

    NASA Astrophysics Data System (ADS)

    Scott, C. A.; El-Naser, H.; Hagan, R. E.; Hijazi, A.

    2001-05-01

    Jordan is extremely water-scarce with just 170 cubic meters per capita per year to meet domestic, industrial, agricultural, tourism, and environmental demands for water. Given the natural climatological conditions, demographic pressure, and transboundary nature of water resources, all renewable water resources of suitable quality are being exploited and some non-renewable aquifers are being depleted. The heavy exploitation of water resources has contributed to declines in the level of the Dead Sea. Rapid growth in demand, particularly for higher quality water for domestic, industrial and tourism uses, is significantly increasing pressure on agricultural and environmental uses of water, both of which must continue to adapt to reduced volumes and lower quality water. The agricultural sector has begun to respond by improving irrigation efficiency and increasing the use of recycled water. Total demand for water still exceeds renewable supplies while inadequate treatment of sewage used for irrigation creates potential environmental and health risks and presents agricultural marketing challenges that undermine the competitiveness of exports. The adaptive capability of the natural environment may already be past sustainable limits with groundwater discharge oasis wetlands that have been seriously affected. Development of new water resources is extremely expensive in Jordan with an average investment cost of US\\$ 4-5 per cubic meter. Integrated water resources management (IWRM) that incorporates factors external to the 'water sector' as conventionally defined will help to assure sustainable future water supplies in Jordan. This paper examines four IWRM approaches of relevance to Jordan: water reuse, demand management, energy-water linkages, and transboundary water management. While progress in Jordan has been made, the Ministry of Water and Irrigation continues to be concerned about the acute water scarcity the country faces as well as the need to continue working with concerned stakeholders to assure future water supplies.

  18. Adaptation of water resource systems to an uncertain future

    NASA Astrophysics Data System (ADS)

    Walsh, C. L.; Blenkinsop, S.; Fowler, H. J.; Burton, A.; Dawson, R. J.; Glenis, V.; Manning, L. J.; Kilsby, C. G.

    2015-09-01

    Globally, water resources management faces significant challenges from changing climate and growing populations. At local scales, the information provided by climate models is insufficient to support the water sector in making future adaptation decisions. Furthermore, projections of change in local water resources are wrought with uncertainties surrounding natural variability, future greenhouse gas emissions, model structure, population growth and water consumption habits. To analyse the magnitude of these uncertainties, and their implications for local scale water resource planning, we present a top-down approach for testing climate change adaptation options using probabilistic climate scenarios and demand projections. An integrated modelling framework is developed which implements a new, gridded spatial weather generator, coupled with a rainfall-runoff model and water resource management simulation model. We use this to provide projections of the number of days, and associated uncertainty that will require implementation of demand saving measures such as hose pipe bans and drought orders. Results, which are demonstrated for the Thames basin, UK, indicate existing water supplies are sensitive to a changing climate and an increasing population, and that the frequency of severe demand saving measures are projected to increase. Considering both climate projections and population growth the median number of drought order occurrences may increase five-fold. The effectiveness of a range of demand management and supply options have been tested and shown to provide significant benefits in terms of reducing the number of demand saving days. We found that increased supply arising from various adaptation options may compensate for increasingly variable flows; however, without reductions in overall demand for water resources such options will be insufficient on their own to adapt to uncertainties in the projected changes in climate and population. For example, a 30 % reduction in overall demand by 2050 has a greater impact on reducing the frequency of drought orders than any of the individual or combinations of supply options; hence a portfolio of measures are required.

  19. Latest research progress on food waste management: a comprehensive review

    NASA Astrophysics Data System (ADS)

    Zhu, Shangzhen; Gao, Hetong; Duan, Lunbo

    2018-05-01

    Since a large amount of food supplying is provided as a basic line measuring increasing residents’ life standard, food waste has become progressively numeral considerable. Much attention has been drawn to this problem. This work gave an overview on latest researches about anaerobic digestion, composting, generalized management and other developments on management of food waste. Different technologies were introduced and evaluated. Further views on future research in such a field were proposed.

  20. Beyond optimality: Multistakeholder robustness tradeoffs for regional water portfolio planning under deep uncertainty

    NASA Astrophysics Data System (ADS)

    Herman, Jonathan D.; Zeff, Harrison B.; Reed, Patrick M.; Characklis, Gregory W.

    2014-10-01

    While optimality is a foundational mathematical concept in water resources planning and management, "optimal" solutions may be vulnerable to failure if deeply uncertain future conditions deviate from those assumed during optimization. These vulnerabilities may produce severely asymmetric impacts across a region, making it vital to evaluate the robustness of management strategies as well as their impacts for regional stakeholders. In this study, we contribute a multistakeholder many-objective robust decision making (MORDM) framework that blends many-objective search and uncertainty analysis tools to discover key tradeoffs between water supply alternatives and their robustness to deep uncertainties (e.g., population pressures, climate change, and financial risks). The proposed framework is demonstrated for four interconnected water utilities representing major stakeholders in the "Research Triangle" region of North Carolina, U.S. The utilities supply well over one million customers and have the ability to collectively manage drought via transfer agreements and shared infrastructure. We show that water portfolios for this region that compose optimal tradeoffs (i.e., Pareto-approximate solutions) under expected future conditions may suffer significantly degraded performance with only modest changes in deeply uncertain hydrologic and economic factors. We then use the Patient Rule Induction Method (PRIM) to identify which uncertain factors drive the individual and collective vulnerabilities for the four cooperating utilities. Our framework identifies key stakeholder dependencies and robustness tradeoffs associated with cooperative regional planning, which are critical to understanding the tensions between individual versus regional water supply goals. Cooperative demand management was found to be the key factor controlling the robustness of regional water supply planning, dominating other hydroclimatic and economic uncertainties through the 2025 planning horizon. Results suggest that a modest reduction in the projected rate of demand growth (from approximately 3% per year to 2.4%) will substantially improve the utilities' robustness to future uncertainty and reduce the potential for regional tensions. The proposed multistakeholder MORDM framework offers critical insights into the risks and challenges posed by rising water demands and hydrological uncertainties, providing a planning template for regions now forced to confront rapidly evolving water scarcity risks.

  1. Washing when the sun is shining! How users interact with a household energy management system.

    PubMed

    Kobus, Charlotte B A; Mugge, Ruth; Schoormans, Jan P L

    2013-01-01

    To make optimal use of sustainable energy, domestic electricity consumption should shift to match local supply conditions. Energy management systems (EMS) are a new sustainable technology that can help to disrupt consumers' habits concerning electricity consumption, whilst reinforcing desired behaviours. This research examined the factors that influence the likelihood that people will shift their electricity consumption to match sustainable supply. Twenty-one interviews were conducted with households who had used the EMS 'Smart Wash' for several months. The findings showed that the likelihood of behaviour change is influenced by a combination of the user's motivation, specific contextual factors and the design of the EMS. Based on these results, several recommendations are given for the future design of EMSs. Energy management systems (EMS) are a new technology that encourages people to shift electricity consumption to match local solar supply. Interviews among users of an EMS showed that the likelihood of behaviour change is influenced by the combination of the user's motivation, contextual factors and the EMS design.

  2. Advanced Data Collection for Inventory Management

    NASA Technical Reports Server (NTRS)

    Opresko, G. A.; Leet, J. H.; Mcgrath, D. F.; Eidson, J.

    1987-01-01

    Bar-coding, radio-frequency, and voice-operated systems selected. Report discusses study of state-of-the-art in automated collection of data for management of large inventories. Study included comprehensive search of literature on data collection and inventory management, visits to existing automated inventory systems, and tours of selected supply and transportation facilities at Kennedy Space Center. Information collected analyzed in view of needs of conceptual inventory-management systems for Kennedy Space Center and for manned space station and other future space projects.

  3. 75 FR 63847 - Notice of Meeting of the Advisory Committee on Commercial Operations of Customs and Border...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-18

    ... Global Supply Chain. 8. Bond Issues. Procedural This meeting is open to the public; however.... Tentative Agenda 1. Management by Account--CBP's Future Trade Vision. 2. Importer Security Filing (``10+2...

  4. Vulnerability of supply basins to demand from multiple cities

    NASA Astrophysics Data System (ADS)

    Padowski, J. C.; Gorelick, S.

    2013-12-01

    Humans have appropriated more than half of the world's available water resources, and continued population growth and climate change threaten to put increasing pressure on remaining supplies. Many cities have constructed infrastructure to collect, transport from and store water at distant locations. Supply basins can become vulnerable if there are multiple users depending on the same supply system or network. Basin vulnerability assessments often only report the impacts of local demands on system health, but rarely account future stress from multi-urban demands. This study presents a global assessment of urban impacts on supply basins. Specifically, hydrologic and regulatory information are used to quantify the level of supply basin stress created by demand from multiple cities. The aim is to identify at-risk basins. This study focuses on large urban areas (generally over 1 million people) that use surface water (n=412). The stress on supply water basins by urban demand was based on three parameters: 1) the number of cities using a basin for water supply, 2) the number of alternative urban sources (e.g. lakes, reservoirs, rivers) within the supply basin, and 3) the percent of available surface water in each basin that is required to meet the total of urban and environmental demands. The degree of management within each basin is assessed using information on federal water policies and local basin management plans.

  5. America's Water in the 20th Century: Measures to address climate induced risk

    NASA Astrophysics Data System (ADS)

    Devineni, N.

    2017-12-01

    This work develops an understanding of water risk for USA considering linkages between water supply and competing demands. It explores how climate variability and changing water demands manifest as water deficits and how public-private management decisions determine regional water availability and drought resilience. We develop insights on regional water risks, infrastructure investments, sectoral allocation and policy modifications for America's future water sustainability. In this talk, I will focus on demonstrating how the variations in climate over the last century influenced changes in water use across the continent USA. A peak into our interactive modeling environment for future evolution of water use and supply will also be provided.

  6. Beef alliances: motivations, extent, and future prospects.

    PubMed

    Schroeder, Ted C; Kovanda, Joseph

    2003-07-01

    With their growth, it is important to consider how alliances will impact the beef industry in the future. Alliances have the potential to make sweeping changes to cattle production, live and feeder cattle marketing, food safety protocols, use of government grades and standards, ownership structure, supply chain management, wholesale and retail product marketing, risk management, and many other industry activities. In an effort to address these issues, this article addresses the following questions: What is an alliance? What has motivated their proliferation? What have we learned from alliances? What aspects of alliances affect their likelihood of success or failure? What is the future of alliances? Are they a fad or a long-term evolving industry structural change?

  7. Developing Our Water Resources

    ERIC Educational Resources Information Center

    Volker, Adriaan

    1977-01-01

    Only very recently developed as a refined scientific discipline, hydrology has to cope with a complexity of problems concerning the present and future management of a vital natural resource, water. This article examines available water supplies and the problems and prospects of water resource development. (Author/MA)

  8. Water Resources and Supply Adaptation: A paradigm Shifting for Future Climate?

    EPA Science Inventory

    Climate change adds another layer of complexity in planning, engineering and management of water resources and urban water infrastructures. Yet our current practice is confined to the traditional approach that evaluates developmental scenarios and their sustainability mostly by a...

  9. Talent Pipeline Management in Education: Using Supply Chain Management to Close the Educator Equity Gap. Solutions. Issue No. 7

    ERIC Educational Resources Information Center

    Barfield, Kathleen

    2015-01-01

    21st century economy demands a broad range of new skills and deeper knowledge in science, technology, engineering, and mathematics to both sustain our existing society and be successful in the future. This imperative must drive our collective school improvement efforts to ensure that every graduate is college and career ready. Teacher quality has…

  10. Critical Essay: Building new management theories on sound data? The case of neuroscience

    PubMed Central

    Lindebaum, Dirk

    2015-01-01

    In this critical essay, I contend that accelerating demands for novel theories in management studies imply that new methodologies and data are sometimes accepted prematurely as supply of these novel theories. This point is illustrated with reference to how neuroscience can inform management research. I propose two demand forces that foster the increased focus on neuroscience in management studies, these being (i) the direction of public research funding, and (ii) publication bias as a boost for journal impact factor. Looking at the supply side, I note that (i) the statistical power of studies using functional magnetic resonance imaging (or fMRI, the ‘gold’ standard) is unacceptably low, (ii) the use of imprecise ‘motherhood’ statements, and (iii) the dismissal of ethical concerns in the formulation of management theories and practice informed by neuroscience. I then briefly outline the bad consequences of this for management theory and practice, emphasize why it is important to prevent these consequences, and offer some methodological suggestions for future research. PMID:27041766

  11. Future water supply management adaptation measures - case study of Ljubljana field aquifer

    NASA Astrophysics Data System (ADS)

    Čenčur Curk, B.; Zajc Benda, T.; Souvent, P.; Bračič Železnik, B.; Bogardi, I.

    2012-04-01

    The main drinking water supply problems are related to the significant change of groundwater quantity and quality observed in the last decades as an effect of land use practices and very likely also climate change. The latter may affect the ability of drinking water suppliers to provide enough water of sufficient quality to the consumers. These topics were studied in the frame of SEE project CC-WaterS (Climate Change and Impact on Water Supply) with the main goal to develop a water supply management system regarding optimisation of water extraction and land use restrictions under climate change scenarios for water suppliers, since existing management practices are mostly inadequate to reduce impacts of CC on water supply reliability. The main goal was a designation of appropriate measures and risk assessment to adapt water supply to changing climate and land use activities considering socio-economic aspects. This was accomplished by using 'Fuzzy Decimaker', which is a tool for selecting and ranking risk reduction measures or management actions for local waterworks or water authorities under the pressure of climate change. Firstly, management options were selected and ranked. For public water supply of Ljubljana, the capital of Slovenia, several management options were selected. For improvement of water supply and preservation of water resource quantities there is a need for engineering interventions, such as reducing water losses on pipelines. For improving drinking water safety and preserving water resource quality farmers are not allowed to use fertilisers in the first safeguarding zone and they get compensations for income reduction because of lower farming production. Compensations for farming restrictions in the second safeguarding zone were applied as additional management option. On the other hand, drinking water treatment is another management option to be considered. Trends in groundwater level are decreasing, above all recharge areas of waterworks; therefore there is a threat of reduction of water resource availability. For this following management options were proposed: artificial recharge with infiltration wells, setting up new and additional waterworks (one with river bank filtration, one with exploitation of local porous aquifer and one with deep groundwater exploitation from dolomite aquifer). Management actions can be evaluated according to several criteria, such as water supply risk reduction for the various users (drinking, agricultural, industrial and ecological), realization of the actions (cost, flexibility and leg time). Ranking criteria are characterized by different units (e.g. units of water supply (quantity) risk may involve number of unsupplied people, monetary terms, agricultural area or habitat loss). Decision making process is followed by defining relative weights, balancing factors and best and worst values for the indicators; calculating base risk and risk elements for each management option and sensitivity analysis. The result of this decision making process is evaluation of preferred management option(s) according to the ranking results.

  12. Water supply as a constraint on transmission expansion planning in the Western interconnection

    NASA Astrophysics Data System (ADS)

    Tidwell, Vincent C.; Bailey, Michael; Zemlick, Katie M.; Moreland, Barbara D.

    2016-12-01

    Consideration of water supply in transmission expansion planning (TEP) provides a valuable means of managing impacts of thermoelectric generation on limited water resources. Toward this opportunity, thermoelectric water intensity factors and water supply availability (fresh and non-fresh sources) were incorporated into a recent TEP exercise conducted for the electric interconnection in the Western United States. The goal was to inform the placement of new thermoelectric generation so as to minimize issues related to water availability. Although freshwater availability is limited in the West, few instances across five TEP planning scenarios were encountered where water availability impacted the development of new generation. This unexpected result was related to planning decisions that favored the development of low water use generation that was geographically dispersed across the West. These planning decisions were not made because of their favorable influence on thermoelectric water demand; rather, on the basis of assumed future fuel and technology costs, policy drivers and the topology of electricity demand. Results also projected that interconnection-wide thermoelectric water consumption would increase by 31% under the business-as-usual case, while consumption would decrease by 42% under a scenario assuming a low-carbon future. Except in a few instances, new thermoelectric water consumption could be accommodated with less than 10% of the local available water supply; however, limited freshwater supplies and state-level policies could increase use of non-fresh water sources for new thermoelectric generation. Results could have been considerably different if scenarios favoring higher-intensity water use generation technology or potential impacts of climate change had been explored. Conduct of this exercise highlighted the importance of integrating water into all phases of TEP, particularly joint management of decisions that are both directly (e.g., water availability constraint) and indirectly (technology or policy constraints) related to future thermoelectric water demand, as well as, the careful selection of scenarios that adequately bound the potential dimensions of water impact.

  13. Water supply as a constraint on transmission expansion planning in the Western interconnection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tidwell, Vincent C.; Bailey, Michael; Zemlick, Katie M.

    Here, consideration of water supply in transmission expansion planning (TEP) provides a valuable means of managing impacts of thermoelectric generation on limited water resources. Toward this opportunity, thermoelectric water intensity factors and water supply availability (fresh and non-fresh sources) were incorporated into a recent TEP exercise conducted for the electric interconnection in the Western United States. The goal was to inform the placement of new thermoelectric generation so as to minimize issues related to water availability. Although freshwater availability is limited in the West, few instances across five TEP planning scenarios were encountered where water availability impacted the development ofmore » new generation. This unexpected result was related to planning decisions that favored the development of low water use generation that was geographically dispersed across the West. These planning decisions were not made because of their favorable influence on thermoelectric water demand; rather, on the basis of assumed future fuel and technology costs, policy drivers and the topology of electricity demand. Results also projected that interconnection-wide thermoelectric water consumption would increase by 31% under the business-as-usual case, while consumption would decrease by 42% under a scenario assuming a low-carbon future. Except in a few instances, new thermoelectric water consumption could be accommodated with less than 10% of the local available water supply; however, limited freshwater supplies and state-level policies could increase use of non-fresh water sources for new thermoelectric generation. Results could have been considerably different if scenarios favoring higher-intensity water use generation technology or potential impacts of climate change had been explored. Conduct of this exercise highlighted the importance of integrating water into all phases of TEP, particularly joint management of decisions that are both directly (e.g., water availability constraint) and indirectly (technology or policy constraints) related to future thermoelectric water demand, as well as, the careful selection of scenarios that adequately bound the potential dimensions of water impact.« less

  14. Water supply as a constraint on transmission expansion planning in the Western interconnection

    DOE PAGES

    Tidwell, Vincent C.; Bailey, Michael; Zemlick, Katie M.; ...

    2016-11-21

    Here, consideration of water supply in transmission expansion planning (TEP) provides a valuable means of managing impacts of thermoelectric generation on limited water resources. Toward this opportunity, thermoelectric water intensity factors and water supply availability (fresh and non-fresh sources) were incorporated into a recent TEP exercise conducted for the electric interconnection in the Western United States. The goal was to inform the placement of new thermoelectric generation so as to minimize issues related to water availability. Although freshwater availability is limited in the West, few instances across five TEP planning scenarios were encountered where water availability impacted the development ofmore » new generation. This unexpected result was related to planning decisions that favored the development of low water use generation that was geographically dispersed across the West. These planning decisions were not made because of their favorable influence on thermoelectric water demand; rather, on the basis of assumed future fuel and technology costs, policy drivers and the topology of electricity demand. Results also projected that interconnection-wide thermoelectric water consumption would increase by 31% under the business-as-usual case, while consumption would decrease by 42% under a scenario assuming a low-carbon future. Except in a few instances, new thermoelectric water consumption could be accommodated with less than 10% of the local available water supply; however, limited freshwater supplies and state-level policies could increase use of non-fresh water sources for new thermoelectric generation. Results could have been considerably different if scenarios favoring higher-intensity water use generation technology or potential impacts of climate change had been explored. Conduct of this exercise highlighted the importance of integrating water into all phases of TEP, particularly joint management of decisions that are both directly (e.g., water availability constraint) and indirectly (technology or policy constraints) related to future thermoelectric water demand, as well as, the careful selection of scenarios that adequately bound the potential dimensions of water impact.« less

  15. Future scenarios of impacts to ecosystem services on California rangelands

    USGS Publications Warehouse

    Byrd, Kristin; Alvarez, Pelayo; Flint, Lorraine; Flint, Alan

    2014-01-01

    The 18 million acres of rangelands in the Central Valley of California provide multiple benefits or “ecosystem services” to people—including wildlife habitat, water supply, open space, recreation, and cultural resources. Most of this land is privately owned and managed for livestock production. These rangelands are vulnerable to land-use conversion and climate change. To help resource managers assess the impacts of land-use change and climate change, U.S. Geological Survey scientists and their cooperators developed scenarios to quantify and map changes to three main rangeland ecosystem services—wildlife habitat, water supply, and carbon sequestration. Project results will help prioritize strategies to conserve these rangelands and the ecosystem services that they provide.

  16. A framework for modeling anthropogenic impacts on waterbird habitats: addressing future uncertainty in conservation planning

    USGS Publications Warehouse

    Matchett, Elliott L.; Fleskes, Joseph P.; Young, Charles A.; Purkey, David R.

    2015-01-01

    The amount and quality of natural resources available for terrestrial and aquatic wildlife habitats are expected to decrease throughout the world in areas that are intensively managed for urban and agricultural uses. Changes in climate and management of increasingly limited water supplies may further impact water resources essential for sustaining habitats. In this report, we document adapting a Water Evaluation and Planning (WEAP) system model for the Central Valley of California. We demonstrate using this adapted model (WEAP-CVwh) to evaluate impacts produced from plausible future scenarios on agricultural and wetland habitats used by waterbirds and other wildlife. Processed output from WEAP-CVwh indicated varying levels of impact caused by projected climate, urbanization, and water supply management in scenarios used to exemplify this approach. Among scenarios, the NCAR-CCSM3 A2 climate projection had a greater impact than the CNRM-CM3 B1 climate projection, whereas expansive urbanization had a greater impact than strategic urbanization, on annual availability of waterbird habitat. Scenarios including extensive rice-idling or substantial instream flow requirements on important water supply sources produced large impacts on annual availability of waterbird habitat. In the year corresponding with the greatest habitat reduction for each scenario, the scenario including instream flow requirements resulted in the greatest decrease in habitats throughout all months of the wintering period relative to other scenarios. This approach provides a new and useful tool for habitat conservation planning in the Central Valley and a model to guide similar research investigations aiming to inform conservation, management, and restoration of important wildlife habitats.

  17. Toward Sustainable Water Resource Management: Challenges and Opportunities

    EPA Science Inventory

    The United States has derived significant economic benefit from an abundant and high-quality water supply. The ability of the nation to continue this pace into the future is uncertain because of a number of significant challenges. These include increasing water demand because of ...

  18. Defense Logistics: Actions Needed to Improve the Availability of Critical Items during Current and Future Operations

    DTIC Science & Technology

    2005-04-01

    process to promptly move supplies from the United States to a customer. GAO found that conflicting doctrinal responsibilities for distribution ... management , improperly packed shipments, insufficient transportation personnel and equipment, and inadequate information systems prevented the timely

  19. Using a Content Management System for Integrated Water Quantity, Quality and Instream Flows Modeling

    NASA Astrophysics Data System (ADS)

    Burgholzer, R.; Brogan, C. O.; Scott, D.; Keys, T.

    2017-12-01

    With increased population and water demand, in-stream flows can become depleted by consumptive uses and dilution of permitted discharges may be compromised. Reduced flows downstream of water withdrawals may increase the violation rate of bacterial concentrations from direct deposition by livestock and wildlife. Water storage reservoirs are constructed and operated to insure more stable supplies for consumptive demands and dilution flows, however their use comes at the cost of increased evaporative losses, potential for thermal pollution, interrupted fish migration, and reduced flooding events that are critical to maintain habitat and water quality. Due to this complex interrelationship between water quantity, quality and instream habitat comprehensive multi-disciplinary models must be developed to insure long-term sustainability of water resources and to avoid conflicts between drinking water, food and energy production, and aquatic biota. The Commonwealth of Virginia funded the expansion of the Chesapeake Bay Program Phase 5 model to cover the entire state, and has been using this model to evaluate water supply permit and planning since 2009. This integrated modeling system combines a content management system (Drupal and PHP) for model input data and leverages the modularity of HSPF with the custom segmentation and parameterization routines programmed by modelers working with the Chesapeake Bay Program. The model has been applied to over 30 Virginia Water Permits, instream flows and aquatic habitat models and a Virginias 30 year water supply demand projections. Future versions will leverage the Bay Model auto-calibration routines for adding small-scale water supply and TMDL models, utilize climate change scenarios, and integrate Virginia's reservoir management modules into the Chesapeake Bay watershed model, feeding projected demand and operational changes back up to EPA models to improve the realism of future Bay-wide simulations.

  20. On inclusion of water resource management in Earth system models - Part 1: Problem definition and representation of water demand

    NASA Astrophysics Data System (ADS)

    Nazemi, A.; Wheater, H. S.

    2015-01-01

    Human activities have caused various changes to the Earth system, and hence the interconnections between human activities and the Earth system should be recognized and reflected in models that simulate Earth system processes. One key anthropogenic activity is water resource management, which determines the dynamics of human-water interactions in time and space and controls human livelihoods and economy, including energy and food production. There are immediate needs to include water resource management in Earth system models. First, the extent of human water requirements is increasing rapidly at the global scale and it is crucial to analyze the possible imbalance between water demands and supply under various scenarios of climate change and across various temporal and spatial scales. Second, recent observations show that human-water interactions, manifested through water resource management, can substantially alter the terrestrial water cycle, affect land-atmospheric feedbacks and may further interact with climate and contribute to sea-level change. Due to the importance of water resource management in determining the future of the global water and climate cycles, the World Climate Research Program's Global Energy and Water Exchanges project (WRCP-GEWEX) has recently identified gaps in describing human-water interactions as one of the grand challenges in Earth system modeling (GEWEX, 2012). Here, we divide water resource management into two interdependent elements, related firstly to water demand and secondly to water supply and allocation. In this paper, we survey the current literature on how various components of water demand have been included in large-scale models, in particular land surface and global hydrological models. Issues of water supply and allocation are addressed in a companion paper. The available algorithms to represent the dominant demands are classified based on the demand type, mode of simulation and underlying modeling assumptions. We discuss the pros and cons of available algorithms, address various sources of uncertainty and highlight limitations in current applications. We conclude that current capability of large-scale models to represent human water demands is rather limited, particularly with respect to future projections and coupled land-atmospheric simulations. To fill these gaps, the available models, algorithms and data for representing various water demands should be systematically tested, intercompared and improved. In particular, human water demands should be considered in conjunction with water supply and allocation, particularly in the face of water scarcity and unknown future climate.

  1. Indicators to determine winning renewable energy technologies with an application to photovoltaics.

    PubMed

    Grossmann, Wolf D; Grossmann, Iris; Steininger, Karl

    2010-07-01

    Several forms of renewable energy compete for supremacy or for an appropriate role in global energy supply. A form of renewable energy can only play an important role in global energy supply if it fulfills several basic requirements. Its capacity must allow supplying a considerable fraction of present and future energy demand, all materials for its production must be readily available, land demand must not be prohibitive, and prices must reach grid parity in the nearer future. Moreover, a renewable energy technology can only be acceptable if it is politically safe. We supply a collection of indicators which allow assessing competing forms of renewable energy and elucidate why surprise is still a major factor in this field, calling for adaptive management. Photovoltaics (PV) are used as an example of a renewable energy source that looks highly promising, possibly supplemented by solar thermal electricity production (ST). We also show why energy use will contribute to land use problems and discuss ways in which the right choice of renewables may be indispensible in solving these problems.

  2. Enhancing water supply through reservoir reoperation

    NASA Astrophysics Data System (ADS)

    Rajagopal, S.; Sterle, K. M.; Jose, L.; Coors, S.; Pohll, G.; Singletary, L.

    2017-12-01

    Snowmelt is a significant contributor to water supply in western U.S. which is stored in reservoirs for use during peak summer demand. The reservoirs were built to satisfy multiple objectives, but primarily to either enhance water supply and/or for flood mitigation. The operating rules for these water supply reservoirs are based on historical assumptions of stationarity of climate, assuming peak snowmelt occurs after April 1 and hence have to let water pass through if it arrived earlier. Using the Truckee River which originates in the eastern Sierra Nevada, has seven reservoirs and is shared between California and Nevada as an example, we show enhanced water storage by altering reservoir operating rules. These results are based on a coupled hydrology (Ground-Surface water Flow, GSFLOW) and water management model (RIverware) developed for the river system. All the reservoirs in the system benefit from altering the reservoir rules, but some benefit more than others. Prosser Creek reservoir for example, historically averaged 76% of capacity, which was lowered to 46% of capacity in the future as climate warms and shifts snowmelt to earlier days of the year. This reduction in storage can be mitigated by altering the reservoir operation rules and the reservoir storage increases to 64-76% of capacity. There are limitations to altering operating rules as reservoirs operated primarily for flood control are required to maintain lower storage to absorb a flood pulse, yet using modeling we show that there are water supply benefits to adopting a more flexible rules of operation. In the future, due to changing climate we anticipate the reservoirs in the western U.S. which were typically capturing spring- summer snowmelt will have to be managed more actively as the water stored in the snowpack becomes more variable. This study presents a framework for understanding, modeling and quantifying the consequences of such a shift in hydrology and water management.

  3. The origins of the vaccine cold chain and a glimpse of the future.

    PubMed

    Lloyd, John; Cheyne, James

    2017-04-19

    International efforts to eradicate smallpox in the 1960s and 1970s provided the foundation for efforts to expand immunization programmes, including work to develop immunization supply chains. The need to create a reliable system to keep vaccines cold during the lengthy journey from the manufacturer to the point of use, even in remote areas, was a crucial concern during the early days of the Expanded Programme on Immunization. The vaccine cold chain was deliberately separated from other medical distribution systems to assure timely access to and control of vaccines and injection materials. The story of the early development of the vaccine cold chain shows how a number of challenges were overcome with technological and human resource solutions. For example, the lack of methods to monitor exposure of vaccines to heat during transport and storage led to many innovations, including temperature-sensitive vaccine vial monitors and better methods to record and communicate temperatures in vaccine stores. The need for appropriate equipment to store and transport vaccines in tropical developing countries led to innovations in refrigeration equipment as well as the introduction and widespread adoption of novel high performance vaccine cold-boxes and carriers. New technologies also helped to make injection safer. Underlying this work on technologies and equipment was a major effort to develop the human resources required to manage and implement the immunization supply chain. This included creating foundational policies and a management infrastructure; providing training for managers, health workers, technicians, and others. The vaccine cold chain has contributed to one of the world's public health success stories and provides three priority lessons for future: the vaccine supply chain needs to be integrated with other public health supplies, re-designed for efficiency and effectiveness and work is needed in the longer term to eliminate the need for refrigeration in the supply chain. Copyright © 2017. Published by Elsevier Ltd.

  4. Future irrigation expansion outweigh groundwater recharge gains from climate change in semi-arid India.

    PubMed

    Sishodia, Rajendra P; Shukla, Sanjay; Wani, Suhas P; Graham, Wendy D; Jones, James W

    2018-09-01

    Simultaneous effects of future climate and irrigation intensification on surface and groundwater systems are not well understood. Efforts are needed to understand the future groundwater availability and associated surface flows under business-as-usual management to formulate policy changes to improve water sustainability. We combine measurements with integrated modeling (MIKE SHE/MIKE11) to evaluate the effects of future climate (2040-2069), with and without irrigation expansion, on water levels and flows in an agricultural watershed in low-storage crystalline aquifer region of south India. Demand and supply management changes, including improved efficiency of irrigation water as well as energy uses, were evaluated. Increased future rainfall (7-43%, from 5 Global Climate Models) with no further expansion of irrigation wells increased the groundwater recharge (10-55%); however, most of the recharge moved out of watershed as increased baseflow (17-154%) with a small increase in net recharge (+0.2mm/year). When increased rainfall was considered with projected increase in irrigation withdrawals, both hydrologic extremes of well drying and flooding were predicted. A 100-year flow event was predicted to be a 5-year event in the future. If irrigation expansion follows the historical trends, earlier and more frequent well drying, a source of farmers' distress in India, was predicted to worsen in the future despite the recharge gains from increased rainfall. Storage and use of excess flows, improved irrigation efficiency with flood to drip conversion in 25% of irrigated area, and reduced energy subsidy (free electricity for 3.5h compared to 7h/day; $1 billion savings) provided sufficient water savings to support future expansion in irrigated areas while mitigating well drying as well as flooding. Reductions in energy subsidy to fund the implementation of economically desirable (high benefit-cost ratio) demand (drip irrigation) and supply (water capture and storage) management was recommended to achieve a sustainable food-water-energy nexus in semi-arid regions. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Planning water supply under uncertainty - benefits and limitations of RDM, Info-Gap, economic optimization and many-objective optimization

    NASA Astrophysics Data System (ADS)

    Matrosov, E.; Padula, S.; Huskova, I.; Harou, J. J.

    2012-12-01

    Population growth and the threat of drier or changed climates are likely to increase water scarcity world-wide. A combination of demand management (water conservation) and new supply infrastructure is often needed to meet future projected demands. In this case system planners must decide what to implement, when and at what capacity. Choices can range from infrastructure to policies or a mix of the two, culminating in a complex planning problem. Decision making under uncertainty frameworks can be used to help planners with this planning problem. This presentation introduces, applies and compares four decision making under uncertainty frameworks. The application is to the Thames basin water resource system which includes the city of London. The approaches covered here include least-economic cost capacity expansion optimization (EO), Robust Decision Making (RDM), Info-Gap Decision Theory (Info-gap) and many-objective evolutionary optimization (MOEO). EO searches for the least-economic cost program, i.e. the timing, sizing, and choice of supply-demand management actions/upgrades which meet projected water demands. Instead of striving for optimality, the RDM and Info-gap approaches help build plans that are robust to 'deep' uncertainty in future conditions. The MOEO framework considers multiple performance criteria and uses water systems simulators as a function evaluator for the evolutionary algorithm. Visualizations show Pareto approximate tradeoffs between multiple objectives. In this presentation we detail the application of each framework to the Thames basin (including London) water resource planning problem. Supply and demand options are proposed by the major water companies in the basin. We apply the EO method using a 29 year time horizon and an annual time step considering capital, operating (fixed and variable), social and environmental costs. The method considers all plausible combinations of supply and conservation schemes and capacities proposed by water companies and generates the least-economic cost annual plan. The RDM application uses stochastic simulation under a weekly time-step and regret analysis to choose a candidate strategy. We then use a statistical cluster algorithm to identify future states of the world under which the strategy is vulnerable. The method explicitly considers the effects of uncertainty in supply, demands and energy price on multiple performance criteria. The Info-gap approach produces robustness and opportuneness plots that show the performance of different plans under the most dire and favorable sets of future conditions. The same simulator, supply and demand options and uncertainties are considered as in the RDM application. The MOEO application considers many more combinations of supply and demand options while still employing a simulator that enables a more realistic representation of the physical system and operating rules. A computer cluster is employed to ease the computational burden. Visualization software allows decision makers to interactively view tradeoffs in many dimensions. Benefits and limitations of each framework are discussed and recommendations for future planning in the basin are provided.

  6. Future Water Management in the South Platte River Basin: Impacts of Hydraulic Fracturing, Population, Agriculture, and Climate Change in a Semi-Arid Region.

    NASA Astrophysics Data System (ADS)

    Walker, E. L.; Hogue, T. S.; Anderson, A. M.; Read, L.

    2015-12-01

    In semi-arid basins across the world, the gap between water supply and demand is growing due to climate change, population growth, and shifts in agriculture and unconventional energy development. Water conservation efforts among residential and industrial water users, recycling and reuse techniques and innovative regulatory frameworks for water management strive to mitigate this gap, however, the extent of these strategies are often difficult to quantify and not included in modeling water allocations. Decision support systems (DSS) are purposeful for supporting water managers in making informed decisions when competing demands create the need to optimize water allocation between sectors. One region of particular interest is the semi-arid region of the South Platte River basin in northeastern Colorado, where anthropogenic and climatic effects are expected to increase the gap between water supply and demand in the near future. Specifically, water use in the South Platte is impacted by several high-intensity activities, including unconventional energy development, i.e. hydraulic fracturing, and large withdrawals for agriculture; these demands are in addition to a projected population increase of 100% by 2050. The current work describes the development of a DSS for the South Platte River basin, using the Water Evaluation and Planning system software (WEAP) to explore scenarios of how variation in future water use in the energy, agriculture, and municipal sectors will impact water allocation decisions. Detailed data collected on oil and gas water use in the Niobrara shale play will be utilized to predict future sector use. We also employ downscaled climate projections for the region to quantify the potential range of water availability in the basin under each scenario, and observe whether or not, and to what extent, climate may impact management decisions at the basin level.

  7. Awareness and Perceptions of Food Safety Risks and Risk Management in Poultry Production and Slaughter: A Qualitative Study of Direct-Market Poultry Producers in Maryland.

    PubMed

    Baron, Patrick; Frattaroli, Shannon

    2016-01-01

    The objective of this study was to document and understand the perceptions and opinions of small-scale poultry producers who market directly to consumers about microbial food safety risks in the poultry supply chain. Between January and November 2014, we conducted semi-structured, in-depth interviews with a convenience sample of 16 owner-operators of Maryland direct-market commercial poultry farms. Three overarching thematic categories emerged from these interviews that describe: 1) characteristics of Maryland direct-market poultry production and processing; 2) microbial food safety risk awareness and risk management in small-scale poultry production, slaughter and processing; and 3) motivations for prioritizing food safety in the statewide direct-market poultry supply chain. Key informants provided valuable insights on many topics relevant to evaluating microbial food safety in the Maryland direct-market poultry supply chain, including: direct-market poultry production and processing practices and models, perspectives on issues related to food safety risk management, perspectives on direct-market agriculture economics and marketing strategies, and ideas for how to enhance food safety at the direct-market level of the Maryland poultry supply chain. The findings have policy implications and provide insights into food safety in small-scale commercial poultry production, processing, distribution and retail. In addition, the findings will inform future food safety research on the small-scale US poultry supply chain.

  8. Impacts of groundwater management on energy resources and greenhouse gas emissions in California.

    PubMed

    Hendrickson, Thomas P; Bruguera, Maya

    2018-09-15

    California faces significant energy and water infrastructure planning challenges in response to a changing climate. Immediately following the most severe recorded drought, the state experienced one of its wettest water years in recorded history. Despite the recent severe wet weather, much of the state's critical groundwater systems have not recovered from the drought. The recent Sustainable Groundwater Management Act (SGMA) aims to eliminate future depletion risks, but may force California basins to seek alternative water sources by limiting groundwater withdrawals during droughts. These alternative water resources, such as recycled water or desalination, can have significantly higher energy demands in treatment and supply than local groundwater or surface water resources. This research developed potential scenarios of water supply sources for five overdrafted groundwater basins, and modeled the impacts of these scenarios on energy demands and greenhouse gas (GHG) emissions for water supply systems. Our results reveal that energy demands and GHG emissions in different water supply scenarios can vary substantially between basins, but could increase statewide energy consumption as much as 2% and GHG emissions by 0.5. These results highlight the need to integrate these energy and GHG impacts into water resource management. Better understanding these considerations enables water supply planners to avoid potential unintended consequences (i.e., increased energy demands and GHG emissions) of enhancing drought resilience. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Effects of climate, land management, and sulfur deposition on soil base cation supply in national forests of the southern Appalachian mountains

    Treesearch

    T.C. McDonnell; T.J. Sullivan; B.J. Cosby; W.A. Jackson; K.J. Elliott

    2013-01-01

    Forest soils having low exchangeable calcium (Ca) and other nutrient base cation (BC) reserves may induce nutrient deficiencies in acid-sensitive plants and impact commercially important tree species. Past and future depletion of soil BC in response to acidic sulfur (S) deposition, forest management, and climate change alter the health and productivity of forest trees...

  10. Emergency management logistics must become emergency supply chain management.

    PubMed

    Young, Richard R; Peterson, Matthew R

    2014-01-01

    Much has been written about how emergency management (EM) needs to look to the future regarding issues of resource management (monetary, human, and material). Constraints on budgets are ongoing and the staffing of emergency response activities is often difficult because volunteers have little to no training. The management of material resources has also been a challenge because 1) the categories of material vary by the type of emergency, 2) the necessary quantities of material are often not located near the ultimate point of need, and 3) the transportation assets are rarely available in the form and quantity required to allow timely and effective response. The logistics and resource management functions of EM (what we refer to as EM logistics) have been largely reactive, with little to no pre-event planning for potential demand. We applied the Supply Chain Operational Reference (SCOR) model to EM logistics in an effort to transform it to an integrated and scalable system of physical, information, and financial flows into which are woven the functions of sourcing, making, delivering, and returning, with an overarching planning function that transcends the organizational boundaries of participants. The result is emergency supply chain management, which embraces many more participants who share in a larger quantity of more useful information about the resources that need to be deployed when responding to and recovering from emergency events.

  11. Iowa's forest resources, 1974.

    Treesearch

    John S. Jr. Spencer; Pamela J. Jakes

    1980-01-01

    The second inventory of Iowa's forest resources shows big declines in commercial forest area and in growing-stock and sawtimber volumes between 1954 and 1974. Presented are text and statistics on forest area and timber volume, growth, mortality, ownership, stocking, future timber supply, timber use, forest management opportunities, and nontimber resources.

  12. Air Force Commodity Councils: A Template for Future Implementation Comparing Successful and Failed Approaches

    DTIC Science & Technology

    2007-12-01

    Northwest QantasLink 67 References Mankiw , N. Gregory, Essentials of Economics , Chapter 13 Weinstein, David E; Yafeh...Purchasing, Transaction Cost Analysis, Transaction Cost Economics , Air Force, Supply Chain Management, Procurement, Transformation 16. PRICE CODE 17...SOURCING .............................................................................7 C. TRANSACTION COST ECONOMICS

  13. Power Buying: Planning For Your Deregulated Future.

    ERIC Educational Resources Information Center

    Robertson, Wayne K.

    1997-01-01

    Colleges and universities can benefit from the coming deregulation of utilities. Deregulation creates opportunity for facility managers to aggressively negotiate agreements, implement changes to the physical plant to make the institution a more attractive customer, and explore new, less expensive energy supply options and alternatives. Some action…

  14. Mechanics of Flapping Flight: Analytical Formulations of Unsteady Aerodynamics, Kinematic Optimization, Flight Dynamics, and Control

    NASA Astrophysics Data System (ADS)

    Taneja, Jayant Kumar

    Electricity is an indispensable commodity to modern society, yet it is delivered via a grid architecture that remains largely unchanged over the past century. A host of factors are conspiring to topple this dated yet venerated design: developments in renewable electricity generation technology, policies to reduce greenhouse gas emissions, and advances in information technology for managing energy systems. Modern electric grids are emerging as complex distributed systems in which a portfolio of power generation resources, often incorporating fluctuating renewable resources such as wind and solar, must be managed dynamically to meet uncontrolled, time-varying demand. Uncertainty in both supply and demand makes control of modern electric grids fundamentally more challenging, and growing portfolios of renewables exacerbate the challenge. We study three electricity grids: the state of California, the province of Ontario, and the country of Germany. To understand the effects of increasing renewables, we develop a methodology to scale renewables penetration. Analyzing these grids yields key insights about rigid limits to renewables penetration and their implications in meeting long-term emissions targets. We argue that to achieve deep penetration of renewables, the operational model of the grid must be inverted, changing the paradigm from load-following supplies to supply-following loads. To alleviate the challenge of supply-demand matching on deeply renewable grids, we first examine well-known techniques, including altering management of existing supply resources, employing utility-scale energy storage, targeting energy efficiency improvements, and exercising basic demand-side management. Then, we create several instantiations of supply-following loads -- including refrigerators, heating and cooling systems, and laptop computers -- by employing a combination of sensor networks, advanced control techniques, and enhanced energy storage. We examine the capacity of each load for supply-following and study the behaviors of populations of these loads, assessing their potential at various levels of deployment throughout the California electricity grid. Using combinations of supply-following strategies, we can reduce peak natural gas generation by 19% on a model of the California grid with 60% renewables. We then assess remaining variability on this deeply renewable grid incorporating supply-following loads, characterizing additional capabilities needed to ensure supply-demand matching in future sustainable electricity grids.

  15. Analyzing Uncertainty and Risk in the Management of Water Resources in the State Of Texas

    NASA Astrophysics Data System (ADS)

    Singh, A.; Hauffpauir, R.; Mishra, S.; Lavenue, M.

    2010-12-01

    The State of Texas updates its state water plan every five years to determine the water demand required to meet its growing population. The plan compiles forecasts of water deficits from state-wide regional water planning groups as well as the water supply strategies to address these deficits. To date, the plan has adopted a deterministic framework, where reference values (e.g., best estimates, worst-case scenario) are used for key factors such as population growth, demand for water, severity of drought, water availability, etc. These key factors can, however, be affected by multiple sources of uncertainties such as - the impact of climate on surface water and groundwater availability, uncertainty in population projections, changes in sectoral composition of the economy, variability in water usage, feasibility of the permitting process, cost of implementation, etc. The objective of this study was to develop a generalized and scalable methodology for addressing uncertainty and risk in water resources management both at the regional and the local water planning level. The study proposes a framework defining the elements of an end-to-end system model that captures the key components of demand, supply and planning modules along with their associated uncertainties. The framework preserves the fundamental elements of the well-established planning process in the State of Texas, promoting an incremental and stakeholder-driven approach to adding different levels of uncertainty (and risk) into the decision-making environment. The uncertainty in the water planning process is broken down into two primary categories: demand uncertainty and supply uncertainty. Uncertainty in Demand is related to the uncertainty in population projections and the per-capita usage rates. Uncertainty in Supply, in turn, is dominated by the uncertainty in future climate conditions. Climate is represented in terms of time series of precipitation, temperature and/or surface evaporation flux for some future time period of interest, which can be obtained as outputs of global climate models (GCMs). These are then linked with hydrologic and water-availability models (WAMs) to estimate water availability for the worst drought conditions under each future climate scenario. Combining the demand scenarios with the water availability scenarios yields multiple scenarios for water shortage (or surplus). Given multiple shortage/surplus scenarios, various water management strategies can be assessed to evaluate the reliability of meeting projected deficits. These reliabilities are then used within a multi-criteria decision-framework to assess trade-offs between various water management objectives, thus helping to make more robust decisions while planning for the water needs of the future.

  16. Technical-economic modelling of integrated water management: wastewater reuse in a French island.

    PubMed

    Xu, P; Valette, F; Brissaud, F; Fazio, A; Lazarova, V

    2001-01-01

    An integrated technical-economic model is used to address water management issues in the French island of Noirmoutier. The model simulates potable water production and supply, potable and non potable water demand and consumption, wastewater collection, treatment and disposal, water storage, transportation and reuse. A variety of water management scenarios is assessed through technical, economic and environmental evaluation. The scenarios include wastewater reclamation and reuse for agricultural and landscape irrigation as well as domestic non potable application, desalination of seawater and brackish groundwater for potable water supply. The study shows that, in Noirmoutier, wastewater reclamation and reuse for crop irrigation is the most cost-effective solution to the lack of water resources and the protection of sensitive environment. Some water management projects which are regarded as having less economic benefit in the short-term may become competitive in the future, as a result of tightened environmental policy, changed public attitudes and advanced water treatment technologies. The model provides an appropriate tool for water resources planning and management.

  17. Projecting supply and demand of hydrologic ecosystem services under future climate conditions

    NASA Astrophysics Data System (ADS)

    Chiang, Li-Chi; Huang, Tao; Lee, Tsung-Yu

    2014-05-01

    Ecosystems provide essential goods and services, such as food, clean water, water purification, soil conservation and cultural services for human being. In a watershed, these water-related ecosystem goods and services can directly or indirectly benefit both local people and downstream beneficiaries through a reservoir. Water quality and quantity in a reservoir are of importance for agricultural, industrial and domestic uses. Under the impacts of climate and land use changes, both ecosystem service supply and demand will be affected by changes in precipitation patterns, temperature, urbanization and agricultural activities. However, the linkage between ecosystem service provisioning (ESP) and ecosystem service beneficiary (ESB), and scales of supply and demand of ecosystem services are not clear yet. Therefore, to investigate water-related ecosystem service supply under climate and land use change, we took the Xindian river watershed (303 km2) as a case study, where the Feitsui Reservoir provides hydro-power and daily domestic water use of 3,450,000 m3 for 3.46 million people in Taipei, Taiwan. We integrated a hydrological model (Soil and Water Assessment Tool, SWAT) and a land use change model (Conversion of Land Use and its Effects, CLUE-s) with future climate change scenarios derived from General Circulation Models (GCMs), to assess the changes in ecosystem service supply and demand at different hydrologic scales. The results will provide useful information for decision-making on future land use management and climate change adaptation strategies in the watersheds. Keywords: climate change, land use change, ecosystem service, watershed, scale

  18. Ecosystem Services in Agricultural Landscapes: A Spatially Explicit Approach to Support Sustainable Soil Management

    PubMed Central

    Crossman, Neville D.; MacEwan, Richard J.; Wallace, D. Dugal; Bennett, Lauren T.

    2014-01-01

    Soil degradation has been associated with a lack of adequate consideration of soil ecosystem services. We demonstrate a broadly applicable method for mapping changes in the supply of two priority soil ecosystem services to support decisions about sustainable land-use configurations. We used a landscape-scale study area of 302 km2 in northern Victoria, south-eastern Australia, which has been cleared for intensive agriculture. Indicators representing priority soil services (soil carbon sequestration and soil water storage) were quantified and mapped under both a current and a future 25-year land-use scenario (the latter including a greater diversity of land uses and increased perennial crops and irrigation). We combined diverse methods, including soil analysis using mid-infrared spectroscopy, soil biophysical modelling, and geostatistical interpolation. Our analysis suggests that the future land-use scenario would increase the landscape-level supply of both services over 25 years. Soil organic carbon content and water storage to 30 cm depth were predicted to increase by about 11% and 22%, respectively. Our service maps revealed the locations of hotspots, as well as potential trade-offs in service supply under new land-use configurations. The study highlights the need to consider diverse land uses in sustainable management of soil services in changing agricultural landscapes. PMID:24616632

  19. Ecosystem services in agricultural landscapes: a spatially explicit approach to support sustainable soil management.

    PubMed

    Forouzangohar, Mohsen; Crossman, Neville D; MacEwan, Richard J; Wallace, D Dugal; Bennett, Lauren T

    2014-01-01

    Soil degradation has been associated with a lack of adequate consideration of soil ecosystem services. We demonstrate a broadly applicable method for mapping changes in the supply of two priority soil ecosystem services to support decisions about sustainable land-use configurations. We used a landscape-scale study area of 302 km(2) in northern Victoria, south-eastern Australia, which has been cleared for intensive agriculture. Indicators representing priority soil services (soil carbon sequestration and soil water storage) were quantified and mapped under both a current and a future 25-year land-use scenario (the latter including a greater diversity of land uses and increased perennial crops and irrigation). We combined diverse methods, including soil analysis using mid-infrared spectroscopy, soil biophysical modelling, and geostatistical interpolation. Our analysis suggests that the future land-use scenario would increase the landscape-level supply of both services over 25 years. Soil organic carbon content and water storage to 30 cm depth were predicted to increase by about 11% and 22%, respectively. Our service maps revealed the locations of hotspots, as well as potential trade-offs in service supply under new land-use configurations. The study highlights the need to consider diverse land uses in sustainable management of soil services in changing agricultural landscapes.

  20. The science, information, and engineering needed to manage water availability and quality in 2050: Chapter 23

    USGS Publications Warehouse

    Hirsch, Robert M.

    2012-01-01

    This chapter explores four water resources issues: 1) hydrologic variability, hazards, water supply and ecosystem preservation; 2) urban landscape design; 3) non-point source water quality, and 4) climate change, resiliency, and nonstationarity. It also considers what science, technology, and engineering practice may be needed in the coming decades to sustain water supplies and ecosystems in the face of increasing stresses from a growing demand for water. Dealing with these four water resource issues in the highly uncertain future would will demand predictive models that are rooted in real-world data. In a non-stationary world, continuity of observations is crucial. All watersheds are influenced by human actions through changes in land use, water use, and climate. The focus of water planning and management between today and 2050 will depend more than ever on collection and analysis of long-term data to learn about the evolving state of the system, understanding ecosystem processes in the water and on the landscape, and finding innovative ways to manage water as a shared resource. This includes sharing water with our neighbors on the landscape, sharing with the other species that depend on water, and sharing with future generations.

  1. Construction of a groundwater-flow model for the Big Sioux Aquifer using airborne electromagnetic methods, Sioux Falls, South Dakota

    USGS Publications Warehouse

    Valder, Joshua F.; Delzer, Gregory C.; Carter, Janet M.; Smith, Bruce D.; Smith, David V.

    2016-09-28

    The city of Sioux Falls is the fastest growing community in South Dakota. In response to this continued growth and planning for future development, Sioux Falls requires a sustainable supply of municipal water. Planning and managing sustainable groundwater supplies requires a thorough understanding of local groundwater resources. The Big Sioux aquifer consists of glacial outwash sands and gravels and is hydraulically connected to the Big Sioux River, which provided about 90 percent of the city’s source-water production in 2015. Managing sustainable groundwater supplies also requires an understanding of groundwater availability. An effective mechanism to inform water management decisions is the development and utilization of a groundwater-flow model. A groundwater-flow model provides a quantitative framework for synthesizing field information and conceptualizing hydrogeologic processes. These groundwater-flow models can support decision making processes by mapping and characterizing the aquifer. Accordingly, the city of Sioux Falls partnered with the U.S. Geological Survey to construct a groundwater-flow model. Model inputs will include data from advanced geophysical techniques, specifically airborne electromagnetic methods.

  2. Urban water infrastructure asset management - a structured approach in four water utilities.

    PubMed

    Cardoso, M A; Silva, M Santos; Coelho, S T; Almeida, M C; Covas, D I C

    2012-01-01

    Water services are a strategic sector of large social and economic relevance. It is therefore essential that they are managed rationally and efficiently. Advanced water supply and wastewater infrastructure asset management (IAM) is key in achieving adequate levels of service in the future, particularly with regard to reliable and high quality drinking water supply, prevention of urban flooding, efficient use of natural resources and prevention of pollution. This paper presents a methodology for supporting the development of urban water IAM, developed during the AWARE-P project as well as an appraisal of its implementation in four water utilities. Both water supply and wastewater systems were considered. Due to the different contexts and features of the utilities, the main concerns vary from case to case; some problems essentially are related to performance, others to risk. Cost is a common deciding factor. The paper describes the procedure applied, focusing on the diversity of drivers, constraints, benefits and outcomes. It also points out the main challenges and the results obtained through the implementation of a structured procedure for supporting urban water IAM.

  3. Sensitivity of future U.S. water shortages to socioeconomic and climate drivers: A case study in Georgia using an integrated human-earth system modeling framework

    DOE PAGES

    Scott, Michael J.; Daly, Don S.; Hejazi, Mohamad I.; ...

    2016-02-06

    Here, one of the most important interactions between humans and climate is in the demand and supply of water. Humans withdraw, use, and consume water and return waste water to the environment for a variety of socioeconomic purposes, including domestic, commercial, and industrial use, production of energy resources and cooling thermal-electric power plants, and growing food, fiber, and chemical feed stocks for human consumption. Uncertainties in the future human demand for water interact with future impacts of climatic change on water supplies to impinge on water management decisions at the international, national, regional, and local level, but until recently toolsmore » were not available to assess the uncertainties surrounding these decisions. This paper demonstrates the use of a multi-model framework in a structured sensitivity analysis to project and quantify the sensitivity of future deficits in surface water in the context of climate and socioeconomic change for all U.S. states and sub-basins. The framework treats all sources of water demand and supply consistently from the world to local level. The paper illustrates the capabilities of the framework with sample results for a river sub-basin in the U.S. state of Georgia.« less

  4. Estimated water use in Mississippi, 1980

    USGS Publications Warehouse

    Callahan, J.A.

    1980-01-01

    Large quantities of good quality ground and surface water are readily available in nearly all parts of Mississippi, and there is also an abundant supply of saline water in the estuaries along the Mississippi Gulf Coast. The total estimated water use in the State in 1980 from groundwater and surface water was 3532 million gallons/day (mgd), including 662 mgd of saline water. Freshwater used from all sources in Mississippi during the period 1975 through 1980 increased from 2510 mgd to > 2870 mgd, a 14% increase. Although modest increases of freshwater use may be expected in public, self-supplied industrial, and thermoelectric supplies, large future increases in the use of freshwater may be expected primarily as a result of growth in irrigation and aquaculture. Management and protection of the quantity and quality of the available freshwater supply are often problems associated with increased use. Water use data, both temporal and spatial, are needed by the State of Mississippi to provide for intelligent, long-term management of the resources; one table gives data on the principal categories of water use, sources, and use by county. (Lantz-PTT)

  5. Projected Impacts of Climate, Urbanization, Water Management, and Wetland Restoration on Waterbird Habitat in California’s Central Valley

    PubMed Central

    Fleskes, Joseph P.

    2017-01-01

    The Central Valley of California is one of the most important regions for wintering waterbirds in North America despite extensive anthropogenic landscape modification and decline of historical wetlands there. Like many other mediterranean-climate ecosystems across the globe, the Central Valley has been subject to a burgeoning human population and expansion and intensification of agricultural and urban development that have impacted wildlife habitats. Future effects of urban development, changes in water supply management, and precipitation and air temperature related to global climate change on area of waterbird habitat in the Central Valley are uncertain, yet potentially substantial. Therefore, we modeled area of waterbird habitats for 17 climate, urbanization, water supply management, and wetland restoration scenarios for years 2006–2099 using a water resources and scenario modeling framework. Planned wetland restoration largely compensated for adverse effects of climate, urbanization, and water supply management changes on habitat areas through 2065, but fell short thereafter for all except one scenario. Projected habitat reductions due to climate models were more frequent and greater than under the recent historical climate and their magnitude increased through time. After 2065, area of waterbird habitat in all scenarios that included severe warmer, drier climate was projected to be >15% less than in the “existing” landscape most years. The greatest reduction in waterbird habitat occurred in scenarios that combined warmer, drier climate and plausible water supply management options affecting priority and delivery of water available for waterbird habitats. This scenario modeling addresses the complexity and uncertainties in the Central Valley landscape, use and management of related water supplies, and climate to inform waterbird habitat conservation and other resource management planning. Results indicate that increased wetland restoration and additional conservation and climate change adaptation strategies may be warranted to maintain habitat adequate to support waterbirds in the Central Valley. PMID:28068411

  6. Projected Impacts of Climate, Urbanization, Water Management, and Wetland Restoration on Waterbird Habitat in California's Central Valley.

    PubMed

    Matchett, Elliott L; Fleskes, Joseph P

    2017-01-01

    The Central Valley of California is one of the most important regions for wintering waterbirds in North America despite extensive anthropogenic landscape modification and decline of historical wetlands there. Like many other mediterranean-climate ecosystems across the globe, the Central Valley has been subject to a burgeoning human population and expansion and intensification of agricultural and urban development that have impacted wildlife habitats. Future effects of urban development, changes in water supply management, and precipitation and air temperature related to global climate change on area of waterbird habitat in the Central Valley are uncertain, yet potentially substantial. Therefore, we modeled area of waterbird habitats for 17 climate, urbanization, water supply management, and wetland restoration scenarios for years 2006-2099 using a water resources and scenario modeling framework. Planned wetland restoration largely compensated for adverse effects of climate, urbanization, and water supply management changes on habitat areas through 2065, but fell short thereafter for all except one scenario. Projected habitat reductions due to climate models were more frequent and greater than under the recent historical climate and their magnitude increased through time. After 2065, area of waterbird habitat in all scenarios that included severe warmer, drier climate was projected to be >15% less than in the "existing" landscape most years. The greatest reduction in waterbird habitat occurred in scenarios that combined warmer, drier climate and plausible water supply management options affecting priority and delivery of water available for waterbird habitats. This scenario modeling addresses the complexity and uncertainties in the Central Valley landscape, use and management of related water supplies, and climate to inform waterbird habitat conservation and other resource management planning. Results indicate that increased wetland restoration and additional conservation and climate change adaptation strategies may be warranted to maintain habitat adequate to support waterbirds in the Central Valley.

  7. Projected impacts of climate, urbanization, water management, and wetland restoration on waterbird habitat in California’s Central Valley

    USGS Publications Warehouse

    Matchett, Elliott L.; Fleskes, Joseph

    2017-01-01

    The Central Valley of California is one of the most important regions for wintering waterbirds in North America despite extensive anthropogenic landscape modification and decline of historical wetlands there. Like many other mediterranean-climate ecosystems across the globe, the Central Valley has been subject to a burgeoning human population and expansion and intensification of agricultural and urban development that have impacted wildlife habitats. Future effects of urban development, changes in water supply management, and precipitation and air temperature related to global climate change on area of waterbird habitat in the Central Valley are uncertain, yet potentially substantial. Therefore, we modeled area of waterbird habitats for 17 climate, urbanization, water supply management, and wetland restoration scenarios for years 2006–2099 using a water resources and scenario modeling framework. Planned wetland restoration largely compensated for adverse effects of climate, urbanization, and water supply management changes on habitat areas through 2065, but fell short thereafter for all except one scenario. Projected habitat reductions due to climate models were more frequent and greater than under the recent historical climate and their magnitude increased through time. After 2065, area of waterbird habitat in all scenarios that included severe warmer, drier climate was projected to be >15% less than in the “existing” landscape most years. The greatest reduction in waterbird habitat occurred in scenarios that combined warmer, drier climate and plausible water supply management options affecting priority and delivery of water available for waterbird habitats. This scenario modeling addresses the complexity and uncertainties in the Central Valley landscape, use and management of related water supplies, and climate to inform waterbird habitat conservation and other resource management planning. Results indicate that increased wetland restoration and additional conservation and climate change adaptation strategies may be warranted to maintain habitat adequate to support waterbirds in the Central Valley.

  8. The economic significance of mortality in old-growth Douglas-fir management.

    Treesearch

    R.O. McMahon

    1961-01-01

    Current mortality in the Douglas-fir subregion, exclusive of catastrophic mortality, approximates a billion feet a year. The Forest Service report "Timber Resources for America's Future" recommended "...utilizing a substantial portion of the unsalvaged mortality loss..." as one means of permanently increasing the Nation's timber supply and...

  9. How to Manage an Extensive Laserdisk Installation: The Texas A&M Experience.

    ERIC Educational Resources Information Center

    Tucker, Sandra L.; And Others

    1988-01-01

    The second of two articles on the acquisition and implementation of a large laserdisk service at Texas A&M University covers equipment and supplies, future plans, service, staffing, training of staff and patrons, and statistics. A floor plan, user instruction sheet, and news release are included. (MES)

  10. Timber in Missouri, 1972.

    Treesearch

    John S. Jr. Spencer; Burton L. Essex

    1976-01-01

    The third inventory of Missouri's timber resource shows a small gain in growing-stock volume and a somewhat larger gain in sawtimber volume since 1959. Area of commercial forest declined sharply between surveys. Presented are text and statistics on forest area and timber volume, growth, mortality, ownership, stocking, future timber supply, and forest management...

  11. An automated library financial management system

    NASA Technical Reports Server (NTRS)

    Dueker, S.; Gustafson, L.

    1977-01-01

    A computerized library acquisition system developed for control of informational materials acquired at NASA Ames Research Center is described. The system monitors the acquisition of both library and individual researchers' orders and supplies detailed financial, statistical, and bibliographical information. Applicability for other libraries and the future availability of the program is discussed.

  12. Voluntary medical male circumcision: logistics, commodities, and waste management requirements for scale-up of services.

    PubMed

    Edgil, Dianna; Stankard, Petra; Forsythe, Steven; Rech, Dino; Chrouser, Kristin; Adamu, Tigistu; Sakallah, Sameer; Thomas, Anne Goldzier; Albertini, Jennifer; Stanton, David; Dickson, Kim Eva; Njeuhmeli, Emmanuel

    2011-11-01

    The global HIV prevention community is implementing voluntary medical male circumcision (VMMC) programs across eastern and southern Africa, with a goal of reaching 80% coverage in adult males by 2015. Successful implementation will depend on the accessibility of commodities essential for VMMC programming and the appropriate allocation of resources to support the VMMC supply chain. For this, the United States President's Emergency Plan for AIDS Relief, in collaboration with the World Health Organization and the Joint United Nations Programme on HIV/AIDS, has developed a standard list of commodities for VMMC programs. This list of commodities was used to inform program planning for a 1-y program to circumcise 152,000 adult men in Swaziland. During this process, additional key commodities were identified, expanding the standard list to include commodities for waste management, HIV counseling and testing, and the treatment of sexually transmitted infections. The approximate costs for the procurement of commodities, management of a supply chain, and waste disposal, were determined for the VMMC program in Swaziland using current market prices of goods and services. Previous costing studies of VMMC programs did not capture supply chain costs, nor the full range of commodities needed for VMMC program implementation or waste management. Our calculations indicate that depending upon the volume of services provided, supply chain and waste management, including commodities and associated labor, contribute between US$58.92 and US$73.57 to the cost of performing one adult male circumcision in Swaziland. Experience with the VMMC program in Swaziland indicates that supply chain and waste management add approximately US$60 per circumcision, nearly doubling the total per procedure cost estimated previously; these additional costs are used to inform the estimate of per procedure costs modeled by Njeuhmeli et al. in "Voluntary Medical Male Circumcision: Modeling the Impact and Cost of Expanding Male Circumcision for HIV Prevention in Eastern and Southern Africa." Program planners and policy makers should consider the significant contribution of supply chain and waste management to VMMC program costs as they determine future resource needs for VMMC programs.

  13. Adaptation responses to increasing drought frequency

    NASA Astrophysics Data System (ADS)

    Loch, A. J.; Adamson, D. C.; Schwabe, K.

    2016-12-01

    Using state contingent analysis we discuss how and why irrigators adapt to alternative water supply signals. This analysis approach helps to illustrate how and why producers currently use state-general and state-allocable inputs to adapt and respond to known and possible future climatic alternative natures. Focusing on the timing of water allocations, we explore inherent differences in the demand for water by two key irrigation sectors: annual and perennial producers which in Australia have allowed a significant degree of risk-minimisation during droughts. In the absence of land constraints, producers also had a capacity to respond to positive state outcomes and achieve super-normal profits. In the future, however, the probability of positive state outcomes is uncertain; production systems may need to adapt to minimise losses and/or achieve positive returns under altered water supply conditions that may arise as a consequence of more frequent drought states. As such, producers must assess whether altering current input/output choice sets in response to possible future climate states will enhance their long-run competitive advantage for both expected new normal and extreme water supply outcomes. Further, policy supporting agricultural sector climate change resilience must avoid poorly-designed strategies that increase producer vulnerability in the face of drought. Our analysis explores the reliability of alternative water property right bundles and how reduced allocations across time influence alternative responses by producers. We then extend our analysis to explore how management strategies could adapt to two possible future drier state types: i) where an average reduction in water supply is experienced; and ii) where the frequency of droughts increase. The combination of these findings are subsequently used to discuss the role water reform policy has to deal with current and future climate scenarios. We argue current policy strategies could drive producers to more homogeneous production systems over time, which ultimately entail risky adaptation options under future water supply availability or increased drought frequency scenarios. Lastly, our analysis has shown the flexibility of applying SCA toward examining uncertainty surrounding future states of nature under climate change.

  14. Hospital Supply Expenses: An Important Ingredient in Health Services Research.

    PubMed

    Abdulsalam, Yousef; Schneller, Eugene

    2017-07-01

    The purpose of this article is to shed light on hospital supply expenses, which form the second largest expense category after payroll and hold more promise for improving cost-efficiency compared to payroll. However, limited research has rigorously scrutinized this cost category, and it is rarely given specific consideration across cost-focused studies in health services publications. After reviewing previously cited estimates, we examine and independently validate supply expense data (collected by the American Hospital Association) for over 3,500 U.S. hospitals. We find supply expenses to make up 15% of total hospital expenses, on average, but as high as 30% or 40% in hospitals with a high case-mix index, such as surgery-intensive hospitals. Future research can use supply expense data to better understand hospital strategies that aim to manage costs, such as systemization, physician-hospital arrangements, and value-based purchasing.

  15. EBMUD Drought Planning Put to the Test in 2014

    NASA Astrophysics Data System (ADS)

    Bray, B. S.

    2014-12-01

    The East Bay Municipal Utility District faced challenges in the unprecedented 2014 drought managing limited supplies to reliably serve its customers. The District's successful drought planning required a multi-faceted plan to preserve a reliable water supply, now and into the future. Planning has included investments in recycled water projects, passive and active customer conservation programs, and pursuit of alternative water supply options. EBMUD's drought planning efforts have been tested in 2014 when California experienced one of the driest years on record and the 2nd driest year in the Mokelumne Watershed, the source of 90% of the District's water supply. This presentation will highlight the effectiveness of drought planning in three areas: (1) implementing 10% water conservation as of July 2014, (2) the securing of nearly 20TAF of supplemental water supply conveyed through the Freeport Regional Water Project, and (3) operating EBMUD's Mokelumne River Project to meet fishery flow and water quality objectives.

  16. Adaptation of water resource systems to an uncertain future

    NASA Astrophysics Data System (ADS)

    Walsh, Claire L.; Blenkinsop, Stephen; Fowler, Hayley J.; Burton, Aidan; Dawson, Richard J.; Glenis, Vassilis; Manning, Lucy J.; Jahanshahi, Golnaz; Kilsby, Chris G.

    2016-05-01

    Globally, water resources management faces significant challenges from changing climate and growing populations. At local scales, the information provided by climate models is insufficient to support the water sector in making future adaptation decisions. Furthermore, projections of change in local water resources are wrought with uncertainties surrounding natural variability, future greenhouse gas emissions, model structure, population growth, and water consumption habits. To analyse the magnitude of these uncertainties, and their implications for local-scale water resource planning, we present a top-down approach for testing climate change adaptation options using probabilistic climate scenarios and demand projections. An integrated modelling framework is developed which implements a new, gridded spatial weather generator, coupled with a rainfall-runoff model and water resource management simulation model. We use this to provide projections of the number of days and associated uncertainty that will require implementation of demand saving measures such as hose pipe bans and drought orders. Results, which are demonstrated for the Thames Basin, UK, indicate existing water supplies are sensitive to a changing climate and an increasing population, and that the frequency of severe demand saving measures are projected to increase. Considering both climate projections and population growth, the median number of drought order occurrences may increase 5-fold by the 2050s. The effectiveness of a range of demand management and supply options have been tested and shown to provide significant benefits in terms of reducing the number of demand saving days. A decrease in per capita demand of 3.75 % reduces the median frequency of drought order measures by 50 % by the 2020s. We found that increased supply arising from various adaptation options may compensate for increasingly variable flows; however, without reductions in overall demand for water resources such options will be insufficient on their own to adapt to uncertainties in the projected changes in climate and population. For example, a 30 % reduction in overall demand by 2050 has a greater impact on reducing the frequency of drought orders than any of the individual or combinations of supply options; hence, a portfolio of measures is required.

  17. Adapting to a Changing Colorado River: Making Future Water Deliveries More Reliable Through Robust Management Strategies

    NASA Astrophysics Data System (ADS)

    Groves, D.; Bloom, E.; Fischbach, J. R.; Knopman, D.

    2013-12-01

    The U.S. Bureau of Reclamation and water management agencies representing the seven Colorado River Basin States initiated the Colorado River Basin Study in January 2010 to evaluate the resiliency of the Colorado River system over the next 50 years and compare different options for ensuring successful management of the river's resources. RAND was asked to join this Basin Study Team in January 2012 to help develop an analytic approach to identify key vulnerabilities in managing the Colorado River basin over the coming decades and to evaluate different options that could reduce this vulnerability. Using a quantitative approach for planning under uncertainty called Robust Decision Making (RDM), the RAND team assisted the Basin Study by: identifying future vulnerable conditions that could lead to imbalances that could cause the basin to be unable to meet its water delivery objectives; developing a computer-based tool to define 'portfolios' of management options reflecting different strategies for reducing basin imbalances; evaluating these portfolios across thousands of future scenarios to determine how much they could improve basin outcomes; and analyzing the results from the system simulations to identify key tradeoffs among the portfolios. This talk will describe RAND's contribution to the Basin Study, focusing on the methodologies used to to identify vulnerabilities for Upper Basin and Lower Basin water supply reliability and to compare portfolios of options. Several key findings emerged from the study. Future Streamflow and Climate Conditions Are Key: - Vulnerable conditions arise in a majority of scenarios where streamflows are lower than historical averages and where drought conditions persist for eight years or more. - Depending where the shortages occur, problems will arise for delivery obligations for the upper river basin and the lower river basin. The lower river basin is vulnerable to a broader range of plausible future conditions. Additional Investments in Infrastructure and Efficiency Could Improve Performance and Reduce Risk: - Different portfolios of water-supply and demand-reduction options offer performance trade-offs. - Different types of options in the portfolios, such as conservation, desalination, or water banking, would affect future outcomes and costs of implementation. - Analysis of all the portfolios identified important near-term, high-priority options that should be implemented in the near future, including municipal, industrial, and agricultural conservation. Other Solutions May Be Required: - If future hydrologic conditions develop in a manner consistent with the more pessimistic projections, the Basin is increasingly likely to face vulnerable conditions. The region may need to consider additional management options.

  18. Smart thermal networks for smart cities - Introduction of concepts and measures

    NASA Astrophysics Data System (ADS)

    Schmidt, R. R.; Pol, O.; Basciotti, D.; Page, J.

    2012-10-01

    In order to contribute to high living standards, climate mitigation and energy supply security, future urban energy systems require a holistic approach. In particular an intelligent integration of thermal networks is necessary. This paper will briefly present the "smart city" concept and introduce an associated definition for smart thermal networks defined on three levels: 1. the interaction with urban planning processes and the interface to the overall urban energy system, 2. the adaptation of the temperature level and 3. supply and demand-side management strategies.

  19. Mapping water availability, cost and projected consumptive use in the eastern United States with comparisons to the west

    NASA Astrophysics Data System (ADS)

    Tidwell, Vincent C.; Moreland, Barbie D.; Shaneyfelt, Calvin R.; Kobos, Peter

    2018-01-01

    The availability of freshwater supplies to meet future demand is a growing concern. Water availability metrics are needed to inform future water development decisions. With the help of water managers, water availability was mapped for over 1300 watersheds throughout the 31 contiguous states in the eastern US complimenting a prior study of the west. The compiled set of water availability data is unique in that it considers multiple sources of water (fresh surface and groundwater, wastewater and brackish groundwater); accommodates institutional controls placed on water use; is accompanied by cost estimates to access, treat and convey each unique source of water; and is compared to projected future growth in consumptive water use to 2030. Although few administrative limits have been set on water availability in the east, water managers have identified 315 fresh surface water and 398 fresh groundwater basins (with 151 overlapping basins) as areas of concern (AOCs) where water supply challenges exist due to drought related concerns, environmental flows, groundwater overdraft, or salt water intrusion. This highlights a difference in management where AOCs are identified in the east which simply require additional permitting, while in the west strict administrative limits are established. Although the east is generally considered ‘water rich’ roughly a quarter of the basins were identified as AOCs; however, this is still in strong contrast to the west where 78% of the surface water basins are operating at or near their administrative limit. Little effort was noted on the part of eastern or western water managers to quantify non-fresh water resources.

  20. Temporal and spatial variation of hydrological condition in the Ziwu River Basin of the Han River in China

    NASA Astrophysics Data System (ADS)

    Li, Ziyan; Liu, Dengfeng; Huang, Qiang; Bai, Tao; Zhou, Shuai; Lin, Mu

    2018-06-01

    The middle route of South-To-North Water Diversion in China transfers water from the Han River and Han-To-Wei Water Diversion project of Shaanxi Province will transfer water from the Ziwu River, which is a tributary of the Han River. In order to gain a better understanding of future changes in the hydrological conditions within the Ziwu River basin, a Mann-Kendall (M-K) trend analysis is coupled with a persistence analysis using the rescaled range analysis (R/S) method. The future change in the hydrological characteristics of the Ziwu River basin is obtained by analysing the change of meteorological factors. The results show that, the future precipitation and potential evaporation are seasonal, and the spatial variation is significant. The proportion of basin area where the spring, summer, autumn and winter precipitation is predicted to continue increase is 0.00, 100.00, 19.00 and 16.00 %, meanwhile, the proportion of basin area that will continue to decrease in the future respectively will be 100.00, 0.00, 81.00 and 74.00 %.The future potential evapotranspiration of the four seasons in the basin shows a decreasing trend. The future water supply situation in the spring and autumn of the Ziwu River basin will degrade, and the future water supply situation in the summer and winter will improve. In addition, the areas with the same water supply situation are relatively concentrated. The results will provide scientific basis for the planning and management of river basin water resources and socio-hydrological processes analysis.

  1. Socioeconomic impacts of climate change on U.S. water supplies

    USGS Publications Warehouse

    Frederick, K.D.; Schwarz, G.E.

    1999-01-01

    A greenhouse warming would have major effects on water supplies and demands. A framework for examining the socioeconomic impacts associated with changes in the long-term availability of water is developed and applied to the hydrologic implications of the Canadian and British Hadley2 general circulation models (GCMs) for the 18 water resource regions in the conterminous United States. The climate projections of these two GCMs have very different implications for future water supplies and costs. The Canadian model suggests most of the nation would be much drier in the year 2030. Under the least-cost management scenario the drier climate could add nearly $105 billion to the estimated costs of balancing supplies and demands relative to the costs without climate change. Measures to protect instream flows and irrigation could result in significantly higher costs. In contrast, projections based on the Hadley model suggest water supplies would increase throughout much of the nation, reducing the costs of balancing water supplies with demands relative to the no-climate-change case.

  2. Awareness and Perceptions of Food Safety Risks and Risk Management in Poultry Production and Slaughter: A Qualitative Study of Direct-Market Poultry Producers in Maryland

    PubMed Central

    Baron, Patrick; Frattaroli, Shannon

    2016-01-01

    The objective of this study was to document and understand the perceptions and opinions of small-scale poultry producers who market directly to consumers about microbial food safety risks in the poultry supply chain. Between January and November 2014, we conducted semi-structured, in-depth interviews with a convenience sample of 16 owner-operators of Maryland direct-market commercial poultry farms. Three overarching thematic categories emerged from these interviews that describe: 1) characteristics of Maryland direct-market poultry production and processing; 2) microbial food safety risk awareness and risk management in small-scale poultry production, slaughter and processing; and 3) motivations for prioritizing food safety in the statewide direct-market poultry supply chain. Key informants provided valuable insights on many topics relevant to evaluating microbial food safety in the Maryland direct-market poultry supply chain, including: direct-market poultry production and processing practices and models, perspectives on issues related to food safety risk management, perspectives on direct-market agriculture economics and marketing strategies, and ideas for how to enhance food safety at the direct-market level of the Maryland poultry supply chain. The findings have policy implications and provide insights into food safety in small-scale commercial poultry production, processing, distribution and retail. In addition, the findings will inform future food safety research on the small-scale US poultry supply chain. PMID:27341034

  3. The water-energy nexus at water supply and its implications on the integrated water and energy management.

    PubMed

    Khalkhali, Masoumeh; Westphal, Kirk; Mo, Weiwei

    2018-09-15

    Water and energy are highly interdependent in the modern world, and hence, it is important to understand their constantly changing and nonlinear interconnections to inform the integrated management of water and energy. In this study, a hydrologic model, a water systems model, and an energy model were developed and integrated into a system dynamics modeling framework. This framework was then applied to a water supply system in the northeast US to capture its water-energy interactions under a set of future population, climate, and system operation scenarios. A hydrologic model was first used to simulate the system's hydrologic inflows and outflows under temperature and precipitation changes on a weekly-basis. A water systems model that combines the hydrologic model and management rules (e.g., water release and transfer) was then developed to dynamically simulate the system's water storage and water head. Outputs from the water systems model were used in the energy model to estimate hydropower generation. It was found that critical water-energy synergies and tradeoffs exist, and there is a possibility for integrated water and energy management to achieve better outcomes. This analysis also shows the importance of a holistic understanding of the systems as a whole, which would allow utility managers to make proactive long-term management decisions. The modeling framework is generalizable to other water supply systems with hydropower generation capacities to inform the integrated management of water and energy resources. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Rhode Island Water Supply System Management Plan Database (WSSMP-Version 1.0)

    USGS Publications Warehouse

    Granato, Gregory E.

    2004-01-01

    In Rhode Island, the availability of water of sufficient quality and quantity to meet current and future environmental and economic needs is vital to life and the State's economy. Water suppliers, the Rhode Island Water Resources Board (RIWRB), and other State agencies responsible for water resources in Rhode Island need information about available resources, the water-supply infrastructure, and water use patterns. These decision makers need historical, current, and future water-resource information. In 1997, the State of Rhode Island formalized a system of Water Supply System Management Plans (WSSMPs) to characterize and document relevant water-supply information. All major water suppliers (those that obtain, transport, purchase, or sell more than 50 million gallons of water per year) are required to prepare, maintain, and carry out WSSMPs. An electronic database for this WSSMP information has been deemed necessary by the RIWRB for water suppliers and State agencies to consistently document, maintain, and interpret the information in these plans. Availability of WSSMP data in standard formats will allow water suppliers and State agencies to improve the understanding of water-supply systems and to plan for future needs or water-supply emergencies. In 2002, however, the Rhode Island General Assembly passed a law that classifies some of the WSSMP information as confidential to protect the water-supply infrastructure from potential terrorist threats. Therefore the WSSMP database was designed for an implementation method that will balance security concerns with the information needs of the RIWRB, suppliers, other State agencies, and the public. A WSSMP database was developed by the U.S. Geological Survey in cooperation with the RIWRB. The database was designed to catalog WSSMP information in a format that would accommodate synthesis of current and future information about Rhode Island's water-supply infrastructure. This report documents the design and implementation of the WSSMP database. All WSSMP information in the database is, ultimately, linked to the individual water suppliers and to a WSSMP 'cycle' (which is currently a 5-year planning cycle for compiling WSSMP information). The database file contains 172 tables - 47 data tables, 61 association tables, 61 domain tables, and 3 example import-link tables. This database is currently implemented in the Microsoft Access database software because it is widely used within and outside of government and is familiar to many existing and potential customers. Design documentation facilitates current use and potential modification for future use of the database. Information within the structure of the WSSMP database file (WSSMPv01.mdb), a data dictionary file (WSSMPDD1.pdf), a detailed database-design diagram (WSSMPPL1.pdf), and this database-design report (OFR2004-1231.pdf) documents the design of the database. This report includes a discussion of each WSSMP data structure with an accompanying database-design diagram. Appendix 1 of this report is an index of the diagrams in the report and on the plate; this index is organized by table name in alphabetical order. Each of these products is included in digital format on the enclosed CD-ROM to facilitate use or modification of the database.

  5. Potential effects of drought on carrying capacity for wintering waterfowl in the Central Valley of California

    USGS Publications Warehouse

    Petrie, Mark J.; Fleskes, Joseph P.; Wolder, Mike A.; Isola, Craig R.; Yarris, Gregory S.; Skalos, Daniel A.

    2016-01-01

    We used the bioenergetics model TRUEMET to evaluate potential effects of California's recent drought on food supplies for waterfowl wintering in the Central Valley under a range of habitat and waterfowl population scenarios. In nondrought years in the current Central Valley landscape, food supplies are projected to be adequate for waterfowl from fall through early spring (except late March) even if waterfowl populations reach North American Waterfowl Management Plan goals. However, in all drought scenarios that we evaluated, food supplies were projected to be exhausted for ducks by mid- to late winter and by late winter or early spring for geese. For ducks, these results were strongly related to projected declines in winter-flooded rice fields that provide 45% of all the food energy available to ducks in the Central Valley in nondrought water years. Delayed flooding of some managed wetlands may help alleviate food shortages by providing wetland food resources better timed with waterfowl migration and abundance patterns in the Central Valley, as well as reducing the amount of water needed to manage these habitats. However, future research is needed to evaluate the impacts of delayed flooding on waterfowl hunting, and whether California's existing water delivery system would make delayed flooding feasible. Securing adequate water supplies for waterfowl and other wetland-dependent birds is among the greatest challenges facing resource managers in coming years, especially in the increasingly arid western United States.

  6. Study on supply chain management in tourism e-commerce

    NASA Astrophysics Data System (ADS)

    Hu, Yaodong; Wu, Shuyan; Ma, Haiyan

    2009-07-01

    On-line customer research has been conducted for European and American markets by marketers and academics. Whilst e-Commerce and tourism develop rapidly in China, and the fraud information in E-commerce market makes the conditions of information asymmetry becoming more seriously, understanding of Chinese internet travelers is required. This paper reviews current research on supply chain management (SCM) within the context of tourism. SCM in the manufacturing industry has attracted widespread research interest over the past two decades, whereas studies of SCM in the tourism e-commerce are very limited. The potential benefit of considering not only individual enterprises but also the tourism value chain becomes evident. This paper presents the model e-market structure and process analysis of tourism e-commerce, and also sets up tourism supply chain and tourism e-commerce system to probe how to apply tourism ecommerce to promote the sustainable development of tourism. The paper also identifies key research questions in TSCM worthy of future theoretical and empirical exploration.

  7. A second look a North Dakota's timber lands, 1980.

    Treesearch

    Pamela J. Jakes; W. Brad Smith

    1982-01-01

    The second inventory of North Dakota forest resources shows a decline in commercial forest area between 1954 and 1980. Presented are text and statistics on forest area and timber volume, growth, mortality, ownership, stocking, future timber supply, timber use, forest management opportunities, and nontimber forest resources. A forest type map is included.

  8. Whither Water? The Fragile Future of the World's Most Important Resource.

    ERIC Educational Resources Information Center

    Ferguson, Bruce K.

    1983-01-01

    The water shortage problem can only be met by creating a linkage among water supply, sewage disposal, and storm-water control. At present, these basic components of water management are typically handled separately, as if water were an unlimited resource the use of which does not require much foresight. (RM)

  9. Soil disturbance assessment of a cable logging operation performing five silvicultural prescriptions

    Treesearch

    John Klepac; Steve Reutebuch

    2003-01-01

    Evaluating alternative methods for regenerating second-growth Douglas-fir (Pseudotsuga menziesii) forests in the Pacific Northwest is an area of interest for resource managers. To meet future demands for timber supply as well as provide stands that are visually acceptable by the public and ecologically viable, a thorough understanding of these...

  10. Quality Leadership and the Professional School Counselor.

    ERIC Educational Resources Information Center

    Burgess, David G., Ed; Dedmond, Rebecca M., Ed.

    Schools are not what they used to be because our society is not what it used to be. The articles appearing here discuss ways that schools can supply future societal need. The articles include: (1) "The Educational Quality Improvement Process Model" (David G. Burgess); (2) "Total Quality Management: How It Works in Schools"…

  11. Effects of spatially distributed sectoral water management on the redistribution of water resources in an integrated water model

    NASA Astrophysics Data System (ADS)

    Voisin, Nathalie; Hejazi, Mohamad I.; Leung, L. Ruby; Liu, Lu; Huang, Maoyi; Li, Hong-Yi; Tesfa, Teklu

    2017-05-01

    Realistic representations of sectoral water withdrawals and consumptive demands and their allocation to surface and groundwater sources are important for improving modeling of the integrated water cycle. To inform future model development, we enhance the representation of water management in a regional Earth system (ES) model with a spatially distributed allocation of sectoral water demands simulated by a regional integrated assessment (IA) model to surface and groundwater systems. The integrated modeling framework (IA-ES) is evaluated by analyzing the simulated regulated flow and sectoral supply deficit in major hydrologic regions of the conterminous U.S, which differ from ES studies looking at water storage variations. Decreases in historical supply deficit are used as metrics to evaluate IA-ES model improvement in representating the complex sectoral human activities for assessing future adaptation and mitigation strategies. We also assess the spatial changes in both regulated flow and unmet demands, for irrigation and nonirrigation sectors, resulting from the individual and combined additions of groundwater and return flow modules. Results show that groundwater use has a pronounced regional and sectoral effect by reducing water supply deficit. The effects of sectoral return flow exhibit a clear east-west contrast in the hydrologic patterns, so the return flow component combined with the IA sectoral demands is a major driver for spatial redistribution of water resources and water deficits in the US. Our analysis highlights the need for spatially distributed sectoral representation of water management to capture the regional differences in interbasin redistribution of water resources and deficits.

  12. Testing the sensitivity of snowpack to climatic change in a large physiographically diverse watershed

    NASA Astrophysics Data System (ADS)

    MacDonald, R. J.; Byrne, J. M.; Kienzle, S. W.; Sauchyn, D.

    2009-12-01

    Snowpack in mountain watersheds provide a large portion of fresh water for many human and ecosystem function. Given the sensitivity of snow processes to temperature, it is likely that available water from snowpack will be reduced under future climate warming. It is important to understand how mountain environments will respond to changes in climate in order to properly manage water future resources. In order to assess potential changes in mountain snowpack and subsequent effects on water supply, we use a combination of hydrometeorological and general circulation models (GCMs). This work describes the application of the GENESYS (GENerate Earth SYstems Science input) spatial hydrometeorological model in simulating potential future changes in snowpack for the North Saskatchewan River watershed, Alberta. Snowpack in the North Saskatchewan River watershed supplies fresh water for over one million people and supports a wide range of ecosystem processes. To assess how snowpack may change in the watershed, scenarios from five GCMs are applied by perturbing the 1961-90 time series with mean changes in temperature and precipitation for the 2010-39, 2040-69 and 2070-99 periods. This study demonstrates that snowpack in the North Saskatchewan River watershed is highly susceptible to climate change and adaptive management strategies should be implemented to ensure sustainable water resources in the region.

  13. Water use trends and demand projections in the Northwest Florida Water Management District

    USGS Publications Warehouse

    Marella, R.L.; Mokray, M.F.; Hallock-Solomon, Michael

    1998-01-01

    The Northwest Florida Water Management District is located in the western panhandle of Florida and encompasses about 11,200 square miles. In 1995, the District had an estimated population of 1.13 million, an increase of about 47 percent from the 1975 population of 0.77 million. Over 50 percent of the resident population lives within 10 miles of the coast. In addition, hundreds of thousands of visitors come to the coastal areas of the panhandle during the summer months for recreation or vacation purposes. Water withdrawn to meet demands for public supply, domestic self-supplied, commercial-industrial, agricultural irrigation, and recreational irrigation purposes in the District increased 18 percent (52 million gallons per day) between 1970 and 1995. The greatest increases were for public supply and domestic self-supplied (99 percent increase) and for agricultural irrigation (60 percent increase) between 1970 and 1995. In 1995, approximately 70 percent of the water withdrawn was from ground-water sources, with the majority of this from the Floridan aquifer system. The increasing water demands have affected water levels in the Floridan aquifer system, especially along the coastal areas. The Northwest Florida Water Management District is mandated under the Florida Statutes (Chapter 373) to protect and manage the water resources in this area of the State. The mandate requires that current and future water demands be met, while water resources and water-dependent natural systems are sustained. For this project, curve fitting and extrapolation were used to project most of the variables (population, population served by public supply, and water use) to the years 2000, 2005, 2010, 2015, and 2020. This mathematical method involves fitting a curve to historical population or water-use data and then extending this curve to arrive at future values. The population within the region is projected to reach 1,596,888 by the year 2020, an increase of 41 percent between 1995 and 2020. Most of the population in this region will continue to reside in the urban areas of Pensacola and Tallahassee, and along the coastal areas. The population served by public water supply is projected to reach 1,353,836 by the year 2020, an increase of nearly 46 percent between 1995 and 2020. Total water demand for the Northwest Florida Water Management District is projected to reach 940.2 million gallons per day in 2000, 1,003.1 million gallons per day in 2010, and 1,059.1 million gallons per day in 2020. Excluding water withdrawn for power generation from these totals, water demands will increase 34 percent between 1995 and 2020, and 58 percent between 1970 and 2020. Specifically, public supply demands are projected to increase 74.1 million gallons per day (53 percent) and domestic self-supplied and small public supply systems demands are projected to increase 9.1 million gallons per day (28 percent) between 1995 and 2020. Commercial- industrial self-supplied demands are projected to increase about 16.9 million gallons per day (13 percent) between 1995 and 2020. Agricultural and recreational irrigation demands combined are projected to increase 16.8 million gallons per day (48 percent) between 1995 and 2020. Water demands for power generation are projected to increase about 53.9 million gallons per day (10 percent) between 1995 and 2020. Although power generation water use shows a projected increase during this time, plant capacities are not expected to change dramatically.

  14. Cryogenic Fluid Management Facility

    NASA Technical Reports Server (NTRS)

    Eberhardt, R. N.; Bailey, W. J.; Symons, E. P.; Kroeger, E. W.

    1984-01-01

    The Cryogenic Fluid Management Facility (CFMF) is a reusable test bed which is designed to be carried into space in the Shuttle cargo bay to investigate systems and technologies required to efficiently and effectively manage cryogens in space. The facility hardware is configured to provide low-g verification of fluid and thermal models of cryogenic storage, transfer concepts and processes. Significant design data and criteria for future subcritical cryogenic storage and transfer systems will be obtained. Future applications include space-based and ground-based orbit transfer vehicles (OTV), space station life support, attitude control, power and fuel depot supply, resupply tankers, external tank (ET) propellant scavenging, space-based weapon systems and space-based orbit maneuvering vehicles (OMV). This paper describes the facility and discusses the cryogenic fluid management technology to be investigated. A brief discussion of the integration issues involved in loading and transporting liquid hydrogen within the Shuttle cargo bay is also included.

  15. Water-Energy Nexus Challenges & Opportunities in the Arabian Peninsula under Climate Change

    NASA Astrophysics Data System (ADS)

    Flores-Lopez, F.; Yates, D. N.; Galaitsi, S.; Binnington, T.; Dougherty, W.; Vinnaccia, M.; Glavan, J. C.

    2016-12-01

    Demand for water in the GCC countries relies mainly on fossil groundwater resources and desalination. Satisfying water demand requires a great deal of energy as it treats and moves water along the supply chain from sources, through treatment processes, and ultimately to the consumer. Hence, there is an inherent connection between water and energy and with climate change, the links between water and energy are expected to become even stronger. As part of AGEDI's Local, National, and Regional Climate Change Programme, a study of the water-energy nexus of the countries in the Arabian Peninsula was implemented. For water, WEAP models both water demand - and its main drivers - and water supply, simulating policies, priorities and preferences. For energy, LEAP models both energy supply and demand, and is able to capture the impacts of low carbon development strategies. A coupled WEAP-LEAP model was then used to evaluate the future performance of the energy-water system under climate change and policy scenarios. The coupled models required detailed data, which were obtained through literature reviews and consultations with key stakeholders in the region. As part of this process, the outputs of both models were validated for historic periods using existing data The models examined 5 policy scenarios of different futures of resource management to the year 2060. A future under current management practices with current climate and a climate projection based on the RCP8.5; a High Efficiency scenario where each country gradually implements policies to reduce the consumption of water and electricity; a Natural Resource Protection scenario with resource efficiency and phasing out of groundwater extraction and drastic reduction of fossil fuel usage in favor of solar; and an Integrated Policy scenario that integrates the prior two policy scenarios Water demands can mostly be met in any scenario through supply combinations of groundwater, desalination and wastewater reuse, with some regional fossil groundwater basins draw to extinction by 2060. While the analysis includes both demand and supply oriented scenarios, the results of the analysis strongly suggest that the region will need to simultaneously purse demand and supply side policies to achieve more sustainable uses of water and energy into the second half of the 21st century.

  16. Identification, assessment, and control of hazards in water supply: experiences from Water Safety Plan implementations in Germany.

    PubMed

    Mälzer, H-J; Staben, N; Hein, A; Merkel, W

    2010-01-01

    According to the recommendations of the World Health Organization (WHO) for Water Safety Plans (WSP), a Technical Risk Management was developed, which considers standard demands in drinking water treatment in Germany. It was already implemented at several drinking water treatment plants of different size and treatment processes in Germany. Hazards affecting water quality, continuity, and the reliability of supply from catchment to treatment and distribution could be identified by a systematic approach, and suitable control measures were defined. Experiences are presented by detailed examples covering methods, practical consequences, and further outcomes. The method and the benefits for the water suppliers are discussed and an outlook on the future role of WSPs in German water supply is given.

  17. Water Management Decisions within a Changing Hydrologic Environment

    NASA Astrophysics Data System (ADS)

    Wegner, D. L.

    2013-12-01

    Across the United States and around the world we are facing unprecedented demands on our surface and ground water. Increasing population demands coupled with maintaining water quality, supporting species and ecosystem services, distribution of supply, hydrologic variability associated with changing climatic conditions - all require us to look more rigorously at the intersection of policy, management and science. The water supply and hydroelectric constituencies has embraced the concept of Adaptive Management in balancing the needs of resources, people, economies and providing ecosystem support. In its infancy Adaptive Management was employed as a way to move forward on dam operation and reservoir management decisions while recognizing the unknowns of how up or downstream physical and biological elements of freshwater systems would respond. River science at the time was not mature or expansive enough to address the interrelated and complex impacts of the nuances of changing operations of dams. Adaptive Management, the concept, made good sense and has provided a framework to inform management and policy decisions while keeping the door open for integrating new knowledge into a management matrix - the essence of adaptation. The application of Adaptive Management principles has continued to expand as water management demands increase. The application and reality of the use of Adaptive Management has had variable success. In the United States we have over 25 federal agencies that have water in their mission statements. Combine this with 50 states with their own water management requirements, Native American Tribes, and countless watershed and local water supply constraints and you get a sense of the challenge associated with collaborating and addressing water management issues. Without having a set of national water objectives and goals (a National Water Policy) it is up to the collaboration and integration of the multiple water silos with appropriate science. It is within this context that river restoration and management case studies will be explored to evaluate opportunities, challenges, the process of integrating science-policy-management, and some perspectives on the possible options for building a water future. A water future that embraces the essence of Adaptive Management without using the concept as a convenient mechanism for avoiding having to make difficult decisions on water management. The review will include assessing the application of various tools including hydrologic and ecosystem models, experimental floods, channel-cleansing flows, manipulation of habitats, and seasonal allocation of water to provide flooding of estuary habitats and river mouths for water volume and water quality purposes.

  18. Sustainable-energy managment practices in an energy economy

    NASA Astrophysics Data System (ADS)

    Darkwa, K.

    2001-10-01

    The economic survival of any nation depends upon its ability to produce and manage sufficient supplies of low-cost safe energy. The world's consumption of fossil fuel resources currently increasing at 3% per annum is found to be unsustainable. Projections of this trend show that mankind will exhaust all known reserves in the second half of the coming century. Governments, industrialists, commercial organizations, public sector departments and the general public have now become aware of the urgent requirements for the efficient management of resources and energy-consuming activities. Most organizations in the materials, manufacturing and retail sectors and in the service industries have also created energy management departments, or have employed consultants, to monitor energy consumption and to reduce wastage. Conversely, any sustained attempt to reduce rates of energy consumption even by as little as 0.1% per annum ensures relatively an eternal future supply as well as reduction on environmental and ecological effect. Thus, there is no long- term solution to energy flow problem other than systematic and effective energy management and the continuous application of the techniques of energy management. Essential energy management strategies in support of a sustainable energy- economy are discussed.

  19. Management Choices in an Uncertain Future: Navigating Snow, Precipitation, and Temperature Projections in the Pacific Northwest U.S. to Assess Water Management Alternatives

    NASA Astrophysics Data System (ADS)

    Luce, C.

    2014-12-01

    Climate and hydrology models are regularly applied to assess potential changes in water resources and to inform adaptation decisions. An increasingly common question is, "What if we are wrong?" While climate models show substantial agreement on metrics such as pressure, temperature, and wind, they are notoriously uncertain in projecting precipitation change. The response to that uncertainty varies depending on the water management context and the nature of the uncertainty. In the southwestern U.S., large storage reservoirs (relative to annual supply) and general expectations of decreasing precipitation have guided extensive discussion on water management towards uncertainties in annual-scale water balances, precipitation, and evapotranspiration. In contrast, smaller reservoirs and little expectation for change in annual precipitation have focused discussions of Pacific Northwest water management toward shifts in runoff seasonality. The relative certainty of temperature impacts on snowpacks compared to the substantial uncertainty in precipitation has yielded a consistent narrative on earlier snowmelt. This narrative has been reinforced by a perception of essentially the same behavior in the historical record. This perception has led to calls in the political arena for more reservoir storage to replace snowpack storage for water supplies. Recent findings on differences in trends in precipitation at high versus low elevations, however, has recalled the uncertainty in precipitation futures and generated questions about alternative water management strategies. An important question with respect to snowpacks is whether the precipitation changes matter in the context of such substantial projections for temperature change. Here we apply an empirical snowpack model to analyze spatial differences in the uncertainty of snowpack responses to temperature and precipitation forcing across the Pacific Northwest U.S. The analysis reveals a strong geographic gradient in uncertainty of snowpack response to future climate, from the coastal regions, where precipitation uncertainty is relatively inconsequential for snowpack changes, to interior mountains where minor uncertainties in precipitation are on par with expected changes relative to temperature.

  20. An Integrated Approach to Identification, Assessment and Management of Watershed-Scale Risk for Sustainable Water Use Through Reuse and Recycling

    NASA Astrophysics Data System (ADS)

    Hunter, C. K.; Bolster, D.; Gironas, J. A.

    2014-12-01

    Water resources are essential to development, not only economically but also socially, politically and ecologically. With growing demand and potentially shrinking supply, water scarcity is one of the most pressing socio-ecological problems of the 21st century. Considering implications of global change and the complexity of interrelated systems, uncertain future conditions compound problems associated with water stress, requiring hydrologic models to re-examine traditional water resource planning and management. The Copiapó water basin, located in the Atacama Desert of northern Chile exhibits a complex resource management scenario. With annual average precipitation of only 28 mm, water intensive sectors such as export agriculture, extensive mining, and a growing population have depleted the aquifeŕs reserves to near critical levels. Being that global climate change models predict a decrease in already scarce precipitation, and that growing population and economies demand will likely increase, the real future situation might be even worse than that predicted. A viable option for alleviation of water stress, water reuse and recycling has evolved through technological innovation to feasibly meet hydraulic needs with reclaimed water. For the proper application of these methods for resource management, however, stakeholders must possess tools by which to quantify hydrologic risk, understand its factors of causation, and choose between competing management scenarios and technologies so as to optimize productivity. While previous investigations have addressed similar problems, they often overlook aspects of forecasting uncertainty, proposing solutions that while accurate under specific scenarios, lack robustness to withstand future variations. Using the WEAP (Water Evaluation and Planning) platform for hydrologic modeling, this study proposes a methodology, applicable to other stressed watersheds, to quantify inherent risk in water management positions, while considering uncertainties in supply (climate change), demand (market variations), and measurement (risk definition). Applied to the Copaipó case study, this methodology proposes the solution of a 30% demand decrease within the agricultural sector through urban wastewater recycling and increased irrigation efficiency.

  1. Sustainable water management in the southwestern United States: reality or rhetoric?

    PubMed

    Marshall, Robert M; Robles, Marcos D; Majka, Daniel R; Haney, Jeanmarie A

    2010-07-21

    While freshwater sustainability is generally defined as the provisioning of water for both people and the environment, in practice it is largely focused only on supplying water to furnish human population growth. Symptomatic of this is the state of Arizona, where rapid growth outside of the metropolitan Phoenix-Tucson corridor relies on the same groundwater that supplies year-round flow in rivers. Using Arizona as a case study, we present the first study in the southwestern United States that evaluates the potential impact of future population growth and water demand on streamflow depletion across multiple watersheds. We modeled population growth and water demand through 2050 and used four scenarios to explore the potential effects of alternative growth and water management strategies on river flows. Under the base population projection, we found that rivers in seven of the 18 study watersheds could be dewatered due to municipal demand. Implementing alternative growth and water management strategies, however, could prevent four of these rivers from being dewatered. The window of opportunity to implement water management strategies is narrowing. Because impacts from groundwater extraction are cumulative and cannot be immediately reversed, proactive water management strategies should be implemented where groundwater will be used to support new municipal demand. Our approach provides a low-cost method to identify where alternative water and growth management strategies may have the most impact, and demonstrates that such strategies can maintain a continued water supply for both people and the environment.

  2. Using an Integrated Hydrologic-Economic Model to Develop Minimum Cost Water Supply Portfolios and Manage Supply Risk

    NASA Astrophysics Data System (ADS)

    Characklis, G. W.; Ramsey, J.

    2004-12-01

    Water scarcity has become a reality in many areas as a result of population growth, fewer available sources, and reduced tolerance for the environmental impacts of developing the new supplies that do exist. As a result, successfully managing future water supply risk will become more dependent on coordinating the use of existing resources. Toward that end, flexible supply strategies that can rapidly respond to hydrologic variability will provide communities with increasing economic advantages, particularly if the frequency of more extreme events (e.g., drought) increases due to global climate change. Markets for established commodities (e.g., oil, gas) often provide a framework for efficiently responding to changes in supply and demand. Water markets, however, have remained relatively crude, with most transactions involving permanent transfers and long regulatory processes. Recently, interest in the use of flexible short-term transfers (e.g., leases, options) has begun to motivate consideration of more sophisticated strategies for managing supply risk, strategies similar to those used in more mature markets. In this case, communities can benefit from some of the advantages that water enjoys over other commodities, in particular, the ability to accurately characterize the stochastic nature of supply and demand through hydrologic modeling. Hydrologic-economic models are developed for two different water scarce regions supporting active water markets: Edward Aquifer and Lower Rio Grande Valley. These models are used to construct portfolios of water supply transfers (e.g., permanent transfers, options, and spot leases) that minimize the cost of meeting a probabilistic reliability constraint. Real and simulated spot price distributions allow each type of transfer to be priced in a manner consistent with financial theory (e.g., Black-Scholes). Market simulations are integrated with hydrologic models such that variability in supply and demand are linked with price behavior. Decisions on when and how much water to lease (or exercise, in the case of options) are made on the basis of anticipatory rules based on the ratio of expected supply to expected demand, and are used to evaluate the economic consequences of a utilityAƒAøAøâ_sA¬Aøâ_zAøs attitude toward risk. The marginal cost of supply reliability is also explored by varying the water supply reliability constraint, an important consideration as the rising expense of new source development may encourage some communities to accept a nominal number of supply shortfalls. Results demonstrate how changes in the distribution of various transfer types within a portfolio can affect its cost and reliability. Results also suggest that substantial savings can be obtained through the use of market-based risk management strategies, with optimal portfolio costs averaging as much as 35 percent less than the costs of meeting reliability targets through the maintenance of firm capacity. Both the conceptual and modeling approach described in this work are likely to have increasing application as water scarcity continues to drive the search for more efficient approaches to water resource management.

  3. Real-time operating system for selected Intel processors

    NASA Technical Reports Server (NTRS)

    Pool, W. R.

    1980-01-01

    The rationale for system development is given along with reasons for not using vendor supplied operating systems. Although many system design and performance goals were dictated by problems with vendor supplied systems, other goals surfaced as a result of a design for a custom system able to span multiple projects. System development and management problems and areas that required redesign or major code changes for system implementation are examined as well as the relative successes of the initial projects. A generic description of the actual project is provided and the ongoing support requirements and future plans are discussed.

  4. Mapping water availability, cost and projected consumptive use in the Eastern United States with comparisons to the West

    DOE PAGES

    Tidwell, Vincent; Moreland, Barbara D.; Shaneyfelt, Calvin; ...

    2017-11-08

    The availability of freshwater supplies to meet future demand is a growing concern. Water availability metrics are needed to inform future water development decisions. Furthermore, with the help of water managers, water availability was mapped for over 1300 watersheds throughout the 31-contiguous states in the eastern U.S. complimenting a prior study of the west. The compiled set of water availability data is unique in that it considers multiple sources of water (fresh surface and groundwater, wastewater and brackish groundwater); accommodates institutional controls placed on water use; is accompanied by cost estimates to access, treat and convey each unique source ofmore » water, and; is compared to projected future growth in consumptive water use to 2030. Although few administrative limits have been set on water availability in the east, water managers have identified 315 fresh surface water and 398 fresh groundwater basins (with 151 overlapping basins) as Areas of Concern (AOCs) where water supply challenges exist due to drought related concerns, environmental flows, groundwater overdraft, or salt water intrusion. This highlights a difference in management where AOCs are identified in the east which simply require additional permitting, while in the west strict administrative limits are established. Although the east is generally considered "water rich" roughly a quarter of the basins were identified as AOCs; however, this is still in strong contrast to the west where 78% of the surface water basins are operating at or near their administrative limit. There was little effort noted on the part of eastern or western water managers to quantify non-fresh water resources.« less

  5. Mapping water availability, cost and projected consumptive use in the Eastern United States with comparisons to the West

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tidwell, Vincent; Moreland, Barbara D.; Shaneyfelt, Calvin

    The availability of freshwater supplies to meet future demand is a growing concern. Water availability metrics are needed to inform future water development decisions. Furthermore, with the help of water managers, water availability was mapped for over 1300 watersheds throughout the 31-contiguous states in the eastern U.S. complimenting a prior study of the west. The compiled set of water availability data is unique in that it considers multiple sources of water (fresh surface and groundwater, wastewater and brackish groundwater); accommodates institutional controls placed on water use; is accompanied by cost estimates to access, treat and convey each unique source ofmore » water, and; is compared to projected future growth in consumptive water use to 2030. Although few administrative limits have been set on water availability in the east, water managers have identified 315 fresh surface water and 398 fresh groundwater basins (with 151 overlapping basins) as Areas of Concern (AOCs) where water supply challenges exist due to drought related concerns, environmental flows, groundwater overdraft, or salt water intrusion. This highlights a difference in management where AOCs are identified in the east which simply require additional permitting, while in the west strict administrative limits are established. Although the east is generally considered "water rich" roughly a quarter of the basins were identified as AOCs; however, this is still in strong contrast to the west where 78% of the surface water basins are operating at or near their administrative limit. There was little effort noted on the part of eastern or western water managers to quantify non-fresh water resources.« less

  6. Using Civilian Supply Chain Management Best Practices to Improve Army Supply Chain Management Procedures

    DTIC Science & Technology

    2017-06-09

    USING CIVILIAN SUPPLY CHAIN MANAGEMENT BEST PRACTICES TO IMPROVE ARMY SUPPLY CHAIN MANAGEMENT PROCEDURES A thesis presented to......Army Supply Chain Management Procedures 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Chief Warrant

  7. Multidimensional competences of supply chain managers: an empirical study

    NASA Astrophysics Data System (ADS)

    Shou, Yongyi; Wang, Weijiao

    2017-01-01

    Supply chain manager competences have attracted increasing attention from both practitioners and scholars in recent years. This paper conducted an explorative study to understand the dimensionality of supply chain manager competences. Online job advertisements for supply chain managers were collected as secondary data, since these advertisements reflect employers' real job requirements. We adopted the multidimensional scaling (MDS) technique to process and analyse the data. Five dimensions of supply chain manager competences are identified: generic skills, functional skills, supply chain management (SCM) qualifications and leadership, SCM expertise, and industry-specific and senior management skills. Statistic tests indicate that supply chain manager competence saliences vary in different industries and regions.

  8. User's guide to the Parallel Processing Extension of the Prognosis Model

    Treesearch

    Nicholas L. Crookston; Albert R. Stage

    1991-01-01

    The Parallel Processing Extension (PPE) of the Prognosis Model was designed to analyze responses of numerous stands to coordinated management and pest impacts that operate at the landscape level of forests. Vegetation-related resource supply analysis can be readily performed for a thousand or more sample stands for projections 400 years into the future. Capabilities...

  9. Science and Policy Issues: A Report of Citizen Concerns and Recommendations for American Agricultural Research.

    ERIC Educational Resources Information Center

    National Agricultural Research and Extension Users Advisory Board (USDA), Washington, DC.

    Two areas which will have far reaching consequences for the future of United States agriculture are discussed: (1) biotechnology; and (2) critical economic research in world trade and commodity supply management. Topics in the first area include: controversies related to biotechnology; the relative importance of health, safety, and environmental…

  10. Monitoring of visually graded structural lumber

    Treesearch

    David E. Kretschmann; James W. Evans; Linda Brown

    To satisfy the increased demand for forest products, much of the future timber supply is expected to be derived from improved trees grown on managed plantations. This fast-grown resource will tend to be harvested in short-age rotations and will contain higher proportions of juvenile wood compared with wood in current harvests. As a result, current allowable properties...

  11. Restoration seed reserves for assisted gene flow within seed orchards

    Treesearch

    C.S. Echt; B.S. Crane

    2017-01-01

    Changing climate and declining forest populations imperil the future of certain forest tree species. To complement forest management and genetic conservation plans, we propose a new paradigm for seedling seed orchards: foster genetic mixing among a variety of seed sources to increase genetic diversity and adaptive potential of seed supplies used for forest restoration...

  12. New York - New Jersey Highlands Regional Study: 2002 Update

    Treesearch

    Northeastern Area State and Private Forestry

    2003-01-01

    Stewardship Goals For The New York - New Jersey Highlands This 2002 Update of the 1992 New York - New Jersey Highlands Regional Study embodies the following goals for the long-term stewardship of the Highlands: 1. Manage future growth that is compatible with the region's ecological constraints; 2. Maintain an adequate surface and ground water supply that...

  13. Carbon sequestration potential of poplar energy crops in the Midwest, USA

    Treesearch

    R.S. Jr. Zalesny; W.L. Headlee; R.B. Hall; D.R. Coyle

    2010-01-01

    Energy use and climate change mitigation are closely linked via ecological, social, and economic factors, including carbon management. Energy supply is a key 21st century National security issue for the United States; identifying and developing woody feedstocks for transportation fuels and combined heat and power operations are a crucial component of the future...

  14. Voluntary Medical Male Circumcision: Logistics, Commodities, and Waste Management Requirements for Scale-Up of Services

    PubMed Central

    Edgil, Dianna; Stankard, Petra; Forsythe, Steven; Rech, Dino; Chrouser, Kristin; Adamu, Tigistu; Sakallah, Sameer; Thomas, Anne Goldzier; Albertini, Jennifer; Stanton, David; Dickson, Kim Eva; Njeuhmeli, Emmanuel

    2011-01-01

    Background The global HIV prevention community is implementing voluntary medical male circumcision (VMMC) programs across eastern and southern Africa, with a goal of reaching 80% coverage in adult males by 2015. Successful implementation will depend on the accessibility of commodities essential for VMMC programming and the appropriate allocation of resources to support the VMMC supply chain. For this, the United States President’s Emergency Plan for AIDS Relief, in collaboration with the World Health Organization and the Joint United Nations Programme on HIV/AIDS, has developed a standard list of commodities for VMMC programs. Methods and Findings This list of commodities was used to inform program planning for a 1-y program to circumcise 152,000 adult men in Swaziland. During this process, additional key commodities were identified, expanding the standard list to include commodities for waste management, HIV counseling and testing, and the treatment of sexually transmitted infections. The approximate costs for the procurement of commodities, management of a supply chain, and waste disposal, were determined for the VMMC program in Swaziland using current market prices of goods and services. Previous costing studies of VMMC programs did not capture supply chain costs, nor the full range of commodities needed for VMMC program implementation or waste management. Our calculations indicate that depending upon the volume of services provided, supply chain and waste management, including commodities and associated labor, contribute between US$58.92 and US$73.57 to the cost of performing one adult male circumcision in Swaziland. Conclusions Experience with the VMMC program in Swaziland indicates that supply chain and waste management add approximately US$60 per circumcision, nearly doubling the total per procedure cost estimated previously; these additional costs are used to inform the estimate of per procedure costs modeled by Njeuhmeli et al. in “Voluntary Medical Male Circumcision: Modeling the Impact and Cost of Expanding Male Circumcision for HIV Prevention in Eastern and Southern Africa.” Program planners and policy makers should consider the significant contribution of supply chain and waste management to VMMC program costs as they determine future resource needs for VMMC programs. Please see later in the article for the Editors' Summary PMID:22140363

  15. Integrated Data & Analysis in Support of Informed and Transparent Decision Making

    NASA Astrophysics Data System (ADS)

    Guivetchi, K.

    2012-12-01

    The California Water Plan includes a framework for improving water reliability, environmental stewardship, and economic stability through two initiatives - integrated regional water management to make better use of local water sources by integrating multiple aspects of managing water and related resources; and maintaining and improving statewide water management systems. The Water Plan promotes ways to develop a common approach for data standards and for understanding, evaluating, and improving regional and statewide water management systems, and for common ways to evaluate and select from alternative management strategies and projects. The California Water Plan acknowledges that planning for the future is uncertain and that change will continue to occur. It is not possible to know for certain how population growth, land use decisions, water demand patterns, environmental conditions, the climate, and many other factors that affect water use and supply may change by 2050. To anticipate change, our approach to water management and planning for the future needs to consider and quantify uncertainty, risk, and sustainability. There is a critical need for information sharing and information management to support over-arching and long-term water policy decisions that cross-cut multiple programs across many organizations and provide a common and transparent understanding of water problems and solutions. Achieving integrated water management with multiple benefits requires a transparent description of dynamic linkages between water supply, flood management, water quality, land use, environmental water, and many other factors. Water Plan Update 2013 will include an analytical roadmap for improving data, analytical tools, and decision-support to advance integrated water management at statewide and regional scales. It will include recommendations for linking collaborative processes with technical enhancements, providing effective analytical tools, and improving and sharing data and information. Specifically, this includes achieving better integration and consistency with other planning activities; obtaining consensus on quantitative deliverables; building a common conceptual understanding of the water management system; developing common schematics of the water management system; establishing modeling protocols and standards; and improving transparency and exchange of Water Plan information.

  16. Supply network configuration—A benchmarking problem

    NASA Astrophysics Data System (ADS)

    Brandenburg, Marcus

    2018-03-01

    Managing supply networks is a highly relevant task that strongly influences the competitiveness of firms from various industries. Designing supply networks is a strategic process that considerably affects the structure of the whole network. In contrast, supply networks for new products are configured without major adaptations of the existing structure, but the network has to be configured before the new product is actually launched in the marketplace. Due to dynamics and uncertainties, the resulting planning problem is highly complex. However, formal models and solution approaches that support supply network configuration decisions for new products are scant. The paper at hand aims at stimulating related model-based research. To formulate mathematical models and solution procedures, a benchmarking problem is introduced which is derived from a case study of a cosmetics manufacturer. Tasks, objectives, and constraints of the problem are described in great detail and numerical values and ranges of all problem parameters are given. In addition, several directions for future research are suggested.

  17. Development and Use of the Hydrologic Ensemble Forecast System by the National Weather Service to Support the New York City Water Supply

    NASA Astrophysics Data System (ADS)

    Shedd, R.; Reed, S. M.; Porter, J. H.

    2015-12-01

    The National Weather Service (NWS) has been working for several years on the development of the Hydrologic Ensemble Forecast System (HEFS). The objective of HEFS is to provide ensemble river forecasts incorporating the best precipitation and temperature forcings at any specific time horizon. For the current implementation, this includes the Global Ensemble Forecast System (GEFS) and the Climate Forecast System (CFSv2). One of the core partners that has been working with the NWS since the beginning of the development phase of HEFS is the New York City Department of Environmental Protection (NYCDEP) which is responsible for the complex water supply system for New York City. The water supply system involves a network of reservoirs in both the Delaware and Hudson River basins. At the same time that the NWS was developing HEFS, NYCDEP was working on enhancing the operations of their water supply reservoirs through the development of a new Operations Support Tool (OST). OST is designed to guide reservoir system operations to ensure an adequate supply of high-quality drinking water for the city, as well as to meet secondary objectives for reaches downstream of the reservoirs assuming the primary water supply goals can be met. These secondary objectives include fisheries and ecosystem support, enhanced peak flow attenuation beyond that provided natively by the reservoirs, salt front management, and water supply for other cities. Since January 2014, the NWS Northeast and Middle Atlantic River Forecast Centers have provided daily one year forecasts from HEFS to NYCDEP. OST ingests these forecasts, couples them with near-real-time environmental and reservoir system data, and drives models of the water supply system. The input of ensemble forecasts results in an ensemble of model output, from which information on the range and likelihood of possible future system states can be extracted. This type of probabilistic information provides system managers with additional information not available from deterministic forecasts and allows managers to better assess risk, and provides greater context for decision-making than has been available in the past. HEFS has allowed NYCDEP water supply managers to make better decisions on reservoir operations than they likely would have in the past, using only deterministic forecasts.

  18. [Application of supply chain integration management of medical consumables].

    PubMed

    Zhang, Jian

    2013-07-01

    This paper introduces the background, the content, the information management system of material supply chain integration management and the consumables management process. The system helps to expand the selection of hospital supplies varieties, to reduce consumables management costs, to improve the efficiency of supplies, to ensure supplies safety, reliability and traceability.

  19. Bulawayo water supplies: Sustainable alternatives for the next decade

    NASA Astrophysics Data System (ADS)

    Mkandla, Noel; Van der Zaag, Pieter; Sibanda, Peter

    Bulawayo is the second largest city in Zimbabwe with a population of nearly one million people. It is located on the watershed of Umzingwane and Gwayi catchments. The former is part of the Limpopo basin, while the latter drains into the Zambezi basin. Bulawayo has a good potential of economic development but has been stymied by lack of sufficient water. The city currently relies on five surface sources in the Umzingwane catchment where it has to compete with evaporation. The well field from the Nyamandlovu aquifer in the Gwayi catchment, which was constructed as an emergency measure during the 1992 drought, is currently not operational. Alternative water supply sources are far and expensive. A multilinear regression model was developed to analyse and quantify the factors affecting water consumption. It was found that per capita water consumption is very low, indicating suppressed demand. Water rationing, tariffs, rainfall, population growth and gross domestic product are the main factors influencing water consumption in Bulawayo. Assuming that these factors will continue to be influential, future water consumption was projected for intensive, regular and slack water demand management. Future water consumption was then compared with the current water supply capacity in order to determine the date by which the next water supply source is required. With slack demand management, the Nyamandlovu well field should have been operational by 2003, while by the year 2007 an additional source of water is required. With intensive demand management and assuming low population growth, current capacities may suffice to satisfy the suppressed demand until the year 2015, by which time Nyamandlovu wells should be operational again. The additional water supply sources that are currently being considered for Bulawayo (namely the Zambezi water pipeline; Gwayi Shangani dam; Mtshabezi dam; Lower Tuli dam; and Glass block dam) were then compared with an alternative water source not yet contemplated, namely drawing groundwater from Umguza, part of the Nyamandlovu aquifer. The paper then provides details of the Umguza alternative, which was designed at pre-feasibility level by Mkandla [Mkandla, N., 2003. Bulawayo water supplies: Umguza well field as a sustainable alternative for the next decade. Unpublished M.Sc. WREM dissertation. University of Zimbabwe, Harare]. All alternative additional water supply sources were compared in terms of their Net Present Values. It was found that Umguza well field is the least-cost alternative to meet additional water demand. The Umguza alternative will be able to satisfy water demand for a period of six to ten years. Thereafter, the second least-cost alternative, namely Gwayi Shangani dam, must be on stream.

  20. Combined impacts of climate and socio-economic scenarios on irrigation water availability for a dry Mediterranean reservoir.

    PubMed

    Nunes, João Pedro; Jacinto, Rita; Keizer, Jan Jacob

    2017-04-15

    The impacts of climate and associated socio-economic changes on water availability, including supply and demand, quality, and storage volume, were evaluated for the Vale do Gaio reservoir in southern Portugal, located in a dry Mediterranean climate and already under drought stress. The SWAT model was applied with 6 scenarios for 2071-2100, involving two storylines (A1B and B1) with individual changes in climate (-9% rainfall, increasing in winter by +28 to +30%), socio-economic conditions (an increase in irrigation demand by 11%, and a replacement of cereals and pastures by sunflower), and a combination of both. Most future scenarios resulted in lower water availability, due to lower supply (-19 to -27%) combined with higher irrigation demand (+3 to +21%). This resulted in more years with limited irrigation supplies (presently: 28%; scenarios: 37 to 43%), although limitations were mitigated by lower losses to excess discharge. Land-use changes also decreased quality by increasing P concentrations (+29 to +93%). Impacts were more severe in scenario A1B than in B1, and in combined changes than in climate or socio-economic changes only. Water availability was resilient to climate change, as impacts led only to a moderate aggravation of present-day conditions. Lower future water availability could be addressed by supply and demand management strategies and, in the most extreme scenario, by water transfers from regional water reserves; water quality issues could be addressed through land-use policies. Results also highlighted the importance of taking the characteristics of water supply systems into account when designing adaptation measures for future changes. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Integrated modeling approach for optimal management of water, energy and food security nexus

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaodong; Vesselinov, Velimir V.

    2017-03-01

    Water, energy and food (WEF) are inextricably interrelated. Effective planning and management of limited WEF resources to meet current and future socioeconomic demands for sustainable development is challenging. WEF production/delivery may also produce environmental impacts; as a result, green-house-gas emission control will impact WEF nexus management as well. Nexus management for WEF security necessitates integrated tools for predictive analysis that are capable of identifying the tradeoffs among various sectors, generating cost-effective planning and management strategies and policies. To address these needs, we have developed an integrated model analysis framework and tool called WEFO. WEFO provides a multi-period socioeconomic model for predicting how to satisfy WEF demands based on model inputs representing productions costs, socioeconomic demands, and environmental controls. WEFO is applied to quantitatively analyze the interrelationships and trade-offs among system components including energy supply, electricity generation, water supply-demand, food production as well as mitigation of environmental impacts. WEFO is demonstrated to solve a hypothetical nexus management problem consistent with real-world management scenarios. Model parameters are analyzed using global sensitivity analysis and their effects on total system cost are quantified. The obtained results demonstrate how these types of analyses can be helpful for decision-makers and stakeholders to make cost-effective decisions for optimal WEF management.

  2. Extraction of business relationships in supply networks using statistical learning theory.

    PubMed

    Zuo, Yi; Kajikawa, Yuya; Mori, Junichiro

    2016-06-01

    Supply chain management represents one of the most important scientific streams of operations research. The supply of energy, materials, products, and services involves millions of transactions conducted among national and local business enterprises. To deliver efficient and effective support for supply chain design and management, structural analyses and predictive models of customer-supplier relationships are expected to clarify current enterprise business conditions and to help enterprises identify innovative business partners for future success. This article presents the outcomes of a recent structural investigation concerning a supply network in the central area of Japan. We investigated the effectiveness of statistical learning theory to express the individual differences of a supply chain of enterprises within a certain business community using social network analysis. In the experiments, we employ support vector machine to train a customer-supplier relationship model on one of the main communities extracted from a supply network in the central area of Japan. The prediction results reveal an F-value of approximately 70% when the model is built by using network-based features, and an F-value of approximately 77% when the model is built by using attribute-based features. When we build the model based on both, F-values are improved to approximately 82%. The results of this research can help to dispel the implicit design space concerning customer-supplier relationships, which can be explored and refined from detailed topological information provided by network structures rather than from traditional and attribute-related enterprise profiles. We also investigate and discuss differences in the predictive accuracy of the model for different sizes of enterprises and types of business communities.

  3. USGS ground-water flow model : an essential tool for managing the water supply of the Virginia Coastal Plain

    USGS Publications Warehouse

    Erwin, Martha L.; McFarland, Randolph E.; Scott, Bruce T.

    1999-01-01

    Virginia needs a reliable water supply to sustain its growing population and expanding economy. In 1990, the aquifers in the Coastal Plain supplied about 100 million gallons per day (mgd) to the citizens, businesses, and industries of Virginia. It is estimated that by the year 2000, demand will increase by another 10 mgd and likely will continue to increase in future years.Ground water is the only source of usable water in rural areas of the Coastal Plain and increasingly is being used to support a growing urban population. Current withdrawals have led to declining water levels in most Coastal Plain aquifers. Further declines are likely to occur, posing a threat that saltwater will move into parts of these freshwater aquifers.

  4. Operationalising resilience to drought: Multi-layered safety for flooding applied to droughts

    NASA Astrophysics Data System (ADS)

    Rijke, Jeroen; Smith, Jennifer Vessels; Gersonius, Berry; van Herk, Sebastiaan; Pathirana, Assela; Ashley, Richard; Wong, Tony; Zevenbergen, Chris

    2014-11-01

    This paper sets out a way of thinking about how to prepare for and respond to droughts in a holistic way using a framework developed for managing floods. It shows how the multi-layered safety (MLS) approach for flood resilience can be utilised in the context of drought in a way that three layers of intervention can be distinguished for operationalising drought resilience: (1) protection against water shortage through augmentation and diversification of water supplies; (2) prevention of damage in case of water shortage through increased efficiency of water use and timely asset maintenance; (3) preparedness for future water shortages through mechanisms to reduce the use of water and adopt innovative water technologies. Application of MLS to the cities of Adelaide, Melbourne and Sydney shows that recent water reforms in these cities were primarily focused on protection measures that aim to reduce the hazard source or exposure to insufficient water supplies. Prevention and preparedness measures could be considered in defining interventions that aim to further increase the drought resilience of these cities. Although further research is needed, the application suggests that MLS can be applied to the context of drought risk management. The MLS framework can be used to classify the suite of plans deployed by a city to manage future drought risks and can be considered a planning tool to identify opportunities for increasing the level of redundancy and hence resilience of the drought risk management system.

  5. An open source hydroeconomic model for California's water supply system: PyVIN

    NASA Astrophysics Data System (ADS)

    Dogan, M. S.; White, E.; Herman, J. D.; Hart, Q.; Merz, J.; Medellin-Azuara, J.; Lund, J. R.

    2016-12-01

    Models help operators and decision makers explore and compare different management and policy alternatives, better allocate scarce resources, and predict the future behavior of existing or proposed water systems. Hydroeconomic models are useful tools to increase benefits or decrease costs of managing water. Bringing hydrology and economics together, these models provide a framework for different disciplines that share similar objectives. This work proposes a new model to evaluate operation and adaptation strategies under existing and future hydrologic conditions for California's interconnected water system. This model combines the network structure of CALVIN, a statewide optimization model for California's water infrastructure, along with an open source solver written in the Python programming language. With the flexibilities of the model, reservoir operations, including water supply and hydropower, groundwater pumping, and the Delta water operations and requirements can now be better represented. Given time series of hydrologic inputs to the model, typical outputs include urban, agricultural and wildlife refuge water deliveries and shortage costs, conjunctive use of surface and groundwater systems, and insights into policy and management decisions, such as capacity expansion and groundwater management policies. Water market operations also represented in the model, allocating water from lower-valued users to higher-valued users. PyVIN serves as a cross-platform, extensible model to evaluate systemwide water operations. PyVIN separates data from the model structure, enabling model to be easily applied to other parts of the world where water is a scarce resource.

  6. Mapping Risks of Indonesian Tuna Supply Chain

    NASA Astrophysics Data System (ADS)

    Karningsih, P. D.; Anggrahini, D.; Kurniati, N.; Suef, M.; Fachrur, A. R.; Syahroni, N.

    2018-04-01

    Due to its high economic value and is produced by many countries, Tuna is considered as one of the world’s popular fish. Demand for Tuna species are very high and it usually sells in three form: fresh, frozen or canned. Competition in Tuna trading is challengin with the potential risk of price and supply fluctuations. With recent focus of Indonesia government that see the future of Indonesia civilization depend on the oceans and as the three biggest Tuna producing country, Ministry of Marine Affairs and Fisheries should ensure sustainability and competitiveness of Indonesian tuna. Therefore, there is a great need to develop a proper and effective strategy to manage potential risks in Indonesian Tuna supply chain. This paper is aimed at identifying and mapping potential Tuna supply chain risks and its interrelationships that would assist government in determining proper strategies to manage Indonesian Tuna. A framework for identifying Tuna supply chain risks is proposed. Generic risk structure of Supply Chain Risk Identification System is adopted and modified to match with particular object, which is Indonesian Tuna. The proposed model consists of hierarchical and causal structure that encompass potential risks of Tuna supply chain operations from fishing, trading, processing and distribution. The causal structure consist of risk events and its risk agents which is the cause of risk events. To ensure the root cause of risk events are identified properly, five why’s analysis is utilized to obtain risk agents. This proposed model also captures risk interrelationship between internal and external environment of Tuna supply chain. Preliminary result of this study identifies 15 risk events and 13 risk factors on fishing and trading operations and maps their interrelationships.

  7. Managing the Increasing Water Footprint of Hydraulic Fracturing in the Bakken Play, United States.

    PubMed

    Scanlon, Bridget R; Reedy, Robert C; Male, Frank; Hove, Michael

    2016-09-20

    The water footprint of oil production, including water used for hydraulic fracturing (HF) and flowback-produced (FP) water, is increasingly important in terms of HF water sourcing and FP water management. Here, we evaluate trends in HF water use relative to supplies and FP water relative to disposal using well by well analysis in the Bakken Play. HF water use per well increased by ∼6 times from 2005-2014, totaling 24.5 × 10(9) gal (93 × 10(9) L) for ∼10 140 wells. Water supplies expanded to meet increased demand, including access of up to ∼33 × 10(9) gal/year (125 × 10(9) L/year) from Lake Sakakawea, expanding pipeline infrastructure by hundreds of miles and allowing water transfers from irrigation. The projected inventory of ∼60 000 future wells should require an additional ∼11 times more HF water. Cumulative FP water has been managed by disposal into an increasing number (277 to 479) of salt water disposal wells. FP water is projected to increase by ∼10 times during the play lifetime (∼40 years). Disposal of FP water into deeper geologic units should be considered because of reported overpressuring of parts of the Dakota Group. The long time series shows how policies have increased water supplies for HF and highlights potential issues related to FP water management.

  8. The world's nuclear future - built on material success

    NASA Astrophysics Data System (ADS)

    Ion, Sue

    2010-07-01

    In our energy hungry world of the twenty-first century, the future of electricity generation must meet the twin challenges of security of supply and reduced carbon emissions. The expectations for nuclear power programmes to play a part in delivering success on both counts, grows ever higher. The nuclear industry is poised on a renaissance likely to dwarf the heady days of the 1960s and early 1970s. Global supply chain and project management challenges abound, now just as then. The science and engineering of materials will be key to the successful deployment and operation of a new generation of reactor systems and their associated fuel cycles. Understanding and predicting materials performance will be key to achieving life extension of existing assets and underpinning waste disposal options, as well as giving confidence to the designers, their financial backers and governments across the globe, that the next generation of reactors will deliver their full potential.

  9. Microgravity Research, An Agency-Wide Asset: Using NASA-Generated Knowledge to Solve its Own Problems

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The National Center for Microgravity Research (NCMR) is a vital and successful operation, effectively supporting NASA's program in many ways beyond technical monitoring. NCMR is supplying leadership for certain new initiatives important to NASA's future. NASA might regard NCMR as kind of a small laboratory of innovative research management, and should support it generously.

  10. Groundwater Risk Management Handbook

    DTIC Science & Technology

    2008-01-01

    restoration of groundwater to drinking water quality may not always be achievable due to technology limitations and, therefore, has developed a...extent (horizontal and vertical) of groundwater contamination • Future plans for groundwater use in the area, including local water resource planning...exposure (e.g., drinking water supplied by public water system and groundwater beneath the site is restricted for potable purposes) • Land use

  11. The effects of population growth on timber management and inventories in Virginia

    Treesearch

    David N. Wear; Rei Liu; J. Michael Foreman; Raymond M. Sheffield

    1999-01-01

    Expanding human populations may have important effects on the availability of timber from private lands in the South. To examine the effects of development on timber supply, the authors compared the density of populations and various site variables with expert opinions on the future location of commercial timberland for a study site in Virginia. Population density is a...

  12. Formation and properties of juvenile wood in southern pines: a synopsis

    Treesearch

    Philip R. Larson; David E. Kretschmann; Alexander III Clark; J.G. Isebrands

    2001-01-01

    To satisfy the increasing demand for forest products, much of the future timber supply will be from improved trees grown on managed plantations. This fast-grown resource will tend to be harvested in short age rotations and will contain higher proportions of juvenile wood than that of current harvests. In anticipation of this resource, definitive information is needed...

  13. The Private Military Firms: Historical Evolution and Industry Analysis

    DTIC Science & Technology

    2007-06-01

    Company, Private Military Firm, Supply Push, Demand Pull, Future Projections, Blackwater, DynCorp, Entrepreneurship 16. PRICE CODE 17. SECURITY...Business Administration, University of California, 1995. Baumol, W. J. Entrepreneurship , Management, and the Structure of Payoffs. Cambridge, MA: The MIT...P. F. Innovation and Entrepreneurship : Practice and Principles. Toronto: Fitzhenry & Whiteside Limited, 1985. Duffy, M. When Private Armies Take to

  14. Developing resilience to England's future droughts: time for cap and trade?

    PubMed

    Mitchell, Gordon; McDonald, Adrian

    2015-02-01

    Much of England is seriously water stressed and future droughts will present major challenges to the water industry if socially and economically damaging supply restrictions are to be avoided. Demand management is seen as a key mechanism for alleviating water stress, yet there are no truly effective incentives to encourage widespread adoption of the behavioural and technological demand management practices available. Water pricing could promote conservation, but on its own it is an inefficient tool for dealing with short term restriction in water supply. Raising prices over the short term in response to a drought is likely to be ineffectual in lowering demand sufficiently; conversely, maintaining high prices over the long term implies costs to the consumer which are needlessly high most of the time. We propose a system for developing resilience to drought in highly water stressed areas, based on a cap and trade (C&T) model. The system would represent a significant innovation in England's water market. However, international experience shows that C&T is successful in other sectors, and need not be overly complex. Here, we open the debate on how a C&T system might work in England. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Water management: Current and future challenges and research directions

    NASA Astrophysics Data System (ADS)

    Cosgrove, William J.; Loucks, Daniel P.

    2015-06-01

    Water distinguishes our planet compared to all the others we know about. While the global supply of available freshwater is more than adequate to meet all current and foreseeable water demands, its spatial and temporal distributions are not. There are many regions where our freshwater resources are inadequate to meet domestic, economic development and environmental needs. In such regions, the lack of adequate clean water to meet human drinking water and sanitation needs is indeed a constraint on human health and productivity and hence on economic development as well as on the maintenance of a clean environment and healthy ecosystems. All of us involved in research must find ways to remove these constraints. We face multiple challenges in doing that, especially given a changing and uncertain future climate, and a rapidly growing population that is driving increased social and economic development, globalization, and urbanization. How best to meet these challenges requires research in all aspects of water management. Since 1965, the journal Water Resources Research has played an important role in reporting and disseminating current research related to managing the quantity and quality and cost of this resource. This paper identifies the issues facing water managers today and future research needed to better inform those who strive to create a more sustainable and desirable future.

  16. Conflicts in Coalitions: A Stability Analysis of Robust Multi-City Regional Water Supply Portfolios

    NASA Astrophysics Data System (ADS)

    Gold, D.; Trindade, B. C.; Reed, P. M.; Characklis, G. W.

    2017-12-01

    Regional cooperation among water utilities can improve the robustness of urban water supply portfolios to deeply uncertain future conditions such as those caused by climate change or population growth. Coordination mechanisms such as water transfers, coordinated demand management, and shared infrastructure, can improve the efficiency of resource allocation and delay the need for new infrastructure investments. Regionalization does however come at a cost. Regionally coordinated water supply plans may be vulnerable to any emerging instabilities in the regional coalition. If one or more regional actors does not cooperate or follow the required regional actions in a time of crisis, the overall system performance may degrade. Furthermore, when crafting regional water supply portfolios, decision makers must choose a framework for measuring the performance of regional policies based on the evaluation of the objective values for each individual actor. Regional evaluations may inherently favor one actor's interests over those of another. This work focuses on four interconnected water utilities in the Research Triangle region of North Carolina for which robust regional water supply portfolios have previously been designed using multi-objective optimization to maximize the robustness of the worst performing utility across several objectives. This study 1) examines the sensitivity of portfolio performance to deviations from prescribed actions by individual utilities, 2) quantifies the implications of the regional formulation used to evaluate robustness for the portfolio performance of each individual utility and 3) elucidates the inherent regional tensions and conflicts that exist between utilities under this regionalization scheme through visual diagnostics of the system under simulated drought scenarios. Results of this analysis will help inform the creation of future regional water supply portfolios and provide insight into the nature of multi-actor water supply systems.

  17. Climate change adaptation & mitigation strategies for Water-Energy-Land Nexus management in Mediterranean region: Case study of Catalunya (Spain).

    NASA Astrophysics Data System (ADS)

    Kumar, Vikas; Schuhmacher, Marta

    2016-04-01

    Water-Energy-Land (WEL) Nexus management is one of those complex decision problems where holistic approach to supply-demand management considering different criteria would be valuable. However, multi-criteria decision making with diverse indicators measured on different scales and uncertainty levels is difficult to solve. On the other hand, climate adaptation and mitigation need to be integrated, and resource sensitive regions like Mediterranean provide ample opportunities towards that end. While the water sector plays a key role in climate adaptation, mitigation focuses on the energy and agriculture sector. Recent studies on the so-called WEL nexus confirm the potential synergies to be derived from mainstreaming climate adaptation in the water sector, while simultaneously addressing opportunities for co-management with energy (and also land use). Objective of this paper is to develop scenarios for the future imbalances in water & energy supply and demand for a water stressed Mediterranean area of Northern Spain (Catalonia) and to test the scenario based climate adaptation & mitigation strategy for WEL management policies. Resource sensitive area of Catalonia presents an interesting nexus problem to study highly stressed water demand scenario (representing all major demand sectors), very heterogeneous land use including intensive agriculture to diversified urban and industrial uses, and mixed energy supply including hydro, wind, gas turbine to nuclear energy. Different energy sectors have different water and land requirements. Inter-river basin water transfer is another factor which is considered for this area. The water-energy link is multifaceted. Energy production can affect water quality, while energy is used in water treatment and to reduce pollution. Similarly, hydropower - producing energy from water - and desalination - producing freshwater using energy - both play important role in economic growth by supplying large and secure amounts of 'green' energy or water where it is a scarce resource. Linkage of water & Energy to the land has been established through irrigated agriculture which has seen an increasing trend in the case study area. A detail scenario planning for regional water-energy demand and supply in conjunction with different climate change and economic growth scenarios are considered. For each future scenario of climate change, the goal is to obtain a ranking of a set of possible actions with regards to different types of indicators (costs, environmental etc.). The analytical method used is based on outranking models for decision aid with hierarchical structures of criteria and ranking alternatives using partial preorders based on pairwise preference relations. The proposed method has several advantages such as the management of heterogeneous scales of measurement without requiring any artificial transformation and the management of uncertainty by means of comparisons at a qualitative level in terms of the decision maker preferences. Result shows that such an integrated ("nexus") approach is likely to build resilience and reduces vulnerability to the combination of pressures acting upon the Mediterranean region's water systems, including climate-related shocks.

  18. Qualitative methods in health services and management research: pockets of excellence and progress, but still a long way to go.

    PubMed

    Devers, Kelly J

    2011-02-01

    The 10-year systematic review of published health services and management research by Weiner et al. (2011) chronicles the contributions of qualitative methods, highlights areas of substantial progress, and identifies areas in need of more progress. This article (Devers, 2011) discusses possible reasons for lack of progress in some areas--related to the under-supply of well-trained qualitative researchers and more tangible demand for their research--and mechanisms for future improvement. To ensure a robust health services research toolbox, the field must take additional steps to provide stronger education and training in qualitative methods and more funding and publication opportunities. Given the rapidly changing health care system post the passage of national health reform and the chalresearch issues associated with it, the health services research and management field will not meet its future challenges with quantitative methods alone or with a half-empty toolbox.

  19. Application of 3D Spatio-Temporal Data Modeling, Management, and Analysis in DB4GEO

    NASA Astrophysics Data System (ADS)

    Kuper, P. V.; Breunig, M.; Al-Doori, M.; Thomsen, A.

    2016-10-01

    Many of todaýs world wide challenges such as climate change, water supply and transport systems in cities or movements of crowds need spatio-temporal data to be examined in detail. Thus the number of examinations in 3D space dealing with geospatial objects moving in space and time or even changing their shapes in time will rapidly increase in the future. Prominent spatio-temporal applications are subsurface reservoir modeling, water supply after seawater desalination and the development of transport systems in mega cities. All of these applications generate large spatio-temporal data sets. However, the modeling, management and analysis of 3D geo-objects with changing shape and attributes in time still is a challenge for geospatial database architectures. In this article we describe the application of concepts for the modeling, management and analysis of 2.5D and 3D spatial plus 1D temporal objects implemented in DB4GeO, our service-oriented geospatial database architecture. An example application with spatio-temporal data of a landfill, near the city of Osnabrück in Germany demonstrates the usage of the concepts. Finally, an outlook on our future research focusing on new applications with big data analysis in three spatial plus one temporal dimension in the United Arab Emirates, especially the Dubai area, is given.

  20. Stretching Food and Being Creative: Caregiver Responses to Child Food Insecurity.

    PubMed

    Burke, Michael P; Martini, Lauren H; Blake, Christine E; Younginer, Nicholas A; Draper, Carrie L; Bell, Bethany A; Liese, Angela D; Jones, Sonya J

    2017-04-01

    To examine the strategies and behaviors caregivers use to manage the household food supply when their children experience food insecurity as measured by the US Department of Agriculture's Household Food Security Survey Module. Cross-sectional survey with open-ended questions collected in person. Urban and nonurban areas, South Carolina, US. Caregivers who reported food insecurity among their children (n = 746). Strategies and behaviors used to manage the household food supply. Emergent and thematic qualitative coding of open-ended responses. The top 3 strategies and behaviors to change meals were (1) changes in foods purchased or obtained for the household, (2) monetary and shopping strategies, and (3) adaptations in home preparation. The most frequently mentioned foods that were decreased were protein foods (eg, meat, eggs, beans), fruits, and vegetables. The most frequently mentioned foods that were increased were grains and starches (eg, noodles), protein foods (eg, beans, hot dogs), and mixed foods (eg, sandwiches). Caregivers use a wide variety of strategies and behaviors to manage the household food supply when their children are food insecure. Future work should examine how these strategies might affect dietary quality and well-being of food-insecure children. Copyright © 2016 Society for Nutrition Education and Behavior. Published by Elsevier Inc. All rights reserved.

  1. ‘Stretching’ Food and Being Creative: Caregiver Responses to Child Food Insecurity

    PubMed Central

    Burke, Michael P.; Martini, Lauren H.; Blake, Christine E.; Younginer, Nicholas A.; Draper, Carrie L.; Bell, Bethany A.; Liese, Angela D.; Jones, Sonya J.

    2017-01-01

    Objective To examine the strategies and behaviors caregivers use to manage the household food supply when their children experience food insecurity as measured by the US Department of Agriculture’s Household Food Security Survey Module. Design Cross-sectional survey with open-ended questions collected in-person. Setting Urban and non-urban areas, South Carolina, United States of America. Participants Caregivers who reported food insecurity among their children (n=746). Phenomenon of Interest Strategies and behaviors used to manage the household food supply. Analysis Emergent and thematic qualitative coding of open-ended responses. Results The top three strategies and behaviors to change meals were 1) changes in foods purchased or obtained for the household; 2) monetary and shopping strategies; and 3) adaptations in home preparation. The most frequently mentioned foods that were decreased were protein foods (e.g., meat, eggs, beans), fruits and vegetables. The most frequently mentioned foods that were increased were grains and starches (e.g., noodles), protein foods (e.g., beans, hot dogs) and mixed foods (e.g., sandwiches). Conclusions and Implications Caregivers use a wide variety of strategies and behaviors to manage the household food supply when their children are food insecure. Future work should examine how these strategies might affect dietary quality and well-being of food-insecure children. PMID:28073623

  2. Evolving Groundwater Rights and Management in Metropolitan Los Angeles: Implications for Water Supply and Stormwater

    NASA Astrophysics Data System (ADS)

    Porse, E.; Pincetl, S.; Glickfeld, M.

    2015-12-01

    Groundwater supports many aspects of human life. In cities, groundwater can provide a cost-effective source of water for drinking and industrial uses, while groundwater basins provide storage. The role of groundwater in a city's water supply tends to change over time. In the Los Angeles metropolitan area, groundwater is critical. Over decades, users in the region's many basins allocated annual pumping rights to groundwater among users through adjudications. These rights were determined through collective processes over decades, which contributed to the complex array of public and private organizations involved in water management. The rights also continue to evolve. We analyzed changes in the distribution of groundwater rights over time for adjudicated basins in Southern Los Angeles County. Results indicate that groundwater rights are increasingly: 1) controlled or regulated by public institutions and municipalities, and 2) consolidated among larger users. Yet, both the percentage of total supplies provided by groundwater, as well as the distribution of groundwater rights, varies widely among cities and communities throughout Los Angeles. As metropolitan Los Angeles faces reduced water imports and emphasizes local water reliance, access to pumping rights and storage capacity in groundwater basins will become even more vital. We discuss implications of our results for future urban water management.

  3. Future water demand in California under a broad range of land use scenarios

    NASA Astrophysics Data System (ADS)

    Wilson, T. S.; Sleeter, B. M.; Cameron, D. R.

    2016-12-01

    California continues to be gripped by the most severe drought on record. Most general circulation models agree the state will continue to warm this century and research suggests persistent, long-term droughts may become the new normal, exacerbating an already uncertain water supply future. Population increases and agricultural intensification will likely stress existing, highly variable inter-annual water supplies even further in coming decades. Using the Land Use and Carbon Scenario Simulator (LUCAS) model, we explore a wide range of potential water demand futures from 2012 to 2062 based on 8 alternative, spatially-explicit (1 km) land use scenarios and land-use related water demand. Scenarios include low and high rates for urbanization, agricultural expansion, and agricultural contraction as well as lowest and highest rates for the combined suite of anthropogenic land uses. Land change values were sampled from county-level historical (1991-2012) land change data and county-level average water use data for urban areas (i.e. municipal and industrial) and annual and perennial cropland. We modeled 100 Monte Carlo simulations for each scenario to better characterize and capture model uncertainty and a range of potential future outcomes. Results show water demand in Mediterranean California was lowest in the low anthropogenic change scenario, dropping an average 2.7 million acre feet (MAF) by 2062. The highest water demand was seen in the high urbanization (+3.2 MAF), high agricultural expansion (+4.1 MAF), and the high anthropogenic (+4.3 MAF) scenarios. Results provide water managers and policy makers with information on diverging land use and water use futures, based on observed land change and water use trends, helping better inform land and resource management decisions.

  4. Model Projections of Future Fluvial Sediment Delivery to Major Deltas Under Environmental Change

    NASA Astrophysics Data System (ADS)

    Darby, S. E.; Dunn, F.; Nicholls, R. J.; Cohen, S.; Zarfl, C.

    2017-12-01

    Deltas are important hot spots for climate change impacts on which over half a billion people live worldwide. Most of the world's deltas are sinking as a result of natural and anthropogenic subsidence and due to eustatic sea level rise. The ability to predict rates of delta aggradation is therefore critical to assessments of the extent to which sedimentation can potentially offset sea level rise, but our ability to make such predictions is severely hindered by a lack of insight into future trends of the fluvial sediment load supplied to their deltas by feeder watersheds. To address this gap we investigate fluvial sediment fluxes under future environmental change for a selection (47) of the world's major river deltas. Specifically, we employed the numerical model WBMsed to project future variations in mean annual fluvial sediment loads under a range of environmental change scenarios that account for changes in climate, socio-economics and dam construction. Our projections indicate a clear decrease (by 34 to 41% on average, depending on the specific scenario) in future fluvial sediment supply to most of the 47 deltas. These reductions in sediment delivery are driven primarily by anthropogenic disturbances, with reservoir construction being the most influential factor globally. Our results indicate the importance of developing new management strategies for reservoir construction and operation.

  5. [Comprehensive and competition-oriented quality management in social medicine expert services].

    PubMed

    Seger, W

    1996-05-01

    In free competition expert services in Social Medicine must supply their expertise with high quality in a short time and at low cost. The demands by customers in respect of motivation of the staff and innovative organisation are as important competitive factors as high quality standards for expertise production. These guiding principles completed by "Kaizen" and "Lean production" are necessary requirements for the further existence of the enterprise in competition. Quality assurance must be promoted in a process looking to the future in active quality management.

  6. Study on Green Supply Chain Management Based on Circular Economy

    NASA Astrophysics Data System (ADS)

    Ying, Jiang; Li-jun, Zhou

    The article starts with circular economy and the connotation of green supply chain, then analyzes the difference between green supply chain and traditional supply chain and elaborates the content of green supply chain management. On that basis, the approach to implement green supply chain management in china shall be put forward.

  7. One-way coupling of an integrated assessment model and a water resources model: evaluation and implications of future changes over the US Midwest

    NASA Astrophysics Data System (ADS)

    Voisin, N.; Liu, L.; Hejazi, M.; Tesfa, T.; Li, H.; Huang, M.; Liu, Y.; Leung, L. R.

    2013-11-01

    An integrated model is being developed to advance our understanding of the interactions between human activities, terrestrial system and water cycle, and to evaluate how system interactions will be affected by a changing climate at the regional scale. As a first step towards that goal, a global integrated assessment model, which includes a water-demand model driven by socioeconomics at regional and global scales, is coupled in a one-way fashion with a land surface hydrology-routing-water resources management model. To reconcile the scale differences between the models, a spatial and temporal disaggregation approach is developed to downscale the annual regional water demand simulations into a daily time step and subbasin representation. The model demonstrates reasonable ability to represent the historical flow regulation and water supply over the US Midwest (Missouri, Upper Mississippi, and Ohio river basins). Implications for future flow regulation, water supply, and supply deficit are investigated using climate change projections with the B1 and A2 emission scenarios, which affect both natural flow and water demand. Although natural flow is projected to increase under climate change in both the B1 and A2 scenarios, there is larger uncertainty in the changes of the regulated flow. Over the Ohio and Upper Mississippi river basins, changes in flow regulation are driven by the change in natural flow due to the limited storage capacity. However, both changes in flow and demand have effects on the Missouri River Basin summer regulated flow. Changes in demand are driven by socioeconomic factors, energy and food demands, global markets and prices with rainfed crop demand handled directly by the land surface modeling component. Even though most of the changes in supply deficit (unmet demand) and the actual supply (met demand) are driven primarily by the change in natural flow over the entire region, the integrated framework shows that supply deficit over the Missouri River Basin sees an increasing sensitivity to changes in demand in future periods. It further shows that the supply deficit is six times as sensitive as the actual supply to changes in flow and demand. A spatial analysis of the supply deficit demonstrates vulnerabilities of urban areas located along mainstream with limited storage.

  8. Integrated management of water resources demand and supply in irrigated agriculture from plot to regional scale

    NASA Astrophysics Data System (ADS)

    Schütze, Niels; Wagner, Michael

    2016-05-01

    Growing water scarcity in agriculture is an increasing problem in future in many regions of the world. Recent trends of weather extremes in Saxony, Germany also enhance drought risks for agricultural production. In addition, signals of longer and more intense drought conditions during the vegetation period can be found in future regional climate scenarios for Saxony. However, those climate predictions are associated with high uncertainty and therefore, e.g. stochastic methods are required to analyze the impact of changing climate patterns on future crop water requirements and water availability. For assessing irrigation as a measure to increase agricultural water security a generalized stochastic approach for a spatial distributed estimation of future irrigation water demand is proposed, which ensures safe yields and a high water productivity at the same time. The developed concept of stochastic crop water production functions (SCWPF) can serve as a central decision support tool for both, (i) a cost benefit analysis of farm irrigation modernization on a local scale and (ii) a regional water demand management using a multi-scale approach for modeling and implementation. The new approach is applied using the example of a case study in Saxony, which is dealing with the sustainable management of future irrigation water demands and its implementation.

  9. Using info-Gap Decision Theory for Water Resources Planning Under Severe Uncertainty

    NASA Astrophysics Data System (ADS)

    Korteling, B.; Brazier, R.; Kapelan, Z.; Dessai, S.

    2012-12-01

    Water resource managers are required to develop comprehensive water resource plans based on severely uncertain information of the effects of climate change on local hydrology and future socio-economic changes on localised demand. In England and Wales, current water resource planning methodologies include a headroom estimation process that quantifies uncertainty based on only one point of an assumed range of deviations from the expected climate and projected demand 25 years into the future. There are many situations where there is not enough knowledge to be able to estimate a representative probability of occurrence, or to be confident that the tails of an assumed probability distribution will not exhibit unexpected skewness, or that the kurtosis of a distribution differs from the norm. These situations can be considered severely uncertain. Information-Gap decision theory offers a method to sample a wider range of uncertainty than with traditional methods, and as a result, compare the robustness of various water resource management options under conditions of severe uncertainty. A more robust management option is one that delivers the same level of performance as other options at higher levels of uncertainty. A case study is based on a Water Supply Area that encompasses the county of Cornwall in southwest England containing 17 reservoirs and 19 demand nodes. The performance success of management options are evaluated primarily by measures of water availability including a reservoir risk measure that tests the probability and magnitude that strategic reservoir storage levels fall below the drought management curve under adverse conditions and also a safety margin deficit that tests how quickly reservoir levels can return to optimum operating levels in favourable conditions. Multi-Criteria Decision Analysis (MCDA) is used to test the effectiveness of different management options with different weightings for metrics other than water availability including; capital and operating costs, costs to customers, carbon emissions, environmental impact and social acceptability. Findings show that beyond the uncertainty range explored with the traditional headroom method, preference reversals can occur, i.e. some management options that underperform at lower uncertainties, outperform at higher levels of uncertainty. This study also shows that when 50% or more of the population adopts demand side management, efficiency related measures and innovative options such as rainwater collection can perform equally well or better than some supply side options. The additional use of MCDA shifts the focus away from reservoir expansion options that perform best with respect to water availability, to combined strategies that include innovative demand side management actions of rainwater collection and greywater reuse as well as efficiency measures and additional regional transfers. This research illustrates how an Info-Gap based approach can offer a comprehensive picture of potential supply/demand futures and a rich variety of information to support adaptive management of water systems under severe uncertainty.

  10. Present and Future Supply of Registered Nurses.

    ERIC Educational Resources Information Center

    Altman, Stuart H.

    During the 1960's, nursing education shifted dramatically away from hospital-operated diploma schools toward associate degree and baccalaureate programs. This report examines the nature of this shift in training and its anticipated impact on future supply. Other important factors affecting the future supply of nurses are analyzed, including the…

  11. Adapting to a changing world: Implications for water management.

    NASA Astrophysics Data System (ADS)

    Loucks, Daniel

    2010-05-01

    Everyone is aware that the world is changing, and that many of these changes will impact our water resource supplies and how they are used and managed. It's always a challenge to try to predict the future, especially the very uncertain distant future. But one thing is certain, the future environment our descendants will experience will differ from the economic, social, technological and natural conditions we experience today. Some aspects of the changes that are happening may not be under human control, but many are. And to the extent they are, we can influence that future. In this paper I attempt to speculate about a future some 40 to 50 years from now, and how water will need to be managed then. My goal is to motivate some thinking and discussion about how we as water managers can influence and prepare ourselves (or our successors) for that future. It will require collaboration among multiple disciplines to determine how best we as a profession can help society adapt to these changes, and this in turn will require all of us to learn how to work together more effectively than we do now. This theme fits in with the current interest in sustainability, for no matter how it is defined, sustainability makes us think about the long-term future. How do we develop and manage our natural and cultural resources in ways that benefit both us and future generations of people living on this earth? What will their needs and goals be? We don't know and that is the major challenge in deciding what decisions we might make today on their behalf. Here I attempt to identify the challenges and issues water managers could be addressing some 40 to 50 years from now, and what we in each of our disciplines, and together, can begin to do now to address them.

  12. Spatial and Temporal Self-Calibration of a Hydroeconomic Model

    NASA Astrophysics Data System (ADS)

    Howitt, R. E.; Hansen, K. M.

    2008-12-01

    Hydroeconomic modeling of water systems where risk and reliability of water supply are of critical importance must address explicitly how to model water supply uncertainty. When large fluctuations in annual precipitation and significant variation in flows by location are present, a model which solves with perfect foresight of future water conditions may be inappropriate for some policy and research questions. We construct a simulation-optimization model with limited foresight of future water conditions using positive mathematical programming and self-calibration techniques. This limited foresight netflow (LFN) model signals the value of storing water for future use and reflects a more accurate economic value of water at key locations, given that future water conditions are unknown. Failure to explicitly model this uncertainty could lead to undervaluation of storage infrastructure and contractual mechanisms for managing water supply risk. A model based on sequentially updated information is more realistic, since water managers make annual storage decisions without knowledge of yet to be realized future water conditions. The LFN model runs historical hydrological conditions through the current configuration of the California water system to determine the economically efficient allocation of water under current economic conditions and infrastructure. The model utilizes current urban and agricultural demands, storage and conveyance infrastructure, and the state's hydrological history to indicate the scarcity value of water at key locations within the state. Further, the temporal calibration penalty functions vary by year type, reflecting agricultural water users' ability to alter cropping patterns in response to water conditions. The model employs techniques from positive mathematical programming (Howitt, 1995; Howitt, 1998; Cai and Wang, 2006) to generate penalty functions that are applied to deviations from observed data. The functions are applied to monthly flows across key nodes on the network and to annual carryover storage at ground and surface water storage facilities. To our knowledge, this is the first hydroeconomic model to perform spatial and temporal calibration simultaneously. The base for the LFN model is CALVIN, a hydroeconomic optimization model of the California water system developed at the University of California, Davis (Draper, et al. 2003). The LFN model, programmed in GAMS, is nonlinear, which permits incorporation of dynamic groundwater pumping costs that reflect head elevation. Hydropower production, also nonlinear in storage levels, could be added in the future. In this paper, we describe model implementation and performance over a sequence of water years drawn from the historical hydrologic record in California. Preliminary findings indicate that calibration occurs within acceptable limits and simulations replicate base case results well. Cai, X., and Wang, D. 2006. "Calibrating Holistic Water Resources-Economic Models." Journal of Water Resources Planning and Management November-December. Draper, A.J., M.W. Jenkins, K.W. Kirby, J.R. Lund, and R.E. Howitt. 2003. "Economic-Engineering Optimization for California Water Management." Journal of Water Resources Planning and Management 129(3):155-164. Howitt, R.E. 1995. "Positive Mathematical Programming." American Journal of Agricultural Economics 77:329-342. Howitt, R.E. 1998. "Self-Calibrating Network Flow Models." Working Paper, Department of Agricultural and Resource Economics, University of California, Davis. October 1998. class="ab'>

  13. Medication supply chain management through implementation of a hospital pharmacy computerized inventory program in Haiti.

    PubMed

    Holm, Michelle R; Rudis, Maria I; Wilson, John W

    2015-01-01

    In the aftermath of the 2010 earthquake in Haiti, St. Luke Hospital was built to help manage the mass casualties and subsequent cholera epidemic. A major problem faced by the hospital system was the lack of an available and sustainable supply of medications. Long-term viability of the hospital system depended largely on developing an uninterrupted medication supply chain. We hypothesized that the implementation of a new Pharmacy Computerized Inventory Program (PCIP) would optimize medication availability and decrease medication shortages. We conducted the research by examining how medications were being utilized and distributed before and after the implementation of PCIP. We measured the number of documented medication transactions in both Phase 1 and Phase 2 as well as user logins to determine if a computerized inventory system would be beneficial in providing a sustainable, long-term solution to their medication management needs. The PCIP incorporated drug ordering, filling the drug requests, distribution, and dispensing of the medications in multiple settings; inventory of currently shelved medications; and graphic reporting of 'real-time' medication usage. During the PCIP initiation and establishment periods, the number of medication transactions increased from 219.6 to 359.5 (p=0.055), respectively, and the mean logins per day increased from 24.3 to 31.5, p<0.0001, respectively. The PCIP allows the hospital staff to identify and order medications with a critically low supply as well as track usage for future medication needs. The pharmacy and nursing staff found the PCIP to be efficient and a significant improvement in their medication utilization. An efficient, customizable, and cost-sensitive PCIP can improve drug inventory management in a simplified and sustainable manner within a resource-constrained hospital.

  14. Integrating Infrastructure and Institutions for Water Security in Large Urban Areas

    NASA Astrophysics Data System (ADS)

    Padowski, J.; Jawitz, J. W.; Carrera, L.

    2015-12-01

    Urban growth has forced cities to procure more freshwater to meet demands; however the relationship between urban water security, water availability and water management is not well understood. This work quantifies the urban water security of 108 large cities in the United States (n=50) and Africa (n=58) based on their hydrologic, hydraulic and institutional settings. Using publicly available data, urban water availability was estimated as the volume of water available from local water resources and those captured via hydraulic infrastructure (e.g. reservoirs, wellfields, aqueducts) while urban water institutions were assessed according to their ability to deliver, supply and regulate water resources to cities. When assessing availability, cities relying on local water resources comprised a minority (37%) of those assessed. The majority of cities (55%) instead rely on captured water to meet urban demands, with African cities reaching farther and accessing a greater number and variety of sources for water supply than US cities. Cities using captured water generally had poorer access to local water resources and maintained significantly more complex strategies for water delivery, supply and regulatory management. Eight cities, all African, are identified in this work as having water insecurity issues. These cities lack sufficient infrastructure and institutional complexity to capture and deliver adequate amounts of water for urban use. Together, these findings highlight the important interconnection between infrastructure investments and management techniques for urban areas with a limited or dwindling natural abundance of water. Addressing water security challenges in the future will require that more attention be placed not only on increasing water availability, but on developing the institutional support to manage captured water supplies.

  15. High-Efficiency Food Production in a Renewable Energy Based Micro-Grid Power System

    NASA Technical Reports Server (NTRS)

    Bubenheim, David; Meiners, Dennis

    2016-01-01

    Controlled Environment Agriculture (CEA) systems can be used to produce high-quality, desirable food year round, and the fresh produce can positively contribute to the health and well being of residents in communities with difficult supply logistics. While CEA has many positive outcomes for a remote community, the associated high electric demands have prohibited widespread implementation in what is typically already a fully subscribed power generation and distribution system. Recent advances in CEA technologies as well as renewable power generation, storage, and micro-grid management are increasing system efficiency and expanding the possibilities for enhancing community supporting infrastructure without increasing demands for outside supplied fuels. We will present examples of how new lighting, nutrient delivery, and energy management and control systems can enable significant increases in food production efficiency while maintaining high yields in CEA. Examples from Alaskan communities where initial incorporation of renewable power generation, energy storage and grid management techniques have already reduced diesel fuel consumption for electric generation by more than 40% and expanded grid capacity will be presented. We will discuss how renewable power generation, efficient grid management to extract maximum community service per kW, and novel energy storage approaches can expand the food production, water supply, waste treatment, sanitation and other community support services without traditional increases of consumable fuels supplied from outside the community. These capabilities offer communities with a range of choices to enhance their communities. The examples represent a synergy of technology advancement efforts to develop sustainable community support systems for future space-based human habitats and practical implementation of infrastructure components to increase efficiency and enhance health and well being in remote communities today and tomorrow.

  16. High-Efficiency Food Production in a Renewable Energy Based Micro-Grid

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.

    2017-01-01

    Controlled Environment Agriculture (CEA) systems can be used to produce high-quality, desirable food year round, and the fresh produce can positively contribute to the health and well being of residents in communities with difficult supply logistics. While CEA has many positive outcomes for a remote community, the associated high electric demands have prohibited widespread implementation in what is typically already a fully subscribed power generation and distribution system. Recent advances in CEA technologies as well as renewable power generation, storage, and micro-grid management are increasing system efficiency and expanding the possibilities for enhancing community supporting infrastructure without increasing demands for outside supplied fuels. We will present examples of how new lighting, nutrient delivery, and energy management and control systems can enable significant increases in food production efficiency while maintaining high yields in CEA.Examples from Alaskan communities where initial incorporation of renewable power generation, energy storage and grid management techniques have already reduced diesel fuel consumption for electric generation by more than 40 and expanded grid capacity will be presented. We will discuss how renewable power generation, efficient grid management to extract maximum community service per kW, and novel energy storage approaches can expand the food production, water supply, waste treatment, sanitation and other community support services without traditional increases of consumable fuels supplied from outside the community. These capabilities offer communities with a range of choices to enhance their communities. The examples represent a synergy of technology advancement efforts to develop sustainable community support systems for future space-based human habitats and practical implementation of infrastructure components to increase efficiency and enhance health and well-being in remote communities today and tomorrow.

  17. Medication supply chain management through implementation of a hospital pharmacy computerized inventory program in Haiti

    PubMed Central

    Holm, Michelle R.; Rudis, Maria I.; Wilson, John W.

    2015-01-01

    Background In the aftermath of the 2010 earthquake in Haiti, St. Luke Hospital was built to help manage the mass casualties and subsequent cholera epidemic. A major problem faced by the hospital system was the lack of an available and sustainable supply of medications. Long-term viability of the hospital system depended largely on developing an uninterrupted medication supply chain. Objective We hypothesized that the implementation of a new Pharmacy Computerized Inventory Program (PCIP) would optimize medication availability and decrease medication shortages. Design We conducted the research by examining how medications were being utilized and distributed before and after the implementation of PCIP. We measured the number of documented medication transactions in both Phase 1 and Phase 2 as well as user logins to determine if a computerized inventory system would be beneficial in providing a sustainable, long-term solution to their medication management needs. Results The PCIP incorporated drug ordering, filling the drug requests, distribution, and dispensing of the medications in multiple settings; inventory of currently shelved medications; and graphic reporting of ‘real-time’ medication usage. During the PCIP initiation and establishment periods, the number of medication transactions increased from 219.6 to 359.5 (p=0.055), respectively, and the mean logins per day increased from 24.3 to 31.5, p<0.0001, respectively. The PCIP allows the hospital staff to identify and order medications with a critically low supply as well as track usage for future medication needs. The pharmacy and nursing staff found the PCIP to be efficient and a significant improvement in their medication utilization. Conclusions An efficient, customizable, and cost-sensitive PCIP can improve drug inventory management in a simplified and sustainable manner within a resource-constrained hospital. PMID:25623613

  18. Waterbird habitat in California's Central Valley basins under climate, urbanization, and water management scenarios

    USGS Publications Warehouse

    Matchett, Elliott L.; Fleskes, Joseph

    2018-01-01

    California's Central Valley provides critical, but threatened habitat and food resources for migrating and wintering waterfowl, shorebirds, and other waterbirds. The Central Valley is comprised of nine basins that were defined by the Central Valley Joint Venture (CVJV) to assist in conservation planning. Basins vary in composition and extent of habitats, which primarily include croplands and wetlands that rely on water supplies shared with other competing human and environmental uses. Changes in climate, urban development, and water supply management are uncertain and could reduce future availability of water supplies supporting waterbird habitats and limit effectiveness of wetland restoration planned by the CVJV to support wintering waterbirds. We modeled 17 plausible scenarios including combinations of three climate projections, three urbanization rates, and five water supply management options to promote agricultural and urban water uses, with and without wetland restoration. Our research examines the reduction in quantity and quality of habitats during the fall migration-wintering period by basin under each scenario, and the efficacy of planned wetland restoration to compensate reductions in flooded areas of wetland habitats. Scenario combinations of projected climate, urbanization, and water supply management options reduced availability of flooded cropland and wetland habitats during fall-winter and degraded the quality of seasonal wetlands (i.e., summer-irrigation for improved forage production), though the extent and frequency of impacts varied by basin. Planned wetland restoration may substantially compensate for scenario-related effects on wetland habitats in each basin. However, results indicate that Colusa, Butte, Sutter, San Joaquin, and Tulare Basins may require additional conservation to support summer-irrigation of seasonal wetlands and winter-flooding of cropland habitats. Still further conservation may be required to provide sufficient areas of flooded seasonal and semi-permanent wetlands in San Joaquin and Tulare Basins during fall-winter. The main objective of this research is to provide decision-support for achieving waterbird conservation goals in the valley and to inform CVJV's regional conservation planning.

  19. The uncertainty of future water supply adequacy in megacities: Effects of population growth and climate change

    NASA Astrophysics Data System (ADS)

    Alarcon, T.; Garcia, M. E.; Small, D. L.; Portney, K.; Islam, S.

    2013-12-01

    Providing water to the expanding population of megacities, which have over 10 million people, with a stressed and aging water infrastructure creates unprecedented challenges. These challenges are exacerbated by dwindling supply and competing demands, altered precipitation and runoff patterns in a changing climate, fragmented water utility business models, and changing consumer behavior. While there is an extensive literature on the effects of climate change on water resources, the uncertainty of climate change predictions continues to be high. This hinders the value of these predictions for municipal water supply planning. The ability of water utilities to meet future water needs will largely depend on their capacity to make decisions under uncertainty. Water stressors, like changes in demographics, climate, and socioeconomic patterns, have varying degrees of uncertainty. Identifying which stressors will have a greater impact on water resources, may reduce the level of future uncertainty for planning and managing water utilities. Within this context, we analyze historical and projected changes of population and climate to quantify the relative impacts of these two stressors on water resources. We focus on megacities that rely primarily on surface water resources to evaluate (a) population growth pattern from 1950-2010 and projected population for 2010-2060; (b) climate change impact on projected climate change scenarios for 2010-2060; and (c) water access for 1950-2010; projected needs for 2010-2060.

  20. Can the Gila River reduce risk in the Colorado River Basin?

    NASA Astrophysics Data System (ADS)

    Wade, L. C.; Rajagopalan, B.; Lukas, J.; Kanzer, D.

    2012-12-01

    The Colorado River is the most important source of water in the southwest United States and Northern Mexico, providing water to approximately 35 million people and 4-5 million acres of irrigated lands. To manage the water resources of the basin, estimated to be about 17 million acre-feet (MAF) of undepleted supplies per year, managers use reservoir facilities that can store more than 60 MAF. As the demands on the water resources of the basin approach or exceed the average annual supply, and with average flow projected to decrease due to climate change, smart water management is vital for its sustainability. To quantify the future risk of depleting reservoir storage, Rajagopalan et al. (2009) developed a water-balance model and ran it under scenarios based on historical, paleo-reconstructed and future projections of flows, and different management alternatives. That study did not consider the impact of the Gila River, which enters the Colorado River below all major reservoirs and U.S. diversions. Due to intensive use in Central Arizona, the Gila only has significant inflows to the Colorado in wet years. However, these irregular inflows could beneficially influence system reliability in the US by helping to meet a portion of the 1.5 MAF delivery obligations to Mexico. To help quantify the potential system reliability benefit of the Gila River, we modify the Rajagopalan et al (2009) model to incorporate simulated Gila River inflows. These new data inputs to the water balance model are based on historical flows and tree-ring reconstructions of flow in the Upper Colorado River Basin (at Lee's Ferry), the Lower Colorado River Basin (tributary inflows), and the intermittent flows from the Gila River which are generated using extreme value analysis methods. Incorporating Gila River inflows, although they are highly variable and intermittent, reduces the modeled cumulative risk of reservoir depletion by 4 to 11% by 2057, depending on the demand schedule, reservoir operation guidelines, and climate change scenario assumptions. This potential risk mitigation could be at least partly realized through enhancements to current management practices, possibly in the Gila River, that could improve the water supply reliability for all stakeholders in the Colorado River Basin.

  1. Water Resources Sustainability in Northwest Mexico: Analysis of Regional Infrastructure Plans under Historical and Climate Change Scenarios

    NASA Astrophysics Data System (ADS)

    Che, D.; Robles-Morua, A.; Mayer, A. S.; Vivoni, E. R.

    2012-12-01

    The arid state of Sonora, Mexico, has embarked on a large water infrastructure project to provide additional water supply and improved sanitation to the growing capital of Hermosillo. The main component of the Sonora SI project involves an interbasin transfer from rural to urban water users that has generated conflicts over water among different social sectors. Through interactions with regional stakeholders from agricultural and water management agencies, we ascertained the need for a long-term assessment of the water resources of one of the system components, the Sonora River Basin (SRB). A semi-distributed, daily watershed model that includes current and proposed reservoir infrastructure was applied to the SRB. This simulation framework allowed us to explore alternative scenarios of water supply from the SRB to Hermosillo under historical (1980-2010) and future (2031-2040) periods that include the impact of climate change. We compared three precipitation forcing scenarios for the historical period: (1) a network of ground observations from Mexican water agencies; (2) gridded fields from the North America Land Data Assimilation System (NLDAS) at 12 km resolution; and (3) gridded fields from the Weather Research and Forecasting (WRF) model at 10 km resolution. These were compared to daily historical observations at two stream gauging stations and two reservoirs to generate confidence in the simulation tools. We then tested the impact of climate change through the use of the A2 emissions scenario and HadCM3 boundary forcing on the WRF simulations of a future period. Our analysis is focused on the combined impact of existing and proposed reservoir infrastructure at two new sites on the water supply management in the SRB under historical and future climate conditions. We also explore the impact of climate variability and change on the bimodal precipitation pattern from winter frontal storms and the summertime North American monsoon and its consequences on water management. Our results are presented in the form of flow duration, reliability and exceedence frequency curves that are commonly used in the water management agencies. Through this effort, we anticipate to build confidence among regional stakeholders in utilizing hydrological models in the development of water infrastructure plans and to foster conversations that address water sustainability issues.

  2. Climate change and long-term fire management impacts on Australian savannas.

    PubMed

    Scheiter, Simon; Higgins, Steven I; Beringer, Jason; Hutley, Lindsay B

    2015-02-01

    Tropical savannas cover a large proportion of the Earth's land surface and many people are dependent on the ecosystem services that savannas supply. Their sustainable management is crucial. Owing to the complexity of savanna vegetation dynamics, climate change and land use impacts on savannas are highly uncertain. We used a dynamic vegetation model, the adaptive dynamic global vegetation model (aDGVM), to project how climate change and fire management might influence future vegetation in northern Australian savannas. Under future climate conditions, vegetation can store more carbon than under ambient conditions. Changes in rainfall seasonality influence future carbon storage but do not turn vegetation into a carbon source, suggesting that CO₂ fertilization is the main driver of vegetation change. The application of prescribed fires with varying return intervals and burning season influences vegetation and fire impacts. Carbon sequestration is maximized with early dry season fires and long fire return intervals, while grass productivity is maximized with late dry season fires and intermediate fire return intervals. The study has implications for management policy across Australian savannas because it identifies how fire management strategies may influence grazing yield, carbon sequestration and greenhouse gas emissions. This knowledge is crucial to maintaining important ecosystem services of Australian savannas. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  3. THE APPLICATION OF A STATISTICAL DOWNSCALING PROCESS TO DERIVE 21{sup ST} CENTURY RIVER FLOW PREDICTIONS USING A GLOBAL CLIMATE SIMULATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Werth, D.; Chen, K. F.

    2013-08-22

    The ability of water managers to maintain adequate supplies in coming decades depends, in part, on future weather conditions, as climate change has the potential to alter river flows from their current values, possibly rendering them unable to meet demand. Reliable climate projections are therefore critical to predicting the future water supply for the United States. These projections cannot be provided solely by global climate models (GCMs), however, as their resolution is too coarse to resolve the small-scale climate changes that can affect hydrology, and hence water supply, at regional to local scales. A process is needed to ‘downscale’ themore » GCM results to the smaller scales and feed this into a surface hydrology model to help determine the ability of rivers to provide adequate flow to meet future needs. We apply a statistical downscaling to GCM projections of precipitation and temperature through the use of a scaling method. This technique involves the correction of the cumulative distribution functions (CDFs) of the GCM-derived temperature and precipitation results for the 20{sup th} century, and the application of the same correction to 21{sup st} century GCM projections. This is done for three meteorological stations located within the Coosa River basin in northern Georgia, and is used to calculate future river flow statistics for the upper Coosa River. Results are compared to the historical Coosa River flow upstream from Georgia Power Company’s Hammond coal-fired power plant and to flows calculated with the original, unscaled GCM results to determine the impact of potential changes in meteorology on future flows.« less

  4. Suspended sediment source areas and future climate impact on soil erosion and sediment yield in a New York City water supply watershed, USA

    NASA Astrophysics Data System (ADS)

    Mukundan, Rajith; Pradhanang, Soni M.; Schneiderman, Elliot M.; Pierson, Donald C.; Anandhi, Aavudai; Zion, Mark S.; Matonse, Adão H.; Lounsbury, David G.; Steenhuis, Tammo S.

    2013-02-01

    High suspended sediment loads and the resulting turbidity can impact the use of surface waters for water supply and other designated uses. Changes in fluvial sediment loads influence material fluxes, aquatic geochemistry, water quality, channel morphology, and aquatic habitats. Therefore, quantifying spatial and temporal patterns in sediment loads is important both for understanding and predicting soil erosion and sediment transport processes as well as watershed-scale management of sediment and associated pollutants. A case study from the 891 km2 Cannonsville watershed, one of the major watersheds in the New York City water supply system is presented. The objective of this study was to apply Soil and Water Assessment Tool-Water Balance (SWAT-WB), a physically based semi-distributed model to identify suspended sediment generating source areas under current conditions and to simulate potential climate change impacts on soil erosion and suspended sediment yield in the study watershed for a set of future climate scenarios representative of the period 2081-2100. Future scenarios developed using nine global climate model (GCM) simulations indicate a sharp increase in the annual rates of soil erosion although a similar result in sediment yield at the watershed outlet was not evident. Future climate related changes in soil erosion and sediment yield appeared more significant in the winter due to a shift in the timing of snowmelt and also due to a decrease in the proportion of precipitation received as snow. Although an increase in future summer precipitation was predicted, soil erosion and sediment yield appeared to decrease owing to an increase in soil moisture deficit and a decrease in water yield due to increased evapotranspiration.

  5. Potential impacts of global warming on water resources in southern California.

    PubMed

    Beuhler, M

    2003-01-01

    Global warming will have a significant impact on water resources within the 20 to 90-year planning period of many water projects. Arid and semi-arid regions such as Southern California are especially vulnerable to anticipated negative impacts of global warming on water resources. Long-range water facility planning must consider global climate change in the recommended mix of new facilities needed to meet future water requirements. The generally accepted impacts of global warming include temperature, rising sea levels, more frequent and severe floods and droughts, and a shift from snowfall to rain. Precipitation changes are more difficult to predict. For Southern California, these impacts will be especially severe on surface water supplies. Additionally, rising sea levels will exacerbate salt-water intrusion into freshwater and impact the quality of surface water supplies. Integrated water resources planning is emerging as a tool to develop water supplies and demand management strategies that are less vulnerable to the impacts of global warming. These tools include water conservation, conjunctive use of surface and groundwater and desalination of brackish water and possibly seawater. Additionally, planning for future water needs should include explicit consideration of the potential range of global warming impacts through techniques such as scenario planning.

  6. Integrated Modeling Approach for Optimal Management of Water, Energy and Food Security Nexus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiaodong; Vesselinov, Velimir Valentinov

    We report that water, energy and food (WEF) are inextricably interrelated. Effective planning and management of limited WEF resources to meet current and future socioeconomic demands for sustainable development is challenging. WEF production/delivery may also produce environmental impacts; as a result, green-house-gas emission control will impact WEF nexus management as well. Nexus management for WEF security necessitates integrated tools for predictive analysis that are capable of identifying the tradeoffs among various sectors, generating cost-effective planning and management strategies and policies. To address these needs, we have developed an integrated model analysis framework and tool called WEFO. WEFO provides a multi-periodmore » socioeconomic model for predicting how to satisfy WEF demands based on model inputs representing productions costs, socioeconomic demands, and environmental controls. WEFO is applied to quantitatively analyze the interrelationships and trade-offs among system components including energy supply, electricity generation, water supply-demand, food production as well as mitigation of environmental impacts. WEFO is demonstrated to solve a hypothetical nexus management problem consistent with real-world management scenarios. Model parameters are analyzed using global sensitivity analysis and their effects on total system cost are quantified. Lastly, the obtained results demonstrate how these types of analyses can be helpful for decision-makers and stakeholders to make cost-effective decisions for optimal WEF management.« less

  7. Integrated Modeling Approach for Optimal Management of Water, Energy and Food Security Nexus

    DOE PAGES

    Zhang, Xiaodong; Vesselinov, Velimir Valentinov

    2016-12-28

    We report that water, energy and food (WEF) are inextricably interrelated. Effective planning and management of limited WEF resources to meet current and future socioeconomic demands for sustainable development is challenging. WEF production/delivery may also produce environmental impacts; as a result, green-house-gas emission control will impact WEF nexus management as well. Nexus management for WEF security necessitates integrated tools for predictive analysis that are capable of identifying the tradeoffs among various sectors, generating cost-effective planning and management strategies and policies. To address these needs, we have developed an integrated model analysis framework and tool called WEFO. WEFO provides a multi-periodmore » socioeconomic model for predicting how to satisfy WEF demands based on model inputs representing productions costs, socioeconomic demands, and environmental controls. WEFO is applied to quantitatively analyze the interrelationships and trade-offs among system components including energy supply, electricity generation, water supply-demand, food production as well as mitigation of environmental impacts. WEFO is demonstrated to solve a hypothetical nexus management problem consistent with real-world management scenarios. Model parameters are analyzed using global sensitivity analysis and their effects on total system cost are quantified. Lastly, the obtained results demonstrate how these types of analyses can be helpful for decision-makers and stakeholders to make cost-effective decisions for optimal WEF management.« less

  8. Development of the Optimum Operation Scheduling Model of Domestic Electric Appliances for the Supply-Demand Adjustment in a Power System

    NASA Astrophysics Data System (ADS)

    Ikegami, Takashi; Iwafune, Yumiko; Ogimoto, Kazuhiko

    The high penetration of variable renewable generation such as Photovoltaic (PV) systems will cause the issue of supply-demand imbalance in a whole power system. The activation of the residential power usage, storage and generation by sophisticated scheduling and control using the Home Energy Management System (HEMS) will be needed to balance power supply and demand in the near future. In order to evaluate the applicability of the HEMS as a distributed controller for local and system-wide supply-demand balances, we developed an optimum operation scheduling model of domestic electric appliances using the mixed integer linear programming. Applying this model to several houses with dynamic electricity prices reflecting the power balance of the total power system, it was found that the adequate changes in electricity prices bring about the shift of residential power usages to control the amount of the reverse power flow due to excess PV generation.

  9. Dynamic Management of Releases for the Delaware River Basin using NYC's Operations Support Tool

    NASA Astrophysics Data System (ADS)

    Weiss, W.; Wang, L.; Murphy, T.; Muralidhar, D.; Tarrier, B.

    2011-12-01

    The New York City Department of Environmental Protection (DEP) has initiated design of an Operations Support Tool (OST), a state-of-the-art decision support system to provide computational and predictive support for water supply operations and planning. Using an interim version of OST, DEP and the New York State Department of Environmental Conservation (DEC) have developed a provisional, one-year Delaware River Basin reservoir release program to succeed the existing Flexible Flow Management Program (FFMP) which expired on May 31, 2011. The FFMP grew out of the Good Faith Agreement of 1983 among the four Basin states (New York, New Jersey, Pennsylvania, and Delaware) that established modified diversions and flow targets during drought conditions. It provided a set of release schedules as a framework for managing diversions and releases from New York City's Delaware Basin reservoirs in order to support multiple objectives, including water supply, drought mitigation, flood mitigation, tailwaters fisheries, main stem habitat, recreation, and salinity repulsion. The provisional program (OST-FFMP) defines available water based on current Upper Delaware reservoir conditions and probabilistic forecasts of reservoir inflow. Releases are then set based on a set of release schedules keyed to the water availability. Additionally, OST-FFMP attempts to provide enhanced downstream flood protection by making spill mitigation releases to keep the Delaware System reservoirs at a seasonally varying conditional storage objective. The OST-FFMP approach represents a more robust way of managing downstream releases, accounting for predicted future hydrologic conditions by making more water available for release when conditions are forecasted to be wet and protecting water supply reliability when conditions are forecasted to be dry. Further, the dynamic nature of the program allows the release decision to be adjusted as hydrologic conditions change. OST simulations predict that this program can provide substantial benefits for downstream stakeholders while protecting DEP's ability to ensure a reliable water supply for 9 million customers in NYC and the surrounding communities. The one-year nature of the program will allow for DEP and the Decree Parties to evaluate and improve the program in the future. This paper will describe the OST-FFMP program and discuss preliminary observations on its performance based on key NYC and downstream stakeholder performance metrics.

  10. Projected Irrigation Requirement Under Climate Change in Korean Peninsula by Apply Global Hydrologic Model to Local Scale.

    NASA Astrophysics Data System (ADS)

    Yang, B.; Lee, D. K.

    2016-12-01

    Understanding spatial distribution of irrigation requirement is critically important for agricultural water management. However, many studies considering future agricultural water management in Korea assessed irrigation requirement on watershed or administrative district scale, but have not accounted the spatial distribution. Lumped hydrologic model has typically used in Korea for simulating watershed scale irrigation requirement, while distribution hydrologic model can simulate the spatial distribution grid by grid. To overcome this shortcoming, here we applied a grid base global hydrologic model (H08) into local scale to estimate spatial distribution under future irrigation requirement of Korean Peninsula. Korea is one of the world's most densely populated countries, with also high produce and demand of rice which requires higher soil moisture than other crops. Although, most of the precipitation concentrate in particular season and disagree with crop growth season. This precipitation character makes management of agricultural water which is approximately 60% of total water usage critical issue in Korea. Furthermore, under future climate change, the precipitation predicted to be more concentrated and necessary need change of future water management plan. In order to apply global hydrological model into local scale, we selected appropriate major crops under social and local climate condition in Korea to estimate cropping area and yield, and revised the cropping area map more accurately. As a result, future irrigation requirement estimation varies under each projection, however, slightly decreased in most case. The simulation reveals, evapotranspiration increase slightly while effective precipitation also increase to balance the irrigation requirement. This finding suggest practical guideline to decision makers for further agricultural water management plan including future development of water supply plan to resolve water scarcity.

  11. NREPS Applications for Water Supply and Management in California and Tennessee

    NASA Technical Reports Server (NTRS)

    Gatlin, P.; Scott, M.; Carery, L. D.; Petersen, W. A.

    2011-01-01

    Management of water resources is a balancing act between temporally and spatially limited sources and competitive needs which can often exceed the supply. In order to manage water resources over a region such as the San Joaquin Valley or the Tennessee River Valley, it is pertinent to know the amount of water that has fallen in the watershed and where the water is going within it. Since rain gauge networks are typically sparsely spaced, it is typical that the majority of rainfall on the region may not be measured. To mitigate this under-sampling of rainfall, weather radar has long been employed to provide areal rainfall estimates. The Next-Generation Weather Radars (NEXRAD) make it possible to estimate rainfall over the majority of the conterminous United States. The NEXRAD Rainfall Estimation Processing System (NREPS) was developed specifically for the purpose of using weather radar to estimate rainfall for water resources management. The NREPS is tailored to meet customer needs on spatial and temporal scales relevant to the hydrologic or land-surface models of the end-user. It utilizes several techniques to mitigate artifacts in the NEXRAD data from contaminating the rainfall field. These techniques include clutter filtering, correction for occultation by topography as well as accounting for the vertical profile of reflectivity. This presentation will focus on improvements made to the NREPS system to map rainfall in the San Joaquin Valley for NASA s Water Supply and Management Project in California, but also ongoing rainfall mapping work in the Tennessee River watershed for the Tennessee Valley Authority and possible future applications in other areas of the continent.

  12. Analysing water use patterns for demand management: the case of the city of Masvingo, Zimbabwe

    NASA Astrophysics Data System (ADS)

    Dube, Emmanuel; van der Zaag, Pieter

    Water use in urban centres is dynamic, fluctuates, differs between high and low-income users, and tends to increase over time. Supply infrastructure can often hardly keep pace with increased water consumption. Given (a) the high cost of infrastructure development, (b) the recent emphasis on demand management, and (c) the social obligation to provide water services to the poor, urban water providers are faced with an important choice: whether to go the demand management route, or to continue constructing new infrastructure. This paper sheds light on some of the possibilities and constraints of both choices by providing a case study of the city of Masvingo in Zimbabwe. The paper analyses water use patterns in this city with a population of 70,000, located in a drought prone region of average rainfall of 600 mm/a. Water consumption has reached the limits of the water supply capacity. The paper first looks at the long-term water use pattern of the city as a whole and the factors that have caused the observed pattern using multiple linear regression. The paper then analyses the patterns of water use of rich and poor households, and attempts to assess the (im)possibilities of influencing these by means of an appropriate tariff structure. In projecting future demand, the paper then considers a number of interventions that could influence demand, which include leakage control, pressure management, awareness campaigns, free technical advice to water users, as well as a new tariff structure. It also discusses when new supply infrastructure should be available, depending on the various demand management measures taken.

  13. Cooperative Drought Adaptation: Integrating Infrastructure Development, Conservation, and Water Transfers into Adaptive Policy Pathways

    NASA Astrophysics Data System (ADS)

    Zeff, H. B.; Characklis, G. W.; Reed, P. M.; Herman, J. D.

    2015-12-01

    Water supply policies that integrate portfolios of short-term management decisions with long-term infrastructure development enable utilities to adapt to a range of future scenarios. An effective mix of short-term management actions can augment existing infrastructure, potentially forestalling new development. Likewise, coordinated expansion of infrastructure such as regional interconnections and shared treatment capacity can increase the effectiveness of some management actions like water transfers. Highly adaptable decision pathways that mix long-term infrastructure options and short-term management actions require decision triggers capable of incorporating the impact of these time-evolving decisions on growing water supply needs. Here, we adapt risk-based triggers to sequence a set of potential infrastructure options in combination with utility-specific conservation actions and inter-utility water transfers. Individual infrastructure pathways can be augmented with conservation or water transfers to reduce the cost of meeting utility objectives, but they can also include cooperatively developed, shared infrastructure that expands regional capacity to transfer water. This analysis explores the role of cooperation among four water utilities in the 'Research Triangle' region of North Carolina by formulating three distinct categories of adaptive policy pathways: independent action (utility-specific conservation and supply infrastructure only), weak cooperation (utility-specific conservation and infrastructure development with regional transfers), and strong cooperation (utility specific conservation and jointly developed of regional infrastructure that supports transfers). Results suggest that strong cooperation aids the utilities in meeting their individual objections at substantially lower costs and with fewer irreversible infrastructure options.

  14. Heat supply from municipal solid waste incineration plants in Japan: Current situation and future challenges.

    PubMed

    Tabata, Tomohiro; Tsai, Peii

    2016-02-01

    The use of waste-to-energy technology as part of a municipal solid waste management strategy could reduce the use of fossil fuels and contribute to prevention of global warming. In this study, we examined current heat and electricity production by incineration plants in Japan for external use. Herein, we discuss specific challenges to the promotion of heat utilisation and future municipal solid waste management strategies. We conducted a questionnaire survey to determine the actual conditions of heat production by incineration plants. From the survey results, information of about 498 incineration plants was extracted. When we investigated the relationship between heat production for external use and population density where incineration plants were located, we found that regions with a population density <1000 persons (km(2))(-1) produce <500 MJ t(-1) of heat. We also found that external use of such energy for factories, markets, and related use, was noted in cities with a population density of 2000 to 4000 persons (km(2))(-1). Several incineration plants have poor performance for heat production because there are few facilities near them to provide demand for the energy. This is the result of redundant capacity, and is reflected in the heat production performance. Given these results, we discussed future challenges to creating energy demand around incineration plants where there is presently none. We also examined the challenges involved in increasing heat supply beyond the present situation. © The Author(s) 2015.

  15. Academic food-supply veterinarians: future demand and likely shortages.

    PubMed

    Bruce Prince, J; Andrus, David M; Gwinner, Kevin

    2006-01-01

    The future demand for and potential shortages of food-supply veterinarians have been the subject of much concern. Using the Delphi forecasting method in a three-phase Web-based survey process, a panel of experts identified the trends and issues shaping the demand for and supply of academic food-animal veterinarians, then forecasted the likely future demand and shortages of food-supply veterinarians employed in academic institutions in the United States and Canada through 2016. The results indicate that there will be increasing future demand and persistent shortages of academic food-supply veterinarians unless current trends are countered with targeted, strategic action. The Delphi panel also evaluated the effectiveness of several strategies for reversing current trends and increasing the number of food-supply veterinarians entering into academic careers. Academic food-supply veterinarians are a key link in the system that produces food-supply veterinarians for all sectors (private practice, government service, etc.); shortages in the academic sector will amplify shortages wherever food-supply veterinarians are needed. Even fairly small shortages have significant public-health, food-safety, animal-welfare, and bio-security implications. Recent events demonstrate that in an increasingly interconnected global economic food supply system, national economies and public health are at risk unless an adequate supply of appropriately trained food-supply veterinarians is available to counter a wide variety of threats ranging from animal and zoonotic diseases to bioterrorism.

  16. Don't break the chain: importance of supply chain management in the operating room setting.

    PubMed

    Bilyk, Candis

    2008-09-01

    Management of supplies within the operating room (OR) has considerable implications for decreasing healthcare costs while maintaining high-quality patient care. This area of healthcare therefore requires more monitoring by end-users including OR management, physicians, and nursing staff. This article is based on understanding supply chain management in the OR setting. Information provided throughout the article can be applied to small or large health care centers. It defines supply chain management and contains a brief overview of supply chain processes. It reviews the benefits of following these processes. The article also includes recommendations for improving the supply chain in the OR.

  17. 41 CFR 101-30.101-13 - Management data.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....101-13 Section 101-30.101-13 Public Contracts and Property Management Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS SUPPLY AND PROCUREMENT 30-FEDERAL CATALOG SYSTEM 30... to the individual agency's supply system for purposes of supply management as standardization, source...

  18. 41 CFR 101-30.101-13 - Management data.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....101-13 Section 101-30.101-13 Public Contracts and Property Management Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS SUPPLY AND PROCUREMENT 30-FEDERAL CATALOG SYSTEM 30... to the individual agency's supply system for purposes of supply management as standardization, source...

  19. 41 CFR 101-30.101-13 - Management data.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....101-13 Section 101-30.101-13 Public Contracts and Property Management Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS SUPPLY AND PROCUREMENT 30-FEDERAL CATALOG SYSTEM 30... to the individual agency's supply system for purposes of supply management as standardization, source...

  20. Nurse managers' decision-making in daily unit operation in peri-operative settings: a cross-sectional descriptive study.

    PubMed

    Siirala, Eriikka; Peltonen, Laura-Maria; Lundgrén-Laine, Heljä; Salanterä, Sanna; Junttila, Kristiina

    2016-09-01

    To describe the tactical and the operational decisions made by nurse managers when managing the daily unit operation in peri-operative settings. Management is challenging as situations change rapidly and decisions are constantly made. Understanding decision-making in this complex environment helps to develop decision support systems to support nurse managers' operative and tactical decision-making. Descriptive cross-sectional design. Data were collected from 20 nurse managers with the think-aloud method during the busiest working hours and analysed using thematic content analysis. Nurse managers made over 700 decisions; either ad hoc (n = 289), near future (n = 268) or long-term (n = 187) by nature. Decisions were often made simultaneously with many interruptions. Ad hoc decisions covered staff allocation, ensuring adequate staff, rescheduling surgical procedures, confirmation tangible resources and following-up the daily unit operation. Decisions in the near future were: planning of surgical procedures and tangible resources, and planning staff allocation. Long-term decisions were: human recourses, nursing development, supplies and equipment, and finances in the unit. Decision-making was vulnerable to interruptions, which sometimes complicated the managing tasks. The results can be used when planning decision support systems and when defining the nurse managers' tasks in peri-operative settings. © 2016 John Wiley & Sons Ltd.

  1. An Analysis of United States Marine Corps Enlisted Entry-Level Training Using Supply Chain and Operations Management

    DTIC Science & Technology

    2010-12-01

    An Analysis of United States Marine Corps Enlisted Entry-Level Training Using Supply Chain and Operations Management ______________________________________ By...Report 4. TITLE AND SUBTITLE: An Analysis of United States Marine Corps Enlisted Entry-Level Training Using Supply Chain and Operations Management 6...Level Training; United States Marine Corps; Operations Management ; Supply Chain Management; Process Analysis 16. PRICE CODE 17. SECURITY

  2. Exploring future scenarios for the global supply chain of tuna

    NASA Astrophysics Data System (ADS)

    Mullon, C.; Guillotreau, P.; Galbraith, E. D.; Fortilus, J.; Chaboud, C.; Bopp, L.; Aumont, O.; Kaplan, D.

    2017-06-01

    The abundance of tuna, an important top predator that ranges throughout tropical and subtropical oceans, is now largely determined by fishing activity. Fishing activity, in turn, is determined by the interaction of fish availability, fishing capacity, fishing costs and global markets for tuna products. In the face of overfishing, the continued sustainable supply of tuna is likely to require improved global governance, that would benefit from modeling frameworks capable of integrating market forces with the availability of fish in order to consider alternative future projections. Here we describe such a modeling framework, in which we develop several simple, contrasting scenarios for the development of the tuna supply chain in order to illustrate the utility of the approach for global evaluation of management strategies for tuna and other complex, stock-structured fisheries. The model includes multiple national and multi-national fishing fleets, canneries and fresh/frozen markets, and connects these to global consumers using a network of flows. The model is calibrated using recent data on fish catch, cannery and fresh/frozen production, and consumption. Scenarios explore the control on future outcomes in the global tuna fishery by representing, in a simple way, the effects of (1) climate change, (2) changes in the global demand for tuna, and (3) changes in the access to fishing grounds (marine reserves). The results emphasize the potential importance of increasing demand in provoking a global collapse, and suggest that controlling tuna production by limiting technical efficiency is a potential countermeasure. Finally we discuss the outcomes in terms of potential extensions of the scenario approach allowed by this global network model of the tuna supply chain.

  3. Energy Requirements by the Water Sector in the Southwestern US: Past, Present, and Future

    NASA Astrophysics Data System (ADS)

    Averyt, K.; Yates, D. N.; Meldrum, J.

    2014-12-01

    Climate, energy, and water are fundamentally linked such that shifts in one sector have cascading impacts on the others. Consideration of the integrated system is necessary to fully understand the individual risk profile of each sector. In defining vulnerabilities and potential adaptations, the policy and regulatory environment must be considered alongside the biological and physical systems. Take, for example, the Southwestern U.S., a naturally arid system, where water availability is declining as a consequence of climate change and population growth. Adaptations by the water sector to convey, store, and develop new water sources (e.g. desalination, groundwater pumping, water-reuse) are strategies designed to enhance sustainability of the sector. But, the energy requirements embedded in these management techniques pose challenges to electric utilities. West wide, approximately 20% of total electricity generation goes toward supplying and heating water. If future investments made by the water sector to deal with changing supply and demand regimes continue to follow current trends, the dependence of water on energy availability will grow, meaning that the water supply will be increasingly reliant on the electricity system. Here, we use the example of long-term aridity and the recent drought in the Western US to illustrate the tradeoffs and challenges inherent at the nexus between energy and water. We present long-term trends in the energy intensity of water supplies in the Southwestern US, with a specific focus on groundwater systems. Projected energy requirements for proposed and future conveyance systems are discussed. The potential impacts of reduced flows on the Colorado River on the energy demands for groundwater pumping in the Lower Colorado River Basin are highlighted.

  4. Should the Defense Fuel Supply Center Trade in the Futures Market?

    DTIC Science & Technology

    1993-12-01

    reform, and Federal and State Law. 4 Over 30 hours of personal interviews were conducted with people from DFSC, the Department of Energy (DOE), the...Management, Finance and Accounting, and Personal Staff. (Defense Logistics Agency Command Support Office, 1993) Of particular interest is the Office of...member can beat the market price, attract hungry customers, improve personal market share, and thereby improve total revenue and profits. In effect

  5. Forest management to protect Colorado’s water resources: A synthesis report to support House Bill 16-1255

    Treesearch

    Niah B. H. Venable; Ryan Lockwood; Joseph DiMaria; Joseph Duda; Chuck Rhoades; Lisa Mason

    2017-01-01

    The Colorado Water Plan is a collaborative framework that sets forth objectives, goals and actions by which Coloradans can collectively address current and future water challenges through feasible and innovative solutions. As a majority of the state’s water supply flows from forested watersheds, the Colorado State Forest Service (CSFS), a service and outreach agency of...

  6. Enhancing Nursing Staffing Forecasting With Safety Stock Over Lead Time Modeling.

    PubMed

    McNair, Douglas S

    2015-01-01

    In balancing competing priorities, it is essential that nursing staffing provide enough nurses to safely and effectively care for the patients. Mathematical models to predict optimal "safety stocks" have been routine in supply chain management for many years but have up to now not been applied in nursing workforce management. There are various aspects that exhibit similarities between the 2 disciplines, such as an evolving demand forecast according to acuity and the fact that provisioning "stock" to meet demand in a future period has nonzero variable lead time. Under assumptions about the forecasts (eg, the demand process is well fit as an autoregressive process) and about the labor supply process (≥1 shifts' lead time), we show that safety stock over lead time for such systems is effectively equivalent to the corresponding well-studied problem for systems with stationary demand bounds and base stock policies. Hence, we can apply existing models from supply chain analytics to find the optimal safety levels of nurse staffing. We use a case study with real data to demonstrate that there are significant benefits from the inclusion of the forecast process when determining the optimal safety stocks.

  7. Information technology for sustainable supply chain management: a literature survey

    NASA Astrophysics Data System (ADS)

    Thöni, Andreas; Tjoa, A. Min

    2017-07-01

    In supply chain management (SCM), two topics have gained importance over the last years. On the one hand, sustainable SCM (SSCM) has become increasingly relevant and many publications have contributed to the topic. On the other hand, information technology (IT) is being progressively considered as a key enabler for efficiency in supply chains. Several research efforts have contributed to the field of IT for SSCM. However, this paper is the first recent attempt to summarise the current state of the art of how IT can affect SSCM in any structured way and to compare it with IT for 'general' SCM to give guidance for future research. This paper surveys 55 peer-reviewed articles that were retrieved through keyword searches (until May 2014). The analysis identifies research deficits as well as a lack of scientific discourse employing empirical techniques and a lack of investigations on the social sustainability. Additionally, possible topics for further research were derived by comparing the survey's results with the current research on IT for 'general' SCM following the analysis of 631 articles. Six fields could be identified, namely output/effects of IT, machine communication and multiagents, inputs and IT-supported processing, IT-enabled interorganisational exchange, quantitative IT approaches and a sector focus.

  8. How Will Copper Contamination Constrain Future Global Steel Recycling?

    PubMed

    Daehn, Katrin E; Cabrera Serrenho, André; Allwood, Julian M

    2017-06-06

    Copper in steel causes metallurgical problems, but is pervasive in end-of-life scrap and cannot currently be removed commercially once in the melt. Contamination can be managed to an extent by globally trading scrap for use in tolerant applications and dilution with primary iron sources. However, the viability of long-term strategies can only be evaluated with a complete characterization of copper in the global steel system and this is presented in this paper. The copper concentration of flows along the 2008 steel supply chain is estimated from a survey of literature data and compared with estimates of the maximum concentration that can be tolerated in steel products. Estimates of final steel demand and scrap supply by sector are taken from a global stock-saturation model to determine when the amount of copper in the steel cycle will exceed that which can be tolerated. Best estimates show that quantities of copper arising from conventional scrap preparation can be managed in the global steel system until 2050 assuming perfectly coordinated trade and extensive dilution, but this strategy will become increasingly impractical. Technical and policy interventions along the supply chain are presented to close product loops before this global constraint.

  9. Ecology and equity: key determinants of sustainable water security.

    PubMed

    Swaminathan, M S

    2001-01-01

    Trends in water consumption indicate that demand for water for household and industrial uses in developing countries could double as a proportion of total water demand in the next 25 years. Scope for expansion of water supply will, at the same time, be limited because development of irrigation and urban water supplies is becoming increasingly expensive, and often involves high costs in terms of environmental degradation and human resettlement. Without fundamental reform of water management, the rapid growth in urban water demand will require large transfers of water from irrigated agriculture, thereby threatening food security. Hence, water supply and demand should be managed in an integrated fashion, simultaneously considering all uses and sources. This will call for the establishment of community centred food and water security systems and national water trusts. Once such systems and Trusts are established there could be a legally binding Global Water Convention on the model of the Global Convention on Climate and Biodiversity. The details of such a Global Water Conventions can be finalized at one of the future Stockholm Water Symposia. There are uncommon opportunities today for a water-secure world through synergy between technology, public policy and peoples' participation.

  10. Modeling Forest Management Strategies for Hydrological Climate Change Adaptation in the upper Columbia

    NASA Astrophysics Data System (ADS)

    Duan, Z.; Sun, N.; Wigmosta, M. S.; Hessburg, P. F., Sr.; Coleman, A. M.; Salter, B.

    2017-12-01

    Management of forest lands in the Upper Columbia River basin is necessary to ensure the sustainability of natural ecosystems and enhance protection and recovery of fish and wildlife populations. By 2030, summertime surface water demand is expected to significantly exceed supply in most years in many Upper Columbia tributaries; in some years, a portion of these tributaries will exceed supply even outside the summer months. Forest restoration (i.e., timber harvest, prescribed burning, thinning) reduces canopy cover and, subsequently, has been shown in many cases to increase snow accumulation and total runoff volume. We use the Distributed Hydrology Soil Vegetation Model (DHSVM) to predict hydrologic properties and changes associated with realistic forest restoration scenarios prescribed in high spatial detail (90 m) within snow-dominated watersheds of the upper Columbia under current and future climate conditions. We consider changes in hydrological processes related to snowpack, stream discharge, and water temperature. Model results suggest forest restoration will impact annual water yield under both current and future climate conditions and the impact of forest restoration on the timing of snowmelt and streamflow varies from year to year and is highly dependent on local meteorological conditions and particular forest restoration scenarios. Corresponding changes in water temperature will also be discussed.

  11. Land use efficiency: anticipating future demand for land-sector greenhouse gas emissions abatement and managing trade-offs with agriculture, water, and biodiversity.

    PubMed

    Bryan, Brett A; Crossman, Neville D; Nolan, Martin; Li, Jing; Navarro, Javier; Connor, Jeffery D

    2015-11-01

    Competition for land is increasing, and policy needs to ensure the efficient supply of multiple ecosystem services from land systems. We modelled the spatially explicit potential future supply of ecosystem services in Australia's intensive agricultural land in response to carbon markets under four global outlooks from 2013 to 2050. We assessed the productive efficiency of greenhouse gas emissions abatement, agricultural production, water resources, and biodiversity services and compared these to production possibility frontiers (PPFs). While interacting commodity markets and carbon markets produced efficient outcomes for agricultural production and emissions abatement, more efficient outcomes were possible for water resources and biodiversity services due to weak price signals. However, when only two objectives were considered as per typical efficiency assessments, efficiency improvements involved significant unintended trade-offs for the other objectives and incurred substantial opportunity costs. Considering multiple objectives simultaneously enabled the identification of land use arrangements that were efficient over multiple ecosystem services. Efficient land use arrangements could be selected that meet society's preferences for ecosystem service provision from land by adjusting the metric used to combine multiple services. To effectively manage competition for land via land use efficiency, market incentives are needed that effectively price multiple ecosystem services. © 2015 John Wiley & Sons Ltd.

  12. A scoping review of nursing workforce planning and forecasting research.

    PubMed

    Squires, Allison; Jylhä, Virpi; Jun, Jin; Ensio, Anneli; Kinnunen, Juha

    2017-11-01

    This study will critically evaluate forecasting models and their content in workforce planning policies for nursing professionals and to highlight the strengths and the weaknesses of existing approaches. Although macro-level nursing workforce issues may not be the first thing that many nurse managers consider in daily operations, the current and impending nursing shortage in many countries makes nursing specific models for workforce forecasting important. A scoping review was conducted using a directed and summative content analysis approach to capture supply and demand analytic methods of nurse workforce planning and forecasting. The literature on nurse workforce forecasting studies published in peer-reviewed journals as well as in grey literature was included in the scoping review. Thirty six studies met the inclusion criteria, with the majority coming from the USA. Forecasting methods were biased towards service utilization analyses and were not consistent across studies. Current methods for nurse workforce forecasting are inconsistent and have not accounted sufficiently for socioeconomic and political factors that can influence workforce projections. Additional studies examining past trends are needed to improve future modelling. Accurate nursing workforce forecasting can help nurse managers, administrators and policy makers to understand the supply and demand of the workforce to prepare and maintain an adequate and competent current and future workforce. © 2017 John Wiley & Sons Ltd.

  13. Institutional and socioeconomic aspects of water supply

    NASA Astrophysics Data System (ADS)

    Rauchenschwandtner, H.; Pachel, M.

    2012-04-01

    Institutional and socioeconomic aspects of water supply Within the project CC-WaterS the participating researchers of the Vienna University of Economics and B.A. have been responsible for the analysis of the socioeconomic aspects related to water supply and climate change, the assessment of future water demands in the City of Vienna, as well as an estimation of economic consequences of possible water shortages and possible scope for the introduction of new legal guidelines. The institutional and socioeconomic dimensions of drinking water and sanitation systems are being examined by utilisation of different prognostic scenarios in order to assess future costs of water provisioning and future demands of main water users, thus providing an information basis and recommendations for policy and decision makers in the water sector. These dimensions, for example, include EU legislation - especially the Water Framework Directive -, national legislations and strategies targeted at achieving sustainability in water usage, best practices and different forms of regulating water markets, and an analysis of the implications of demographic change. As a basis this task encompasses research of given institutional, social, and legal-political structures in the area of water supply. In this course we provide an analysis of the structural characteristics of water markets, the role of water prices, the increasing perception of water as an economic good as well as implications thereof, the public awareness in regard to climate change and water resources, as well as related legal aspects and involved actors from regional to international level; and show how water resources and the different systems of water provisioning are affected by (ideological) conflicts on various levels. Furthermore, and in order to provide a solid basis for management recommendations related to climate change and water supply, an analytical risk-assessment framework based on the concepts of new institutional economics is being developed, which provides a different analytical perspective for examining the linkages between institutions, economic processes, and societal factors.

  14. GIS-based analysis of drinking-water supply structures: a module for microbial risk assessment.

    PubMed

    Kistemann, T; Herbst, S; Dangendorf, F; Exner, M

    2001-05-01

    Water-related infections constitute an important health impact world-wide. A set of tools serving for Microbial Risk Assessment (MRA) of waterborne diseases should comprise the entire drinking-water management system and take into account the Hazard Analysis and Critical Control Point (HACCP) concept which provides specific Critical Control Points (CCPs) reflecting each step of drinking-water provision. A Geographical Information System (GIS) study concerning water-supply structure (WSS) was conducted in the Rhein-Berg District (North Rhine-Westphalia, Germany). As a result, suitability of the existing water databases HYGRIS (hydrological basis geo-information system) and TEIS (drinking-water recording and information system) for the development of a WSS-GIS module could be demonstrated. Spatial patterns within the integrated raw and drinking-water data can easily be uncovered by GIS-specific options. The application of WSS-GIS allows a rapid visualization and analysis of drinking-water supply structure and offers huge advantages concerning microbial monitoring of raw and drinking water as well as recognition and investigation of incidents and outbreaks. Increasing requests regarding health protection and health reporting, demands for a better outbreak management and water-related health impacts of global climate change are major challenges of future water management to be tackled with methods including spatial analysis. GIS is assumed to be a very useful tool to meet these requirements.

  15. Modeling Limited Foresight in Water Management Systems

    NASA Astrophysics Data System (ADS)

    Howitt, R.

    2005-12-01

    The inability to forecast future water supplies means that their management inevitably occurs under situations of limited foresight. Three modeling problems arise, first what type of objective function is a manager with limited foresight optimizing? Second how can we measure these objectives? Third can objective functions that incorporate uncertainty be integrated within the structure of optimizing water management models? The paper reviews the concepts of relative risk aversion and intertemporal substitution that underlie stochastic dynamic preference functions. Some initial results from the estimation of such functions for four different dam operations in northern California are presented and discussed. It appears that the path of previous water decisions and states influences the decision-makers willingness to trade off water supplies between periods. A compromise modeling approach that incorporates carry-over value functions under limited foresight within a broader net work optimal water management model is developed. The approach uses annual carry-over value functions derived from small dimension stochastic dynamic programs embedded within a larger dimension water allocation network. The disaggregation of the carry-over value functions to the broader network is extended using the space rule concept. Initial results suggest that the solution of such annual nonlinear network optimizations is comparable to, or faster than, the solution of linear network problems over long time series.

  16. Impact of green supply chain management practices on firms' performance: an empirical study from the perspective of Pakistan.

    PubMed

    Khan, Syed Abdul Rehman; Qianli, Dong

    2017-07-01

    This article investigates the impact of five determinants of the green supply chain practices on organizational performance in the context of Pakistan manufacturing firms. A sample of 218 firms was collected from the manufacturing industry. The green supply chain practices were measured through five independent variables including green manufacturing, green purchasing, green information systems, cooperation with customers, and eco-design. By using exploratory factor and simultaneous regression analysis, the results indicate that except green purchasing, rests of the four independent variables have been found statistically significant to predict organizational performance. However, the eco-design of green practices followed by green information systems has revealed the greatest impact on organizational performance. Therefore, the managers of the manufacturing firms should not only implement eco-design in their supply chain but also concentrate on proper monitoring and implementation of green information systems to increase their firms' performance. A main contribution of this research from theoretical side is that it is possible to notice a negative effect of "green purchasing" towards organizational performance particularly in the scenario of Pakistan manufacturing industry. Another valuable result is that green purchasing is an important antecedent of firms economic performance in the US manufacturing firms (Green et al. 2012), although not significantly related to organizational performance in our study. In addition, we also discussed research limitations, areas for future research, and implications for practitioners.

  17. 41 CFR 101-27.303 - Reducing long supply.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Reducing long supply. 101-27.303 Section 101-27.303 Public Contracts and Property Management Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS SUPPLY AND PROCUREMENT 27-INVENTORY MANAGEMENT 27.3...

  18. Water stress, water salience, and the implications for water supply planning

    NASA Astrophysics Data System (ADS)

    Garcia, M. E.; Islam, S.

    2017-12-01

    Effectively addressing the water supply challenges posed by urbanization and climate change requires a holistic understanding of the water supply system, including the impact of human behavior on system dynamics. Decision makers have limits to available information and information processing capacity, and their attention is not equally distributed among risks. The salience of a given risk is higher when increased attention is directed to it and though perceived risk may increase, real risk does not change. Relevant to water supply planning is how and when water stress results in an increased salience of water risks. This work takes a socio-hydrological approach to develop a water supply planning model that includes water consumption as an endogenous variable, in the context of Las Vegas, NV. To understand the benefits and limitations of this approach, this model is compared to a traditional planning model that uses water consumption scenarios. Both models are applied to project system reliability and water stress under four streamflow and demographic scenarios, and to assess supply side responses to changing conditions. The endogenous demand model enables the identification of feedback between both supply and demand management decisions on future water consumption and system performance. This model, while specific to the Las Vegas case, demonstrates a prototypical modeling framework capable of examining water-supply demand interactions by incorporating water stress driven conservation.

  19. Mediterranean California’s water use future under multiple scenarios of developed and agricultural land use change

    USGS Publications Warehouse

    Wilson, Tamara; Sleeter, Benjamin M.; Cameron, D. Richard

    2017-01-01

    With growing demand and highly variable inter-annual water supplies, California’s water use future is fraught with uncertainty. Climate change projections, anticipated population growth, and continued agricultural intensification, will likely stress existing water supplies in coming decades. Using a state-and-transition simulation modeling approach, we examine a broad suite of spatially explicit future land use scenarios and their associated county-level water use demand out to 2062. We examined a range of potential water demand futures sampled from a 20-year record of historical (1992–2012) data to develop a suite of potential future land change scenarios, including low/high change scenarios for urbanization and agriculture as well as “lowest of the low” and “highest of the high” anthropogenic use. Future water demand decreased 8.3 billion cubic meters (Bm3) in the lowest of the low scenario and decreased 0.8 Bm3 in the low agriculture scenario. The greatest increased water demand was projected for the highest of the high land use scenario (+9.4 Bm3), high agricultural expansion (+4.6 Bm3), and high urbanization (+2.1 Bm3) scenarios. Overall, these scenarios show agricultural land use decisions will likely drive future demand more than increasing municipal and industrial uses, yet improved efficiencies across all sectors could lead to potential water use savings. Results provide water managers with information on diverging land use and water use futures, based on historical, observed land change trends and water use histories.

  20. Mediterranean California’s water use future under multiple scenarios of developed and agricultural land use change

    PubMed Central

    Sleeter, Benjamin M.; Cameron, D. Richard

    2017-01-01

    With growing demand and highly variable inter-annual water supplies, California’s water use future is fraught with uncertainty. Climate change projections, anticipated population growth, and continued agricultural intensification, will likely stress existing water supplies in coming decades. Using a state-and-transition simulation modeling approach, we examine a broad suite of spatially explicit future land use scenarios and their associated county-level water use demand out to 2062. We examined a range of potential water demand futures sampled from a 20-year record of historical (1992–2012) data to develop a suite of potential future land change scenarios, including low/high change scenarios for urbanization and agriculture as well as “lowest of the low” and “highest of the high” anthropogenic use. Future water demand decreased 8.3 billion cubic meters (Bm3) in the lowest of the low scenario and decreased 0.8 Bm3 in the low agriculture scenario. The greatest increased water demand was projected for the highest of the high land use scenario (+9.4 Bm3), high agricultural expansion (+4.6 Bm3), and high urbanization (+2.1 Bm3) scenarios. Overall, these scenarios show agricultural land use decisions will likely drive future demand more than increasing municipal and industrial uses, yet improved efficiencies across all sectors could lead to potential water use savings. Results provide water managers with information on diverging land use and water use futures, based on historical, observed land change trends and water use histories. PMID:29088254

  1. Managing to harvest? Perspectives on the potential of aquaculture

    PubMed Central

    Muir, James

    2005-01-01

    Aquaculture has been one of the most rapid and technically innovative of food production sectors globally, with significant investment, scientific and technical development and production growth in many parts of the world over the past two decades. While this has had a significant effect on the global supply of aquatic food products and had an important impact in rural and urban food supply and employment in many developing economies, growth and increasing internationalization has not been without concern for natural resource use, environmental impact and social disruption. The expectations for production and diversification are now significant and while the scientific and technical means are already available to meet much of the intended targets, practical constraints of investment, profitability, resource access and system efficiency are likely to become far more important constraints for the future. This review offers a contemporary perspective on the ways in which the sector might develop, its interactions with constraints and the strategies that may be required to ensure that future development is both positive and sustainable. PMID:15713597

  2. Water supply and management concepts

    USGS Publications Warehouse

    Leopold, Luna Bergere

    1965-01-01

    If I had to cite one fact about water in the United States which would be not only the most important but also the most informative, the one I would choose would k this: Over 50 percent of all the water presently being used in the United States is used by industry, and nearly all of that is used for cooling.The large amount of attention recently being given to water shortage and the expected rapid increase in demand for water is probably to some extent clouded because there are certain simple facts about water availability and water use which, though readily available, are not generally either known or understood.Probably most people react to information in the public press about present and possible future water shortages with the thought that it is going to be more difficult in the future to supply the ordinary household with water for drinking, washing, and tbe culinary arts. As a matter of fact that may be true to some extent, but it is not the salient aspect.

  3. 41 CFR 101-28.303 - Benefits provided by customer supply centers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... customer supply centers. 101-28.303 Section 101-28.303 Public Contracts and Property Management Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS SUPPLY AND PROCUREMENT 28... centers. The customer supply centers (CSCs) provide the following: (a) Overall savings to the Federal...

  4. 41 CFR 101-28.303 - Benefits provided by customer supply centers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... customer supply centers. 101-28.303 Section 101-28.303 Public Contracts and Property Management Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS SUPPLY AND PROCUREMENT 28... centers. The customer supply centers (CSCs) provide the following: (a) Overall savings to the Federal...

  5. 41 CFR 101-28.303 - Benefits provided by customer supply centers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... customer supply centers. 101-28.303 Section 101-28.303 Public Contracts and Property Management Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS SUPPLY AND PROCUREMENT 28... centers. The customer supply centers (CSCs) provide the following: (a) Overall savings to the Federal...

  6. 41 CFR 101-28.303 - Benefits provided by customer supply centers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... customer supply centers. 101-28.303 Section 101-28.303 Public Contracts and Property Management Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS SUPPLY AND PROCUREMENT 28... centers. The customer supply centers (CSCs) provide the following: (a) Overall savings to the Federal...

  7. Information flow in the pharmaceutical supply chain.

    PubMed

    Yousefi, Nazila; Alibabaei, Ahmad

    2015-01-01

    Managing the supply chain plays an important role in creating competitive advantages for companies. Adequate information flow in supply chain is one of the most important issues in SCM. Therefore, using certain Information Systems can have a significant role in managing and integrating data and information within the supply chain. Pharmaceutical supply chain is more complex than many other supply chains, in the sense that it can affect social and political perspectives. On the other hand, managing the pharmaceutical supply chain is difficult because of its complexity and also government regulations in this field. Although, Iran has progressed a lot in pharmaceutical manufacturing, still there are many unsolved issues in managing the information flow in the pharmaceutical supply chain. In this study, we reviewed the benefits of using different levels of an integrated information system in the supply chain and the possible challenges ahead.

  8. Water-centric nexus for response to climate change on agriculture and forest sector: The case of the Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Lim, C. H.; Choi, Y.; Jeon, S. W.; Lee, W. K.

    2017-12-01

    Given their complexity and the number of stakeholders involved, it is difficult to solve social issues or problems based on an analysis that focuses on a single dimension. In particular, research surrounding climate change is inherently multidisciplinary and there is a need for highly pluralistic nexuses that can be used as a framework for policy decisions. Here, we suggest to water-centric nexus on agriculture and forest sector to improve response to climate change. The nexus is composed agricultural water demand and forest water supply to enhancing water-related adaptation to climate change in the Korean Peninsula. Agricultural productivity and water use related variables was estimating by EPIC crop model, and InVEST model applied for estimation of forest water supply. Results under two climate change scenarios (RCP4.5 and 8.5) and time period (2050s and 2070s), the forest water supply for the all future climate scenarios will increase significantly. In case of agriculture, irrigated crops experienced only the benefits of climate change, but rainfed crops were negatively impacted. It was also found that crop irrigation demand in the future is expected to be around twice as high as baseline levels, thus making irrigation more difficult to successfully implement. These hydrological threats have the potential to greatly reduce food security. In the nexus perspectives, the drop in the productivity of rainfed crops and the increase in irrigation demand in the agriculture sector can be resolved through interconnections with the forest sector. Appropriate management of the water supply in future climatic conditions characterized by increasing precipitation can maintain and expand agricultural areas through irrigation. To achieve this, a time-series water supply versus demand analysis must be performed so that an accurate balance between supply and demand can be established. Water-centric interactions of the agriculture and forest are the basis of nexus-based adaptation and they can suggest effective climate change responses for the Korean peninsula. In particular, this approach will be effective in transforming sectors that experience trade-offs into ones that promote synergies.

  9. Changes in groundwater recharge under projected climate in the upper Colorado River basin

    USGS Publications Warehouse

    Tillman, Fred; Gangopadhyay, Subhrendu; Pruitt, Tom

    2016-01-01

    Understanding groundwater-budget components, particularly groundwater recharge, is important to sustainably manage both groundwater and surface water supplies in the Colorado River basin now and in the future. This study quantifies projected changes in upper Colorado River basin (UCRB) groundwater recharge from recent historical (1950–2015) through future (2016–2099) time periods, using a distributed-parameter groundwater recharge model with downscaled climate data from 97 Coupled Model Intercomparison Project Phase 5 climate projections. Simulated future groundwater recharge in the UCRB is generally expected to be greater than the historical average in most decades. Increases in groundwater recharge in the UCRB are a consequence of projected increases in precipitation, offsetting reductions in recharge that would result from projected increased temperatures.

  10. Atmospheric river influence on the intensification of extreme hydrologic events over the Western United States under climate change scenarios

    NASA Astrophysics Data System (ADS)

    Pagán, Brianna; Ashfaq, Moetasim; Nayak, Munir; Rastogi, Deeksha; Margulis, Steven; Pal, Jeremy

    2017-04-01

    The Western United States shares limited snowmelt driven water supplies amongst millions of people, a multi-billion dollar agriculture industry and fragile ecosystems. The climatology of the region is highly variable, characterized by the frequent occurrences of both flood and drought conditions that cause increasingly challenging water management issues. Although variable year to year, up to half of California's total precipitation can be linked to atmospheric rivers (ARs). Most notably, ARs have been connected to nearly every major historic flood in the region, establishing its critical role to water supply. Numerous prior studies have considered potential climate change impacts over the Western United States and have generally concluded that warmer temperatures will reduce snowpack and shift runoff timing, causing reductions to water supply. Here we examine the role of ARs as one mechanism for explaining projected increases in flood and drought frequency and intensity under climate change scenarios, vital information for water resource managers. A hierarchical modeling framework to downscale 11 coupled global climate models from CMIP5 is used to form an ensemble of high-resolution dynamically downscaled regional climate model (via RegCM4) simulations at 18-km and hydrological (via VIC) simulations at a 4-km resolution for baseline (1965-2005) and future (2010-2050) periods under RCP 8.5. Each ensemble member's ability to capture observational AR climatology over the baseline period is evaluated. Baseline to future period changes to AR size, duration, seasonal timing, trajectory, magnitude and frequency are presented. These changes to the characterizations of ARs in the region are used to determine if any links exist to changes in snowpack volume, runoff timing, and the occurrence of daily and annual cumulative extreme precipitation and runoff events. Shifts in extreme AR frequency and magnitude are expected to increase flood risks, which without adequate multi-year reservoir storage solutions could further strain water supply resources.

  11. 41 CFR 101-26.507-3 - Purchase of security equipment from Federal Supply Schedules.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the unforeseen demands for security equipment, Federal Supply Schedule contracts have been established... equipment from Federal Supply Schedules. 101-26.507-3 Section 101-26.507-3 Public Contracts and Property Management Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS SUPPLY AND...

  12. 76 FR 41525 - Hewlett Packard Global Parts Supply Chain, Global Product Life Cycles Management Unit Including...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-14

    ... Parts Supply Chain, Global Product Life Cycles Management Unit Including Teleworkers Reporting to... workers of Hewlett Packard, Global Parts Supply Chain, Global Product Life Cycles Management Unit...). Since eligible workers of Hewlett Packard, Global Parts Supply Chain, Global Product Life Cycles...

  13. Analysis of projected water availability with current basin management plan, Pajaro Valley, California

    NASA Astrophysics Data System (ADS)

    Hanson, R. T.; Lockwood, B.; Schmid, Wolfgang

    2014-11-01

    The projection and analysis of the Pajaro Valley Hydrologic Model (PVHM) 34 years into the future using MODFLOW with the Farm Process (MF-FMP) facilitates assessment of potential future water availability. The projection is facilitated by the integrated hydrologic model, MF-FMP that fully couples the simulation of the use and movement of water from precipitation, streamflow, runoff, groundwater flow, and consumption by natural and agricultural vegetation throughout the hydrologic system at all times. MF-FMP allows for more complete analysis of conjunctive-use water-resource systems than previously possible with MODFLOW by combining relevant aspects of the landscape with the groundwater and surface-water components. This analysis is accomplished using distributed cell-by-cell supply-constrained and demand-driven components across the landscape within ;water-balance subregions; (WBS) comprised of one or more model cells that can represent a single farm, a group of farms, watersheds, or other hydrologic or geopolitical entities. Analysis of conjunctive use would be difficult without embedding the fully coupled supply-and-demand into a fully coupled simulation, and are difficult to estimate a priori. The analysis of projected supply and demand for the Pajaro Valley indicate that the current water supply facilities constructed to provide alternative local sources of supplemental water to replace coastal groundwater pumpage, but may not completely eliminate additional overdraft. The simulation of the coastal distribution system (CDS) replicates: 20 miles of conveyance pipeline, managed aquifer recharge and recovery (MARR) system that captures local runoff, and recycled-water treatment facility (RWF) from urban wastewater, along with the use of other blend water supplies, provide partial relief and substitution for coastal pumpage (aka in-lieu recharge). The effects of these Basin Management Plan (BMP) projects were analyzed subject to historical climate variations and assumptions of 2009 urban water demand and land use. Water supplied directly from precipitation, and indirectly from reuse, captured local runoff, and groundwater is necessary but inadequate to satisfy agricultural demand without coastal and regional storage depletion that facilitates seawater intrusion. These facilities reduce potential seawater intrusion by about 45% with groundwater levels in the four regions served by the CDS projected to recover to levels a few feet above sea level. The projected recoveries are not high enough to prevent additional seawater intrusion during dry-year periods or in the deeper aquifers where pumpage is greater. While these facilities could reduce coastal pumpage by about 55% of the historical 2000-2009 pumpage for these regions, and some of the water is delivered in excess of demand, other coastal regions continue to create demands on coastal pumpage that will need to be replaced to reduce seawater intrusion. In addition, inland urban and agricultural demands continue to sustain water levels below sea level causing regional landward gradients that also drive seawater intrusion. Seawater intrusion is reduced by about 45% but it supplies about 55% of the recovery of groundwater levels in the coastal regions served by the CDS. If economically feasible, water from summer agricultural runoff and tile-drain returnflows could be another potential local source of water that, if captured and reused, could offset the imbalance between supply and demand as well as reducing discharge of agricultural runoff into the National Marine Sanctuary of Monterey Bay. A BMP update (2012) identifies projects and programs that will fund a conservation program and will provide additional, alternative water sources to reduce or replace coastal and inland pumpage, and to replenish the aquifers with managed aquifer recharge in an inland portion of the Pajaro Valley.

  14. Commitment to and preparedness for sustainable supply chain management in the oil and gas industry.

    PubMed

    Wan Ahmad, Wan Nurul K; Rezaei, Jafar; Tavasszy, Lóránt A; de Brito, Marisa P

    2016-09-15

    Our current dependency on the oil and gas (O&G) industry for economic development and social activities necessitates research into the sustainability of the industry's supply chains. At present, studies on sustainable supply chain management (SSCM) practices in the industry do not include firm-internal factors that affect the sustainability strategies employed by different functional areas of its supply chains. Our study aims to address this gap by identifying the relevant internal factors and exploring their relationship with SSCM strategies. Specifically, we discuss the commitment to and preparedness for sustainable practices of companies that operate in upstream and downstream O&G supply chain. We study the impact of these factors on their sustainability strategies of four key supply chain functions: supplier management, production management, product stewardship and logistics management. The analyses of data collected through a survey among 81 companies show that management preparedness may enhance sustainable supply chain strategies in the O&G industry more than commitment does. Among the preparedness measures, management of supply chain operational risks is found to be vital to the sustainability of all supply chain functions except for production management practices. The findings also highlight the central importance of supplier and logistics management to the achievement of sustainable O&G supply chains. Companies must also develop an organizational culture that encourages, for example, team collaboration and proactive behaviour to finding innovative sustainability solutions in order to translate commitment to sustainable practices into actions that can produce actual difference to their SSCM practices. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Evolutionary Game Model Study of Construction Green Supply Chain Management under the Government Intervention

    NASA Astrophysics Data System (ADS)

    Xing, Yuanzhi; Deng, Xiaoyi

    2017-11-01

    The paper first has defined the concepts of green supply chain management and evolution game theory, and pointed out the characteristics of green supply chain management in construction. The main participants and key links of the construction green supply chain management are determined by constructing the organization framework. This paper established the evolutionary game model between construction enterprises and recycling enterprises for the green supply chain closed-loop structure. The waste recycling evolutionary stability equilibrium solution is obtained to explore the principle and effective scope of government policy intervention. This paper put forward the relevant countermeasures to the green supply chain management in construction recycling stage from the government point of view. The conclusion has reference value and guidance to the final product construction enterprises, recycling enterprises and the government during green supply chain.

  16. The Indus basin in the framework of current and future water resources management

    NASA Astrophysics Data System (ADS)

    Laghari, A. N.; Vanham, D.; Rauch, W.

    2012-04-01

    The Indus basin is one of the regions in the world that is faced with major challenges for its water sector, due to population growth, rapid urbanisation and industrialisation, environmental degradation, unregulated utilization of the resources, inefficient water use and poverty, all aggravated by climate change. The Indus Basin is shared by 4 countries - Pakistan, India, Afghanistan and China. With a current population of 237 million people which is projected to increase to 319 million in 2025 and 383 million in 2050, already today water resources are abstracted almost entirely (more than 95% for irrigation). Climate change will result in increased water availability in the short term. However in the long term water availability will decrease. Some current aspects in the basin need to be re-evaluated. During the past decades water abstractions - and especially groundwater extractions - have augmented continuously to support a rice-wheat system where rice is grown during the kharif (wet, summer) season (as well as sugar cane, cotton, maize and other crops) and wheat during the rabi (dry, winter) season. However, the sustainability of this system in its current form is questionable. Additional water for domestic and industrial purposes is required for the future and should be made available by a reduction in irrigation requirements. This paper gives a comprehensive listing and description of available options for current and future sustainable water resources management (WRM) within the basin. Sustainable WRM practices include both water supply management and water demand management options. Water supply management options include: (1) reservoir management as the basin is characterised by a strong seasonal behaviour in water availability (monsoon and meltwater) and water demands; (2) water quality conservation and investment in wastewater infrastructure; (3) the use of alternative water resources like the recycling of wastewater and desalination; (4) land use planning and soil conservation as well as flood management, with a focus on the reduction of erosion and resulting sedimentation as well as the restoration of ecosystem services like wetlands and natural floodplains. Water demand management options include: (1) the management of conjunctive use of surface and groundwater; as well as (2) the rehabilitation and modernization of existing infrastructure. Other demand management options are: (3) the increase of water productivity for agriculture; (4) crop planning and diversification including the critical assessment of agricultural export, especially (basmati) rice; (5) economic instruments and (6) changing food demand patterns and limiting post-harvest losses.

  17. Inventing the future: Energy and the CO2 "greenhouse" effect

    NASA Astrophysics Data System (ADS)

    Davis, E. E., Jr.

    Dennis Gabor, A winner of the Nobel Prize for Physics, once remarked that man cannot predict the future, but he can invent it. The point is that while we do not know with certainty how things will turn out, our own actions can play a powerful role in shaping the future. Naturally, Gabor had in mind the power of science and technology, and the model includes that of correction or feedback. It is an important: Man does not have the gift of prophecy. Any manager or government planner would err seriously by masterminding a plan based unalterably on some vision of the future, without provision for mid-course correction. It is also a comforting thought. With man's notorious inability to create reliable predictions about such matters as elections, stock markets, energy supply and demand, and, of course, the weather, it is a great consolation to feel that we can still retain some control of the future.

  18. A future Demand Side Management (DSM) opportunity for utility as variable renewable penetrate scale up using agriculture.

    NASA Astrophysics Data System (ADS)

    Ines, A.; Bhattacharjee, A.; Modi, V.; Robertson, A. W.; Lall, U.; Kocaman Ayse, S.; Chaudhary, S.; Kumar, A.; Ganapathy, A.; Kumar, A.; Mishra, V.

    2015-12-01

    Energy demand management, also known as demand side management (DSM), is the modification of consumer demand for energy through various methods such as smart metering, incentive based schemes, payments for turning off loads or rescheduling loads. Usually, the goal of demand side management is to encourage the consumer to use less power during periods of peak demand, or to move the time of energy use to off-peak times. Peak demand management does not necessarily decrease total energy consumption, but could be expected to reduce the need for investments in networks and/or power plants for meeting peak demands. Electricity use can vary dramatically on short and medium time frames, and the pricing system may not reflect the instantaneous cost as additional higher-cost that are brought on-line. In addition, the capacity or willingness of electricity consumers to adjust to prices by altering elasticity of demand may be low, particularly over short time frames. In the scenario of Indian grid setup, the retail customers do not follow real-time pricing and it is difficult to incentivize the utility companies for continuing the peak demand supply. A question for the future is how deeper penetration of renewable will be handled? This is a challenging problem since one has to deal with high variability, while managing loss of load probabilities. In the case of managing the peak demand using agriculture, in the future as smart metering matures with automatic turn on/off for a pump, it will become possible to provide an ensured amount of water or energy to the farmer while keeping the grid energized for 24 hours. Supply scenarios will include the possibility of much larger penetration of solar and wind into the grid. While, in absolute terms these sources are small contributors, their role will inevitably grow but DSM using agriculture could help reduce the capital cost. The other option is of advancing or delaying pump operating cycle even by several hours, will still ensure soil moisture requirements met while, balancing the overall system load with generation, reducing critical power mismatches. Through this presentation the author will describe different techniques and results from field experiments in India.

  19. Opportunities and Challenges in the Design and Analysis of Biomass Supply Chains.

    PubMed

    Lautala, Pasi T; Hilliard, Michael R; Webb, Erin; Busch, Ingrid; Richard Hess, J; Roni, Mohammad S; Hilbert, Jorge; Handler, Robert M; Bittencourt, Roger; Valente, Amir; Laitinen, Tuuli

    2015-12-01

    The biomass supply chain is one of the most critical elements of large-scale bioenergy production and in many cases a key barrier for procuring initial funding for new developments on specific energy crops. Most productions rely on complex transforming chains linked to feed and food markets. The term 'supply chain' covers various aspects from cultivation and harvesting of the biomass, to treatment, transportation, and storage. After energy conversion, the product must be delivered to final consumption, whether it is in the form of electricity, heat, or more tangible products, such as pellets and biofuels. Effective supply chains are of utmost importance for bioenergy production, as biomass tends to possess challenging seasonal production cycles and low mass, energy and bulk densities. Additionally, the demand for final products is often also dispersed, further complicating the supply chain. The goal of this paper is to introduce key components of biomass supply chains, examples of related modeling applications, and if/how they address aspects related to environmental metrics and management. The paper will introduce a concept of integrated supply systems for sustainable biomass trade and the factors influencing the bioenergy supply chain landscape, including models that can be used to investigate the factors. The paper will also cover various aspects of transportation logistics, ranging from alternative modal and multi-modal alternatives to introduction of support tools for transportation analysis. Finally gaps and challenges in supply chain research are identified and used to outline research recommendations for the future direction in this area of study.

  20. Opportunities and Challenges in the Design and Analysis of Biomass Supply Chains

    NASA Astrophysics Data System (ADS)

    Lautala, Pasi T.; Hilliard, Michael R.; Webb, Erin; Busch, Ingrid; Richard Hess, J.; Roni, Mohammad S.; Hilbert, Jorge; Handler, Robert M.; Bittencourt, Roger; Valente, Amir; Laitinen, Tuuli

    2015-12-01

    The biomass supply chain is one of the most critical elements of large-scale bioenergy production and in many cases a key barrier for procuring initial funding for new developments on specific energy crops. Most productions rely on complex transforming chains linked to feed and food markets. The term `supply chain' covers various aspects from cultivation and harvesting of the biomass, to treatment, transportation, and storage. After energy conversion, the product must be delivered to final consumption, whether it is in the form of electricity, heat, or more tangible products, such as pellets and biofuels. Effective supply chains are of utmost importance for bioenergy production, as biomass tends to possess challenging seasonal production cycles and low mass, energy and bulk densities. Additionally, the demand for final products is often also dispersed, further complicating the supply chain. The goal of this paper is to introduce key components of biomass supply chains, examples of related modeling applications, and if/how they address aspects related to environmental metrics and management. The paper will introduce a concept of integrated supply systems for sustainable biomass trade and the factors influencing the bioenergy supply chain landscape, including models that can be used to investigate the factors. The paper will also cover various aspects of transportation logistics, ranging from alternative modal and multi-modal alternatives to introduction of support tools for transportation analysis. Finally gaps and challenges in supply chain research are identified and used to outline research recommendations for the future direction in this area of study.

  1. Master's Degree in Management Information Systems with a Supply Chain Management Focus

    ERIC Educational Resources Information Center

    Ramaswamy, Kizhanatham V.; Boyd, Joseph L.; Desai, Mayur

    2007-01-01

    A graduate curriculum in Management Information Systems with a Supply Chain Management focus is presented. The motivation for this endeavor stems from the fact that the global scope of modern business organizations and the competitive environment in which they operate, requires an information system leveraged supply chain management system (SCM)…

  2. A Case Study: Climate Change Decision Support for the Apalachicola, Chattahoochee, Flint Basins

    NASA Astrophysics Data System (ADS)

    Day, G. N.; McMahon, G.; Friesen, N.; Carney, S.

    2011-12-01

    Riverside Technology, inc. has developed a Climate Change Decision Support System (DSS) to provide water managers with a tool to explore a range of current Global Climate Model (GCM) projections to evaluate their potential impacts on streamflow and the reliability of future water supplies. The system was developed as part of a National Oceanic and Atmospheric Administration (NOAA) Small Business Innovation Research (SBIR) project. The DSS uses downscaled GCM data as input to small-scale watershed models to produce time series of projected undepleted streamflow for various emission scenarios and GCM simulations. Until recently, water managers relied on historical streamflow data for water resources planning. In many parts of the country, great effort has been put into estimating long-term historical undepleted streamflow accounting for regulation, diversions, and return flows to support planning and water rights administration. In some cases, longer flow records have been constructed using paleohydrologic data in an attempt to capture climate variability beyond what is evident during the observed historical record. Now, many water managers are recognizing that historical data may not be representative of an uncertain climate future, and they have begun to explore the use of climate projections in their water resources planning. The Climate Change DSS was developed to support water managers in planning by accounting for both climate variability and potential climate change. In order to use the information for impact analysis, the projected streamflow time series can be exported and substituted for the historical streamflow data traditionally applied in their system operations models for water supply planning. This paper presents a case study in which climate-adjusted flows are coupled with the U.S. Army Corps of Engineers (USACE) ResSim model for the Apalachicola, Chattahoochee, and Flint (ACF) River basins. The study demonstrates how climate scenarios can be used with existing or proposed operating rules to explore the range of potential climate impacts on lake levels, drought trigger frequency, hydropower generation, and low-flow statistics. Initial system implementation of the Climate Change DSS was focused in the State of Colorado working with water supply agencies in the Front Range to assess local water supply vulnerability to climate change. To facilitate national implementation, the system capitalizes on National Weather Service (NWS) watershed models currently used for operational river forecasting. These models are well calibrated and available for the entire country. The system has been extended to include the ACF and the Sacramento River basins because of the importance of the water resources in these basins. Plans are now being made to expand coverage to include the Baltimore-Washington, D.C. water supply area. The DSS is operational and publicly available (www.climatechangedss.com).

  3. Information flow in the pharmaceutical supply chain

    PubMed Central

    Yousefi, Nazila; Alibabaei, Ahmad

    2015-01-01

    Managing the supply chain plays an important role in creating competitive advantages for companies. Adequate information flow in supply chain is one of the most important issues in SCM. Therefore, using certain Information Systems can have a significant role in managing and integrating data and information within the supply chain. Pharmaceutical supply chain is more complex than many other supply chains, in the sense that it can affect social and political perspectives. On the other hand, managing the pharmaceutical supply chain is difficult because of its complexity and also government regulations in this field. Although, Iran has progressed a lot in pharmaceutical manufacturing, still there are many unsolved issues in managing the information flow in the pharmaceutical supply chain. In this study, we reviewed the benefits of using different levels of an integrated information system in the supply chain and the possible challenges ahead. PMID:26664401

  4. [Development of medical supplies management system].

    PubMed

    Zhong, Jianping; Shen, Beijun; Zhu, Huili

    2012-11-01

    This paper adopts advanced information technology to manage medical supplies, in order to improve the medical supplies management level and reduce material cost. It develops a Medical Supplies Management System with B/S and C/S mixed structure, optimizing material management process, building large equipment performance evaluation model, providing interface solution with HIS, and realizing real-time information briefing of high value material's consumption. The medical materials are managed during its full life-cycle. The material consumption of the clinical departments is monitored real-timely. Through the closed-loop management with pre-event budget, mid-event control and after-event analysis, it realizes the final purpose of management yielding benefit.

  5. Can We Defend the Defense Supply Chain Lessons Learned from Industry Leaders in Supply Chain Management

    DTIC Science & Technology

    2018-03-01

    Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and...chain, including products, services, information , finances, demand, relationships, and risks. In a more complete definition, supply chain management ...CHAIN? LESSONS LEARNED FROM INDUSTRY LEADERS IN SUPPLY CHAIN MANAGEMENT by Ronald H. Menz March 2018 Thesis Co-Advisors: Rodrigo Nieto-Gomez

  6. When the 'soft-path' gets hard: demand management and financial instability for water utilities

    NASA Astrophysics Data System (ADS)

    Zeff, H. B.; Characklis, G. W.

    2014-12-01

    In the past, cost benefit analysis (CBA) has been viewed as an effective means of evaluating water utility strategies, particularly those that were dependent on the construction of new supply infrastructure. As water utilities have begun to embrace 'soft-path' approaches as a way to reduce the need for supply-centric development, CBA fails to recognize some important financial incentives affected by reduced water consumption. Demand management, both as a short-term response to drought and in longer-term actions to accommodate demand growth, can introduce revenue risks that adversely affect a utility's ability to repay debt, re-invest in aging infrastructure, or maintain reserve funds for use in a short-term emergency. A utility that does not generate sufficient revenue to support these functions may be subject to credit rating downgrades, which in turn affect the interest rate it pays on its debt. Interest rates are a critical consideration for utility managers in the capital-intensive water sector, where debt payments for infrastructure often account for a large portion of a utility's overall costs. Even a small increase in interest rates can add millions of dollars to the cost of new infrastructure. Recent studies have demonstrated that demand management techniques can lead to significant revenue variability, and credit rating agencies have begun to take notice of drought response plans when evaluating water utility credit ratings, providing utilities with a disincentive to fully embrace soft-path approaches. This analysis examines the impact of demand management schemes on key credit rating metrics for a water utility in Raleigh, North Carolina. The utility's consumer base is currently experiencing rapid population growth, and demand management has the potential to reduce the dependence on costly new supply infrastructure but could lead to financial instability that will significantly increase the costs of financing future projects. This work analyzes how 'soft-path' approaches might be more efficiently integrated with investment in supply-side infrastructure and suggests how financial hedging tools could be used to improve long-term utility planning objectives.

  7. Influence of juvenile wood content on shear parallel, compression, and tension transverse to grain strength and mode I fracture toughness for loblolly pine

    Treesearch

    David E. Kretschmann

    2008-01-01

    To satisfy the increased demand for forest products, much of future timber supply is expected to be from improved trees grown on managed plantations. This fast growth resource will tend to be harvested in short-age rotations and will contain higher proportions of juvenile wood than those of current harvests. In anticipation of this resource, definitive information is...

  8. The NASA Human Space Flight Supply Chain, Current and Future

    NASA Technical Reports Server (NTRS)

    Zapata, Edgar

    2007-01-01

    The current NASA Human Space Flight transportation system, the Space Shuttle, is scheduled for final flight in 2010. The Exploration initiative will create a new capability with a combination of existing systems and new flight and ground elements. To fully understand and act on the implications of such change it is necessary to understand what, how, when and where such changes occur and more importantly, how all these interact. This paper presents Human Space Flight, with an emphasis on KSC Launch and Landing, as a Supply Chain of both information and materials. A supply chain methodology for understanding the flow of information and materials is presented. Further, modeling and simulation projects funded by the Exploration initiative to understand the NASA Exploration Supply Chain are explained. Key concepts and their purpose, including the Enterprise, Locations, Physical and Organizational Functional Units, Products, and Resources, are explained. It is shown that the art, science and perspective of Supply Chain Management is not only applicable to such a government & contractor operation, it is also an invaluable approach for understanding, focusing improvement and growth. It is shown that such commercial practice applies to Human Space Flight and is invaluable towards one day creating routine, affordable access to and from space.

  9. It is the economy, stupid! Projecting the fate of fish populations using ecological-economic modeling.

    PubMed

    Quaas, Martin F; Reusch, Thorsten B H; Schmidt, Jörn O; Tahvonen, Olli; Voss, Rudi

    2016-01-01

    Four marine fish species are among the most important on the world market: cod, salmon, tuna, and sea bass. While the supply of North American and European markets for two of these species - Atlantic salmon and European sea bass - mainly comes from fish farming, Atlantic cod and tunas are mainly caught from wild stocks. We address the question what will be the status of these wild stocks in the midterm future, in the year 2048, to be specific. Whereas the effects of climate change and ecological driving forces on fish stocks have already gained much attention, our prime interest is in studying the effects of changing economic drivers, as well as the impact of variable management effectiveness. Using a process-based ecological-economic multispecies optimization model, we assess the future stock status under different scenarios of change. We simulate (i) technological progress in fishing, (ii) increasing demand for fish, and (iii) increasing supply of farmed fish, as well as the interplay of these driving forces under different scenarios of (limited) fishery management effectiveness. We find that economic change has a substantial effect on fish populations. Increasing aquaculture production can dampen the fishing pressure on wild stocks, but this effect is likely to be overwhelmed by increasing demand and technological progress, both increasing fishing pressure. The only solution to avoid collapse of the majority of stocks is institutional change to improve management effectiveness significantly above the current state. We conclude that full recognition of economic drivers of change will be needed to successfully develop an integrated ecosystem management and to sustain the wild fish stocks until 2048 and beyond. © 2015 John Wiley & Sons Ltd.

  10. The history and future of nursing labor research in a cost-control environment.

    PubMed

    Brewer, C S

    1998-04-01

    For the first time in nursing's history, the downsizing of hospitals, the increased use of managed care, reduced use of registered nurses and other factors may result in significant unemployment in nursing, with resulting downward adjustments in the wage. Understanding the labor supply response of nurses to changes in the wage is critical to predicting accurately how nurses will respond to changes in the market demand as it influences wages, and determining rational policy responses to the labor market. In this article, three generations of nursing labor research are summarized and critiqued. Methodological issues are discussed and specific directions for future studies are suggested.

  11. Participatory Water Resources Modeling in a Water-Scarce Basin (Rio Sonora, Mexico) Reveals Uncertainty in Decision-Making

    NASA Astrophysics Data System (ADS)

    Mayer, A. S.; Vivoni, E. R.; Halvorsen, K. E.; Kossak, D.

    2014-12-01

    The Rio Sonora Basin (RSB) in northwest Mexico has a semi-arid and highly variable climate along with urban and agricultural pressures on water resources. Three participatory modeling workshops were held in the RSB in spring 2013. A model of the water resources system, consisting of a watershed hydrology model, a model of the water infrastructure, and groundwater models, was developed deliberatively in the workshops, along with scenarios of future climate and development. Participants were asked to design water resources management strategies by choosing from a range of supply augmentation and demand reduction measures associated with water conservation. Participants assessed water supply reliability, measured as the average daily supply divided by daily demand for historical and future periods, by probing with the climate and development scenarios. Pre- and post-workshop-surveys were developed and administered, based on conceptual models of workshop participants' beliefs regarding modeling and local water resources. The survey results indicate that participants believed their modeling abilities increased and beliefs in the utility of models increased as a result of the workshops. The selected water resources strategies varied widely among participants. Wastewater reuse for industry and aquifer recharge were popular options, but significant numbers of participants thought that inter-basin transfers and desalination were viable. The majority of participants indicated that substantial increases in agricultural water efficiency could be achieved. On average, participants chose strategies that produce reliabilities over the historical and future periods of 95%, but more than 20% of participants were apparently satisfied with reliabilities lower than 80%. The wide range of strategies chosen and associated reliabilities indicate that there is a substantial degree of uncertainty in how future water resources decisions could be made in the region.

  12. The Community Water Model (CWATM) / Development of a community driven global water model

    NASA Astrophysics Data System (ADS)

    Burek, Peter; Satoh, Yusuke; Greve, Peter; Kahil, Taher; Wada, Yoshihide

    2017-04-01

    With a growing population and economic development, it is expected that water demands will increase significantly in the future, especially in developing regions. At the same time, climate change is expected to alter spatial patterns of hydrological cycle and will have global, regional and local impacts on water availability. Thus, it is important to assess water supply, water demand and environmental needs over time to identify the populations and locations that will be most affected by these changes linked to water scarcity, droughts and floods. The Community Water Model (CWATM) will be designed for this purpose in that it includes an accounting of how future water demands will evolve in response to socioeconomic change and how water availability will change in response to climate. CWATM represents one of the new key elements of IIASA's Water program. It has been developed to work flexibly at both global and regional level at different spatial resolutions. The model is open source and community-driven to promote our work amongst the wider water community worldwide and is flexible enough linking to further planned developments such as water quality and hydro-economic modules. CWATM will be a basis to develop a next-generation global hydro-economic modeling framework that represents the economic trade-offs among different water management options over a basin looking at water supply infrastructure and demand managements. The integrated modeling framework will consider water demand from agriculture, domestic, energy, industry and environment, investment needs to alleviate future water scarcity, and will provide a portfolio of economically optimal solutions for achieving future water management options under the Sustainable Development Goals (SDG) for example. In addition, it will be able to track the energy requirements associated with the water supply system e.g., pumping, desalination and interbasin transfer to realize the linkage with the water-energy economy. In a bigger framework of nexus - water, energy, food, ecosystem - CWATM will be coupled to the existing IIASA models including the Integrated Assessment Model MESSAGE and the global land and ecosystem model GLOBIOM in order to realize an improved assessments of water-energy-food-ecosystem nexus and associated feedback. Our vision for the short to medium term work is to introduce water quality (e.g., salinization in deltas and eutrophication associated with mega cities) into CWATM and to consider qualitative and quantitative measures of transboundary river and groundwater governance into an integrated modelling framework.

  13. Climate impacts on European agriculture and water management in the context of adaptation and mitigation--the importance of an integrated approach.

    PubMed

    Falloon, Pete; Betts, Richard

    2010-11-01

    We review and qualitatively assess the importance of interactions and feedbacks in assessing climate change impacts on water and agriculture in Europe. We focus particularly on the impact of future hydrological changes on agricultural greenhouse gas (GHG) mitigation and adaptation options. Future projected trends in European agriculture include northward movement of crop suitability zones and increasing crop productivity in Northern Europe, but declining productivity and suitability in Southern Europe. This may be accompanied by a widening of water resource differences between the North and South, and an increase in extreme rainfall events and droughts. Changes in future hydrology and water management practices will influence agricultural adaptation measures and alter the effectiveness of agricultural mitigation strategies. These interactions are often highly complex and influenced by a number of factors which are themselves influenced by climate. Mainly positive impacts may be anticipated for Northern Europe, where agricultural adaptation may be shaped by reduced vulnerability of production, increased water supply and reduced water demand. However, increasing flood hazards may present challenges for agriculture, and summer irrigation shortages may result from earlier spring runoff peaks in some regions. Conversely, the need for effective adaptation will be greatest in Southern Europe as a result of increased production vulnerability, reduced water supply and increased demands for irrigation. Increasing flood and drought risks will further contribute to the need for robust management practices. The impacts of future hydrological changes on agricultural mitigation in Europe will depend on the balance between changes in productivity and rates of decomposition and GHG emission, both of which depend on climatic, land and management factors. Small increases in European soil organic carbon (SOC) stocks per unit land area are anticipated considering changes in climate, management and land use, although an overall reduction in the total stock may result from a smaller agricultural land area. Adaptation in the water sector could potentially provide additional benefits to agricultural production such as reduced flood risk and increased drought resilience. The two main sources of uncertainty in climate impacts on European agriculture and water management are projections of future climate and their resulting impacts on water and agriculture. Since changes in climate, agricultural ecosystems and hydrometeorology depend on complex interactions between the atmosphere, biosphere and hydrological cycle there is a need for more integrated approaches to climate impacts assessments. Methods for assessing options which "moderate" the impact of agriculture in the wider sense will also need to consider cross-sectoral impacts and socio-economic aspects. Crown Copyright © 2009. Published by Elsevier B.V. All rights reserved.

  14. Climate and water resource change impacts and adaptation potential for US power supply

    DOE PAGES

    Miara, Ariel; Macknick, Jordan E.; Vorosmarty, Charles J.; ...

    2017-10-30

    Power plants that require cooling currently (2015) provide 85% of electricity generation in the United States. These facilities need large volumes of water and sufficiently cool temperatures for optimal operations, and projected climate conditions may lower their potential power output and affect reliability. We evaluate the performance of 1,080 thermoelectric plants across the contiguous US under future climates (2035-2064) and their collective performance at 19 North American Electric Reliability Corporation (NERC) sub-regions. Joint consideration of engineering interactions with climate, hydrology and environmental regulations reveals the region-specific performance of energy systems and the need for regional energy security and climate-water adaptationmore » strategies. Despite climate-water constraints on individual plants, the current power supply infrastructure shows potential for adaptation to future climates by capitalizing on the size of regional power systems, grid configuration and improvements in thermal efficiencies. Without placing climate-water impacts on individual plants in a broader power systems context, vulnerability assessments that aim to support adaptation and resilience strategies misgauge the extent to which regional energy systems are vulnerable. As a result, climate-water impacts can lower thermoelectric reserve margins, a measure of systems-level reliability, highlighting the need to integrate climate-water constraints on thermoelectric power supply into energy planning, risk assessments, and system reliability management.« less

  15. Modeling groundwater quality in an arid agricultural environment in the face of an uncertain climate: the case of Mewat District, India

    NASA Astrophysics Data System (ADS)

    Weber, M. C.; Ward, A. S.; Muste, M.

    2014-12-01

    The salinization of groundwater resources is a widespread problem in arid agricultural environments. In Mewat District (Haryana, India), groundwater salinity has rendered much of the accessible supply unfit for human consumption or agriculture. Historically, this closed basin retained fresh pockets of water at the foothills of the Aravalli Hills, where monsoonal precipitation runoff from the mountains was recharged through infiltration or facilitated by man-made structures. To date, an increasing number of pumps supply the region with fresh water for consumption and agriculture leading to shrinking the freshwater zone at an accelerated pace. The potential for increased human consumption corroborated with the effects of climate change bring uncertainty about the future of water security for the Mewat communities, most of them critically bound to the existence of local water. This study addresses the sustainability of the freshwater supply under a range of land interventions and climate scenarios, using a 2-D groundwater flow and transport model. Our results quantify potential futures for this arid, groundwater-dependent location, using numerical groundwater modeling to quantify interactions between human water use, infrastructure, and climate. Outcomes of this modeling study will inform an NGO active in the area on sustainable management of groundwater resources.

  16. Climate and water resource change impacts and adaptation potential for US power supply

    NASA Astrophysics Data System (ADS)

    Miara, Ariel; Macknick, Jordan E.; Vörösmarty, Charles J.; Tidwell, Vincent C.; Newmark, Robin; Fekete, Balazs

    2017-11-01

    Power plants that require cooling currently (2015) provide 85% of electricity generation in the United States. These facilities need large volumes of water and sufficiently cool temperatures for optimal operations, and projected climate conditions may lower their potential power output and affect reliability. We evaluate the performance of 1,080 thermoelectric plants across the contiguous US under future climates (2035-2064) and their collective performance at 19 North American Electric Reliability Corporation (NERC) sub-regions. Joint consideration of engineering interactions with climate, hydrology and environmental regulations reveals the region-specific performance of energy systems and the need for regional energy security and climate-water adaptation strategies. Despite climate-water constraints on individual plants, the current power supply infrastructure shows potential for adaptation to future climates by capitalizing on the size of regional power systems, grid configuration and improvements in thermal efficiencies. Without placing climate-water impacts on individual plants in a broader power systems context, vulnerability assessments that aim to support adaptation and resilience strategies misgauge the extent to which regional energy systems are vulnerable. Climate-water impacts can lower thermoelectric reserve margins, a measure of systems-level reliability, highlighting the need to integrate climate-water constraints on thermoelectric power supply into energy planning, risk assessments, and system reliability management.

  17. Climate and water resource change impacts and adaptation potential for US power supply

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miara, Ariel; Macknick, Jordan E.; Vorosmarty, Charles J.

    Power plants that require cooling currently (2015) provide 85% of electricity generation in the United States. These facilities need large volumes of water and sufficiently cool temperatures for optimal operations, and projected climate conditions may lower their potential power output and affect reliability. We evaluate the performance of 1,080 thermoelectric plants across the contiguous US under future climates (2035-2064) and their collective performance at 19 North American Electric Reliability Corporation (NERC) sub-regions. Joint consideration of engineering interactions with climate, hydrology and environmental regulations reveals the region-specific performance of energy systems and the need for regional energy security and climate-water adaptationmore » strategies. Despite climate-water constraints on individual plants, the current power supply infrastructure shows potential for adaptation to future climates by capitalizing on the size of regional power systems, grid configuration and improvements in thermal efficiencies. Without placing climate-water impacts on individual plants in a broader power systems context, vulnerability assessments that aim to support adaptation and resilience strategies misgauge the extent to which regional energy systems are vulnerable. As a result, climate-water impacts can lower thermoelectric reserve margins, a measure of systems-level reliability, highlighting the need to integrate climate-water constraints on thermoelectric power supply into energy planning, risk assessments, and system reliability management.« less

  18. Proceedings of the conference on alternative energy sources for Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rothman, I.N.

    1981-01-01

    Four primary areas of study for alternative energy sources for Texas are considered. These are: energy demand supply and economics; prospects for energy resources (oil, lignite, coal, nuclear, goethermal and solar) and conservation; financial and technical constraints; and future planning. The following papers are presented: US energy outlook to 1990; energy supply and demand projections; comparative economics of solar energy in the generation of big power; gas present and future prospects; prospects for enhanced recovery of oil in Texas; the outlook for coal in USA; implementation of nuclear power in Texas; future outlook - geopressured-geothermal energy for Texas; future prospectsmore » for conservation and solar energy; financing and money supply constraints; technical constraints to energy supply increase; planning for the future - the crisis that drones on. Two papers have been abstracted separately.« less

  19. Modelling raw water quality: development of a drinking water management tool.

    PubMed

    Kübeck, Ch; van Berk, W; Bergmann, A

    2009-01-01

    Ensuring future drinking water supply requires a tough management of groundwater resources. However, recent practices of economic resource control often does not involve aspects of the hydrogeochemical and geohydraulical groundwater system. In respect of analysing the available quantity and quality of future raw water, an effective resource management requires a full understanding of the hydrogeochemical and geohydraulical processes within the aquifer. For example, the knowledge of raw water quality development within the time helps to work out strategies of water treatment as well as planning finance resources. On the other hand, the effectiveness of planed measurements reducing the infiltration of harmful substances such as nitrate can be checked and optimized by using hydrogeochemical modelling. Thus, within the framework of the InnoNet program funded by Federal Ministry of Economics and Technology, a network of research institutes and water suppliers work in close cooperation developing a planning and management tool particularly oriented on water management problems. The tool involves an innovative material flux model that calculates the hydrogeochemical processes under consideration of the dynamics in agricultural land use. The program integrated graphical data evaluation is aligned on the needs of water suppliers.

  20. Hydrological drought in southeast Australia over the last five centuries: new insights from a multi-archive palaeoclimate streamflow reconstruction

    NASA Astrophysics Data System (ADS)

    Henley, B.; Peel, M. C.; Nathan, R.; Karoly, D. J.

    2017-12-01

    South-eastern Australia experienced one of the most intense and prolonged droughts in the observed record over the period 1997-2009, widely termed the Millennium drought. Water managers are faced with major challenges in understanding this drought and preparing for future variability and change. In this study, we use a newly collated network of annual resolution palaeoclimate data, a novel reconstruction methodology and rigorous treatment of uncertainties to reconstruct water supply system inflows in a critical water supply catchment in southern Australia. Our new reconstruction allows us to investigate the intensity, frequency and duration of severe hydrological drought several centuries into the past, and to integrate knowledge from instrumental and palaeoclimate data.

  1. Smart investments in sustainable food production: revisiting mixed crop-livestock systems.

    PubMed

    Herrero, M; Thornton, P K; Notenbaert, A M; Wood, S; Msangi, S; Freeman, H A; Bossio, D; Dixon, J; Peters, M; van de Steeg, J; Lynam, J; Parthasarathy Rao, P; Macmillan, S; Gerard, B; McDermott, J; Seré, C; Rosegrant, M

    2010-02-12

    Farmers in mixed crop-livestock systems produce about half of the world's food. In small holdings around the world, livestock are reared mostly on grass, browse, and nonfood biomass from maize, millet, rice, and sorghum crops and in their turn supply manure and traction for future crops. Animals act as insurance against hard times and supply farmers with a source of regular income from sales of milk, eggs, and other products. Thus, faced with population growth and climate change, small-holder farmers should be the first target for policies to intensify production by carefully managed inputs of fertilizer, water, and feed to minimize waste and environmental impact, supported by improved access to markets, new varieties, and technologies.

  2. Benefits of economic criteria for water scarcity management under global changes: insights from a large-scale hydroeconomic framework

    NASA Astrophysics Data System (ADS)

    Neverre, Noémie; Dumas, Patrice; Nassopoulos, Hypatia

    2016-04-01

    Global changes are expected to exacerbate water scarcity issues in the Mediterranean region in the next decades. In this work, we investigate the impacts of reservoirs operation rules based on an economic criterion. We examine whether can they help reduce the costs of water scarcity, and whether they become more relevant under future climatic and socioeconomic conditions. We develop an original hydroeconomic model able to compare future water supply and demand on a large scale, while representing river basin heterogeneity. On the demand side, we focus on the two main sectors of water use: the irrigation and domestic sectors. Demands are projected in terms of both quantity and economic value. Irrigation requirements are computed for 12 types of crops, at the 0.5° spatial resolution, under future climatic conditions (A1B scenario). The computation of the economic benefits of irrigation water is based on a yield comparison approach between rainfed and irrigated crops. For the domestic sector, we project the combined effects of demographic growth, economic development and water cost evolution on future demands. The economic value of domestic water is defined as the economic surplus. On the supply side, we evaluate the impacts of climate change on water inflows to the reservoirs. Operating rules of the reservoirs are set up using a parameterisation-simulation-optimisation approach. The objective is to maximise water benefits. We introduce prudential parametric rules in order to take into account spatial and temporal trade-offs. The methodology is applied to Algeria at the 2050 horizon. Overall, our results show that the supply-demand imbalance and its costs will increase in most basins under future climatic and socioeconomic conditions. Our results suggest that the benefits of operating rules based on economic criteria are not unequivocally increased with global changes: in some basins the positive impact of economic prioritisation is higher under future conditions, but in other basins it is higher under historical conditions. Global changes may be an incentive to use valuation in operating rules in some basins. In other basins, the benefits of reservoirs management based on economic criteria are less pronounced; in this case, trade-offs could arise between implementing economic based operation policies or not. Given its generic nature and low data requirements, the framework developed could be implemented in other regions concerned with water scarcity and its cost, or extended to a global coverage. Water policies at the country or regional level could be assessed.

  3. Time evolving multi-city dependencies and robustness tradeoffs for risk-based portfolios of conservation, transfers, and cooperative water supply infrastructure development pathways

    NASA Astrophysics Data System (ADS)

    Trindade, B. C.; Reed, P. M.; Zeff, H. B.; Characklis, G. W.

    2016-12-01

    Water scarcity in historically water-rich regions such as the southeastern United States is becoming a more prevalent concern. It has been shown that cooperative short-term planning that relies on conservation and transfers of existing supplies amongst communities can be used by water utilities to mitigate the effects of water scarcity in the near future. However, in the longer term, infrastructure expansion is likely to be necessary to address imbalances between growing water demands and the available supply capacity. This study seeks to better diagnose and avoid candidate modes for system failure. Although it is becoming more common for water utilities to evaluate the robustness of their water supply, defined as the insensitivity of their systems to errors in deeply uncertain projections or assumptions, defining robustness is particularly challenging in multi-stakeholder regional contexts for decisions that encompass short management actions and long-term infrastructure planning. Planning and management decisions are highly interdependent and strongly shape how a region's infrastructure itself evolves. This research advances the concept of system robustness by making it evolve over time rather than static, so that it is applicable to an adaptive system and therefore more suited for use for combined short and long-term planning efforts. The test case for this research is the Research Triangle area of North Carolina, where the cities of Raleigh, Durham, Cary and Chapel Hill are experiencing rapid population growth and increasing concerns over drought. This study is facilitating their engagement in cooperative and robust regional water portfolio planning. The insights from this work have general merit for regions where adjacent municipalities can benefit from improving cooperative infrastructure investments and more efficient resource management strategies.

  4. Waste biomass-to-energy supply chain management: a critical synthesis.

    PubMed

    Iakovou, E; Karagiannidis, A; Vlachos, D; Toka, A; Malamakis, A

    2010-10-01

    The development of renewable energy sources has clearly emerged as a promising policy towards enhancing the fragile global energy system with its limited fossil fuel resources, as well as for reducing the related environmental problems. In this context, waste biomass utilization has emerged as a viable alternative for energy production, encompassing a wide range of potential thermochemical, physicochemical and bio-chemical processes. Two significant bottlenecks that hinder the increased biomass utilization for energy production are the cost and complexity of its logistics operations. In this manuscript, we present a critical synthesis of the relative state-of-the-art literature as this applies to all stakeholders involved in the design and management of waste biomass supply chains (WBSCs). We begin by presenting the generic system components and then the unique characteristics of WBSCs that differentiate them from traditional supply chains. We proceed by discussing state-of-the-art energy conversion technologies along with the resulting classification of all relevant literature. We then recognize the natural hierarchy of the decision-making process for the design and planning of WBSCs and provide a taxonomy of all research efforts as these are mapped on the relevant strategic, tactical and operational levels of the hierarchy. Our critical synthesis demonstrates that biomass-to-energy production is a rapidly evolving research field focusing mainly on biomass-to-energy production technologies. However, very few studies address the critical supply chain management issues, and the ones that do that, focus mainly on (i) the assessment of the potential biomass and (ii) the allocation of biomass collection sites and energy production facilities. Our analysis further allows for the identification of gaps and overlaps in the existing literature, as well as of critical future research areas. (c) 2010 Elsevier Ltd. All rights reserved.

  5. Characterising Wildlife Trade Market Supply-Demand Dynamics

    PubMed Central

    Rowcliffe, M.; Cowlishaw, G.; Alexander, J. S.; Ntiamoa-Baidu, Y.; Brenya, A.; Milner-Gulland, E. J.

    2016-01-01

    The trade in wildlife products can represent an important source of income for poor people, but also threaten wildlife locally, regionally and internationally. Bushmeat provides livelihoods for hunters, traders and sellers, protein to rural and urban consumers, and has depleted the populations of many tropical forest species. Management interventions can be targeted towards the consumers or suppliers of wildlife products. There has been a general assumption in the bushmeat literature that the urban trade is driven by consumer demand with hunters simply fulfilling this demand. Using the urban bushmeat trade in the city of Kumasi, Ghana, as a case study, we use a range of datasets to explore the processes driving the urban bushmeat trade. We characterise the nature of supply and demand by explicitly considering three market attributes: resource condition, hunter behaviour, and consumer behaviour. Our results suggest that bushmeat resources around Kumasi are becoming increasingly depleted and are unable to meet demand, that hunters move in and out of the trade independently of price signals generated by the market, and that, for the Kumasi bushmeat system, consumption levels are driven not by consumer choice but by shortfalls in supply and consequent price responses. Together, these results indicate that supply-side processes dominate the urban bushmeat trade in Kumasi. This suggests that future management interventions should focus on changing hunter behaviour, although complementary interventions targeting consumer demand are also likely to be necessary in the long term. Our approach represents a structured and repeatable method to assessing market dynamics in information-poor systems. The findings serve as a caution against assuming that wildlife markets are demand driven, and highlight the value of characterising market dynamics to inform appropriate management. PMID:27632169

  6. Characterising Wildlife Trade Market Supply-Demand Dynamics.

    PubMed

    McNamara, J; Rowcliffe, M; Cowlishaw, G; Alexander, J S; Ntiamoa-Baidu, Y; Brenya, A; Milner-Gulland, E J

    2016-01-01

    The trade in wildlife products can represent an important source of income for poor people, but also threaten wildlife locally, regionally and internationally. Bushmeat provides livelihoods for hunters, traders and sellers, protein to rural and urban consumers, and has depleted the populations of many tropical forest species. Management interventions can be targeted towards the consumers or suppliers of wildlife products. There has been a general assumption in the bushmeat literature that the urban trade is driven by consumer demand with hunters simply fulfilling this demand. Using the urban bushmeat trade in the city of Kumasi, Ghana, as a case study, we use a range of datasets to explore the processes driving the urban bushmeat trade. We characterise the nature of supply and demand by explicitly considering three market attributes: resource condition, hunter behaviour, and consumer behaviour. Our results suggest that bushmeat resources around Kumasi are becoming increasingly depleted and are unable to meet demand, that hunters move in and out of the trade independently of price signals generated by the market, and that, for the Kumasi bushmeat system, consumption levels are driven not by consumer choice but by shortfalls in supply and consequent price responses. Together, these results indicate that supply-side processes dominate the urban bushmeat trade in Kumasi. This suggests that future management interventions should focus on changing hunter behaviour, although complementary interventions targeting consumer demand are also likely to be necessary in the long term. Our approach represents a structured and repeatable method to assessing market dynamics in information-poor systems. The findings serve as a caution against assuming that wildlife markets are demand driven, and highlight the value of characterising market dynamics to inform appropriate management.

  7. 41 CFR 101-30.603-2 - GSA Supply Catalog.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true GSA Supply Catalog. 101-30.603-2 Section 101-30.603-2 Public Contracts and Property Management Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS SUPPLY AND PROCUREMENT 30-FEDERAL CATALOG SYSTEM 30...

  8. Supply chain management: new paradigms for customers and suppliers.

    PubMed

    Garwood, D

    1999-02-01

    Companies are constantly looking for ways to increase their effectiveness and improve their bottom lines. One area of renewed interest is supply chain management. By managing their supply chains better, companies are able to become more flexible, offer defect-free products, eliminate unnecessary delays, and keep costs down. This article briefly describes the objectives of supply chain management and lists some of the tools that can be used to achieve them.

  9. Coupled ecosystem/supply chain modelling of fish products from sea to shelf: the Peruvian anchoveta case.

    PubMed

    Avadí, Angel; Fréon, Pierre; Tam, Jorge

    2014-01-01

    Sustainability assessment of food supply chains is relevant for global sustainable development. A framework is proposed for analysing fishfood (fish products for direct human consumption) supply chains with local or international scopes. It combines a material flow model (including an ecosystem dimension) of the supply chains, calculation of sustainability indicators (environmental, socio-economic, nutritional), and finally multi-criteria comparison of alternative supply chains (e.g. fates of landed fish) and future exploitation scenarios. The Peruvian anchoveta fishery is the starting point for various local and global supply chains, especially via reduction of anchoveta into fishmeal and oil, used worldwide as a key input in livestock and fish feeds. The Peruvian anchoveta supply chains are described, and the proposed methodology is used to model them. Three scenarios were explored: status quo of fish exploitation (Scenario 1), increase in anchoveta landings for food (Scenario 2), and radical decrease in total anchoveta landings to allow other fish stocks to prosper (Scenario 3). It was found that Scenario 2 provided the best balance of sustainability improvements among the three scenarios, but further refinement of the assessment is recommended. In the long term, the best opportunities for improving the environmental and socio-economic performance of Peruvian fisheries are related to sustainability-improving management and policy changes affecting the reduction industry. Our approach provides the tools and quantitative results to identify these best improvement opportunities.

  10. Coupled Ecosystem/Supply Chain Modelling of Fish Products from Sea to Shelf: The Peruvian Anchoveta Case

    PubMed Central

    Avadí, Angel; Fréon, Pierre; Tam, Jorge

    2014-01-01

    Sustainability assessment of food supply chains is relevant for global sustainable development. A framework is proposed for analysing fishfood (fish products for direct human consumption) supply chains with local or international scopes. It combines a material flow model (including an ecosystem dimension) of the supply chains, calculation of sustainability indicators (environmental, socio-economic, nutritional), and finally multi-criteria comparison of alternative supply chains (e.g. fates of landed fish) and future exploitation scenarios. The Peruvian anchoveta fishery is the starting point for various local and global supply chains, especially via reduction of anchoveta into fishmeal and oil, used worldwide as a key input in livestock and fish feeds. The Peruvian anchoveta supply chains are described, and the proposed methodology is used to model them. Three scenarios were explored: status quo of fish exploitation (Scenario 1), increase in anchoveta landings for food (Scenario 2), and radical decrease in total anchoveta landings to allow other fish stocks to prosper (Scenario 3). It was found that Scenario 2 provided the best balance of sustainability improvements among the three scenarios, but further refinement of the assessment is recommended. In the long term, the best opportunities for improving the environmental and socio-economic performance of Peruvian fisheries are related to sustainability-improving management and policy changes affecting the reduction industry. Our approach provides the tools and quantitative results to identify these best improvement opportunities. PMID:25003196

  11. Open-Source ERP: Is It Ripe for Use in Teaching Supply Chain Management?

    ERIC Educational Resources Information Center

    Huynh, Minh Q.; Chu, Hung W.

    2011-01-01

    The field of supply chain management has changed greatly and rapidly. With the advent of enterprise systems, supply chains are now operating with up-to-the-minute information. The value of the information flow is marked by speed, accessibility, accuracy, and most of all relevancy. As it continually evolves, the supply chain management curriculum…

  12. Biofuel Feedstock Assessment For Selected Countries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kline, Keith L; Oladosu, Gbadebo A; Wolfe, Amy K

    2008-02-01

    Findings from biofuel feedstock production assessments and projections of future supply are presented and discussed. The report aims to improve capabilities to assess the degree to which imported biofuel could contribute to meeting future U.S. targets to reduce dependence on imported oil. The study scope was focused to meet time and resource requirements. A screening process identified Argentina, Brazil, Canada, China, Colombia, India, Mexico, and the Caribbean Basin Initiative (CBI) region for initial analysis, given their likely role in future feedstock supply relevant to U.S. markets. Supply curves for selected feedstocks in these countries are projected for 2012, 2017 andmore » 2027. The supply functions, along with calculations to reflect estimated supplies available for export and/or biofuel production, were provided to DOE for use in a broader energy market allocation study. Potential cellulosic supplies from crop and forestry residues and perennials were also estimated for 2017 and 2027. The analysis identified capacity to potentially double or triple feedstock production by 2017 in some cases. A majority of supply growth is derived from increasing the area cultivated (especially sugarcane in Brazil). This is supplemented by improving yields and farming practices. Most future supplies of corn and wheat are projected to be allocated to food and feed. Larger shares of future supplies of sugarcane, soybean and palm oil production will be available for export or biofuel. National policies are catalyzing investments in biofuel industries to meet targets for fuel blending that generally fall in the 5-10% range. Social and environmental concerns associated with rapid expansion of feedstock production are considered. If the 2017 projected feedstock supply calculated as 'available' for export or biofuel were converted to fuel, it would represent the equivalent of about 38 billion gallons of gasoline. Sugarcane and bagasse dominate the available supply, representing 64% of the total. Among the nations studied, Brazil is the source of about two-thirds of available supplies, followed distantly by Argentina (12%), India and the CBI region.« less

  13. Biofuel Feedstock Assessment for Selected Countries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kline, K.L.; Oladosu, G.A.; Wolfe, A.K.

    2008-02-18

    Findings from biofuel feedstock production assessments and projections of future supply are presented and discussed. The report aims to improve capabilities to assess the degree to which imported biofuel could contribute to meeting future U.S. targets to reduce dependence on imported oil. The study scope was focused to meet time and resource requirements. A screening process identified Argentina, Brazil, Canada, China, Colombia, India, Mexico, and the Caribbean Basin Initiative (CBI) region for initial analysis, given their likely role in future feedstock supply relevant to U.S. markets. Supply curves for selected feedstocks in these countries are projected for 2012, 2017 andmore » 2027. The supply functions, along with calculations to reflect estimated supplies available for export and/or biofuel production, were provided to DOE for use in a broader energy market allocation study. Potential cellulosic supplies from crop and forestry residues and perennials were also estimated for 2017 and 2027. The analysis identified capacity to potentially double or triple feedstock production by 2017 in some cases. A majority of supply growth is derived from increasing the area cultivated (especially sugarcane in Brazil). This is supplemented by improving yields and farming practices. Most future supplies of corn and wheat are projected to be allocated to food and feed. Larger shares of future supplies of sugarcane, soybean and palm oil production will be available for export or biofuel. National policies are catalyzing investments in biofuel industries to meet targets for fuel blending that generally fall in the 5-10% range. Social and environmental concerns associated with rapid expansion of feedstock production are considered. If the 2017 projected feedstock supply calculated as ‘available’ for export or biofuel were converted to fuel, it would represent the equivalent of about 38 billion gallons of gasoline. Sugarcane and bagasse dominate the available supply, representing 64% of the total. Among the nations studied, Brazil is the source of about two-thirds of available supplies, followed distantly by Argentina (12%), India and the CBI region.« less

  14. [The development of hospital medical supplies information management system].

    PubMed

    Cao, Shaoping; Gu, Hongqing; Zhang, Peng; Wang, Qiang

    2010-05-01

    The information management of medical materials by using high-tech computer, in order to improve the efficiency of the consumption of medical supplies, hospital supplies and develop a new technology way to manage the hospital and material support. Using C # NET, JAVA techniques to develop procedures for the establishment of hospital material management information system, set the various management modules, production of various statistical reports, standard operating procedures. The system is convenient, functional and strong, fluent statistical functions. It can always fully grasp and understand the whole hospital supplies run dynamic information, as a modern and effective tool for hospital materials management.

  15. Future Supply of Pediatric Surgeons: Analytical Study of the Current and Projected Supply of Pediatric Surgeons in the Context of a Rapidly Changing Process for Specialty and Subspecialty Training.

    PubMed

    Ricketts, Thomas C; Adamson, William T; Fraher, Erin P; Knapton, Andy; Geiger, James D; Abdullah, Fizan; Klein, Michael D

    2017-03-01

    To describe the future supply and demand for pediatric surgeons using a physician supply model to determine what the future supply of pediatric surgeons will be over the next decade and a half and to compare that projected supply with potential indicators of demand and the growth of other subspecialties. Anticipating the supply of physicians and surgeons in the future has met with varying levels of success. However, there remains a need to anticipate supply given the rapid growth of specialty and subspecialty fellowships. This analysis is intended to support decision making on the size of future fellowships in pediatric surgery. The model used in the study is an adaptation of the FutureDocs physician supply and need tool developed to anticipate future supply and need for all physician specialties. Data from national inventories of physicians by specialty, age, sex, activity, and location are combined with data from residency and fellowship programs and accrediting bodies in an agent-based or microsimulation projection model that considers movement into and among specialties. Exits from practice and the geographic distribution of physician and the patient population are also included in the model. Three scenarios for the annual entry into pediatric surgery fellowships (28, 34, and 56) are modeled and their effects on supply through 2030 are presented. The FutureDocs model predicts a very rapid growth of the supply of surgeons who treat pediatric patients-including general pediatric surgeon and focused subspecialties. The supply of all pediatric surgeons will grow relatively rapidly through 2030 under current conditions. That growth is much faster than the rate of growth of the pediatric population. The volume of complex surgical cases will likely match this population growth rate meaning there will be many more surgeons trained for those procedures. The current entry rate into pediatric surgery fellowships (34 per year) will result in a slowing of growth after 2025, a rate of 56 will generate a continued growth through 2030 with a likely plateau after 2035. The rate of entry into pediatric surgery will continue to exceed population growth through 2030 under two likely scenarios. The very rapid anticipated growth in focused pediatric subspecialties will likely prove challenging to surgeons wishing to maintain their skills with complex cases as a larger and more diverse group of surgeons will also seek to care for many of the conditions and patients which the general pediatric surgeons and general surgeons now see. This means controlling the numbers of pediatric surgery fellowships in a way that recognizes problems with distribution, the volume of cases available to maintain proficiency, and the dynamics of retirement and shifts into other specialty practice.

  16. Selected Aspects Of The Risk In The Supply Chain In Context Of The Supplier Quality Management

    NASA Astrophysics Data System (ADS)

    Koblen, Ivan; Lestyánszka Škůrková, Katarína

    2015-06-01

    The introductory part of the paper underlines the importance of "Risk-based thinking" in the Quality Management System (QMS) and risk in the supply chain, as a principle part of the QMS. After introducing the key terms, the authors focused on the principle part of the article - explanation of the external and internal supply chain risks and the main factors concerning the supply risks, demand risks and environmental risks (as cardinal types of external supply chain risks) as well as the manufacturing and process risks, network/planning and control risks (as most important types of internal supply chain risks). The authors inform on the selected supply chain risk management tools, especially on those which are linked to the appropriate utilization of quality management tools.

  17. A Physical Assessment of the Opportunities for Improved Management of the Water Resources of the Bi-National Rio Grande/Rio Bravo Basin

    NASA Astrophysics Data System (ADS)

    Aparicio, J.; McKinney, D.; Valdes, J.; Guitron, A.; Thomas, G.

    2007-05-01

    The hydro-physical opportunities for expanding the beneficial uses of the fixed water supply in the Rio Grande/Bravo Basin to better satisfy an array of water management goals are examined. These include making agriculture more resilient to periodic conditions of drought, improving the reliability of supplies to cities and towns, and restoring lost environmental functions in the river system. This is a comprehensive, outcome-neutral, model- based planning exercise performed by some 20 technical, primarily non-governmental institutions from both countries, aimed at proposing strategies that can reduce future conflicts over water throughout the entire basin. The second track consists in generating a set of future water management scenarios that respond to the needs and objectives of the basin stakeholders in each segment and each country. An array of scenarios for improved water management has been developed for the lower Rio Grande/Rio Bravo basin in Texas and the Mexican state of Tamaulipas. Another set under development will focus on the Rio Conchos and the El Paso/Juarez region. Eventually, scenarios will be generated such that will comprehend the entire basin on both sides of the border. These scenarios are the product of consultations with agricultural water districts, governmental organizations and environmental NGOs. They include strategies for reducing the physical losses of water in the system, conservation transfers, improvements in the operations of the Mexican and international reservoirs, improvements in environmental flow conditions, improvements in reliability of water supplies, and drought coping strategies.These scenarios will be evaluated for hydrologic feasibility by the basin-wide model and the gaming exercises. Modeling is necessary to understand how these options will affect the entire system and how they can be crafted to maximize the benefits and avoid unintended or uncompensated effects. The scenarios that have the potential to provide large mutual benefits to all stakeholders in the basin will then be subjected to an economic feasibility analysis, and, finally, a legal and political feasibility analysis. The scenario development, hydrologic modeling, economic and institutional analysis will culminate in the presentation of technical recommendations to policy-makers on both sides of the border on the potential for improved water management in the basin.

  18. The application of supply chain management principles to emergency management logistics: An empirical study.

    PubMed

    Peterson, Matthew R; Young, Richard R; Gordon, Gary A

    2016-01-01

    Key elements of supply chain theory remain relevant to emergency management (EM) logistics activities. The Supply Chain Operations Reference model can also serve as a useful template for the planning, organizing, and execution of EM logistics. Through a series of case studies (developed through intensive survey of organizations and individuals responsible for EM), the authors identified the extent supply chain theory is being adopted and whether the theory was useful for emergency logistics managers. The authors found several drivers that influence the likelihood of an organization to implement elements of supply chain management: the frequency of events, organizational resources, population density, range of events, and severity of the disaster or emergency.

  19. Vulnerability-based evaluation of water supply design under climate change

    NASA Astrophysics Data System (ADS)

    Umit Taner, Mehmet; Ray, Patrick; Brown, Casey

    2015-04-01

    Long-lived water supply infrastructures are strategic investments in the developing world, serving the purpose of balancing water deficits compounded by both population growth and socio-economic development. Robust infrastructure design under climate change is compelling, and often addressed by focusing on the outcomes of climate model projections ('scenario-led' planning), or by identifying design options that are less vulnerable to a wide range of plausible futures ('vulnerability-based' planning). Decision-Scaling framework combines these two approaches by first applying a climate stress test on the system to explore vulnerabilities across many traces of the future, and then employing climate projections to inform the decision-making process. In this work, we develop decision scaling's nascent risk management concepts further, directing actions on vulnerabilities identified during the climate stress test. In the process, we present a new way to inform climate vulnerability space using climate projections, and demonstrate the use of multiple decision criteria to guide to a final design recommendation. The concepts are demonstrated for a water supply project in the Mombasa Province of Kenya, planned to provide domestic and irrigation supply. Six storage design capacities (from 40 to 140 million cubic meters) are explored through a stress test, under a large number climate traces representing both natural climate variability and plausible climate changes. Design outcomes are simulated over a 40-year planning period with a coupled hydrologic-water resources systems model and using standard reservoir operation rules. Resulting performance is expressed in terms of water supply reliability and economic efficiency. Ensemble climate projections are used for assigning conditional likelihoods to the climate traces using a statistical distance measure. The final design recommendations are presented and discussed for the decision criteria of expected regret, satisficing, and conditional value-at-risk (CVaR).

  20. 41 CFR 109-28.306 - Customer supply center (CSC) accounts and related controls.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... MANAGEMENT REGULATIONS SUPPLY AND PROCUREMENT 28-STORAGE AND DISTRIBUTION 28.3-Customer Supply Centers § 109-28.306 Customer supply center (CSC) accounts and related controls. ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Customer supply center...

  1. 41 CFR 101-25.114 - Supply management surveys and assistance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Supply management surveys...-GENERAL 25.1-General Policies § 101-25.114 Supply management surveys and assistance. Under the provisions of 40 U.S.C. 487, the General Services Administration will perform surveys and/or reviews of...

  2. 75 FR 29307 - Web Based Supply Chain Management Commodity Offer Form, Paperwork Collection Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-25

    ... DEPARTMENT OF AGRICULTURE Agricultural Marketing Service [Doc. No FV10-CP-01, AMS-FV-10-0041] Web... collection request is required for the implementation of a new system named Web Based Supply Chain Management...-2782. Mail: David Tuckwiller, Project Manager, Web Based Supply Chain Management System, Agricultural...

  3. 41 CFR 101-25.101-2 - Supply through storage and issue.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Supply through storage and issue. 101-25.101-2 Section 101-25.101-2 Public Contracts and Property Management Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS SUPPLY AND PROCUREMENT 25-GENERAL 25.1...

  4. Cloud computing for energy management in smart grid - an application survey

    NASA Astrophysics Data System (ADS)

    Naveen, P.; Kiing Ing, Wong; Kobina Danquah, Michael; Sidhu, Amandeep S.; Abu-Siada, Ahmed

    2016-03-01

    The smart grid is the emerging energy system wherein the application of information technology, tools and techniques that make the grid run more efficiently. It possesses demand response capacity to help balance electrical consumption with supply. The challenges and opportunities of emerging and future smart grids can be addressed by cloud computing. To focus on these requirements, we provide an in-depth survey on different cloud computing applications for energy management in the smart grid architecture. In this survey, we present an outline of the current state of research on smart grid development. We also propose a model of cloud based economic power dispatch for smart grid.

  5. Traceability and Risk Analysis Strategies for Addressing Counterfeit Electronics in Supply Chains for Complex Systems.

    PubMed

    DiMase, Daniel; Collier, Zachary A; Carlson, Jinae; Gray, Robin B; Linkov, Igor

    2016-10-01

    Within the microelectronics industry, there is a growing concern regarding the introduction of counterfeit electronic parts into the supply chain. Even though this problem is widespread, there have been limited attempts to implement risk-based approaches for testing and supply chain management. Supply chain risk management tends to focus on the highly visible disruptions of the supply chain instead of the covert entrance of counterfeits; thus counterfeit risk is difficult to mitigate. This article provides an overview of the complexities of the electronics supply chain, and highlights some gaps in risk assessment practices. In particular, this article calls for enhanced traceability capabilities to track and trace parts at risk through various stages of the supply chain. Placing the focus on risk-informed decision making through the following strategies is needed, including prioritization of high-risk parts, moving beyond certificates of conformance, incentivizing best supply chain management practices, adoption of industry standards, and design and management for supply chain resilience. © 2016 Society for Risk Analysis.

  6. Improving the relevance and impact of decision support research: A co-production framework and water management case study

    NASA Astrophysics Data System (ADS)

    Smith, R.; Kasprzyk, J. R.; Dilling, L.; Basdekas, L.; Kaatz, L.

    2016-12-01

    In light of the unpredictable effects of climate change and population shifts, responsible resource management will require new types of information and strategies going forward. For water utilities, this means that water supply infrastructure systems must be expanded and/or managed for changes in overall supply and increased extremes. Utilities have begun seeking innovative tools and methods to support planning and decision making, but there are limited channels through which they can gain exposure to emerging tools from the research world, and for researchers to uptake important real-world planning and decision context. A transdisciplinary team of engineers, social and climate scientists, and water managers designed this study to develop and apply a co-production framework which explores the potential of an emerging decision support tool to enhance flexibility and adaptability in water utility planning. It also demonstrates how to improve the link between research and practice in the water sector. In this study we apply the co-production framework to the use of Multiobjective Evolutionary Algorithms (MOEAs). MOEAs have shown promise in being able to generate and evaluate new planning alternatives but they have had little testing or application in water utilities. Anchored by two workshops, this study (1) elicited input from water managers from six water suppliers on the Front Range of Colorado, USA, to create a testbed MOEA application, and (2) evaluated the managers' responses to multiobjective optimization results. The testbed consists of a Front Range-relevant hypothetical water supply model, the Borg MOEA, hydrology and demand scenarios, and a set of planning decisions and performance objectives that drive the link between the algorithm and the model. In this presentation we describe researcher-manager interactions at the initial workshop that served to establish relationships and provide in-depth information to researchers about regional water management context. We also describe the development of, and experiences from, the second workshop which included activities for water managers to interact directly with MOEA testbed results. Finally, we evaluate the co-production framework itself and the potential for the feedback from managers to shape future development of decision support tools.

  7. Effective planning and management as critical factors in urban water supply and management in Umuahia and Aba, Abia State, Nigeria

    NASA Astrophysics Data System (ADS)

    Uchegbu, Smart N.

    Plan and policy development usually define the course, goal, execution, success or failure of any public utilities initiative. Urban water supply is not an exception. Planning and management in public water supply systems often determine the quality of service the water supply authorities can render. This paper, therefore, addresses the issue of effective planning and management as critical determinants of urban water supply and management with respect to two Nigerian cities Umuahia and Aba both in Abia State. Appropriate sampling methods systematic sampling and cluster techniques were employed in order to collect data for the study. The collected data were analyzed using multiple linear regression. The findings of the study indicate that planning and management indices such as funding, manpower, water storage tank capacity greatly influence the volume of water supplied in the study areas. Funding was identified as a major determinant of the efficiency of the water supply system. Therefore, the study advocates the need for sector reforms that would usher in private participants in the water sector both for improved funding and enhanced productivity.

  8. Cryosphere, climate and capitalism: drivers of Central Asian water stress

    NASA Astrophysics Data System (ADS)

    Hill, A. F.; Minbaeva, C.; Wilson, A. M.; Satylkanov, R.; Armstrong, R. L.

    2017-12-01

    The importance of meltwater to Central Asia's trans-boundary rivers and groundwater reserves suggests future water stress for the region. Climate is likely to induce shifts in water supply volume and delivery timing, while a complex fabric of socio-political factors complicates water management and adaptation strategies. To clarify the drivers of water stress over a large scale (440km, 4,200m elevation change), we conducted a socio-hydrologic study of Krygyzstan's Naryn River in the Tien Shan mountains, headwater stem of the Syr Darya and source of the disappearing Aral Sea. Using a combination of geochemical sampling, hydro-chemical mixing models, remote sensing image processing and community surveys, we characterized both the social and hydrologic controls of water supplies from glacier snout to downstream areas where people, hydropower and agriculture utilize water. We find melt-sourced water dominates hydrologic inputs to both surface flow and groundwater from headwaters to reservoir, suggesting high sensitivity of water supply to a warming climate. On a regional scale, the importance of melt to trans-boundary river flow serving thirsty downstream countries may increase hostility between already tense neighbors. Water stress on the basin level, however, is currently less impacted by supply than by access, agricultural knowledge deficiencies and infrastructure issues that are relic from the post-Soviet transition in the 1990s. The interplay of these factors suggests the need for creative and proactive water management adaptation planning in the Naryn basin and throughout similar melt-reliant areas of arid Central Asia.

  9. Assessing Vulnerability under Uncertainty in the Colorado River Basin: The Colorado River Basin Water Supply and Demand Study

    NASA Astrophysics Data System (ADS)

    Jerla, C.; Adams, P.; Butler, A.; Nowak, K.; Prairie, J. R.

    2013-12-01

    Spanning parts of the seven states, of Arizona, California, Colorado, New Mexico, Nevada, Utah, and Wyoming, the Colorado River is one of the most critical sources of water in the western United States. Colorado River allocations exceed the long-term supply and since the 1950s, there have been a number of years when the annual water use in the Colorado River Basin exceeded the yield. The Basin is entering its second decade of drought conditions which brings challenges that will only be compounded if projections of climate change are realized. It was against this backdrop that the Colorado River Basin Water Supply and Demand Study was conducted. The Study's objectives are to define current and future imbalances in the Basin over the next 50 years and to develop and analyze adaptation and mitigation strategies to resolve those imbalances. Long-term planning in the Basin involves the integration of uncertainty with respect to a changing climate and other uncertainties such as future demand and how policies may be modified to adapt to changing reliability. The Study adopted a scenario planning approach to address this uncertainty in which thousands of scenarios were developed to encompass a wide range of plausible future water supply and demand conditions. Using Reclamation's long-term planning model, the Colorado River Simulation System, the reliability of the system to meet Basin resource needs under these future conditions was projected both with and without additional future adaptation strategies in place. System reliability metrics were developed in order to define system vulnerabilities, the conditions that lead to those vulnerabilities, and sign posts to indicate if the system is approaching a vulnerable state. Options and strategies that reduce these vulnerabilities and improve system reliability were explored through the development of portfolios. Four portfolios, each with different management strategies, were analyzed to assess their effectiveness at reducing system vulnerabilities and the improving the resiliency of the Basin to vulnerable conditions. The Study is the most comprehensive long-term assessment to date of the Basin and it confirmed that without action, the Colorado River system will become increasingly challenged to sustain the communities and resources that rely on its water supply. The Study was conducted by the Bureau of Reclamation and its consultant team (CH2M Hill, Black & Veatch, and the RAND Corporation) and the seven Colorado River Basin States, in collaboration with a broad range of stakeholders throughout the Basin. The Study's strong technical foundation forms a basis from which important discussions can begin regarding possible actions to resolve future supply and demand imbalances in order to help ensure the sustainability of the Colorado River system. This talk will provide an overview of the Study's approach and findings, with a focus on the Study's assessment and characterization of vulnerability under uncertainty.

  10. Management Impact Assessment of Refuse-Derived Fuel Implementation at Wright-Patterson Air Force Base.

    DTIC Science & Technology

    1982-03-19

    high first and annually recurring costs of flue gas desulfurization . If our future coal systems have the technical flexibility to use these fuels...Democracy Lane Program Element: 64708F Fairfax, Virginia 22030 JON: 20545017 I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE Air Force Engineering...plants that supply both heating and process energy to large military installations, the majority of which are natural gas - and/or oil-fired. The goal is

  11. Planning and the Energy-Water Nexus

    NASA Astrophysics Data System (ADS)

    Tidwell, V. C.; Bailey, M.; Zemlick, K.; Moreland, B.

    2015-12-01

    While thermoelectric power generation accounts for only 3-5% of the nation's consumptive use of freshwater, its future potential to exert pressure on limited water supplies is of concern given projected growth in electric power generation. The corresponding thermoelectric water footprint could look significantly different depending on decisions concerning the mix of fuel type, cooling type, location, and capacity, which are influenced by such factors as fuel costs, technology evolution, demand growth, policies, and climate change. The complex interplay among these disparate factors makes it difficult to identify where water could limit siting choices for thermoelectric generation or alternatively, thermoelectric development could limit growth in other water use sectors. These arguments point to the need for joint coordination, analysis and planning between energy and water managers. Here we report on results from a variety of planning exercises spanning scales from the national, interconnection, to the utility. Results will highlight: lessons learned from the integrated planning exercises; the broad range in potential thermoelectric water use futures; regional differences in the thermoelectric-water nexus; and, opportunities for non-traditional waters to ease competition over limited freshwater supplies and to harden thermoelectric generation against drought vulnerability. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  12. 41 CFR 101-25.404 - Furniture.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... on prices as shown in the current edition of the GSA Supply Catalog, applicable Federal Supply... Section 101-25.404 Public Contracts and Property Management Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS SUPPLY AND PROCUREMENT 25-GENERAL 25.4-Replacement Standards § 101...

  13. 41 CFR 101-25.404 - Furniture.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... on prices as shown in the current edition of the GSA Supply Catalog, applicable Federal Supply... Section 101-25.404 Public Contracts and Property Management Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS SUPPLY AND PROCUREMENT 25-GENERAL 25.4-Replacement Standards § 101...

  14. 41 CFR 101-25.404 - Furniture.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... on prices as shown in the current edition of the GSA Supply Catalog, applicable Federal Supply... Section 101-25.404 Public Contracts and Property Management Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS SUPPLY AND PROCUREMENT 25-GENERAL 25.4-Replacement Standards § 101...

  15. 41 CFR 101-25.404 - Furniture.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... on prices as shown in the current edition of the GSA Supply Catalog, applicable Federal Supply... Section 101-25.404 Public Contracts and Property Management Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS SUPPLY AND PROCUREMENT 25-GENERAL 25.4-Replacement Standards § 101...

  16. 41 CFR 101-25.404 - Furniture.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... on prices as shown in the current edition of the GSA Supply Catalog, applicable Federal Supply... Section 101-25.404 Public Contracts and Property Management Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS SUPPLY AND PROCUREMENT 25-GENERAL 25.4-Replacement Standards § 101...

  17. California Groundwater Management During Drought: Existing and Future Regulatory Approaches

    NASA Astrophysics Data System (ADS)

    Ekdahl, E.; Boland-Brien, S.; Vanderburgh, B.; Landau, K.; Bean, J.; Peltier, T.

    2015-12-01

    Groundwater has served as an effective buffer to California's crippling drought of 2012-2015, allowing continued agricultural production in many areas where surface water deliveries have been curtailed. However, over-reliance on groundwater has caused plummeting groundwater levels in much of the state's heavily agricultural regions, with annual groundwater overdraft state-wide estimated in the millions of acre-feet per year. Prior to 2015, California water law did not allow for the effective monitoring or assessment of groundwater use; passage of new state regulations will require development of locally-managed plans that, for the first time, require comprehensive groundwater management and groundwater basin sustainability. Because these plans are not required to be implemented for another 25 years, groundwater levels will likely continue to decrease. Some communities that are 100-percent reliant on groundwater as a source of municipal supply may face shortages and supply issues, which may exacerbate known water quality concerns. Examination of community water systems that are reliant on groundwater, their existing water quality issues, and their response to the current drought (through existing mandatory conservation requirements imposed by California state regulators) can identify areas that are particularly susceptible to continued groundwater overdraft.

  18. Health supply chain management.

    PubMed

    Zimmerman, Rolf; Gallagher, Pat

    2010-01-01

    This chapter gives an educational overview of: * The actual application of supply chain practice and disciplines required for service delivery improvement within the current health environment. * A rationale for the application of Supply Chain Management (SCM) approaches to the Health sector. * The tools and methods available for supply chain analysis and benchmarking. * Key supply chain success factors.

  19. Teaching Supply Chain Management Complexities: A SCOR Model Based Classroom Simulation

    ERIC Educational Resources Information Center

    Webb, G. Scott; Thomas, Stephanie P.; Liao-Troth, Sara

    2014-01-01

    The SCOR (Supply Chain Operations Reference) Model Supply Chain Classroom Simulation is an in-class experiential learning activity that helps students develop a holistic understanding of the processes and challenges of supply chain management. The simulation has broader learning objectives than other supply chain related activities such as the…

  20. Enterprise Sustainment Metrics

    DTIC Science & Technology

    2015-06-19

    Ponte Verde Beach: Supply Chain Management Institute. Lambert, D. M., & Pohlen, T. L. (2014). Supply Chain Metrics. In D. M. Lambert, Supply Chain...Partnerships, Performance (pp. 239-256). Ponte Verde Beach: Supply Chain Management Institute Mills, J. S. (1843). A System of Logic, Ratiocinative and

  1. Finance and supply management project execution plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BENNION, S.I.

    As a subproject of the HANDI 2000 project, the Finance and Supply Management system is intended to serve FDH and Project Hanford major subcontractor with financial processes including general ledger, project costing, budgeting, and accounts payable, and supply management process including purchasing, inventory and contracts management. Currently these functions are performed with numerous legacy information systems and suboptimized processes.

  2. Opportunities and Challenges in the Design and Analysis of Biomass Supply Chains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lautala, Pasi T.; Hilliard, Michael R.; Webb, Erin

    The biomass supply chain is one of the most critical elements of large-scale bioenergy production and in many cases a key barrier for procuring initial funding for new developments on specific energy crops. Most productions rely on complex transforming chains linked to feed and food markets. The term 'supply chain' covers various aspects from cultivation and harvesting of the biomass, to treatment, transportation, and storage. After energy conversion, the product must be delivered to final consumption, whether it is in the form of electricity, heat, or more tangible products, such as pellets and biofuels. Effective supply chains are of utmostmore » importance for bioenergy production, as biomass tends to possess challenging seasonal production cycles and low mass, energy and bulk densities. Additionally, the demand for final products is often also dispersed, further complicating the supply chain. The goal of this paper is to introduce key components of biomass supply chains, examples of related modeling applications, and if/how they address aspects related to environmental metrics and management. The paper will introduce a concept of integrated supply systems for sustainable biomass trade and the factors influencing the bioenergy supply chain landscape, including models that can be used to investigate the factors. Our paper will also cover various aspects of transportation logistics, ranging from alternative modal and multi-modal alternatives to introduction of support tools for transportation analysis. Lastly, gaps and challenges in supply chain research are identified and used to outline research recommendations for the future direction in this area of study.« less

  3. Opportunities and Challenges in the Design and Analysis of Biomass Supply Chains

    DOE PAGES

    Lautala, Pasi T.; Hilliard, Michael R.; Webb, Erin; ...

    2015-06-30

    The biomass supply chain is one of the most critical elements of large-scale bioenergy production and in many cases a key barrier for procuring initial funding for new developments on specific energy crops. Most productions rely on complex transforming chains linked to feed and food markets. The term 'supply chain' covers various aspects from cultivation and harvesting of the biomass, to treatment, transportation, and storage. After energy conversion, the product must be delivered to final consumption, whether it is in the form of electricity, heat, or more tangible products, such as pellets and biofuels. Effective supply chains are of utmostmore » importance for bioenergy production, as biomass tends to possess challenging seasonal production cycles and low mass, energy and bulk densities. Additionally, the demand for final products is often also dispersed, further complicating the supply chain. The goal of this paper is to introduce key components of biomass supply chains, examples of related modeling applications, and if/how they address aspects related to environmental metrics and management. The paper will introduce a concept of integrated supply systems for sustainable biomass trade and the factors influencing the bioenergy supply chain landscape, including models that can be used to investigate the factors. Our paper will also cover various aspects of transportation logistics, ranging from alternative modal and multi-modal alternatives to introduction of support tools for transportation analysis. Lastly, gaps and challenges in supply chain research are identified and used to outline research recommendations for the future direction in this area of study.« less

  4. Using SCOR as a Supply Chain Management Framework for Government Agency Contract Requirements

    NASA Technical Reports Server (NTRS)

    Paxton, Joseph; Tucker, Brian

    2010-01-01

    This paper will present a model that uses the Supply-Chain Operations Reference (SCOR) model as a foundation for a framework to illustrate the information needed throughout a product lifecycle to support a healthy supply chain management function and the subsequent contract requirements to enable it. It will also show where in the supply chain the information must be extracted. The ongoing case study used to exemplify the model is NASA's (National Aeronautics and Space Administration) Ares I program for human spaceflight. Effective supply chain management and contract requirements are ongoing opportunities for continuous improvement within government agencies, specifically development of systems for human spaceflight operations. Multiple reports from the Government Accountability Office (GAO) reinforce this importance. The SCOR model is a framework for describing a supply chain with process building blocks and business activities. It provides a set of metrics for measuring supply chain performance and best practices for continuously improving. This paper expands the application of the SCOR to also provide the framework for defining information needed from different levels of the supply chain and at different phases of the lifecycle. These needs can be incorporated into contracts to enable more effective supply chain management. Depending on the phase of the lifecycle, effective supply chain management will require involvement from different levels of the organization and different levels of the supply chain.

  5. The Future of Low-Carbon Electricity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenblatt, Jeffery B.; Brown, Nicholas R.; Slaybaugh, Rachel

    Here, we review future global demand for electricity and major technologies positioned to supply itwith minimal greenhouse gas (GHG) emissions: renewables (wind, solar, water, geothermal and biomass), nuclear fission, and fossil power with CO 2 capture and sequestration. Two breakthrough technologies (space solar power and nuclear fusion) are discussed as exciting but uncertain additional options for low net GHG emissions (“low-carbon”) electricity generation. Grid integration technologies (monitoring and forecasting of transmission and distribution systems, demand-side load management, energy storage, and load balancing with low-carbon fuel substitutes) are also discussed. For each topic, recent historical trends and future prospects are reviewed,more » along with technical challenges, costs and other issues as appropriate. While no technology represents an ideal solution, their strengths can be enhanced by deployment in combination, along with grid integration that forms a critical set of enabling technologies to assure a reliable and robust future low-carbon electricity system.« less

  6. The Future of Low-Carbon Electricity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenblatt, Jeffery B.; Brown, Nicholas R.; Slaybaugh, Rachel

    We review future global demand for electricity and major technologies positioned to supply it with minimal greenhouse gas (GHG) emissions: renewables (wind, solar, water, geothermal, and biomass), nuclear fission, and fossil power with CO2 capture and sequestration. We discuss two breakthrough technologies (space solar power and nuclear fusion) as exciting but uncertain additional options for low-net GHG emissions (i.e., low-carbon) electricity generation. In addition, we discuss grid integration technologies (monitoring and forecasting of transmission and distribution systems, demand-side load management, energy storage, and load balancing with low-carbon fuel substitutes). For each topic, recent historical trends and future prospects are reviewed,more » along with technical challenges, costs, and other issues as appropriate. Although no technology represents an ideal solution, their strengths can be enhanced by deployment in combination, along with grid integration that forms a critical set of enabling technologies to assure a reliable and robust future low-carbon electricity system.« less

  7. The Future of Low-Carbon Electricity

    DOE PAGES

    Greenblatt, Jeffery B.; Brown, Nicholas R.; Slaybaugh, Rachel; ...

    2017-07-10

    Here, we review future global demand for electricity and major technologies positioned to supply itwith minimal greenhouse gas (GHG) emissions: renewables (wind, solar, water, geothermal and biomass), nuclear fission, and fossil power with CO 2 capture and sequestration. Two breakthrough technologies (space solar power and nuclear fusion) are discussed as exciting but uncertain additional options for low net GHG emissions (“low-carbon”) electricity generation. Grid integration technologies (monitoring and forecasting of transmission and distribution systems, demand-side load management, energy storage, and load balancing with low-carbon fuel substitutes) are also discussed. For each topic, recent historical trends and future prospects are reviewed,more » along with technical challenges, costs and other issues as appropriate. While no technology represents an ideal solution, their strengths can be enhanced by deployment in combination, along with grid integration that forms a critical set of enabling technologies to assure a reliable and robust future low-carbon electricity system.« less

  8. Modelling the water energy nexus: should variability in water supply impact on decision making for future energy supply options?

    NASA Astrophysics Data System (ADS)

    Cullis, James D. S.; Walker, Nicholas J.; Ahjum, Fadiel; Juan Rodriguez, Diego

    2018-02-01

    Many countries, like South Africa, Australia, India, China and the United States, are highly dependent on coal fired power stations for energy generation. These power stations require significant amounts of water, particularly when fitted with technology to reduce pollution and climate change impacts. As water resources come under stress it is important that spatial variability in water availability is taken into consideration for future energy planning particularly with regards to motivating for a switch from coal fired power stations to renewable technologies. This is particularly true in developing countries where there is a need for increased power production and associated increasing water demands for energy. Typically future energy supply options are modelled using a least cost optimization model such as TIMES that considers water supply as an input cost, but is generally constant for all technologies. Different energy technologies are located in different regions of the country with different levels of water availability and associated infrastructure development and supply costs. In this study we develop marginal cost curves for future water supply options in different regions of a country where different energy technologies are planned for development. These water supply cost curves are then used in an expanded version of the South Africa TIMES model called SATIM-W that explicitly models the water-energy nexus by taking into account the regional nature of water supply availability associated with different energy supply technologies. The results show a significant difference in the optimal future energy mix and in particular an increase in renewables and a demand for dry-cooling technologies that would not have been the case if the regional variability of water availability had not been taken into account. Choices in energy policy, such as the introduction of a carbon tax, will also significantly impact on future water resources, placing additional water demands in some regions and making water available for other users in other regions with a declining future energy demand. This study presents a methodology for modelling the water-energy nexus that could be used to inform the sustainable development planning process in the water and energy sectors for both developed and developing countries.

  9. 41 CFR 101-30.101-17 - Supply support.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....101-17 Section 101-30.101-17 Public Contracts and Property Management Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS SUPPLY AND PROCUREMENT 30-FEDERAL CATALOG SYSTEM 30...; e.g., GSA stock program, Federal supply schedule program, GSA's buy-on-demand program, or GSA's...

  10. 41 CFR 101-30.101-17 - Supply support.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....101-17 Section 101-30.101-17 Public Contracts and Property Management Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS SUPPLY AND PROCUREMENT 30-FEDERAL CATALOG SYSTEM 30...; e.g., GSA stock program, Federal supply schedule program, GSA's buy-on-demand program, or GSA's...

  11. 41 CFR 101-30.101-17 - Supply support.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....101-17 Section 101-30.101-17 Public Contracts and Property Management Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS SUPPLY AND PROCUREMENT 30-FEDERAL CATALOG SYSTEM 30...; e.g., GSA stock program, Federal supply schedule program, GSA's buy-on-demand program, or GSA's...

  12. 41 CFR 101-30.101-17 - Supply support.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....101-17 Section 101-30.101-17 Public Contracts and Property Management Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS SUPPLY AND PROCUREMENT 30-FEDERAL CATALOG SYSTEM 30...; e.g., GSA stock program, Federal supply schedule program, GSA's buy-on-demand program, or GSA's...

  13. 41 CFR 101-30.101-17 - Supply support.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....101-17 Section 101-30.101-17 Public Contracts and Property Management Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS SUPPLY AND PROCUREMENT 30-FEDERAL CATALOG SYSTEM 30...; e.g., GSA stock program, Federal supply schedule program, GSA's buy-on-demand program, or GSA's...

  14. 44 CFR 13.33 - Supplies.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 44 Emergency Management and Assistance 1 2011-10-01 2011-10-01 false Supplies. 13.33 Section 13.33 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY... GOVERNMENTS Post-Award Requirements Changes, Property, and Subawards § 13.33 Supplies. (a) Title. Title to...

  15. Customer relationship management implementation in the small and medium enterprise

    NASA Astrophysics Data System (ADS)

    Nugroho, Agus; Suharmanto, Agus; Masugino

    2018-03-01

    To win the global competition and sustain the business, small and medium enterprise shall implement a reliable information technology application to support their customer data base, production and sales as well as marketing management. This paper addresses the implementation of Customer Relationship Management (CRM) in small and medium enterprise, CV. Densuko Jaya. It is a small and medium enterprises in Semarang, Central Java, Republic of Indonesia deal with rubber processing industry supply chain. ADDIE model utilized in study to setup the CRM functionality at these enterprises. The aim of the authors is to present the benefits resulting from the application of CRM technologies at these enterprises to solve their chronicle issues in the field of integrated customer data base, production management process and sales automation in order to boost their business in the near future. Training and coaching have been delivered to the enterprises staffs and management to ensure that they can execute the system.

  16. Sensitivity analysis to aid shelter management decisions: how does altering expenditure affect operational viability?

    PubMed

    Widmar, Nicole Olynk; Lord, Emily; Litster, Annette

    2015-01-01

    Streamlining purchasing in nonhuman animal shelters can provide multiple financial benefits. Streamlining shelter inputs and thus reducing shelter costs can include trading paid labor and management for fewer, more involved volunteers or purchasing large quantities of medical supplies from fewer vendors to take advantage of bulk-purchasing discounts. Beyond direct savings, time and energy spent on purchasing and inventory control can be reduced through careful management. Although cost-cutting measures may seem attractive, shelter managers are cautioned to consider the potential unintended consequences of short-term cost reduction measures that could limit revenues or increase costs in the future. This analysis illustrates an example of the impact of cost reductions in specific expense categories and the impact on shelter net revenue, as well as the share of expenses across categories. An in-depth discussion of labor and purchasing cost-reducing strategies in the real world of animal shelter management is provided.

  17. Influence of green supply chain risk management on performance of Chinese manufacturing enterprises

    NASA Astrophysics Data System (ADS)

    Zhang, Dongying; Yuting, Duan; Junyi, Shen

    2017-12-01

    This paper briefly introduces the background of the research on the impact of green supply chain risk management on corporate performance, reviews the relevant research literature at home and abroad, and uses the gray relational analysis to analyze the impact of the green supply chain risk management on enterprise performance based on 26 industry-related statistical data, from purchasing risk management performance,manufacturing risk management performance and marketing risk management performance.

  18. Future market scenarios for pulpwood supply from agricultural short-rotation woody crops

    Treesearch

    Alexander N. Moiseyev; Daniel G. de la Torre Ugarte; Peter J. Ince

    2000-01-01

    The North American Pulp And Paper (NAPAP) model and USDA POLYSYS agricultural policy analysis model were linked to project future market scenarios for pulpwood supply from agricultural short-rotation woody crops in the United States. Results suggest that pulpwood supply from fast- growing hybrid poplars and cottonwoods will become marginally economical but fairly...

  19. 43 CFR 404.13 - What criteria will Reclamation use to prioritize requests for assistance under the program?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... urgent and compelling need for a rural water supply project that would: (1) Address present or future water supply needs; or (2) Promote public health and safety by addressing present and preventing future violations of drinking water standards; (b) The extent to which a rural water supply project promotes and...

  20. Forests and future water stress in the Southeast

    Treesearch

    Stephanie Worley Firley

    2009-01-01

    How will future water supplies be impacted by a changing climate, an increasing population, and shifting land uses and land cover? Will there be enough water to sustain humans and ecosystems alike? And what can be done to help forests adapt to limited water supplies in the future?

  1. Supply chain management of health commodities for reducing global disease burden.

    PubMed

    Chukwu, Otuto Amarauche; Ezeanochikwa, Valentine Nnaemeka; Eya, Benedict Ejikeme

    Reducing global disease burden requires improving access to medicines, thus the need for efficient and effective supply chain management for medicines. The Nigerian government came up with new policies on Mega Drug Distribution Centres and National Drug Distribution Guidelines to improve access to quality medicines with pharmacists having a key role to play. However, pharmacists in Nigeria seem not to be aware and adequately equipped to handle the medicines supply chain. This article aimed at assessing the awareness and readiness of Nigerian pharmacists on supply chain management practices for improving access to medicines. Pharmacists in Nigeria's Capital were randomly sampled. Semi-structured questionnaires were administered. Descriptive statistics was used in data analysis. P values less than 0.05 were considered to be significant. 29.3%, 20.7% and 53.7% were not aware of supply chain management, National Drug Distribution Guidelines and Mega Drug Distribution Centres, respectively. 85.46% do not have a copy of the National Drug Distribution Guidelines. 78% were not aware that Mega Drug Distribution Centres are already operational. 35.4% have never been involved in any supply chain management practice. 69.5% often experience stock out of vital and essential medicines, of which 85.2% were in hospitals. 15.9% were successful in managing their facility's supply chains. 84.1% opined that pharmacists in Nigeria are not yet ready to handle the medicines supply chain. Findings showed limited awareness and readiness on supply chain management of medicines. This may be due to inadequate supply chain management skills and infrastructure, poor financing, lack of accountability and poor management. Tackling these as well as pharmacists showing more interest in the country's health policies and obtaining necessary postgraduate certifications will lead to improvements. This will improve access to quality medicines and thus help in the fight to reduce disease burden both locally and globally. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Shrinking the Supply Chain for Implantable Coronary Stent Devices.

    PubMed

    Moore, Sean S; O'Sullivan, Kevin J; Verdecchia, Francesco

    2016-02-01

    Stenting treatments for the management of disease in the heart, arterial and venous systems, biliary ducts, urethras, ureters, oesophageal tract and prostate have made enormous technical advances since their introduction into clinical use. The progression from metallic to polymer based bio-absorbable stents, coupled with the advances in additive manufacturing techniques, present a unique opportunity to completely re-envision the design, manufacture, and supply chain of stents. This paper looks at current stenting trends and proposes a future where the stent supply chain is condensed from ~150 days to ~20 min. The Cardiologist therefore has the opportunity to become a designer, manufacturer and user with patients receiving custom stents specific to their unique pathology that will be generated, delivered and deployed in the Cath-lab. The paper will outline this potentially revolutionary development and consider the technical challenges that will need to be overcome in order to achieve these ambitious goals. A high level overview of the generating eluting stents in situ program-GENESIS-is outlined including some early experimental work.

  3. Supplier Development: A Long-Term Supportability Option For USAF Engines

    DTIC Science & Technology

    2012-02-01

    Supply Chain Management Practices..................8 AF and DoD Regulations "Limitation or Hoax" Can USAF Develop Suppliers...integrated supply chain management (SCM) process providing engines and parts, aiding in the ability of the depots to meet the warfighter‟s needs. The... supply chain has struggled in the past to support the warfighter with enough engines to accomplish the mission. The engine supply chain management

  4. General practitioner workforce planning: assessment of four policy directions.

    PubMed

    Teljeur, Conor; Thomas, Stephen; O'Kelly, Fergus D; O'Dowd, Tom

    2010-06-02

    Estimating the supply of GPs into the future is important in forecasting shortages. The lengthy training process for medicine means that adjusting supply to meet demand in a timely fashion is problematic. This study uses Ireland as a case study to determine the future demand and supply of GPs and to assess the potential impact of several possible interventions to address future shortages. Demand was estimated by applying GP visit rates by age and sex to national population projections. Supply was modelled using a range of parameters derived from two national surveys of GPs. A stochastic modelling approach was adopted to determine the probable future supply of GPs. Four policy interventions were tested: increasing vocational training places; recruiting GPs from abroad; incentivising later retirement; increasing nurse substitution to enable practice nurses to deliver more services. Relative to most other European countries, Ireland has few GPs per capita. Ireland has an ageing population and demand is estimated to increase by 19% by 2021. Without intervention, the supply of GPs will be 5.7% less than required in 2021. Increasing training places will enable supply to meet demand but only after 2019. Recruiting GPs from overseas will enable supply to meet demand continuously if the number recruited is approximately 0.8 per cent of the current workforce per annum. Later retirement has only a short-term impact. Nurse substitution can enable supply to meet demand but only if large numbers of practice nurses are recruited and allowed to deliver a wide range of GP services. A significant shortfall in GP supply is predicted for Ireland unless recruitment is increased. The shortfall will have numerous knock-on effects including price increases, longer waiting lists and an increased burden on hospitals. Increasing training places will not provide an adequate response to future shortages. Foreign recruitment has ethical considerations but may provide a rapid and effective response. Increased nurse substitution appears to offer the best long-term prospects of addressing GP shortages and presents the opportunity to reshape general practice to meet the demands of the future.

  5. Current and future groundwater withdrawals: Effects, management and energy policy options for a semi-arid Indian watershed

    NASA Astrophysics Data System (ADS)

    Sishodia, Rajendra P.; Shukla, Sanjay; Graham, Wendy D.; Wani, Suhas P.; Jones, James W.; Heaney, James

    2017-12-01

    Effects of future expansion/intensification of irrigated agriculture on groundwater and surface water levels and availability in a semi-arid watershed were evaluated using an integrated hydrologic model (MIKE SHE/MIKE 11) in conjunction with biophysical measurements. Improved water use efficiency, water storage, and energy policy options were evaluated for their ability to sustain the future (2035) increased groundwater withdrawals. Three future withdrawal scenarios (low = 20, medium = 30, high = 50 wells/100 km2/year) based on the historical rate of growth of irrigation wells were formulated. While well drying from falling groundwater levels was limited to drought and consecutive below average rainfall years, under the current (2015) withdrawals, significant increases in frequency and duration (17-97 days/year) of well drying along with 13-26% (19-37 mm) reductions in surface flows were predicted under the future withdrawals. Higher (27-108%) energy demands of existing irrigation pumps due to declining groundwater levels and reduced hydroelectric generation due to decreased surface flows would create a vicious water-food-energy nexus in the future. Crop failure, one of the main causes of farmers' emotional distress and death in the region, is predicted to exacerbate under the future withdrawal scenarios. Shift to negative net recharge (-63 mm) and early and prolonged drying of wells under the high scenario will reduce the groundwater availability and negatively affect crop production in more than 60% and 90% of cropped areas in the Rabi (November-February) and summer (March-May) seasons, respectively during a drought year. Individual and combined demand (drip irrigation and reduced farm electricity subsidy) and supply (water storage) management options improved groundwater levels and reduced well drying by 55-97 days/year compared to business-as-usual management under the high scenario. The combined management (50% drip conversion, 50% reduction in subsidy, and enhanced water storage) mitigated well drying even during drought and consecutive below average rainfall years under the high scenario. A conservative economic evaluation for management options under the high scenario showed increases in crop production and per farmer annual profits by 987-1397 during a drought year (average household income = 1520/year). A scale-up of results showed that diverting 50% state power subsidy (6 billion for 3-6 years) can almost entirely fund the conversion to drip irrigation (4.2 billion) and water storage structures (2.9 billion) and help meet the water supply demand of a 50% increase in irrigated area under the high scenario. Converting flood to drip irrigation in 50% of irrigated area under the high scenario can reduce the electric energy consumption (7 × 106Mwh/year) and carbon footprint (6000 Mt/year) of groundwater irrigation by 24% in the state. Management options considered can potentially create a sustainable water-food-energy nexus in the larger semi-arid hard rock region. Reducing the power subsidy will require a strong political will since it has been used as a tool to win the elections in India. Considering future agricultural intensification, timely interventions are needed to ensure the livelihood and well-being of millions of small- and medium-scale farmers that rely on low storage, hard rock aquifers in the semi-arid regions of the world.

  6. The Impact of Supply Chain Business Processes on Competitive Advantage and Organizational Performance

    DTIC Science & Technology

    2012-03-22

    Manager, Vice President (VP) Distribution & Fulfillment, Transportation Manager, VP of Supply Chain Management, Production Manager, Director of...Logistics/ Transportation /Distribution (75%), and Supply/Purchasing/Procurement (25%) were identified as functions that best describe the respondents...manufacturing industry (50%), one respondent represented the wholesale trade (12.5%), the retail trade (12.5%), and the transportation and warehousing

  7. Distribution and Supply Chain Management: Educating the Army Officer

    DTIC Science & Technology

    2005-05-26

    knowledge a logistics officer must have to function effectively in a supply chain and distribution management environment. It analyzes how officers...Educational Objectives. It discusses how the Army/DoD currently teaches supply chain and distribution management concepts in various programs, such as the...its educational curriculum, and that logisticians continue to gain operational experience in distribution management operations. The paper recommends

  8. Models for predicting disinfection byproduct (DBP) formation in drinking waters: a chronological review.

    PubMed

    Chowdhury, Shakhawat; Champagne, Pascale; McLellan, P James

    2009-07-01

    Disinfection for the supply of safe drinking water forms a variety of known and unknown byproducts through reactions between the disinfectants and natural organic matter. Chronic exposure to disinfection byproducts through the ingestion of drinking water, inhalation and dermal contact during regular indoor activities (e.g., showering, bathing, cooking) may pose cancer and non-cancer risks to human health. Since their discovery in drinking water in 1974, numerous studies have presented models to predict DBP formation in drinking water. To date, more than 48 scientific publications have reported 118 models to predict DBP formation in drinking waters. These models were developed through laboratory and field-scale experiments using raw, pretreated and synthetic waters. This paper aims to review DBP predictive models, analyze the model variables, assess the model advantages and limitations, and to determine their applicability to different water supply systems. The paper identifies the current challenges and future research needs to better control DBP formation. Finally, important directions for future research are recommended to protect human health and to follow the best management practices.

  9. 41 CFR 101-30.101-2 - Item of supply.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....101-2 Section 101-30.101-2 Public Contracts and Property Management Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS SUPPLY AND PROCUREMENT 30-FEDERAL CATALOG SYSTEM 30... differentiates one item from another item in the Federal Catalog System. Each item of supply is expressed in and...

  10. 41 CFR 101-30.101-2 - Item of supply.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....101-2 Section 101-30.101-2 Public Contracts and Property Management Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS SUPPLY AND PROCUREMENT 30-FEDERAL CATALOG SYSTEM 30... differentiates one item from another item in the Federal Catalog System. Each item of supply is expressed in and...

  11. 41 CFR 101-30.101-2 - Item of supply.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....101-2 Section 101-30.101-2 Public Contracts and Property Management Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS SUPPLY AND PROCUREMENT 30-FEDERAL CATALOG SYSTEM 30... differentiates one item from another item in the Federal Catalog System. Each item of supply is expressed in and...

  12. 41 CFR 101-30.101-2 - Item of supply.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....101-2 Section 101-30.101-2 Public Contracts and Property Management Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS SUPPLY AND PROCUREMENT 30-FEDERAL CATALOG SYSTEM 30... differentiates one item from another item in the Federal Catalog System. Each item of supply is expressed in and...

  13. 41 CFR 101-30.404-1 - Consolidation of supply support requests.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... support requests. 101-30.404-1 Section 101-30.404-1 Public Contracts and Property Management Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS SUPPLY AND PROCUREMENT 30-FEDERAL CATALOG SYSTEM 30.4-Use of the Federal Catalog System § 101-30.404-1 Consolidation of supply...

  14. 41 CFR 101-30.404-1 - Consolidation of supply support requests.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... support requests. 101-30.404-1 Section 101-30.404-1 Public Contracts and Property Management Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS SUPPLY AND PROCUREMENT 30-FEDERAL CATALOG SYSTEM 30.4-Use of the Federal Catalog System § 101-30.404-1 Consolidation of supply...

  15. 41 CFR 101-30.404-1 - Consolidation of supply support requests.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... support requests. 101-30.404-1 Section 101-30.404-1 Public Contracts and Property Management Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS SUPPLY AND PROCUREMENT 30-FEDERAL CATALOG SYSTEM 30.4-Use of the Federal Catalog System § 101-30.404-1 Consolidation of supply...

  16. 41 CFR 101-30.404-1 - Consolidation of supply support requests.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... support requests. 101-30.404-1 Section 101-30.404-1 Public Contracts and Property Management Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS SUPPLY AND PROCUREMENT 30-FEDERAL CATALOG SYSTEM 30.4-Use of the Federal Catalog System § 101-30.404-1 Consolidation of supply...

  17. 41 CFR 101-30.101-2 - Item of supply.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....101-2 Section 101-30.101-2 Public Contracts and Property Management Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS SUPPLY AND PROCUREMENT 30-FEDERAL CATALOG SYSTEM 30... differentiates one item from another item in the Federal Catalog System. Each item of supply is expressed in and...

  18. 41 CFR 101-30.404-1 - Consolidation of supply support requests.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... support requests. 101-30.404-1 Section 101-30.404-1 Public Contracts and Property Management Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS SUPPLY AND PROCUREMENT 30-FEDERAL CATALOG SYSTEM 30.4-Use of the Federal Catalog System § 101-30.404-1 Consolidation of supply...

  19. 76 FR 34271 - Hewlett Packard, Global Parts Supply Chain, Global Product Life Cycles Management Unit, Including...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-13

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-74,671] Hewlett Packard, Global Parts Supply Chain, Global Product Life Cycles Management Unit, Including Teleworkers Reporting to... Supply Chain, Global Product Life Cycles Management Unit, including teleworkers reporting to Houston...

  20. Challenges and opportunities of health care supply chain management in the United States.

    PubMed

    Elmuti, Dean; Khoury, Grace; Omran, Omar; Abou-Zaid, Ahmed S

    2013-01-01

    This article explores current supply chain management challenges and initiatives and identifies problems that affect supply chain management success in the U.S. health-care industry. In addition, it investigates the impact of health care supply chain management (SCM) initiatives on the overall organizational effectiveness. The attitudinal results, as well as the performance results presented in this study support the claim of health care proponents that the SCM allows organizations to reduce cost, improve quality, and reduce cycle time, and leads to high performance.

  1. Risk management abilities in multimodal maritime supply chains: Visibility and control perspectives.

    PubMed

    Vilko, Jyri; Ritala, Paavo; Hallikas, Jukka

    2016-11-29

    Supply chain complexity and disintegration lead to increased uncertainty from a stakeholders' perspective, which is emerging as one of the major challenges of risk management. The ability to identify risks has weakened, as the responsibility of supply chain risk management is handed over to outside service providers. Regardless, the risks, their visibility and their impact depend on the position of the companies in the supply chain. The actors in the chain must therefore collaborate to create effective risk management conditions. This challenging situation is especially pronounced in multimodal maritime supply chains, where the risks and actor focality are high. This paper contributes to current risk management literature by providing a holistic and systemic view of risk visibility and control in maritime supply chains. The study employs broad-based, qualitative interview data collected from actors operating in southern Finland and the Gulf of Finland as well as an expert-panel assessment of the related risk management abilities. The results show a high level of variance in the level of risk identification and visibility between the actors in question. This further suggests that collaboration in supply chain risk management is essential, as an awareness of the risks and their control mechanisms do not necessarily reside in the same company. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Can efficient supply management in the operating room save millions?

    PubMed

    Park, Kyung W; Dickerson, Cheryl

    2009-04-01

    Supply expenses occupy an ever-increasing portion of the expense budget in today's increasingly technologically complex operating rooms. Yet, little has been studied and published in the anesthesia literature. This review attempts to bring the topic of supply management to anesthesiologists, who play a significant role in operating room management. Little investigative work has been performed on supply management. Anecdotal reports suggest the benefits of a perpetual inventory system over a periodic inventory system. A perpetual inventory system uses utilization data to update inventory on hand continually and this information is linked to purchasing and restocking, whereas a periodic inventory system counts inventory at some regular intervals (such as annually) and uses average utilization to set par levels. On the basis of application of operational management concepts, ways of taking advantage of a perpetual inventory system to achieve savings in supply expenses are outlined. These include linking the operating room scheduling and supply order system, distributor-driven just-in-time delivery of case carts, continual updating of preference lists based on utilization patterns, increasing inventory turnovers, standardizing surgical practices, and vendor consignment of high unit-cost items such as implants. In addition, Lean principles of visual management and elimination of eight wastes may be applicable to supply management.

  3. Forecasting Optimal Solar Energy Supply in Jiangsu Province (China): A Systematic Approach Using Hybrid of Weather and Energy Forecast Models

    PubMed Central

    Zhao, Xiuli; Yiranbon, Ethel

    2014-01-01

    The idea of aggregating information is clearly recognizable in the daily lives of all entities whether as individuals or as a group, since time immemorial corporate organizations, governments, and individuals as economic agents aggregate information to formulate decisions. Energy planning represents an investment-decision problem where information needs to be aggregated from credible sources to predict both demand and supply of energy. To do this there are varying methods ranging from the use of portfolio theory to managing risk and maximizing portfolio performance under a variety of unpredictable economic outcomes. The future demand for energy and need to use solar energy in order to avoid future energy crisis in Jiangsu province in China require energy planners in the province to abandon their reliance on traditional, “least-cost,” and stand-alone technology cost estimates and instead evaluate conventional and renewable energy supply on the basis of a hybrid of optimization models in order to ensure effective and reliable supply. Our task in this research is to propose measures towards addressing optimal solar energy forecasting by employing a systematic optimization approach based on a hybrid of weather and energy forecast models. After giving an overview of the sustainable energy issues in China, we have reviewed and classified the various models that existing studies have used to predict the influences of the weather influences and the output of solar energy production units. Further, we evaluate the performance of an exemplary ensemble model which combines the forecast output of two popular statistical prediction methods using a dynamic weighting factor. PMID:24511292

  4. Constraining Glacial Runoff Contributions to Water Resources in the Cordillera Real, Bolivia using Environmental Tracers

    NASA Astrophysics Data System (ADS)

    Guido, Z.; McIntosh, J. C.; Papuga, S. A.

    2013-12-01

    Warming temperatures in recent decades have contributed to substantial reductions in glaciers in many mountain regions around the globe, including the South American Andes. Melting of these glaciers taps water resources accumulated in past climates, and the diminishing ice marks a decrease in a nonrenewable water source that begs the question: how will future water supplies be impacted by climate change. Water resource management and climate adaptation efforts can be informed by knowledge of the extent to which glaciers contribute to seasonal streamflows, but remote locations and scant monitoring often limit this quantification. In Bolivia, more than two million people draw water from watersheds fed, in part, by glaciers. The amount to which these glaciers contribute to the water supply, however, is not well constrained. We apply elemental and isotopic tracers in an end-member mixing model to quantify glacial runoff contributions to local water supplies. We present oxygen and deuterium isotopes and major anion concentrations (sulfate and chloride) of shallow groundwater, streams, reservoirs, small arroyos, and glacial runoff. Isotopic and anion mixing models suggest between 45-67% of the water measured in high altitude streams originated from within the glacial footprint during the 2011 wet season, while glacial runoff contributed about 42-53% of the water in reservoirs in the 2012 dry season. Data also show that shallow groundwater is connected to glacial-fed streams. Any future decrease in glacial runoff may contribute to a reduction in surface water supplies and lower groundwater levels downstream, perhaps below the depth of hand-dug wells common in rural communities.

  5. The Potential for Snow to Supply Human Water Demand in the Present and Future

    NASA Technical Reports Server (NTRS)

    Mankin, Justin S.; Viviroli, Daniel; Singh, Deepti; Hoekstra, Arjen Y.; Diffenbaugh, Noah S.

    2015-01-01

    Runoff from snowmelt is regarded as a vital water source for people and ecosystems throughout the Northern Hemisphere (NH). Numerous studies point to the threat global warming poses to the timing and magnitude of snow accumulation and melt. But analyses focused on snow supply do not show where changes to snowmelt runoff are likely to present the most pressing adaptation challenges, given sub-annual patterns of human water consumption and water availability from rainfall. We identify the NH basins where present spring and summer snowmelt has the greatest potential to supply the human water demand that would otherwise be unmet by instantaneous rainfall runoff. Using a multi-model ensemble of climate change projections, we find that these basins - which together have a present population of approx. 2 billion people - are exposed to a 67% risk of decreased snow supply this coming century. Further, in the multi-model mean, 68 basins (with a present population of more than 300 million people) transition from having sufficient rainfall runoff to meet all present human water demand to having insufficient rainfall runoff. However, internal climate variability creates irreducible uncertainty in the projected future trends in snow resource potential, with about 90% of snow-sensitive basins showing potential for either increases or decreases over the near-term decades. Our results emphasize the importance of snow for fulfilling human water demand in many NH basins, and highlight the need to account for the full range of internal climate variability in developing robust climate risk management decisions.

  6. Forecasting optimal solar energy supply in Jiangsu Province (China): a systematic approach using hybrid of weather and energy forecast models.

    PubMed

    Zhao, Xiuli; Asante Antwi, Henry; Yiranbon, Ethel

    2014-01-01

    The idea of aggregating information is clearly recognizable in the daily lives of all entities whether as individuals or as a group, since time immemorial corporate organizations, governments, and individuals as economic agents aggregate information to formulate decisions. Energy planning represents an investment-decision problem where information needs to be aggregated from credible sources to predict both demand and supply of energy. To do this there are varying methods ranging from the use of portfolio theory to managing risk and maximizing portfolio performance under a variety of unpredictable economic outcomes. The future demand for energy and need to use solar energy in order to avoid future energy crisis in Jiangsu province in China require energy planners in the province to abandon their reliance on traditional, "least-cost," and stand-alone technology cost estimates and instead evaluate conventional and renewable energy supply on the basis of a hybrid of optimization models in order to ensure effective and reliable supply. Our task in this research is to propose measures towards addressing optimal solar energy forecasting by employing a systematic optimization approach based on a hybrid of weather and energy forecast models. After giving an overview of the sustainable energy issues in China, we have reviewed and classified the various models that existing studies have used to predict the influences of the weather influences and the output of solar energy production units. Further, we evaluate the performance of an exemplary ensemble model which combines the forecast output of two popular statistical prediction methods using a dynamic weighting factor.

  7. Requirements of supply chain management in differentiating European pork chains.

    PubMed

    Trienekens, Jacques; Wognum, Nel

    2013-11-01

    This paper summarizes results obtained by research into pork chain management in the EU Integrated Project Q-Porkchains. Changing demands for intrinsic and extrinsic quality attributes of pork products impact the way supply chain management should be organized from the farmer down to the consumer. The paper shows the importance of Quality Management Systems for integrating supply chains and enhancing consumer confidence. The paper also presents innovations in information system integration for aligning information exchange in the supply chain and logistics concepts based on innovative measurement technologies at the slaughterhouse stage. In the final section research challenges towards sustainable pork supply chains satisfying current consumer demands are presented. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Environmental Management Competitive Pressure Effect on SME Environmental Innovation Activities: A Green Supply Chain Perspective

    NASA Astrophysics Data System (ADS)

    Rashid, A. A.; Sidek, A. A.; Suffian, S. A.; Daud, M. R. C.

    2018-01-01

    The idea of assimilating green supply chain is to integrate and establish environmental management into the supply chain practices. The study aims to explore how environmental management competitive pressure influences a SME company in Malaysia to incorporate green supply chain integration, which is an efficient platform to develop environmental innovation. This study further advances green supply chain management research in Malaysia by using the method of quantitative analysis to analyze the model developed which data will be collected based on a sample of SMEs in Malaysia in manufacturing sector. The model developed in this study illustrates how environmental management competitive pressure from main competitors affects three fundamental dimensions of green supply chain integration. The research findings suggest that environmental management competitive pressure is a vital driving force for a SME company to incorporate internal and external collaboration in developing green product innovation. From the analysis conducted, the study strongly demonstrated that the best way for a company to counteract competitor’s environmental management success is to first implement strong internal green product development process then move to incorporate external environmental management innovation between their suppliers and customers. The findings also show that internal integration of green product innovation fully mediates the relationship of environmental management competitive pressure and the external integration of green product innovation.

  9. Potential Evaluation of Energy Supply System in Grid Power System, Commercial, and Residential Sectors by Minimizing Energy Cost

    NASA Astrophysics Data System (ADS)

    Oda, Takuya; Akisawa, Atushi; Kashiwagi, Takao

    If the economic activity in the commercial and residential sector continues to grow, improvement in energy conversion efficiencies of energy supply systems is necessary for CO2 mitigation. In recent years, the electricity driven hot water heat pump (EDHP) and the solar photo voltaic (PV) are commercialized. The fuel cell (FC) of co-generation system (CGS) for the commercial and residential sector will be commercialized in the future. The aim is to indicate the ideal energy supply system of the users sector, which both manages the economical cost and CO2 mitigation, considering the grid power system. In the paper, cooperative Japanese energy supply systems are modeled by linear-programming. It includes the grid power system and energy systems of five commercial sectors and a residential sector. The demands of sectors are given by the objective term for 2005 to 2025. 24 hours load for each 3 annual seasons are considered. The energy systems are simulated to be minimize the total cost of energy supply, and to be mitigate the CO2 discharge. As result, the ideal energy system at 2025 is shown. The CGS capacity grows to 30% (62GW) of total power system, and the EDHP capacity is 26GW, in commercial and residential sectors.

  10. Performance analysis of Supply Chain Management with Supply Chain Operation reference model

    NASA Astrophysics Data System (ADS)

    Hasibuan, Abdurrozzaq; Arfah, Mahrani; Parinduri, Luthfi; Hernawati, Tri; Suliawati; Harahap, Bonar; Rahmah Sibuea, Siti; Krianto Sulaiman, Oris; purwadi, Adi

    2018-04-01

    This research was conducted at PT. Shamrock Manufacturing Corpora, the company is required to think creatively to implement competition strategy by producing goods/services that are more qualified, cheaper. Therefore, it is necessary to measure the performance of Supply Chain Management in order to improve the competitiveness. Therefore, the company is required to optimize its production output to meet the export quality standard. This research begins with the creation of initial dimensions based on Supply Chain Management process, ie Plan, Source, Make, Delivery, and Return with hierarchy based on Supply Chain Reference Operation that is Reliability, Responsiveness, Agility, Cost, and Asset. Key Performance Indicator identification becomes a benchmark in performance measurement whereas Snorm De Boer normalization serves to equalize Key Performance Indicator value. Analiytical Hierarchy Process is done to assist in determining priority criteria. Measurement of Supply Chain Management performance at PT. Shamrock Manufacturing Corpora produces SC. Responsiveness (0.649) has higher weight (priority) than other alternatives. The result of performance analysis using Supply Chain Reference Operation model of Supply Chain Management performance at PT. Shamrock Manufacturing Corpora looks good because its monitoring system between 50-100 is good.

  11. Assessment of management options in marine fisheries by qualitative modelling techniques.

    PubMed

    Eisenack, K; Kropp, J

    2001-01-01

    An effective management of the rapidly dwindling marine fish resources is of great ecological, economic and social importance for the future. An over-development of commercial fisheries has brought about a multitude of negative environmental impacts, such as an accelerated exploitation of stocks or a decrease of marine biodiversity, and furthermore, a profound structural change in fish industry. However, the main reason for the non-prosperous rationing of marine resources is the lack of knowledge about certain processes as well as the non-availability of adequate steering instruments. This paper addresses the lack of conceptualization in the case of uncertain knowledge. It proposes a model approach which can be used for weak but improved decision support under the premise of vague knowledge. The usage of qualitative differential equations illustrates general patterns of overcapitalization of fishing fleets. The extension of traditional model approaches by integration of additional socio-economic phenomena in this context supplies deeper insights in the dynamics of a coupled economic and ecological system. The approach provides a set of characteristic system behaviours which can be fruitfully used for the development of future management tasks.

  12. Developing Tailored Supply Strategies

    DTIC Science & Technology

    2007-01-01

    David J . Closs, and M. Bixby Cooper, Supply Chain Logistics Management, New York: McGraw-Hill, 2002. Burt, David N., and Richard L. Pinkerton, A ...Supply Chain Management, Vol. 37, No. 2, Spring 2001, pp. 8–15. Bibliography 119 Coyle, John J ., Edward J . Bardi , and C. John Langley Jr., The...Gelderman, Cees J ., and Arjan J . van Weele, “Strategic Direction Through Purchasing Portfolio Management: A Case Study,” The Journal of Supply Chain

  13. Sustainability of groundwater supplies in the Northern Atlantic Coastal Plain aquifer system

    USGS Publications Warehouse

    Masterson, John P.; Pope, Jason P.

    2016-08-31

    The U.S. Geological Survey (USGS) is conducting large-scale multidisciplinary regional studies of groundwater availability as part of its ongoing assessments of the principal aquifers of the Nation. These regional studies are intended to provide citizens, communities, and natural resource managers with knowledge of the status of the Nation’s groundwater resources and how changes in land use, water use, and climate have affected and are likely to affect those resources now and in the future.

  14. Executive reflects on progress in the oil and gas industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popov, S.

    1997-08-01

    This paper reflects on the UK oil and gas industry`s international globalization and progress from the perspective of a UK industry executive. Sir Ian Wood, managing director of John Wood Group plc, outlined past and future industry developments during a 1997 Offshore Technology Conference speech. He concludes that the UK supply and service industry is now fully involved in the international arena, and hopes to play a significant role in the exciting oil and gas developments in the Gulf of Mexico and frontiers worldwide.

  15. Specifying to meet multiple demands.

    PubMed

    West, Martyn

    2014-04-01

    Choosing flooring for healthcare takes careful consideration. New legislation in healthcare places greater responsibility on those throughout the supply chain to ensure the safety of staff, visitors, and patients - now, and in the future. This undoubtedly impacts on flooring choices, but there is also the need for the most stringent hygiene, an aesthetically pleasing healing environment, maintenance and cleaning considerations, environmental impact, and some very specific requirements for dementia and elderly care to consider. Martyn West, Altro's specification manager, examines these key issues.

  16. Aviation Logistics Support in the United States Coast Guard: An Assessment of Management and Cost-Effectiveness

    DTIC Science & Technology

    1993-01-01

    34 with air stations, with DoD support sources, with AR&SC, with other USCG Headquarters elements, with commercial vendors, and with research and...STRATEGY FOR THE FUTURE Based on our research , knowledge of other aviation logistics support programs, and analysis of the USCG’s program, we believe that...concerted effort to develop and refine the maintenance and supply data the model uses. That effort should include ditermining the basic Ao requirement and

  17. Foreign Military Sales: A Historical Review of Argentina’s Purchases

    DTIC Science & Technology

    2013-03-01

    Management Science, 2009. 3. Douglas M Lambert, “ Supply Chain Management Processes, Partnership, Performance”, Third Edition, 2008. 4. Sunil Chopra...Science in Logistics and Supply Chain Management Juan E. Perot, MBA LtCol, AAF March 2013 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION...ago, and they manage various purchasing activities in each year for several systems. Therefore a particular and specific Supply Chain

  18. Training Programs of the National Institute of General Medical Sciences, 1971-1980.

    ERIC Educational Resources Information Center

    National Inst. of General Medical Sciences (NIH), Bethesda, MD.

    The study predicts future requirements for biological scientists by specialty area, future supply within area, and the effects of National Institutes of Health program alternatives on requirements and supply measures. At present and for the forseeable future, approved training grants for critical shortage areas are funded as rapidly as centers of…

  19. 44 CFR 206.6 - Donation or loan of Federal equipment and supplies.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... equipment and supplies. 206.6 Section 206.6 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT... Donation or loan of Federal equipment and supplies. (a) In any major disaster or emergency, the... may direct Federal agencies to donate or loan their equipment and supplies to State and local...

  20. 78 FR 45182 - Clarification of Sourcing Requirements for the Procurement List

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-26

    ...) 4140.1-R, DoD Supply Chain Materiel Management Regulation, the AbilityOne Program is designating the... Defense and the General Services Administration Governing Supply Management Relationships Under the National Supply System provides DLA the authority to procure and supply certain assigned products for the...

  1. Development of biosimilars in an era of oncologic drug shortages

    PubMed Central

    Li, Edward; Subramanian, Janakiraman; Anderson, Scott; Thomas, Dolca; McKinley, Jason; Jacobs, Ira A

    2015-01-01

    Acute and chronic shortages of various pharmaceuticals and particularly of sterile injectable products are being reported on a global scale, prompting evaluation of more effective strategies to manage current shortages and development of new, high-quality pharmaceutical products to mitigate the risk of potential future shortages. Oncology drugs such as liposomal doxorubicin and 5-fluorouracil represent examples of first-choice drugs critically affected by shortages. Survey results indicate that the majority of hospitals and practicing oncologists have experienced drug shortages, which may have compromised patient safety and clinical outcomes, and increased health care costs, due to delays or changes in treatment regimens. Clinical trials evaluating novel agents in combination with standard-of-care drugs are also being affected by drug shortages. Clinical and ethical considerations on treatment objectives, drug indication, and availability of alternative options may help in prioritizing cancer patients involved in active drug shortages. The United States Food and Drug Administration and the European Medicines Agency have identified manufacturing problems, delays in supply, and lack of available active ingredients as the most frequent causes of recent or ongoing drug shortages, and have released specific guidance to monitor, manage, and reduce the risk of shortages. The upcoming loss of exclusivity for a number of anticancer biologics, together with the introduction of an abbreviated approval pathway for biosimilars, raises the question of whether these products will be vulnerable to shortages. Future supply by reliable manufacturers of well characterized biosimilar monoclonal antibodies, developed in compliance with regulatory and manufacturing guidelines and with substantial investments, may contribute to prevent future biologics shortages and ensure access to effective and safe treatment options for patients with cancer. Preclinical and clinical characterization is ongoing for potential biosimilars of trastuzumab, rituximab, and bevacizumab, with promising results. PMID:26150698

  2. 32 CFR 37.700 - What are the requirements for supplies?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-based TIA's provisions should permit participants to use their existing procedures to account for and manage supplies. A fixed-support TIA should not include requirements to account for or manage supplies...

  3. Performance measurement for supply chain management and evaluation criteria determination for reverse supply chain management

    NASA Astrophysics Data System (ADS)

    Kongar, N. Elif

    2004-12-01

    Today, since customers are able to obtain similar-quality products for similar prices, the lead time has become the only preference criterion for most of the consumers. Therefore, it is crucial that the lead time, i.e., the time spent from the raw material phase till the manufactured good reaches the customer, is minimized. This issue can be investigated under the title of Supply Chain Management (SCM). An efficiently managed supply chain can lead to reduced response time for customers. To achieve this, continuous observation of supply chain efficiency, i.e., a constant performance evaluation of the current SCM is required. Widely used conventional performance measurement methods lack the ability to evaluate a SCM since the supply chain is a dynamic system that requires a more thorough and flexible performance measurement technique. Balanced Scorecard (BS) is an efficient tool for measuring the performance of dynamic systems and has a proven capability of providing the decision makers with the appropriate feedback data. In addition to SCM, a relatively new management field, namely reverse supply chain management (RSCM), also necessitates an appropriate evaluation approach. RSCM differs from SCM in many aspects, i.e., the criteria used for evaluation, the high level of uncertainty involved etc., not allowing the usage of identical evaluation techniques used for SCM. This study proposes a generic Balanced Scorecard to measure the performance of supply chain management while defining the appropriate performance measures for SCM. A scorecard prototype, ESCAPE, is presented to demonstrate the evaluation process.

  4. 77 FR 24984 - Importer of Controlled Substances; Notice of Application; Clinical Supplies Management, Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-26

    ... Application; Clinical Supplies Management, Inc. Pursuant to 21 U.S.C. 958(i), the Attorney General shall... on November 13, 2011, Clinical Supplies Management, Inc., 342 42nd Street South, Fargo, North Dakota... distributing to customers which are qualified clinical sites conducting clinical trials under the auspices of...

  5. 78 FR 39339 - Importer of Controlled Substances; Notice of Registration; Clinical Supplies Management, Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-01

    ... Registration; Clinical Supplies Management, Inc. By Notice dated August 17, 2012, and published in the Federal Register on August 20, 2012, 77 FR 50162, Clinical Supplies Management, Inc., 342 42nd Street South, Fargo..., labeling, and distributing to customers which are qualified clinical sites, conducting FDA-approved...

  6. 77 FR 38084 - Importer of Controlled Substances; Notice of Registration; Clinical Supplies Management, Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-26

    ... Registration; Clinical Supplies Management, Inc. By Notice dated April 17, 2012, and published in the Federal Register on April 26, 2012, 77 FR 24984, Clinical Supplies Management, Inc., 342 42nd Street South, Fargo..., labeling, and distributing to customers which are qualified clinical sites conducting clinical trials under...

  7. Supply Operations (DLA-O) Total Quality Management (TQM) Master Plan

    DTIC Science & Technology

    1989-07-01

    This document briefly outlines the DLA Directorate of Supply Operations plan to implement total quality management . It seeks to provide better...service to customers at a lower cost through continuous process improvement and commitment from everyone in the organization. Keywords: TQM (total Quality Management ), Supply operations; Continuous process improvement. (KR)

  8. Stakeholders Integration in Higher Education: Supply Chain Approach

    ERIC Educational Resources Information Center

    Al-Turki, U. M.; Duffuaa, S.; Ayar, T.; Demirel, O.

    2008-01-01

    Supply chain management principles have emerged in the last decade as a strategic option to meet new challenges in global business environment. Viewing business environment as part of a chain, starting from raw material suppliers to end customers passing by producers, is at the heart of supply-chain management. Many management principles have…

  9. An Exploration of Supply Chain Management Practices in the Central District Municipality

    ERIC Educational Resources Information Center

    Ambe, I. M.

    2009-01-01

    The main objective of the paper is to explore supply chain management practices in the Central District Municipality, North West province of South Africa, using the grounded theory methodology. Supply chain management was introduced in the South African public sector to alleviate deficiencies related to governance, interpretation and…

  10. 78 FR 54913 - Importer of Controlled Substances; Notice of Application; Clinical Supplies Management, Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-06

    ... DEPARTMENT OF JUSTICE Drug Enforcement Administration Importer of Controlled Substances; Notice of Application; Clinical Supplies Management, Inc. Pursuant to Title 21 Code of Federal Regulations 1301.34 (a), this is notice that on July 22, 2013, Clinical Supplies Management, Inc., 342 42nd Street South, Fargo...

  11. Leveraging Human Resource Development Expertise to Improve Supply Chain Managers' Skills and Competencies

    ERIC Educational Resources Information Center

    Ellinger, Alexander E.; Ellinger, Andrea D.

    2014-01-01

    Purpose: There is an ongoing shortage of talented supply chain managers with the necessary skills and business-related competencies to manage increasingly complex and strategically important supply chain processes. The purpose of this paper is to propose that organizations can create and maintain competitive advantage by leveraging the expertise…

  12. Sustainable Supply Chain Management Programs in the 21st Century

    ERIC Educational Resources Information Center

    Neureuther, Brian D.; O'Neill, Kevin

    2011-01-01

    One of the most difficult challenges for an undergraduate supply chain management program at smaller universities is to create an environment of sustainability. Supply chain management is not at the tip of tongue for many graduating high school students and few undergraduate curriculums require a course in the content area. This research addresses…

  13. Decision Support System for an efficient irrigation water management in semi arid environment

    NASA Astrophysics Data System (ADS)

    Khan, M. A.; Islam, M.; Hafeez, M. M.; Flugel, W. A.

    2009-12-01

    A significant increase in agricultural productivity over the last few decades has protected the world from episodes of hunger and food shortages. Water management in irrigated agriculture was instrumental in achieving those gains. Water resources are under high pressure due to rapid population growth and increased competition among various sectors. Access to reliable data on water availability, quantity and quality can provide the necessary foundation for sound management of water resources. There are many traditional methods for matching water demand and supply, however imbalances between demand and supply remain inevitable. It is possible to reduce the imbalances considerably through development of appropriate irrigation water management tool that take into account various factors such as soil type, irrigation water supply, and crop water demand. All components of water balance need to be understood and quantified for efficient and sustainable management of water resources. Application of an intelligent Decision Support System (DSS) is becoming significant. A DSS incorporates knowledge and expertise within the decision support framework. It is an integrated set of data, functions, models and other relevant information that efficiently processes input data, simulates models and displays the results in a user friendly format. It helps in decision-making process, to analyse the problem and explore various scenarios to make the most appropriate decision for water management. This paper deals with the Coleambally Irrigation Area (CIA) located in Murrumbidgee catchment, NSW, Australia. An Integrated River Information System called Coleambally IRIS has been developed to improve the irrigation water management ranging from farm to sub-system and system level. It is a web-based information management system with a focus on time series and geospatial hydrological, climatic and remote sensing data including land cover class, surface temperature, soil moisture, Normalized Difference Vegetation Index (NDVI), Leaf Area Index (LAI) and Evapotranspiration (ET). Coleambally IRIS provides user friendly environment for data input and output, and an adaptable set of functions for data analysis, management and decision making to develops strategies for sustainable irrigation water management. Coleambally IRIS is used to assist the managers of irrigation service provider and the farmers in their decision making by providing relevant information over the web. The developed DSS has been practically used in managing irrigation water under the current drought conditions. The DSS will be further extended for forecasting irrigation water demand in the future.

  14. 2015 American College of Rheumatology Workforce Study: Supply and Demand Projections of Adult Rheumatology Workforce, 2015-2030.

    PubMed

    Battafarano, Daniel F; Ditmyer, Marcia; Bolster, Marcy B; Fitzgerald, John D; Deal, Chad; Bass, Ann R; Molina, Rodolfo; Erickson, Alan R; Hausmann, Jonathan S; Klein-Gitelman, Marisa; Imundo, Lisa F; Smith, Benjamin J; Jones, Karla; Greene, Kamilah; Monrad, Seetha U

    2018-04-01

    To describe the character and composition of the 2015 US adult rheumatology workforce, evaluate workforce trends, and project supply and demand for clinical rheumatology care for 2015-2030. The 2015 Workforce Study of Rheumatology Specialists in the US used primary and secondary data sources to estimate the baseline adult rheumatology workforce and determine demographic and geographic factors relevant to workforce modeling. Supply and demand was projected through 2030, utilizing data-driven estimations regarding the proportion and clinical full-time equivalent (FTE) of academic versus nonacademic practitioners. The 2015 adult workforce (physicians, nurse practitioners, and physician assistants) was estimated to be 6,013 providers (5,415 clinical FTE). At baseline, the estimated demand exceeded the supply of clinical FTE by 700 (12.9%). By 2030, the supply of rheumatology clinical providers is projected to fall to 4,882 providers, or 4,051 clinical FTE (a 25.2% decrease in supply from 2015 baseline levels). Demand in 2030 is projected to exceed supply by 4,133 clinical FTE (102%). The adult rheumatology workforce projections reflect a major demographic and geographic shift that will significantly impact the supply of the future workforce by 2030. These shifts include baby-boomer retirements, a millennial predominance, and an increase of female and part-time providers, in parallel with an increased demand for adult rheumatology care due to the growing and aging US population. Regional and innovative strategies will be necessary to manage access to care and reduce barriers to care for rheumatology patients. © 2018, American College of Rheumatology.

  15. Scenario analysis for integrated water resources planning and management under uncertainty in the Zayandehrud river basin

    NASA Astrophysics Data System (ADS)

    Safavi, Hamid R.; Golmohammadi, Mohammad H.; Sandoval-Solis, Samuel

    2016-08-01

    The goal of this study is to develop and analyze three scenarios in the Zayandehrud river basin in Iran using a model already built and calibrated by Safavi et al. (2015) that has results for the baseline scenario. Results from the baseline scenario show that water demands will be supplied at the cost of depletion of surface and ground water resources, making this scenario undesirable and unsustainable. Supply Management, Demand Management, and Meta (supply and demand management) scenarios are the selected scenarios in this study. They are to be developed and declared into the Zayandehrud model to assess and evaluate the imminent status of the basin. Certain strategies will be employed for this purpose to improve and rectify the current management policies. The five performance criteria of time-based and volumetric reliability, resilience, vulnerability, and maximum deficit will be employed in the process of scenario analysis and evaluation. The results obtained from the performance criteria will be summed up into a so-called 'Water Resources Sustainability Index' to facilitate comparison among the likely trade-offs. Uncertainties arising from historical data, management policies, rainfall-runoff model, demand priorities, and performance criteria are considered in the proposed conceptual framework and modeled by appropriate approaches. Results show that the Supply Management scenario can be used to improve upon the demand supply but that it has no tangible effects on the improvement of the resources in the study region. In this regard, the Demand Management scenario is found to be more effective than the water supply one although it still remains unacceptable. Results of the Meta scenario indicate that both the supply and demand management scenarios must be applied if the water resources are to be safeguarded against degradation and depletion. In other words, the supply management scenario is necessary but not adequate; rather, it must be coupled to the demand management scenario. Finally, it will be shown that applying the Meta scenario will improve the water resources from sustainably.

  16. Executive roundtable on coal-fired generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2009-09-15

    Power Engineering magazine invited six industry executives from the coal-fired sector to discuss issues affecting current and future prospects of coal-fired generation. The executives are Tim Curran, head of Alstom Power for the USA and Senior Vice President and General Manager of Boilers North America; Ray Kowalik, President and General Manager of Burns and McDonnell Energy Group; Jeff Holmstead, head of Environmental Strategies for the Bracewell Giuliani law firm; Jim Mackey, Vice President, Fluor Power Group's Solid Fuel business line; Tom Shelby, President Kiewit Power Inc., and David Wilks, President of Energy Supply for Excel Energy Group. Steve Blankinship, themore » magazine's Associate Editor, was the moderator. 6 photos.« less

  17. Officials welcome the arrival of the Japanese Experiment Module

    NASA Image and Video Library

    2007-04-17

    In the Space Station Processing Facility, Scott Higginbotham, payload manager for the International Space Station, discusses the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module (JEM), with Dr. Hidetaka Tanaka, the JEM Project Team resident manager at KSC for the Japanese Aerospace and Exploration Agency (JAXA). Earlier, NASA and JAXA officials welcomed the arrival of the module. The new International Space Station component arrived at Kennedy March 12 to begin preparations for its future launch on mission STS-123. It will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module.

  18. KSC-07pd0895

    NASA Image and Video Library

    2007-04-17

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, Scott Higginbotham, payload manager for the International Space Station, discusses the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module (JEM), with Dr. Hidetaka Tanaka, the JEM Project Team resident manager at KSC for the Japanese Aerospace and Exploration Agency (JAXA). Earlier, NASA and JAXA officials welcomed the arrival of the module. The new International Space Station component arrived at Kennedy March 12 to begin preparations for its future launch on mission STS-123. It will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module. Photo credit: NASA/George Shelton

  19. Ergonomic design for dental offices.

    PubMed

    Ahearn, David J; Sanders, Martha J; Turcotte, Claudia

    2010-01-01

    The increasing complexity of the dental office environment influences productivity and workflow for dental clinicians. Advances in technology, and with it the range of products needed to provide services, have led to sprawl in operatory setups and the potential for awkward postures for dental clinicians during the delivery of oral health services. Although ergonomics often addresses the prevention of musculoskeletal disorders for specific populations of workers, concepts of workflow and productivity are integral to improved practice in work environments. This article provides suggestions for improving workflow and productivity for dental clinicians. The article applies ergonomic principles to dental practice issues such as equipment and supply management, office design, and workflow management. Implications for improved ergonomic processes and future research are explored.

  20. An examination on the influence of small and medium enterprise (SME) stakeholder on green supply chain management practices

    NASA Astrophysics Data System (ADS)

    Shahlan, M. Z.; Sidek, A. A.; Suffian, S. A.; Hazza, M. H. F. A.; Daud, M. R. C.

    2018-01-01

    In this paper, climate change and global warming are the biggest current issues in the industrial sectors. The green supply chain managements (GSCM) is one of the crucial input to these issues. Effective GSCM can potentially secure the organization’s competitive advantage and improve the environmental performance of the network activities. In this study, the aim is to investigate and examine how a small and medium enterprises (SMEs) stakeholder pressure and top management influence green supply chain management practices. The study is further advance green supply chain management research in Malaysia focusing on SMEs manufacturing sector using structural equation modelling. Structural equation modelling is a multivariate statistical analysis technique used to examine structural relationship. It is the combination of factor analysis and multi regression analysis and used to analyse structural relationship between measure variable and latent factor. This research found that top management support and stakeholder pressure is the major influence for SMEs to adopt green supply chain management. The research also found that top management is fully mediate with the relationship between stakeholder pressure and monitoring supplier environmental performance.

  1. Risk-cost-benefit analysis of atrazine in drinking water from agricultural activities and policy implications

    NASA Astrophysics Data System (ADS)

    Tesfamichael, Aklilu A.; Caplan, Arthur J.; Kaluarachchi, Jagath J.

    2005-05-01

    This study provides an improved methodology for investigating the trade-offs between the health risks and economic benefits of using atrazine in the agricultural sector by incorporating public attitude to pesticide management in the analysis. Regression models are developed to predict finished water atrazine concentration in high-risk community water supplies in the United States. The predicted finished water atrazine concentrations are then used in a health risk assessment. The computed health risks are compared with the total economic surplus in the U.S. corn market for different atrazine application rates using estimated demand and supply functions developed in this work. Analysis of different scenarios with consumer price premiums for chemical-free and reduced-chemical corn indicate that if the society is willing to pay a price premium, risks can be reduced without a large reduction in the total economic surplus and net benefits may be higher. The results also show that this methodology provides an improved scientific framework for future decision making and policy evaluation in pesticide management.

  2. Providing Data and Modeling to Help Manage Water Supplies

    USGS Publications Warehouse

    Nickles, James

    2008-01-01

    The Sonoma County Water Agency (SCWA) and other local water purveyors have partnered with the U.S. Geological Survey (USGS) to assess hydrologic conditions and to quan-tify the county-wide interconnections between surface water and ground water. Through this partnership, USGS scientists have completed assessments of the geohydrology and geochemistry of the Sonoma and Alexander Valley ground-water basins. Now, the USGS is constructing a detailed ground-water flow model of the Santa Rosa Plain. It will be used to help identify strategies for surface-water/ground-water management and help to ensure long-term viability of the water supply. The USGS is also working with the SCWA to help meet future demand in the face of possible new restrictions on its main source of water, the Russian River. SCWA draws water from the alluvial aquifer underlying and adjacent to the Russian River and may want to extend riverbank filtration facilities to new areas. USGS scientists are conducting research to charac-terize riverbank filtration processes and changes in water quality during reduced river flows.

  3. Response surfaces of vulnerability to climate change: The Colorado River Basin, the High Plains, and California

    Treesearch

    Romano Foti; Jorge A. Ramirez; Thomas C. Brown

    2014-01-01

    We quantify the vulnerability of water supply to shortage for the Colorado River Basin and basins of the High Plains and California and assess the sensitivity of their water supply system to future changes in the statistical variability of supply and demand. We do so for current conditions and future socio-economic scenarios within a probabilistic framework that...

  4. 41 CFR 101-28.305 - Prices of customer supply center items.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Prices of customer supply center items. 101-28.305 Section 101-28.305 Public Contracts and Property Management Federal Property... DISTRIBUTION 28.3-Customer Supply Centers § 101-28.305 Prices of customer supply center items. The selling...

  5. Lignocellulosic crop supply chains (eg, Miscanthus, switchgrass, reed canary grass, rye, giant reed, etc.) Chapter 12 of "Biomass Supply Chains for Bioenergy and Biorefining"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roni, Mohammad S.; Cafferty, Kara G.; Hess, J. Richard

    This chapter provides an overview of lignocellulosic crop supply chains such as Miscanthus, switch grass, reed canary grass, rye, and giant reed by outlining typical logistic operations in support of a liquid biofuel market. We present two strategies for managing feedstocks within the biomass supply system: (1) the conventional bale feedstock supply system and (2) the advanced supply system concept. Finally, we discuss feedstock blending and integrated landscape management as innovative improvements to the lignocellulosic crop supply chain.

  6. SOFRA and RPA: two views of the future of southern timber supply.

    Treesearch

    Darius Adams; John Mills; Ralph Alig; Richard Haynes

    2005-01-01

    Two recent studies provide alternative views of the current state and future prospects of southern forests and timber supply: the Southern Forest Resource Assessment (SOFRA) and the Fifth Resources Planning Act Timber Assessment (RPA). Using apparently comparable data but different models and methods, the studies portray futures that in some aspects are quite similar...

  7. The role of reservoir storage in large-scale surface water availability analysis for Europe

    NASA Astrophysics Data System (ADS)

    Garrote, L. M.; Granados, A.; Martin-Carrasco, F.; Iglesias, A.

    2017-12-01

    A regional assessment of current and future water availability in Europe is presented in this study. The assessment was made using the Water Availability and Adaptation Policy Analysis (WAAPA) model. The model was built on the river network derived from the Hydro1K digital elevation maps, including all major river basins of Europe. Reservoir storage volume was taken from the World Register of Dams of ICOLD, including all dams with storage capacity over 5 hm3. Potential Water Availability is defined as the maximum amount of water that could be supplied at a certain point of the river network to satisfy a regular demand under pre-specified reliability requirements. Water availability is the combined result of hydrological processes, which determine streamflow in natural conditions, and human intervention, which determines the available hydraulic infrastructure to manage water and establishes water supply conditions through operating rules. The WAAPA algorithm estimates the maximum demand that can be supplied at every node of the river network accounting for the regulation capacity of reservoirs under different management scenarios. The model was run for a set of hydrologic scenarios taken from the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP), where the PCRGLOBWB hydrological model was forced with results from five global climate models. Model results allow the estimation of potential water stress by comparing water availability to projections of water abstractions along the river network under different management alternatives. The set of sensitivity analyses performed showed the effect of policy alternatives on water availability and highlighted the large uncertainties linked to hydrological and anthropological processes.

  8. A Supply and Demand Management Perspective on the Accelerated Global Introductions of Inactivated Poliovirus Vaccine in a Constrained Supply Market

    PubMed Central

    Ottosen, Ann; Rubin, Jennifer; Blanc, Diana Chang; Zipursky, Simona; Wootton, Emily

    2017-01-01

    Abstract A total of 105 countries have introduced IPV as of September 2016 of which 85 have procured the vaccine through UNICEF. The Global Eradication and Endgame Strategic Plan 2013-2018 called for the rapid introduction of at least one dose of IPV into routine immunization schedules in 126 all OPV-using countries by the end of 2015. At the time of initiating the procurement process, demand was estimated based on global modeling rather than individual country indications. In its capacity as procurement agency for the Global Polio Eradication Initiative and Gavi, the Vaccine Alliance, UNICEF set out to secure access to IPV supply for around 100 countries. Based on offers received, sufficient supply was awarded to two manufacturers to meet projected routine requirements. However, due to technical issues scaling up vaccine production and an unforecasted demand for IPV use in campaigns to interrupt wild polio virus and to control type 2 vaccine derived polio virus outbreaks, IPV supplies are severely constrained. Activities to stretch supplies and to suppress demand have been ongoing since 2014, including delaying IPV introduction in countries where risks of type 2 reintroduction are lower, implementing the multi-dose vial policy, and encouraging the use of fractional dose delivered intradermally. Despite these efforts, there is still insufficient IPV supply to meet demand. The impact of the supply situation on IPV introduction timelines in countries are the focus of this article, and based on lessons learned with the IPV introductions, it is recommended for future health programs with accelerated scale up of programs, to take a cautious approach on supply commitments, putting in place clear allocation criteria in case of shortages or delays and establishing a communication strategy vis a vis beneficiaries. PMID:28838159

  9. Halal Supply Chain Management Streamlined Practices: Issues and Challenges

    NASA Astrophysics Data System (ADS)

    Hijrah Abd Kadir, Muhammad; Zuraidah Raja Mohd Rasi, Raja; Omar, Siti Sarah; Manap, Zariq Imran Abdul

    2016-11-01

    The quickly developing worldwide halal in business sector has given a remarkable window of chance, which empowers Malaysia to the renowned halal centre in worldwide (known as Halal-hubs). Malaysia also has proactively taken a lead in halal activities, which is presently considered as the benchmark for a halal framework worldwide. Malaysia also set up the Halal Industry Development Corporation (HDC) which driving a wide range of halal activities since the demand of halal food has increased significantly which is very crucial for a Muslim in ensuring its authenticity and integrity. Even in parallel to this developments, many studies has been conducted because there are many issues still occurs in the food industry. The issue of consumer awareness and understanding the halal principles, mixing of halal and non- halal products, halal certification and logo compliance with Shariah law and lack of regulation and enforcement need the serious attention by all parties along the supply chain. The challenges occur mainly in the halal food segregation and halal traceability of the products. The unit of analysis in this study different halal stakeholders group which are JAKIM, Halal Development Centre (HDC), Raw Material Manufacturers, Retailers and Government Agencies. This paper attempt discusses the issues and challenges occurs in the halal supply chain and faced by the practitioners as well as the relevant parties involved in the industry especially for food products manufacturers. The study would like to give a basic information about the issues and challenges in the contribution of Halal Supply Chain Management (HSCM) as well as for the future studies.

  10. Environmental issues elimination through circular economy

    NASA Astrophysics Data System (ADS)

    Špirková, M.; Pokorná, E.; Šujanová, J.; Samáková, J.

    2016-04-01

    Environmental efforts of European Union are currently going towards circular economy. Tools like Extended Producer Responsibility and Eco-design were established. The circular economy deals with resources availability issue on one hand and waste management on the other hand. There are few pioneering companies all over the world with some kind of circular economy practice. Generally the concept is not very wide-spread. The paper aims to evaluate possibility of transition towards circular economy in Slovak industrial companies. They need to have an active approach to material treatment of their products after usage stage. Innovation is another important pre-condition for the transition. Main problem of current cradle to grave system is landfilling of valuable materials after one cycle of usage. Their potential value for next manufacturing cycles is lost. Companies may do not see connection between waste management and material resource prices and volatility of supplies. Municipalities are responsible for municipal waste collection and treatment in Slovakia. The circular economy operates by cradle to cradle principle. Company manages material flow until the material comes back to the beginning of manufacturing process by itself or by another partners. Stable material supplies with quite low costs are provided this way. It is necessary to deal with environmental problems in phase of product design. Questionnaire survey results show on one hand low involvement of industrial companies in waste management area, however on the other hand they are open to environmental innovations in future.

  11. What is Climate Leadership: Examples and Lessons Learned in Supply Chain Management Webinar

    EPA Pesticide Factsheets

    Organizations that have developed comprehensive greenhouse gas inventories and aggressive emissions reduction goals discuss their strategies for managing greenhouse gases in their organizational supply chains and use of EPA Supply Chain resources.

  12. Competing effects of groundwater withdrawals and climate change on water availability in semi-arid India

    NASA Astrophysics Data System (ADS)

    Sishodia, R. P.; Shukla, S.

    2017-12-01

    India, a global leader in groundwater use (250 km3/yr), is experiencing groundwater depletion. There has been a 130-fold increase in number of irrigation wells since 1960. Anticipated future increase in groundwater demand is likely to exacerbate the water availability in the semi-arid regions of India. Depending on the direction of change, future climate change may either worsen or enhance the water availability. This study uses an integrated hydrologic modeling approach (MIKE SHE MIKE 11) to compare and combine the effects of future (2040-2069) increased groundwater withdrawals and climate change on surface and groundwater flows and availability for an agricultural watershed in semi-arid south India. Modeling results showed that increased groundwater withdrawals in the future resulted in reduced surface flows (25%) and increased frequency and duration (90 days/yr) of well drying. In contrast, projected future increase in rainfall (7-43%) under the changed climate showed increased groundwater recharge (15-67%) and surface flows (9-155%). Modeling results suggest that the positive effects of climate change may enhance the water availability in this semi-arid region of India. However, in combination with increased withdrawals, climate change was shown to increase the well drying and reduce the water availability especially during dry years. A combination of management options such as flood to drip conversion, energy subsidy reductions and water storage can support increased groundwater irrigated area in the future while mitigating the well drying. A cost-benefit analysis showed that dispersed water storage and flood to drip conversion can be highly cost-effective in this semi-arid region. The study results suggest that the government and management policies need to be focused towards an integrated management of demand and supply to create a sustainable food-water-energy nexus in the region.

  13. Fuzzy Entropy Method for Quantifying Supply Chain Networks Complexity

    NASA Astrophysics Data System (ADS)

    Zhang, Jihui; Xu, Junqin

    Supply chain is a special kind of complex network. Its complexity and uncertainty makes it very difficult to control and manage. Supply chains are faced with a rising complexity of products, structures, and processes. Because of the strong link between a supply chain’s complexity and its efficiency the supply chain complexity management becomes a major challenge of today’s business management. The aim of this paper is to quantify the complexity and organization level of an industrial network working towards the development of a ‘Supply Chain Network Analysis’ (SCNA). By measuring flows of goods and interaction costs between different sectors of activity within the supply chain borders, a network of flows is built and successively investigated by network analysis. The result of this study shows that our approach can provide an interesting conceptual perspective in which the modern supply network can be framed, and that network analysis can handle these issues in practice.

  14. System and method for advanced power management

    DOEpatents

    Atcitty, Stanley [Albuquerque, NM; Symons, Philip C [Surprise, AZ; Butler, Paul C [Albuquerque, NM; Corey, Garth P [Albuquerque, NM

    2009-07-28

    A power management system is provided that includes a power supply means comprising a plurality of power supply strings, a testing means operably connected to said plurality of power supply strings for evaluating performance characteristics of said plurality of power supply strings, and a control means for monitoring power requirements and comprising a switching means for controlling switching of said plurality of power supply strings to said testing means.

  15. Analysis of the Marine Corps Supply Management Unit’s Internal Operations and Effect on the Warfighter

    DTIC Science & Technology

    2016-12-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA MBA PROFESSIONAL REPORT ANALYSIS OF THE MARINE CORPS SUPPLY MANAGEMENT UNIT’S INTERNAL...Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington, DC 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE...December 2016 3. REPORT TYPE AND DATES COVERED MBA Professional Report 4. TITLE AND SUBTITLE ANALYSIS OF THE MARINE CORPS SUPPLY MANAGEMENT UNIT’S

  16. Managing Water-Food-Energy Futures in the Canadian Prairies

    NASA Astrophysics Data System (ADS)

    Wheater, H. S.; Hassanzadeh, E.; Nazemi, A.; Elshorbagy, A. A.

    2016-12-01

    The water-food-energy nexus is a convenient phrase to highlight competing societal uses for water and the need for cross-sectoral policy integration, but this can lead to oversimplification of the multiple dimensions of water (and energy) management. In practice, water managers must balance (and prioritize) demands for water for many uses, including environmental flows, and reservoir operation often involves managing conflicting demands, for example to maximize retention for supply, reduce storage to facilitate flood control, and constrain water levels and releases for habitat protection. Agriculture and water quality are also inextricably linked: irrigated agriculture requires appropriate water quality for product quality and certification, but agriculture can be a major source of nutrient pollution, with impacts on human and ecosystem health, drinking water treatment and amenity. And energy-water interactions include energy production (hydropower and cooling water for thermal power generation) and energy consumption (e.g. for pumping and water and wastewater treatment). These dependencies are illustrated for the Canadian prairies, and a risk-based approach to the management of climate change is presented. Trade-offs between economic benefits of hydropower and irrigation are illustrated for alternative climate futures, including implications for freshwater habitats. The results illustrate that inter-sector interactions vary as a function of climate and its variability, and that there is a need for policy to manage inter-sector allocations as a function of economic risk.

  17. Applying the Heuristic to the Risk Assessment within the Automotive Industry Supply Chain

    NASA Astrophysics Data System (ADS)

    Marasova, Daniela; Andrejiova, Miriam; Grincova, Anna

    2017-03-01

    Risk management facilitates risk identification, evaluation, control, and by means of appropriate set of measures, risk reduction or complete elimination. Therefore, the risk management becomes a strategic factor for a company's success. Properly implemented risk management system does not represent a tool to avoid the risk; it is used to understand the risk and provide the bases for strategic decision-making. Risk management represents a key factor for the supply chain operations. Managing the risks is crucial for achieving the customer satisfaction and thus also a company's success. The subject-matter of the article is the assessment of the supply chain in the automobile industry, in terms of risks. The topicality of this problem is even higher, as after the economic crisis it is necessary to revaluate the readiness of the supply chain for prospective risk conditions. One advantage of this article is the use of the Saaty method as a tool for the risk management within the supply chain.

  18. Development of Power Supply Management Module for Radio Signal Repeaters of Automatic Metering Reading System in Variable Solar Density Conditions

    NASA Astrophysics Data System (ADS)

    Kondratjevs, K.; Zabasta, A.; Selmanovs-Pless, V.

    2016-02-01

    In recent years, there has been significant research focus that revolves around harvesting and minimising energy consumption by wireless sensor network nodes. When a sensor node is depleted of energy, it becomes unresponsive and disconnected from the network that can significantly influence the performance of the whole network. The purpose of the present research is to create a power supply management module in order to provide stable operating voltage for autonomous operations of radio signal repeaters, sensors or gateways of WSN. The developed management module is composed of a solar panel, lithium battery and power supply management module. The novelty of the research is the management module, which ensures stable and uninterrupted operations of electronic equipment in various power supply modes in different situations, simultaneously ensuring energy protection and sustainability of the module components. The management module is able to provide power supply of 5 V for electronics scheme independently, without power interruption switching between power sources and power flows in different directions.

  19. Using multiobjective tradeoff sets and Multivariate Regression Trees to identify critical and robust decisions for long term water utility planning

    NASA Astrophysics Data System (ADS)

    Smith, R.; Kasprzyk, J. R.; Balaji, R.

    2017-12-01

    In light of deeply uncertain factors like future climate change and population shifts, responsible resource management will require new types of information and strategies. For water utilities, this entails potential expansion and efficient management of water supply infrastructure systems for changes in overall supply; changes in frequency and severity of climate extremes such as droughts and floods; and variable demands, all while accounting for conflicting long and short term performance objectives. Multiobjective Evolutionary Algorithms (MOEAs) are emerging decision support tools that have been used by researchers and, more recently, water utilities to efficiently generate and evaluate thousands of planning portfolios. The tradeoffs between conflicting objectives are explored in an automated way to produce (often large) suites of portfolios that strike different balances of performance. Once generated, the sets of optimized portfolios are used to support relatively subjective assertions of priorities and human reasoning, leading to adoption of a plan. These large tradeoff sets contain information about complex relationships between decisions and between groups of decisions and performance that, until now, has not been quantitatively described. We present a novel use of Multivariate Regression Trees (MRTs) to analyze tradeoff sets to reveal these relationships and critical decisions. Additionally, when MRTs are applied to tradeoff sets developed for different realizations of an uncertain future, they can identify decisions that are robust across a wide range of conditions and produce fundamental insights about the system being optimized.

  20. Large-Scale Water Resources Management within the Framework of GLOWA-Danube - Part B: The Water Supply Model

    NASA Astrophysics Data System (ADS)

    Nickel, D.; Barthel, R.; Schmid, C.; Braun, J.

    2003-04-01

    The research project GLOWA-Danube, financed by the German Federal Government, investigates long-term changes in the water cycle of the Upper Danube river basin in light of global climatic change. Its concrete aim is to build a fully integrated decision support tool that combines the competence of eleven different institutes in domains covering all major aspects governing the water cycle - from the formation of clouds to groundwater flow patterns to the behaviour of the water consumer. The research group "Water Supply" at the Institute of Hydraulic Engineering (IWS), Universitaet Stuttgart, has the central task of creating an agent-based model of the water supply sector. The Water Supply model will act as a link between the various physical models determining water quality and availability on the one hand and the actors models determining water demand on the other, which together form the tool DANUBIA. Ultimately, with the help of scenario testing, the water supply model will indicate the ability of the water supply system in the Upper Danube catchment to adapt to changing boundary conditions using different management approaches. The specific aim of the Water Supply model is the creation of a model which is not only able to simulate the present day system of water extraction, treatment and distribution but also its development and change with time. As most changes to the system are brought about by decisions made by relevant actors in the field of water management or their behaviour (in response to political and economic boundary conditions, changes in water demand or water quality, advances in technology etc.), the use of agent-based modelling was chosen, whereby an agent is seen as a computer system (in our case representing a human or group of humans) which is aware of its environment, has defined objectives and is able to act independently in order to meet these objectives. Whereas agent-based modelling has received much attention over the past decades, the use of this type of modelling for water supply systems is something very new. The initial step is the development of a conceptual water supply model (using JAVA), in which both the model boundaries and area of expertise as well as parameters to be exchanged between the Water Supply model and other models are defined. The data required to create model for such a large area is not available from the authorities, common interest organisations or in the public statistics. In order to gain access to more specific information regarding individual water supply companies, the Water Supply group is currently carrying out a wide-spread questionnaire addressed to all water supply companies in the GLOWA-Danube model area - well over 1000 in total in Bavaria, Baden-Wuerttemberg, Austria and Switzerland. The questionnaire contains questions pertaining to the two distinct fields, "economics and pricing" and "technical aspects", and aims at gathering information regarding the present day situation of the water supply system, the developments over the past 10 years as well as planned developments for the immediate future. Later, the focus will shift towards the stakeholders from the field of water resources management. A catalogue of decision-making rules will be prepared as a basis for discussion and will be debated with the relevant stakeholders. These rules will provide the basis for decision-making algorithms which will allow model agents to respond to their environment, communicate with one anther and behave in a goal-oriented manner to bring about change in the water supply system in response to changing conditions with regard to the climate, water quality, political and social boundary conditions, and changing demand.

  1. Scaling up antiretroviral therapy in Uganda: using supply chain management to appraise health systems strengthening.

    PubMed

    Windisch, Ricarda; Waiswa, Peter; Neuhann, Florian; Scheibe, Florian; de Savigny, Don

    2011-08-01

    Strengthened national health systems are necessary for effective and sustained expansion of antiretroviral therapy (ART). ART and its supply chain management in Uganda are largely based on parallel and externally supported efforts. The question arises whether systems are being strengthened to sustain access to ART. This study applies systems thinking to assess supply chain management, the role of external support and whether investments create the needed synergies to strengthen health systems. This study uses the WHO health systems framework and examines the issues of governance, financing, information, human resources and service delivery in relation to supply chain management of medicines and the technologies. It looks at links and causal chains between supply chain management for ART and the national supply system for essential drugs. It combines data from the literature and key informant interviews with observations at health service delivery level in a study district. Current drug supply chain management in Uganda is characterized by parallel processes and information systems that result in poor quality and inefficiencies. Less than expected health system performance, stock outs and other shortages affect ART and primary care in general. Poor performance of supply chain management is amplified by weak conditions at all levels of the health system, including the areas of financing, governance, human resources and information. Governance issues include the lack to follow up initial policy intentions and a focus on narrow, short-term approaches. The opportunity and need to use ART investments for an essential supply chain management and strengthened health system has not been exploited. By applying a systems perspective this work indicates the seriousness of missing system prerequisites. The findings suggest that root causes and capacities across the system have to be addressed synergistically to enable systems that can match and accommodate investments in disease-specific interventions. The multiplicity and complexity of existing challenges require a long-term and systems perspective essentially in contrast to the current short term and program-specific nature of external assistance.

  2. Assessing Variability and Errors in Historical Runoff Forecasting with Physical Models and Alternative Data Sources

    NASA Astrophysics Data System (ADS)

    Penn, C. A.; Clow, D. W.; Sexstone, G. A.

    2017-12-01

    Water supply forecasts are an important tool for water resource managers in areas where surface water is relied on for irrigating agricultural lands and for municipal water supplies. Forecast errors, which correspond to inaccurate predictions of total surface water volume, can lead to mis-allocated water and productivity loss, thus costing stakeholders millions of dollars. The objective of this investigation is to provide water resource managers with an improved understanding of factors contributing to forecast error, and to help increase the accuracy of future forecasts. In many watersheds of the western United States, snowmelt contributes 50-75% of annual surface water flow and controls both the timing and volume of peak flow. Water supply forecasts from the Natural Resources Conservation Service (NRCS), National Weather Service, and similar cooperators use precipitation and snowpack measurements to provide water resource managers with an estimate of seasonal runoff volume. The accuracy of these forecasts can be limited by available snowpack and meteorological data. In the headwaters of the Rio Grande, NRCS produces January through June monthly Water Supply Outlook Reports. This study evaluates the accuracy of these forecasts since 1990, and examines what factors may contribute to forecast error. The Rio Grande headwaters has experienced recent changes in land cover from bark beetle infestation and a large wildfire, which can affect hydrological processes within the watershed. To investigate trends and possible contributing factors in forecast error, a semi-distributed hydrological model was calibrated and run to simulate daily streamflow for the period 1990-2015. Annual and seasonal watershed and sub-watershed water balance properties were compared with seasonal water supply forecasts. Gridded meteorological datasets were used to assess changes in the timing and volume of spring precipitation events that may contribute to forecast error. Additionally, a spatially-distributed physics-based snow model was used to assess possible effects of land cover change on snowpack properties. Trends in forecasted error are variable while baseline model results show a consistent under-prediction in the recent decade, highlighting possible compounding effects of climate and land cover changes.

  3. [Laparoscopic single patient use instruments: expensive outsourcing of product quality?].

    PubMed

    von Eiff, W; Ziegenbein, R

    2000-01-01

    The supply of medical goods is an important critical success factor in German hospitals. One major managerial area in the procurement concerns the decision between single patient use (SPU) and multiple patient use (MPU) products. Especially laparoscopic instruments which are generally expensive are a field of interest for decision makers. Due to a lack of quantifiable factors describing the two different forms of supply alternatives with their effects on effectivity and efficiency of the procurement process and the final use are often not taken into account. Since it is expected that in the future more and more laparoscopic instruments will be needed there is a necessity for finding a concept allowing the identification of the "right" product. The Center for Hospital Management (CKM) has the aim to develop a corresponding approach but needs the help of the reader.

  4. Minimal climate change impacts on natural organic matter forecasted for a potable water supply in Ireland.

    PubMed

    O'Driscoll, Connie; Ledesma, José L J; Coll, John; Murnane, John G; Nolan, Paul; Mockler, Eva M; Futter, Martyn N; Xiao, Liwen W

    2018-07-15

    Natural organic matter poses an increasing challenge to water managers because of its potential adverse impacts on water treatment and distribution, and subsequently human health. Projections were made of impacts of climate change on dissolved organic carbon (DOC) in the primarily agricultural Boyne catchment which is used as a potable water supply in Ireland. The results indicated that excluding a potential rise in extreme precipitation, future projected loads are not dissimilar to those observed under current conditions. This is because projected increases in DOC concentrations are offset by corresponding decreases in precipitation and hence river flow. However, the results presented assume no changes in land use and highlight the predicted increase in DOC loads from abstracted waters at water treatment plants. Copyright © 2018. Published by Elsevier B.V.

  5. Environmental management: a re-emerging vector control strategy.

    PubMed

    Ault, S K

    1994-01-01

    Vector control may be accomplished by environmental management (EM), which consists of permanent or long-term modification of the environment, temporary or seasonal manipulation of the environment, and modifying or changing our life styles and practices to reduce human contact with infective vectors. The primary focus of this paper is EM in the control of human malaria, filariasis, arboviruses, Chagas' disease, and schistosomiasis. Modern EM developed as a discipline based primarily in ecologic principles and lessons learned from the adverse environmental impacts of rural development projects. Strategies such as the suppression of vector populations through the provision of safe water supplies, proper sanitation, solid waste management facilities, sewerage and excreta disposal systems, water manipulation in dams and irrigation systems, vector diversion by zooprophylaxis, and vector exclusion by improved housing, are discussed with appropriate examples. Vectors of malaria, filariasis, Chagas' disease, and schistosomiasis have been controlled by drainage or filling aquatic breeding sites, improved housing and sanitation, the use of expanded polystyrene beads, zooprophylaxis, or the provision of household water supplies. Community participation has been effective in the suppression of dengue vectors in Mexico and the Dominican Republic. Alone or combined with other vector control methods, EM has been proven to be a successful approach to vector control in a number of places. The future of EM in vector control looks promising.

  6. An Exploration of Healthcare Inventory and Lean Management in Minimizing Medical Supply Waste in Healthcare Organizations

    ERIC Educational Resources Information Center

    Hicks, Rodney

    2013-01-01

    The purpose of this study was to understand how lean thinking and inventory management technology minimize expired medical supply waste in healthcare organizations. This study was guided by Toyota's theory of lean and Mintzberg's theory of management development to explain why the problem of medical supply waste exists. Government…

  7. The influence of managed care on supply of certified nurse-midwives: an evaluation of the physician dominance thesis.

    PubMed

    Hartley, H

    1999-03-01

    A key debate over the nature of professional power centers on the maintenance of physician dominance within the system of professions in health care. The changes in health care delivery and financing brought by managed care present a new context for evaluating the physician dominance thesis. I propose that increases in the supply of certified nurse-midwives, a "contending" health care professional group, are related to the expansion of managed care and may signal a decline in physician dominance. I analyze state-level data compiled from governmental, health professional, and industry sources to determine the influence of managed care market penetration, physician supply, state policy context, and demographic factors on the state-level supply of nurse-midwives. Results indicate that, despite high physician supply, nurse-midwife supply is higher in states with higher managed care penetration, as well as in those with more favorable state policy environments and a more educated demographic base. Outcomes from a series of hypothesis tests support my assertion that the expansion of managed care is altering the jurisdictional boundaries in the system of professions in health care, eroding the dominance of physicians while creating new openings for nurse-midwives.

  8. The Growing Demand for Hospice and Palliative Medicine Physicians: Will the Supply Keep Up?

    PubMed

    Lupu, Dale; Quigley, Leo; Mehfoud, Nicholas; Salsberg, Edward S

    2018-04-01

    The need for hospice and palliative care is growing rapidly as the population increases and ages and as both hospice and palliative care become more accepted. Hospice and palliative medicine (HPM) is a relatively new physician specialty, currently training 325 new fellows annually. Given the time needed to increase the supply of specialty-trained physicians, it is important to assess future needs to guide planning for future training capacity. We modeled the need for and supply of specialist HPM physicians through the year 2040 to determine whether training capacity should continue growing. To create a benchmark for need, we used a population-based approach to look at the current geographic distribution of the HPM physician supply. To model future supply, we calculated the annual change in current supply by adding newly trained physicians and subtracting physicians leaving the labor force. The current U.S. supply of HPM specialists is 13.35 per 100,000 adults 65 and older. This ratio varies greatly across the country. Using alternate assumptions for future supply and demand, we project that need in 2040 will range from 10,640 to almost 24,000 HPM specialist physicians. Supply will range from 8100 to 19,000. Current training capacity is insufficient to keep up with population growth and demand for services. HPM fellowships would need to grow from the current 325 graduates annually to between 500 and 600 per year by 2030 to assure sufficient physician workforce for hospice and palliative care services given current service provision patterns. Copyright © 2018 American Academy of Hospice and Palliative Medicine. Published by Elsevier Inc. All rights reserved.

  9. Future riverine nitrogen export to US coastal regions ...

    EPA Pesticide Factsheets

    Excess nitrogen (N) in the environment degrades ecosystems and adversely affects human health. Here we examine predictions of contemporary (2000) and future (2030) coastal N loading in the continental US by the Nutrient Export from WaterSheds (NEWS) model. Future output is from storylines of the Millennium Ecosystem Assessment (MEA) and two additional scenarios that reflect “business as usual” and “ambitious” approaches to nutrient management. Modeled total nitrogen (TN) export by rivers to US coastal areas ranged between 2.5 Tg N y-1 in 2000 and 1.9 - 3.0 Tg N y-1 in 2030, depending on scenario. Differences among scenarios reflect the interactions of increased food and energy demands associated with population growth and efforts to reduce losses of N to the environment. Depending on year and scenario, agriculture supplies 25-43% of coastal TN, atmospheric N deposition 6-8%, human sewage 6-12%, and natural and particulate N sources account for the remainder. Our analysis suggests that achieving reductions in coastal N loading will require aggressive management actions. Coastal TN export could be reduced 22% between 2000 and 2030 to 1.9 Tg N y-1 if currently available best management practices and technologies are fully implemented to control N from agriculture, fossil fuel emissions, and wastewater effluent. If N management capabilities do not improve by 2030, coastal N loads could increase 20% to 3.0 Tg N y-1, due primarily to increases in N from agricu

  10. Application of SWMM in Water Resources Management: A Community Scale Study

    NASA Astrophysics Data System (ADS)

    Li, Yuan-Hua; Tung, Ching-Pin

    2015-04-01

    Under the impacts of climate change, water resource management faces a serious challenge. Due to extremely events, the water supply system is hard to maintain stable water supply. In order to decrease the pressure of centralized water supply system, the water demand management should be strengthened. The storm water management model (SWMM) is widely used to simulate surface runoff, and it has been improved to have the ability of continuous simulation. In this study, storm water management model (SWMM) is applied to simulate surface runoff and integrated into the framework of water resource management for a rural community scale. In a rural community, the surface runoff may be collected and treated by wetlands for later uses. The reclaimed water from wetlands may become a new water resource for non-contact domestic water uses, or be reused to meet irrigating water demand. Thus, the water demand from the centralized system can be reduced, and the water supply system may have lower risk under the climate change. On the other hand, SWMM can simulate the measures of low impact development (LID), such as bio-retention cell, green roof, rain barrel etc. The decentralized measures, LID, may not only reduce the runoff and delay the peak flow, and but also provide the service of water supply. In this study, LID is applied to water resource management of a rural community, and combined with the centralized water supply system. The results show the application of SWMM to water resources management in a community scale study. Besides, the effectiveness of LID on water supply is also evaluated.

  11. Assessment of Climate Change Impacts on Agricultural Water Demands and Crop Yields in California's Central Valley

    NASA Astrophysics Data System (ADS)

    Tansey, M. K.; Flores-Lopez, F.; Young, C. A.; Huntington, J. L.

    2012-12-01

    Long term planning for the management of California's water resources requires assessment of the effects of future climate changes on both water supply and demand. Considerable progress has been made on the evaluation of the effects of future climate changes on water supplies but less information is available with regard to water demands. Uncertainty in future climate projections increases the difficulty of assessing climate impacts and evaluating long range adaptation strategies. Compounding the uncertainty in the future climate projections is the fact that most readily available downscaled climate projections lack sufficient meteorological information to compute evapotranspiration (ET) by the widely accepted ASCE Penman-Monteith (PM) method. This study addresses potential changes in future Central Valley water demands and crop yields by examining the effects of climate change on soil evaporation, plant transpiration, growth and yield for major types of crops grown in the Central Valley of California. Five representative climate scenarios based on 112 bias corrected spatially downscaled CMIP 3 GCM climate simulations were developed using the hybrid delta ensemble method to span a wide range future climate uncertainty. Analysis of historical California Irrigation Management Information System meteorological data was combined with several meteorological estimation methods to compute future solar radiation, wind speed and dew point temperatures corresponding to the GCM projected temperatures and precipitation. Future atmospheric CO2 concentrations corresponding to the 5 representative climate projections were developed based on weighting IPCC SRES emissions scenarios. The Land, Atmosphere, and Water Simulator (LAWS) model was used to compute ET and yield changes in the early, middle and late 21st century for 24 representative agricultural crops grown in the Sacramento, San Joaquin and Tulare Lake basins. Study results indicate that changes in ET and yield vary between crops due to plant specific sensitivities to temperature, solar radiation and the vapor pressure deficits. Shifts in the growth period to earlier in the year, shortened growth period for annual crops as well as extended fall growth can also exert important influences. Projected increases in CO2 concentrations in the late 21st century exert very significant influences on ET and yield for many crops. To characterize potential impacts and the range of uncertainty, changes in total agricultural water demands and yields were computed assuming that current crop types and acreages in 21 Central Valley regional planning areas remained constant throughout the 21st century for each of the 5 representative future climate scenarios.

  12. Estimated water use in Montana in 2000

    USGS Publications Warehouse

    Cannon, M.R.; Johnson, Dave R.

    2004-01-01

    The future health and economic welfare of Montana's population is dependent on a continuing supply of fresh water. Montana's finite water resources are being stressed by increasing water withdrawals and instream-flow requirements. Various water managers in Montana need comprehensive, current, and detailed water-use data to quantify current stresses and estimate and plan for future water needs. This report summarizes selected water-use data for all of Montana's counties and stream basins to help meet those needs. In 2000, the citizens of Montana withdrew and used about 10,749 million gallons per day (Mgal/d) of water from Montana's streams and aquifers. Withdrawals from surface water were about 10,477 Mgal/d and withdrawals from ground water were about 272 Mgal/d. Agricultural irrigation accounted for about 10,378 Mgal/d or about 96.5 percent of total withdrawals for all uses. Withdrawals for public supply were about 136 Mgal/d, self-supplied domestic withdrawals were about 23 Mgal/d, self-supplied industrial withdrawals were about 61 Mgal/d, withdrawals for thermoelectric power generation were about 110 Mgal/d, and withdrawals for livestock were about 41 Mgal/d. Total consumptive use of water in 2000 was about 2,370 Mgal/d, of which about 2,220 Mgal/d (93.6 percent) was for agricultural irrigation. Instream uses of water included hydroelectric power generation and maintenance of instream flows for conservation of wildlife and aquatic life, and for public recreational purposes. In 2000, about 74,486 Mgal/d was used at hydroelectric plants for generation of about 11,591 gigawatt-hours of electricity. Evaporation from large water bodies, although not a classified water use, accounts for a large loss of water in some parts of the State. Net evaporation from Montana's 60 largest reservoirs and regulated lakes averaged about 891 Mgal/d.

  13. The Role of Medicinal Cannabis in Clinical Therapy: Pharmacists' Perspectives.

    PubMed

    Isaac, Sami; Saini, Bandana; Chaar, Betty B

    2016-01-01

    Medicinal cannabis has recently attracted much media attention in Australia and across the world. With the exception of a few countries, cannabinoids remain illegal-known for their adverse effects rather than their medicinal application and therapeutic benefit. However, there is mounting evidence demonstrating the therapeutic benefits of cannabis in alleviating neuropathic pain, improving multiple sclerosis spasticity, reducing chemotherapy induced nausea and vomiting, and many other chronic conditions. Many are calling for the legalisation of medicinal cannabis including consumers, physicians and politicians. Pharmacists are the gatekeepers of medicines and future administrators/dispensers of cannabis to the public, however very little has been heard about pharmacists' perspectives. Therefore the aim of this study was to explore pharmacists' views about medicinal cannabis; its legalisation and supply in pharmacy. Semi-structured interviews with 34 registered pharmacists in Australia were conducted. All interviews were audio-recorded, transcribed ad verbatim and thematically analysed using the NVivo software. Emergent themes included stigma, legislation, safety and collaboration. Overall the majority of pharmacists felt national legalisation of a standardised form of cannabis would be suitable, and indicated various factors and strategies to manage its supply. The majority of participants felt that the most suitable setting would be via a community pharmacy setting due to the importance of accessibility for patients. This study explored views of practicing pharmacists, revealing a number of previously undocumented views and barriers about medicinal cannabis from a supply perspective. There were several ethical and professional issues raised for consideration. These findings highlight the important role that pharmacists hold in the supply of medicinal cannabis. Additionally, this study identified important factors, which will help shape future policies for the successful implementation of medicinal cannabis in healthcare. We recommend that these views and strategies be incorporated in the development of policies and legislations.

  14. 41 CFR 101-25.101-3 - Supply through consolidated purchase for direct delivery to use points.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Property Management Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS... to assure adequate supply. (4) Where contracts for production quantities are necessary to secure...

  15. 41 CFR 101-25.101-3 - Supply through consolidated purchase for direct delivery to use points.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Property Management Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS... to assure adequate supply. (4) Where contracts for production quantities are necessary to secure...

  16. Alignment of Information Systems with Supply Chains: Impacts on Supply Chain Performance and Organizational Performance

    ERIC Educational Resources Information Center

    Qrunfleh, Sufian M.

    2010-01-01

    Over the past decade, an important focus of researchers has been on supply chain management (SCM), as many organizations believe that effective SCM is the key to building and sustaining competitive advantage for their products/services. To manage the supply chain, companies need to adopt an SCM strategy (SCMS) and implement appropriate SCM…

  17. Intelligence Support to Supply Chain Risk Management

    DTIC Science & Technology

    2012-06-01

    of Master of Science in Operations Analysis Charles L. Carter, MA Major, USAF June 2012 DISTRIBUTION STATEMENT A. APPROVED FOR...literature regarding supply chain risk management and intelligence doctrine. This review established the importance of supply chain risk analysis to...risk analysis . This research culminated in the development of a methodology for intelligence professionals to use to support supply chain risk

  18. The Power of Three: Coral Reefs, Seagrasses and Mangroves Protect Coastal Regions and Increase Their Resilience.

    PubMed

    Guannel, Greg; Arkema, Katie; Ruggiero, Peter; Verutes, Gregory

    2016-01-01

    Natural habitats have the ability to protect coastal communities against the impacts of waves and storms, yet it is unclear how different habitats complement each other to reduce those impacts. Here, we investigate the individual and combined coastal protection services supplied by live corals on reefs, seagrass meadows, and mangrove forests during both non-storm and storm conditions, and under present and future sea-level conditions. Using idealized profiles of fringing and barrier reefs, we quantify the services supplied by these habitats using various metrics of inundation and erosion. We find that, together, live corals, seagrasses, and mangroves supply more protection services than any individual habitat or any combination of two habitats. Specifically, we find that, while mangroves are the most effective at protecting the coast under non-storm and storm conditions, live corals and seagrasses also moderate the impact of waves and storms, thereby further reducing the vulnerability of coastal regions. Also, in addition to structural differences, the amount of service supplied by habitats in our analysis is highly dependent on the geomorphic setting, habitat location and forcing conditions: live corals in the fringing reef profile supply more protection services than seagrasses; seagrasses in the barrier reef profile supply more protection services than live corals; and seagrasses, in our simulations, can even compensate for the long-term degradation of the barrier reef. Results of this study demonstrate the importance of taking integrated and place-based approaches when quantifying and managing for the coastal protection services supplied by ecosystems.

  19. The Power of Three: Coral Reefs, Seagrasses and Mangroves Protect Coastal Regions and Increase Their Resilience

    PubMed Central

    Guannel, Greg; Arkema, Katie; Ruggiero, Peter; Verutes, Gregory

    2016-01-01

    Natural habitats have the ability to protect coastal communities against the impacts of waves and storms, yet it is unclear how different habitats complement each other to reduce those impacts. Here, we investigate the individual and combined coastal protection services supplied by live corals on reefs, seagrass meadows, and mangrove forests during both non-storm and storm conditions, and under present and future sea-level conditions. Using idealized profiles of fringing and barrier reefs, we quantify the services supplied by these habitats using various metrics of inundation and erosion. We find that, together, live corals, seagrasses, and mangroves supply more protection services than any individual habitat or any combination of two habitats. Specifically, we find that, while mangroves are the most effective at protecting the coast under non-storm and storm conditions, live corals and seagrasses also moderate the impact of waves and storms, thereby further reducing the vulnerability of coastal regions. Also, in addition to structural differences, the amount of service supplied by habitats in our analysis is highly dependent on the geomorphic setting, habitat location and forcing conditions: live corals in the fringing reef profile supply more protection services than seagrasses; seagrasses in the barrier reef profile supply more protection services than live corals; and seagrasses, in our simulations, can even compensate for the long-term degradation of the barrier reef. Results of this study demonstrate the importance of taking integrated and place-based approaches when quantifying and managing for the coastal protection services supplied by ecosystems. PMID:27409584

  20. Indian water rights settlements and water management innovations: The role of the Arizona Water Settlements Act

    NASA Astrophysics Data System (ADS)

    Bark, Rosalind H.; Jacobs, Katharine L.

    2009-05-01

    In the American southwest, over-allocated water supplies, groundwater depletion, and potential climate change impacts are major water management concerns. It may therefore seem counterintuitive that the resolution of outstanding senior tribal water claims, essentially reallocating finite water supplies to tribes, could support improved water supply reliability for many water users as is the case with the 2004 Arizona Water Settlements Act. The large size of the settlement and its multiple components translate to significant impacts on water policy in Arizona. Key water management solutions incorporated into the settlement and associated legislation have expanded the water manager's "toolbox" and are expected to enhance water supply reliability both within and outside Arizona's active management areas. Many of these new tools are transferable to water management applications in other states.

  1. Navy Financial Management: Improved Management of Operating Materials and Supplies Could Yield Significant Savings

    DTIC Science & Technology

    1996-08-16

    This report provides the results of our detailed assessment of the Navy’s financial reporting on and management of operating materials and supplies...also contains recommendations that are directed at improving financial reporting and inventory management.

  2. 41 CFR 101-30.000 - Scope of part.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... items of supply, a prerequisite for integrated item management under the Federal procurement system... Section 101-30.000 Public Contracts and Property Management Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS SUPPLY AND PROCUREMENT 30-FEDERAL CATALOG SYSTEM § 101-30.000...

  3. Climate change impacts on southeastern U.S. basins

    USGS Publications Warehouse

    Georgakakos, Aris P.; Yao, Huaming

    2000-01-01

    The work described herein aims to assess the impacts of potential climate change on the Apalachicola-Chattahoochee-Flint (ACF) and Alabama-Coosa-Talapoosa (ACT) river basins in the Southeastern US. The assessment addresses the potential impacts on watershed hydrology (soil moisture and streamflow) and on major water uses including water supply, drought management, hydropower, environmental and ecological protection, recreation, and navigation. This investigation develops new methods, establishes and uses an integrated modeling framework, and reaches several important conclusions that bear upon river basin planning and management. Although the specific impacts vary significantly with the choice of the GCM scenario, some general conclusions are that (1) soil moisture and streamflow variability is expected to increase, and (2) flexible and adaptive water sharing agreements, management strategies, and institutional processes are best suited to cope with the uncertainty associated with future climate scenarios.

  4. Cellular iron transport.

    PubMed

    Garrick, Michael D; Garrick, Laura M

    2009-05-01

    Iron has a split personality as an essential nutrient that also has the potential to generate reactive oxygen species. We discuss how different cell types within specific tissues manage this schizophrenia. The emphasis in enterocytes is on regulating the body's supply of iron by regulating transport into the blood stream. In developing red blood cells, adaptations in transport manage the body's highest flux of iron. Hepatocytes buffer the body's stock of iron. Macrophage recycle the iron from effete red cells among other iron management tasks. Pneumocytes provide a barrier to prevent illicit entry that, when at risk of breaching, leads to a need to handle the dangers in a fashion essentially shared with macrophage. We also discuss or introduce cell types including renal cells, neurons, other brain cells, and more where our ignorance, currently still vast, needs to be removed by future research.

  5. Future directions: Integrated resource planning

    NASA Astrophysics Data System (ADS)

    Bauer, D. C.; Eto, J.

    Integrated resource planning or IRP is the process for integrating supply- and demand-side resources to provide energy services at a cost that balances the interests of all stakeholders. It now is the resource planning process used by electric utilities in over 30 states. The goals of IRP have evolved from least cost planning and encouragement of demand-side management to broader, more complex issues including core competitive business activity, risk management and sharing, accounting for externalities, and fuel switching between gas and electricity. IRP processes are being extended to other interior regions of the country, to non-investor owned utilities, and to regional (rather than individual utility) planning bases, and to other fuels (natural gas). The comprehensive, multi-valued, and public reasoning characteristics of IRP could be extended to applications beyond energy, e.g., transportation, surface water management, and health care in ways suggested.

  6. Knowledge management system for risk mitigation in supply chain uncertainty: case from automotive battery supply chain

    NASA Astrophysics Data System (ADS)

    Marie, I. A.; Sugiarto, D.; Surjasa, D.; Witonohadi, A.

    2018-01-01

    Automotive battery supply chain include battery manufacturer, sulphuric acid suppliers, polypropylene suppliers, lead suppliers, transportation service providers, warehouses, retailers and even customers. Due to the increasingly dynamic condition of the environment, supply chain actors were required to improve their ability to overcome various uncertainty issues in the environment. This paper aims to describe the process of designing a knowledge management system for risk mitigation in supply chain uncertainty. The design methodology began with the identification of the knowledge needed to solve the problems associated with uncertainty and analysis of system requirements. The design of the knowledge management system was described in the form of a data flow diagram. The results of the study indicated that key knowledge area that needs to be managed were the knowledge to maintain the stability of process in sulphuric acid process and knowledge to overcome the wastes in battery manufacturing process. The system was expected to be a media acquisition, dissemination and storage of knowledge associated with the uncertainty in the battery supply chain and increase the supply chain performance.

  7. A Study on Management Standards and Manual of Water supply system for the response of Mt. Baekdu Volcanic Eruption in South Korea

    NASA Astrophysics Data System (ADS)

    Lee, G.; Jee, Y.; Kim, J.

    2013-12-01

    Korea is regarded as a safety area from the volcanic disaster, however, the countermeasures for Mt. Baekdu volcanic eruption has been discussed because the possibility of the volcanic eruption had been heightened and various experimental results show risk of Mt. Baekdu volcanic eruption. The purpose of study is to establish management standards and manual for water supply system through the analysis of the volcanic ash effect to the water supply systems. In this study, similar case study for the water supply system to the volcanic ash damage had been investigated. Present status of water supply system and response manual for water supply systems also had been investigated. And then problems of present response manual using had been estimated. As the result, damage according to Mt. Baekdu volcanic eruption on the water supply system could be forecasted. And the direction of management standard and response manual has been established. Acknowledgments This research was supported by a grant [NEMA-BAEKDUSAN-2012-2-2] from the Volcanic Disaster Preparedness Research Center sponsored by National Emergency Management Agency of Korea.

  8. Supply chain dynamics in healthcare services.

    PubMed

    Samuel, Cherian; Gonapa, Kasiviswanadh; Chaudhary, P K; Mishra, Ananya

    2010-01-01

    The purpose of this paper is to analyse health service supply chain systems. A great deal of literature is available on supply chain management in finished goods inventory situations; however, little research exists on managing service capacity when finished goods inventories are absent. System dynamics models for a typical service-oriented supply chain such as healthcare processes are developed, wherein three service stages are presented sequentially. Just like supply chains with finished goods inventory, healthcare service supply chains also show dynamic behaviour. Comparing options, service reduction, and capacity adjustment delays showed that reducing capacity adjustment and service delays gives better results. The study is confined to health service-oriented supply chains. Further work includes extending the study to service-oriented supply chains with parallel processing, i.e. having more than one stage to perform a similar operation and also to study the behaviour in service-oriented supply chains that have re-entrant orders and applications. Specific case studies can also be developed to reveal factors relevant to particular service-oriented supply chains. The paper explains the bullwhip effect in healthcare service-oriented supply chains. Reducing stages and capacity adjustment are strategic options for service-oriented supply chains. The paper throws light on policy options for managing healthcare service-oriented supply chain dynamics.

  9. Where is the Battle-Line for Supply Contractors?

    DTIC Science & Technology

    1999-04-01

    military supply distribution system initiates, at the Theater Distribution Management Center (TMC). 3 Chapter 2 Current peacetime supply process I don’t know...terms of distribution success on the battlefield. There are three components which comprise the idea of distribution and distribution management . They...throughout the distribution pipeline. Visibility is the most essential component of distribution management . History is full of examples that prove

  10. The Multidisciplinary Nature of Supply Chain Management: Where Does It Fit in Business Education?

    ERIC Educational Resources Information Center

    Jones, Michael A.; Cope, Robert; Budden, Michael C.

    2009-01-01

    Supply chain management is an area of growing interest in both industry and academics. A number of new text books are available for courses in the area, and a number of Colleges of Business are adding relevant curriculum. However, questions arise as to what Supply Chain Management comprises, as to needed courses in the area, and an appropriate…

  11. A Tool for Assessing Future Capacity Loss Due to Sedimentation in the United States' Reservoirs

    NASA Astrophysics Data System (ADS)

    Pinson, A. O.; Baker, B.; White, K. D.

    2017-12-01

    Federal reservoirs are critical components of the United States' water supply, flood risk management, hydropower and navigation infrastructure. These reservoirs included capacity for storage loss due to the deposition of sediment by inflowing streams in their original design. However, the actual rate of capacity loss experienced is controlled in part by climate, topography, soils, and land use/land cover, and may vary from the design. To assess the current and future vulnerability of its reservoirs to sedimentation. USACE has developed an online planning tool to identify USACE reservoirs where sedimentation is currently a problem (e.g., sedimentation rate exceeds design sedimentation rate, or zone losses disproportionately affect authorized purposes), and reservoirs where rates are expected to increase significantly in the future. The goal is to be able to prioritize operation and maintenance actions to minimize the effects of reservoir capacity loss on authorized purposes and help maximize reservoir use life.

  12. Metabolic modelling to support long term strategic decisions on water supply systems

    NASA Astrophysics Data System (ADS)

    Ciriello, Valentina; Felisa, Giada; Lauriola, Ilaria; Pomanti, Flavio; Di Federico, Vittorio

    2017-04-01

    Water resources are essential for the economic development and sustenance of anthropic activities belonging to the civil, agricultural and industrial sectors. Nevertheless, availability of water resources is not uniformly distributed in space and time. Moreover, the increasing water demand, mainly due to population growth and expansion of agricultural crops, may cause increasing water stress conditions, if combined with the effects of climate change. Under these circumstances, it is necessary to improve the resilience of water supply systems both in terms of infrastructures and environmental compliance. Metabolic modelling approaches represent a flexible tool able to provide support to decision making in the long term, based on sustainability criteria. These approaches mimic the water supply network through a set of material and energy fluxes that interact and influence each other. By analyzing these fluxes, a suite of key performance indicators is evaluated in order to identify which kind of interventions may be applied to increase the sustainability of the system. Here, we adopt these concepts to analyze the water supply network of Reggio-Emilia (Italy) which is supported by water withdrawals from both surface water and groundwater bodies. We analyze different scenarios, including possible reduction of water withdrawals from one of the different sources as a consequence of a decrease in water availability under present and future scenarios. On these basis, we identify preventive strategies for a dynamic management of the water supply system.

  13. Energy: the impact of availability and prices on future business prospects. [Collection of 12 papers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peelle, D.M.

    1975-01-01

    This collection includes twelve papers, all but one being presented at an August 1974 seminar. These are entitled Energy: Policy, Availability and Prices, Harry R. Hall; Public Policy and the Energy Crisis, Edward J. Mitchell; How Federal Price and Allocation Controls on Oil Have Worsened the Energy Crisis, William A. Johnson; Energy Availability in the Near and Long-Range Future, R.R. Wright; Consideration of Natural Gas Supply for Michigan, Donald L. Katz; The Outlook for Coal, Robert V. Price; Electricity: Future Availability and Cost, G. L. Heins; Solar Energy Research and Development, F. Tom Sparrow; Energy in the Automobile, Doron K.more » Samples; Energy and Future Business Prospects: Implication for Feedstocks-Using Industries, William H. Shaker; Energy Conservation in the Processing Industries, Alfred F. Waterland; and Energy Management: Guidelines and Case Histories, G. N. Tiberio. Letter from OPEC is a dissertation by Joseph Kraft on a visit to OPEC headquarters in Vienna. (MCW)« less

  14. Healthy and sustainable diets: Community concern about the effect of the future food environments and support for government regulating sustainable food supplies in Western Australia.

    PubMed

    Harray, Amelia J; Meng, Xingqiong; Kerr, Deborah A; Pollard, Christina M

    2018-06-01

    To determine the level of community concern about future food supplies and perception of the importance placed on government regulation over the supply of environmentally friendly food and identify dietary and other factors associated with these beliefs in Western Australia. Data from the 2009 and 2012 Nutrition Monitoring Survey Series computer-assisted telephone interviews were pooled. Level of concern about the effect of the environment on future food supplies and importance of government regulating the supply of environmentally friendly food were measured. Multivariate regression analysed potential associations with sociodemographic variables, dietary health consciousness, weight status and self-reported intake of eight foods consistent with a sustainable diet. Western Australia. Community-dwelling adults aged 18-64 years (n = 2832). Seventy nine per cent of Western Australians were 'quite' or 'very' concerned about the effect of the environment on future food supplies. Respondents who paid less attention to the health aspects of their diet were less likely than those who were health conscious ('quite' or 'very' concerned) (OR = 0.53, 95% CI [0.35, 0.8] and 0.38 [0.17, 0.81] respectively). The majority of respondents (85.3%) thought it was 'quite' or 'very' important that government had regulatory control over an environmentally friendly food supply. Females were more likely than males to rate regulatory control as 'quite' or 'very' important' (OR = 1.63, 95% CI [1.09, 2.44], p = .02). Multiple regression modeling found that no other factors predicted concern or importance. There is a high level of community concern about the impact of the environment on future food supplies and most people believe it is important that the government regulates the issue. These attitudes dominate regardless of sociodemographic characteristics, weight status or sustainable dietary behaviours. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. 44 CFR 302.7 - Use of funds, materials, supplies, equipment, and personnel.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... use of civil defense personnel, organizational equipment, materials, and facilities, in preparation..., supplies, equipment, and personnel. 302.7 Section 302.7 Emergency Management and Assistance FEDERAL... EMERGENCY MANAGEMENT ASSISTANCE PROGRAM (EMA) § 302.7 Use of funds, materials, supplies, equipment, and...

  16. A production planning model considering uncertain demand using two-stage stochastic programming in a fresh vegetable supply chain context.

    PubMed

    Mateo, Jordi; Pla, Lluis M; Solsona, Francesc; Pagès, Adela

    2016-01-01

    Production planning models are achieving more interest for being used in the primary sector of the economy. The proposed model relies on the formulation of a location model representing a set of farms susceptible of being selected by a grocery shop brand to supply local fresh products under seasonal contracts. The main aim is to minimize overall procurement costs and meet future demand. This kind of problem is rather common in fresh vegetable supply chains where producers are located in proximity either to processing plants or retailers. The proposed two-stage stochastic model determines which suppliers should be selected for production contracts to ensure high quality products and minimal time from farm-to-table. Moreover, Lagrangian relaxation and parallel computing algorithms are proposed to solve these instances efficiently in a reasonable computational time. The results obtained show computational gains from our algorithmic proposals in front of the usage of plain CPLEX solver. Furthermore, the results ensure the competitive advantages of using the proposed model by purchase managers in the fresh vegetables industry.

  17. [Urban ecosystem services: A review].

    PubMed

    Mao, Qi-zheng; Huang, Gan-lin; Wu, Jian-guo

    2015-04-01

    Maintaining and improving ecosystem services in urban areas and human well-being are essential for sustainable development and therefore constitute an important topic in urban ecology. Here we reviewed studies on ecosystem services in urban areas. Based on the concept and classification of urban ecosystem services, we summarized characteristics of urban ecosystem services, including the human domination, high demand of ecosystem services in urban areas, spatial heterogeneity and temporal dynamics of ecosystem services supply and demand in urban areas, multi-services of urban green infrastructures, the socio-economic dimension of ecosystem services supply and ecosystem disservices in urban areas. Among different urban ecosystem services, the regulating service and cultural service are particularly indispensable to benefit human health. We pointed out that tradeoffs among different types of ecosystem services mostly occur between supportive service and cultural service, as well as regulating service and cultural service. In particular, we emphasized the relationship between landscape design (i.e. green infrastructure) and ecosystem services supply. Finally, we discussed current gaps to link urban ecosystem services studies to landscape design and management and pointed out several directions for future research in urban ecosystem services.

  18. Human-water interactions in Colorado: Evaluating the impacts of population growth, energy development and dynamic industries on water resource management

    NASA Astrophysics Data System (ADS)

    Hogue, Terri; Walker, Ella; Read, Laura

    2016-04-01

    The gap between water supply and demand is growing in the western U.S. due to climate change, rapid population growth, intensive agricultural production, wide-spread energy development and changing industrial use. Water conservation efforts among residential and industrial water users, recycling and reuse techniques, and innovative regulatory frameworks strive to mitigate this gap, however, the extent of these management strategies are often difficult to quantify and are typically not included in prediction of future water allocations. Water use on the eastern slope in Colorado (Denver-Metro region) is impacted by high-intensity activities, including unconventional energy development, large withdrawals for agriculture, and increasing demand for recreational industries. These demands are in addition to a projected population increase of 100% by 2050 in the South Platte River basin, which encompasses the Denver-Metro region. The current presentation focuses on the quantification of regional sector water use utilzing a range of observations and technologies (including remote sensing) and integration into a regional decision support system. We explore scenarios of future water use in the energy, agriculture, and municipal/industrial sectors, and discuss the potential water allocation tradeoffs to various stakeholders. We also employ climate projections to quantify the potential range of water availability under various scenarios and observe the extent to which future climate may influence regional management decisions.

  19. Space station systems: A bibliography with indexes (supplement 7)

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This bibliography lists 1,158 reports, articles, and other documents introduced into the NASA scientific and technical information system between January 1, 1988 and June 30, 1988. Its purpose is to provide helpful information to researchers, designers and managers engaged in Space Station technology development and mission design. Coverage includes documents that define major systems and subsystems related to structures and dynamic control, electronics and power supplies, propulsion, and payload integration. In addition, orbital construction methods, servicing and support requirements, procedures and operations, and missions for the current and future Space Station are included.

  20. Space station systems: A bibliography with indexes (supplement 10)

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This bibliography lists 1,422 reports, articles, and other documents introduced into the NASA scientific and technical information system between July 1, 1989 and December 31, 1989. Its purpose is to provide helpful information to researchers, designers and managers engaged in Space Station technology development and mission design. Coverage includes documents that define major systems and subsystems related to structures and dynamic control, electronics and power supplies, propulsion, and payload integration. In addition, orbital construction methods, servicing and support requirements, procedures and operations, and missions for the current and future Space Station are included.

  1. Space Station Systems: a Bibliography with Indexes (Supplement 8)

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This bibliography lists 950 reports, articles, and other documents introduced into the NASA scientific and technical information system between July 1, 1989 and December 31, 1989. Its purpose is to provide helpful information to researchers, designers and managers engaged in Space Station technology development and mission design. Coverage includes documents that define major systems and subsystems related to structures and dynamic control, electronics and power supplies, propulsion, and payload integration. In addition, orbital construction methods, servicing and support requirements, procedures and operations, and missions for the current and future Space Station are included.

  2. Space station systems: A bibliography with indexes (supplement 9)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This bibliography lists 1,313 reports, articles, and other documents introduced into the NASA scientific and technical information system between January 1, 1989 and June 30, 1989. Its purpose is to provide helpful information to researchers, designers and managers engaged in Space Station technology development and mission design. Coverage includes documents that define major systems and subsystems related to structures and dynamic control, electronics and power supplies, propulsion, and payload integration. In addition, orbital construction methods, servicing and support requirements, procedures and operations, and missions for the current and future Space Station are included.

  3. Summary appraisals of the Nation's ground-water resources; Caribbean region

    USGS Publications Warehouse

    Gómez-Gómez, Fernando; Heisel, James E.

    1980-01-01

    Ground-water resources will continue to be important within the region. In order to meet future needs, it is necessary that hydrologic principles be applied in managing the total water resource. Optimal use of the water resources can be accomplished through conjunctive use of surface and ground waters and through conservation practices. Optimal use may involve artificial recharge, ground-water salvage, saline-ground-water mining, use of seawater, desalination of saline ground water, waste-water reuse, and use of underground space for temporary storage of wastes, which could otherwise contaminate valuable water supplies.

  4. Energy plan, 1981

    NASA Astrophysics Data System (ADS)

    1981-12-01

    The planning procedures for the energy program and policy guidelines for energy planning are presented. Future changes in marginal costs and directions indicated for economically efficient pricing are assessed. The aim of the conservation program is to close the gap between the amounts of conservation which is rationally cost effective and that projected to occur anyway through normal market forces. An overview of energy demand and proposed plans for energy supply are given. Liquid fuels have priority although work on coal receives new emphasis. A better program on energy demand and management is suggested.

  5. Cryogenic Orbital Nitrogen Experiment (CONE): Phase A/B design study

    NASA Technical Reports Server (NTRS)

    Bailey, William J.; Weiner, Stephen P.; Beekman, Douglas H.

    1991-01-01

    Subcritical cryogenic fluid management (CFM) has long been recognized as an enabling technology for future space missions. Subcritical liquid storage and supply are two of the five CFM technology areas that need to be studied in the low gravity on-orbit environment. The Cryogenic Orbital Nitrogen Experiment (CONE) is a LN2 cryogenic storage and supply system demonstration placed in orbit by the National Space Transportation System (NSTS) Orbiter and operated as an in-bay payload. In-space demonstration of CFM using LN2 with a few well defined areas of focus would provide the confidence level required to implement subcritical cryogen use and is the first step towards the more far reaching issue of cryogen transfer and tankage resupply. A conceptual approach for CONE was developed and an overview of the program is described including the following: (1) a description of the background and scope of the technology objectives; (2) a description of the payload design and operation; and (3) the justification for CONE relating to potential near term benefits and risk mitigation for future systems. Data and criteria is provided to correlate in-space performance with analytical and numerical modeling of CFM systems.

  6. Valuable human capital: the aging health care worker.

    PubMed

    Collins, Sandra K; Collins, Kevin S

    2006-01-01

    With the workforce growing older and the supply of younger workers diminishing, it is critical for health care managers to understand the factors necessary to capitalize on their vintage employees. Retaining this segment of the workforce has a multitude of benefits including the preservation of valuable intellectual capital, which is necessary to ensure that health care organizations maintain their competitive advantage in the consumer-driven market. Retaining the aging employee is possible if health care managers learn the motivators and training differences associated with this category of the workforce. These employees should be considered a valuable resource of human capital because without their extensive expertise, intense loyalty and work ethic, and superior customer service skills, health care organizations could suffer severe economic repercussions in the near future.

  7. 41 CFR 101-27.102-2 - Guidelines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Supply Catalog, and copies may be obtained by agencies in the same manner as other items in that catalog... Section 101-27.102-2 Public Contracts and Property Management Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS SUPPLY AND PROCUREMENT 27-INVENTORY MANAGEMENT 27.1-Stock...

  8. 41 CFR 101-27.102-2 - Guidelines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Supply Catalog, and copies may be obtained by agencies in the same manner as other items in that catalog... Section 101-27.102-2 Public Contracts and Property Management Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS SUPPLY AND PROCUREMENT 27-INVENTORY MANAGEMENT 27.1-Stock...

  9. 41 CFR 101-27.102-2 - Guidelines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Supply Catalog, and copies may be obtained by agencies in the same manner as other items in that catalog... Section 101-27.102-2 Public Contracts and Property Management Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS SUPPLY AND PROCUREMENT 27-INVENTORY MANAGEMENT 27.1-Stock...

  10. 41 CFR 101-27.102-2 - Guidelines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Supply Catalog, and copies may be obtained by agencies in the same manner as other items in that catalog... Section 101-27.102-2 Public Contracts and Property Management Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS SUPPLY AND PROCUREMENT 27-INVENTORY MANAGEMENT 27.1-Stock...

  11. 77 FR 8839 - Proposed Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-15

    ... supply chain management (SCM) practices, processes and metrics that could be beneficial to the Department... commercial supply chain management. Dated: January 31, 2012. Patricia L. Toppings, OSD Federal Register..., OH, 45433, or call 937-255-3636 x4674. Title; Associated Form; and OMB Number: Leading Edge Supply...

  12. 77 FR 47109 - Manufacturer of Controlled Substances; Notice of Application; Clinical Supplies Management Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-07

    ... DEPARTMENT OF JUSTICE Drug Enforcement Administration Manufacturer of Controlled Substances; Notice of Application; Clinical Supplies Management Inc. Pursuant to Title 21 Code of Federal Regulations 1301.34(a), this is notice that on July 3, 2012, Clinical Supplies [[Page 47110

  13. Streamlining the supply chain.

    PubMed

    Neumann, Lydon

    2003-07-01

    Effective management of the supply chain requires attention to: Product management--formulary development and maintenance, compliance, clinical involvement, standardization, and demand-matching. Sourcing and contracting--vendor consolidation, GPO portfolio management, price leveling, content management, and direct contracting Purchasing and payment-cycle--automatic placement, web enablement, centralization, evaluated receipts settlement, and invoice matching Inventory and distribution management--"unofficial" and "official" locations, vendor-managed inventory, automatic replenishment, and freight management.

  14. Present and Future Water Supply for Mammoth Cave National Park, Kentucky

    USGS Publications Warehouse

    Cushman, R.V.; Krieger, R.A.; McCabe, John A.

    1965-01-01

    The increase in the number of visitors during the past several years at Mammoth Cave National Park has rendered the present water supply inadequate. Emergency measures were necessary during August 1962 to supplement the available supply. The Green River is the largest potential source of water supply for Mammoth Cave. The 30-year minimum daily discharge is 40 mgd (million gallons per day) . The chemical quality is now good, but in the past the river has been contaminated by oil-field-brine wastes. By mixing it with water from the existing supply, Green River water could be diluted to provide water of satisfactory quality in the event of future brine pollution. The Nolin River is the next largest potential source of water (minimum releases from Nolin Reservoir, 97-129 mgd). The quality is satisfactory, but use of this source would require a 8-mile pipeline. The present water supply comes from springs draining a perched aquifer in the Haney Limestone Member of the Golconda Formation on Flint Ridge. Chemical quality is excellent but the minimum observed flow of all the springs on Flint Ridge plus Bransford well was only 121,700 gpd (gallons per day). This supply is adequate for present needs but not for future requirements; it could be augmented with water from the Green River. Wet Prong Buffalo Creek is the best of several small-stream supplies in the vicinity of Mammoth Cave. Minimum flow of the creek is probably about 300,000 gpd and the quality is good. The supply is about 5 miles from Mammoth Cave. This supply also may be utilized for a future separate development in the northern part of the park. The maximum recorded yield of wells drilled into the basal ground water in the Ste. Genevieve and St. Louis Limestone is 36 gpm (gallons per minute). Larger supplies may be developed if a large underground stream is struck. Quality can be expected to be good unless the well is drilled too far below the basal water table and intercepts poorer quality water at a lower level. This source of supply might be used to augment the present supply, but locating the trunk conduits might be difficult. Water in alluvium adjacent to the Green River and perched water in the Big Clifty Sandstone Member of the Golconda Formation and Girkin Formation have little potential as a water supply.

  15. The integrated supplier: key to cost management and multi-franchise capitation contracting.

    PubMed

    Schuweiler, R C

    1996-05-01

    Capitation...most healthcare providers do not work under it, comprehend it, or even want it, yet supply capitation contracting seminars are popping up everywhere creating the feeling that the bandwagon is leaving, and it might be time to get on board. Not true. Supply capitation is not for all organizations. Capitation contracting is not easy and there are not many successful models to help the uninitiated. If a panacea is sought for reducing supply costs, capitation is only one component of a systematic strategy to reduce materiel costs. This article suggests a direction using the Group Health Materiel Management (Group Health Cooperative of Puget Sound, WA) experience as a point of reference. It advocates a systematic approach that focuses on expense reduction in: cost of goods, holding cost of inventory, labor cost associated with all materiel processes, distribution cost (transportation and par stock pick, pack, and replenishment), product utilization, variation in product standards, and waste stream byproducts. At Group Health (GH) these issues are primarily addressed through the use of: information systems, supplier certification/selection processes, group purchasing compliance, supply channel management, supply capitation contracting programs, standardization, and utilization management. Because of managed care organizational structure, Group Health Cooperative supply capitation contracting, as performed at GH, is discussed not as a quick fix solution but in the spirit of sharing our experience with others who may be considering it as a cost savings tactic in the context of a broad-based materiel management strategy. This article highlights the experiences of GH beginning with materiel management's business process assumptions toward multiple-franchise supply capitation.

  16. Reinventing The Design Process: Teams and Models

    NASA Technical Reports Server (NTRS)

    Wall, Stephen D.

    1999-01-01

    The future of space mission designing will be dramatically different from the past. Formerly, performance-driven paradigms emphasized data return with cost and schedule being secondary issues. Now and in the future, costs are capped and schedules fixed-these two variables must be treated as independent in the design process. Accordingly, JPL has redesigned its design process. At the conceptual level, design times have been reduced by properly defining the required design depth, improving the linkages between tools, and managing team dynamics. In implementation-phase design, system requirements will be held in crosscutting models, linked to subsystem design tools through a central database that captures the design and supplies needed configuration management and control. Mission goals will then be captured in timelining software that drives the models, testing their capability to execute the goals. Metrics are used to measure and control both processes and to ensure that design parameters converge through the design process within schedule constraints. This methodology manages margins controlled by acceptable risk levels. Thus, teams can evolve risk tolerance (and cost) as they would any engineering parameter. This new approach allows more design freedom for a longer time, which tends to encourage revolutionary and unexpected improvements in design.

  17. Scenario Planning of California Water Resources with Climate Change

    NASA Astrophysics Data System (ADS)

    Yin, H.; Chung, F. I.; Anderson, J.

    2008-12-01

    Several advances have been made in using climate change projection information in water resources planning in California. Since there is uncertainty about future climate, 12 climate change projections were used to assess impacts on SWP and CVP operations. Average results for the 12 projections are presented in this summary. Current SWP and CVP infrastructure, regulations and operating rules were assumed. These studies indicate that climate change is expected to reduce the reliability of the SWP and CVP water supply systems. Annual Delta exports are expected to be reduced by 8% by mid-century and 15% by the end of the century. This would lead to reduced water deliveries south of the Delta. Decreases in reservoir carryover storage of 16% by mid-century and 28% by the end of the century would reduce the system's flexibility during water shortages. Groundwater pumping in the Sacramento Valley is expected to increase by 8% by mid-century and by 13% at the end of the century to augment surface water supplies. Power supply from the combined SWP and CVP is expected to decrease by 5% at mid-century and 8% by the end of the century. It is anticipated that the SWP and CVP will become vulnerable to operational interruption in about 10% of the years by mid-century and 15% of the years at the end of the century. To meet current regulatory requirements and to maintain minimum system operations during the vulnerable years, an additional 420 TAF/year of water by mid-century and an additional 610 TAF/year of water by the end of the century would be needed. This water could be obtained through additional water supplies, reductions in water demands, or a combination of the two. These results indicate a need to explore adaptation measures to improve the reliability of future water supplies in California. Because uncertainties associated with impacts analyses increase as the projection moves further into the future, and because a practical engineering planning horizon for most facilities is less than 50 years, DWR believes that the mid-century analyses are more relevant to water resources planning and management. However, the end of the century analyses will serve as a useful reference guide since many water facilities are expected to have useful lives into the next century.

  18. 41 CFR 101-26.508-2 - Requisitioning data processing tape not available from Federal Supply Schedule contracts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Public Contracts and Property Management Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS SUPPLY AND PROCUREMENT 26-PROCUREMENT SOURCES AND PROGRAM 26.5-GSA Procurement... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Requisitioning data...

  19. 41 CFR 101-30.000 - Scope of part.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS SUPPLY AND PROCUREMENT 30-FEDERAL CATALOG SYSTEM... personnel in managing these items of supply, a prerequisite for integrated item management under the Federal... 41 Public Contracts and Property Management 2 2012-07-01 2012-07-01 false Scope of part. 101-30...

  20. The use of smart technologies in enabling construction components reuse: A viable method or a problem creating solution?

    PubMed

    Iacovidou, Eleni; Purnell, Phil; Lim, Ming K

    2018-06-15

    The exploitation of Radio Frequency Identification (RFID) for tracking and archiving the properties of structural construction components could be a potentially innovative disruption for the construction sector. This is because RFID can stimulate the reuse of construction components and reduce their wastage, hence addressing sustainability issues in the construction sector. To test the plausibility of that idea, this study explores the potential pre-conditions for RFID to facilitate construction components reuse, and develops a guidance for promoting their redistribution back to the supply chain. It also looks at how integrating RFID with Building Information Modelling (BIM) can possibly be a valuable extension of its capabilities, providing the opportunity for tracked components to be incorporated into new structures in an informed, sound way. A preliminary assessment of the strengths, weaknesses, opportunities and threats of the RFID technology is presented in order to depict its current and future potential in promoting construction components' sustainable lifecycle management, while emphasis has been laid on capturing their technical, environmental, economic and social value. Findings suggest that the collection of the right amount of information at the design-construction-deconstruction-reuse-disposal stage is crucial for RFID to become a successful innovation in the construction sector. Although a number of limitations related to the technical operability and recycling of RFID tags seem to currently hinder its uptake for structural components' lifecycle management, future technological innovations could provide solutions that would enable it to become a mainstream practice. Taken together these proposals advocate that the use of RFID and its integration with BIM can create the right environment for the development of new business models focused on sustainable resource management. These models may then unlock multiple values that are otherwise dissipated in the system. If the rapid technological development of RFID capability can be allied to policy interventions that control and manage its uptake along the supply chain, the sustainable lifecycle management of construction components could be radically enhanced. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

Top